1 /* SPDX-License-Identifier: GPL-2.0-only */ << 2 /* 1 /* 3 * Copyright (C) 2013 Regents of the Universit !! 2 * This file is subject to the terms and conditions of the GNU General Public >> 3 * License. See the file "COPYING" in the main directory of this archive >> 4 * for more details. >> 5 * >> 6 * Unified implementation of memcpy, memmove and the __copy_user backend. >> 7 * >> 8 * Copyright (C) 1998, 99, 2000, 01, 2002 Ralf Baechle (ralf@gnu.org) >> 9 * Copyright (C) 1999, 2000, 01, 2002 Silicon Graphics, Inc. >> 10 * Copyright (C) 2002 Broadcom, Inc. >> 11 * memcpy/copy_user author: Mark Vandevoorde >> 12 * Copyright (C) 2007 Maciej W. Rozycki >> 13 * Copyright (C) 2014 Imagination Technologies Ltd. >> 14 * >> 15 * Mnemonic names for arguments to memcpy/__copy_user 4 */ 16 */ 5 17 6 #include <linux/linkage.h> !! 18 /* >> 19 * Hack to resolve longstanding prefetch issue >> 20 * >> 21 * Prefetching may be fatal on some systems if we're prefetching beyond the >> 22 * end of memory on some systems. It's also a seriously bad idea on non >> 23 * dma-coherent systems. >> 24 */ >> 25 #ifdef CONFIG_DMA_NONCOHERENT >> 26 #undef CONFIG_CPU_HAS_PREFETCH >> 27 #endif >> 28 #ifdef CONFIG_MIPS_MALTA >> 29 #undef CONFIG_CPU_HAS_PREFETCH >> 30 #endif >> 31 #ifdef CONFIG_CPU_MIPSR6 >> 32 #undef CONFIG_CPU_HAS_PREFETCH >> 33 #endif >> 34 7 #include <asm/asm.h> 35 #include <asm/asm.h> >> 36 #include <asm/asm-offsets.h> >> 37 #include <asm/export.h> >> 38 #include <asm/regdef.h> >> 39 >> 40 #define dst a0 >> 41 #define src a1 >> 42 #define len a2 >> 43 >> 44 /* >> 45 * Spec >> 46 * >> 47 * memcpy copies len bytes from src to dst and sets v0 to dst. >> 48 * It assumes that >> 49 * - src and dst don't overlap >> 50 * - src is readable >> 51 * - dst is writable >> 52 * memcpy uses the standard calling convention >> 53 * >> 54 * __copy_user copies up to len bytes from src to dst and sets a2 (len) to >> 55 * the number of uncopied bytes due to an exception caused by a read or write. >> 56 * __copy_user assumes that src and dst don't overlap, and that the call is >> 57 * implementing one of the following: >> 58 * copy_to_user >> 59 * - src is readable (no exceptions when reading src) >> 60 * copy_from_user >> 61 * - dst is writable (no exceptions when writing dst) >> 62 * __copy_user uses a non-standard calling convention; see >> 63 * include/asm-mips/uaccess.h >> 64 * >> 65 * When an exception happens on a load, the handler must >> 66 # ensure that all of the destination buffer is overwritten to prevent >> 67 * leaking information to user mode programs. >> 68 */ >> 69 >> 70 /* >> 71 * Implementation >> 72 */ >> 73 >> 74 /* >> 75 * The exception handler for loads requires that: >> 76 * 1- AT contain the address of the byte just past the end of the source >> 77 * of the copy, >> 78 * 2- src_entry <= src < AT, and >> 79 * 3- (dst - src) == (dst_entry - src_entry), >> 80 * The _entry suffix denotes values when __copy_user was called. >> 81 * >> 82 * (1) is set up up by uaccess.h and maintained by not writing AT in copy_user >> 83 * (2) is met by incrementing src by the number