1 ############################################## 2 # Implement fast SHA-512 with AVX2 instruction 3 # 4 # Copyright (C) 2013 Intel Corporation. 5 # 6 # Authors: 7 # James Guilford <james.guilford@intel.com> 8 # Kirk Yap <kirk.s.yap@intel.com> 9 # David Cote <david.m.cote@intel.com> 10 # Tim Chen <tim.c.chen@linux.intel.com> 11 # 12 # This software is available to you under a ch 13 # licenses. You may choose to be licensed und 14 # General Public License (GPL) Version 2, avai 15 # COPYING in the main directory of this source 16 # OpenIB.org BSD license below: 17 # 18 # Redistribution and use in source and bin 19 # without modification, are permitted prov 20 # conditions are met: 21 # 22 # - Redistributions of source code must r 23 # copyright notice, this list of condit 24 # disclaimer. 25 # 26 # - Redistributions in binary form must r 27 # copyright notice, this list of condit 28 # disclaimer in the documentation and/o 29 # provided with the distribution. 30 # 31 # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WA 32 # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITE 33 # MERCHANTABILITY, FITNESS FOR A PARTICULAR PU 34 # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHO 35 # BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LI 36 # ACTION OF CONTRACT, TORT OR OTHERWISE, ARISI 37 # CONNECTION WITH THE SOFTWARE OR THE USE OR O 38 # SOFTWARE. 39 # 40 ############################################## 41 # 42 # This code is described in an Intel White-Pap 43 # "Fast SHA-512 Implementations on Intel Archi 44 # 45 # To find it, surf to http://www.intel.com/p/e 46 # and search for that title. 47 # 48 ############################################## 49 # This code schedules 1 blocks at a time, with 50 ############################################## 51 52 #include <linux/linkage.h> 53 #include <linux/cfi_types.h> 54 55 .text 56 57 # Virtual Registers 58 Y_0 = %ymm4 59 Y_1 = %ymm5 60 Y_2 = %ymm6 61 Y_3 = %ymm7 62 63 YTMP0 = %ymm0 64 YTMP1 = %ymm1 65 YTMP2 = %ymm2 66 YTMP3 = %ymm3 67 YTMP4 = %ymm8 68 XFER = YTMP0 69 70 BYTE_FLIP_MASK = %ymm9 71 72 # 1st arg is %rdi, which is saved to the stack 73 CTX1 = %rdi 74 CTX2 = %r12 75 # 2nd arg 76 INP = %rsi 77 # 3rd arg 78 NUM_BLKS = %rdx 79 80 c = %rcx 81 d = %r8 82 e = %rdx 83 y3 = %rsi 84 85 TBL = %rdi # clobbers CTX1 86 87 a = %rax 88 b = %rbx 89 90 f = %r9 91 g = %r10 92 h = %r11 93 old_h = %r11 94 95 T1 = %r12 # clobbers CTX2 96 y0 = %r13 97 y1 = %r14 98 y2 = %r15 99 100 # Local variables (stack frame) 101 XFER_SIZE = 4*8 102 SRND_SIZE = 1*8 103 INP_SIZE = 1*8 104 INPEND_SIZE = 1*8 105 