1 # SPDX-License-Identifier: GPL-2.0 1 # SPDX-License-Identifier: GPL-2.0 2 # 2 # 3 # Generic algorithms support 3 # Generic algorithms support 4 # 4 # 5 config XOR_BLOCKS 5 config XOR_BLOCKS 6 tristate 6 tristate 7 7 8 # 8 # 9 # async_tx api: hardware offloaded memory tran 9 # async_tx api: hardware offloaded memory transfer/transform support 10 # 10 # 11 source "crypto/async_tx/Kconfig" 11 source "crypto/async_tx/Kconfig" 12 12 13 # 13 # 14 # Cryptographic API Configuration 14 # Cryptographic API Configuration 15 # 15 # 16 menuconfig CRYPTO 16 menuconfig CRYPTO 17 tristate "Cryptographic API" 17 tristate "Cryptographic API" 18 select CRYPTO_LIB_UTILS !! 18 select LIB_MEMNEQ 19 help 19 help 20 This option provides the core Crypto 20 This option provides the core Cryptographic API. 21 21 22 if CRYPTO 22 if CRYPTO 23 23 24 menu "Crypto core or helper" !! 24 comment "Crypto core or helper" 25 25 26 config CRYPTO_FIPS 26 config CRYPTO_FIPS 27 bool "FIPS 200 compliance" 27 bool "FIPS 200 compliance" 28 depends on (CRYPTO_ANSI_CPRNG || CRYPT 28 depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS 29 depends on (MODULE_SIG || !MODULES) 29 depends on (MODULE_SIG || !MODULES) 30 help 30 help 31 This option enables the fips boot op 31 This option enables the fips boot option which is 32 required if you want the system to o 32 required if you want the system to operate in a FIPS 200 33 certification. You should say no un 33 certification. You should say no unless you know what 34 this is. 34 this is. 35 35 36 config CRYPTO_FIPS_NAME << 37 string "FIPS Module Name" << 38 default "Linux Kernel Cryptographic AP << 39 depends on CRYPTO_FIPS << 40 help << 41 This option sets the FIPS Module nam << 42 the /proc/sys/crypto/fips_name file. << 43 << 44 config CRYPTO_FIPS_CUSTOM_VERSION << 45 bool "Use Custom FIPS Module Version" << 46 depends on CRYPTO_FIPS << 47 default n << 48 << 49 config CRYPTO_FIPS_VERSION << 50 string "FIPS Module Version" << 51 default "(none)" << 52 depends on CRYPTO_FIPS_CUSTOM_VERSION << 53 help << 54 This option provides the ability to << 55 By default the KERNELRELEASE value i << 56 << 57 config CRYPTO_ALGAPI 36 config CRYPTO_ALGAPI 58 tristate 37 tristate 59 select CRYPTO_ALGAPI2 38 select CRYPTO_ALGAPI2 60 help 39 help 61 This option provides the API for cry 40 This option provides the API for cryptographic algorithms. 62 41 63 config CRYPTO_ALGAPI2 42 config CRYPTO_ALGAPI2 64 tristate 43 tristate 65 44 66 config CRYPTO_AEAD 45 config CRYPTO_AEAD 67 tristate 46 tristate 68 select CRYPTO_AEAD2 47 select CRYPTO_AEAD2 69 select CRYPTO_ALGAPI 48 select CRYPTO_ALGAPI 70 49 71 config CRYPTO_AEAD2 50 config CRYPTO_AEAD2 72 tristate 51 tristate 73 select CRYPTO_ALGAPI2 52 select CRYPTO_ALGAPI2 74 !! 53 select CRYPTO_NULL2 75 config CRYPTO_SIG !! 54 select CRYPTO_RNG2 76 tristate << 77 select CRYPTO_SIG2 << 78 select CRYPTO_ALGAPI << 79 << 80 config CRYPTO_SIG2 << 81 tristate << 82 select CRYPTO_ALGAPI2 << 83 55 84 config CRYPTO_SKCIPHER 56 config CRYPTO_SKCIPHER 85 tristate 57 tristate 86 select CRYPTO_SKCIPHER2 58 select CRYPTO_SKCIPHER2 87 select CRYPTO_ALGAPI 59 select CRYPTO_ALGAPI 88 select CRYPTO_ECB << 89 60 90 config CRYPTO_SKCIPHER2 61 config CRYPTO_SKCIPHER2 91 tristate 62 tristate 92 select CRYPTO_ALGAPI2 63 select CRYPTO_ALGAPI2 >> 64 select CRYPTO_RNG2 93 65 94 config CRYPTO_HASH 66 config CRYPTO_HASH 95 tristate 67 tristate 96 select CRYPTO_HASH2 68 select CRYPTO_HASH2 97 select CRYPTO_ALGAPI 69 select CRYPTO_ALGAPI 98 70 99 config CRYPTO_HASH2 71 config CRYPTO_HASH2 100 tristate 72 tristate 101 select CRYPTO_ALGAPI2 73 select CRYPTO_ALGAPI2 102 74 103 config CRYPTO_RNG 75 config CRYPTO_RNG 104 tristate 76 tristate 105 select CRYPTO_RNG2 77 select CRYPTO_RNG2 106 select CRYPTO_ALGAPI 78 select CRYPTO_ALGAPI 107 79 108 config CRYPTO_RNG2 80 config CRYPTO_RNG2 109 tristate 81 tristate 110 select CRYPTO_ALGAPI2 82 select CRYPTO_ALGAPI2 111 83 112 config CRYPTO_RNG_DEFAULT 84 config CRYPTO_RNG_DEFAULT 113 tristate 85 tristate 114 select CRYPTO_DRBG_MENU 86 select CRYPTO_DRBG_MENU 115 87 116 config CRYPTO_AKCIPHER2 88 config CRYPTO_AKCIPHER2 117 tristate 89 tristate 118 select CRYPTO_ALGAPI2 90 select CRYPTO_ALGAPI2 119 91 120 config CRYPTO_AKCIPHER 92 config CRYPTO_AKCIPHER 121 tristate 93 tristate 122 select CRYPTO_AKCIPHER2 94 select CRYPTO_AKCIPHER2 123 select CRYPTO_ALGAPI 95 select CRYPTO_ALGAPI 124 96 125 config CRYPTO_KPP2 97 config CRYPTO_KPP2 126 tristate 98 tristate 127 select CRYPTO_ALGAPI2 99 select CRYPTO_ALGAPI2 128 100 129 config CRYPTO_KPP 101 config CRYPTO_KPP 130 tristate 102 tristate 131 select CRYPTO_ALGAPI 103 select CRYPTO_ALGAPI 132 select CRYPTO_KPP2 104 select CRYPTO_KPP2 133 105 134 config CRYPTO_ACOMP2 106 config CRYPTO_ACOMP2 135 tristate 107 tristate 136 select CRYPTO_ALGAPI2 108 select CRYPTO_ALGAPI2 137 select SGL_ALLOC 109 select SGL_ALLOC 138 110 139 config CRYPTO_ACOMP 111 config CRYPTO_ACOMP 140 tristate 112 tristate 141 select CRYPTO_ALGAPI 113 select CRYPTO_ALGAPI 142 select CRYPTO_ACOMP2 114 select CRYPTO_ACOMP2 143 115 144 config CRYPTO_MANAGER 116 config CRYPTO_MANAGER 145 tristate "Cryptographic algorithm mana 117 tristate "Cryptographic algorithm manager" 146 select CRYPTO_MANAGER2 118 select CRYPTO_MANAGER2 147 help 119 help 148 Create default cryptographic templat 120 Create default cryptographic template instantiations such as 149 cbc(aes). 121 cbc(aes). 150 122 151 config CRYPTO_MANAGER2 123 config CRYPTO_MANAGER2 152 def_tristate CRYPTO_MANAGER || (CRYPTO 124 def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y) 153 select CRYPTO_ACOMP2 << 154 select CRYPTO_AEAD2 125 select CRYPTO_AEAD2 155 select CRYPTO_AKCIPHER2 << 156 select CRYPTO_SIG2 << 157 select CRYPTO_HASH2 126 select CRYPTO_HASH2 158 select CRYPTO_KPP2 << 159 select CRYPTO_RNG2 << 160 select CRYPTO_SKCIPHER2 127 select CRYPTO_SKCIPHER2 >> 128 select CRYPTO_AKCIPHER2 >> 129 select CRYPTO_KPP2 >> 130 select CRYPTO_ACOMP2 161 131 162 config CRYPTO_USER 132 config CRYPTO_USER 163 tristate "Userspace cryptographic algo 133 tristate "Userspace cryptographic algorithm configuration" 164 depends on NET 134 depends on NET 165 select CRYPTO_MANAGER 135 select CRYPTO_MANAGER 166 help 136 help 167 Userspace configuration for cryptogr 137 Userspace configuration for cryptographic instantiations such as 168 cbc(aes). 138 cbc(aes). 169 139 170 config CRYPTO_MANAGER_DISABLE_TESTS 140 config CRYPTO_MANAGER_DISABLE_TESTS 171 bool "Disable run-time self tests" 141 bool "Disable run-time self tests" 172 default y 142 default y 173 help 143 help 174 Disable run-time self tests that nor 144 Disable run-time self tests that normally take place at 175 algorithm registration. 145 algorithm registration. 176 146 177 config CRYPTO_MANAGER_EXTRA_TESTS 147 config CRYPTO_MANAGER_EXTRA_TESTS 178 bool "Enable extra run-time crypto sel 148 bool "Enable extra run-time crypto self tests" 179 depends on DEBUG_KERNEL && !CRYPTO_MAN 149 depends on DEBUG_KERNEL && !CRYPTO_MANAGER_DISABLE_TESTS && CRYPTO_MANAGER 180 help 150 help 181 Enable extra run-time self tests of 151 Enable extra run-time self tests of registered crypto algorithms, 182 including randomized fuzz tests. 152 including randomized fuzz tests. 183 153 184 This is intended for developer use o 154 This is intended for developer use only, as these tests take much 185 longer to run than the normal self t 155 longer to run than the normal self tests. 186 156 >> 157 config CRYPTO_GF128MUL >> 158 tristate >> 159 187 config CRYPTO_NULL 160 config CRYPTO_NULL 188 tristate "Null algorithms" 161 tristate "Null algorithms" 189 select CRYPTO_NULL2 162 select CRYPTO_NULL2 190 help 163 help 191 These are 'Null' algorithms, used by 164 These are 'Null' algorithms, used by IPsec, which do nothing. 192 165 193 config CRYPTO_NULL2 166 config CRYPTO_NULL2 194 tristate 167 tristate 195 select CRYPTO_ALGAPI2 168 select CRYPTO_ALGAPI2 196 select CRYPTO_SKCIPHER2 169 select CRYPTO_SKCIPHER2 197 select CRYPTO_HASH2 170 select CRYPTO_HASH2 198 171 199 config CRYPTO_PCRYPT 172 config CRYPTO_PCRYPT 200 tristate "Parallel crypto engine" 173 tristate "Parallel crypto engine" 201 depends on SMP 174 depends on SMP 202 select PADATA 175 select PADATA 203 select CRYPTO_MANAGER 176 select CRYPTO_MANAGER 204 select CRYPTO_AEAD 177 select CRYPTO_AEAD 205 help 178 help 206 This converts an arbitrary crypto al 179 This converts an arbitrary crypto algorithm into a parallel 207 algorithm that executes in kernel th 180 algorithm that executes in kernel threads. 208 181 209 config CRYPTO_CRYPTD 182 config CRYPTO_CRYPTD 210 tristate "Software async crypto daemon 183 tristate "Software async crypto daemon" 211 select CRYPTO_SKCIPHER 184 select CRYPTO_SKCIPHER 212 select CRYPTO_HASH 185 select CRYPTO_HASH 213 select CRYPTO_MANAGER 186 select CRYPTO_MANAGER 214 help 187 help 215 This is a generic software asynchron 188 This is a generic software asynchronous crypto daemon that 216 converts an arbitrary synchronous so 189 converts an arbitrary synchronous software crypto algorithm 217 into an asynchronous algorithm that 190 into an asynchronous algorithm that executes in a kernel thread. 218 191 219 config CRYPTO_AUTHENC 192 config CRYPTO_AUTHENC 220 tristate "Authenc support" 193 tristate "Authenc support" 221 select CRYPTO_AEAD 194 select CRYPTO_AEAD 222 select CRYPTO_SKCIPHER 195 select CRYPTO_SKCIPHER 223 select CRYPTO_MANAGER 196 select CRYPTO_MANAGER 224 select CRYPTO_HASH 197 select CRYPTO_HASH 225 select CRYPTO_NULL 198 select CRYPTO_NULL 226 help 199 help 227 Authenc: Combined mode wrapper for I 200 Authenc: Combined mode wrapper for IPsec. 228 !! 201 This is required for IPSec. 229 This is required for IPSec ESP (XFRM << 230 202 231 config CRYPTO_TEST 203 config CRYPTO_TEST 232 tristate "Testing module" 204 tristate "Testing module" 233 depends on m || EXPERT 205 depends on m || EXPERT 234 select CRYPTO_MANAGER 206 select CRYPTO_MANAGER 235 help 207 help 236 Quick & dirty crypto test module. 208 Quick & dirty crypto test module. 237 209 238 config CRYPTO_SIMD 210 config CRYPTO_SIMD 239 tristate 211 tristate 240 select CRYPTO_CRYPTD 212 select CRYPTO_CRYPTD 241 213 242 config CRYPTO_ENGINE 214 config CRYPTO_ENGINE 243 tristate 215 tristate 244 216 245 endmenu !! 217 comment "Public-key cryptography" 246 << 247 menu "Public-key cryptography" << 248 218 249 config CRYPTO_RSA 219 config CRYPTO_RSA 250 tristate "RSA (Rivest-Shamir-Adleman)" !! 220 tristate "RSA algorithm" 251 select CRYPTO_AKCIPHER 221 select CRYPTO_AKCIPHER 252 select CRYPTO_MANAGER 222 select CRYPTO_MANAGER 253 select MPILIB 223 select MPILIB 254 select ASN1 224 select ASN1 255 help 225 help 256 RSA (Rivest-Shamir-Adleman) public k !! 226 Generic implementation of the RSA public key algorithm. 257 227 258 config CRYPTO_DH 228 config CRYPTO_DH 259 tristate "DH (Diffie-Hellman)" !! 229 tristate "Diffie-Hellman algorithm" 260 select CRYPTO_KPP 230 select CRYPTO_KPP 261 select MPILIB 231 select MPILIB 262 help 232 help 263 DH (Diffie-Hellman) key exchange alg !! 233 Generic implementation of the Diffie-Hellman algorithm. 264 234 265 config CRYPTO_DH_RFC7919_GROUPS 235 config CRYPTO_DH_RFC7919_GROUPS 266 bool "RFC 7919 FFDHE groups" !! 236 bool "Support for RFC 7919 FFDHE group parameters" 267 depends on CRYPTO_DH 237 depends on CRYPTO_DH 268 select CRYPTO_RNG_DEFAULT 238 select CRYPTO_RNG_DEFAULT 269 help 239 help 270 FFDHE (Finite-Field-based Diffie-Hel !! 240 Provide support for RFC 7919 FFDHE group parameters. If unsure, say N. 271 defined in RFC7919. << 272 << 273 Support these finite-field groups in << 274 - ffdhe2048, ffdhe3072, ffdhe4096, f << 275 << 276 If unsure, say N. << 277 241 278 config CRYPTO_ECC 242 config CRYPTO_ECC 279 tristate 243 tristate 280 select CRYPTO_RNG_DEFAULT 244 select CRYPTO_RNG_DEFAULT 281 245 282 config CRYPTO_ECDH 246 config CRYPTO_ECDH 283 tristate "ECDH (Elliptic Curve Diffie- !! 247 tristate "ECDH algorithm" 284 select CRYPTO_ECC 248 select CRYPTO_ECC 285 select CRYPTO_KPP 249 select CRYPTO_KPP 286 help 250 help 287 ECDH (Elliptic Curve Diffie-Hellman) !! 251 Generic implementation of the ECDH algorithm 288 using curves P-192, P-256, and P-384 << 289 252 290 config CRYPTO_ECDSA 253 config CRYPTO_ECDSA 291 tristate "ECDSA (Elliptic Curve Digita !! 254 tristate "ECDSA (NIST P192, P256 etc.) algorithm" 292 select CRYPTO_ECC 255 select CRYPTO_ECC 293 select CRYPTO_AKCIPHER 256 select CRYPTO_AKCIPHER 294 select ASN1 257 select ASN1 295 help 258 help 296 ECDSA (Elliptic Curve Digital Signat !! 259 Elliptic Curve Digital Signature Algorithm (NIST P192, P256 etc.) 297 ISO/IEC 14888-3) !! 260 is A NIST cryptographic standard algorithm. Only signature verification 298 using curves P-192, P-256, and P-384 !! 261 is implemented. 299 << 300 Only signature verification is imple << 301 262 302 config CRYPTO_ECRDSA 263 config CRYPTO_ECRDSA 303 tristate "EC-RDSA (Elliptic Curve Russ !! 