1 // SPDX-License-Identifier: GPL-2.0-or-later 1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 2 /* 3 * User-space Probes (UProbes) for powerpc !! 3 * User-space Probes (UProbes) for sparc 4 * 4 * 5 * Copyright IBM Corporation, 2007-2012 !! 5 * Copyright (C) 2013 Oracle Inc. 6 * 6 * 7 * Adapted from the x86 port by Ananth N Mavin !! 7 * Authors: >> 8 * Jose E. Marchesi <jose.marchesi@oracle.com> >> 9 * Eric Saint Etienne <eric.saint.etienne@oracle.com> 8 */ 10 */ >> 11 9 #include <linux/kernel.h> 12 #include <linux/kernel.h> 10 #include <linux/sched.h> !! 13 #include <linux/highmem.h> 11 #include <linux/ptrace.h> << 12 #include <linux/uprobes.h> 14 #include <linux/uprobes.h> 13 #include <linux/uaccess.h> 15 #include <linux/uaccess.h> >> 16 #include <linux/sched.h> /* For struct task_struct */ 14 #include <linux/kdebug.h> 17 #include <linux/kdebug.h> 15 18 16 #include <asm/sstep.h> !! 19 #include <asm/cacheflush.h> 17 #include <asm/inst.h> << 18 20 19 #define UPROBE_TRAP_NR UINT_MAX !! 21 #include "kernel.h" 20 22 21 /** !! 23 /* Compute the address of the breakpoint instruction and return it. 22 * is_trap_insn - check if the instruction is !! 24 * 23 * @insn: instruction to be checked. !! 25 * Note that uprobe_get_swbp_addr is defined as a weak symbol in 24 * Returns true if @insn is a trap variant. !! 26 * kernel/events/uprobe.c. 25 */ 27 */ 26 bool is_trap_insn(uprobe_opcode_t *insn) !! 28 unsigned long uprobe_get_swbp_addr(struct pt_regs *regs) >> 29 { >> 30 return instruction_pointer(regs); >> 31 } >> 32 >> 33 static void copy_to_page(struct page *page, unsigned long vaddr, >> 34 const void *src, int len) 27 { 35 { 28 return (is_trap(*insn)); !! 36 void *kaddr = kmap_atomic(page); >> 37 >> 38 memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len); >> 39 kunmap_atomic(kaddr); 29 } 40 } 30 41 31 /** !! 42 /* Fill in the xol area with the probed instruction followed by the 32 * arch_uprobe_analyze_insn !! 43 * single-step trap. Some fixups in the copied instruction are 33 * @mm: the probed address space. !! 44 * performed at this point. 34 * @arch_uprobe: the probepoint information. !! 45 * 35 * @addr: vaddr to probe. !! 46 * Note that uprobe_xol_copy is defined as a weak symbol in 36 * Return 0 on success or a -ve number on erro !! 47 * kernel/events/uprobe.c. 37 */ 48 */ 38 int arch_uprobe_analyze_insn(struct arch_uprob !! 49 void arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr, 39 struct mm_struct *mm, unsigned !! 50 void *src, unsigned long len) 40 { 51 { 41 if (addr & 0x03) !! 52 const u32 stp_insn = UPROBE_STP_INSN; 42 return -EINVAL; !! 53 u32 insn = *(u32 *) src; 43 54 44 if (cpu_has_feature(CPU_FTR_ARCH_31) & !! 55 /* Branches annulling their delay slot must be fixed to not do 45 ppc_inst_prefixed(ppc_inst_read(au !! 56 * so. Clearing the annul bit on these instructions we can be 46 (addr & 0x3f) == 60) { !! 57 * sure the single-step breakpoint in the XOL slot will be 47 pr_info_ratelimited("Cannot re !! 58 * executed. 48 return -EINVAL; !! 59 */ 49 } !! 60 >> 61 u32 op = (insn >> 30) & 0x3; >> 62 u32 op2 = (insn >> 22) & 0x7; >> 63 >> 64 if (op == 0 && >> 65 (op2 == 1 || op2 == 2 || op2 == 3 || op2 == 5 || op2 == 6) && >> 66 (insn & ANNUL_BIT) == ANNUL_BIT) >> 67 insn &= ~ANNUL_BIT; >> 68 >> 69 copy_to_page(page, vaddr, &insn, len); >> 70 copy_to_page(page, vaddr+len, &stp_insn, 4); >> 71 } 50 72 51 if (!can_single_step(ppc_inst_val(ppc_ << 52 pr_info_ratelimited("Cannot re << 53 return -ENOTSUPP; << 54 } << 55 73 >> 74 /* Instruction analysis/validity. >> 75 * >> 76 * This function returns 0 on success or a -ve number on error. >> 77 */ >> 78 int arch_uprobe_analyze_insn(struct arch_uprobe *auprobe, >> 79 struct mm_struct *mm, unsigned long addr) >> 80 { >> 81 /* Any unsupported instruction? Then return -EINVAL */ 56 return 0; 82 return 0; 57 } 83 } 58 84 59 /* !! 