CTX_SIZE = 1*8 106 107 frame_XFER = 0 108 frame_SRND = frame_XFER + XFER_SIZE 109 frame_INP = frame_SRND + SRND_SIZE 110 frame_INPEND = frame_INP + INP_SIZE 111 frame_CTX = frame_INPEND + INPEND_SIZE 112 frame_size = frame_CTX + CTX_SIZE 113 114 ## assume buffers not aligned 115 #define VMOVDQ vmovdqu 116 117 # addm [mem], reg 118 # Add reg to mem using reg-mem add and store 119 .macro addm p1 p2 120 add \p1, \p2 121 mov \p2, \p1 122 .endm 123 124 125 # COPY_YMM_AND_BSWAP ymm, [mem], byte_flip_mas 126 # Load ymm with mem and byte swap each dword 127 .macro COPY_YMM_AND_BSWAP p1 p2 p3 128 VMOVDQ \p2, \p1 129 vpshufb \p3, \p1, \p1 130 .endm 131 # rotate_Ys 132 # Rotate values of symbols Y0...Y3 133 .macro rotate_Ys 134 Y_ = Y_0 135 Y_0 = Y_1 136 Y_1 = Y_2 137 Y_2 = Y_3 138 Y_3 = Y_ 139 .endm 140 141 # RotateState 142 .macro RotateState 143 # Rotate symbols a..h right 144 old_h = h 145 TMP_ = h 146 h = g 147 g = f 148 f = e 149 e = d 150 d = c 151 c = b 152 b = a 153 a = TMP_ 154 .endm 155 156 # macro MY_VPALIGNR YDST, YSRC1, YSRC2, RV 157 # YDST = {YSRC1, YSRC2} >> RVAL*8 158 .macro MY_VPALIGNR YDST YSRC1 YSRC2 RVAL 159 vperm2f128 $0x3, \YSRC2, \YSRC1, 160 vpalignr $\RVAL, \YSRC2, \YDST, 161 .endm 162 163 .macro FOUR_ROUNDS_AND_SCHED 164 ################################### RND N + 0 165 166 # Extract w[t-7] 167 MY_VPALIGNR YTMP0, Y_3, Y_2, 8 168 # Calculate w[t-16] + w[t-7] 169 vpaddq Y_0, YTMP0, YTMP0 170 # Extract w[t-15] 171 MY_VPALIGNR YTMP1, Y_1, Y_0, 8 172 173 # Calculate sigma0 174 175 # Calculate w[t-15] ror 1 176 vpsrlq $1, YTMP1, YTMP2 177 vpsllq $(64-1), YTMP1, YTMP3 178 vpor YTMP2, YTMP3, YTMP3 179 # Calculate w[t-15] shr 7 180 vpsrlq $7, YTMP1, YTMP4 181 182 mov a, y3 # y3 = a 183 rorx $41, e, y0 # y0 = e >> 41 184 rorx $18, e, y1 # y1 = e >> 18 185 add frame_XFER(%rsp),h 186 or c, y3 # y3 = a|c 187 mov f, y2 # y2 = f 188 rorx $34, a, T1 # T1 = a >> 34 189 190 xor y1, y0 # y0 = (e>>41) 191 xor g, y2 # y2 = f^g 192 rorx $14, e, y1 # y1 = (e >> 1 193 194 and e, y2 # y2 = (f^g)&e 195 xor y1, y0 # y0 = (e>>41) 196 rorx $39, a, y1 # y1 = a >> 39 197 add h, d # d = k + w + 198 199 and b, y3 # y3 = (a|c)&b 200 xor T1, y1 # y1 = (a>>39) 201 rorx $28, a, T1 # T1 = (a >> 2 202 203 xor g, y2 # y2 = CH = (( 204 xor T1, y1 # y1 = (a>>39) 205 mov a, T1 # T1 = a 206 and c, T1 # T1 = a&c 207 208 add y0, y2 # y2 = S1 + CH 209 or T1, y3 # y3 = MAJ = ( 210 add y1, h # h = k + w + 211 212 add y2, d # d = k + w + 213 214 add y2, h # h = k + w + 215 add y3, h # h = t1 + S0 216 217 RotateState 218 219 ################################### RND N + 1 220 