264 tristate "EC-RDSA (GOST 34.10) algorithm" 304 select CRYPTO_ECC 265 select CRYPTO_ECC 305 select CRYPTO_AKCIPHER 266 select CRYPTO_AKCIPHER 306 select CRYPTO_STREEBOG 267 select CRYPTO_STREEBOG 307 select OID_REGISTRY 268 select OID_REGISTRY 308 select ASN1 269 select ASN1 309 help 270 help 310 Elliptic Curve Russian Digital Signa 271 Elliptic Curve Russian Digital Signature Algorithm (GOST R 34.10-2012, 311 RFC 7091, ISO/IEC 14888-3) !! 272 RFC 7091, ISO/IEC 14888-3:2018) is one of the Russian cryptographic >> 273 standard algorithms (called GOST algorithms). Only signature verification >> 274 is implemented. >> 275 >> 276 config CRYPTO_SM2 >> 277 tristate "SM2 algorithm" >> 278 select CRYPTO_LIB_SM3 >> 279 select CRYPTO_AKCIPHER >> 280 select CRYPTO_MANAGER >> 281 select MPILIB >> 282 select ASN1 >> 283 help >> 284 Generic implementation of the SM2 public key algorithm. It was >> 285 published by State Encryption Management Bureau, China. >> 286 as specified by OSCCA GM/T 0003.1-2012 -- 0003.5-2012. 312 287 313 One of the Russian cryptographic sta !! 288 References: 314 algorithms). Only signature verifica !! 289 https://tools.ietf.org/html/draft-shen-sm2-ecdsa-02 >> 290 http://www.oscca.gov.cn/sca/xxgk/2010-12/17/content_1002386.shtml >> 291 http://www.gmbz.org.cn/main/bzlb.html 315 292 316 config CRYPTO_CURVE25519 293 config CRYPTO_CURVE25519 317 tristate "Curve25519" !! 294 tristate "Curve25519 algorithm" 318 select CRYPTO_KPP 295 select CRYPTO_KPP 319 select CRYPTO_LIB_CURVE25519_GENERIC 296 select CRYPTO_LIB_CURVE25519_GENERIC 320 help << 321 Curve25519 elliptic curve (RFC7748) << 322 << 323 endmenu << 324 << 325 menu "Block ciphers" << 326 << 327 config CRYPTO_AES << 328 tristate "AES (Advanced Encryption Sta << 329 select CRYPTO_ALGAPI << 330 select CRYPTO_LIB_AES << 331 help << 332 AES cipher algorithms (Rijndael)(FIP << 333 << 334 Rijndael appears to be consistently << 335 both hardware and software across a << 336 environments regardless of its use i << 337 modes. Its key setup time is excelle << 338 good. Rijndael's very low memory req << 339 suited for restricted-space environm << 340 demonstrates excellent performance. << 341 among the easiest to defend against << 342 << 343 The AES specifies three key sizes: 1 << 344 << 345 config CRYPTO_AES_TI << 346 tristate "AES (Advanced Encryption Sta << 347 select CRYPTO_ALGAPI << 348 select CRYPTO_LIB_AES << 349 help << 350 AES cipher algorithms (Rijndael)(FIP << 351 << 352 This is a generic implementation of << 353 data dependent latencies as much as << 354 performance too much. It is intended << 355 and GCM drivers, and other CTR or CM << 356 solely on encryption (although decry << 357 with a more dramatic performance hit << 358 << 359 Instead of using 16 lookup tables of << 360 8 for decryption), this implementati << 361 256 bytes each, and attempts to elim << 362 prefetching the entire table into th << 363 block. Interrupts are also disabled << 364 are evicted when the CPU is interrup << 365 << 366 config CRYPTO_ANUBIS << 367 tristate "Anubis" << 368 depends on CRYPTO_USER_API_ENABLE_OBSO << 369 select CRYPTO_ALGAPI << 370 help << 371 Anubis cipher algorithm << 372 297 373 Anubis is a variable key length ciph !! 298 config CRYPTO_CURVE25519_X86 374 128 bits to 320 bits in length. It !! 299 tristate "x86_64 accelerated Curve25519 scalar multiplication library" 375 in the NESSIE competition. !! 300 depends on X86 && 64BIT 376 !! 301 select CRYPTO_LIB_CURVE25519_GENERIC 377 See https://web.archive.org/web/2016 !! 302 select CRYPTO_ARCH_HAVE_LIB_CURVE25519 378 for further information. << 379 << 380 config CRYPTO_ARIA << 381 tristate "ARIA" << 382 select CRYPTO_ALGAPI << 383 help << 384 ARIA cipher algorithm (RFC5794) << 385 << 386 ARIA is a standard encryption algori << 387 The ARIA specifies three key sizes a << 388 128-bit: 12 rounds. << 389 192-bit: 14 rounds. << 390 256-bit: 16 rounds. << 391 303 392 See: !! 304 comment "Authenticated Encryption with Associated Data" 393 https://seed.kisa.or.kr/kisa/algorit << 394 305 395 config CRYPTO_BLOWFISH !! 306 config CRYPTO_CCM 396 tristate "Blowfish" !! 307 tristate "CCM support" 397 select CRYPTO_ALGAPI !! 308 select CRYPTO_CTR 398 select CRYPTO_BLOWFISH_COMMON !! 309 select CRYPTO_HASH >> 310 select CRYPTO_AEAD >> 311 select CRYPTO_MANAGER 399 help 312 help 400 Blowfish cipher algorithm, by Bruce !! 313 Support for Counter with CBC MAC. Required for IPsec. 401 << 402 This is a variable key length cipher << 403 bits to 448 bits in length. It's fa << 404 designed for use on "large microproc << 405 << 406 See https://www.schneier.com/blowfis << 407 314 408 config CRYPTO_BLOWFISH_COMMON !! 315 config CRYPTO_GCM 409 tristate !! 316 tristate "GCM/GMAC support" >> 317 select CRYPTO_CTR >> 318 select CRYPTO_AEAD >> 319 select CRYPTO_GHASH >> 320 select CRYPTO_NULL >> 321 select CRYPTO_MANAGER 410 help 322 help 411 Common parts of the Blowfish cipher !! 323 Support for Galois/Counter Mode (GCM) and Galois Message 412 generic c and the assembler implemen !! 324 Authentication Code (GMAC). Required for IPSec. 413 325 414 config CRYPTO_CAMELLIA !! 326 config CRYPTO_CHACHA20POLY1305 415 tristate "Camellia" !! 327 tristate "ChaCha20-Poly1305 AEAD support" 416 select CRYPTO_ALGAPI !! 328 select CRYPTO_CHACHA20 >> 329 select CRYPTO_POLY1305 >> 330 select CRYPTO_AEAD >> 331 select CRYPTO_MANAGER 417 help 332 help 418 Camellia cipher algorithms (ISO/IEC !! 333 ChaCha20-Poly1305 AEAD support, RFC7539. 419 334 420 Camellia is a symmetric key block ci !! 335 Support for the AEAD wrapper using the ChaCha20 stream cipher combined 421 at NTT and Mitsubishi Electric Corpo !! 336 with the Poly1305 authenticator. It is defined in RFC7539 for use in 422 !! 337 IETF protocols. 423 The Camellia specifies three key siz << 424 << 425 See https://info.isl.ntt.co.jp/crypt << 426 << 427 config CRYPTO_CAST_COMMON << 428 tristate << 429 help << 430 Common parts of the CAST cipher algo << 431 generic c and the assembler implemen << 432 338 433 config CRYPTO_CAST5 !! 339 config CRYPTO_AEGIS128 434 tristate "CAST5 (CAST-128)" !! 340 tristate "AEGIS-128 AEAD algorithm" 435 select CRYPTO_ALGAPI !! 341 select CRYPTO_AEAD 436 select CRYPTO_CAST_COMMON !! 342 select CRYPTO_AES # for AES S-box tables 437 help 343 help 438 CAST5 (CAST-128) cipher algorithm (R !! 344 Support for the AEGIS-128 dedicated AEAD algorithm. 439 345 440 config CRYPTO_CAST6 !! 346 config CRYPTO_AEGIS128_SIMD 441 tristate "CAST6 (CAST-256)" !! 347 bool "Support SIMD acceleration for AEGIS-128" 442 select CRYPTO_ALGAPI !! 348 depends on CRYPTO_AEGIS128 && ((ARM || ARM64) && KERNEL_MODE_NEON) 443 select CRYPTO_CAST_COMMON !! 349 default y 444 help << 445 CAST6 (CAST-256) encryption algorith << 446 350 447 config CRYPTO_DES !! 351 config CRYPTO_AEGIS128_AESNI_SSE2 448 tristate "DES and Triple DES EDE" !! 352 tristate "AEGIS-128 AEAD algorithm (x86_64 AESNI+SSE2 implementation)" 449 select CRYPTO_ALGAPI !! 353 depends on X86 && 64BIT 450 select CRYPTO_LIB_DES !! 354 select CRYPTO_AEAD >> 355 select CRYPTO_SIMD 451 help 356 help 452 DES (Data Encryption Standard)(FIPS !! 357 AESNI+SSE2 implementation of the AEGIS-128 dedicated AEAD algorithm. 453 Triple DES EDE (Encrypt/Decrypt/Encr << 454 cipher algorithms << 455 358 456 config CRYPTO_FCRYPT !! 359 config CRYPTO_SEQIV 457 tristate "FCrypt" !! 360 tristate "Sequence Number IV Generator" 458 select CRYPTO_ALGAPI !! 361 select CRYPTO_AEAD 459 select CRYPTO_SKCIPHER 362 select CRYPTO_SKCIPHER 460 help !! 363 select CRYPTO_NULL 461 FCrypt algorithm used by RxRPC !! 364 select CRYPTO_RNG_DEFAULT 462 << 463 See https://ota.polyonymo.us/fcrypt- << 464 << 465 config CRYPTO_KHAZAD << 466 tristate "Khazad" << 467 depends on CRYPTO_USER_API_ENABLE_OBSO << 468 select CRYPTO_ALGAPI << 469 help << 470 Khazad cipher algorithm << 471 << 472 Khazad was a finalist in the initial << 473 an algorithm optimized for 64-bit pr << 474 on 32-bit processors. Khazad uses a << 475 << 476 See https://web.archive.org/web/2017 << 477 for further information. << 478 << 479 config CRYPTO_SEED << 480 tristate "SEED" << 481 depends on CRYPTO_USER_API_ENABLE_OBSO << 482 select CRYPTO_ALGAPI << 483 help << 484 SEED cipher algorithm (RFC4269, ISO/ << 485 << 486 SEED is a 128-bit symmetric key bloc << 487 developed by KISA (Korea Information << 488 national standard encryption algorit << 489 It is a 16 round block cipher with t << 490 << 491 See https://seed.kisa.or.kr/kisa/alg << 492 for further information. << 493 << 494 config CRYPTO_SERPENT << 495 tristate "Serpent" << 496 select CRYPTO_ALGAPI << 497 help << 498 Serpent cipher algorithm, by Anderso << 499 << 500 Keys are allowed to be from 0 to 256 << 501 of 8 bits. << 502 << 503 See https://www.cl.cam.ac.uk/~rja14/ << 504 << 505 config CRYPTO_SM4 << 506 tristate << 507 << 508 config CRYPTO_SM4_GENERIC << 509 tristate "SM4 (ShangMi 4)" << 510 select CRYPTO_ALGAPI << 511 select CRYPTO_SM4 << 512 help << 513 SM4 cipher algorithms (OSCCA GB/T 32 << 514 ISO/IEC 18033-3:2010/Amd 1:2021) << 515 << 516 SM4 (GBT.32907-2016) is a cryptograp << 517 Organization of State Commercial Adm << 518 as an authorized cryptographic algor << 519 << 520 SMS4 was originally created for use << 521 networks, and is mandated in the Chi << 522 Wireless LAN WAPI (Wired Authenticat << 523 (GB.15629.11-2003). << 524 << 525 The latest SM4 standard (GBT.32907-2 << 526 standardized through TC 260 of the S << 527 of the People's Republic of China (S << 528 << 529 The input, output, and key of SMS4 a << 530 << 531 See https://eprint.iacr.org/2008/329 << 532 << 533 If unsure, say N. << 534 << 535 config CRYPTO_TEA << 536 tristate "TEA, XTEA and XETA" << 537 depends on CRYPTO_USER_API_ENABLE_OBSO << 538 select CRYPTO_ALGAPI << 539 help << 540 TEA (Tiny Encryption Algorithm) ciph << 541 << 542 Tiny Encryption Algorithm is a simpl << 543 many rounds for security. It is ver << 544 little memory. << 545 << 546 Xtendend Tiny Encryption Algorithm i << 547 the TEA algorithm to address a poten << 548 in the TEA algorithm. << 549 << 550 Xtendend Encryption Tiny Algorithm i << 551 of the XTEA algorithm for compatibil << 552 << 553 config CRYPTO_TWOFISH << 554 tristate "Twofish" << 555 select CRYPTO_ALGAPI << 556 select CRYPTO_TWOFISH_COMMON << 557 help << 558 Twofish cipher algorithm << 559 << 560 Twofish was submitted as an AES (Adv << 561 candidate cipher by researchers at C << 562 16 round block cipher supporting key << 563 bits. << 564 << 565 See https://www.schneier.com/twofish << 566 << 567 config CRYPTO_TWOFISH_COMMON << 568 tristate << 569 help << 570 Common parts of the Twofish cipher a << 571 generic c and the assembler implemen << 572 << 573 endmenu << 574 << 575 menu "Length-preserving ciphers and modes" << 576 << 577 config CRYPTO_ADIANTUM << 578 tristate "Adiantum" << 579 select CRYPTO_CHACHA20 << 580 select CRYPTO_LIB_POLY1305_GENERIC << 581 select CRYPTO_NHPOLY1305 << 582 select CRYPTO_MANAGER 365 select CRYPTO_MANAGER 583 help 366 help 584 Adiantum tweakable, length-preservin !! 367 This IV generator generates an IV based on a sequence number by 585 !! 368 xoring it with a salt. This algorithm is mainly useful for CTR 586 Designed for fast and secure disk en << 587 CPUs without dedicated crypto instru << 588 each sector using the XChaCha12 stre << 589 an ε-almost-∆-universal hash func << 590 the AES-256 block cipher on a single << 591 without AES instructions, Adiantum i << 592 AES-XTS. << 593 << 594 Adiantum's security is provably redu << 595 underlying stream and block ciphers, << 596 bound. Unlike XTS, Adiantum is a tr << 597 mode, so it actually provides an eve << 598 security than XTS, subject to the se << 599 << 600 If unsure, say N. << 601 369 602 config CRYPTO_ARC4 !! 370 config CRYPTO_ECHAINIV 603 tristate "ARC4 (Alleged Rivest Cipher !! 371 tristate "Encrypted Chain IV Generator" 604 depends on CRYPTO_USER_API_ENABLE_OBSO !! 372 select CRYPTO_AEAD 605 select CRYPTO_SKCIPHER !! 373 select CRYPTO_NULL 606 select CRYPTO_LIB_ARC4 !! 374 select CRYPTO_RNG_DEFAULT >> 375 select CRYPTO_MANAGER 607 help 376 help 608 ARC4 cipher algorithm !! 377 This IV generator generates an IV based on the encryption of >> 378 a sequence number xored with a salt. This is the default >> 379 algorithm for CBC. 609 380 610 ARC4 is a stream cipher using keys r !! 381 comment "Block modes" 611 bits in length. This algorithm is r << 612 WEP, but it should not be for other << 613 weakness of the algorithm. << 614 382 615 config CRYPTO_CHACHA20 !! 383 config CRYPTO_CBC 616 tristate "ChaCha" !! 384 tristate "CBC support" 617 select CRYPTO_LIB_CHACHA_GENERIC << 618 select CRYPTO_SKCIPHER 385 select CRYPTO_SKCIPHER >> 386 select CRYPTO_MANAGER 619 help 387 help 620 The ChaCha20, XChaCha20, and XChaCha !! 388 CBC: Cipher Block Chaining mode 621 !! 389 This block cipher algorithm is required for IPSec. 