85 /* If INSN is a relative control transfer instruction, return the 60 * arch_uprobe_pre_xol - prepare to execute ou !! 86 * corrected branch destination value. 61 * @auprobe: the probepoint information. !! 87 * 62 * @regs: reflects the saved user state of cur !! 88 * Note that regs->tpc and regs->tnpc still hold the values of the >> 89 * program counters at the time of the single-step trap due to the >> 90 * execution of the UPROBE_STP_INSN at utask->xol_vaddr + 4. >> 91 * 63 */ 92 */ 64 int arch_uprobe_pre_xol(struct arch_uprobe *au !! 93 static unsigned long relbranch_fixup(u32 insn, struct uprobe_task *utask, >> 94 struct pt_regs *regs) 65 { 95 { 66 struct arch_uprobe_task *autask = &cur !! 96 /* Branch not taken, no mods necessary. */ >> 97 if (regs->tnpc == regs->tpc + 0x4UL) >> 98 return utask->autask.saved_tnpc + 0x4UL; 67 99 68 autask->saved_trap_nr = current->threa !! 100 /* The three cases are call, branch w/prediction, 69 current->thread.trap_nr = UPROBE_TRAP_ !! 101 * and traditional branch. 70 regs_set_return_ip(regs, current->utas !! 102 */ >> 103 if ((insn & 0xc0000000) == 0x40000000 || >> 104 (insn & 0xc1c00000) == 0x00400000 || >> 105 (insn & 0xc1c00000) == 0x00800000) { >> 106 unsigned long real_pc = (unsigned long) utask->vaddr; >> 107 unsigned long ixol_addr = utask->xol_vaddr; >> 108 >> 109 /* The instruction did all the work for us >> 110 * already, just apply the offset to the correct >> 111 * instruction location. >> 112 */ >> 113 return (real_pc + (regs->tnpc - ixol_addr)); >> 114 } 71 115 72 user_enable_single_step(current); !! 116 /* It is jmpl or some other absolute PC modification instruction, 73 return 0; !! 117 * leave NPC as-is. >> 118 */ >> 119 return regs->tnpc; 74 } 120 } 75 121 76 /** !! 122 /* If INSN is an instruction which writes its PC location 77 * uprobe_get_swbp_addr - compute address of s !! 123 * into a destination register, fix that up. 78 * @regs: Reflects the saved state of the task << 79 * instruction. << 80 * Return the address of the breakpoint instru << 81 */ 124 */ 82 unsigned long uprobe_get_swbp_addr(struct pt_r !! 125 static int retpc_fixup(struct pt_regs *regs, u32 insn, >> 126 unsigned long real_pc) 83 { 127 { 84 return instruction_pointer(regs); !! 128 unsigned long *slot = NULL; >> 129 int rc = 0; >> 130 >> 131 /* Simplest case is 'call', which always uses %o7 */ >> 132 if ((insn & 0xc0000000) == 0x40000000) >> 133 slot = ®s->u_regs[UREG_I7]; >> 134 >> 135 /* 'jmpl' encodes the register inside of the opcode */ >> 136 if ((insn & 0xc1f80000) == 0x81c00000) { >> 137 unsigned long rd = ((insn >> 25) & 0x1f); >> 138 >> 139 if (rd <= 15) { >> 140 slot = ®s->u_regs[rd]; >> 141 } else { >> 142 unsigned long fp = regs->u_regs[UREG_FP]; >> 143 /* Hard case, it goes onto the stack. */ >> 144 flushw_all(); >> 145 >> 146 rd -= 16; >> 147 if (test_thread_64bit_stack(fp)) { >> 148 unsigned long __user *uslot = >> 149 (unsigned long __user *) (fp + STACK_BIAS) + rd; >> 150 rc = __put_user(real_pc, uslot); >> 151 } else { >> 152 unsigned int __user *uslot = (unsigned int >> 153 __user *) fp + rd; >> 154 rc = __put_user((u32) real_pc, uslot); >> 155 } >> 156 } >> 157 } >> 158 if (slot != NULL) >> 159 *slot = real_pc; >> 160 return rc; 85 } 161 } 86 162 87 /* !! 163 /* Single-stepping can be avoided for certain instructions: NOPs and 88 * If xol insn itself traps and generates a si !! 164 * instructions that can be emulated. This function determines 89 * then detect the case where a singlestepped !! 165 * whether the instruction where the uprobe is installed falls in one 90 * own address. It is assumed that anything li !! 166 * of these cases and emulates it. 91 * sets thread.trap_nr != UINT_MAX. !! 167 * 92 * !! 168 * This function returns true if the single-stepping can be skipped, 93 * arch_uprobe_pre_xol/arch_uprobe_post_xol sa !! 169 * false otherwise. 