1 # SPDX-License-Identifier: GPL-2.0 << 2 # 1 # 3 # Generic algorithms support 2 # Generic algorithms support 4 # 3 # 5 config XOR_BLOCKS 4 config XOR_BLOCKS 6 tristate 5 tristate 7 6 8 # 7 # 9 # async_tx api: hardware offloaded memory tran 8 # async_tx api: hardware offloaded memory transfer/transform support 10 # 9 # 11 source "crypto/async_tx/Kconfig" 10 source "crypto/async_tx/Kconfig" 12 11 13 # 12 # 14 # Cryptographic API Configuration 13 # Cryptographic API Configuration 15 # 14 # 16 menuconfig CRYPTO 15 menuconfig CRYPTO 17 tristate "Cryptographic API" 16 tristate "Cryptographic API" 18 select CRYPTO_LIB_UTILS << 19 help 17 help 20 This option provides the core Crypto 18 This option provides the core Cryptographic API. 21 19 22 if CRYPTO 20 if CRYPTO 23 21 24 menu "Crypto core or helper" !! 22 comment "Crypto core or helper" 25 23 26 config CRYPTO_FIPS 24 config CRYPTO_FIPS 27 bool "FIPS 200 compliance" 25 bool "FIPS 200 compliance" 28 depends on (CRYPTO_ANSI_CPRNG || CRYPT 26 depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS 29 depends on (MODULE_SIG || !MODULES) 27 depends on (MODULE_SIG || !MODULES) 30 help 28 help 31 This option enables the fips boot op !! 29 This options enables the fips boot option which is 32 required if you want the system to o !! 30 required if you want to system to operate in a FIPS 200 33 certification. You should say no un 31 certification. You should say no unless you know what 34 this is. 32 this is. 35 33 36 config CRYPTO_FIPS_NAME << 37 string "FIPS Module Name" << 38 default "Linux Kernel Cryptographic AP << 39 depends on CRYPTO_FIPS << 40 help << 41 This option sets the FIPS Module nam << 42 the /proc/sys/crypto/fips_name file. << 43 << 44 config CRYPTO_FIPS_CUSTOM_VERSION << 45 bool "Use Custom FIPS Module Version" << 46 depends on CRYPTO_FIPS << 47 default n << 48 << 49 config CRYPTO_FIPS_VERSION << 50 string "FIPS Module Version" << 51 default "(none)" << 52 depends on CRYPTO_FIPS_CUSTOM_VERSION << 53 help << 54 This option provides the ability to << 55 By default the KERNELRELEASE value i << 56 << 57 config CRYPTO_ALGAPI 34 config CRYPTO_ALGAPI 58 tristate 35 tristate 59 select CRYPTO_ALGAPI2 36 select CRYPTO_ALGAPI2 60 help 37 help 61 This option provides the API for cry 38 This option provides the API for cryptographic algorithms. 62 39 63 config CRYPTO_ALGAPI2 40 config CRYPTO_ALGAPI2 64 tristate 41 tristate 65 42 66 config CRYPTO_AEAD 43 config CRYPTO_AEAD 67 tristate 44 tristate 68 select CRYPTO_AEAD2 45 select CRYPTO_AEAD2 69 select CRYPTO_ALGAPI 46 select CRYPTO_ALGAPI 70 47 71 config CRYPTO_AEAD2 48 config CRYPTO_AEAD2 72 tristate 49 tristate 73 select CRYPTO_ALGAPI2 50 select CRYPTO_ALGAPI2 >> 51 select CRYPTO_NULL2 >> 52 select CRYPTO_RNG2 74 53 75 config CRYPTO_SIG !! 54 config CRYPTO_BLKCIPHER 76 tristate << 77 select CRYPTO_SIG2 << 78 select CRYPTO_ALGAPI << 79 << 80 config CRYPTO_SIG2 << 81 tristate << 82 select CRYPTO_ALGAPI2 << 83 << 84 config CRYPTO_SKCIPHER << 85 tristate 55 tristate 86 select CRYPTO_SKCIPHER2 !! 56 select CRYPTO_BLKCIPHER2 87 select CRYPTO_ALGAPI 57 select CRYPTO_ALGAPI 88 select CRYPTO_ECB << 89 58 90 config CRYPTO_SKCIPHER2 !! 