1 /* SPDX-License-Identifier: GPL-2.0 */ 1 2 #ifndef _SPARC64_TSB_H 3 #define _SPARC64_TSB_H 4 5 /* The sparc64 TSB is similar to the powerpc h 6 * power-of-2 sized table of TAG/PTE pairs. T 7 * pointers into this table for 8K and 64K pag 8 * comparison TAG based upon the virtual addre 9 * faults. 10 * 11 * TLB miss trap handler software does the act 12 * of the form: 13 * 14 * ldxa [%g0] ASI_{D,I}MMU_TSB 15 * ldxa [%g0] ASI_{D,I}MMU, %g 16 * sllx %g6, 22, %g6 17 * srlx %g6, 22, %g6 18 * ldda [%g1] ASI_NUCLEUS_QUAD 19 * cmp %g4, %g6 20 * bne,pn %xcc, tsb_miss_{d,i}tlb 21 * mov FAULT_CODE_{D,I}TLB, % 22 * stxa %g5, [%g0] ASI_{D,I}TL 23 * retry 24 * 25 * 26 * Each 16-byte slot of the TSB is the 8-byte 27 * PTE. The TAG is of the same layout as the 28 * register which is: 29 * 30 * ------------------------------------------- 31 * | - | CONTEXT | - | VADDR bits 63:2 32 * ------------------------------------------- 33 * 63 61 60 48 47 42 41 34 * 35 * But actually, since we use per-mm TSB's, we 36 * field. 37 * 38 * Like the powerpc hashtables we need to use 39 * synchronize while we update the entries. P 40 * as well. 41 * 42 * We need to carefully choose a lock bits for 43 * choose to use bit 47 in the tag. Also, sin 44 * at page zero in context zero, we use zero a 45 * When the lock bit is set, this forces a tag 46 */ 47 48 #define TSB_TAG_LOCK_BIT 47 49 #define TSB_TAG_LOCK_HIGH (1 << (TSB_TAG 50 51 #define TSB_TAG_INVALID_BIT 46 52 #define TSB_TAG_INVALID_HIGH (1 << (TSB_TAG 53 54 /* Some cpus support physical address quad loa 55 * those if possible so we don't need to hard- 56 * into the TLB. We encode some instruction p 57 * support this. 58 * 59 * The kernel TSB is locked into the TLB by vi 60 * kernel image, so we don't play these games 61 */ 62 #ifndef __ASSEMBLY__ 63 struct tsb_ldquad_phys_patch_entry { 64 unsigned int addr; 65 unsigned int sun4u_insn; 66 unsigned int sun4v_insn; 67 }; 68 extern struct tsb_ldquad_phys_patch_entry __ts 69 __tsb_ldquad_phys_patch_end; 70 71 struct tsb_phys_patch_entry { 72 unsigned int addr; 73 unsigned int insn; 74 }; 75 extern struct tsb_phys_patch_entry __tsb_phys_ 76 #endif 77 #define TSB_LOAD_QUAD(TSB, REG) \ 78 661: ldda [TSB] ASI_NUCLEUS_QUAD 79 .section .tsb_ldquad_phys_patch 80 .word 661b; \ 81 ldda [TSB] ASI_QUAD_LDD_PHY 82 ldda [TSB] ASI_QUAD_LDD_PHY 83 .previous 84 85 #define TSB_LOAD_TAG_HIGH(TSB, REG) \ 86 661: lduwa [TSB] ASI_N, REG; \ 87 .section .tsb_phys_patch, "ax"; 88 .word 661b; \ 89 lduwa [TSB] ASI_PHYS_USE_EC, 90 .previous 91 92 #define TSB_LOAD_TAG(TSB, REG) \ 93 661: ldxa [TSB] ASI_N, REG; \ 94 .section .tsb_phys_patch, "ax"; 95 .word 661b; \ 96 ldxa [TSB] ASI_PHYS_USE_EC, 97 .previous 98 99 #define