221 # Calculate w[t-15] ror 8 222 vpsrlq $8, YTMP1, YTMP2 223 vpsllq $(64-8), YTMP1, YTMP1 224 vpor YTMP2, YTMP1, YTMP1 225 # XOR the three components 226 vpxor YTMP4, YTMP3, YTMP3 227 vpxor YTMP1, YTMP3, YTMP1 228 229 230 # Add three components, w[t-16], w[t-7 231 vpaddq YTMP1, YTMP0, YTMP0 232 # Move to appropriate lanes for calcul 233 vperm2f128 $0x0, YTMP0, YTMP0, Y_ 234 # Move to appropriate lanes for calcul 235 vpand MASK_YMM_LO(%rip), YTM 236 237 # Calculate w[16] and w[17] in both 12 238 239 # Calculate sigma1 for w[16] and w[17] 240 vperm2f128 $0x11, Y_3, Y_3, YTMP2 241 vpsrlq $6, YTMP2, YTMP4 242 243 244 mov a, y3 # y3 = a 245 rorx $41, e, y0 # y0 = e >> 41 246 rorx $18, e, y1 # y1 = e >> 18 247 add 1*8+frame_XFER(%rsp), h 248 or c, y3 # y3 = a|c 249 250 251 mov f, y2 # y2 = f 252 rorx $34, a, T1 # T1 = a >> 34 253 xor y1, y0 # y0 = (e>>41) 254 xor g, y2 # y2 = f^g 255 256 257 rorx $14, e, y1 # y1 = (e >> 1 258 xor y1, y0 # y0 = (e>>41) 259 rorx $39, a, y1 # y1 = a >> 39 260 and e, y2 # y2 = (f^g)&e 261 add h, d # d = k + w + 262 263 and b, y3 # y3 = (a|c)&b 264 xor T1, y1 # y1 = (a>>39) 265 266 rorx $28, a, T1 # T1 = (a >> 2 267 xor g, y2 # y2 = CH = (( 268 269 xor T1, y1 # y1 = (a>>39) 270 mov a, T1 # T1 = a 271 and c, T1 # T1 = a&c 272 add y0, y2 # y2 = S1 + CH 273 274 or T1, y3 # y3 = MAJ = ( 275 add y1, h # h = k + w + 276 277 add y2, d # d = k + w + 278 add y2, h # h = k + w + 279 add y3, h # h = t1 + S0 280 281 RotateState 282 283 284 ################################### RND N + 2 285 286 vpsrlq $19, YTMP2, YTMP3 287 vpsllq $(64-19), YTMP2, YTMP1 288 vpor YTMP1, YTMP3, YTMP3 289 vpxor YTMP3, YTMP4, YTMP4 290 vpsrlq $61, YTMP2, YTMP3 291 vpsllq $(64-61), YTMP2, YTMP1 292 vpor YTMP1, YTMP3, YTMP3 293 vpxor YTMP3, YTMP4, YTMP4 294 295 296 # Add sigma1 to the other compunents t 297 vpaddq YTMP4, Y_0, Y_0 298 299 # Calculate sigma1 for w[18] and w[19] 300 vpsrlq $6, Y_0, YTMP4 301 302 mov a, y3 # y3 = a 303 rorx $41, e, y0 # y0 = e >> 41 304 add 2*8+frame_XFER(%rsp), h 305 306 rorx $18, e, y1 # y1 = e >> 18 307 or c, y3 # y3 = a|c 308 mov f, y2 # y2 = f 309 xor g, y2 # y2 = f^g 310 311 rorx $34, a, T1 # T1 = a >> 34 312 xor y1, y0 # y0 = (e>>41) 313 and e, y2 # y2 = (f^g)&e 314 315 rorx $14, e, y1 # y1 = (e >> 1 316 add h, d # d = k + w + 317 and b, y3 # y3 = (a|c)&b 318 319 xor y1, y0 # y0 = (e>>41) 320 rorx $39, a, y1 # y1 = a >> 39 321 xor g, y2 # y2 = CH = (( 322 323 xor T1, y1 # y1 = (a>>39) 324 rorx $28, a, T1 # T1 = (a >> 2 325 326 xor T1, y1 # y1 = (a>>39) 327 mov a, T1 # T1 = a 328 and c, T1 # T1 = a&c 329 add y0, y2 # y2 = S1 + CH 330 331 or T1, y3 # y3 = MAJ = ( 332 add y1, h # h = k + w + 333 add y2, d # d = k + w + 334 add y2, h # h = k + w + 335 336 add y3, h # h = t1 + S0 337 338 RotateState 339 340 ################################### RND N + 3 341 342 vpsrlq $19, Y_0, YTMP3 343 vpsllq $(64-19), Y_0, YTMP1 344 vpor YTMP1, YTMP3, YTMP3 345 vpxor YTMP3, YTMP4, YTMP4 346 vpsrlq $61, Y_0, YTMP3 347 vpsllq $(64-61), Y_0, YTMP1 348 vpor YTMP1, YTMP3, YTMP3 349 vpxor YTMP3, YTMP4, YTMP4 350 351 352 # Add the sigma0 + w[t-7] + w[t-16] fo 353 # to newly calculated sigma1 to get w[ 354 vpaddq YTMP4, YTMP0, YTMP2 355 356 # Form w[19, w[18], w17], w[16] 357 vpblendd $0xF0, YTMP2, 358 359 mov a, y3 # y3 = a 360 rorx $41, e, y0 # y0 = e >> 41 361 rorx $18, e, y1 # y1 = e >> 18 362 add 3*8+frame_XFER(%rsp), h 363 or c, y3 # y3 = a|c 364 365 366 mov f, y2 # y2 = f 367 rorx $34, a, T1 # T1 = a >> 34 368 xor y1, y0 # y0 = (e>>41) 369 xor g, y2 # y2 = f^g 370 371 372 rorx $14, e, y1 # y1 = (e >> 1 373 and e, y2 # y2 = (f^g)&e 374 add h, d # d = k + w + 375 and b, y3 # y3 = (a|c)&b 376 377 xor y1, y0 # y0 = (e>>41) 378 xor g, y2 # y2 = CH = (( 379 380 rorx $39, a, y1 # y1 = a >> 39 381 add y0, y2 # y2 = S1 + CH 382 383 xor T1, y1 # y1 = (a>>39) 384 add y2, d # d = k + w + 385 386 rorx $28, a, T1 # T1 = (a >> 2 387 388 xor T1, y1 # y1 = (a>>39) 389 mov a, T1 # T1 = a 390 and c, T1 # T1 = a&c 391 or T1, y3 # y3 = MAJ = ( 392 393 add y1, h # h = k + w + 394 add y2, h # h = k + w + 395 add y3, h # h = t1 + S0 396 397 RotateState 398 399 rotate_Ys 400 .endm 401 402 .macro DO_4ROUNDS 403 404 ################################### RND N + 0 405 406 mov f, y2 # y2 = f 407 rorx $41, e, y0 # y0 = e >> 41 408 rorx $18, e, y1 # y1 = e >> 18 409 xor g, y2 # y2 = f^g 410 411 xor y1, y0 # y0 = (e>>41) 412 rorx $14, e, y1 # y1 = (e >> 1 413 and e, y2 # y2 = (f^g)&e 414 415 xor y1, y0 # y0 = (e>>41) 416 rorx $34, a, T1 # T1 = a >> 34 417 xor g, y2 # y2 = CH = (( 418 rorx $39, a, y1 # y1 = a >> 39 419 mov a, y3 # y3 = a 420 421 xor T1, y1 # y1 = (a>>39) 422 rorx $28, a, T1 # T1 = (a >> 2 423 add frame_XFER(%rsp), h 424 or c, y3 # y3 = a|c 425 426 xor T1, y1 # y1 = (a>>39) 427 mov a, T1 # T1 = a 428 and b, y3 # y3 = (a|c)&b 429 and c, T1 # T1 = a&c 430 add y0, y2 # y2 = S1 + CH 431 432 add h, d # d = k + w + 433 or T1, y3 # y3 = MAJ = ( 434 add y1, h # h = k + w + 435 436 add y2, d # d = k + w + 437 438 RotateState 439 440 ################################### RND N + 1 441 442 add y2, old_h # h = k + w + 443 mov f, y2 # y2 = f 444 rorx $41, e, y0 # y0 = e >> 41 445 rorx $18, e, y1 # y1 = e >> 18 446 xor g, y2 # y2 = f^g 447 448 xor y1, y0 # y0 = (e>>41) 449 rorx $14, e, y1 # y1 = (e >> 1 450 and e, y2 # y2 = (f^g)&e 451 add y3, old_h # h = t1 + S0 452 453 xor y1, y0 # y0 = (e>>41) 454 rorx $34, a, T1 # T1 = a >> 34 455 xor g, y2 # y2 = CH = (( 456 rorx $39, a, y1 # y1 = a >> 39 457 mov a, y3 # y3 = a 458 459 xor T1, y1 # y1 = (a>>39) 460 rorx $28, a, T1 # T1 = (a >> 2 461 add 8*1+frame_XFER(%rsp), h 462 or c, y3 # y3 = a|c 463 464 xor T1, y1 # y1 = (a>>39) 465 mov a, T1 # T1 = a 466 and b, y3 # y3 = (a|c)&b 467 and c, T1 # T1 = a&c 468 add y0, y2 # y2 = S1 + CH 469 470 add h, d # d = k + w + 471 or T1, y3 # y3 = MAJ = ( 472 add y1, h # h = k + w + 473 474 add y2, d # d = k + w + 475 476 RotateState 477 478 ################################### RND N + 2 479 480 add y2, old_h # h = k + w + 481 mov f, y2 # y2 = f 482 rorx $41, e, y0 # y0 = e >> 41 483 rorx $18, e, y1 # y1 = e >> 18 484 xor g, y2 # y2 = f^g 485 486 xor y1, y0 # y0 = (e>>41) 487 rorx $14, e, y1 # y1 = (e >> 1 488 and e, y2 # y2 = (f^g)&e 489 add y3, old_h # h = t1 + S0 490 491 xor y1, y0 # y0 = (e>>41) 492 rorx $34, a, T1 # T1 = a >> 34 493 xor g, y2 # y2 = CH = (( 494 rorx $39, a, y1 # y1 = a >> 39 495 mov a, y3 # y3 = a 496 497 xor T1, y1 # y1 = (a>>39) 498 rorx $28, a, T1 # T1 = (a >> 2 499 add 8*2+frame_XFER(%rsp), h 500 or c, y3 # y3 = a|c 501 502 xor T1, y1 # y1 = (a>>39) 503 mov a, T1 # T1 = a 504 and b, y3 # y3 = (a|c)&b 505 and c, T1 # T1 = a&c 506 add y0, y2 # y2 = S1 + CH 507 508 add h, d # d = k + w + 509 or T1, y3 # y3 = MAJ = ( 510 add y1, h # h = k + w + 511 512 add y2, d # d = k + w + 513 514 RotateState 515 516 ################################### RND N + 3 517 518 add y2, old_h # h = k + w + 519 mov f, y2 # y2 = f 520 rorx $41, e, y0 # y0 = e >> 41 521 rorx $18, e, y1 # y1 = e >> 18 522 xor g, y2 # y2 = f^g 523 524 xor y1, y0 # y0 = (e>>41) 525 rorx $14, e, y1 # y1 = (e >> 1 526 and e, y2 # y2 = (f^g)&e 527 add y3, old_h # h = t1 + S0 528 529 xor y1, y0 # y0 = (e>>41) 530 rorx $34, a, T1 # T1 = a >> 34 531 xor g, y2 # y2 = CH = (( 532 rorx $39, a, y1 # y1 = a >> 39 533 mov a, y3 # y3 = a 534 535 xor T1, y1 # y1 = (a>>39) 536 rorx $28, a, T1 # T1 = (a >> 2 537 add 8*3+frame_XFER(%rsp), h 538 or c, y3 # y3 = a|c 539 540 xor T1, y1 # y1 = (a>>39) 541 mov a, T1 # T1 = a 542 and b, y3 # y3 = (a|c)&b 543 and c, T1 # T1 = a&c 544 add y0, y2 # y2 = S1 + CH 545 546 547 add h, d # d = k + w + 548 or T1, y3 # y3 = MAJ = ( 549 add y1, h # h = k + w + 550 551 add y2, d # d = k + w + 552 553 add y2, h # h = k + w + 554 555 add y3, h # h = t1 + S0 556 557 RotateState 558 559 .endm 560 561 ############################################## 562 # void sha512_transform_rorx(sha512_state *sta 563 # Purpose: Updates the SHA512 digest stored at 564 # stored in "data". 