622 ChaCha20 is a 256-bit high-speed str << 623 Bernstein and further specified in R << 624 This is the portable C implementatio << 625 https://cr.yp.to/chacha/chacha-20080 << 626 << 627 XChaCha20 is the application of the << 628 rather than to Salsa20. XChaCha20 e << 629 from 64 bits (or 96 bits using the R << 630 while provably retaining ChaCha20's << 631 https://cr.yp.to/snuffle/xsalsa-2008 << 632 << 633 XChaCha12 is XChaCha20 reduced to 12 << 634 reduced security margin but increase << 635 in some performance-sensitive scenar << 636 390 637 config CRYPTO_CBC !! 391 config CRYPTO_CFB 638 tristate "CBC (Cipher Block Chaining)" !! 392 tristate "CFB support" 639 select CRYPTO_SKCIPHER 393 select CRYPTO_SKCIPHER 640 select CRYPTO_MANAGER 394 select CRYPTO_MANAGER 641 help 395 help 642 CBC (Cipher Block Chaining) mode (NI !! 396 CFB: Cipher FeedBack mode 643 !! 397 This block cipher algorithm is required for TPM2 Cryptography. 644 This block cipher mode is required f << 645 398 646 config CRYPTO_CTR 399 config CRYPTO_CTR 647 tristate "CTR (Counter)" !! 400 tristate "CTR support" 648 select CRYPTO_SKCIPHER 401 select CRYPTO_SKCIPHER 649 select CRYPTO_MANAGER 402 select CRYPTO_MANAGER 650 help 403 help 651 CTR (Counter) mode (NIST SP800-38A) !! 404 CTR: Counter mode >> 405 This block cipher algorithm is required for IPSec. 652 406 653 config CRYPTO_CTS 407 config CRYPTO_CTS 654 tristate "CTS (Cipher Text Stealing)" !! 408 tristate "CTS support" 655 select CRYPTO_SKCIPHER 409 select CRYPTO_SKCIPHER 656 select CRYPTO_MANAGER 410 select CRYPTO_MANAGER 657 help 411 help 658 CBC-CS3 variant of CTS (Cipher Text !! 412 CTS: Cipher Text Stealing 659 Addendum to SP800-38A (October 2010) !! 413 This is the Cipher Text Stealing mode as described by 660 !! 414 Section 8 of rfc2040 and referenced by rfc3962 >> 415 (rfc3962 includes errata information in its Appendix A) or >> 416 CBC-CS3 as defined by NIST in Sp800-38A addendum from Oct 2010. 661 This mode is required for Kerberos g 417 This mode is required for Kerberos gss mechanism support 662 for AES encryption. 418 for AES encryption. 663 419 664 config CRYPTO_ECB !! 420 See: https://csrc.nist.gov/publications/detail/sp/800-38a/addendum/final 665 tristate "ECB (Electronic Codebook)" << 666 select CRYPTO_SKCIPHER2 << 667 select CRYPTO_MANAGER << 668 help << 669 ECB (Electronic Codebook) mode (NIST << 670 << 671 config CRYPTO_HCTR2 << 672 tristate "HCTR2" << 673 select CRYPTO_XCTR << 674 select CRYPTO_POLYVAL << 675 select CRYPTO_MANAGER << 676 help << 677 HCTR2 length-preserving encryption m << 678 << 679 A mode for storage encryption that i << 680 instructions to accelerate AES and c << 681 x86 processors with AES-NI and CLMUL << 682 ARMv8 crypto extensions. << 683 << 684 See https://eprint.iacr.org/2021/144 << 685 421 686 config CRYPTO_KEYWRAP !! 422 config CRYPTO_ECB 687 tristate "KW (AES Key Wrap)" !! 423 tristate "ECB support" 688 select CRYPTO_SKCIPHER 424 select CRYPTO_SKCIPHER 689 select CRYPTO_MANAGER 425 select CRYPTO_MANAGER 690 help 426 help 691 KW (AES Key Wrap) authenticated encr !! 427 ECB: Electronic CodeBook mode 692 and RFC3394) without padding. !! 428 This is the simplest block cipher algorithm. It simply encrypts >> 429 the input block by block. 693 430 694 config CRYPTO_LRW 431 config CRYPTO_LRW 695 tristate "LRW (Liskov Rivest Wagner)" !! 432 tristate "LRW support" 696 select CRYPTO_LIB_GF128MUL << 697 select CRYPTO_SKCIPHER 433 select CRYPTO_SKCIPHER 698 select CRYPTO_MANAGER 434 select CRYPTO_MANAGER >> 435 select CRYPTO_GF128MUL 699 select CRYPTO_ECB 436 select CRYPTO_ECB 700 help 437 help 701 LRW (Liskov Rivest Wagner) mode !! 438 LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable 702 << 703 A tweakable, non malleable, non mova << 704 narrow block cipher mode for dm-cryp 439 narrow block cipher mode for dm-crypt. Use it with cipher 705 specification string aes-lrw-benbi, 440 specification string aes-lrw-benbi, the key must be 256, 320 or 384. 706 The first 128, 192 or 256 bits in th 441 The first 128, 192 or 256 bits in the key are used for AES and the 707 rest is used to tie each cipher bloc 442 rest is used to tie each cipher block to its logical position. 708 443 709 See https://people.csail.mit.edu/riv !! 444 config CRYPTO_OFB 710 !! 445 tristate "OFB support" 711 config CRYPTO_PCBC << 712 tristate "PCBC (Propagating Cipher Blo << 713 select CRYPTO_SKCIPHER 446 select CRYPTO_SKCIPHER 714 select CRYPTO_MANAGER 447 select CRYPTO_MANAGER 715 help 448 help 716 PCBC (Propagating Cipher Block Chain !! 449 OFB: the Output Feedback mode makes a block cipher into a synchronous 717 !! 450 stream cipher. It generates keystream blocks, which are then XORed 718 This block cipher mode is required f !! 451 with the plaintext blocks to get the ciphertext. Flipping a bit in the >> 452 ciphertext produces a flipped bit in the plaintext at the same >> 453 location. This property allows many error correcting codes to function >> 454 normally even when applied before encryption. 719 455 720 config CRYPTO_XCTR !! 456 config CRYPTO_PCBC 721 tristate !! 457 tristate "PCBC support" 722 select CRYPTO_SKCIPHER 458 select CRYPTO_SKCIPHER 723 select CRYPTO_MANAGER 459 select CRYPTO_MANAGER 724 help 460 help 725 XCTR (XOR Counter) mode for HCTR2 !! 461 PCBC: Propagating Cipher Block Chaining mode 726 !! 462 This block cipher algorithm is required for RxRPC. 727 This blockcipher mode is a variant o << 728 addition rather than big-endian arit << 729 << 730 XCTR mode is used to implement HCTR2 << 731 463 732 config CRYPTO_XTS 464 config CRYPTO_XTS 733 tristate "XTS (XOR Encrypt XOR with ci !! 465 tristate "XTS support" 734 select CRYPTO_SKCIPHER 466 select CRYPTO_SKCIPHER 735 select CRYPTO_MANAGER 467 select CRYPTO_MANAGER 736 select CRYPTO_ECB 468 select CRYPTO_ECB 737 help 469 help 738 XTS (XOR Encrypt XOR with ciphertext !! 470 XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain, 739 and IEEE 1619) !! 471 key size 256, 384 or 512 bits. This implementation currently >> 472 can't handle a sectorsize which is not a multiple of 16 bytes. 740 473 741 Use with aes-xts-plain, key size 256 !! 474 config CRYPTO_KEYWRAP 742 implementation currently can't handl !! 475 tristate "Key wrapping support" 743 multiple of 16 bytes. !! 476 select CRYPTO_SKCIPHER >> 477 select CRYPTO_MANAGER >> 478 help >> 479 Support for key wrapping (NIST SP800-38F / RFC3394) without >> 480 padding. 744 481 745 config CRYPTO_NHPOLY1305 482 config CRYPTO_NHPOLY1305 746 tristate 483 tristate 747 select CRYPTO_HASH 484 select CRYPTO_HASH 748 select CRYPTO_LIB_POLY1305_GENERIC 485 select CRYPTO_LIB_POLY1305_GENERIC 749 486 750 endmenu !! 487 config CRYPTO_NHPOLY1305_SSE2 751 !! 488 tristate "NHPoly1305 hash function (x86_64 SSE2 implementation)" 752 menu "AEAD (authenticated encryption with asso !! 489 depends on X86 && 64BIT 753 !! 490 select CRYPTO_NHPOLY1305 754 config CRYPTO_AEGIS128 << 755 tristate "AEGIS-128" << 756 select CRYPTO_AEAD << 757 select CRYPTO_AES # for AES S-box tab << 758 help 491 help 759 AEGIS-128 AEAD algorithm !! 492 SSE2 optimized implementation of the hash function used by the >> 493 Adiantum encryption mode. 760 494 761 config CRYPTO_AEGIS128_SIMD !! 495 config CRYPTO_NHPOLY1305_AVX2 762 bool "AEGIS-128 (arm NEON, arm64 NEON) !! 496 tristate "NHPoly1305 hash function (x86_64 AVX2 implementation)" 763 depends on CRYPTO_AEGIS128 && ((ARM || !! 497 depends on X86 && 64BIT 764 default y !! 498 select CRYPTO_NHPOLY1305 765 help 499 help 766 AEGIS-128 AEAD algorithm !! 500 AVX2 optimized implementation of the hash function used by the >> 501 Adiantum encryption mode. 767 502 768 Architecture: arm or arm64 using: !! 503 config CRYPTO_ADIANTUM 769 - NEON (Advanced SIMD) extension !! 504 tristate "Adiantum support" 770 << 771 config CRYPTO_CHACHA20POLY1305 << 772 tristate "ChaCha20-Poly1305" << 773 select CRYPTO_CHACHA20 505 select CRYPTO_CHACHA20 774 select CRYPTO_POLY1305 !! 506 select CRYPTO_LIB_POLY1305_GENERIC 775 select CRYPTO_AEAD !! 507 select CRYPTO_NHPOLY1305 776 select CRYPTO_MANAGER << 777 help << 778 ChaCha20 stream cipher and Poly1305 << 779 mode (RFC8439) << 780 << 781 config CRYPTO_CCM << 782 tristate "CCM (Counter with Cipher Blo << 783 select CRYPTO_CTR << 784 select CRYPTO_HASH << 785 select CRYPTO_AEAD << 786 select CRYPTO_MANAGER << 787 help << 788 CCM (Counter with Cipher Block Chain << 789 authenticated encryption mode (NIST << 790 << 791 config CRYPTO_GCM << 792 tristate "GCM (Galois/Counter Mode) an << 793 select CRYPTO_CTR << 794 select CRYPTO_AEAD << 795 select CRYPTO_GHASH << 796 select CRYPTO_NULL << 797 select CRYPTO_MANAGER << 798 help << 799 GCM (Galois/Counter Mode) authentica << 800 (GCM Message Authentication Code) (N << 801 << 802 This is required for IPSec ESP (XFRM << 803 << 804 config CRYPTO_GENIV << 805 tristate << 806 select CRYPTO_AEAD << 807 select CRYPTO_NULL << 808 select CRYPTO_MANAGER 508 select CRYPTO_MANAGER 809 select CRYPTO_RNG_DEFAULT << 810 << 811 config CRYPTO_SEQIV << 812 tristate "Sequence Number IV Generator << 813 select CRYPTO_GENIV << 814 help 509 help 815 Sequence Number IV generator !! 510 Adiantum is a tweakable, length-preserving encryption mode 816 !! 511 designed for fast and secure disk encryption, especially on 817 This IV generator generates an IV ba !! 512 CPUs without dedicated crypto instructions. It encrypts 818 xoring it with a salt. This algorit !! 513 each sector using the XChaCha12 stream cipher, two passes of 819 !! 514 an ε-almost-∆-universal hash function, and an invocation of 820 This is required for IPsec ESP (XFRM !! 515 the AES-256 block cipher on a single 16-byte block. On CPUs >> 516 without AES instructions, Adiantum is much faster than >> 517 AES-XTS. 821 518 822 config CRYPTO_ECHAINIV !! 519 Adiantum's security is provably reducible to that of its 823 tristate "Encrypted Chain IV Generator !! 520 underlying stream and block ciphers, subject to a security 824 select CRYPTO_GENIV !! 521 bound. Unlike XTS, Adiantum is a true wide-block encryption 825 help !! 522 mode, so it actually provides an even stronger notion of 826 Encrypted Chain IV generator !! 523 security than XTS, subject to the security bound. 827 524 828 This IV generator generates an IV ba !! 525 If unsure, say N. 829 a sequence number xored with a salt. << 830 algorithm for CBC. << 831 526 832 config CRYPTO_ESSIV 527 config CRYPTO_ESSIV 833 tristate "Encrypted Salt-Sector IV Gen !! 528 tristate "ESSIV support for block encryption" 834 select CRYPTO_AUTHENC 529 select CRYPTO_AUTHENC 835 help 530 help 836 Encrypted Salt-Sector IV generator !! 531 Encrypted salt-sector initialization vector (ESSIV) is an IV 837 !! 532 generation method that is used in some cases by fscrypt and/or 838 This IV generator is used in some ca << 839 dm-crypt. It uses the hash of the bl 533 dm-crypt. It uses the hash of the block encryption key as the 840 symmetric key for a block encryption 534 symmetric key for a block encryption pass applied to the input 841 IV, making low entropy IV sources mo 535 IV, making low entropy IV sources more suitable for block 842 encryption. 536 encryption. 843 537 844 This driver implements a crypto API 538 This driver implements a crypto API template that can be 845 instantiated either as an skcipher o 539 instantiated either as an skcipher or as an AEAD (depending on the 846 type of the first template argument) 540 type of the first template argument), and which defers encryption 847 and decryption requests to the encap 541 and decryption requests to the encapsulated cipher after applying 848 ESSIV to the input IV. Note that in 542 ESSIV to the input IV. Note that in the AEAD case, it is assumed 849 that the keys are presented in the s 543 that the keys are presented in the same format used by the authenc 850 template, and that the IV appears at 544 template, and that the IV appears at the end of the authenticated 851 associated data (AAD) region (which 545 associated data (AAD) region (which is how dm-crypt uses it.) 852 546 853 Note that the use of ESSIV is not re 547 Note that the use of ESSIV is not recommended for new deployments, 854 and so this only needs to be enabled 548 and so this only needs to be enabled when interoperability with 855 existing encrypted volumes of filesy 549 existing encrypted volumes of filesystems is required, or when 856 building for a particular system tha 550 building for a particular system that requires it (e.g., when 857 the SoC in question has accelerated 551 the SoC in question has accelerated CBC but not XTS, making CBC 858 combined with ESSIV the only feasibl 552 combined with ESSIV the only feasible mode for h/w accelerated 859 block encryption) 553 block encryption) 860 554 861 endmenu !! 555 comment "Hash modes" >> 556 >> 557 config CRYPTO_CMAC >> 558 tristate "CMAC support" >> 559 select CRYPTO_HASH >> 560 select CRYPTO_MANAGER >> 561 help >> 562 Cipher-based Message Authentication Code (CMAC) specified by >> 563 The National Institute of Standards and Technology (NIST). 862 564 863 menu "Hashes, digests, and MACs" !! 565 https://tools.ietf.org/html/rfc4493 >> 566 http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf 864 567 865 config CRYPTO_BLAKE2B !! 