TSB_CAS_TAG_HIGH(TSB, REG1, REG2) \ 100 661: casa [TSB] ASI_N, REG1, REG 101 .section .tsb_phys_patch, "ax"; 102 .word 661b; \ 103 casa [TSB] ASI_PHYS_USE_EC, 104 .previous 105 106 #define TSB_CAS_TAG(TSB, REG1, REG2) \ 107 661: casxa [TSB] ASI_N, REG1, REG 108 .section .tsb_phys_patch, "ax"; 109 .word 661b; \ 110 casxa [TSB] ASI_PHYS_USE_EC, 111 .previous 112 113 #define TSB_STORE(ADDR, VAL) \ 114 661: stxa VAL, [ADDR] ASI_N; \ 115 .section .tsb_phys_patch, "ax"; 116 .word 661b; \ 117 stxa VAL, [ADDR] ASI_PHYS_U 118 .previous 119 120 #define TSB_LOCK_TAG(TSB, REG1, REG2) \ 121 99: TSB_LOAD_TAG_HIGH(TSB, REG1); \ 122 sethi %hi(TSB_TAG_LOCK_HIGH), REG2;\ 123 andcc REG1, REG2, %g0; \ 124 bne,pn %icc, 99b; \ 125 nop; \ 126 TSB_CAS_TAG_HIGH(TSB, REG1, REG2); 127 cmp REG1, REG2; \ 128 bne,pn %icc, 99b; \ 129 nop; \ 130 131 #define TSB_WRITE(TSB, TTE, TAG) \ 132 add TSB, 0x8, TSB; \ 133 TSB_STORE(TSB, TTE); \ 134 sub TSB, 0x8, TSB; \ 135 TSB_STORE(TSB, TAG); 136 137 /* Do a kernel page table walk. Leave 138 * REG1. Jumps to FAIL_LABEL on early 139 * termination. VADDR will not be clo 140 * 141 * There are two masks we must apply t 142 * the virtual address into the PTE ph 143 * when dealing with huge pages. This 144 * table boundaries do not match the h 145 * hardware supports. 146 * 147 * In these cases we propagate the bit 148 * page table level where we saw the h 149 * are still within the relevant physi 150 * page size in question. So for PMD 151 * bit 23, for 8MB per PMD) we must pr 152 * 4MB huge page. For huge PUDs (whic 153 * 8GB per PUD), we have to accommodat 154 * pages. So for those we propagate b 155 */ 156 #define KERN_PGTABLE_WALK(VADDR, REG1, REG2, F 157 sethi %hi(swapper_pg_dir), R 158 or REG1, %lo(swapper_pg_d 159 sllx VADDR, 64 - (PGDIR_SHI 160 srlx REG2, 64 - PAGE_SHIFT, 161 andn REG2, 0x7, REG2; \ 162 ldx [REG1 + REG2], REG1; \ 163 brz,pn REG1, FAIL_LABEL; \ 164 sllx VADDR, 64 - (PUD_SHIFT 165 srlx REG2, 64 - PAGE_SHIFT, 166 andn REG2, 0x7, REG2; \ 167 ldxa [REG1 + REG2] ASI_PHYS 168 brz,pn REG1, FAIL_LABEL; \ 169 sethi %uhi(_PAGE_PUD_HUGE), 170 brz,pn REG1, FAIL_LABEL; \ 171 sllx REG2, 32, REG2; \ 172 andcc REG1, REG2, %g0; \ 173 sethi %hi(0xf8000000), REG2; 174 bne,pt %xcc, 697f; \ 175 sllx REG2, 1, REG2; \ 176 sllx VADDR, 64 - (PMD_SHIFT 177 srlx REG2, 64 - PAGE_SHIFT, 178 andn REG2, 0x7, REG2; \ 179 ldxa [REG1 + REG2] ASI_PHYS 180 sethi %uhi(_PAGE_PMD_HUGE), 181 brz,pn REG1, FAIL_LABEL; \ 182 sllx REG2, 32, REG2; \ 183 andcc REG1, REG2, %g0; \ 184 be,pn %xcc, 698f; \ 185 sethi %hi(0x400000), REG2; \ 186 697: brgez,pn REG1, FAIL_LABEL; \ 187 andn REG1, REG2, REG1; \ 188 and VADDR, REG2, REG2; \ 189 ba,pt %xcc, 699f; \ 190 or REG1, REG2, REG1; \ 