~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/x86/crypto/polyval-clmulni_asm.S

Version: ~ [ linux-6.12-rc7 ] ~ [ linux-6.11.7 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.60 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.116 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.171 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.229 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.285 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.323 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.12 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

Diff markup

Differences between /arch/x86/crypto/polyval-clmulni_asm.S (Architecture ppc) and /arch/alpha/crypto/polyval-clmulni_asm.S (Architecture alpha)


  1 /* SPDX-License-Identifier: GPL-2.0 */            
  2 /*                                                
  3  * Copyright 2021 Google LLC                      
  4  */                                               
  5 /*                                                
  6  * This is an efficient implementation of POLY    
  7  * instructions. It works on 8 blocks at a tim    
  8  * keys powers h^8, ..., h^1 in the POLYVAL fi    
  9  * allows us to split finite field multiplicat    
 10  *                                                
 11  * In the first step, we consider h^i, m_i as     
 12  * than 128. We then compute p(x) = h^8m_0 + .    
 13  * is simply polynomial multiplication.           
 14  *                                                
 15  * In the second step, we compute the reductio    
 16  * modulus g(x) = x^128 + x^127 + x^126 + x^12    
 17  *                                                
 18  * This two step process is equivalent to comp    
 19  * multiplication is finite field multiplicati    
 20  * two-step process  only requires 1 finite fi    
 21  * polynomial multiplications. Further paralle    
 22  * multiplications and polynomial reductions.     
 23  */                                               
 24                                                   
 25 #include <linux/linkage.h>                        
 26 #include <asm/frame.h>                            
 27                                                   
 28 #define STRIDE_BLOCKS 8                           
 29                                                   
 30 #define GSTAR %xmm7                               
 31 #define PL %xmm8                                  
 32 #define PH %xmm9                                  
 33 #define TMP_XMM %xmm11                            
 34 #define LO %xmm12                                 
 35 #define HI %xmm13                                 
 36 #define MI %xmm14                                 
 37 #define SUM %xmm15                                
 38                                                   
 39 #define KEY_POWERS %rdi                           
 40 #define MSG %rsi                                  
 41 #define BLOCKS_LEFT %rdx                          
 42 #define ACCUMULATOR %rcx                          
 43 #define TMP %rax                                  
 44                                                   
 45 .section    .rodata.cst16.gstar, "aM", @progbi    
 46 .align 16                                         
 47                                                   
 48 .Lgstar:                                          
 49         .quad 0xc200000000000000, 0xc200000000    
 50                                                   
 51 .text                                             
 52                                                   
 53 /*                                                
 54  * Performs schoolbook1_iteration on two lists    
 55  * count pointed to by MSG and KEY_POWERS.        
 56  */                                               
 57 .macro schoolbook1 count                          
 58         .set i, 0                                 
 59         .rept (\count)                            
 60                 schoolbook1_iteration i 0         
 61                 .set i, (i +1)                    
 62         .endr                                     
 63 .endm                                             
 64                                                   
 65 /*                                                
 66  * Computes the product of two 128-bit polynom    
 67  * specified by (MSG + 16*i) and (KEY_POWERS +    
 68  * the 256-bit product into LO, MI, HI.           
 69  *                                                
 70  * Given:                                         
 71  *   X = [X_1 : X_0]                              
 72  *   Y = [Y_1 : Y_0]                              
 73  *                                                
 74  * We compute:                                    
 75  *   LO += X_0 * Y_0                              
 76  *   MI += X_0 * Y_1 + X_1 * Y_0                  
 77  *   HI += X_1 * Y_1                              
 78  *                                                
 79  * Later, the 256-bit result can be extracted     
 80  *   [HI_1 : HI_0 + MI_1 : LO_1 + MI_0 : LO_0]    
 81  * This step is done when computing the polyno    
 82  * reasons.                                       
 83  *                                                
 84  * If xor_sum == 1, then also XOR the value of    
 85  * extra multiplication of SUM and h^8.           
 86  */                                               
 87 .macro schoolbook1_iteration i xor_sum            
 88         movups (16*\i)(MSG), %xmm0                
 89         .if (\i == 0 && \xor_sum == 1)            
 90                 pxor SUM, %xmm0                   
 91         .endif                                    
 92         vpclmulqdq $0x01, (16*\i)(KEY_POWERS),    
 93         vpclmulqdq $0x00, (16*\i)(KEY_POWERS),    
 94         vpclmulqdq $0x10, (16*\i)(KEY_POWERS),    
 95         vpclmulqdq $0x11, (16*\i)(KEY_POWERS),    
 96         vpxor %xmm2, MI, MI                       
 97         vpxor %xmm1, LO, LO                       
 98         vpxor %xmm4, HI, HI                       
 99         vpxor %xmm3, MI, MI                       