568 config CRYPTO_HMAC 866 tristate "BLAKE2b" !! 569 tristate "HMAC support" >> 570 select CRYPTO_HASH >> 571 select CRYPTO_MANAGER >> 572 help >> 573 HMAC: Keyed-Hashing for Message Authentication (RFC2104). >> 574 This is required for IPSec. >> 575 >> 576 config CRYPTO_XCBC >> 577 tristate "XCBC support" >> 578 select CRYPTO_HASH >> 579 select CRYPTO_MANAGER >> 580 help >> 581 XCBC: Keyed-Hashing with encryption algorithm >> 582 https://www.ietf.org/rfc/rfc3566.txt >> 583 http://csrc.nist.gov/encryption/modes/proposedmodes/ >> 584 xcbc-mac/xcbc-mac-spec.pdf >> 585 >> 586 config CRYPTO_VMAC >> 587 tristate "VMAC support" >> 588 select CRYPTO_HASH >> 589 select CRYPTO_MANAGER >> 590 help >> 591 VMAC is a message authentication algorithm designed for >> 592 very high speed on 64-bit architectures. >> 593 >> 594 See also: >> 595 <https://fastcrypto.org/vmac> >> 596 >> 597 comment "Digest" >> 598 >> 599 config CRYPTO_CRC32C >> 600 tristate "CRC32c CRC algorithm" >> 601 select CRYPTO_HASH >> 602 select CRC32 >> 603 help >> 604 Castagnoli, et al Cyclic Redundancy-Check Algorithm. Used >> 605 by iSCSI for header and data digests and by others. >> 606 See Castagnoli93. Module will be crc32c. >> 607 >> 608 config CRYPTO_CRC32C_INTEL >> 609 tristate "CRC32c INTEL hardware acceleration" >> 610 depends on X86 >> 611 select CRYPTO_HASH >> 612 help >> 613 In Intel processor with SSE4.2 supported, the processor will >> 614 support CRC32C implementation using hardware accelerated CRC32 >> 615 instruction. This option will create 'crc32c-intel' module, >> 616 which will enable any routine to use the CRC32 instruction to >> 617 gain performance compared with software implementation. >> 618 Module will be crc32c-intel. >> 619 >> 620 config CRYPTO_CRC32C_VPMSUM >> 621 tristate "CRC32c CRC algorithm (powerpc64)" >> 622 depends on PPC64 && ALTIVEC >> 623 select CRYPTO_HASH >> 624 select CRC32 >> 625 help >> 626 CRC32c algorithm implemented using vector polynomial multiply-sum >> 627 (vpmsum) instructions, introduced in POWER8. Enable on POWER8 >> 628 and newer processors for improved performance. >> 629 >> 630 >> 631 config CRYPTO_CRC32C_SPARC64 >> 632 tristate "CRC32c CRC algorithm (SPARC64)" >> 633 depends on SPARC64 >> 634 select CRYPTO_HASH >> 635 select CRC32 >> 636 help >> 637 CRC32c CRC algorithm implemented using sparc64 crypto instructions, >> 638 when available. >> 639 >> 640 config CRYPTO_CRC32 >> 641 tristate "CRC32 CRC algorithm" >> 642 select CRYPTO_HASH >> 643 select CRC32 >> 644 help >> 645 CRC-32-IEEE 802.3 cyclic redundancy-check algorithm. >> 646 Shash crypto api wrappers to crc32_le function. >> 647 >> 648 config CRYPTO_CRC32_PCLMUL >> 649 tristate "CRC32 PCLMULQDQ hardware acceleration" >> 650 depends on X86 867 select CRYPTO_HASH 651 select CRYPTO_HASH >> 652 select CRC32 >> 653 help >> 654 From Intel Westmere and AMD Bulldozer processor with SSE4.2 >> 655 and PCLMULQDQ supported, the processor will support >> 656 CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ >> 657 instruction. This option will create 'crc32-pclmul' module, >> 658 which will enable any routine to use the CRC-32-IEEE 802.3 checksum >> 659 and gain better performance as compared with the table implementation. >> 660 >> 661 config CRYPTO_CRC32_MIPS >> 662 tristate "CRC32c and CRC32 CRC algorithm (MIPS)" >> 663 depends on MIPS_CRC_SUPPORT >> 664 select CRYPTO_HASH >> 665 help >> 666 CRC32c and CRC32 CRC algorithms implemented using mips crypto >> 667 instructions, when available. >> 668 >> 669 >> 670 config CRYPTO_XXHASH >> 671 tristate "xxHash hash algorithm" >> 672 select CRYPTO_HASH >> 673 select XXHASH 868 help 674 help 869 BLAKE2b cryptographic hash function !! 675 xxHash non-cryptographic hash algorithm. Extremely fast, working at >> 676 speeds close to RAM limits. 870 677 871 BLAKE2b is optimized for 64-bit plat !! 678 config CRYPTO_BLAKE2B 872 of any size between 1 and 64 bytes. !! 679 tristate "BLAKE2b digest algorithm" >> 680 select CRYPTO_HASH >> 681 help >> 682 Implementation of cryptographic hash function BLAKE2b (or just BLAKE2), >> 683 optimized for 64bit platforms and can produce digests of any size >> 684 between 1 to 64. The keyed hash is also implemented. 873 685 874 This module provides the following a 686 This module provides the following algorithms: >> 687 875 - blake2b-160 688 - blake2b-160 876 - blake2b-256 689 - blake2b-256 877 - blake2b-384 690 - blake2b-384 878 - blake2b-512 691 - blake2b-512 879 692 880 Used by the btrfs filesystem. << 881 << 882 See https://blake2.net for further i 693 See https://blake2.net for further information. 883 694 884 config CRYPTO_CMAC !! 695 config CRYPTO_BLAKE2S_X86 885 tristate "CMAC (Cipher-based MAC)" !! 696 bool "BLAKE2s digest algorithm (x86 accelerated version)" >> 697 depends on X86 && 64BIT >> 698 select CRYPTO_LIB_BLAKE2S_GENERIC >> 699 select CRYPTO_ARCH_HAVE_LIB_BLAKE2S >> 700 >> 701 config CRYPTO_CRCT10DIF >> 702 tristate "CRCT10DIF algorithm" >> 703 select CRYPTO_HASH >> 704 help >> 705 CRC T10 Data Integrity Field computation is being cast as >> 706 a crypto transform. This allows for faster crc t10 diff >> 707 transforms to be used if they are available. >> 708 >> 709 config CRYPTO_CRCT10DIF_PCLMUL >> 710 tristate "CRCT10DIF PCLMULQDQ hardware acceleration" >> 711 depends on X86 && 64BIT && CRC_T10DIF >> 712 select CRYPTO_HASH >> 713 help >> 714 For x86_64 processors with SSE4.2 and PCLMULQDQ supported, >> 715 CRC T10 DIF PCLMULQDQ computation can be hardware >> 716 accelerated PCLMULQDQ instruction. This option will create >> 717 'crct10dif-pclmul' module, which is faster when computing the >> 718 crct10dif checksum as compared with the generic table implementation. >> 719 >> 720 config CRYPTO_CRCT10DIF_VPMSUM >> 721 tristate "CRC32T10DIF powerpc64 hardware acceleration" >> 722 depends on PPC64 && ALTIVEC && CRC_T10DIF 886 select CRYPTO_HASH 723 select CRYPTO_HASH 887 select CRYPTO_MANAGER << 888 help 724 help 889 CMAC (Cipher-based Message Authentic !! 725 CRC10T10DIF algorithm implemented using vector polynomial 890 mode (NIST SP800-38B and IETF RFC449 !! 726 multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on >> 727 POWER8 and newer processors for improved performance. >> 728 >> 729 config CRYPTO_CRC64_ROCKSOFT >> 730 tristate "Rocksoft Model CRC64 algorithm" >> 731 depends on CRC64 >> 732 select CRYPTO_HASH >> 733 >> 734 config CRYPTO_VPMSUM_TESTER >> 735 tristate "Powerpc64 vpmsum hardware acceleration tester" >> 736 depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM >> 737 help >> 738 Stress test for CRC32c and CRC-T10DIF algorithms implemented with >> 739 POWER8 vpmsum instructions. >> 740 Unless you are testing these algorithms, you don't need this. 891 741 892 config CRYPTO_GHASH 742 config CRYPTO_GHASH 893 tristate "GHASH" !! 743 tristate "GHASH hash function" >> 744 select CRYPTO_GF128MUL 894 select CRYPTO_HASH 745 select CRYPTO_HASH 895 select CRYPTO_LIB_GF128MUL << 896 help 746 help 897 GCM GHASH function (NIST SP800-38D) !! 747 GHASH is the hash function used in GCM (Galois/Counter Mode). >> 748 It is not a general-purpose cryptographic hash function. 898 749 899 config CRYPTO_HMAC !! 750 config CRYPTO_POLY1305 900 tristate "HMAC (Keyed-Hash MAC)" !! 751 tristate "Poly1305 authenticator algorithm" 901 select CRYPTO_HASH 752 select CRYPTO_HASH 902 select CRYPTO_MANAGER !! 753 select CRYPTO_LIB_POLY1305_GENERIC 903 help 754 help 904 HMAC (Keyed-Hash Message Authenticat !! 755 Poly1305 authenticator algorithm, RFC7539. 905 RFC2104) !! 756 >> 757 Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. >> 758 It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use >> 759 in IETF protocols. This is the portable C implementation of Poly1305. 906 760 907 This is required for IPsec AH (XFRM_ !! 761 config CRYPTO_POLY1305_X86_64 >> 762 tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)" >> 763 depends on X86 && 64BIT >> 764 select CRYPTO_LIB_POLY1305_GENERIC >> 765 select CRYPTO_ARCH_HAVE_LIB_POLY1305 >> 766 help >> 767 Poly1305 authenticator algorithm, RFC7539. >> 768 >> 769 Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. >> 770 It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use >> 771 in IETF protocols. This is the x86_64 assembler implementation using SIMD >> 772 instructions. >> 773 >> 774 config CRYPTO_POLY1305_MIPS >> 775 tristate "Poly1305 authenticator algorithm (MIPS optimized)" >> 776 depends on MIPS >> 777 select CRYPTO_ARCH_HAVE_LIB_POLY1305 908 778 909 config CRYPTO_MD4 779 config CRYPTO_MD4 910 tristate "MD4" !! 780 tristate "MD4 digest algorithm" 911 select CRYPTO_HASH 781 select CRYPTO_HASH 912 help 782 help 913 MD4 message digest algorithm (RFC132 !! 783 MD4 message digest algorithm (RFC1320). 914 784 915 config CRYPTO_MD5 785 config CRYPTO_MD5 916 tristate "MD5" !! 786 tristate "MD5 digest algorithm" 917 select CRYPTO_HASH 787 select CRYPTO_HASH 918 help 788 help 919 MD5 message digest algorithm (RFC132 !! 789 MD5 message digest algorithm (RFC1321). 920 790 921 config CRYPTO_MICHAEL_MIC !! 791 config CRYPTO_MD5_OCTEON 922 tristate "Michael MIC" !! 792 tristate "MD5 digest algorithm (OCTEON)" >> 793 depends on CPU_CAVIUM_OCTEON >> 794 select CRYPTO_MD5 923 select CRYPTO_HASH 795 select CRYPTO_HASH 924 help 796 help 925 Michael MIC (Message Integrity Code) !! 797 MD5 message digest algorithm (RFC1321) implemented 926 !! 798 using OCTEON crypto instructions, when available. 927 Defined by the IEEE 802.11i TKIP (Te << 928 known as WPA (Wif-Fi Protected Acces << 929 << 930 This algorithm is required for TKIP, << 931 other purposes because of the weakne << 932 799 933 config CRYPTO_POLYVAL !! 800 config CRYPTO_MD5_PPC 934 tristate !! 801 tristate "MD5 digest algorithm (PPC)" >> 802 depends on PPC 935 select CRYPTO_HASH 803 select CRYPTO_HASH 936 select CRYPTO_LIB_GF128MUL << 937 help 804 help 938 POLYVAL hash function for HCTR2 !! 805 MD5 message digest algorithm (RFC1321) implemented 939 !! 806 in PPC assembler. 940 This is used in HCTR2. It is not a << 941 cryptographic hash function. << 942 807 943 config CRYPTO_POLY1305 !! 808 config CRYPTO_MD5_SPARC64 944 tristate "Poly1305" !! 809 tristate "MD5 digest algorithm (SPARC64)" >> 810 depends on SPARC64 >> 811 select CRYPTO_MD5 945 select CRYPTO_HASH 812 select CRYPTO_HASH 946 select CRYPTO_LIB_POLY1305_GENERIC << 947 help 813 help 948 Poly1305 authenticator algorithm (RF !! 814 MD5 message digest algorithm (RFC1321) implemented >> 815 using sparc64 crypto instructions, when available. 949 816 950 Poly1305 is an authenticator algorit !! 817 config CRYPTO_MICHAEL_MIC 951 It is used for the ChaCha20-Poly1305 !! 818 tristate "Michael MIC keyed digest algorithm" 952 in IETF protocols. This is the porta !! 819 select CRYPTO_HASH >> 820 help >> 821 Michael MIC is used for message integrity protection in TKIP >> 822 (IEEE 802.11i). This algorithm is required for TKIP, but it >> 823 should not be used for other purposes because of the weakness >> 824 of the algorithm. 953 825 954 config CRYPTO_RMD160 826 config CRYPTO_RMD160 955 tristate "RIPEMD-160" !! 827 tristate "RIPEMD-160 digest algorithm" 956 select CRYPTO_HASH 828 select CRYPTO_HASH 957 help 829 help 958 RIPEMD-160 hash function (ISO/IEC 10 !! 830 RIPEMD-160 (ISO/IEC 10118-3:2004). 959 831 960 RIPEMD-160 is a 160-bit cryptographi 832 RIPEMD-160 is a 160-bit cryptographic hash function. It is intended 961 to be used as a secure replacement f 833 to be used as a secure replacement for the 128-bit hash functions 962 MD4, MD5 and its predecessor RIPEMD !! 834 MD4, MD5 and it's predecessor RIPEMD 963 (not to be confused with RIPEMD-128) 835 (not to be confused with RIPEMD-128). 964 836 965 Its speed is comparable to SHA-1 and !! 837 It's speed is comparable to SHA1 and there are no known attacks 966 against RIPEMD-160. 838 against RIPEMD-160. 967 839 968 Developed by Hans Dobbertin, Antoon 840 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 969 See https://homes.esat.kuleuven.be/~ !! 841 See <https://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 970 for further information. << 971 842 972 config CRYPTO_SHA1 843 config CRYPTO_SHA1 973 tristate "SHA-1" !! 844 tristate "SHA1 digest algorithm" 974 select CRYPTO_HASH 845 select CRYPTO_HASH 975 select CRYPTO_LIB_SHA1 << 976 help 846 help 977 SHA-1 secure hash algorithm (FIPS 18 !! 