of bytes copied >> 84 * (3) is met by not doing loads between a pair of increments of dst and src >> 85 * >> 86 * The exception handlers for stores adjust len (if necessary) and return. >> 87 * These handlers do not need to overwrite any data. >> 88 * >> 89 * For __rmemcpy and memmove an exception is always a kernel bug, therefore >> 90 * they're not protected. >> 91 */ >> 92 >> 93 /* Instruction type */ >> 94 #define LD_INSN 1 >> 95 #define ST_INSN 2 >> 96 /* Pretech type */ >> 97 #define SRC_PREFETCH 1 >> 98 #define DST_PREFETCH 2 >> 99 #define LEGACY_MODE 1 >> 100 #define EVA_MODE 2 >> 101 #define USEROP 1 >> 102 #define KERNELOP 2 >> 103 >> 104 /* >> 105 * Wrapper to add an entry in the exception table >> 106 * in case the insn causes a memory exception. >> 107 * Arguments: >> 108 * insn : Load/store instruction >> 109 * type : Instruction type >> 110 * reg : Register >> 111 * addr : Address >> 112 * handler : Exception handler >> 113 */ >> 114 >> 115 #define EXC(insn, type, reg, addr, handler) \ >> 116 .if \mode == LEGACY_MODE; \ >> 117 9: insn reg, addr; \ >> 118 .section __ex_table,"a"; \ >> 119 PTR 9b, handler; \ >> 120 .previous; \ >> 121 /* This is assembled in EVA mode */ \ >> 122 .else; \ >> 123 /* If loading from user or storing to user */ \ >> 124 .if ((\from == USEROP) && (type == LD_INSN)) || \ >> 125 ((\to == USEROP) && (type == ST_INSN)); \ >> 126 9: __BUILD_EVA_INSN(insn##e, reg, addr); \ >> 127 .section __ex_table,"a"; \ >> 128 PTR 9b, handler; \ >> 129 .previous; \ >> 130 .else; \ >> 131 /* \ >> 132 * Still in EVA, but no need for \ >> 133 * exception handler or EVA insn \ >> 134 */ \ >> 135 insn reg, addr; \ >> 136 .endif; \ >> 137 .endif >> 138 >> 139 /* >> 140 * Only on the 64-bit kernel we can made use of 64-bit registers. >> 141 */ >> 142 #ifdef CONFIG_64BIT >> 143 #define USE_DOUBLE >> 144 #endif >> 145 >> 146 #ifdef USE_DOUBLE >> 147 >> 148 #define LOADK ld /* No exception */ >> 149 #define LOAD(reg, addr, handler) EXC(ld, LD_INSN, reg, addr, handler) >> 150 #define LOADL(reg, addr, handler) EXC(ldl, LD_INSN, reg, addr, handler) >> 151 #define LOADR(reg, addr, handler) EXC(ldr, LD_INSN, reg, addr, handler) >> 152 #define STOREL(reg, addr, handler) EXC(sdl, ST_INSN, reg, addr, handler) >> 153 #define STORER(reg, addr, handler) EXC(sdr, ST_INSN, reg, addr, handler) >> 154 #define STORE(reg, addr, handler) EXC(sd, ST_INSN, reg, addr, handler) >> 155 #define ADD daddu >> 156 #define SUB dsubu >> 157 #define SRL dsrl >> 158 #define SRA dsra >> 159 #define SLL dsll >> 160 #define SLLV dsllv >> 161 #define SRLV dsrlv >> 162 #define NBYTES 8 >> 163 #define LOG_NBYTES 3 >> 164 >> 165 /* >> 166 * As we are sharing code base with the mips32 tree (which use the o32 ABI >> 167 * register definitions). We need to redefine the register definitions from >> 168 * the n64 ABI register naming to the o32 ABI register naming. >> 169 */ >> 170 #undef t0 >> 171 #undef t1 >> 172 #undef t2 >> 173 #undef t3 >> 174 #define t0 $8 >> 175 #define t1 $9 >> 176 #define t2 $10 >> 177 #define t3 $11 >> 178 #define t4 $12 >> 179 #define t5 $13 >> 180 #define t6 $14 >> 181 #define t7 $15 >> 182 >> 183 #else >> 184 >> 185 #define LOADK lw /* No exception */ >> 186 #define LOAD(reg, addr, handler) EXC(lw, LD_INSN, reg, addr, handler) >> 187 #define LOADL(reg, addr, handler) EXC(lwl, LD_INSN, reg, addr, handler) >> 188 #define LOADR(reg, addr, handler) EXC(lwr, LD_INSN, reg, addr, handler) >> 189 #define STOREL(reg, addr, handler) EXC(swl, ST_INSN, reg, addr, handler) >> 190 #define STORER(reg, addr, handler) EXC(swr, ST_INSN, reg, addr, handler) >> 191 #define STORE(reg, addr, handler) EXC(sw, ST_INSN, reg, addr, handler) >> 192 #define ADD addu >> 193 #define SUB subu >> 194 #define SRL srl >> 195 #define SLL sll >> 196 #define SRA sra >> 197 #define SLLV sllv >> 198 #define SRLV srlv >> 199 #define NBYTES 4 >> 200 #define LOG_NBYTES 2 >> 201 >> 202 #endif /* USE_DOUBLE */ >> 203 >> 204 #define LOADB(reg, addr, handler) EXC(lb, LD_INSN, reg, addr, handler) >> 205 #define STOREB(reg, addr, handler) EXC(sb, ST_INSN, reg, addr, handler) >> 206 >> 207 #ifdef CONFIG_CPU_HAS_PREFETCH >> 208 # define _PREF(hint, addr, type) \ >> 209 .if \mode == LEGACY_MODE; \ >> 210 kernel_pref(hint, addr); \ >> 211 .else; \ >> 212 .if ((\from == USEROP) && (type == SRC_PREFETCH)) || \ >> 213 ((\to == USEROP) && (type == DST_PREFETCH)); \ >> 214 /* \ >> 215 * PREFE has only 9 bits for the offset \ >> 216 * compared to PREF which has 16, so it may \ >> 217 * need to use the $at register but this \ >> 218 * register should remain intact because it's \ >> 219 * used later on. Therefore use $v1. \ >> 220 */ \ >> 221 .set at=v1; \ >> 222 user_pref(hint, addr); \ >> 223 .set noat; \ >> 224 .else; \ >> 225 kernel_pref(hint, addr); \ >> 226 .endif; \ >> 227 .endif >> 228 #else >> 229 # define _PREF(hint, addr, type) >> 230 #endif >> 231 >> 232 #define PREFS(hint, addr) _PREF(hint, addr, SRC_PREFETCH) >> 233 #define PREFD(hint, addr) _PREF(hint, addr, DST_PREFETCH) >> 234 >> 235 #ifdef CONFIG_CPU_LITTLE_ENDIAN >> 236 #define LDFIRST LOADR >> 237 #define LDREST LOADL >> 238 #define STFIRST STORER >> 239 #define STREST STOREL >> 240 #define SHIFT_DISCARD SLLV >> 241 #else >> 242 #define LDFIRST LOADL >> 243 #define LDREST LOADR >> 244 #define STFIRST STOREL >> 245 #define STREST STORER >> 246 #define SHIFT_DISCARD SRLV >> 247 #endif >> 248 >> 249 #define FIRST(unit) ((unit)*NBYTES) >> 250 #define REST(unit) (FIRST(unit)+NBYTES-1) >> 251 #define UNIT(unit) FIRST(unit) >> 252 >> 253 #define ADDRMASK (NBYTES-1) >> 254 >> 255 .text >> 256 .set noreorder >> 257 #ifndef CONFIG_CPU_DADDI_WORKAROUNDS >> 258 .set noat >> 259 #else >> 260 .set at=v1 >> 261 #endif >> 262 >> 263 .align 5 >> 264 >> 265 /* >> 266 * Macro to build the __copy_user common code >> 267 * Arguments: >> 268 * mode : LEGACY_MODE or EVA_MODE >> 269 * from : Source operand. USEROP or KERNELOP >> 270 * to : Destination operand. USEROP or KERNELOP >> 271 */ >> 272 .macro __BUILD_COPY_USER mode, from, to >> 273 >> 274 /* initialize __memcpy if this the first time we execute this macro */ >> 275 .ifnotdef __memcpy >> 276 .set __memcpy, 1 >> 277 .hidden __memcpy /* make sure it