191 698: sllx VADDR, 64 - PMD_SHIFT, 192 srlx REG2, 64 - PAGE_SHIFT, 193 andn REG2, 0x7, REG2; \ 194 ldxa [REG1 + REG2] ASI_PHYS 195 brgez,pn REG1, FAIL_LABEL; \ 196 nop; \ 197 699: 198 199 /* PUD has been loaded into REG1, inte 200 * if it is a HUGE PUD or a normal one 201 * then jump to FAIL_LABEL. If it is 202 * translates to a valid PTE, branch t 203 * 204 * We have to propagate bits [32:22] f 205 * to resolve at 4M granularity. 206 */ 207 #if defined(CONFIG_HUGETLB_PAGE) || defined(CO 208 #define USER_PGTABLE_CHECK_PUD_HUGE(VADDR, REG 209 700: ba 700f; 210 nop; 211 .section .pud_huge_patch, "ax"; 212 .word 700b; 213 nop; 214 .previous; 215 brz,pn REG1, FAIL_LABEL; 216 sethi %uhi(_PAGE_PUD_HUGE), 217 sllx REG2, 32, REG2; 218 andcc REG1, REG2, %g0; 219 be,pt %xcc, 700f; 220 sethi %hi(0xffe00000), REG2; 221 sllx REG2, 1, REG2; 222 brgez,pn REG1, FAIL_LABEL; 223 andn REG1, REG2, REG1; 224 and VADDR, REG2, REG2; 225 brlz,pt REG1, PTE_LABEL; 226 or REG1, REG2, REG1; 227 700: 228 #else 229 #define USER_PGTABLE_CHECK_PUD_HUGE(VADDR, REG 230 brz,pn REG1, FAIL_LABEL; \ 231 nop; 232 #endif 233 234 /* PMD has been loaded into REG1, inte 235 * if it is a HUGE PMD or a normal one 236 * then jump to FAIL_LABEL. If it is 237 * translates to a valid PTE, branch t 238 * 239 * We have to propagate the 4MB bit of 240 * because we are fabricating 8MB page 241 */ 242 #if defined(CONFIG_HUGETLB_PAGE) || defined(CO 243 #define USER_PGTABLE_CHECK_PMD_HUGE(VADDR, REG 244 brz,pn REG1, FAIL_LABEL; 245 sethi %uhi(_PAGE_PMD_HUGE), 246 sllx REG2, 32, REG2; 247 andcc REG1, REG2, %g0; 248 be,pt %xcc, 700f; 249 sethi %hi(4 * 1024 * 1024), 250 brgez,pn REG1, FAIL_LABEL; 251 andn REG1, REG2, REG1; 252 and VADDR, REG2, REG2; 253 brlz,pt REG1, PTE_LABEL; 254 or REG1, REG2, REG1; 255 700: 256 #else 257 #define USER_PGTABLE_CHECK_PMD_HUGE(VADDR, REG 258 brz,pn REG1, FAIL_LABEL; \ 259 nop; 260 #endif 261 262 /* Do a user page table walk in MMU gl 263 * valid, PTE value in REG1. Jumps to 264 * page table walk termination or if t 265 * 266 * Physical base of page tables is in 267 * be modified. 268 * 269 * VADDR will not be clobbered, but RE 270 */ 271 #define USER_PGTABLE_WALK_TL1(VADDR, PHYS_PGD, 272 sllx VADDR, 64 - (PGDIR_SHI 273 srlx REG2, 64 - PAGE_SHIFT, 274 andn REG2, 0x7, REG2; \ 275 ldxa [PHYS_PGD + REG2] ASI_ 276 brz,pn REG1, FAIL_LABEL; \ 277 sllx VADDR, 64 - (PUD_SHIFT 278 srlx REG2, 64 - PAGE_SHIFT, 279 andn REG2, 0x7, REG2; \ 280 ldxa [REG1 + REG2] ASI_PHYS 281 USER_PGTABLE_CHECK_PUD_HUGE(VADDR, REG 282 brz,pn REG1, FAIL_LABEL; \ 283 sllx VADDR, 64 - (PMD_SHIFT 284 srlx REG2, 64 - PAGE_SHIFT, 285 andn REG2, 0x7, REG2; \ 286 ldxa [REG1 + REG2] ASI_PHYS 287 