1 /* SPDX-License-Identifier: GPL-2.0-only */ << 2 /* 1 /* 3 * Copyright (C) 2013 Regents of the Universit !! 2 * This file is subject to the terms and conditions of the GNU General Public >> 3 * License. See the file "COPYING" in the main directory of this archive >> 4 * for more details. >> 5 * >> 6 * Unified implementation of memcpy, memmove and the __copy_user backend. >> 7 * >> 8 * Copyright (C) 1998, 99, 2000, 01, 2002 Ralf Baechle (ralf@gnu.org) >> 9 * Copyright (C) 1999, 2000, 01, 2002 Silicon Graphics, Inc. >> 10 * Copyright (C) 2002 Broadcom, Inc. >> 11 * memcpy/copy_user author: Mark Vandevoorde >> 12 * Copyright (C) 2007 Maciej W. Rozycki >> 13 * Copyright (C) 2014 Imagination Technologies Ltd. >> 14 * >> 15 * Mnemonic names for arguments to memcpy/__copy_user 4 */ 16 */ 5 17 6 #include <linux/linkage.h> !! 18 /* >> 19 * Hack to resolve longstanding prefetch issue >> 20 * >> 21 * Prefetching may be fatal on some systems if we're prefetching beyond the >> 22 * end of memory on some systems. It's also a seriously bad idea on non >> 23 * dma-coherent systems. >> 24 */ >> 25 #ifdef CONFIG_DMA_NONCOHERENT >> 26 #undef CONFIG_CPU_HAS_PREFETCH >> 27 #endif >> 28 #ifdef CONFIG_MIPS_MALTA >> 29 #undef CONFIG_CPU_HAS_PREFETCH >> 30 #endif >> 31 7 #include <asm/asm.h> 32 #include <asm/asm.h> >> 33 #include <asm/asm-offsets.h> >> 34 #include <asm/regdef.h> >> 35 >> 36 #define dst a0 >> 37 #define src a1 >> 38 #define len a2 >> 39 >> 40 /* >> 41 * Spec >> 42 * >> 43 * memcpy copies len bytes from src to dst and sets v0 to dst. >> 44 * It assumes that >> 45 * - src and dst don't overlap >> 46 * - src is readable >> 47 * - dst is writable >> 48 * memcpy uses the standard calling convention >> 49 * >> 50 * __copy_user copies up to len bytes from src to dst and sets a2 (len) to >> 51 * the number of uncopied bytes due to an exception caused by a read or write. >> 52 * __copy_user assumes that src and dst don't overlap, and that the call is >> 53 * implementing one of the following: >> 54 * copy_to_user >> 55 * - src is readable (no exceptions when reading src) >> 56 * copy_from_user >> 57 * - dst is writable (no exceptions when writing dst) >> 58 * __copy_user uses a non-standard calling convention; see >> 59 * include/asm-mips/uaccess.h >> 60 * >> 61 * When an exception happens on a load, the handler must >> 62 # ensure that all of the destination buffer is overwritten to prevent >> 63 * leaking information to user mode programs. >> 64 */ >> 65 >> 66 /* >> 67 * Implementation >> 68 */ >> 69 >> 70 /* >> 71 * The exception handler for loads requires that: >> 72 * 1- AT contain the address of the byte just past the end of the source >> 73 * of the copy, >> 74 * 2- src_entry <= src < AT, and >> 75 * 3- (dst - src) == (dst_entry - src_entry), >> 76 * The _entry suffix denotes values when __copy_user was called. >> 77 * >> 78 * (1) is set up up by uaccess.h and maintained by not writing AT in copy_user >> 79 * (2) is met by incrementing src by the number of bytes copied >> 80 * (3) is met by not doing loads between a pair of increments of dst and src >> 81 * >> 82 * The exception handlers for stores adjust len (if