100 .endm                                             
101                                                   
102 /*                                                
103  * Performs the same computation as schoolbook    
104  * arguments to already be loaded into xmm0 an    
105  * registers LO, MI, and HI directly rather th    
106  */                                               
107 .macro schoolbook1_noload                         
108         vpclmulqdq $0x01, %xmm0, %xmm1, MI        
109         vpclmulqdq $0x10, %xmm0, %xmm1, %xmm2     
110         vpclmulqdq $0x00, %xmm0, %xmm1, LO        
111         vpclmulqdq $0x11, %xmm0, %xmm1, HI        
112         vpxor %xmm2, MI, MI                       
113 .endm                                             
114                                                   
115 /*                                                
116  * Computes the 256-bit polynomial represented    
117  * the result in PL, PH.                          
118  *   [PH : PL] = [HI_1 : HI_0 + MI_1 : LO_1 +     
119  */                                               
120 .macro schoolbook2                                
121         vpslldq $8, MI, PL                        
122         vpsrldq $8, MI, PH                        
123         pxor LO, PL                               
124         pxor HI, PH                               
125 .endm                                             
126                                                   
127 /*                                                
128  * Computes the 128-bit reduction of PH : PL.     
129  *                                                
130  * This macro computes p(x) mod g(x) where p(x    
131  * x^128 + x^127 + x^126 + x^121 + 1.             
132  *                                                
133  * We have a 256-bit polynomial PH : PL = P_3     
134  * product of two 128-bit polynomials in Montg    
135  * mod g(x).  Also, since polynomials in Montg    
136  * of x^128, this product has two extra factor    
137  * Montgomery form, we need to remove one of t    
138  *                                                
139  * To accomplish both of these goals, we add m    
140  * the low 128 bits P_1 : P_0, leaving just th    
141  * bits are zero, the polynomial division by x    
142  *                                                
143  * Since the only nonzero term in the low 64 b    
144  * the multiple of g(x) needed to cancel out P    
145  * only do 64x64 bit multiplications, so split    
146  * x^64 * g*(x) * P_0 + P_0, where g*(x) is bi    
147  * the original polynomial gives P_3 : P_2 + P    
148  * = T_1 : T_0 = g*(x) * P_0.  Thus, bits 0-63    
149  *                                                
150  * Repeating this same process on the next 64     
151  * 128-255, giving the answer in bits 128-255.    
152  * + T_0 in bits 64-127. The multiple of g(x)     
153  * x^64. Adding this to our previous computati    
154  * P_2 + P_0 + T_1 + V_0 : 0 : 0, where V = V_    
155  *                                                
156  * So our final computation is:                   
157  *   T = T_1 : T_0 = g*(x) * P_0                  
158  *   V = V_1 : V_0 = g*(x) * (P_1 + T_0)          
159  *   p(x) / x^{128} mod g(x) = P_3 + P_1 + T_0    
160  *                                                
161  * The implementation below saves a XOR instru    
162  * + T_1 and XORing into dest, rather than sep    
163  * T_1 into dest.  This allows us to reuse P_1    
164  */                                               
165 .macro montgomery_reduction dest                  
166         vpclmulqdq $0x00, PL, GSTAR, TMP_XMM      
167         pshufd $0b01001110, TMP_XMM, TMP_XMM      
168         pxor PL, TMP_XMM                          
169         pxor TMP_XMM, PH                          
170         pclmulqdq $0x11, GSTAR, TMP_XMM           
171         vpxor TMP_XMM, PH, \dest                  
172 .endm                                             
173                                                   
174 /*                                                
175  * Compute schoolbook multiplication for 8 blo    
176  * m_0h^8 + ... + m_7h^1                          
177  *                                                
178  * If reduce is set, also computes the montgom    
179  * previous full_stride call and XORs with the    
180  * (m_0 + REDUCE(PL, PH))h^8 + ... + m_7h^1.      
181  * I.e., the first multiplication uses m_0 + R    
182  */                                               
183 .macro full_stride reduce                         
184         pxor LO, LO                               
185         pxor HI, HI                               
186         pxor MI, MI                               
187                                                   
188         schoolbook1_iteration 7 0                 
189         .if \reduce                               
190                 vpclmulqdq $0x00, PL, GSTAR, T    
191         .endif                                    
192                                                   
193         schoolbook1_iteration 6 0                 
194         .if \reduce                               
195                 pshufd $0b01001110, TMP_XMM, T    
196         .endif                                    
197                                                   
198         schoolbook1_iteration 5 0                 
199         .if \reduce                               
200                 pxor PL, TMP_XMM                  
201         .endif                                    
202                                                   
203         schoolbook1_iteration 4 0                 
204         .if \reduce                               
205                 pxor TMP_XMM, PH                  
206         .endif                                    
207                                                   
208         schoolbook1_iteration 3 0                 
209         .if \reduce                               
210                 pclmulqdq $0x11, GSTAR, TMP_XM    
211         .endif                                    
