1 // SPDX-License-Identifier: GPL-2.0-or-later 1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 2 /* 3 * User-space Probes (UProbes) for powerpc !! 3 * User-space Probes (UProbes) for sparc 4 * 4 * 5 * Copyright IBM Corporation, 2007-2012 !! 5 * Copyright (C) 2013 Oracle Inc. 6 * 6 * 7 * Adapted from the x86 port by Ananth N Mavin !! 7 * Authors: >> 8 * Jose E. Marchesi <jose.marchesi@oracle.com> >> 9 * Eric Saint Etienne <eric.saint.etienne@oracle.com> 8 */ 10 */ >> 11 9 #include <linux/kernel.h> 12 #include <linux/kernel.h> 10 #include <linux/sched.h> !! 13 #include <linux/highmem.h> 11 #include <linux/ptrace.h> << 12 #include <linux/uprobes.h> 14 #include <linux/uprobes.h> 13 #include <linux/uaccess.h> 15 #include <linux/uaccess.h> >> 16 #include <linux/sched.h> /* For struct task_struct */ 14 #include <linux/kdebug.h> 17 #include <linux/kdebug.h> 15 18 16 #include <asm/sstep.h> !! 19 #include <asm/cacheflush.h> 17 #include <asm/inst.h> << 18 << 19 #define UPROBE_TRAP_NR UINT_MAX << 20 20 21 /** !! 21 /* Compute the address of the breakpoint instruction and return it. 22 * is_trap_insn - check if the instruction is !! 22 * 23 * @insn: instruction to be checked. !! 23 * Note that uprobe_get_swbp_addr is defined as a weak symbol in 24 * Returns true if @insn is a trap variant. !! 24 * kernel/events/uprobe.c. 25 */ 25 */ 26 bool is_trap_insn(uprobe_opcode_t *insn) !! 26 unsigned long uprobe_get_swbp_addr(struct pt_regs *regs) >> 27 { >> 28 return instruction_pointer(regs); >> 29 } >> 30 >> 31 static void copy_to_page(struct page *page, unsigned long vaddr, >> 32 const void *src, int len) 27 { 33 { 28 return (is_trap(*insn)); !! 34 void *kaddr = kmap_atomic(page); >> 35 >> 36 memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len); >> 37 kunmap_atomic(kaddr); 29 } 38 } 30 39 31 /** !! 40 /* Fill in the xol area with the probed instruction followed by the 32 * arch_uprobe_analyze_insn !! 41 * single-step trap. Some fixups in the copied instruction are 33 * @mm: the probed address space. !! 42 * performed at this point. 34 * @arch_uprobe: the probepoint information. !! 43 * 35 * @addr: vaddr to probe. !! 44 * Note that uprobe_xol_copy is defined as a weak symbol in 36 * Return 0 on success or a -ve number on erro !! 45 * kernel/events/uprobe.c. 37 */ 46 */ 38 int arch_uprobe_analyze_insn(struct arch_uprob !! 47 void arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr, 39 struct mm_struct *mm, unsigned !! 48 void *src, unsigned long len) 40 { 49 { 41 if (addr & 0x03) !! 50 const u32 stp_insn = UPROBE_STP_INSN; 42 return -EINVAL; !! 51 u32 insn = *(u32 *) src; 43 52 44 if (cpu_has_feature(CPU_FTR_ARCH_31) & !! 53 /* Branches annulling their delay slot must be fixed to not do 45 ppc_inst_prefixed(ppc_inst_read(au !! 54 * so. Clearing the annul bit on these instructions we can be 46 (addr & 0x3f) == 60) { !! 55 * sure the single-step breakpoint in the XOL slot will be 47 pr_info_ratelimited("Cannot re !! 56 * executed. 48 return -EINVAL; !! 57 */ 49 } << 50 58 51 if (!can_single_step(ppc_inst_val(ppc_ !! 59 u32 op = (insn >> 30) & 0x3; 52 pr_info_ratelimited("Cannot re !! 60 u32 op2 = (insn >> 22) & 0x7; 53 return -ENOTSUPP; !! 61 54 } !! 62 if (op == 0 && >> 63 (op2 == 1 || op2 == 2 || op2 == 3 || op2 == 5 || op2 == 6) && >> 64 (insn & ANNUL_BIT) == ANNUL_BIT) >> 65 insn &= ~ANNUL_BIT; 55 66 >> 67 copy_to_page(page, vaddr, &insn, len); >> 68 copy_to_page(page, vaddr+len, &stp_insn, 4); >> 69 } >> 70 >> 71 >> 72 /* Instruction analysis/validity. >> 73 * >> 74 * This function returns 0 on success or a -ve number on error. >> 75 */ >> 76 int arch_uprobe_analyze_insn(struct arch_uprobe *auprobe, >> 77 struct mm_struct *mm, unsigned long addr) >> 78 { >> 79 /* Any unsupported instruction? Then return -EINVAL */ 56 return 0; 80 return 0; 57 } 81 } 58 82 59 /* !! 