necessary) and return. >> 83 * These handlers do not need to overwrite any data. >> 84 * >> 85 * For __rmemcpy and memmove an exception is always a kernel bug, therefore >> 86 * they're not protected. >> 87 */ >> 88 >> 89 /* Instruction type */ >> 90 #define LD_INSN 1 >> 91 #define ST_INSN 2 >> 92 /* Pretech type */ >> 93 #define SRC_PREFETCH 1 >> 94 #define DST_PREFETCH 2 >> 95 #define LEGACY_MODE 1 >> 96 #define EVA_MODE 2 >> 97 #define USEROP 1 >> 98 #define KERNELOP 2 >> 99 >> 100 /* >> 101 * Wrapper to add an entry in the exception table >> 102 * in case the insn causes a memory exception. >> 103 * Arguments: >> 104 * insn : Load/store instruction >> 105 * type : Instruction type >> 106 * reg : Register >> 107 * addr : Address >> 108 * handler : Exception handler >> 109 */ >> 110 >> 111 #define EXC(insn, type, reg, addr, handler) \ >> 112 .if \mode == LEGACY_MODE; \ >> 113 9: insn reg, addr; \ >> 114 .section __ex_table,"a"; \ >> 115 PTR 9b, handler; \ >> 116 .previous; \ >> 117 /* This is assembled in EVA mode */ \ >> 118 .else; \ >> 119 /* If loading from user or storing to user */ \ >> 120 .if ((\from == USEROP) && (type == LD_INSN)) || \ >> 121 ((\to == USEROP) && (type == ST_INSN)); \ >> 122 9: __BUILD_EVA_INSN(insn##e, reg, addr); \ >> 123 .section __ex_table,"a"; \ >> 124 PTR 9b, handler; \ >> 125 .previous; \ >> 126 .else; \ >> 127 /* \ >> 128 * Still in EVA, but no need for \ >> 129 * exception handler or EVA insn \ >> 130 */ \ >> 131 insn reg, addr; \ >> 132 .endif; \ >> 133 .endif >> 134 >> 135 /* >> 136 * Only on the 64-bit kernel we can made use of 64-bit registers. >> 137 */ >> 138 #ifdef CONFIG_64BIT >> 139 #define USE_DOUBLE >> 140 #endif >> 141 >> 142 #ifdef USE_DOUBLE >> 143 >> 144 #define LOADK ld /* No exception */ >> 145 #define LOAD(reg, addr, handler) EXC(ld, LD_INSN, reg, addr, handler) >> 146 #define LOADL(reg, addr, handler) EXC(ldl, LD_INSN, reg, addr, handler) >> 147 #define LOADR(reg, addr, handler) EXC(ldr, LD_INSN, reg, addr, handler) >> 148 #define STOREL(reg, addr, handler) EXC(sdl, ST_INSN, reg, addr, handler) >> 149 #define STORER(reg, addr, handler) EXC(sdr, ST_INSN, reg, addr, handler) >> 150 #define STORE(reg, addr, handler) EXC(sd, ST_INSN, reg, addr, handler) >> 151 #define ADD daddu >> 152 #define SUB dsubu >> 153 #define SRL dsrl >> 154 #define SRA dsra >> 155 #define SLL dsll >> 156 #define SLLV dsllv >> 157 #define SRLV dsrlv >> 158 #define NBYTES 8 >> 159 #define LOG_NBYTES 3 >> 160 >> 161 /* >> 162 * As we are sharing code base with the mips32 tree (which use the o32 ABI >> 163 * register definitions). We need to redefine the register definitions from >> 164 * the n64 ABI register naming to the o32 ABI register naming. >> 165 */ >> 166 #undef t0 >> 167 #undef t1 >> 168 #undef t2 >> 169 #undef t3 >> 170 #define t0 $8 >> 171 #define t1 $9 >> 172 #define t2 $10 >> 173 #define t3 $11 >> 174 #define t4 $12 >> 175 #define t5 $13 >> 176 #define t6 $14 >> 177 #define t7 $15 >> 178 >> 179 #else >> 180 >> 181 #define LOADK lw /* No exception */ >> 182 #define LOAD(reg, addr, handler) EXC(lw, LD_INSN, reg, addr, handler) >> 183 #define LOADL(reg, addr, handler) EXC(lwl, LD_INSN, reg, addr, handler) >> 