212                                                   
213         schoolbook1_iteration 2 0                 
214         .if \reduce                               
215                 vpxor TMP_XMM, PH, SUM            
216         .endif                                    
217                                                   
218         schoolbook1_iteration 1 0                 
219                                                   
220         schoolbook1_iteration 0 1                 
221                                                   
222         addq $(8*16), MSG                         
223         schoolbook2                               
224 .endm                                             
225                                                   
226 /*                                                
227  * Process BLOCKS_LEFT blocks, where 0 < BLOCK    
228  */                                               
229 .macro partial_stride                             
230         mov BLOCKS_LEFT, TMP                      
231         shlq $4, TMP                              
232         addq $(16*STRIDE_BLOCKS), KEY_POWERS      
233         subq TMP, KEY_POWERS                      
234                                                   
235         movups (MSG), %xmm0                       
236         pxor SUM, %xmm0                           
237         movaps (KEY_POWERS), %xmm1                
238         schoolbook1_noload                        
239         dec BLOCKS_LEFT                           
240         addq $16, MSG                             
241         addq $16, KEY_POWERS                      
242                                                   
243         test $4, BLOCKS_LEFT                      
244         jz .Lpartial4BlocksDone                   
245         schoolbook1 4                             
246         addq $(4*16), MSG                         
247         addq $(4*16), KEY_POWERS                  
248 .Lpartial4BlocksDone:                             
249         test $2, BLOCKS_LEFT                      
250         jz .Lpartial2BlocksDone                   
251         schoolbook1 2                             
252         addq $(2*16), MSG                         
253         addq $(2*16), KEY_POWERS                  
254 .Lpartial2BlocksDone:                             
255         test $1, BLOCKS_LEFT                      
256         jz .LpartialDone                          
257         schoolbook1 1                             
258 .LpartialDone:                                    
259         schoolbook2                               
260         montgomery_reduction SUM                  
261 .endm                                             
262                                                   
263 /*                                                
264  * Perform montgomery multiplication in GF(2^1    
265  *                                                
266  * Computes op1*op2*x^{-128} mod x^128 + x^127    
267  * If op1, op2 are in montgomery form, this co    
268  * form of op1*op2.                               
269  *                                                
270  * void clmul_polyval_mul(u8 *op1, const u8 *o    
271  */                                               
272 SYM_FUNC_START(clmul_polyval_mul)                 
273         FRAME_BEGIN                               
274         vmovdqa .Lgstar(%rip), GSTAR              
275         movups (%rdi), %xmm0                      
276         movups (%rsi), %xmm1                      
277         schoolbook1_noload                        
278         schoolbook2                               
279         montgomery_reduction SUM                  
280         movups SUM, (%rdi)                        
281         FRAME_END                                 
282         RET                                       
283 SYM_FUNC_END(clmul_polyval_mul)                   
284                                                   
285 /*                                                
286  * Perform polynomial evaluation as specified     
287  *      h^n * accumulator + h^n * m_0 + ... +     
288  * where n=nblocks, h is the hash key, and m_i    
289  *                                                
290  * rdi - pointer to precomputed key powers h^8    
291  * rsi - pointer to message blocks                
292  * rdx - number of blocks to hash                 
293  * rcx - pointer to the accumulator               
294  *                                                
295  * void clmul_polyval_update(const struct poly    
296  *      const u8 *in, size_t nblocks, u8 *accu    
297  */                                               
298 SYM_FUNC_START(clmul_polyval_update)              
299         FRAME_BEGIN                               
300         vmovdqa .Lgstar(%rip), GSTAR              
301         movups (ACCUMULATOR), SUM                 
302         subq $STRIDE_BLOCKS, BLOCKS_LEFT          
303         js .LstrideLoopExit                       
304         full_stride 0                             
305         subq $STRIDE_BLOCKS, BLOCKS_LEFT          
306         js .LstrideLoopExitReduce                 
307 .LstrideLoop:                                     
308         full_stride 1                             
309         subq $STRIDE_BLOCKS, BLOCKS_LEFT          
310         jns .LstrideLoop                          
311 .LstrideLoopExitReduce:                           
312         montgomery_reduction SUM                  
313 .LstrideLoopExit:                                 
314         add $STRIDE_BLOCKS, BLOCKS_LEFT           
315         jz .LskipPartial                          
316         partial_stride                            
317 .LskipPartial:                                    
318         movups SUM, (ACCUMULATOR)                 
319         FRAME_END                                 
320         RET                                       
321 SYM_FUNC_END(clmul_polyval_update)                
                                                      

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php