83 /* If INSN is a relative control transfer instruction, return the 60 * arch_uprobe_pre_xol - prepare to execute ou !! 84 * corrected branch destination value. 61 * @auprobe: the probepoint information. !! 85 * 62 * @regs: reflects the saved user state of cur !! 86 * Note that regs->tpc and regs->tnpc still hold the values of the >> 87 * program counters at the time of the single-step trap due to the >> 88 * execution of the UPROBE_STP_INSN at utask->xol_vaddr + 4. >> 89 * 63 */ 90 */ 64 int arch_uprobe_pre_xol(struct arch_uprobe *au !! 91 static unsigned long relbranch_fixup(u32 insn, struct uprobe_task *utask, >> 92 struct pt_regs *regs) 65 { 93 { 66 struct arch_uprobe_task *autask = &cur !! 94 /* Branch not taken, no mods necessary. */ >> 95 if (regs->tnpc == regs->tpc + 0x4UL) >> 96 return utask->autask.saved_tnpc + 0x4UL; 67 97 68 autask->saved_trap_nr = current->threa !! 98 /* The three cases are call, branch w/prediction, 69 current->thread.trap_nr = UPROBE_TRAP_ !! 99 * and traditional branch. 70 regs_set_return_ip(regs, current->utas !! 100 */ >> 101 if ((insn & 0xc0000000) == 0x40000000 || >> 102 (insn & 0xc1c00000) == 0x00400000 || >> 103 (insn & 0xc1c00000) == 0x00800000) { >> 104 unsigned long real_pc = (unsigned long) utask->vaddr; >> 105 unsigned long ixol_addr = utask->xol_vaddr; >> 106 >> 107 /* The instruction did all the work for us >> 108 * already, just apply the offset to the correct >> 109 * instruction location. >> 110 */ >> 111 return (real_pc + (regs->tnpc - ixol_addr)); >> 112 } 71 113 72 user_enable_single_step(current); !! 114 /* It is jmpl or some other absolute PC modification instruction, 73 return 0; !! 115 * leave NPC as-is. >> 116 */ >> 117 return regs->tnpc; 74 } 118 } 75 119 76 /** !! 120 /* If INSN is an instruction which writes its PC location 77 * uprobe_get_swbp_addr - compute address of s !! 121 * into a destination register, fix that up. 78 * @regs: Reflects the saved state of the task << 79 * instruction. << 80 * Return the address of the breakpoint instru << 81 */ 122 */ 82 unsigned long uprobe_get_swbp_addr(struct pt_r !! 123 static int retpc_fixup(struct pt_regs *regs, u32 insn, >> 124 unsigned long real_pc) 83 { 125 { 84 return instruction_pointer(regs); !! 126 unsigned long *slot = NULL; >> 127 int rc = 0; >> 128 >> 129 /* Simplest case is 'call', which always uses %o7 */ >> 130 if ((insn & 0xc0000000) == 0x40000000) >> 131 slot = ®s->u_regs[UREG_I7]; >> 132 >> 133 /* 'jmpl' encodes the register inside of the opcode */ >> 134 if ((insn & 0xc1f80000) == 0x81c00000) { >> 135 unsigned long rd = ((insn >> 25) & 0x1f); >> 136 >> 137 if (rd <= 15) { >> 138 slot = ®s->u_regs[rd]; >> 139 } else { >> 140 unsigned long fp = regs->u_regs[UREG_FP]; >> 141 /* Hard case, it goes onto the stack. */ >> 142 flushw_all(); >> 143 >> 144 rd -= 16; >> 145 if (test_thread_64bit_stack(fp)) { >> 146 unsigned long __user *uslot = >> 147 (unsigned long __user *) (fp + STACK_BIAS) + rd; >> 148 rc = __put_user(real_pc, uslot); >> 149 } else { >> 150 unsigned int __user *uslot = (unsigned int >> 151 __user *) fp + rd; >> 152 rc = __put_user((u32) real_pc, uslot); >> 153 } >> 154 } >> 155 } >> 156 if (slot != NULL) >> 157 *slot = real_pc; >> 158 return rc; 85 } 159 } 86 160 87 /* !! 161 /* Single-stepping can be avoided for certain instructions: NOPs and 88 * If xol insn itself traps and generates a si !! 162 * instructions that can be emulated. This function determines 89 * then detect the case where a singlestepped !! 163 * whether the instruction where the uprobe is installed falls in one 90 * own address. It is assumed that anything li !! 164 * of these cases and emulates it. 91 * sets thread.trap_nr != UINT_MAX. !! 165 * 92 * !! 166 * This function returns true if the single-stepping can be skipped, 93 * arch_uprobe_pre_xol/arch_uprobe_post_xol sa !! 167 * false otherwise. 