94 * arch_uprobe_xol_was_trapped() simply checks << 95 * UPROBE_TRAP_NR == UINT_MAX set by arch_upro << 96 */ 170 */ 97 bool arch_uprobe_xol_was_trapped(struct task_s !! 171 bool arch_uprobe_skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs) 98 { 172 { 99 if (t->thread.trap_nr != UPROBE_TRAP_N !! 173 /* We currently only emulate NOP instructions. >> 174 */ >> 175 >> 176 if (auprobe->ixol == (1 << 24)) { >> 177 regs->tnpc += 4; >> 178 regs->tpc += 4; 100 return true; 179 return true; >> 180 } 101 181 102 return false; 182 return false; 103 } 183 } 104 184 105 /* !! 185 /* Prepare to execute out of line. At this point 106 * Called after single-stepping. To avoid the !! 186 * current->utask->xol_vaddr points to an allocated XOL slot properly 107 * occur when we temporarily put back the orig !! 187 * initialized with the original instruction and the single-stepping 108 * single-step, we single-stepped a copy of th !! 188 * trap instruction. 109 * 189 * 110 * This function prepares to resume execution !! 190 * This function returns 0 on success, any other number on error. 111 */ 191 */ 112 int arch_uprobe_post_xol(struct arch_uprobe *a !! 192 int arch_uprobe_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs) 113 { 193 { 114 struct uprobe_task *utask = current->u 194 struct uprobe_task *utask = current->utask; >> 195 struct arch_uprobe_task *autask = ¤t->utask->autask; 115 196 116 WARN_ON_ONCE(current->thread.trap_nr ! !! 197 /* Save the current program counters so they can be restored 117 !! 198 * later. 118 current->thread.trap_nr = utask->autas !! 199 */ >> 200 autask->saved_tpc = regs->tpc; >> 201 autask->saved_tnpc = regs->tnpc; 119 202 120 /* !! 203 /* Adjust PC and NPC so the first instruction in the XOL slot 121 * On powerpc, except for loads and st !! 204 * will be executed by the user task. 122 * including ones that alter code flow << 123 * are emulated in the kernel. We get << 124 * support doesn't exist and have to f << 125 * to be executed. << 126 */ 205 */ 127 regs_set_return_ip(regs, (unsigned lon !! 206 instruction_pointer_set(regs, utask->xol_vaddr); 128 207 129 user_disable_single_step(current); << 130 return 0; 208 return 0; 131 } 209 } 132 210 133 /* callback routine for handling exceptions. * !! 211 /* Prepare to resume execution after the single-step. Called after 134 int arch_uprobe_exception_notify(struct notifi !! 212 * single-stepping. To avoid the SMP problems that can occur when we 135 unsigned long !! 213 * temporarily put back the original opcode to single-step, we >> 214 * single-stepped a copy of the instruction. >> 215 * >> 216 * This function returns 0 on success, any other number on error. >> 217 */ >> 218 int arch_uprobe_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs) >> 219 { >> 220 struct uprobe_task *utask = current->utask; >> 221 struct arch_uprobe_task *autask = &utask->autask; >> 222 u32 insn = auprobe->ixol; >> 223 int rc = 0; >> 224 >> 225 if (utask->state == UTASK_SSTEP_ACK) { >> 226 regs->tnpc = relbranch_fixup(insn, utask, regs); >> 227 regs->tpc = autask->saved_tnpc; >> 228 rc = retpc_fixup(regs, insn, (unsigned long) utask->vaddr); >> 229 } else { >> 230 regs->tnpc = utask->vaddr+4; >> 231 regs->tpc = autask->saved_tnpc+4; >> 232 } >> 233 return rc; >> 234 } >> 235 >> 236 /* Handler for uprobe traps. This is called from the traps table and >> 237 * triggers the proper die notification. >> 238 */ >> 239 asmlinkage void uprobe_trap(struct pt_regs *regs, >> 240 unsigned long trap_level) 136 { 241 { 137 struct die_args *args = data; !! 242 BUG_ON(trap_level != 0x173 && trap_level != 0x174); 138 struct pt_regs *regs = args->regs; << 139 243 140 /* regs == NULL is a kernel bug */ !! 244 /* We are only interested in user-mode code. Uprobe traps 141 if (WARN_ON(!regs)) !! 245 * shall not be present in kernel code. 142 return NOTIFY_DONE; !! 