847 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). >> 848 >> 849 config CRYPTO_SHA1_SSSE3 >> 850 tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" >> 851 depends on X86 && 64BIT >> 852 select CRYPTO_SHA1 >> 853 select CRYPTO_HASH >> 854 help >> 855 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented >> 856 using Supplemental SSE3 (SSSE3) instructions or Advanced Vector >> 857 Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions), >> 858 when available. >> 859 >> 860 config CRYPTO_SHA256_SSSE3 >> 861 tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" >> 862 depends on X86 && 64BIT >> 863 select CRYPTO_SHA256 >> 864 select CRYPTO_HASH >> 865 help >> 866 SHA-256 secure hash standard (DFIPS 180-2) implemented >> 867 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector >> 868 Extensions version 1 (AVX1), or Advanced Vector Extensions >> 869 version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New >> 870 Instructions) when available. >> 871 >> 872 config CRYPTO_SHA512_SSSE3 >> 873 tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)" >> 874 depends on X86 && 64BIT >> 875 select CRYPTO_SHA512 >> 876 select CRYPTO_HASH >> 877 help >> 878 SHA-512 secure hash standard (DFIPS 180-2) implemented >> 879 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector >> 880 Extensions version 1 (AVX1), or Advanced Vector Extensions >> 881 version 2 (AVX2) instructions, when available. >> 882 >> 883 config CRYPTO_SHA1_OCTEON >> 884 tristate "SHA1 digest algorithm (OCTEON)" >> 885 depends on CPU_CAVIUM_OCTEON >> 886 select CRYPTO_SHA1 >> 887 select CRYPTO_HASH >> 888 help >> 889 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented >> 890 using OCTEON crypto instructions, when available. >> 891 >> 892 config CRYPTO_SHA1_SPARC64 >> 893 tristate "SHA1 digest algorithm (SPARC64)" >> 894 depends on SPARC64 >> 895 select CRYPTO_SHA1 >> 896 select CRYPTO_HASH >> 897 help >> 898 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented >> 899 using sparc64 crypto instructions, when available. >> 900 >> 901 config CRYPTO_SHA1_PPC >> 902 tristate "SHA1 digest algorithm (powerpc)" >> 903 depends on PPC >> 904 help >> 905 This is the powerpc hardware accelerated implementation of the >> 906 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). >> 907 >> 908 config CRYPTO_SHA1_PPC_SPE >> 909 tristate "SHA1 digest algorithm (PPC SPE)" >> 910 depends on PPC && SPE >> 911 help >> 912 SHA-1 secure hash standard (DFIPS 180-4) implemented >> 913 using powerpc SPE SIMD instruction set. 978 914 979 config CRYPTO_SHA256 915 config CRYPTO_SHA256 980 tristate "SHA-224 and SHA-256" !! 916 tristate "SHA224 and SHA256 digest algorithm" 981 select CRYPTO_HASH 917 select CRYPTO_HASH 982 select CRYPTO_LIB_SHA256 918 select CRYPTO_LIB_SHA256 983 help 919 help 984 SHA-224 and SHA-256 secure hash algo !! 920 SHA256 secure hash standard (DFIPS 180-2). >> 921 >> 922 This version of SHA implements a 256 bit hash with 128 bits of >> 923 security against collision attacks. 985 924 986 This is required for IPsec AH (XFRM_ !! 925 This code also includes SHA-224, a 224 bit hash with 112 bits 987 Used by the btrfs filesystem, Ceph, !! 926 of security against collision attacks. >> 927 >> 928 config CRYPTO_SHA256_PPC_SPE >> 929 tristate "SHA224 and SHA256 digest algorithm (PPC SPE)" >> 930 depends on PPC && SPE >> 931 select CRYPTO_SHA256 >> 932 select CRYPTO_HASH >> 933 help >> 934 SHA224 and SHA256 secure hash standard (DFIPS 180-2) >> 935 implemented using powerpc SPE SIMD instruction set. >> 936 >> 937 config CRYPTO_SHA256_OCTEON >> 938 tristate "SHA224 and SHA256 digest algorithm (OCTEON)" >> 939 depends on CPU_CAVIUM_OCTEON >> 940 select CRYPTO_SHA256 >> 941 select CRYPTO_HASH >> 942 help >> 943 SHA-256 secure hash standard (DFIPS 180-2) implemented >> 944 using OCTEON crypto instructions, when available. >> 945 >> 946 config CRYPTO_SHA256_SPARC64 >> 947 tristate "SHA224 and SHA256 digest algorithm (SPARC64)" >> 948 depends on SPARC64 >> 949 select CRYPTO_SHA256 >> 950 select CRYPTO_HASH >> 951 help >> 952 SHA-256 secure hash standard (DFIPS 180-2) implemented >> 953 using sparc64 crypto instructions, when available. 988 954 989 config CRYPTO_SHA512 955 config CRYPTO_SHA512 990 tristate "SHA-384 and SHA-512" !! 956 tristate "SHA384 and SHA512 digest algorithms" 991 select CRYPTO_HASH 957 select CRYPTO_HASH 992 help 958 help 993 SHA-384 and SHA-512 secure hash algo !! 959 SHA512 secure hash standard (DFIPS 180-2). 994 960 995 config CRYPTO_SHA3 !! 961 This version of SHA implements a 512 bit hash with 256 bits of 996 tristate "SHA-3" !! 962 security against collision attacks. >> 963 >> 964 This code also includes SHA-384, a 384 bit hash with 192 bits >> 965 of security against collision attacks. >> 966 >> 967 config CRYPTO_SHA512_OCTEON >> 968 tristate "SHA384 and SHA512 digest algorithms (OCTEON)" >> 969 depends on CPU_CAVIUM_OCTEON >> 970 select CRYPTO_SHA512 997 select CRYPTO_HASH 971 select CRYPTO_HASH 998 help 972 help 999 SHA-3 secure hash algorithms (FIPS 2 !! 973 SHA-512 secure hash standard (DFIPS 180-2) implemented >> 974 using OCTEON crypto instructions, when available. 1000 975 1001 config CRYPTO_SM3 !! 976 config CRYPTO_SHA512_SPARC64 1002 tristate !! 977 tristate "SHA384 and SHA512 digest algorithm (SPARC64)" >> 978 depends on SPARC64 >> 979 select CRYPTO_SHA512 >> 980 select CRYPTO_HASH >> 981 help >> 982 SHA-512 secure hash standard (DFIPS 180-2) implemented >> 983 using sparc64 crypto instructions, when available. 1003 984 1004 config CRYPTO_SM3_GENERIC !! 985 config CRYPTO_SHA3 1005 tristate "SM3 (ShangMi 3)" !! 986 tristate "SHA3 digest algorithm" 1006 select CRYPTO_HASH 987 select CRYPTO_HASH 1007 select CRYPTO_SM3 << 1008 help 988 help 1009 SM3 (ShangMi 3) secure hash functio !! 989 SHA-3 secure hash standard (DFIPS 202). It's based on >> 990 cryptographic sponge function family called Keccak. 1010 991 1011 This is part of the Chinese Commerc !! 992 References: >> 993 http://keccak.noekeon.org/ >> 994 >> 995 config CRYPTO_SM3 >> 996 tristate "SM3 digest algorithm" >> 997 select CRYPTO_HASH >> 998 select CRYPTO_LIB_SM3 >> 999 help >> 1000 SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3). >> 1001 It is part of the Chinese Commercial Cryptography suite. 1012 1002 1013 References: 1003 References: 1014 http://www.oscca.gov.cn/UpFile/2010 1004 http://www.oscca.gov.cn/UpFile/20101222141857786.pdf 1015 https://datatracker.ietf.org/doc/ht 1005 https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash 1016 1006 >> 1007 config CRYPTO_SM3_AVX_X86_64 >> 1008 tristate "SM3 digest algorithm (x86_64/AVX)" >> 1009 depends on X86 && 64BIT >> 1010 select CRYPTO_HASH >> 1011 select CRYPTO_LIB_SM3 >> 1012 help >> 1013 SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3). >> 1014 It is part of the Chinese Commercial Cryptography suite. This is >> 1015 SM3 optimized implementation using Advanced Vector Extensions (AVX) >> 1016 when available. >> 1017 >> 1018 If unsure, say N. >> 1019 1017 config CRYPTO_STREEBOG 1020 config CRYPTO_STREEBOG 1018 tristate "Streebog" !! 1021 tristate "Streebog Hash Function" 1019 select CRYPTO_HASH 1022 select CRYPTO_HASH 1020 help 1023 help 1021 Streebog Hash Function (GOST R 34.1 !! 1024 Streebog Hash Function (GOST R 34.11-2012, RFC 6986) is one of the Russian 1022 !! 1025 cryptographic standard algorithms (called GOST algorithms). 1023 This is one of the Russian cryptogr !! 1026 This setting enables two hash algorithms with 256 and 512 bits output. 1024 GOST algorithms). This setting enab << 1025 256 and 512 bits output. << 1026 1027 1027 References: 1028 References: 1028 https://tc26.ru/upload/iblock/fed/f 1029 https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf 1029 https://tools.ietf.org/html/rfc6986 1030 https://tools.ietf.org/html/rfc6986 1030 1031 1031 config CRYPTO_VMAC !! 1032 config CRYPTO_WP512 1032 tristate "VMAC" !! 1033 tristate "Whirlpool digest algorithms" 1033 select CRYPTO_HASH 1034 select CRYPTO_HASH 1034 select CRYPTO_MANAGER << 1035 help 1035 help 1036 VMAC is a message authentication al !! 1036 Whirlpool hash algorithm 512, 384 and 256-bit hashes 1037 very high speed on 64-bit architect << 1038 1037 1039 See https://fastcrypto.org/vmac for !! 1038 Whirlpool-512 is part of the NESSIE cryptographic primitives. >> 1039 Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard 1040 1040 1041 config CRYPTO_WP512 !! 1041 See also: 1042 tristate "Whirlpool" !! 1042 <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html> 1043 select CRYPTO_HASH !! 1043 >> 1044 config CRYPTO_GHASH_CLMUL_NI_INTEL >> 1045 tristate "GHASH hash function (CLMUL-NI accelerated)" >> 1046 depends on X86 && 64BIT >> 1047 select CRYPTO_CRYPTD 1044 help 1048 help 1045 Whirlpool hash function (ISO/IEC 10 !! 1049 This is the x86_64 CLMUL-NI accelerated implementation of >> 1050 GHASH, the hash function used in GCM (Galois/Counter mode). 1046 1051 1047 512, 384 and 256-bit hashes. !! 1052 comment "Ciphers" 1048 1053 1049 Whirlpool-512 is part of the NESSIE !! 1054 config CRYPTO_AES >> 1055 tristate "AES cipher algorithms" >> 1056 select CRYPTO_ALGAPI >> 1057 select CRYPTO_LIB_AES >> 1058 help >> 1059 AES cipher algorithms (FIPS-197). AES uses the Rijndael >> 1060 algorithm. >> 1061 >> 1062 Rijndael appears to be consistently a very good performer in >> 1063 both hardware and software across a wide range of computing >> 1064 environments regardless of its use in feedback or non-feedback >> 1065 modes. Its key setup time is excellent, and its key agility is >> 1066 good. Rijndael's very low memory requirements make it very well >> 1067 suited for restricted-space environments, in which it also >> 1068 demonstrates excellent performance. Rijndael's operations are >> 1069 among the easiest to defend against power and timing attacks. 1050 1070 1051 See https://web.archive.org/web/201 !! 1071 The AES specifies three key sizes: 128, 192 and 256 bits 1052 for further information. << 1053 1072 1054 config CRYPTO_XCBC !! 1073 See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information. 1055 tristate "XCBC-MAC (Extended Cipher B !! 1074 1056 select CRYPTO_HASH !! 1075 config CRYPTO_AES_TI 1057 select CRYPTO_MANAGER !! 1076 tristate "Fixed time AES cipher" >> 1077 select CRYPTO_ALGAPI >> 1078 select CRYPTO_LIB_AES 1058 help 1079 help 1059 XCBC-MAC (Extended Cipher Block Cha !! 1080 This is a generic implementation of AES that attempts to eliminate 1060 Code) (RFC3566) !! 1081 data dependent latencies as much as possible without affecting >> 1082 performance too much. It is intended for use by the generic CCM >> 1083 and GCM drivers, and other CTR or CMAC/XCBC based modes that rely >> 1084 solely on encryption (although decryption is supported as well, but >> 1085 with a more dramatic performance hit) 1061 1086 1062 config CRYPTO_XXHASH !! 1087 Instead of using 16 lookup tables of 1 KB each, (8 for encryption and 1063 tristate "xxHash" !! 1088 8 for decryption), this implementation only uses just two S-boxes of 1064 select CRYPTO_HASH !! 1089 256 bytes each, and attempts to eliminate data dependent latencies by 1065 select XXHASH !! 1090 prefetching the entire table into the cache at the start of each >> 1091 block. Interrupts are also disabled to avoid races where cachelines >> 1092 are evicted when the CPU is interrupted to do something else. >> 1093 >> 1094 config CRYPTO_AES_NI_INTEL >> 1095 tristate "AES cipher algorithms (AES-NI)" >> 1096 depends on X86 >> 1097 select CRYPTO_AEAD >> 1098 select CRYPTO_LIB_AES >> 1099 select CRYPTO_ALGAPI >> 1100 select CRYPTO_SKCIPHER >> 1101 select CRYPTO_SIMD 1066 help 1102 help 1067 xxHash non-cryptographic hash algor !! 1103 Use Intel AES-NI instructions for AES algorithm. 1068 1104 1069 Extremely fast, working at speeds c !! 1105 AES cipher algorithms (FIPS-197). AES uses the Rijndael >> 1106 algorithm. 1070 1107 1071 Used by the btrfs filesystem. !! 1108 Rijndael appears to be consistently a very good performer in >> 1109 both hardware and software across a wide range of computing >> 1110 environments regardless of its use in feedback or non-feedback >> 1111 modes. Its key setup time is excellent, and its key agility is >> 1112 good. Rijndael's very low memory requirements make it very well >> 1113 suited for restricted-space environments, in which it also >> 1114 demonstrates excellent performance. Rijndael's operations are >> 1115 among the easiest to defend against power and timing attacks. 1072 1116 1073 endmenu !! 1117 The AES specifies three key sizes: 128, 192 and 256 bits 1074 1118 1075 menu "CRCs (cyclic redundancy checks)" !! 1119 See <http://csrc.nist.gov/encryption/aes/> for more information. 1076 1120 1077 config CRYPTO_CRC32C !! 1121 In addition to AES cipher algorithm support, the acceleration 1078 tristate "CRC32c" !! 1122 for some popular block cipher mode is supported too, including 1079 select CRYPTO_HASH !! 1123 ECB, CBC, LRW, XTS. The 64 bit version has additional 1080 select CRC32 !! 1124 acceleration for CTR. >> 1125 >> 1126 config CRYPTO_AES_SPARC64 >> 1127 tristate "AES cipher algorithms (SPARC64)" >> 1128 depends on SPARC64 >> 1129 select CRYPTO_SKCIPHER 1081 help 1130 help 1082 CRC32c CRC algorithm with the iSCSI !! 1131 Use SPARC64 crypto opcodes for AES algorithm. 1083 1132 1084 A 32-bit CRC (cyclic redundancy che !! 1133 AES cipher algorithms (FIPS-197). AES uses the Rijndael 1085 by G. Castagnoli, S. Braeuer and M. !! 1134 algorithm. 1086 Redundancy-Check Codes with 24 and << 1087 on Communications, Vol. 41, No. 6, << 1088 iSCSI. << 1089 1135 1090 Used by btrfs, ext4, jbd2, NVMeoF/T !! 