1 // SPDX-License-Identifier: GPL-2.0-or-later 1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* Kernel module help for powerpc. !! 2 /* 3 Copyright (C) 2001, 2003 Rusty Russell IBM !! 3 * 4 Copyright (C) 2008 Freescale Semiconductor !! 4 * Copyright (C) 2001 Rusty Russell. >> 5 * Copyright (C) 2003, 2004 Ralf Baechle (ralf@linux-mips.org) >> 6 * Copyright (C) 2005 Thiemo Seufer >> 7 */ 5 8 6 */ !! 9 #undef DEBUG 7 #include <linux/elf.h> !! 10 >> 11 #include <linux/extable.h> 8 #include <linux/moduleloader.h> 12 #include <linux/moduleloader.h> 9 #include <linux/err.h> !! 13 #include <linux/elf.h> 10 #include <linux/mm.h> 14 #include <linux/mm.h> 11 #include <linux/bug.h> !! 15 #include <linux/numa.h> 12 #include <asm/module.h> !! 16 #include <linux/slab.h> 13 #include <linux/uaccess.h> !! 17 #include <linux/fs.h> 14 #include <asm/firmware.h> !! 18 #include <linux/string.h> 15 #include <linux/sort.h> !! 19 #include <linux/kernel.h> 16 #include <asm/setup.h> !! 20 #include <linux/spinlock.h> 17 #include <asm/sections.h> !! 21 #include <linux/jump_label.h> 18 !! 22 #include <asm/jump_label.h> 19 static const Elf_Shdr *find_section(const Elf_ !! 23 20 const Elf_ !! 24 struct mips_hi16 { 21 const char !! 25 struct mips_hi16 *next; 22 { !! 26 Elf_Addr *addr; 23 char *secstrings; !! 27 Elf_Addr value; 24 unsigned int i; !! 28 }; 25 !! 29 26 secstrings = (char *)hdr + sechdrs[hdr !! 30 static LIST_HEAD(dbe_list); 27 for (i = 1; i < hdr->e_shnum; i++) !! 31 static DEFINE_SPINLOCK(dbe_lock); 28 if (strcmp(secstrings+sechdrs[ !! 32 29 return &sechdrs[i]; !! 33 static void apply_r_mips_32(u32 *location, u32 base, Elf_Addr v) 30 return NULL; !! 34 { >> 35 *location = base + v; >> 36 } >> 37 >> 38 static int apply_r_mips_26(struct module *me, u32 *location, u32 base, >> 39 Elf_Addr v) >> 40 { >> 41 if (v % 4) { >> 42 pr_err("module %s: dangerous R_MIPS_26 relocation\n", >> 43 me->name); >> 44 return -ENOEXEC; >> 45 } >> 46 >> 47 if ((v & 0xf0000000) != (((unsigned long)location + 4) & 0xf0000000)) { >> 48 pr_err("module %s: relocation overflow\n", >> 49 me->name); >> 50 return -ENOEXEC; >> 51 } >> 52 >> 53 *location = (*location & ~0x03ffffff) | >> 54 ((base + (v >> 2)) & 0x03ffffff); >> 55 >> 56 return 0; >> 57 } >> 58 >> 59 static int apply_r_mips_hi16(struct module *me, u32 *location, Elf_Addr v, >> 60 bool rela) >> 61 { >> 62 struct mips_hi16 *n; >> 63 >> 64 if (rela) { >> 65 *location = (*location & 0xffff0000) | >> 66 ((((long long) v + 0x8000LL) >> 16) & 0xffff); >> 67 return 0; >> 68 } >> 69 >> 70 /* >> 71 * We cannot relocate this one now because we don't know the value of >> 72 * the carry we need to add. Save the information, and let LO16 do the >> 73 * actual relocation. >> 74 */ >> 75 n = kmalloc(sizeof *n, GFP_KERNEL); >> 76 if (!n) >> 77 return -ENOMEM; >> 78 >> 79 n->addr = (Elf_Addr *)location; >> 80 n->value = v; >> 81 n->next = me->arch.r_mips_hi16_list; >> 82 me->arch.r_mips_hi16_list = n; >> 83 >> 84 return 0; >> 85 } >> 86 >> 87 static void free_relocation_chain(struct mips_hi16 *l) >> 88 { >> 89 struct mips_hi16 *next; >> 