565 # The size of the message pointed to by "data" 566 # of SHA512 message blocks. 567 # "blocks" is the message length in SHA512 blo 568 ############################################## 569 SYM_TYPED_FUNC_START(sha512_transform_rorx) 570 # Save GPRs 571 push %rbx 572 push %r12 573 push %r13 574 push %r14 575 push %r15 576 577 # Allocate Stack Space 578 push %rbp 579 mov %rsp, %rbp 580 sub $frame_size, %rsp 581 and $~(0x20 - 1), %rsp 582 583 shl $7, NUM_BLKS # convert to b 584 jz .Ldone_hash 585 add INP, NUM_BLKS # pointer to e 586 mov NUM_BLKS, frame_INPEND(%rsp) 587 588 ## load initial digest 589 mov 8*0(CTX1), a 590 mov 8*1(CTX1), b 591 mov 8*2(CTX1), c 592 mov 8*3(CTX1), d 593 mov 8*4(CTX1), e 594 mov 8*5(CTX1), f 595 mov 8*6(CTX1), g 596 mov 8*7(CTX1), h 597 598 # save %rdi (CTX) before it gets clobb 599 mov %rdi, frame_CTX(%rsp) 600 601 vmovdqa PSHUFFLE_BYTE_FLIP_MASK(%rip), 602 603 .Lloop0: 604 lea K512(%rip), TBL 605 606 ## byte swap first 16 dwords 607 COPY_YMM_AND_BSWAP Y_0, (INP), BY 608 COPY_YMM_AND_BSWAP Y_1, 1*32(INP) 609 COPY_YMM_AND_BSWAP Y_2, 2*32(INP) 610 COPY_YMM_AND_BSWAP Y_3, 3*32(INP) 611 612 mov INP, frame_INP(%rsp) 613 614 ## schedule 64 input dwords, by doing 615 movq $4, frame_SRND(%rsp) 616 617 .align 16 618 .Lloop1: 619 vpaddq (TBL), Y_0, XFER 620 vmovdqa XFER, frame_XFER(%rsp) 621 FOUR_ROUNDS_AND_SCHED 622 623 vpaddq 1*32(TBL), Y_0, XFER 624 vmovdqa XFER, frame_XFER(%rsp) 625 FOUR_ROUNDS_AND_SCHED 626 627 vpaddq 2*32(TBL), Y_0, XFER 628 vmovdqa XFER, frame_XFER(%rsp) 629 FOUR_ROUNDS_AND_SCHED 630 631 vpaddq 3*32(TBL), Y_0, XFER 632 vmovdqa XFER, frame_XFER(%rsp) 633 add $(4*32), TBL 634 FOUR_ROUNDS_AND_SCHED 635 636 subq $1, frame_SRND(%rsp) 637 jne .Lloop1 638 639 movq $2, frame_SRND(%rsp) 640 .Lloop2: 641 vpaddq (TBL), Y_0, XFER 642 vmovdqa XFER, frame_XFER(%rsp) 643 DO_4ROUNDS 644 vpaddq 1*32(TBL), Y_1, XFER 645 vmovdqa XFER, frame_XFER(%rsp) 646 add $(2*32), TBL 647 DO_4ROUNDS 648 649 vmovdqa Y_2, Y_0 650 vmovdqa Y_3, Y_1 651 652 subq $1, frame_SRND(%rsp) 653 jne .Lloop2 654 655 mov frame_CTX(%rsp), CTX2 656 addm 8*0(CTX2), a 657 addm 8*1(CTX2), b 658 addm 8*2(CTX2), c 659 addm 8*3(CTX2), d 660 addm 8*4(CTX2), e 661 addm 8*5(CTX2), f 662 addm 8*6(CTX2), g 663 addm 8*7(CTX2), h 664 665 mov frame_INP(%rsp), INP 666 add $128, INP 667 cmp frame_INPEND(%rsp), INP 668 jne .Lloop0 669 670 .Ldone_hash: 671 672 # Restore Stack Pointer 673 mov %rbp, %rsp 674 pop %rbp 675 676 # Restore GPRs 677 pop %r15 678 pop %r14 679 pop %r13 680 pop %r12 681 pop %rbx 682 683 vzeroupper 684 RET 685 SYM_FUNC_END(sha512_transform_rorx) 686 687 ############################################## 688 ### Binary Data 689 690 691 # Mergeable 640-byte rodata section. This allo 692 # with other, exactly the same 640-byte fragme 693 # (if such section exists). 694 .section .rodata.cst640.K512, "aM", @pr 695 .align 64 696 # K[t] used in SHA512 hashing 697 K512: 698 .quad 0x428a2f98d728ae22,0x713744912 699 .quad 0xb5c0fbcfec4d3b2f,0xe9b5dba58 700 .quad 0x3956c25bf348b538,0x59f111f1b 701 .quad 0x923f82a4af194f9b,0xab1c5ed5d 702 .quad 0xd807aa98a3030242,0x12835b014 703 .quad 0x243185be4ee4b28c,0x550c7dc3d 704 .quad 0x72be5d74f27b896f,0x80deb1fe3 705 .quad 0x9bdc06a725c71235,0xc19bf174c 706 .quad 0xe49b69c19ef14ad2,0xefbe47863 707 .quad 0x0fc19dc68b8cd5b5,0x240ca1cc7 708 .quad 0x2de92c6f592b0275,0x4a7484aa6 709 .quad 0x5cb0a9dcbd41fbd4,0x76f988da8 710 .quad 0x983e5152ee66dfab,0xa831c66d2 711 .quad 0xb00327c898fb213f,0xbf597fc7b 712 .quad 0xc6e00bf33da88fc2,0xd5a791479 713 .quad 0x06ca6351e003826f,0x142929670 714 .quad 0x27b70a8546d22ffc,0x2e1b21385 715 .quad 0x4d2c6dfc5ac42aed,0x53380d139 716 .quad 0x650a73548baf63de,0x766a0abb3 717 .quad 0x81c2c92e47edaee6,0x92722c851 718 .quad 0xa2bfe8a14cf10364,0xa81a664bb 719 .quad 0xc24b8b70d0f89791,0xc76c51a30 720 .quad 0xd192e819d6ef5218,0xd69906245 721 .quad 0xf40e35855771202a,0x106aa0703 722 .quad 0x19a4c116b8d2d0c8,0x1e376c085 723 .quad 0x2748774cdf8eeb99,0x34b0bcb5e 724 .quad 0x391c0cb3c5c95a63,0x4ed8aa4ae 725 .quad 0x5b9cca4f7763e373,0x682e6ff3d 726 .quad 0x748f82ee5defb2fc,0x78a5636f4 727 .quad 0x84c87814a1f0ab72,0x8cc702081 728 .quad 0x90befffa23631e28,0xa4506cebd 729 .quad 0xbef9a3f7b2c67915,0xc67178f2e 730 .quad 0xca273eceea26619c,0xd186b8c72 731 .quad 0xeada7dd6cde0eb1e,0xf57d4f7fe 732 .quad 0x06f067aa72176fba,0x0a637dc5a 733 .quad 0x113f9804bef90dae,0x1b710b351 734 .quad 0x28db77f523047d84,0x32caab7b4 735 .quad 0x3c9ebe0a15c9bebc,0x431d67c49 736 .quad 0x4cc5d4becb3e42b6,0x597f299cf 737 .quad 0x5fcb6fab3ad6faec,0x6c44198c4 738 739 .section .rodata.cst32.PSHUFFLE_BYTE_FL 740 .align 32 741 # Mask for byte-swapping a couple of qwords in 742 PSHUFFLE_BYTE_FLIP_MASK: 743 .octa 0x08090a0b0c0d0e0f00010203040506 744 .octa 0x18191a1b1c1d1e1f10111213141516 745 746 .section .rodata.cst32.MASK_YMM_LO, "aM 747 .align 32 748 MASK_YMM_LO: 749 .octa 0x000000000000000000000000000000 750 .octa 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.