94 * arch_uprobe_xol_was_trapped() simply checks << 95 * UPROBE_TRAP_NR == UINT_MAX set by arch_upro << 96 */ 168 */ 97 bool arch_uprobe_xol_was_trapped(struct task_s !! 169 bool arch_uprobe_skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs) 98 { 170 { 99 if (t->thread.trap_nr != UPROBE_TRAP_N !! 171 /* We currently only emulate NOP instructions. >> 172 */ >> 173 >> 174 if (auprobe->ixol == (1 << 24)) { >> 175 regs->tnpc += 4; >> 176 regs->tpc += 4; 100 return true; 177 return true; >> 178 } 101 179 102 return false; 180 return false; 103 } 181 } 104 182 105 /* !! 183 /* Prepare to execute out of line. At this point 106 * Called after single-stepping. To avoid the !! 184 * current->utask->xol_vaddr points to an allocated XOL slot properly 107 * occur when we temporarily put back the orig !! 185 * initialized with the original instruction and the single-stepping 108 * single-step, we single-stepped a copy of th !! 186 * trap instruction. 109 * 187 * 110 * This function prepares to resume execution !! 188 * This function returns 0 on success, any other number on error. 111 */ 189 */ 112 int arch_uprobe_post_xol(struct arch_uprobe *a !! 190 int arch_uprobe_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs) 113 { 191 { 114 struct uprobe_task *utask = current->u 192 struct uprobe_task *utask = current->utask; >> 193 struct arch_uprobe_task *autask = ¤t->utask->autask; 115 194 116 WARN_ON_ONCE(current->thread.trap_nr ! !! 195 /* Save the current program counters so they can be restored 117 !! 196 * later. 118 current->thread.trap_nr = utask->autas !! 197 */ >> 198 autask->saved_tpc = regs->tpc; >> 199 autask->saved_tnpc = regs->tnpc; 119 200 120 /* !! 201 /* Adjust PC and NPC so the first instruction in the XOL slot 121 * On powerpc, except for loads and st !! 202 * will be executed by the user task. 122 * including ones that alter code flow << 123 * are emulated in the kernel. We get << 124 * support doesn't exist and have to f << 125 * to be executed. << 126 */ 203 */ 127 regs_set_return_ip(regs, (unsigned lon !! 204 instruction_pointer_set(regs, utask->xol_vaddr); 128 205 129 user_disable_single_step(current); << 130 return 0; 206 return 0; 131 } 207 } 132 208 133 /* callback routine for handling exceptions. * !! 209 /* Prepare to resume execution after the single-step. Called after 134 int arch_uprobe_exception_notify(struct notifi !! 210 * single-stepping. To avoid the SMP problems that can occur when we 135 unsigned long !! 211 * temporarily put back the original opcode to single-step, we >> 212 * single-stepped a copy of the instruction. >> 213 * >> 214 * This function returns 0 on success, any other number on error. >> 215 */ >> 216 int arch_uprobe_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs) >> 217 { >> 218 struct uprobe_task *utask = current->utask; >> 219 struct arch_uprobe_task *autask = &utask->autask; >> 220 u32 insn = auprobe->ixol; >> 221 int rc = 0; >> 222 >> 223 if (utask->state == UTASK_SSTEP_ACK) { >> 224 regs->tnpc = relbranch_fixup(insn, utask, regs); >> 225 regs->tpc = autask->saved_tnpc; >> 226 rc = retpc_fixup(regs, insn, (unsigned long) utask->vaddr); >> 227 } else { >> 228 regs->tnpc = utask->vaddr+4; >> 229 regs->tpc = autask->saved_tnpc+4; >> 230 } >> 231 return rc; >> 232 } >> 233 >> 234 /* Handler for uprobe traps. This is called from the traps table and >> 235 * triggers the proper die notification. >> 236 */ >> 237 asmlinkage void uprobe_trap(struct pt_regs *regs, >> 238 unsigned long trap_level) 136 { 239 { 137 struct die_args *args = data; !! 240 BUG_ON(trap_level != 0x173 && trap_level != 0x174); 138 struct pt_regs *regs = args->regs; << 139 241 140 /* regs == NULL is a kernel bug */ !! 242 /* We are only interested in user-mode code. Uprobe traps 141 if (WARN_ON(!regs)) !! 243 * shall not be present in kernel code. 142 return NOTIFY_DONE; !! 