does not leak */ >> 278 .endif >> 279 >> 280 /* >> 281 * Note: dst & src may be unaligned, len may be 0 >> 282 * Temps >> 283 */ >> 284 #define rem t8 >> 285 >> 286 R10KCBARRIER(0(ra)) >> 287 /* >> 288 * The "issue break"s below are very approximate. >> 289 * Issue delays for dcache fills will perturb the schedule, as will >> 290 * load queue full replay traps, etc. >> 291 * >> 292 * If len < NBYTES use byte operations. >> 293 */ >> 294 PREFS( 0, 0(src) ) >> 295 PREFD( 1, 0(dst) ) >> 296 sltu t2, len, NBYTES >> 297 and t1, dst, ADDRMASK >> 298 PREFS( 0, 1*32(src) ) >> 299 PREFD( 1, 1*32(dst) ) >> 300 bnez t2, .Lcopy_bytes_checklen\@ >> 301 and t0, src, ADDRMASK >> 302 PREFS( 0, 2*32(src) ) >> 303 PREFD( 1, 2*32(dst) ) >> 304 #ifndef CONFIG_CPU_NO_LOAD_STORE_LR >> 305 bnez t1, .Ldst_unaligned\@ >> 306 nop >> 307 bnez t0, .Lsrc_unaligned_dst_aligned\@ >> 308 #else /* CONFIG_CPU_NO_LOAD_STORE_LR */ >> 309 or t0, t0, t1 >> 310 bnez t0, .Lcopy_unaligned_bytes\@ >> 311 #endif /* CONFIG_CPU_NO_LOAD_STORE_LR */ >> 312 /* >> 313 * use delay slot for fall-through >> 314 * src and dst are aligned; need to compute rem >> 315 */ >> 316 .Lboth_aligned\@: >> 317 SRL t0, len, LOG_NBYTES+3 # +3 for 8 units/iter >> 318 beqz t0, .Lcleanup_both_aligned\@ # len < 8*NBYTES >> 319 and rem, len, (8*NBYTES-1) # rem = len % (8*NBYTES) >> 320 PREFS( 0, 3*32(src) ) >> 321 PREFD( 1, 3*32(dst) ) >> 322 .align 4 >> 323 1: >> 324 R10KCBARRIER(0(ra)) >> 325 LOAD(t0, UNIT(0)(src), .Ll_exc\@) >> 326 LOAD(t1, UNIT(1)(src), .Ll_exc_copy\@) >> 327 LOAD(t2, UNIT(2)(src), .Ll_exc_copy\@) >> 328 LOAD(t3, UNIT(3)(src), .Ll_exc_copy\@) >> 329 SUB len, len, 8*NBYTES >> 330 LOAD(t4, UNIT(4)(src), .Ll_exc_copy\@) >> 331 LOAD(t7, UNIT(5)(src), .Ll_exc_copy\@) >> 332 STORE(t0, UNIT(0)(dst), .Ls_exc_p8u\@) >> 333 STORE(t1, UNIT(1)(dst), .Ls_exc_p7u\@) >> 334 LOAD(t0, UNIT(6)(src), .Ll_exc_copy\@) >> 335 LOAD(t1, UNIT(7)(src), .Ll_exc_copy\@) >> 336 ADD src, src, 8*NBYTES >> 337 ADD dst, dst, 8*NBYTES >> 338 STORE(t2, UNIT(-6)(dst), .Ls_exc_p6u\@) >> 339 STORE(t3, UNIT(-5)(dst), .Ls_exc_p5u\@) >> 340 STORE(t4, UNIT(-4)(dst), .Ls_exc_p4u\@) >> 341 STORE(t7, UNIT(-3)(dst), .Ls_exc_p3u\@) >> 342 STORE(t0, UNIT(-2)(dst), .Ls_exc_p2u\@) >> 343 STORE(t1, UNIT(-1)(dst), .Ls_exc_p1u\@) >> 344 PREFS( 0, 8*32(src) ) >> 345 PREFD( 1, 8*32(dst) ) >> 346 bne len, rem, 1b >> 347 nop >> 348 >> 349 /* >> 350 * len == rem == the number of bytes left to copy < 8*NBYTES >> 351 */ >> 352 .Lcleanup_both_aligned\@: >> 353 beqz len, .Ldone\@ >> 354 sltu t0, len, 4*NBYTES >> 355 bnez t0, .Lless_than_4units\@ >> 356 and rem, len, (NBYTES-1) # rem = len % NBYTES >> 357 /* >> 358 * len >= 4*NBYTES >> 359 */ >> 360 LOAD( t0, UNIT(0)(src), .Ll_exc\@) >> 361 LOAD( t1, UNIT(1)(src), .Ll_exc_copy\@) >> 362 LOAD( t2, UNIT(2)(src), .Ll_exc_copy\@) >> 363 LOAD( t3, UNIT(3)(src), .Ll_exc_copy\@) >> 364 SUB len, len, 4*NBYTES >> 365 ADD src, src, 4*NBYTES >> 366 R10KCBARRIER(0(ra)) >> 367 STORE(t0, UNIT(0)(dst), .Ls_exc_p4u\@) >> 368 STORE(t1, UNIT(1)(dst), .Ls_exc_p3u\@) >> 369 STORE(t2, UNIT(2)(dst), .Ls_exc_p2u\@) >> 370 