USER_PGTABLE_CHECK_PMD_HUGE(VADDR, REG 288 sllx VADDR, 64 - PMD_SHIFT, 289 srlx REG2, 64 - PAGE_SHIFT, 290 andn REG2, 0x7, REG2; \ 291 add REG1, REG2, REG1; \ 292 ldxa [REG1] ASI_PHYS_USE_EC 293 brgez,pn REG1, FAIL_LABEL; \ 294 nop; \ 295 800: 296 297 /* Lookup a OBP mapping on VADDR in the prom_t 298 * If no entry is found, FAIL_LABEL will be br 299 * the resulting PTE value will be left in REG 300 * by this routine. 301 */ 302 #define OBP_TRANS_LOOKUP(VADDR, REG1, REG2, RE 303 sethi %hi(prom_trans), REG1; 304 or REG1, %lo(prom_trans), 305 97: ldx [REG1 + 0x00], REG2; \ 306 brz,pn REG2, FAIL_LABEL; \ 307 nop; \ 308 ldx [REG1 + 0x08], REG3; \ 309 add REG2, REG3, REG3; \ 310 cmp REG2, VADDR; \ 311 bgu,pt %xcc, 98f; \ 312 cmp VADDR, REG3; \ 313 bgeu,pt %xcc, 98f; \ 314 ldx [REG1 + 0x10], REG3; \ 315 sub VADDR, REG2, REG2; \ 316 ba,pt %xcc, 99f; \ 317 add REG3, REG2, REG1; \ 318 98: ba,pt %xcc, 97b; \ 319 add REG1, (3 * 8), REG1; \ 320 99: 321 322 /* We use a 32K TSB for the whole kern 323 * handle about 16MB of modules and vm 324 * incurring many hash conflicts. 325 */ 326 #define KERNEL_TSB_SIZE_BYTES (32 * 1024) 327 #define KERNEL_TSB_NENTRIES \ 328 (KERNEL_TSB_SIZE_BYTES / 16) 329 #define KERNEL_TSB4M_NENTRIES 4096 330 331 /* Do a kernel TSB lookup at tl>0 on V 332 * on TSB hit. REG1, REG2, REG3, and 333 * and the found TTE will be left in R 334 * be an even/odd pair of registers. 335 * 336 * VADDR and TAG will be preserved and 337 */ 338 #define KERN_TSB_LOOKUP_TL1(VADDR, TAG, REG1, 339 661: sethi %uhi(swapper_tsb), REG 340 sethi %hi(swapper_tsb), REG2 341 or REG1, %ulo(swapper_tsb 342 or REG2, %lo(swapper_tsb) 343 .section .swapper_tsb_phys_patc 344 .word 661b; \ 345 .previous; \ 346 sllx REG1, 32, REG1; \ 347 or REG1, REG2, REG1; \ 348 srlx VADDR, PAGE_SHIFT, REG 349 and REG2, (KERNEL_TSB_NENT 350 sllx REG2, 4, REG2; \ 351 add REG1, REG2, REG2; \ 352 TSB_LOAD_QUAD(REG2, REG3); \ 353 cmp REG3, TAG; \ 354 be,a,pt %xcc, OK_LABEL; \ 355 mov REG4, REG1; 356 357 #ifndef CONFIG_DEBUG_PAGEALLOC 358 /* This version uses a trick, the TAG 359 * we can make use of that for the ind 360 */ 361 #define KERN_TSB4M_LOOKUP_TL1(TAG, REG1, REG2, 362 661: sethi %uhi(swapper_4m_tsb), 363 sethi %hi(swapper_4m_tsb), R 364 or REG1, %ulo(swapper_4m_ 365 or REG2, %lo(swapper_4m_t 366 .section .swapper_4m_tsb_phys_p 367 .word 661b; \ 368 .previous; \ 369 sllx REG1, 32, REG1; \ 370 or REG1, REG2, REG1; \ 371 and TAG, (KERNEL_TSB4M_NEN 372 sllx REG2, 4, REG2; \ 373 add REG1, REG2, REG2; \ 374 TSB_LOAD_QUAD(REG2, REG3); \ 375 cmp REG3, TAG; \ 376 be,a,pt %xcc, OK_LABEL; \ 377 mov REG4, REG1; 378 #endif 379 380 #endif /* !(_SPARC64_TSB_H) */ 381
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.