90 >> 91 while (l) { >> 92 next = l->next; >> 93 kfree(l); >> 94 l = next; >> 95 } >> 96 } >> 97 >> 98 static int apply_r_mips_lo16(struct module *me, u32 *location, >> 99 u32 base, Elf_Addr v, bool rela) >> 100 { >> 101 unsigned long insnlo = base; >> 102 struct mips_hi16 *l; >> 103 Elf_Addr val, vallo; >> 104 >> 105 if (rela) { >> 106 *location = (*location & 0xffff0000) | (v & 0xffff); >> 107 return 0; >> 108 } >> 109 >> 110 /* Sign extend the addend we extract from the lo insn. */ >> 111 vallo = ((insnlo & 0xffff) ^ 0x8000) - 0x8000; >> 112 >> 113 if (me->arch.r_mips_hi16_list != NULL) { >> 114 l = me->arch.r_mips_hi16_list; >> 115 while (l != NULL) { >> 116 struct mips_hi16 *next; >> 117 unsigned long insn; >> 118 >> 119 /* >> 120 * The value for the HI16 had best be the same. >> 121 */ >> 122 if (v != l->value) >> 123 goto out_danger; >> 124 >> 125 /* >> 126 * Do the HI16 relocation. Note that we actually don't >> 127 * need to know anything about the LO16 itself, except >> 128 * where to find the low 16 bits of the addend needed >> 129 * by the LO16. >> 130 */ >> 131 insn = *l->addr; >> 132 val = ((insn & 0xffff) << 16) + vallo; >> 133 val += v; >> 134 >> 135 /* >> 136 * Account for the sign extension that will happen in >> 137 * the low bits. >> 138 */ >> 139 val = ((val >> 16) + ((val & 0x8000) != 0)) & 0xffff; >> 140 >> 141 insn = (insn & ~0xffff) | val; >> 142 *l->addr = insn; >> 143 >> 144 next = l->next; >> 145 kfree(l); >> 146 l = next; >> 147 } >> 148 >> 149 me->arch.r_mips_hi16_list = NULL; >> 150 } >> 151 >> 152 /* >> 153 * Ok, we're done with the HI16 relocs. Now deal with the LO16. >> 154 */ >> 155 val = v + vallo; >> 156 insnlo = (insnlo & ~0xffff) | (val & 0xffff); >> 157 *location = insnlo; >> 158 >> 159 return 0; >> 160 >> 161 out_danger: >> 162 free_relocation_chain(l); >> 163 me->arch.r_mips_hi16_list = NULL; >> 164 >> 165 pr_err("module %s: dangerous R_MIPS_LO16 relocation\n", me->name); >> 166 >> 167 return -ENOEXEC; >> 168 } >> 169 >> 170 static int apply_r_mips_pc(struct module *me, u32 *location, u32 base, >> 171 Elf_Addr v, unsigned int bits) >> 172 { >> 173 unsigned long mask = GENMASK(bits - 1, 0); >> 174 unsigned long se_bits; >> 175 long offset; >> 176 >> 177 if (v % 4) { >> 178 pr_err("module %s: dangerous R_MIPS_PC%u relocation\n", >> 179 me->name, bits); >> 180 return -ENOEXEC; >> 181 } >> 182 >> 183 /* retrieve & sign extend implicit addend if any */ >> 184 offset = base & mask; >> 185 offset |= (offset & BIT(bits - 1)) ? ~mask : 0; >> 186 >> 187 offset += ((long)v - (long)location) >> 2; >> 188 >> 189 /* check the sign bit onwards are identical - ie. we didn't overflow */ >> 190 se_bits = (offset & BIT(bits - 1)) ? ~0ul : 0; >> 191 if ((offset & ~mask) != (se_bits & ~mask)) { >> 192 pr_err("module %s: relocation overflow\n", me->name); >> 193 return -ENOEXEC; >> 194 } >> 195 >> 196 *location = (*location & ~mask) | (offset & mask); >> 197 >> 198 return 0; >> 199 } >> 200 >> 201 static int apply_r_mips_pc16(struct module *me, u32 *location, u32 base, >> 202 Elf_Addr v) >> 203 { >> 204 return