STORE(t3, UNIT(3)(dst), .Ls_exc_p1u\@) >> 371 .set reorder /* DADDI_WAR */ >> 372 ADD dst, dst, 4*NBYTES >> 373 beqz len, .Ldone\@ >> 374 .set noreorder >> 375 .Lless_than_4units\@: >> 376 /* >> 377 * rem = len % NBYTES >> 378 */ >> 379 beq rem, len, .Lcopy_bytes\@ >> 380 nop >> 381 1: >> 382 R10KCBARRIER(0(ra)) >> 383 LOAD(t0, 0(src), .Ll_exc\@) >> 384 ADD src, src, NBYTES >> 385 SUB len, len, NBYTES >> 386 STORE(t0, 0(dst), .Ls_exc_p1u\@) >> 387 .set reorder /* DADDI_WAR */ >> 388 ADD dst, dst, NBYTES >> 389 bne rem, len, 1b >> 390 .set noreorder >> 391 >> 392 #ifndef CONFIG_CPU_NO_LOAD_STORE_LR >> 393 /* >> 394 * src and dst are aligned, need to copy rem bytes (rem < NBYTES) >> 395 * A loop would do only a byte at a time with possible branch >> 396 * mispredicts. Can't do an explicit LOAD dst,mask,or,STORE >> 397 * because can't assume read-access to dst. Instead, use >> 398 * STREST dst, which doesn't require read access to dst. >> 399 * >> 400 * This code should perform better than a simple loop on modern, >> 401 * wide-issue mips processors because the code has fewer branches and >> 402 * more instruction-level parallelism. >> 403 */ >> 404 #define bits t2 >> 405 beqz len, .Ldone\@ >> 406 ADD t1, dst, len # t1 is just past last byte of dst >> 407 li bits, 8*NBYTES >> 408 SLL rem, len, 3 # rem = number of bits to keep >> 409 LOAD(t0, 0(src), .Ll_exc\@) >> 410 SUB bits, bits, rem # bits = number of bits to discard >> 411 SHIFT_DISCARD t0, t0, bits >> 412 STREST(t0, -1(t1), .Ls_exc\@) >> 413 jr ra >> 414 move len, zero >> 415 .Ldst_unaligned\@: >> 416 /* >> 417 * dst is unaligned >> 418 * t0 = src & ADDRMASK >> 419 * t1 = dst & ADDRMASK; T1 > 0 >> 420 * len >= NBYTES >> 421 * >> 422 * Copy enough bytes to align dst >> 423 * Set match = (src and dst have same alignment) >> 424 */ >> 425 #define match rem >> 426 LDFIRST(t3, FIRST(0)(src), .Ll_exc\@) >> 427 ADD t2, zero, NBYTES >> 428 LDREST(t3, REST(0)(src), .Ll_exc_copy\@) >> 429 SUB t2, t2, t1 # t2 = number of bytes copied >> 430 xor match, t0, t1 >> 431 R10KCBARRIER(0(ra)) >> 432 STFIRST(t3, FIRST(0)(dst), .Ls_exc\@) >> 433 beq len, t2, .Ldone\@ >> 434 SUB len, len, t2 >> 435 ADD dst, dst, t2 >> 436 beqz match, .Lboth_aligned\@ >> 437 ADD src, src, t2 >> 438 >> 439 .Lsrc_unaligned_dst_aligned\@: >> 440 SRL t0, len, LOG_NBYTES+2 # +2 for 4 units/iter >> 441 PREFS( 0, 3*32(src) ) >> 442 beqz t0, .Lcleanup_src_unaligned\@ >> 443 and rem, len, (4*NBYTES-1) # rem = len % 4*NBYTES >> 444 PREFD( 1, 3*32(dst) ) >> 445 1: >> 446 /* >> 447 * Avoid consecutive LD*'s to the same register since some mips >> 448 * implementations can't issue them in the same cycle. >> 449 * It's OK to load FIRST(N+1) before REST(N) because the two addresses >> 450 * are to the same unit (unless src is aligned, but it's not). >> 451 */ >> 452 R10KCBARRIER(0(ra)) >> 453 LDFIRST(t0, FIRST(0)(src), .Ll_exc\@) >> 454 LDFIRST(t1, FIRST(1)(src), .Ll_exc_copy\@) >> 455 SUB len, len, 4*NBYTES >> 456 LDREST(t0, REST(0)(src), .Ll_exc_copy\@) >> 457 LDREST(t1, REST(1)(src), .Ll_exc_copy\@) >> 458 LDFIRST(t2, FIRST(2)(src), .Ll_exc_copy\@) >> 459 