246 */ >> 247 if (!user_mode(regs)) { >> 248 local_irq_enable(); >> 249 bad_trap(regs, trap_level); >> 250 return; >> 251 } >> 252 >> 253 /* trap_level == 0x173 --> ta 0x73 >> 254 * trap_level == 0x174 --> ta 0x74 >> 255 */ >> 256 if (notify_die((trap_level == 0x173) ? DIE_BPT : DIE_SSTEP, >> 257 (trap_level == 0x173) ? "bpt" : "sstep", >> 258 regs, 0, trap_level, SIGTRAP) != NOTIFY_STOP) >> 259 bad_trap(regs, trap_level); >> 260 } >> 261 >> 262 /* Callback routine for handling die notifications. >> 263 */ >> 264 int arch_uprobe_exception_notify(struct notifier_block *self, >> 265 unsigned long val, void *data) >> 266 { >> 267 int ret = NOTIFY_DONE; >> 268 struct die_args *args = (struct die_args *)data; 143 269 144 /* We are only interested in userspace 270 /* We are only interested in userspace traps */ 145 if (!user_mode(regs)) !! 271 if (args->regs && !user_mode(args->regs)) 146 return NOTIFY_DONE; 272 return NOTIFY_DONE; 147 273 148 switch (val) { 274 switch (val) { 149 case DIE_BPT: 275 case DIE_BPT: 150 if (uprobe_pre_sstep_notifier( !! 276 if (uprobe_pre_sstep_notifier(args->regs)) 151 return NOTIFY_STOP; !! 277 ret = NOTIFY_STOP; 152 break; 278 break; >> 279 153 case DIE_SSTEP: 280 case DIE_SSTEP: 154 if (uprobe_post_sstep_notifier !! 281 if (uprobe_post_sstep_notifier(args->regs)) 155 return NOTIFY_STOP; !! 282 ret = NOTIFY_STOP; 156 break; !! 283 157 default: 284 default: 158 break; 285 break; 159 } 286 } 160 return NOTIFY_DONE; !! 287 >> 288 return ret; 161 } 289 } 162 290 163 /* !! 291 /* This function gets called when a XOL instruction either gets 164 * This function gets called when XOL instruct !! 292 * trapped or the thread has a fatal signal, so reset the instruction 165 * the thread has a fatal signal, so reset the !! 293 * pointer to its probed address. 166 * probed address. << 167 */ 294 */ 168 void arch_uprobe_abort_xol(struct arch_uprobe 295 void arch_uprobe_abort_xol(struct arch_uprobe *auprobe, struct pt_regs *regs) 169 { 296 { 170 struct uprobe_task *utask = current->u 297 struct uprobe_task *utask = current->utask; 171 298 172 current->thread.trap_nr = utask->autas << 173 instruction_pointer_set(regs, utask->v 299 instruction_pointer_set(regs, utask->vaddr); 174 << 175 user_disable_single_step(current); << 176 } 300 } 177 301 178 /* !! 302 /* If xol insn itself traps and generates a signal(Say, 179 * See if the instruction can be emulated. !! 303 * SIGILL/SIGSEGV/etc), then detect the case where a singlestepped 180 * Returns true if instruction was emulated, f !! 304 * instruction jumps back to its own address. 181 */ 305 */ 182 bool arch_uprobe_skip_sstep(struct arch_uprobe !! 306 bool arch_uprobe_xol_was_trapped(struct task_struct *t) 183 { 307 { 184 int ret; << 185 << 186 /* << 187 * emulate_step() returns 1 if the ins << 188 * For all other cases, we need to sin << 189 */ << 190 ret = emulate_step(regs, ppc_inst_read << 191 if (ret > 0) << 192 return true; << 193 << 194 return false; 308 return false; 195 } 309 } 196 310 197 unsigned long 311 unsigned long 198 arch_uretprobe_hijack_return_addr(unsigned lon !! 312 arch_uretprobe_hijack_return_addr(unsigned long trampoline_vaddr, >> 313 struct pt_regs *regs) 199 { 314 { 200 unsigned long orig_ret_vaddr; !! 315 unsigned long orig_ret_vaddr = regs->u_regs[UREG_I7]; 201 316 202 orig_ret_vaddr = regs->link; !! 317 regs->u_regs[UREG_I7] = trampoline_vaddr-8; 203 318 204 /* Replace the return addr with trampo !! 319 return orig_ret_vaddr + 8; 205 regs->link = trampoline_vaddr; << 206 << 207 return orig_ret_vaddr; << 208 } << 209 << 210 bool arch_uretprobe_is_alive(struct return_ins << 211 struct pt_regs << 212 { << 213 if (ctx == RP_CHECK_CHAIN_CALL) << 214 return regs->gpr[1] <= ret->st << 215 else << 216 return regs->gpr[1] < ret->sta << 217 } 320 } 218 321
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.