apply_r_mips_pc(me, location, base, v, 16); >> 205 } >> 206 >> 207 static int apply_r_mips_pc21(struct module *me, u32 *location, u32 base, >> 208 Elf_Addr v) >> 209 { >> 210 return apply_r_mips_pc(me, location, base, v, 21); >> 211 } >> 212 >> 213 static int apply_r_mips_pc26(struct module *me, u32 *location, u32 base, >> 214 Elf_Addr v) >> 215 { >> 216 return apply_r_mips_pc(me, location, base, v, 26); 31 } 217 } 32 218 >> 219 static int apply_r_mips_64(u32 *location, Elf_Addr v, bool rela) >> 220 { >> 221 if (WARN_ON(!rela)) >> 222 return -EINVAL; >> 223 >> 224 *(Elf_Addr *)location = v; >> 225 >> 226 return 0; >> 227 } >> 228 >> 229 static int apply_r_mips_higher(u32 *location, Elf_Addr v, bool rela) >> 230 { >> 231 if (WARN_ON(!rela)) >> 232 return -EINVAL; >> 233 >> 234 *location = (*location & 0xffff0000) | >> 235 ((((long long)v + 0x80008000LL) >> 32) & 0xffff); >> 236 >> 237 return 0; >> 238 } >> 239 >> 240 static int apply_r_mips_highest(u32 *location, Elf_Addr v, bool rela) >> 241 { >> 242 if (WARN_ON(!rela)) >> 243 return -EINVAL; >> 244 >> 245 *location = (*location & 0xffff0000) | >> 246 ((((long long)v + 0x800080008000LL) >> 48) & 0xffff); >> 247 >> 248 return 0; >> 249 } >> 250 >> 251 /** >> 252 * reloc_handler() - Apply a particular relocation to a module >> 253 * @type: type of the relocation to apply >> 254 * @me: the module to apply the reloc to >> 255 * @location: the address at which the reloc is to be applied >> 256 * @base: the existing value at location for REL-style; 0 for RELA-style >> 257 * @v: the value of the reloc, with addend for RELA-style >> 258 * @rela: indication of is this a RELA (true) or REL (false) relocation >> 259 * >> 260 * Each implemented relocation function applies a particular type of >> 261 * relocation to the module @me. Relocs that may be found in either REL or RELA >> 262 * variants can be handled by making use of the @base & @v parameters which are >> 263 * set to values which abstract the difference away from the particular reloc >> 264 * implementations. >> 265 * >> 266 * Return: 0 upon success, else -ERRNO >> 267 */ >> 268 static int reloc_handler(u32 type, struct module *me, u32 *location, u32 base, >> 269 Elf_Addr v, bool rela) >> 270 { >> 271 switch (type) { >> 272 case R_MIPS_NONE: >> 273 break; >> 274 case R_MIPS_32: >> 275 apply_r_mips_32(location, base, v); >> 276 break; >> 277 case R_MIPS_26: >> 278 return apply_r_mips_26(me, location, base, v); >> 279 case R_MIPS_HI16: >> 280 return apply_r_mips_hi16(me, location, v, rela); >> 281 case R_MIPS_LO16: >> 282 return apply_r_mips_lo16(me, location, base, v, rela); >> 283 case R_MIPS_PC16: >> 284 return apply_r_mips_pc16(me, location, base, v); >> 285 case R_MIPS_PC21_S2: >> 286 return apply_r_mips_pc21(me, location, base, v); >> 287 case R_MIPS_PC26_S2: >> 288 return apply_r_mips_pc26(me, location, base, v); >> 289 case R_MIPS_64: >> 290 return apply_r_mips_64(location, v, rela); >> 291 case R_MIPS_HIGHER: >> 292 return apply_r_mips_higher(location, v, rela); >> 293 case R_MIPS_HIGHEST: >> 294 return apply_r_mips_highest(location, v, rela); >> 