184 #define LOADR(reg, addr, handler) EXC(lwr, LD_INSN, reg, addr, handler) >> 185 #define STOREL(reg, addr, handler) EXC(swl, ST_INSN, reg, addr, handler) >> 186 #define STORER(reg, addr, handler) EXC(swr, ST_INSN, reg, addr, handler) >> 187 #define STORE(reg, addr, handler) EXC(sw, ST_INSN, reg, addr, handler) >> 188 #define ADD addu >> 189 #define SUB subu >> 190 #define SRL srl >> 191 #define SLL sll >> 192 #define SRA sra >> 193 #define SLLV sllv >> 194 #define SRLV srlv >> 195 #define NBYTES 4 >> 196 #define LOG_NBYTES 2 >> 197 >> 198 #endif /* USE_DOUBLE */ >> 199 >> 200 #define LOADB(reg, addr, handler) EXC(lb, LD_INSN, reg, addr, handler) >> 201 #define STOREB(reg, addr, handler) EXC(sb, ST_INSN, reg, addr, handler) >> 202 >> 203 #define _PREF(hint, addr, type) \ >> 204 .if \mode == LEGACY_MODE; \ >> 205 PREF(hint, addr); \ >> 206 .else; \ >> 207 .if ((\from == USEROP) && (type == SRC_PREFETCH)) || \ >> 208 ((\to == USEROP) && (type == DST_PREFETCH)); \ >> 209 /* \ >> 210 * PREFE has only 9 bits for the offset \ >> 211 * compared to PREF which has 16, so it may \ >> 212 * need to use the $at register but this \ >> 213 * register should remain intact because it's \ >> 214 * used later on. Therefore use $v1. \ >> 215 */ \ >> 216 .set at=v1; \ >> 217 PREFE(hint, addr); \ >> 218 .set noat; \ >> 219 .else; \ >> 220 PREF(hint, addr); \ >> 221 .endif; \ >> 222 .endif >> 223 >> 224 #define PREFS(hint, addr) _PREF(hint, addr, SRC_PREFETCH) >> 225 #define PREFD(hint, addr) _PREF(hint, addr, DST_PREFETCH) >> 226 >> 227 #ifdef CONFIG_CPU_LITTLE_ENDIAN >> 228 #define LDFIRST LOADR >> 229 #define LDREST LOADL >> 230 #define STFIRST STORER >> 231 #define STREST STOREL >> 232 #define SHIFT_DISCARD SLLV >> 233 #else >> 234 #define LDFIRST LOADL >> 235 #define LDREST LOADR >> 236 #define STFIRST STOREL >> 237 #define STREST STORER >> 238 #define SHIFT_DISCARD SRLV >> 239 #endif >> 240 >> 241 #define FIRST(unit) ((unit)*NBYTES) >> 242 #define REST(unit) (FIRST(unit)+NBYTES-1) >> 243 #define UNIT(unit) FIRST(unit) >> 244 >> 245 #define ADDRMASK (NBYTES-1) >> 246 >> 247 .text >> 248 .set noreorder >> 249 #ifndef CONFIG_CPU_DADDI_WORKAROUNDS >> 250 .set noat >> 251 #else >> 252 .set at=v1 >> 253 #endif >> 254 >> 255 .align 5 >> 256 >> 257 /* >> 258 * Macro to build the __copy_user common code >> 259 * Arguements: >> 260 * mode : LEGACY_MODE or EVA_MODE >> 261 * from : Source operand. USEROP or KERNELOP >> 262 * to : Destination operand. USEROP or KERNELOP >> 263 */ >> 264 .macro __BUILD_COPY_USER mode, from, to >> 265 >> 266 /* initialize __memcpy if this the first time we execute this macro */ >> 267 .ifnotdef __memcpy >> 268 .set __memcpy, 1 >> 269 .hidden __memcpy /* make sure it does not leak */ >> 270 .endif >> 271 >> 272 /* >> 273 * Note: dst & src may be unaligned, len may be 0 >> 274 * Temps >> 275 */ >> 276 #define rem t8 >> 277 >> 278 R10KCBARRIER(0(ra)) >> 279 /* >> 280 * The "issue break"s below are very approximate. >> 281 * Issue delays for dcache fills will perturb the schedule, as will >> 282 * load queue full replay traps, etc. >> 283 * >> 284 * If len < NBYTES use byte