1136 Rijndael appears to be consistently a very good performer in >> 1137 both hardware and software across a wide range of computing >> 1138 environments regardless of its use in feedback or non-feedback >> 1139 modes. Its key setup time is excellent, and its key agility is >> 1140 good. Rijndael's very low memory requirements make it very well >> 1141 suited for restricted-space environments, in which it also >> 1142 demonstrates excellent performance. Rijndael's operations are >> 1143 among the easiest to defend against power and timing attacks. 1091 1144 1092 config CRYPTO_CRC32 !! 1145 The AES specifies three key sizes: 128, 192 and 256 bits 1093 tristate "CRC32" !! 1146 1094 select CRYPTO_HASH !! 1147 See <http://csrc.nist.gov/encryption/aes/> for more information. 1095 select CRC32 !! 1148 >> 1149 In addition to AES cipher algorithm support, the acceleration >> 1150 for some popular block cipher mode is supported too, including >> 1151 ECB and CBC. >> 1152 >> 1153 config CRYPTO_AES_PPC_SPE >> 1154 tristate "AES cipher algorithms (PPC SPE)" >> 1155 depends on PPC && SPE >> 1156 select CRYPTO_SKCIPHER >> 1157 help >> 1158 AES cipher algorithms (FIPS-197). Additionally the acceleration >> 1159 for popular block cipher modes ECB, CBC, CTR and XTS is supported. >> 1160 This module should only be used for low power (router) devices >> 1161 without hardware AES acceleration (e.g. caam crypto). It reduces the >> 1162 size of the AES tables from 16KB to 8KB + 256 bytes and mitigates >> 1163 timining attacks. Nevertheless it might be not as secure as other >> 1164 architecture specific assembler implementations that work on 1KB >> 1165 tables or 256 bytes S-boxes. >> 1166 >> 1167 config CRYPTO_ANUBIS >> 1168 tristate "Anubis cipher algorithm" >> 1169 depends on CRYPTO_USER_API_ENABLE_OBSOLETE >> 1170 select CRYPTO_ALGAPI 1096 help 1171 help 1097 CRC32 CRC algorithm (IEEE 802.3) !! 1172 Anubis cipher algorithm. >> 1173 >> 1174 Anubis is a variable key length cipher which can use keys from >> 1175 128 bits to 320 bits in length. It was evaluated as a entrant >> 1176 in the NESSIE competition. 1098 1177 1099 Used by RoCEv2 and f2fs. !! 1178 See also: >> 1179 <https://www.cosic.esat.kuleuven.be/nessie/reports/> >> 1180 <http://www.larc.usp.br/~pbarreto/AnubisPage.html> 1100 1181 1101 config CRYPTO_CRCT10DIF !! 1182 config CRYPTO_ARC4 1102 tristate "CRCT10DIF" !! 1183 tristate "ARC4 cipher algorithm" 1103 select CRYPTO_HASH !! 1184 depends on CRYPTO_USER_API_ENABLE_OBSOLETE >> 1185 select CRYPTO_SKCIPHER >> 1186 select CRYPTO_LIB_ARC4 1104 help 1187 help 1105 CRC16 CRC algorithm used for the T1 !! 1188 ARC4 cipher algorithm. 1106 1189 1107 CRC algorithm used by the SCSI Bloc !! 1190 ARC4 is a stream cipher using keys ranging from 8 bits to 2048 >> 1191 bits in length. This algorithm is required for driver-based >> 1192 WEP, but it should not be for other purposes because of the >> 1193 weakness of the algorithm. 1108 1194 1109 config CRYPTO_CRC64_ROCKSOFT !! 1195 config CRYPTO_BLOWFISH 1110 tristate "CRC64 based on Rocksoft Mod !! 1196 tristate "Blowfish cipher algorithm" 1111 depends on CRC64 !! 1197 select CRYPTO_ALGAPI 1112 select CRYPTO_HASH !! 1198 select CRYPTO_BLOWFISH_COMMON >> 1199 help >> 1200 Blowfish cipher algorithm, by Bruce Schneier. >> 1201 >> 1202 This is a variable key length cipher which can use keys from 32 >> 1203 bits to 448 bits in length. It's fast, simple and specifically >> 1204 designed for use on "large microprocessors". >> 1205 >> 1206 See also: >> 1207 <https://www.schneier.com/blowfish.html> >> 1208 >> 1209 config CRYPTO_BLOWFISH_COMMON >> 1210 tristate >> 1211 help >> 1212 Common parts of the Blowfish cipher algorithm shared by the >> 1213 generic c and the assembler implementations. >> 1214 >> 1215 See also: >> 1216 <https://www.schneier.com/blowfish.html> >> 1217 >> 1218 config CRYPTO_BLOWFISH_X86_64 >> 1219 tristate "Blowfish cipher algorithm (x86_64)" >> 1220 depends on X86 && 64BIT >> 1221 select CRYPTO_SKCIPHER >> 1222 select CRYPTO_BLOWFISH_COMMON >> 1223 imply CRYPTO_CTR >> 1224 help >> 1225 Blowfish cipher algorithm (x86_64), by Bruce Schneier. >> 1226 >> 1227 This is a variable key length cipher which can use keys from 32 >> 1228 bits to 448 bits in length. It's fast, simple and specifically >> 1229 designed for use on "large microprocessors". >> 1230 >> 1231 See also: >> 1232 <https://www.schneier.com/blowfish.html> >> 1233 >> 1234 config CRYPTO_CAMELLIA >> 1235 tristate "Camellia cipher algorithms" >> 1236 select CRYPTO_ALGAPI >> 1237 help >> 1238 Camellia cipher algorithms module. >> 1239 >> 1240 Camellia is a symmetric key block cipher developed jointly >> 1241 at NTT and Mitsubishi Electric Corporation. >> 1242 >> 1243 The Camellia specifies three key sizes: 128, 192 and 256 bits. >> 1244 >> 1245 See also: >> 1246 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> >> 1247 >> 1248 config CRYPTO_CAMELLIA_X86_64 >> 1249 tristate "Camellia cipher algorithm (x86_64)" >> 1250 depends on X86 && 64BIT >> 1251 select CRYPTO_SKCIPHER >> 1252 imply CRYPTO_CTR >> 1253 help >> 1254 Camellia cipher algorithm module (x86_64). >> 1255 >> 1256 Camellia is a symmetric key block cipher developed jointly >> 1257 at NTT and Mitsubishi Electric Corporation. >> 1258 >> 1259 The Camellia specifies three key sizes: 128, 192 and 256 bits. >> 1260 >> 1261 See also: >> 1262 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> >> 1263 >> 1264 config CRYPTO_CAMELLIA_AESNI_AVX_X86_64 >> 1265 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)" >> 1266 depends on X86 && 64BIT >> 1267 select CRYPTO_SKCIPHER >> 1268 select CRYPTO_CAMELLIA_X86_64 >> 1269 select CRYPTO_SIMD >> 1270 imply CRYPTO_XTS 1113 help 1271 help 1114 CRC64 CRC algorithm based on the Ro !! 1272 Camellia cipher algorithm module (x86_64/AES-NI/AVX). 1115 1273 1116 Used by the NVMe implementation of !! 1274 Camellia is a symmetric key block cipher developed jointly >> 1275 at NTT and Mitsubishi Electric Corporation. 1117 1276 1118 See https://zlib.net/crc_v3.txt !! 1277 The Camellia specifies three key sizes: 128, 192 and 256 bits. 1119 1278 1120 endmenu !! 1279 See also: >> 1280 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1121 1281 1122 menu "Compression" !! 1282 config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64 >> 1283 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)" >> 1284 depends on X86 && 64BIT >> 1285 select CRYPTO_CAMELLIA_AESNI_AVX_X86_64 >> 1286 help >> 1287 Camellia cipher algorithm module (x86_64/AES-NI/AVX2). >> 1288 >> 1289 Camellia is a symmetric key block cipher developed jointly >> 1290 at NTT and Mitsubishi Electric Corporation. >> 1291 >> 1292 The Camellia specifies three key sizes: 128, 192 and 256 bits. >> 1293 >> 1294 See also: >> 1295 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> >> 1296 >> 1297 config CRYPTO_CAMELLIA_SPARC64 >> 1298 tristate "Camellia cipher algorithm (SPARC64)" >> 1299 depends on SPARC64 >> 1300 select CRYPTO_ALGAPI >> 1301 select CRYPTO_SKCIPHER >> 1302 help >> 1303 Camellia cipher algorithm module (SPARC64). >> 1304 >> 1305 Camellia is a symmetric key block cipher developed jointly >> 1306 at NTT and Mitsubishi Electric Corporation. >> 1307 >> 1308 The Camellia specifies three key sizes: 128, 192 and 256 bits. >> 1309 >> 1310 See also: >> 1311 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> >> 1312 >> 1313 config CRYPTO_CAST_COMMON >> 1314 tristate >> 1315 help >> 1316 Common parts of the CAST cipher algorithms shared by the >> 1317 generic c and the assembler implementations. >> 1318 >> 1319 config CRYPTO_CAST5 >> 1320 tristate "CAST5 (CAST-128) cipher algorithm" >> 1321 select CRYPTO_ALGAPI >> 1322 select CRYPTO_CAST_COMMON >> 1323 help >> 1324 The CAST5 encryption algorithm (synonymous with CAST-128) is >> 1325 described in RFC2144. >> 1326 >> 1327 config CRYPTO_CAST5_AVX_X86_64 >> 1328 tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)" >> 1329 depends on X86 && 64BIT >> 1330 select CRYPTO_SKCIPHER >> 1331 select CRYPTO_CAST5 >> 1332 select CRYPTO_CAST_COMMON >> 1333 select CRYPTO_SIMD >> 1334 imply CRYPTO_CTR >> 1335 help >> 1336 The CAST5 encryption algorithm (synonymous with CAST-128) is >> 1337 described in RFC2144. >> 1338 >> 1339 This module provides the Cast5 cipher algorithm that processes >> 1340 sixteen blocks parallel using the AVX instruction set. >> 1341 >> 1342 config CRYPTO_CAST6 >> 1343 tristate "CAST6 (CAST-256) cipher algorithm" >> 1344 select CRYPTO_ALGAPI >> 1345 select CRYPTO_CAST_COMMON >> 1346 help >> 1347 The CAST6 encryption algorithm (synonymous with CAST-256) is >> 1348 described in RFC2612. >> 1349 >> 1350 config CRYPTO_CAST6_AVX_X86_64 >> 1351 tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)" >> 1352 depends on X86 && 64BIT >> 1353 select CRYPTO_SKCIPHER >> 1354 select CRYPTO_CAST6 >> 1355 select CRYPTO_CAST_COMMON >> 1356 select CRYPTO_SIMD >> 1357 imply CRYPTO_XTS >> 1358 imply CRYPTO_CTR >> 1359 help >> 1360 The CAST6 encryption algorithm (synonymous with CAST-256) is >> 1361 described in RFC2612. >> 1362 >> 1363 This module provides the Cast6 cipher algorithm that processes >> 1364 eight blocks parallel using the AVX instruction set. >> 1365 >> 1366 config CRYPTO_DES >> 1367 tristate "DES and Triple DES EDE cipher algorithms" >> 1368 select CRYPTO_ALGAPI >> 1369 select CRYPTO_LIB_DES >> 1370 help >> 1371 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3). >> 1372 >> 1373 config CRYPTO_DES_SPARC64 >> 1374 tristate "DES and Triple DES EDE cipher algorithms (SPARC64)" >> 1375 depends on SPARC64 >> 1376 select CRYPTO_ALGAPI >> 1377 select CRYPTO_LIB_DES >> 1378 select CRYPTO_SKCIPHER >> 1379 help >> 1380 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3), >> 1381 optimized using SPARC64 crypto opcodes. >> 1382 >> 1383 config CRYPTO_DES3_EDE_X86_64 >> 1384 tristate "Triple DES EDE cipher algorithm (x86-64)" >> 1385 depends on X86 && 64BIT >> 1386 select CRYPTO_SKCIPHER >> 1387 select CRYPTO_LIB_DES >> 1388 imply CRYPTO_CTR >> 1389 help >> 1390 Triple DES EDE (FIPS 46-3) algorithm. >> 1391 >> 1392 This module provides implementation of the Triple DES EDE cipher >> 1393 algorithm that is optimized for x86-64 processors. Two versions of >> 1394 algorithm are provided; regular processing one input block and >> 1395 one that processes three blocks parallel. >> 1396 >> 1397 config CRYPTO_FCRYPT >> 1398 tristate "FCrypt cipher algorithm" >> 1399 select CRYPTO_ALGAPI >> 1400 select CRYPTO_SKCIPHER >> 1401 help >> 1402 FCrypt algorithm used by RxRPC. >> 1403 >> 1404 config CRYPTO_KHAZAD >> 1405 tristate "Khazad cipher algorithm" >> 1406 depends on CRYPTO_USER_API_ENABLE_OBSOLETE >> 1407 select CRYPTO_ALGAPI >> 1408 help >> 1409 Khazad cipher algorithm. >> 1410 >> 1411 Khazad was a finalist in the initial NESSIE competition. It is >> 1412 an algorithm optimized for 64-bit processors with good performance >> 1413 on 32-bit processors. Khazad uses an 128 bit key size. >> 1414 >> 1415 See also: >> 1416 <http://www.larc.usp.br/~pbarreto/KhazadPage.html> >> 1417 >> 1418 config CRYPTO_CHACHA20 >> 1419 tristate "ChaCha stream cipher algorithms" >> 1420 select CRYPTO_LIB_CHACHA_GENERIC >> 1421 select CRYPTO_SKCIPHER >> 1422 help >> 1423 The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms. >> 1424 >> 1425 ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J. >> 1426 Bernstein and further specified in RFC7539 for use in IETF protocols. >> 1427 This is the portable C implementation of ChaCha20. See also: >> 1428 <https://cr.yp.to/chacha/chacha-20080128.pdf> >> 1429 >> 1430 XChaCha20 is the application of the XSalsa20 construction to ChaCha20 >> 1431 rather than to Salsa20. XChaCha20 extends ChaCha20's nonce length >> 1432 from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits, >> 1433 while provably retaining ChaCha20's security. See also: >> 1434 <https://cr.yp.to/snuffle/xsalsa-20081128.pdf> >> 1435 >> 1436 XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly >> 1437 reduced security margin but increased performance. It can be needed >> 1438 in some performance-sensitive scenarios. >> 1439 >> 1440 config CRYPTO_CHACHA20_X86_64 >> 1441 tristate "ChaCha stream cipher algorithms (x86_64/SSSE3/AVX2/AVX-512VL)" >> 1442 depends on X86 && 64BIT >> 1443 select CRYPTO_SKCIPHER >> 1444 select CRYPTO_LIB_CHACHA_GENERIC >> 1445 select CRYPTO_ARCH_HAVE_LIB_CHACHA >> 1446 help >> 1447 SSSE3, AVX2, and AVX-512VL optimized implementations of the ChaCha20, >> 1448 XChaCha20, and XChaCha12 stream ciphers. >> 1449 >> 1450 config CRYPTO_CHACHA_MIPS >> 1451 tristate "ChaCha stream cipher algorithms (MIPS 32r2 optimized)" >> 1452 depends on CPU_MIPS32_R2 >> 1453 select CRYPTO_SKCIPHER >> 1454 select CRYPTO_ARCH_HAVE_LIB_CHACHA >> 1455 >> 1456 config CRYPTO_SEED >> 1457 tristate "SEED cipher algorithm" >> 1458 depends on CRYPTO_USER_API_ENABLE_OBSOLETE >> 1459 select CRYPTO_ALGAPI >> 1460 help >> 1461 SEED cipher algorithm (RFC4269). >> 1462 >> 1463 SEED is a 128-bit symmetric key block cipher that has been >> 1464 developed by KISA (Korea Information Security Agency) as a >> 1465 national standard encryption algorithm of the Republic of Korea. >> 1466 It is a 16 round block cipher with the key size of 128 bit. >> 1467 >> 1468 See also: >> 1469 <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp> >> 1470 >> 1471 config CRYPTO_SERPENT >> 1472 tristate "Serpent cipher algorithm" >> 1473 select CRYPTO_ALGAPI >> 1474 help >> 1475 Serpent cipher algorithm, by Anderson, Biham & Knudsen. >> 1476 >> 1477 Keys are allowed to be from 0 to 256 bits in length, in steps >> 1478 of 8 bits. >> 1479 >> 1480 See also: >> 1481 <https://www.cl.cam.ac.uk/~rja14/serpent.html> >> 1482 >> 1483 config CRYPTO_SERPENT_SSE2_X86_64 >> 1484 tristate "Serpent cipher algorithm (x86_64/SSE2)" >> 1485 depends on X86 && 64BIT >> 1486 select CRYPTO_SKCIPHER >> 1487 select CRYPTO_SERPENT >> 1488 select CRYPTO_SIMD >> 1489 imply CRYPTO_CTR >> 1490 help >> 1491 Serpent cipher algorithm, by Anderson, Biham & Knudsen. >> 1492 >> 1493 Keys are allowed to be from 0 to 256 bits in length, in steps >> 1494 of 8 bits. >> 1495 >> 1496 This module provides Serpent cipher algorithm that processes eight >> 1497 blocks parallel using SSE2 instruction set. >> 1498 >> 1499 See also: >> 1500 <https://www.cl.cam.ac.uk/~rja14/serpent.html> >> 1501 >> 1502 config CRYPTO_SERPENT_SSE2_586 >> 1503 tristate "Serpent cipher algorithm (i586/SSE2)" >> 1504 depends on X86 && !64BIT >> 1505 select CRYPTO_SKCIPHER >> 1506 select CRYPTO_SERPENT >> 1507 select CRYPTO_SIMD >> 1508 imply CRYPTO_CTR >> 1509 help >> 1510 Serpent cipher algorithm, by Anderson, Biham & Knudsen. >> 1511 >> 1512 Keys are allowed to be from 0 to 256 bits in length, in steps >> 1513 of 8 bits. >> 1514 >> 1515 This module provides Serpent cipher algorithm that processes four >> 1516 blocks parallel using SSE2 instruction set. >> 1517 >> 1518 See also: >> 1519 <https://www.cl.cam.ac.uk/~rja14/serpent.html> >> 1520 >> 1521 config CRYPTO_SERPENT_AVX_X86_64 >> 1522 tristate "Serpent cipher algorithm (x86_64/AVX)" >> 1523 depends on X86 && 64BIT >> 1524 select CRYPTO_SKCIPHER >> 1525 select CRYPTO_SERPENT >> 1526 select CRYPTO_SIMD >> 1527 imply CRYPTO_XTS >> 1528 imply CRYPTO_CTR >> 1529 help >> 1530 Serpent cipher algorithm, by Anderson, Biham & Knudsen. >> 1531 >> 1532 Keys are allowed to be from 0 to 256 bits in length, in steps >> 1533 of 8 bits. >> 1534 >> 1535 This module provides the Serpent cipher algorithm that processes >> 1536 eight blocks parallel using the AVX instruction set. >> 1537 >> 1538 See also: >> 1539 <https://www.cl.cam.ac.uk/~rja14/serpent.html> >> 1540 >> 1541 config CRYPTO_SERPENT_AVX2_X86_64 >> 1542 tristate "Serpent cipher algorithm (x86_64/AVX2)" >> 1543 depends on X86 && 64BIT >> 1544 select CRYPTO_SERPENT_AVX_X86_64 >> 1545 help >> 1546 Serpent cipher algorithm, by Anderson, Biham & Knudsen. >> 1547 >> 1548 Keys are allowed to be from 0 to 256 bits in length, in steps >> 1549 of 8 bits. >> 1550 >> 1551 This module provides Serpent cipher algorithm that processes 16 >> 1552 blocks parallel using AVX2 instruction set. >> 1553 >> 1554 See also: >> 1555 <https://www.cl.cam.ac.uk/~rja14/serpent.html> >> 1556 >> 1557 config CRYPTO_SM4 >> 1558 tristate "SM4 cipher algorithm" >> 1559 select CRYPTO_ALGAPI >> 1560 select CRYPTO_LIB_SM4 >> 1561 help >> 1562 SM4 cipher algorithms (OSCCA GB/T 32907-2016). >> 1563 >> 1564 SM4 (GBT.32907-2016) is a cryptographic standard issued by the >> 1565 Organization of State Commercial Administration of China (OSCCA) >> 1566 as an authorized cryptographic algorithms for the use within China. >> 1567 >> 1568 SMS4 was originally created for use in protecting wireless >> 1569 networks, and is mandated in the Chinese National Standard for >> 1570 Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure) >> 1571 (GB.15629.11-2003). >> 1572 >> 1573 The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and >> 1574 standardized through TC 260 of the Standardization Administration >> 1575 of the People's Republic of China (SAC). >> 1576 >> 1577 The input, output, and key of SMS4 are each 128 bits. >> 1578 >> 1579 See also: <https://eprint.iacr.org/2008/329.pdf> >> 1580 >> 1581 If unsure, say N. >> 1582 >> 1583 config CRYPTO_SM4_AESNI_AVX_X86_64 >> 1584 tristate "SM4 cipher algorithm (x86_64/AES-NI/AVX)" >> 1585 depends on X86 && 64BIT >> 1586 select CRYPTO_SKCIPHER >> 1587 select CRYPTO_SIMD >> 1588 select CRYPTO_ALGAPI >> 1589 select CRYPTO_LIB_SM4 >> 1590 help >> 1591 SM4 cipher algorithms (OSCCA GB/T 32907-2016) (x86_64/AES-NI/AVX). >> 1592 >> 1593 SM4 (GBT.32907-2016) is a cryptographic standard issued by the >> 1594 Organization of State Commercial Administration of China (OSCCA) >> 1595 as an authorized cryptographic algorithms for the use within China. >> 1596 >> 1597 This is SM4 optimized implementation using AES-NI/AVX/x86_64 >> 1598 instruction set for block cipher. Through two affine transforms, >> 1599 we can use the AES S-Box to simulate the SM4 S-Box to achieve the >> 1600 effect of instruction acceleration. >> 1601 >> 1602 If unsure, say N. >> 1603 >> 1604 config CRYPTO_SM4_AESNI_AVX2_X86_64 >> 1605 tristate "SM4 cipher algorithm (x86_64/AES-NI/AVX2)" >> 1606 depends on X86 && 64BIT >> 1607 select CRYPTO_SKCIPHER >> 1608 select CRYPTO_SIMD >> 1609 select CRYPTO_ALGAPI >> 1610 select CRYPTO_LIB_SM4 >> 1611 select CRYPTO_SM4_AESNI_AVX_X86_64 >> 1612 help >> 1613 SM4 cipher algorithms (OSCCA GB/T 32907-2016) (x86_64/AES-NI/AVX2). >> 1614 >> 1615 SM4 (GBT.32907-2016) is a cryptographic standard issued by the >> 1616 Organization of State Commercial Administration of China (OSCCA) >> 1617 as an authorized cryptographic algorithms for the use within China. >> 1618 >> 1619 This is SM4 optimized implementation using AES-NI/AVX2/x86_64 >> 1620 instruction set for block cipher. Through two affine transforms, >> 1621 we can use the AES S-Box to simulate the SM4 S-Box to achieve the >> 1622 effect of instruction acceleration. >> 1623 >> 1624 If unsure, say N. >> 1625 >> 1626 config CRYPTO_TEA >> 1627 tristate "TEA, XTEA and XETA cipher algorithms" >> 1628 depends on CRYPTO_USER_API_ENABLE_OBSOLETE >> 1629 select CRYPTO_ALGAPI >> 1630 help >> 1631 TEA cipher algorithm. >> 1632 >> 1633 Tiny Encryption Algorithm is a simple cipher that uses >> 1634 many rounds for security. It is very fast and uses >> 1635 little memory. >> 1636 >> 1637 Xtendend Tiny Encryption Algorithm is a modification to >> 1638 the TEA algorithm to address a potential key weakness >> 1639 in the TEA algorithm. >> 1640 >> 1641 Xtendend Encryption Tiny Algorithm is a mis-implementation >> 1642 of the XTEA algorithm for compatibility purposes. >> 1643 >> 1644 config CRYPTO_TWOFISH >> 1645 tristate "Twofish cipher algorithm" >> 1646 select CRYPTO_ALGAPI >> 1647 select CRYPTO_TWOFISH_COMMON >> 1648 help >> 1649 Twofish cipher algorithm. >> 1650 >> 1651 Twofish was submitted as an AES (Advanced Encryption Standard) >> 1652 candidate cipher by researchers at CounterPane Systems. It is a >> 1653 16 round block cipher supporting key sizes of 128, 192, and 256 >> 1654 bits. >> 1655 >> 1656 See also: >> 1657 <https://www.schneier.com/twofish.html> >> 1658 >> 1659 config CRYPTO_TWOFISH_COMMON >> 1660 tristate >> 1661 help >> 1662 Common parts of the Twofish cipher algorithm shared by the >> 1663 generic c and the assembler implementations. >> 1664 >> 1665 config CRYPTO_TWOFISH_586 >> 1666 tristate "Twofish cipher algorithms (i586)" >> 1667 depends on (X86 || UML_X86) && !64BIT >> 1668 select CRYPTO_ALGAPI >> 1669 select CRYPTO_TWOFISH_COMMON >> 1670 imply CRYPTO_CTR >> 1671 help >> 1672 Twofish cipher algorithm. >> 1673 >> 1674 Twofish was submitted as an AES (Advanced Encryption Standard) >> 1675 candidate cipher by researchers at CounterPane Systems. It is a >> 1676 16 round block cipher supporting key sizes of 128, 192, and 256 >> 1677 bits. >> 1678 >> 1679 See also: >> 1680 <https://www.schneier.com/twofish.html> >> 1681 >> 1682 config CRYPTO_TWOFISH_X86_64 >> 1683 tristate "Twofish cipher algorithm (x86_64)" >> 1684 depends on (X86 || UML_X86) && 64BIT >> 1685 select CRYPTO_ALGAPI >> 1686 select CRYPTO_TWOFISH_COMMON >> 1687 imply CRYPTO_CTR >> 1688 help >> 1689 Twofish cipher algorithm (x86_64). >> 1690 >> 1691 Twofish was submitted as an AES (Advanced Encryption Standard) >> 1692 candidate cipher by researchers at CounterPane Systems. It is a >> 1693 16 round block cipher supporting key sizes of 128, 192, and 256 >> 1694 bits. >> 1695 >> 1696 See also: >> 1697 <https://www.schneier.com/twofish.html> >> 1698 >> 1699 config CRYPTO_TWOFISH_X86_64_3WAY >> 1700 tristate "Twofish cipher algorithm (x86_64, 3-way parallel)" >> 1701 depends on X86 && 64BIT >> 1702 select CRYPTO_SKCIPHER >> 1703 select CRYPTO_TWOFISH_COMMON >> 1704 select CRYPTO_TWOFISH_X86_64 >> 1705 help >> 1706 Twofish cipher algorithm (x86_64, 3-way parallel). >> 1707 >> 1708 Twofish was submitted as an AES (Advanced Encryption Standard) >> 1709 candidate cipher by researchers at CounterPane Systems. It is a >> 1710 16 round block cipher supporting key sizes of 128, 192, and 256 >> 1711 bits. >> 1712 >> 1713 This module provides Twofish cipher algorithm that processes three >> 1714 blocks parallel, utilizing resources of out-of-order CPUs better. >> 1715 >> 1716 See also: >> 1717 <https://www.schneier.com/twofish.html> >> 1718 >> 1719 config CRYPTO_TWOFISH_AVX_X86_64 >> 1720 tristate "Twofish cipher algorithm (x86_64/AVX)" >> 1721 depends on X86 && 64BIT >> 1722 select CRYPTO_SKCIPHER >> 1723 select CRYPTO_SIMD >> 1724 select CRYPTO_TWOFISH_COMMON >> 1725 select CRYPTO_TWOFISH_X86_64 >> 1726 select CRYPTO_TWOFISH_X86_64_3WAY >> 1727 imply CRYPTO_XTS >> 1728 help >> 1729 Twofish cipher algorithm (x86_64/AVX). >> 1730 >> 1731 Twofish was submitted as an AES (Advanced Encryption Standard) >> 1732 candidate cipher by researchers at CounterPane Systems. It is a >> 1733 16 round block cipher supporting key sizes of 128, 192, and 256 >> 1734 bits. >> 1735 >> 1736 This module provides the Twofish cipher algorithm that processes >> 1737 eight blocks parallel using the AVX Instruction Set. >> 1738 >> 1739 See also: >> 1740 <https://www.schneier.com/twofish.html> >> 1741 >> 1742 comment "Compression" 1123 1743 1124 config CRYPTO_DEFLATE 1744 config CRYPTO_DEFLATE 1125 tristate "Deflate" !! 1745 tristate "Deflate compression algorithm" 1126 select CRYPTO_ALGAPI 1746 select CRYPTO_ALGAPI 1127 select CRYPTO_ACOMP2 1747 select CRYPTO_ACOMP2 1128 select ZLIB_INFLATE 1748 select ZLIB_INFLATE 1129 select ZLIB_DEFLATE 1749 select ZLIB_DEFLATE 1130 help 1750 help 1131 Deflate compression algorithm (RFC1 !! 1751 This is the Deflate algorithm (RFC1951), specified for use in >> 1752 IPSec with the IPCOMP protocol (RFC3173, RFC2394). 1132 1753 1133 Used by IPSec with the IPCOMP proto !! 1754 You will most probably want this if using IPSec. 1134 1755 1135 config CRYPTO_LZO 1756 config CRYPTO_LZO 1136 tristate "LZO" !! 1757 tristate "LZO compression algorithm" 1137 select CRYPTO_ALGAPI 1758 select CRYPTO_ALGAPI 1138 select CRYPTO_ACOMP2 1759 select CRYPTO_ACOMP2 1139 select LZO_COMPRESS 1760 select LZO_COMPRESS 1140 select LZO_DECOMPRESS 1761 select LZO_DECOMPRESS 1141 help 1762 help 1142 LZO compression algorithm !! 1763 This is the LZO algorithm. 1143 << 1144 See https://www.oberhumer.com/opens << 1145 1764 1146 config CRYPTO_842 1765 config CRYPTO_842 1147 tristate "842" !! 1766 tristate "842 compression algorithm" 1148 select CRYPTO_ALGAPI 1767 select CRYPTO_ALGAPI 1149 select CRYPTO_ACOMP2 1768 select CRYPTO_ACOMP2 1150 select 842_COMPRESS 1769 select 842_COMPRESS 1151 select 842_DECOMPRESS 1770 select 842_DECOMPRESS 1152 help 1771 help 1153 842 compression algorithm by IBM !! 1772 This is the 842 algorithm. 1154 << 1155 See https://github.com/plauth/lib84 << 1156 1773 1157 config CRYPTO_LZ4 1774 config CRYPTO_LZ4 1158 tristate "LZ4" !! 1775 tristate "LZ4 compression algorithm" 1159 select CRYPTO_ALGAPI 1776 select CRYPTO_ALGAPI 1160 select CRYPTO_ACOMP2 1777 select CRYPTO_ACOMP2 1161 select LZ4_COMPRESS 1778 select LZ4_COMPRESS 1162 select LZ4_DECOMPRESS 1779 select LZ4_DECOMPRESS 1163 help 1780 help 1164 LZ4 compression algorithm !! 1781 This is the LZ4 algorithm. 1165 << 1166 See https://github.com/lz4/lz4 for << 1167 1782 1168 config CRYPTO_LZ4HC 1783 config CRYPTO_LZ4HC 1169 tristate "LZ4HC" !! 1784 tristate "LZ4HC compression algorithm" 1170 select CRYPTO_ALGAPI 1785 select CRYPTO_ALGAPI 1171 select CRYPTO_ACOMP2 1786 select CRYPTO_ACOMP2 1172 select LZ4HC_COMPRESS 1787 select LZ4HC_COMPRESS 1173 select LZ4_DECOMPRESS 1788 select LZ4_DECOMPRESS 1174 help 1789 help 1175 LZ4 high compression mode algorithm !! 1790 This is the LZ4 high compression mode algorithm. 1176 << 1177 See https://github.com/lz4/lz4 for << 1178 1791 1179 config CRYPTO_ZSTD 1792 config CRYPTO_ZSTD 1180 tristate "Zstd" !! 