295 default: >> 296 pr_err("%s: Unknown relocation type %u\n", me->name, type); >> 297 return -EINVAL; >> 298 } >> 299 >> 300 return 0; >> 301 } >> 302 >> 303 static int __apply_relocate(Elf_Shdr *sechdrs, const char *strtab, >> 304 unsigned int symindex, unsigned int relsec, >> 305 struct module *me, bool rela) >> 306 { >> 307 union { >> 308 Elf_Mips_Rel *rel; >> 309 Elf_Mips_Rela *rela; >> 310 } r; >> 311 Elf_Sym *sym; >> 312 u32 *location, base; >> 313 unsigned int i, type; >> 314 Elf_Addr v; >> 315 int err = 0; >> 316 size_t reloc_sz; >> 317 >> 318 pr_debug("Applying relocate section %u to %u\n", relsec, >> 319 sechdrs[relsec].sh_info); >> 320 >> 321 r.rel = (void *)sechdrs[relsec].sh_addr; >> 322 reloc_sz = rela ? sizeof(*r.rela) : sizeof(*r.rel); >> 323 me->arch.r_mips_hi16_list = NULL; >> 324 for (i = 0; i < sechdrs[relsec].sh_size / reloc_sz; i++) { >> 325 /* This is where to make the change */ >> 326 location = (void *)sechdrs[sechdrs[relsec].sh_info].sh_addr >> 327 + r.rel->r_offset; >> 328 /* This is the symbol it is referring to */ >> 329 sym = (Elf_Sym *)sechdrs[symindex].sh_addr >> 330 + ELF_MIPS_R_SYM(*r.rel); >> 331 if (sym->st_value >= -MAX_ERRNO) { >> 332 /* Ignore unresolved weak symbol */ >> 333 if (ELF_ST_BIND(sym->st_info) == STB_WEAK) >> 334 continue; >> 335 pr_warn("%s: Unknown symbol %s\n", >> 336 me->name, strtab + sym->st_name); >> 337 err = -ENOENT; >> 338 goto out; >> 339 } >> 340 >> 341 type = ELF_MIPS_R_TYPE(*r.rel); >> 342 >> 343 if (rela) { >> 344 v = sym->st_value + r.rela->r_addend; >> 345 base = 0; >> 346 r.rela = &r.rela[1]; >> 347 } else { >> 348 v = sym->st_value; >> 349 base = *location; >> 350 r.rel = &r.rel[1]; >> 351 } >> 352 >> 353 err = reloc_handler(type, me, location, base, v, rela); >> 354 if (err) >> 355 goto out; >> 356 } >> 357 >> 358 out: >> 359 /* >> 360 * Normally the hi16 list should be deallocated at this point. A >> 361 * malformed binary however could contain a series of R_MIPS_HI16 >> 362 * relocations not followed by a R_MIPS_LO16 relocation, or if we hit >> 363 * an error processing a reloc we might have gotten here before >> 364 * reaching the R_MIPS_LO16. In either case, free up the list and >> 365 * return an error. >> 366 */ >> 367 if (me->arch.r_mips_hi16_list) { >> 368 free_relocation_chain(me->arch.r_mips_hi16_list); >> 369 me->arch.r_mips_hi16_list = NULL; >> 370 err = err ?: -ENOEXEC; >> 371 } >> 372 >> 373 return err; >> 374 } >> 375 >> 376 int apply_relocate(Elf_Shdr *sechdrs, const char *strtab, >> 377 unsigned int symindex, unsigned int relsec, >> 378 struct module *me) >> 379 { >> 380 return __apply_relocate(sechdrs, strtab, symindex, relsec, me, false); >> 381 } >> 382 >> 383 #ifdef CONFIG_MODULES_USE_ELF_RELA >> 384 int apply_relocate_add(Elf_Shdr *sechdrs, const char *strtab, >> 385 unsigned int symindex, unsigned int relsec, >> 386 struct module *me) >> 387 { >> 388 return __apply_relocate(sechdrs, strtab, symindex, relsec, me, true); >> 389 } >> 390 #endif /* CONFIG_MODULES_USE_ELF_RELA */ >> 391 >> 392 /* Given an address, look for it in the