LDFIRST(t3, FIRST(3)(src), .Ll_exc_copy\@) >> 460 LDREST(t2, REST(2)(src), .Ll_exc_copy\@) >> 461 LDREST(t3, REST(3)(src), .Ll_exc_copy\@) >> 462 PREFS( 0, 9*32(src) ) # 0 is PREF_LOAD (not streamed) >> 463 ADD src, src, 4*NBYTES >> 464 #ifdef CONFIG_CPU_SB1 >> 465 nop # improves slotting >> 466 #endif >> 467 STORE(t0, UNIT(0)(dst), .Ls_exc_p4u\@) >> 468 STORE(t1, UNIT(1)(dst), .Ls_exc_p3u\@) >> 469 STORE(t2, UNIT(2)(dst), .Ls_exc_p2u\@) >> 470 STORE(t3, UNIT(3)(dst), .Ls_exc_p1u\@) >> 471 PREFD( 1, 9*32(dst) ) # 1 is PREF_STORE (not streamed) >> 472 .set reorder /* DADDI_WAR */ >> 473 ADD dst, dst, 4*NBYTES >> 474 bne len, rem, 1b >> 475 .set noreorder >> 476 >> 477 .Lcleanup_src_unaligned\@: >> 478 beqz len, .Ldone\@ >> 479 and rem, len, NBYTES-1 # rem = len % NBYTES >> 480 beq rem, len, .Lcopy_bytes\@ >> 481 nop >> 482 1: >> 483 R10KCBARRIER(0(ra)) >> 484 LDFIRST(t0, FIRST(0)(src), .Ll_exc\@) >> 485 LDREST(t0, REST(0)(src), .Ll_exc_copy\@) >> 486 ADD src, src, NBYTES >> 487 SUB len, len, NBYTES >> 488 STORE(t0, 0(dst), .Ls_exc_p1u\@) >> 489 .set reorder /* DADDI_WAR */ >> 490 ADD dst, dst, NBYTES >> 491 bne len, rem, 1b >> 492 .set noreorder >> 493 >> 494 #endif /* !CONFIG_CPU_NO_LOAD_STORE_LR */ >> 495 .Lcopy_bytes_checklen\@: >> 496 beqz len, .Ldone\@ >> 497 nop >> 498 .Lcopy_bytes\@: >> 499 /* 0 < len < NBYTES */ >> 500 R10KCBARRIER(0(ra)) >> 501 #define COPY_BYTE(N) \ >> 502 LOADB(t0, N(src), .Ll_exc\@); \ >> 503 SUB len, len, 1; \ >> 504 beqz len, .Ldone\@; \ >> 505 STOREB(t0, N(dst), .Ls_exc_p1\@) >> 506 >> 507 COPY_BYTE(0) >> 508 COPY_BYTE(1) >> 509 #ifdef USE_DOUBLE >> 510 COPY_BYTE(2) >> 511 COPY_BYTE(3) >> 512 COPY_BYTE(4) >> 513 COPY_BYTE(5) >> 514 #endif >> 515 LOADB(t0, NBYTES-2(src), .Ll_exc\@) >> 516 SUB len, len, 1 >> 517 jr ra >> 518 STOREB(t0, NBYTES-2(dst), .Ls_exc_p1\@) >> 519 .Ldone\@: >> 520 jr ra >> 521 nop >> 522 >> 523 #ifdef CONFIG_CPU_NO_LOAD_STORE_LR >> 524 .Lcopy_unaligned_bytes\@: >> 525 1: >> 526 COPY_BYTE(0) >> 527 COPY_BYTE(1) >> 528 COPY_BYTE(2) >> 529 COPY_BYTE(3) >> 530 COPY_BYTE(4) >> 531 COPY_BYTE(5) >> 532 COPY_BYTE(6) >> 533 COPY_BYTE(7) >> 534 ADD src, src, 8 >> 535 b 1b >> 536 ADD dst, dst, 8 >> 537 #endif /* CONFIG_CPU_NO_LOAD_STORE_LR */ >> 538 .if __memcpy == 1 >> 539 END(memcpy) >> 540 .set __memcpy, 0 >> 541 .hidden __memcpy >> 542 .endif >> 543 >> 544 .Ll_exc_copy\@: >> 545 /* >> 546 * Copy bytes from src until faulting load address (or until a >> 547 * lb faults) >> 548 * >> 549 * When reached by a faulting LDFIRST/LDREST, THREAD_BUADDR($28) >> 550 * may be more than a byte beyond the last address. >> 551 * Hence, the lb below may get an exception. >> 552 * >> 553 * Assumes src < THREAD_BUADDR($28) >> 554 */ >> 555 LOADK t0, TI_TASK($28) >> 556 nop >> 557 LOADK t0, THREAD_BUADDR(t0) >> 558 1: >> 559 LOADB(t1, 0(src), .Ll_exc\@) >> 560 ADD src, src, 1 >> 561 sb t1, 0(dst) # can't fault -- we're copy_from_user >> 562 .set reorder /* DADDI_WAR */ >> 563 ADD dst, dst, 1 >> 564 bne src, t0, 1b >> 565 .set noreorder >> 566 .Ll_exc\@: >> 567 LOADK t0, TI_TASK($28) >> 568 nop >> 569 LOADK t0, THREAD_BUADDR(t0) # t0 