59 config CRYPTO_BLKCIPHER2 91 tristate 60 tristate 92 select CRYPTO_ALGAPI2 61 select CRYPTO_ALGAPI2 >> 62 select CRYPTO_RNG2 >> 63 select CRYPTO_WORKQUEUE 93 64 94 config CRYPTO_HASH 65 config CRYPTO_HASH 95 tristate 66 tristate 96 select CRYPTO_HASH2 67 select CRYPTO_HASH2 97 select CRYPTO_ALGAPI 68 select CRYPTO_ALGAPI 98 69 99 config CRYPTO_HASH2 70 config CRYPTO_HASH2 100 tristate 71 tristate 101 select CRYPTO_ALGAPI2 72 select CRYPTO_ALGAPI2 102 73 103 config CRYPTO_RNG 74 config CRYPTO_RNG 104 tristate 75 tristate 105 select CRYPTO_RNG2 76 select CRYPTO_RNG2 106 select CRYPTO_ALGAPI 77 select CRYPTO_ALGAPI 107 78 108 config CRYPTO_RNG2 79 config CRYPTO_RNG2 109 tristate 80 tristate 110 select CRYPTO_ALGAPI2 81 select CRYPTO_ALGAPI2 111 82 112 config CRYPTO_RNG_DEFAULT 83 config CRYPTO_RNG_DEFAULT 113 tristate 84 tristate 114 select CRYPTO_DRBG_MENU 85 select CRYPTO_DRBG_MENU 115 86 116 config CRYPTO_AKCIPHER2 87 config CRYPTO_AKCIPHER2 117 tristate 88 tristate 118 select CRYPTO_ALGAPI2 89 select CRYPTO_ALGAPI2 119 90 120 config CRYPTO_AKCIPHER 91 config CRYPTO_AKCIPHER 121 tristate 92 tristate 122 select CRYPTO_AKCIPHER2 93 select CRYPTO_AKCIPHER2 123 select CRYPTO_ALGAPI 94 select CRYPTO_ALGAPI 124 95 125 config CRYPTO_KPP2 96 config CRYPTO_KPP2 126 tristate 97 tristate 127 select CRYPTO_ALGAPI2 98 select CRYPTO_ALGAPI2 128 99 129 config CRYPTO_KPP 100 config CRYPTO_KPP 130 tristate 101 tristate 131 select CRYPTO_ALGAPI 102 select CRYPTO_ALGAPI 132 select CRYPTO_KPP2 103 select CRYPTO_KPP2 133 104 134 config CRYPTO_ACOMP2 105 config CRYPTO_ACOMP2 135 tristate 106 tristate 136 select CRYPTO_ALGAPI2 107 select CRYPTO_ALGAPI2 137 select SGL_ALLOC << 138 108 139 config CRYPTO_ACOMP 109 config CRYPTO_ACOMP 140 tristate 110 tristate 141 select CRYPTO_ALGAPI 111 select CRYPTO_ALGAPI 142 select CRYPTO_ACOMP2 112 select CRYPTO_ACOMP2 143 113 >> 114 config CRYPTO_RSA >> 115 tristate "RSA algorithm" >> 116 select CRYPTO_AKCIPHER >> 117 select CRYPTO_MANAGER >> 118 select MPILIB >> 119 select ASN1 >> 120 help >> 121 Generic implementation of the RSA public key algorithm. >> 122 >> 123 config CRYPTO_DH >> 124 tristate "Diffie-Hellman algorithm" >> 125 select CRYPTO_KPP >> 126 select MPILIB >> 127 help >> 128 Generic implementation of the Diffie-Hellman algorithm. >> 129 >> 130 config CRYPTO_ECDH >> 131 tristate "ECDH algorithm" >> 132 select CRYTPO_KPP >> 133 help >> 134 Generic implementation of the ECDH algorithm >> 135 144 config CRYPTO_MANAGER 136 config CRYPTO_MANAGER 145 tristate "Cryptographic algorithm mana 137 tristate "Cryptographic algorithm manager" 146 select CRYPTO_MANAGER2 138 select CRYPTO_MANAGER2 147 help 139 help 148 Create default cryptographic templat 140 Create default cryptographic template instantiations such as 149 cbc(aes). 141 cbc(aes). 150 142 151 config CRYPTO_MANAGER2 143 config CRYPTO_MANAGER2 152 def_tristate CRYPTO_MANAGER || (CRYPTO 144 def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y) 153 select CRYPTO_ACOMP2 << 154 select CRYPTO_AEAD2 145 select CRYPTO_AEAD2 155 select CRYPTO_AKCIPHER2 << 156 select CRYPTO_SIG2 << 157 select CRYPTO_HASH2 146 select CRYPTO_HASH2 >> 147 select CRYPTO_BLKCIPHER2 >> 148 select CRYPTO_AKCIPHER2 158 select CRYPTO_KPP2 149 select CRYPTO_KPP2 159 select CRYPTO_RNG2 !! 150 select CRYPTO_ACOMP2 160 select CRYPTO_SKCIPHER2 << 161 151 162 config CRYPTO_USER 152 config CRYPTO_USER 163 tristate "Userspace cryptographic algo 153 tristate "Userspace cryptographic algorithm configuration" 164 depends on NET 154 depends on NET 165 select CRYPTO_MANAGER 155 select CRYPTO_MANAGER 166 help 156 help 167 Userspace configuration for cryptogr 157 Userspace configuration for cryptographic instantiations such as 168 cbc(aes). 158 cbc(aes). 169 159 170 config CRYPTO_MANAGER_DISABLE_TESTS 160 config CRYPTO_MANAGER_DISABLE_TESTS 171 bool "Disable run-time self tests" 161 bool "Disable run-time self tests" 172 default y 162 default y >> 163 depends on CRYPTO_MANAGER2 173 help 164 help 174 Disable run-time self tests that nor 165 Disable run-time self tests that normally take place at 175 algorithm registration. 166 algorithm registration. 176 167 177 config CRYPTO_MANAGER_EXTRA_TESTS !! 