operations. >> 285 */ >> 286 PREFS( 0, 0(src) ) >> 287 PREFD( 1, 0(dst) ) >> 288 sltu t2, len, NBYTES >> 289 and t1, dst, ADDRMASK >> 290 PREFS( 0, 1*32(src) ) >> 291 PREFD( 1, 1*32(dst) ) >> 292 bnez t2, .Lcopy_bytes_checklen\@ >> 293 and t0, src, ADDRMASK >> 294 PREFS( 0, 2*32(src) ) >> 295 PREFD( 1, 2*32(dst) ) >> 296 #ifndef CONFIG_CPU_MIPSR6 >> 297 bnez t1, .Ldst_unaligned\@ >> 298 nop >> 299 bnez t0, .Lsrc_unaligned_dst_aligned\@ >> 300 #else >> 301 or t0, t0, t1 >> 302 bnez t0, .Lcopy_unaligned_bytes\@ >> 303 #endif >> 304 /* >> 305 * use delay slot for fall-through >> 306 * src and dst are aligned; need to compute rem >> 307 */ >> 308 .Lboth_aligned\@: >> 309 SRL t0, len, LOG_NBYTES+3 # +3 for 8 units/iter >> 310 beqz t0, .Lcleanup_both_aligned\@ # len < 8*NBYTES >> 311 and rem, len, (8*NBYTES-1) # rem = len % (8*NBYTES) >> 312 PREFS( 0, 3*32(src) ) >> 313 PREFD( 1, 3*32(dst) ) >> 314 .align 4 >> 315 1: >> 316 R10KCBARRIER(0(ra)) >> 317 LOAD(t0, UNIT(0)(src), .Ll_exc\@) >> 318 LOAD(t1, UNIT(1)(src), .Ll_exc_copy\@) >> 319 LOAD(t2, UNIT(2)(src), .Ll_exc_copy\@) >> 320 LOAD(t3, UNIT(3)(src), .Ll_exc_copy\@) >> 321 SUB len, len, 8*NBYTES >> 322 LOAD(t4, UNIT(4)(src), .Ll_exc_copy\@) >> 323 LOAD(t7, UNIT(5)(src), .Ll_exc_copy\@) >> 324 STORE(t0, UNIT(0)(dst), .Ls_exc_p8u\@) >> 325 STORE(t1, UNIT(1)(dst), .Ls_exc_p7u\@) >> 326 LOAD(t0, UNIT(6)(src), .Ll_exc_copy\@) >> 327 LOAD(t1, UNIT(7)(src), .Ll_exc_copy\@) >> 328 ADD src, src, 8*NBYTES >> 329 ADD dst, dst, 8*NBYTES >> 330 STORE(t2, UNIT(-6)(dst), .Ls_exc_p6u\@) >> 331 STORE(t3, UNIT(-5)(dst), .Ls_exc_p5u\@) >> 332 STORE(t4, UNIT(-4)(dst), .Ls_exc_p4u\@) >> 333 STORE(t7, UNIT(-3)(dst), .Ls_exc_p3u\@) >> 334 STORE(t0, UNIT(-2)(dst), .Ls_exc_p2u\@) >> 335 STORE(t1, UNIT(-1)(dst), .Ls_exc_p1u\@) >> 336 PREFS( 0, 8*32(src) ) >> 337 PREFD( 1, 8*32(dst) ) >> 338 bne len, rem, 1b >> 339 nop >> 340 >> 341 /* >> 342 * len == rem == the number of bytes left to copy < 8*NBYTES >> 343 */ >> 344 .Lcleanup_both_aligned\@: >> 345 beqz len, .Ldone\@ >> 346 sltu t0, len, 4*NBYTES >> 347 bnez t0, .Lless_than_4units\@ >> 348 and rem, len, (NBYTES-1) # rem = len % NBYTES >> 349 /* >> 350 * len >= 4*NBYTES >> 351 */ >> 352 LOAD( t0, UNIT(0)(src), .Ll_exc\@) >> 353 LOAD( t1, UNIT(1)(src), .Ll_exc_copy\@) >> 354 LOAD( t2, UNIT(2)(src), .Ll_exc_copy\@) >> 355 LOAD( t3, UNIT(3)(src), .Ll_exc_copy\@) >> 356 SUB len, len, 4*NBYTES >> 357 ADD src, src, 4*NBYTES >> 358 R10KCBARRIER(0(ra)) >> 359 STORE(t0, UNIT(0)(dst), .Ls_exc_p4u\@) >> 360 STORE(t1, UNIT(1)(dst), .Ls_exc_p3u\@) >> 361 STORE(t2, UNIT(2)(dst), .Ls_exc_p2u\@) >> 362 STORE(t3, UNIT(3)(dst), .Ls_exc_p1u\@) >> 363 .set reorder /* DADDI_WAR */ >> 364 ADD dst, dst, 4*NBYTES >> 365 beqz len, .Ldone\@ >> 366 .set noreorder >> 367 .Lless_than_4units\@: >> 368 /* >> 369 * rem = len % NBYTES >> 370 */ >> 371 beq rem, len, .Lcopy_bytes\@ >> 372 nop >> 373 1: >> 374 R10KCBARRIER(0(ra)) >> 375 LOAD(t0, 0(src), .Ll_exc\@) >> 376 ADD src, src, NBYTES >> 377 SUB len, len, NBYTES >> 378 STORE(t0, 0(dst), .Ls_exc_p1u\@) >> 379 .set reorder /* DADDI_WAR */ >> 380 ADD dst, dst, NBYTES >> 381 bne rem, len, 1b >> 382 .set noreorder >> 383 >> 384 #ifndef CONFIG_CPU_MIPSR6 >> 385 /* >> 386 * src and dst are aligned, need to copy rem bytes (rem < NBYTES) >> 387 * A loop would do only a byte at a time with possible branch >> 388 * mispredicts. Can't do an explicit LOAD dst,mask,or,STORE >> 389 * because can't assume read-access to dst. Instead, use >> 390 * STREST dst, which doesn't require read access to dst. >> 391 * >> 392 * This code should perform better than a simple loop on modern, >> 393 * wide-issue mips processors because the code has fewer branches and >> 394 * more instruction-level parallelism. >> 395 */ >> 396 #define bits t2 >> 397 beqz len, .Ldone\@ >> 398 ADD t1, dst, len # t1 is just past last byte of dst >> 399 li bits, 8*NBYTES >> 400 SLL rem, len, 3 # rem = number of bits to keep >> 401 LOAD(t0, 0(src), .Ll_exc\@) >> 402 SUB bits, bits, rem # bits = number of bits to discard >> 403 SHIFT_DISCARD t0, t0, bits >> 404 STREST(t0, -1(t1), .Ls_exc\@) >> 405 jr ra >> 406 move len, zero >> 407 .Ldst_unaligned\@: >> 408 /* >> 409 * dst is unaligned >> 410 * t0 = src & ADDRMASK >> 411 * t1 = dst & ADDRMASK; T1 > 0 >> 412 * len >= NBYTES >> 413 * >> 414 * Copy enough bytes to align dst >> 415 * Set match = (src and dst have same alignment) >> 416 */ >> 417 #define match rem >> 418 LDFIRST(t3, FIRST(0)(src), .Ll_exc\@) >> 419 ADD t2, zero, NBYTES >> 420 LDREST(t3, REST(0)(src), .Ll_exc_copy\@) >> 421 SUB t2, t2, t1 # t2 = number of bytes copied >> 422 xor match, t0, t1 >> 423 R10KCBARRIER(0(ra)) >> 424 STFIRST(t3, FIRST(0)(dst), .Ls_exc\@) >> 425 beq len, t2, .Ldone\@ >> 426 SUB len, len, t2 >> 427 ADD dst, dst, t2 >> 428 beqz match, .Lboth_aligned\@ >> 429 ADD src, src, t2 >> 430 >> 431 .Lsrc_unaligned_dst_aligned\@: >> 432 SRL t0, len, LOG_NBYTES+2 # +2 for 4 units/iter >> 433 PREFS( 0, 3*32(src) ) >> 434 beqz t0, .Lcleanup_src_unaligned\@ >> 435 and rem, len, (4*NBYTES-1) # rem = len % 4*NBYTES >> 436 PREFD( 1, 3*32(dst) ) >> 437 1: >> 438 /* >> 439 * Avoid consecutive LD*'s to the same register since some mips >> 440 * implementations can't issue them in the same cycle. >> 441 * It's OK to load FIRST(N+1) before REST(N) because the two addresses >> 442 * are to the same unit (unless src is aligned, but it's not). >> 443 */ >> 444 R10KCBARRIER(0(ra)) >> 445 LDFIRST(t0, FIRST(0)(src), .Ll_exc\@) >> 446 LDFIRST(t1, FIRST(1)(src), .Ll_exc_copy\@) >> 447 SUB len, len, 4*NBYTES >> 448 LDREST(t0, REST(0)(src), .Ll_exc_copy\@) >> 449 LDREST(t1, REST(1)(src), .Ll_exc_copy\@) >> 450 LDFIRST(t2, FIRST(2)(src), .Ll_exc_copy\@) >> 451 LDFIRST(t3, FIRST(3)(src), .Ll_exc_copy\@) >> 452 LDREST(t2, REST(2)(src), .Ll_exc_copy\@) >> 453 LDREST(t3, REST(3)(src), .Ll_exc_copy\@) >> 454 PREFS( 0, 9*32(src) ) # 0 is PREF_LOAD (not streamed) >> 455 ADD src, src, 4*NBYTES >> 456 #ifdef CONFIG_CPU_SB1 >> 457 nop # improves slotting >> 458 #endif >> 459 STORE(t0, UNIT(0)(dst), .Ls_exc_p4u\@) >> 460 STORE(t1, UNIT(1)(dst), .Ls_exc_p3u\@) >> 461 STORE(t2, UNIT(2)(dst), .Ls_exc_p2u\@) >> 462 STORE(t3, UNIT(3)(dst), .Ls_exc_p1u\@) >> 463 PREFD( 1, 9*32(dst) ) # 1 is PREF_STORE (not streamed) >> 464 .set reorder /* DADDI_WAR */ >> 465 ADD dst, dst, 4*NBYTES >> 466 bne