module exception tables. */ >> 393 const struct exception_table_entry *search_module_dbetables(unsigned long addr) >> 394 { >> 395 unsigned long flags; >> 396 const struct exception_table_entry *e = NULL; >> 397 struct mod_arch_specific *dbe; >> 398 >> 399 spin_lock_irqsave(&dbe_lock, flags); >> 400 list_for_each_entry(dbe, &dbe_list, dbe_list) { >> 401 e = search_extable(dbe->dbe_start, >> 402 dbe->dbe_end - dbe->dbe_start, addr); >> 403 if (e) >> 404 break; >> 405 } >> 406 spin_unlock_irqrestore(&dbe_lock, flags); >> 407 >> 408 /* Now, if we found one, we are running inside it now, hence >> 409 we cannot unload the module, hence no refcnt needed. */ >> 410 return e; >> 411 } >> 412 >> 413 /* Put in dbe list if necessary. */ 33 int module_finalize(const Elf_Ehdr *hdr, 414 int module_finalize(const Elf_Ehdr *hdr, 34 const Elf_Shdr *sechdrs, struc !! 415 const Elf_Shdr *sechdrs, >> 416 struct module *me) 35 { 417 { 36 const Elf_Shdr *sect; !! 418 const Elf_Shdr *s; 37 int rc; !! 419 char *secstrings = (void *)hdr + sechdrs[hdr->e_shstrndx].sh_offset; 38 420 39 rc = module_finalize_ftrace(me, sechdr !! 421 if (IS_ENABLED(CONFIG_JUMP_LABEL)) 40 if (rc) !! 422 jump_label_apply_nops(me); 41 return rc; << 42 << 43 /* Apply feature fixups */ << 44 sect = find_section(hdr, sechdrs, "__f << 45 if (sect != NULL) << 46 do_feature_fixups(cur_cpu_spec << 47 (void *)sect << 48 (void *)sect << 49 << 50 sect = find_section(hdr, sechdrs, "__m << 51 if (sect != NULL) << 52 do_feature_fixups(cur_cpu_spec << 53 (void *)sect << 54 (void *)sect << 55 << 56 #ifdef CONFIG_PPC64 << 57 sect = find_section(hdr, sechdrs, "__f << 58 if (sect != NULL) << 59 do_feature_fixups(powerpc_firm << 60 (void *)sect << 61 (void *)sect << 62 #endif /* CONFIG_PPC64 */ << 63 << 64 #ifdef CONFIG_PPC64_ELF_ABI_V1 << 65 sect = find_section(hdr, sechdrs, ".op << 66 if (sect != NULL) { << 67 me->arch.start_opd = sect->sh_ << 68 me->arch.end_opd = sect->sh_ad << 69 } << 70 #endif /* CONFIG_PPC64_ELF_ABI_V1 */ << 71 << 72 #ifdef CONFIG_PPC_BARRIER_NOSPEC << 73 sect = find_section(hdr, sechdrs, "__s << 74 if (sect != NULL) << 75 do_barrier_nospec_fixups_range << 76 (void *)sect << 77 (void *)sect << 78 #endif /* CONFIG_PPC_BARRIER_NOSPEC */ << 79 << 80 sect = find_section(hdr, sechdrs, "__l << 81 if (sect != NULL) << 82 do_lwsync_fixups(cur_cpu_spec- << 83 (void *)sect- << 84 (void *)sect- << 85 423 >> 424 INIT_LIST_HEAD(&me->arch.dbe_list); >> 425 for (s = sechdrs; s < sechdrs + hdr->e_shnum; s++) { >> 426 if (strcmp("__dbe_table", secstrings + s->sh_name) != 0) >> 427 continue; >> 428 me->arch.dbe_start = (void *)s->sh_addr; >> 429 me->arch.dbe_end = (void *)s->sh_addr + s->sh_size; >> 430 spin_lock_irq(&dbe_lock); >> 431 list_add(&me->arch.dbe_list, &dbe_list); >> 432 spin_unlock_irq(&dbe_lock); >> 433 } 86 return 0; 434 return 0; >> 435 } >> 436 >> 437 void module_arch_cleanup(struct module *mod) >> 438 { >> 439 spin_lock_irq(&dbe_lock); >> 440 list_del(&mod->arch.dbe_list); >> 441 spin_unlock_irq(&dbe_lock); 87 } 442 } 88 443
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.