244 */ >> 245 if (!user_mode(regs)) { >> 246 local_irq_enable(); >> 247 bad_trap(regs, trap_level); >> 248 return; >> 249 } >> 250 >> 251 /* trap_level == 0x173 --> ta 0x73 >> 252 * trap_level == 0x174 --> ta 0x74 >> 253 */ >> 254 if (notify_die((trap_level == 0x173) ? DIE_BPT : DIE_SSTEP, >> 255 (trap_level == 0x173) ? "bpt" : "sstep", >> 256 regs, 0, trap_level, SIGTRAP) != NOTIFY_STOP) >> 257 bad_trap(regs, trap_level); >> 258 } >> 259 >> 260 /* Callback routine for handling die notifications. >> 261 */ >> 262 int arch_uprobe_exception_notify(struct notifier_block *self, >> 263 unsigned long val, void *data) >> 264 { >> 265 int ret = NOTIFY_DONE; >> 266 struct die_args *args = (struct die_args *)data; 143 267 144 /* We are only interested in userspace 268 /* We are only interested in userspace traps */ 145 if (!user_mode(regs)) !! 269 if (args->regs && !user_mode(args->regs)) 146 return NOTIFY_DONE; 270 return NOTIFY_DONE; 147 271 148 switch (val) { 272 switch (val) { 149 case DIE_BPT: 273 case DIE_BPT: 150 if (uprobe_pre_sstep_notifier( !! 274 if (uprobe_pre_sstep_notifier(args->regs)) 151 return NOTIFY_STOP; !! 275 ret = NOTIFY_STOP; 152 break; 276 break; >> 277 153 case DIE_SSTEP: 278 case DIE_SSTEP: 154 if (uprobe_post_sstep_notifier !! 279 if (uprobe_post_sstep_notifier(args->regs)) 155 return NOTIFY_STOP; !! 280 ret = NOTIFY_STOP; 156 break; !! 281 157 default: 282 default: 158 break; 283 break; 159 } 284 } 160 return NOTIFY_DONE; !! 285 >> 286 return ret; 161 } 287 } 162 288 163 /* !! 289 /* This function gets called when a XOL instruction either gets 164 * This function gets called when XOL instruct !! 290 * trapped or the thread has a fatal signal, so reset the instruction 165 * the thread has a fatal signal, so reset the !! 291 * pointer to its probed address. 166 * probed address. << 167 */ 292 */ 168 void arch_uprobe_abort_xol(struct arch_uprobe 293 void arch_uprobe_abort_xol(struct arch_uprobe *auprobe, struct pt_regs *regs) 169 { 294 { 170 struct uprobe_task *utask = current->u 295 struct uprobe_task *utask = current->utask; 171 296 172 current->thread.trap_nr = utask->autas << 173 instruction_pointer_set(regs, utask->v 297 instruction_pointer_set(regs, utask->vaddr); 174 << 175 user_disable_single_step(current); << 176 } 298 } 177 299 178 /* !! 300 /* If xol insn itself traps and generates a signal(Say, 179 * See if the instruction can be emulated. !! 301 * SIGILL/SIGSEGV/etc), then detect the case where a singlestepped 180 * Returns true if instruction was emulated, f !! 302 * instruction jumps back to its own address. 181 */ 303 */ 182 bool arch_uprobe_skip_sstep(struct arch_uprobe !! 304 bool arch_uprobe_xol_was_trapped(struct task_struct *t) 183 { 305 { 184 int ret; << 185 << 186 /* << 187 * emulate_step() returns 1 if the ins << 188 * For all other cases, we need to sin << 189 */ << 190 ret = emulate_step(regs, ppc_inst_read << 191 if (ret > 0) << 192 return true; << 193 << 194 return false; 306 return false; 195 } 307 } 196 308 197 unsigned long 309 unsigned long 198 arch_uretprobe_hijack_return_addr(unsigned lon !! 310 arch_uretprobe_hijack_return_addr(unsigned long trampoline_vaddr, >> 311 struct pt_regs *regs) 199 { 312 { 200 unsigned long orig_ret_vaddr; !! 313 unsigned long orig_ret_vaddr = regs->u_regs[UREG_I7]; 201 314 202 orig_ret_vaddr = regs->link; !! 315 regs->u_regs[UREG_I7] = trampoline_vaddr-8; 203 316 204 /* Replace the return addr with trampo !! 317 return orig_ret_vaddr + 8; 205 regs->link = trampoline_vaddr; << 206 << 207 return orig_ret_vaddr; << 208 } << 209 << 210 bool arch_uretprobe_is_alive(struct return_ins << 211 struct pt_regs << 212 { << 213 if (ctx == RP_CHECK_CHAIN_CALL) << 214 return regs->gpr[1] <= ret->st << 215 else << 216 return regs->gpr[1] < ret->sta << 217 } 318 } 218 319
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.