len, rem, 1b >> 467 .set noreorder >> 468 >> 469 .Lcleanup_src_unaligned\@: >> 470 beqz len, .Ldone\@ >> 471 and rem, len, NBYTES-1 # rem = len % NBYTES >> 472 beq rem, len, .Lcopy_bytes\@ >> 473 nop >> 474 1: >> 475 R10KCBARRIER(0(ra)) >> 476 LDFIRST(t0, FIRST(0)(src), .Ll_exc\@) >> 477 LDREST(t0, REST(0)(src), .Ll_exc_copy\@) >> 478 ADD src, src, NBYTES >> 479 SUB len, len, NBYTES >> 480 STORE(t0, 0(dst), .Ls_exc_p1u\@) >> 481 .set reorder /* DADDI_WAR */ >> 482 ADD dst, dst, NBYTES >> 483 bne len, rem, 1b >> 484 .set noreorder >> 485 >> 486 #endif /* !CONFIG_CPU_MIPSR6 */ >> 487 .Lcopy_bytes_checklen\@: >> 488 beqz len, .Ldone\@ >> 489 nop >> 490 .Lcopy_bytes\@: >> 491 /* 0 < len < NBYTES */ >> 492 R10KCBARRIER(0(ra)) >> 493 #define COPY_BYTE(N) \ >> 494 LOADB(t0, N(src), .Ll_exc\@); \ >> 495 SUB len, len, 1; \ >> 496 beqz len, .Ldone\@; \ >> 497 STOREB(t0, N(dst), .Ls_exc_p1\@) >> 498 >> 499 COPY_BYTE(0) >> 500 COPY_BYTE(1) >> 501 #ifdef USE_DOUBLE >> 502 COPY_BYTE(2) >> 503 COPY_BYTE(3) >> 504 COPY_BYTE(4) >> 505 COPY_BYTE(5) >> 506 #endif >> 507 LOADB(t0, NBYTES-2(src), .Ll_exc\@) >> 508 SUB len, len, 1 >> 509 jr ra >> 510 STOREB(t0, NBYTES-2(dst), .Ls_exc_p1\@) >> 511 .Ldone\@: >> 512 jr ra >> 513 nop >> 514 >> 515 #ifdef CONFIG_CPU_MIPSR6 >> 516 .Lcopy_unaligned_bytes\@: >> 517 1: >> 518 COPY_BYTE(0) >> 519 COPY_BYTE(1) >> 520 COPY_BYTE(2) >> 521 COPY_BYTE(3) >> 522 COPY_BYTE(4) >> 523 COPY_BYTE(5) >> 524 COPY_BYTE(6) >> 525 COPY_BYTE(7) >> 526 ADD src, src, 8 >> 527 b 1b >> 528 ADD dst, dst, 8 >> 529 #endif /* CONFIG_CPU_MIPSR6 */ >> 530 .if __memcpy == 1 >> 531 END(memcpy) >> 532 .set __memcpy, 0 >> 533 .hidden __memcpy >> 534 .endif >> 535 >> 536 .Ll_exc_copy\@: >> 537 /* >> 538 * Copy bytes from src until faulting load address (or until a >> 539 * lb faults) >> 540 * >> 541 * When reached by a faulting LDFIRST/LDREST, THREAD_BUADDR($28) >> 542 * may be more than a byte beyond the last address. >> 543 * Hence, the lb below may get an exception. >> 544 * >> 545 * Assumes src < THREAD_BUADDR($28) >> 546 */ >> 547 LOADK t0, TI_TASK($28) >> 548 nop >> 549 LOADK t0, THREAD_BUADDR(t0) >> 550 1: >> 551 LOADB(t1, 0(src), .Ll_exc\@) >> 552 ADD src, src, 1 >> 553 sb t1, 0(dst) # can't fault -- we're copy_from_user >> 554 .set reorder /* DADDI_WAR */ >> 555 ADD dst, dst, 1 >> 556 bne src, t0, 1b >> 557 .set noreorder >> 558 .Ll_exc\@: >> 559 LOADK t0, TI_TASK($28) >> 560 nop >> 561 LOADK t0, THREAD_BUADDR(t0) # t0 is just past last good address >> 562 nop >> 563 SUB len, AT, t0 # len number of uncopied bytes >> 564 bnez t6, .Ldone\@ /* Skip the zeroing part if inatomic */ >> 565 /* >> 566 * Here's where we rely on src and dst being incremented in tandem, >> 567 * See (3) above. >> 568 * dst += (fault addr - src) to put dst at first byte to clear >> 569 */ >> 570 ADD dst, t0 # compute start address in a1 >> 571 SUB dst, src >> 572 /* >> 573 * Clear len bytes starting at dst. Can't call __bzero because it >> 574 * might modify len. An inefficient loop for these rare times... >> 575 */ >> 576 .set reorder /* DADDI_WAR */ >> 577 SUB src, len, 1 >> 578 beqz len, .Ldone\@ >> 579 .set noreorder >> 580 1: sb zero, 0(dst) >> 