is just past last good address >> 570 nop >> 571 SUB len, AT, t0 # len number of uncopied bytes >> 572 jr ra >> 573 nop >> 574 >> 575 #define SEXC(n) \ >> 576 .set reorder; /* DADDI_WAR */ \ >> 577 .Ls_exc_p ## n ## u\@: \ >> 578 ADD len, len, n*NBYTES; \ >> 579 jr ra; \ >> 580 .set noreorder >> 581 >> 582 SEXC(8) >> 583 SEXC(7) >> 584 SEXC(6) >> 585 SEXC(5) >> 586 SEXC(4) >> 587 SEXC(3) >> 588 SEXC(2) >> 589 SEXC(1) >> 590 >> 591 .Ls_exc_p1\@: >> 592 .set reorder /* DADDI_WAR */ >> 593 ADD len, len, 1 >> 594 jr ra >> 595 .set noreorder >> 596 .Ls_exc\@: >> 597 jr ra >> 598 nop >> 599 .endm >> 600 >> 601 #ifndef CONFIG_HAVE_PLAT_MEMCPY >> 602 .align 5 >> 603 LEAF(memmove) >> 604 EXPORT_SYMBOL(memmove) >> 605 ADD t0, a0, a2 >> 606 ADD t1, a1, a2 >> 607 sltu t0, a1, t0 # dst + len <= src -> memcpy >> 608 sltu t1, a0, t1 # dst >= src + len -> memcpy >> 609 and t0, t1 >> 610 beqz t0, .L__memcpy >> 611 move v0, a0 /* return value */ >> 612 beqz a2, .Lr_out >> 613 END(memmove) >> 614 >> 615 /* fall through to __rmemcpy */ >> 616 LEAF(__rmemcpy) /* a0=dst a1=src a2=len */ >> 617 sltu t0, a1, a0 >> 618 beqz t0, .Lr_end_bytes_up # src >= dst >> 619 nop >> 620 ADD a0, a2 # dst = dst + len >> 621 ADD a1, a2 # src = src + len >> 622 >> 623 .Lr_end_bytes: >> 624 R10KCBARRIER(0(ra)) >> 625 lb t0, -1(a1) >> 626 SUB a2, a2, 0x1 >> 627 sb t0, -1(a0) >> 628 SUB a1, a1, 0x1 >> 629 .set reorder /* DADDI_WAR */ >> 630 SUB a0, a0, 0x1 >> 631 bnez a2, .Lr_end_bytes >> 632 .set noreorder >> 633 >> 634 .Lr_out: >> 635 jr ra >> 636 move a2, zero >> 637 >> 638 .Lr_end_bytes_up: >> 639 R10KCBARRIER(0(ra)) >> 640 lb t0, (a1) >> 641 SUB a2, a2, 0x1 >> 642 sb t0, (a0) >> 643 ADD a1, a1, 0x1 >> 644 .set reorder /* DADDI_WAR */ >> 645 ADD a0, a0, 0x1 >> 646 bnez a2, .Lr_end_bytes_up >> 647 .set noreorder >> 648 >> 649 jr ra >> 650 move a2, zero >> 651 END(__rmemcpy) >> 652 >> 653 /* >> 654 * A combined memcpy/__copy_user >> 655 * __copy_user sets len to 0 for success; else to an upper bound of >> 656 * the number of uncopied bytes. >> 657 * memcpy sets v0 to dst. >> 658 */ >> 659 .align 5 >> 660 LEAF(memcpy) /* a0=dst a1=src a2=len */ >> 661 EXPORT_SYMBOL(memcpy) >> 662 move v0, dst /* return value */ >> 663 .L__memcpy: >> 664 #ifndef CONFIG_EVA >> 665 FEXPORT(__raw_copy_from_user) >> 666 EXPORT_SYMBOL(__raw_copy_from_user) >> 667 FEXPORT(__raw_copy_to_user) >> 668 EXPORT_SYMBOL(__raw_copy_to_user) >> 669 FEXPORT(__raw_copy_in_user) >> 670 EXPORT_SYMBOL(__raw_copy_in_user) >> 671 #endif >> 672 /* Legacy Mode, user <-> user */ >> 673 __BUILD_COPY_USER LEGACY_MODE USEROP USEROP >> 674 >> 675 #endif >> 676 >> 677 #ifdef CONFIG_EVA >> 678 >> 679 /* >> 680 * For EVA we need distinct symbols for reading and writing to user space. >> 681 * This is because we need to use specific EVA instructions to perform the >> 682 * virtual <-> physical translation when a virtual address is actually in user >> 683 * space >> 684 */ >> 685 >> 686 /* >> 687 * __copy_from_user (EVA) >> 688 */ >> 689 >> 690 LEAF(__raw_copy_from_user) >> 691 EXPORT_SYMBOL(__raw_copy_from_user) >> 692 __BUILD_COPY_USER EVA_MODE