1793 tristate "Zstd compression algorithm" 1181 select CRYPTO_ALGAPI 1794 select CRYPTO_ALGAPI 1182 select CRYPTO_ACOMP2 1795 select CRYPTO_ACOMP2 1183 select ZSTD_COMPRESS 1796 select ZSTD_COMPRESS 1184 select ZSTD_DECOMPRESS 1797 select ZSTD_DECOMPRESS 1185 help 1798 help 1186 zstd compression algorithm !! 1799 This is the zstd algorithm. 1187 << 1188 See https://github.com/facebook/zst << 1189 << 1190 endmenu << 1191 1800 1192 menu "Random number generation" !! 1801 comment "Random Number Generation" 1193 1802 1194 config CRYPTO_ANSI_CPRNG 1803 config CRYPTO_ANSI_CPRNG 1195 tristate "ANSI PRNG (Pseudo Random Nu !! 1804 tristate "Pseudo Random Number Generation for Cryptographic modules" 1196 select CRYPTO_AES 1805 select CRYPTO_AES 1197 select CRYPTO_RNG 1806 select CRYPTO_RNG 1198 help 1807 help 1199 Pseudo RNG (random number generator !! 1808 This option enables the generic pseudo random number generator 1200 !! 1809 for cryptographic modules. Uses the Algorithm specified in 1201 This uses the AES cipher algorithm. !! 1810 ANSI X9.31 A.2.4. Note that this option must be enabled if 1202 !! 1811 CRYPTO_FIPS is selected 1203 Note that this option must be enabl << 1204 1812 1205 menuconfig CRYPTO_DRBG_MENU 1813 menuconfig CRYPTO_DRBG_MENU 1206 tristate "NIST SP800-90A DRBG (Determ !! 1814 tristate "NIST SP800-90A DRBG" 1207 help 1815 help 1208 DRBG (Deterministic Random Bit Gene !! 1816 NIST SP800-90A compliant DRBG. In the following submenu, one or 1209 !! 1817 more of the DRBG types must be selected. 1210 In the following submenu, one or mo << 1211 1818 1212 if CRYPTO_DRBG_MENU 1819 if CRYPTO_DRBG_MENU 1213 1820 1214 config CRYPTO_DRBG_HMAC 1821 config CRYPTO_DRBG_HMAC 1215 bool 1822 bool 1216 default y 1823 default y 1217 select CRYPTO_HMAC 1824 select CRYPTO_HMAC 1218 select CRYPTO_SHA512 1825 select CRYPTO_SHA512 1219 1826 1220 config CRYPTO_DRBG_HASH 1827 config CRYPTO_DRBG_HASH 1221 bool "Hash_DRBG" !! 1828 bool "Enable Hash DRBG" 1222 select CRYPTO_SHA256 1829 select CRYPTO_SHA256 1223 help 1830 help 1224 Hash_DRBG variant as defined in NIS !! 1831 Enable the Hash DRBG variant as defined in NIST SP800-90A. 1225 << 1226 This uses the SHA-1, SHA-256, SHA-3 << 1227 1832 1228 config CRYPTO_DRBG_CTR 1833 config CRYPTO_DRBG_CTR 1229 bool "CTR_DRBG" !! 1834 bool "Enable CTR DRBG" 1230 select CRYPTO_AES 1835 select CRYPTO_AES 1231 select CRYPTO_CTR 1836 select CRYPTO_CTR 1232 help 1837 help 1233 CTR_DRBG variant as defined in NIST !! 1838 Enable the CTR DRBG variant as defined in NIST SP800-90A. 1234 << 1235 This uses the AES cipher algorithm << 1236 1839 1237 config CRYPTO_DRBG 1840 config CRYPTO_DRBG 1238 tristate 1841 tristate 1239 default CRYPTO_DRBG_MENU 1842 default CRYPTO_DRBG_MENU 1240 select CRYPTO_RNG 1843 select CRYPTO_RNG 1241 select CRYPTO_JITTERENTROPY 1844 select CRYPTO_JITTERENTROPY 1242 1845 1243 endif # if CRYPTO_DRBG_MENU 1846 endif # if CRYPTO_DRBG_MENU 1244 1847 1245 config CRYPTO_JITTERENTROPY 1848 config CRYPTO_JITTERENTROPY 1246 tristate "CPU Jitter Non-Deterministi !! 1849 tristate "Jitterentropy Non-Deterministic Random Number Generator" 1247 select CRYPTO_RNG 1850 select CRYPTO_RNG 1248 select CRYPTO_SHA3 << 1249 help 1851 help 1250 CPU Jitter RNG (Random Number Gener !! 1852 The Jitterentropy RNG is a noise that is intended 1251 !! 1853 to provide seed to another RNG. The RNG does not 1252 A non-physical non-deterministic (" !! 1854 perform any cryptographic whitening of the generated 1253 compliant with NIST SP800-90B) inte !! 1855 random numbers. This Jitterentropy RNG registers with 1254 deterministic RNG (e.g., per NIST S !! 1856 the kernel crypto API and can be used by any caller. 1255 This RNG does not perform any crypt << 1256 random numbers. << 1257 << 1258 See https://www.chronox.de/jent/ << 1259 << 1260 if CRYPTO_JITTERENTROPY << 1261 if CRYPTO_FIPS && EXPERT << 1262 << 1263 choice << 1264 prompt "CPU Jitter RNG Memory Size" << 1265 default CRYPTO_JITTERENTROPY_MEMSIZE_ << 1266 help << 1267 The Jitter RNG measures the executi << 1268 Multiple consecutive memory accesse << 1269 size fits into a cache (e.g. L1), o << 1270 to that cache is measured. The clos << 1271 the less variations are measured an << 1272 obtained. Thus, if the memory size << 1273 obtained entropy is less than if th << 1274 L1 + L2, which in turn is less if t << 1275 L1 + L2 + L3. Thus, by selecting a << 1276 the entropy rate produced by the Ji << 1277 << 1278 config CRYPTO_JITTERENTROPY_MEMSIZE_2 << 1279 bool "2048 Bytes (default)" << 1280 << 1281 config CRYPTO_JITTERENTROPY_MEMSIZE_1 << 1282 bool "128 kBytes" << 1283 << 1284 config CRYPTO_JITTERENTROPY_MEMSIZE_1 << 1285 bool "1024 kBytes" << 1286 << 1287 config CRYPTO_JITTERENTROPY_MEMSIZE_8 << 1288 bool "8192 kBytes" << 1289 endchoice << 1290 << 1291 config CRYPTO_JITTERENTROPY_MEMORY_BLOCKS << 1292 int << 1293 default 64 if CRYPTO_JITTERENTROPY_ME << 1294 default 512 if CRYPTO_JITTERENTROPY_M << 1295 default 1024 if CRYPTO_JITTERENTROPY_ << 1296 default 4096 if CRYPTO_JITTERENTROPY_ << 1297 << 1298 config CRYPTO_JITTERENTROPY_MEMORY_BLOCKSIZE << 1299 int << 1300 default 32 if CRYPTO_JITTERENTROPY_ME << 1301 default 256 if CRYPTO_JITTERENTROPY_M << 1302 default 1024 if CRYPTO_JITTERENTROPY_ << 1303 default 2048 if CRYPTO_JITTERENTROPY_ << 1304 << 1305 config CRYPTO_JITTERENTROPY_OSR << 1306 int "CPU Jitter RNG Oversampling Rate << 1307 range 1 15 << 1308 default 3 << 1309 help << 1310 The Jitter RNG allows the specifica << 1311 The Jitter RNG operation requires a << 1312 measurements to produce one output << 1313 OSR value is multiplied with the am << 1314 generate one output block. Thus, th << 1315 by the OSR factor. The oversampling << 1316 on hardware whose timers deliver li << 1317 the timer is coarse) by setting the << 1318 trade-off, however, is that the Jit << 1319 to generate random numbers. << 1320 << 1321 config CRYPTO_JITTERENTROPY_TESTINTERFACE << 1322 bool "CPU Jitter RNG Test Interface" << 1323 help << 1324 The test interface allows a privile << 1325 the raw unconditioned high resoluti << 1326 is collected by the Jitter RNG for << 1327 this data is used at the same time << 1328 the Jitter RNG operates in an insec << 1329 recording is enabled. This interfac << 1330 intended for testing purposes and i << 1331 production systems. << 1332 << 1333 The raw noise data can be obtained << 1334 debugfs file. Using the option << 1335 jitterentropy_testing.boot_raw_hire << 1336 the first 1000 entropy events since << 1337 << 1338 If unsure, select N. << 1339 << 1340 endif # if CRYPTO_FIPS && EXPERT << 1341 << 1342 if !(CRYPTO_FIPS && EXPERT) << 1343 << 1344 config CRYPTO_JITTERENTROPY_MEMORY_BLOCKS << 1345 int << 1346 default 64 << 1347 << 1348 config CRYPTO_JITTERENTROPY_MEMORY_BLOCKSIZE << 1349 int << 1350 default 32 << 1351 << 1352 config CRYPTO_JITTERENTROPY_OSR << 1353 int << 1354 default 1 << 1355 << 1356 config CRYPTO_JITTERENTROPY_TESTINTERFACE << 1357 bool << 1358 << 1359 endif # if !(CRYPTO_FIPS && EXPERT) << 1360 endif # if CRYPTO_JITTERENTROPY << 1361 1857 1362 config CRYPTO_KDF800108_CTR 1858 config CRYPTO_KDF800108_CTR 1363 tristate 1859 tristate 1364 select CRYPTO_HMAC 1860 select CRYPTO_HMAC 1365 select CRYPTO_SHA256 1861 select CRYPTO_SHA256 1366 1862 1367 endmenu << 1368 menu "Userspace interface" << 1369 << 1370 config CRYPTO_USER_API 1863 config CRYPTO_USER_API 1371 tristate 1864 tristate 1372 1865 1373 config CRYPTO_USER_API_HASH 1866 config CRYPTO_USER_API_HASH 1374 tristate "Hash algorithms" !! 1867 tristate "User-space interface for hash algorithms" 1375 depends on NET 1868 depends on NET 1376 select CRYPTO_HASH 1869 select CRYPTO_HASH 1377 select CRYPTO_USER_API 1870 select CRYPTO_USER_API 1378 help 1871 help 1379 Enable the userspace interface for !! 1872 This option enables the user-spaces interface for hash 1380 !! 1873 algorithms. 1381 See Documentation/crypto/userspace- << 1382 https://www.chronox.de/libkcapi/htm << 1383 1874 1384 config CRYPTO_USER_API_SKCIPHER 1875 config CRYPTO_USER_API_SKCIPHER 1385 tristate "Symmetric key cipher algori !! 1876 tristate "User-space interface for symmetric key cipher algorithms" 1386 depends on NET 1877 depends on NET 1387 select CRYPTO_SKCIPHER 1878 select CRYPTO_SKCIPHER 1388 select CRYPTO_USER_API 1879 select CRYPTO_USER_API 1389 help 1880 help 1390 Enable the userspace interface for !! 1881 This option enables the user-spaces interface for symmetric 1391 !! 1882 key cipher algorithms. 1392 See Documentation/crypto/userspace- << 1393 https://www.chronox.de/libkcapi/htm << 1394 1883 1395 config CRYPTO_USER_API_RNG 1884 config CRYPTO_USER_API_RNG 1396 tristate "RNG (random number generato !! 1885 tristate "User-space interface for random number generator algorithms" 1397 depends on NET 1886 depends on NET 1398 select CRYPTO_RNG 1887 select CRYPTO_RNG 1399 select CRYPTO_USER_API 1888 select CRYPTO_USER_API 1400 help 1889 help 1401 Enable the userspace interface for !! 1890 This option enables the user-spaces interface for random 1402 algorithms. !! 1891 number generator algorithms. 1403 << 1404 See Documentation/crypto/userspace- << 1405 https://www.chronox.de/libkcapi/htm << 1406 1892 1407 config CRYPTO_USER_API_RNG_CAVP 1893 config CRYPTO_USER_API_RNG_CAVP 1408 bool "Enable CAVP testing of DRBG" 1894 bool "Enable CAVP testing of DRBG" 1409 depends on CRYPTO_USER_API_RNG && CRY 1895 depends on CRYPTO_USER_API_RNG && CRYPTO_DRBG 1410 help 1896 help 1411 Enable extra APIs in the userspace !! 1897 This option enables extra API for CAVP testing via the user-space 1412 (Cryptographic Algorithm Validation !! 1898 interface: resetting of DRBG entropy, and providing Additional Data. 1413 - resetting DRBG entropy << 1414 - providing Additional Data << 1415 << 1416 This should only be enabled for CAV 1899 This should only be enabled for CAVP testing. You should say 1417 no unless you know what this is. 1900 no unless you know what this is. 1418 1901 1419 config CRYPTO_USER_API_AEAD 1902 config CRYPTO_USER_API_AEAD 1420 tristate "AEAD cipher algorithms" !! 1903 tristate "User-space interface for AEAD cipher algorithms" 1421 depends on NET 1904 depends on NET 1422 select CRYPTO_AEAD 1905 select CRYPTO_AEAD 1423 select CRYPTO_SKCIPHER 1906 select CRYPTO_SKCIPHER 1424 select CRYPTO_NULL 1907 select CRYPTO_NULL 1425 select CRYPTO_USER_API 1908 select CRYPTO_USER_API 1426 help 1909 help 1427 Enable the userspace interface for !! 1910 This option enables the user-spaces interface for AEAD 1428 !! 1911 cipher algorithms. 1429 See Documentation/crypto/userspace- << 1430 https://www.chronox.de/libkcapi/htm << 1431 1912 1432 config CRYPTO_USER_API_ENABLE_OBSOLETE 1913 config CRYPTO_USER_API_ENABLE_OBSOLETE 1433 bool "Obsolete cryptographic algorith !! 1914 bool "Enable obsolete cryptographic algorithms for userspace" 1434 depends on CRYPTO_USER_API 1915 depends on CRYPTO_USER_API 1435 default y 1916 default y 1436 help 1917 help 1437 Allow obsolete cryptographic algori 1918 Allow obsolete cryptographic algorithms to be selected that have 1438 already been phased out from intern 1919 already been phased out from internal use by the kernel, and are 1439 only useful for userspace clients t 1920 only useful for userspace clients that still rely on them. 1440 1921 1441 endmenu !! 1922 config CRYPTO_STATS >> 1923 bool "Crypto usage statistics for User-space" >> 1924 depends on CRYPTO_USER >> 1925 help >> 1926 This option enables the gathering of crypto stats. >> 1927 This will collect: >> 1928 - encrypt/decrypt size and numbers of symmeric operations >> 1929 - compress/decompress size and numbers of compress operations >> 1930 - size and numbers of hash operations >> 1931 - encrypt/decrypt/sign/verify numbers for asymmetric operations >> 1932 - generate/seed numbers for rng operations 1442 1933 1443 config CRYPTO_HASH_INFO 1934 config CRYPTO_HASH_INFO 1444 bool 1935 bool 1445 << 1446 if !KMSAN # avoid false positives from assemb << 1447 if ARM << 1448 source "arch/arm/crypto/Kconfig" << 1449 endif << 1450 if ARM64 << 1451 source "arch/arm64/crypto/Kconfig" << 1452 endif << 1453 if LOONGARCH << 1454 source "arch/loongarch/crypto/Kconfig" << 1455 endif << 1456 if MIPS << 1457 source "arch/mips/crypto/Kconfig" << 1458 endif << 1459 if PPC << 1460 source "arch/powerpc/crypto/Kconfig" << 1461 endif << 1462 if RISCV << 1463 source "arch/riscv/crypto/Kconfig" << 1464 endif << 1465 if S390 << 1466 source "arch/s390/crypto/Kconfig" << 1467 endif << 1468 if SPARC << 1469 source "arch/sparc/crypto/Kconfig" << 1470 endif << 1471 if X86 << 1472 source "arch/x86/crypto/Kconfig" << 1473 endif << 1474 endif << 1475 1936 1476 source "drivers/crypto/Kconfig" 1937 source "drivers/crypto/Kconfig" 1477 source "crypto/asymmetric_keys/Kconfig" 1938 source "crypto/asymmetric_keys/Kconfig" 1478 source "certs/Kconfig" 1939 source "certs/Kconfig" 1479 1940 1480 endif # if CRYPTO 1941 endif # if CRYPTO
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.