581 ADD dst, dst, 1 >> 582 #ifndef CONFIG_CPU_DADDI_WORKAROUNDS >> 583 bnez src, 1b >> 584 SUB src, src, 1 >> 585 #else >> 586 .set push >> 587 .set noat >> 588 li v1, 1 >> 589 bnez src, 1b >> 590 SUB src, src, v1 >> 591 .set pop >> 592 #endif >> 593 jr ra >> 594 nop >> 595 >> 596 >> 597 #define SEXC(n) \ >> 598 .set reorder; /* DADDI_WAR */ \ >> 599 .Ls_exc_p ## n ## u\@: \ >> 600 ADD len, len, n*NBYTES; \ >> 601 jr ra; \ >> 602 .set noreorder >> 603 >> 604 SEXC(8) >> 605 SEXC(7) >> 606 SEXC(6) >> 607 SEXC(5) >> 608 SEXC(4) >> 609 SEXC(3) >> 610 SEXC(2) >> 611 SEXC(1) >> 612 >> 613 .Ls_exc_p1\@: >> 614 .set reorder /* DADDI_WAR */ >> 615 ADD len, len, 1 >> 616 jr ra >> 617 .set noreorder >> 618 .Ls_exc\@: >> 619 jr ra >> 620 nop >> 621 .endm >> 622 >> 623 .align 5 >> 624 LEAF(memmove) >> 625 ADD t0, a0, a2 >> 626 ADD t1, a1, a2 >> 627 sltu t0, a1, t0 # dst + len <= src -> memcpy >> 628 sltu t1, a0, t1 # dst >= src + len -> memcpy >> 629 and t0, t1 >> 630 beqz t0, .L__memcpy >> 631 move v0, a0 /* return value */ >> 632 beqz a2, .Lr_out >> 633 END(memmove) >> 634 >> 635 /* fall through to __rmemcpy */ >> 636 LEAF(__rmemcpy) /* a0=dst a1=src a2=len */ >> 637 sltu t0, a1, a0 >> 638 beqz t0, .Lr_end_bytes_up # src >= dst >> 639 nop >> 640 ADD a0, a2 # dst = dst + len >> 641 ADD a1, a2 # src = src + len >> 642 >> 643 .Lr_end_bytes: >> 644 R10KCBARRIER(0(ra)) >> 645 lb t0, -1(a1) >> 646 SUB a2, a2, 0x1 >> 647 sb t0, -1(a0) >> 648 SUB a1, a1, 0x1 >> 649 .set reorder /* DADDI_WAR */ >> 650 SUB a0, a0, 0x1 >> 651 bnez a2, .Lr_end_bytes >> 652 .set noreorder >> 653 >> 654 .Lr_out: >> 655 jr ra >> 656 move a2, zero >> 657 >> 658 .Lr_end_bytes_up: >> 659 R10KCBARRIER(0(ra)) >> 660 lb t0, (a1) >> 661 SUB a2, a2, 0x1 >> 662 sb t0, (a0) >> 663 ADD a1, a1, 0x1 >> 664 .set reorder /* DADDI_WAR */ >> 665 ADD a0, a0, 0x1 >> 666 bnez a2, .Lr_end_bytes_up >> 667 .set noreorder >> 668 >> 669 jr ra >> 670 move a2, zero >> 671 END(__rmemcpy) >> 672 >> 673 /* >> 674 * t6 is used as a flag to note inatomic mode. >> 675 */ >> 676 LEAF(__copy_user_inatomic) >> 677 b __copy_user_common >> 678 li t6, 1 >> 679 END(__copy_user_inatomic) >> 680 >> 681 /* >> 682 * A combined memcpy/__copy_user >> 683 * __copy_user sets len to 0 for success; else to an upper bound of >> 684 * the number of uncopied bytes. >> 685 * memcpy sets v0 to dst. >> 686 */ >> 687 .align 5 >> 688 LEAF(memcpy) /* a0=dst a1=src a2=len */ >> 689 move v0, dst /* return value */ >> 690 .L__memcpy: >> 691 FEXPORT(__copy_user) >> 692 li t6, 0 /* not inatomic */ >> 693 __copy_user_common: >> 694 /* Legacy Mode, user <-> user */ >> 695 __BUILD_COPY_USER LEGACY_MODE USEROP USEROP >> 696 >> 697 #ifdef CONFIG_EVA >> 698 >> 699 /* >> 700 * For EVA we need distinct symbols for reading and writing to user space. >> 701 * This is because we need to use specific EVA instructions to perform the >> 702 * virtual <-> physical translation when a virtual address is actually in user >> 703 * space >> 704 */ >> 705 >> 706 LEAF(__copy_user_inatomic_eva) >> 707 b __copy_from_user_common >> 708 li t6, 1 >> 709 END(__copy_user_inatomic_eva) >> 710 >> 711 /* >> 712 * __copy_from_user (EVA) >> 713 */ >> 714 >> 715 LEAF(__copy_from_user_eva) >> 716 li t6, 0 /* not inatomic */ >> 717 __copy_from_user_common: >> 718 __BUILD_COPY_USER EVA_MODE USEROP KERNELOP >> 719 END(__copy_from_user_eva) >> 720 >> 721 >> 722 >> 723 /* >> 724 * __copy_to_user (EVA) >> 725 */ >> 726 >> 727 LEAF(__copy_to_user_eva) >> 728 __BUILD_COPY_USER EVA_MODE KERNELOP USEROP >> 729 END(__copy_to_user_eva) >> 730 >> 731 /* >> 732 * __copy_in_user (EVA) >> 733 */ >> 734 >> 735 LEAF(__copy_in_user_eva) >> 736 __BUILD_COPY_USER EVA_MODE USEROP USEROP >> 737 END(__copy_in_user_eva) 8 738 9 /* void *memcpy(void *, const void *, size_t) !! 739 #endif 10 SYM_FUNC_START(__memcpy) << 11 move t6, a0 /* Preserve return value << 12 << 13 /* Defer to byte-oriented copy for sma << 14 sltiu a3, a2, 128 << 15 bnez a3, 4f << 16 /* Use word-oriented copy only if low- << 17 andi a3, t6, SZREG-1 << 18 andi a4, a1, SZREG-1 << 19 bne a3, a4, 4f << 20 << 21 beqz a3, 2f /* Skip if already aligne << 22 /* << 23 * Round to nearest double word-aligne << 24 * greater than or equal to start addr << 25 */ << 26 andi a3, a1, ~(SZREG-1) << 27 addi a3, a3, SZREG << 28 /* Handle initial misalignment */ << 29 sub a4, a3, a1 << 30 1: << 31 lb a5, 0(a1) << 32 addi a1, a1, 1 << 33 sb a5, 0(t6) << 34 addi t6, t6, 1 << 35 bltu a1, a3, 1b << 36 sub a2, a2, a4 /* Update count */ << 37 << 38 2: << 39 andi a4, a2, ~((16*SZREG)-1) << 40 beqz a4, 4f << 41 add a3, a1, a4 << 42 3: << 43 REG_L a4, 0(a1) << 44 REG_L a5, SZREG(a1) << 45 REG_L a6, 2*SZREG(a1) << 46 REG_L a7, 3*SZREG(a1) << 47 REG_L t0, 4*SZREG(a1) << 48 REG_L t1, 5*SZREG(a1) << 49 REG_L t2, 6*SZREG(a1) << 50 REG_L t3, 7*SZREG(a1) << 51 REG_L t4, 8*SZREG(a1) << 52 REG_L t5, 9*SZREG(a1) << 53 REG_S a4, 0(t6) << 54 REG_S a5, SZREG(t6) << 55 REG_S a6, 2*SZREG(t6) << 56 REG_S a7, 3*SZREG(t6) << 57 REG_S t0, 4*SZREG(t6) << 58 REG_S t1, 5*SZREG(t6) << 59 REG_S t2, 6*SZREG(t6) << 60 REG_S t3, 7*SZREG(t6) << 61 REG_S t4, 8*SZREG(t6) << 62 REG_S t5, 9*SZREG(t6) << 63 REG_L a4, 10*SZREG(a1) << 64 REG_L a5, 11*SZREG(a1) << 65 REG_L a6, 12*SZREG(a1) << 66 REG_L a7, 13*SZREG(a1) << 67 REG_L t0, 14*SZREG(a1) << 68 REG_L t1, 15*SZREG(a1) << 69 addi a1, a1, 16*SZREG << 70 REG_S a4, 10*SZREG(t6) << 71 REG_S a5, 11*SZREG(t6) << 72 REG_S a6, 12*SZREG(t6) << 73 REG_S a7, 13*SZREG(t6) << 74 REG_S t0, 14*SZREG(t6) << 75 REG_S t1, 15*SZREG(t6) << 76 addi t6, t6, 16*SZREG << 77 bltu a1, a3, 3b << 78 andi a2, a2, (16*SZREG)-1 /* Update c << 79 << 80 4: << 81 /* Handle trailing misalignment */ << 82 beqz a2, 6f << 83 add a3, a1, a2 << 84 << 85 /* Use word-oriented copy if co-aligne << 86 or a5, a1, t6 << 87 or a5, a5, a3 << 88 andi a5, a5, 3 << 89 bnez a5, 5f << 90 7: << 91 lw a4, 0(a1) << 92 addi a1, a1, 4 << 93 sw a4, 0(t6) << 94 addi t6, t6, 4 << 95 bltu a1, a3, 7b << 96 << 97 ret << 98 << 99 5: << 100 lb a4, 0(a1) << 101 addi a1, a1, 1 << 102 sb a4, 0(t6) << 103 addi t6, t6, 1 << 104 bltu a1, a3, 5b << 105 6: << 106 ret << 107 SYM_FUNC_END(__memcpy) << 108 SYM_FUNC_ALIAS_WEAK(memcpy, __memcpy) << 109 SYM_FUNC_ALIAS(__pi_memcpy, __memcpy) << 110 SYM_FUNC_ALIAS(__pi___memcpy, __memcpy) <<
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.