USEROP KERNELOP >> 693 END(__raw_copy_from_user) >> 694 >> 695 >> 696 >> 697 /* >> 698 * __copy_to_user (EVA) >> 699 */ >> 700 >> 701 LEAF(__raw_copy_to_user) >> 702 EXPORT_SYMBOL(__raw_copy_to_user) >> 703 __BUILD_COPY_USER EVA_MODE KERNELOP USEROP >> 704 END(__raw_copy_to_user) >> 705 >> 706 /* >> 707 * __copy_in_user (EVA) >> 708 */ >> 709 >> 710 LEAF(__raw_copy_in_user) >> 711 EXPORT_SYMBOL(__raw_copy_in_user) >> 712 __BUILD_COPY_USER EVA_MODE USEROP USEROP >> 713 END(__raw_copy_in_user) 8 714 9 /* void *memcpy(void *, const void *, size_t) !! 715 #endif 10 SYM_FUNC_START(__memcpy) << 11 move t6, a0 /* Preserve return value << 12 << 13 /* Defer to byte-oriented copy for sma << 14 sltiu a3, a2, 128 << 15 bnez a3, 4f << 16 /* Use word-oriented copy only if low- << 17 andi a3, t6, SZREG-1 << 18 andi a4, a1, SZREG-1 << 19 bne a3, a4, 4f << 20 << 21 beqz a3, 2f /* Skip if already aligne << 22 /* << 23 * Round to nearest double word-aligne << 24 * greater than or equal to start addr << 25 */ << 26 andi a3, a1, ~(SZREG-1) << 27 addi a3, a3, SZREG << 28 /* Handle initial misalignment */ << 29 sub a4, a3, a1 << 30 1: << 31 lb a5, 0(a1) << 32 addi a1, a1, 1 << 33 sb a5, 0(t6) << 34 addi t6, t6, 1 << 35 bltu a1, a3, 1b << 36 sub a2, a2, a4 /* Update count */ << 37 << 38 2: << 39 andi a4, a2, ~((16*SZREG)-1) << 40 beqz a4, 4f << 41 add a3, a1, a4 << 42 3: << 43 REG_L a4, 0(a1) << 44 REG_L a5, SZREG(a1) << 45 REG_L a6, 2*SZREG(a1) << 46 REG_L a7, 3*SZREG(a1) << 47 REG_L t0, 4*SZREG(a1) << 48 REG_L t1, 5*SZREG(a1) << 49 REG_L t2, 6*SZREG(a1) << 50 REG_L t3, 7*SZREG(a1) << 51 REG_L t4, 8*SZREG(a1) << 52 REG_L t5, 9*SZREG(a1) << 53 REG_S a4, 0(t6) << 54 REG_S a5, SZREG(t6) << 55 REG_S a6, 2*SZREG(t6) << 56 REG_S a7, 3*SZREG(t6) << 57 REG_S t0, 4*SZREG(t6) << 58 REG_S t1, 5*SZREG(t6) << 59 REG_S t2, 6*SZREG(t6) << 60 REG_S t3, 7*SZREG(t6) << 61 REG_S t4, 8*SZREG(t6) << 62 REG_S t5, 9*SZREG(t6) << 63 REG_L a4, 10*SZREG(a1) << 64 REG_L a5, 11*SZREG(a1) << 65 REG_L a6, 12*SZREG(a1) << 66 REG_L a7, 13*SZREG(a1) << 67 REG_L t0, 14*SZREG(a1) << 68 REG_L t1, 15*SZREG(a1) << 69 addi a1, a1, 16*SZREG << 70 REG_S a4, 10*SZREG(t6) << 71 REG_S a5, 11*SZREG(t6) << 72 REG_S a6, 12*SZREG(t6) << 73 REG_S a7, 13*SZREG(t6) << 74 REG_S t0, 14*SZREG(t6) << 75 REG_S t1, 15*SZREG(t6) << 76 addi t6, t6, 16*SZREG << 77 bltu a1, a3, 3b << 78 andi a2, a2, (16*SZREG)-1 /* Update c << 79 << 80 4: << 81 /* Handle trailing misalignment */ << 82 beqz a2, 6f << 83 add a3, a1, a2 << 84 << 85 /* Use word-oriented copy if co-aligne << 86 or a5, a1, t6 << 87 or a5, a5, a3 << 88 andi a5, a5, 3 << 89 bnez a5, 5f << 90 7: << 91 lw a4, 0(a1) << 92 addi a1, a1, 4 << 93 sw a4, 0(t6) << 94 addi t6, t6, 4 << 95 bltu a1, a3, 7b << 96 << 97 ret << 98 << 99 5: << 100 lb a4, 0(a1) << 101 addi a1, a1, 1 << 102 sb a4, 0(t6) << 103 addi t6, t6, 1 << 104 bltu a1, a3, 5b << 105 6: << 106 ret << 107 SYM_FUNC_END(__memcpy) << 108 SYM_FUNC_ALIAS_WEAK(memcpy, __memcpy) << 109 SYM_FUNC_ALIAS(__pi_memcpy, __memcpy) << 110 SYM_FUNC_ALIAS(__pi___memcpy, __memcpy) <<
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.