168 config CRYPTO_GF128MUL 178 bool "Enable extra run-time crypto sel !! 169 tristate "GF(2^128) multiplication functions" 179 depends on DEBUG_KERNEL && !CRYPTO_MAN << 180 help 170 help 181 Enable extra run-time self tests of !! 171 Efficient table driven implementation of multiplications in the 182 including randomized fuzz tests. !! 172 field GF(2^128). This is needed by some cypher modes. This 183 !! 173 option will be selected automatically if you select such a 184 This is intended for developer use o !! 174 cipher mode. Only select this option by hand if you expect to load 185 longer to run than the normal self t !! 175 an external module that requires these functions. 186 176 187 config CRYPTO_NULL 177 config CRYPTO_NULL 188 tristate "Null algorithms" 178 tristate "Null algorithms" 189 select CRYPTO_NULL2 179 select CRYPTO_NULL2 190 help 180 help 191 These are 'Null' algorithms, used by 181 These are 'Null' algorithms, used by IPsec, which do nothing. 192 182 193 config CRYPTO_NULL2 183 config CRYPTO_NULL2 194 tristate 184 tristate 195 select CRYPTO_ALGAPI2 185 select CRYPTO_ALGAPI2 196 select CRYPTO_SKCIPHER2 !! 186 select CRYPTO_BLKCIPHER2 197 select CRYPTO_HASH2 187 select CRYPTO_HASH2 198 188 199 config CRYPTO_PCRYPT 189 config CRYPTO_PCRYPT 200 tristate "Parallel crypto engine" 190 tristate "Parallel crypto engine" 201 depends on SMP 191 depends on SMP 202 select PADATA 192 select PADATA 203 select CRYPTO_MANAGER 193 select CRYPTO_MANAGER 204 select CRYPTO_AEAD 194 select CRYPTO_AEAD 205 help 195 help 206 This converts an arbitrary crypto al 196 This converts an arbitrary crypto algorithm into a parallel 207 algorithm that executes in kernel th 197 algorithm that executes in kernel threads. 208 198 >> 199 config CRYPTO_WORKQUEUE >> 200 tristate >> 201 209 config CRYPTO_CRYPTD 202 config CRYPTO_CRYPTD 210 tristate "Software async crypto daemon 203 tristate "Software async crypto daemon" 211 select CRYPTO_SKCIPHER !! 204 select CRYPTO_BLKCIPHER 212 select CRYPTO_HASH 205 select CRYPTO_HASH 213 select CRYPTO_MANAGER 206 select CRYPTO_MANAGER >> 207 select CRYPTO_WORKQUEUE 214 help 208 help 215 This is a generic software asynchron 209 This is a generic software asynchronous crypto daemon that 216 converts an arbitrary synchronous so 210 converts an arbitrary synchronous software crypto algorithm 217 into an asynchronous algorithm that 211 into an asynchronous algorithm that executes in a kernel thread. 218 212 >> 213 config CRYPTO_MCRYPTD >> 214 tristate "Software async multi-buffer crypto daemon" >> 215 select CRYPTO_BLKCIPHER >> 216 select CRYPTO_HASH >> 217 select CRYPTO_MANAGER >> 218 select CRYPTO_WORKQUEUE >> 219 help >> 220 This is a generic software asynchronous crypto daemon that >> 221 provides the kernel thread to assist multi-buffer crypto >> 222 algorithms for submitting jobs and flushing jobs in multi-buffer >> 223 crypto algorithms. Multi-buffer crypto algorithms are executed >> 224 in the context of this kernel thread and drivers can post >> 225 their crypto request asynchronously to be processed by this daemon. >> 226 219 config CRYPTO_AUTHENC 227 config CRYPTO_AUTHENC 220 tristate "Authenc support" 228 tristate "Authenc support" 221 select CRYPTO_AEAD 229 select CRYPTO_AEAD 222 select CRYPTO_SKCIPHER !! 230 select CRYPTO_BLKCIPHER 223 select CRYPTO_MANAGER 231 select CRYPTO_MANAGER 224 select CRYPTO_HASH 232 select CRYPTO_HASH 225 select CRYPTO_NULL 233 select CRYPTO_NULL 226 help 234 help 227 Authenc: Combined mode wrapper for I 235 Authenc: Combined mode wrapper for IPsec. 228 !! 236 This is required for IPSec. 229 This is required for IPSec ESP (XFRM << 230 237 231 config CRYPTO_TEST 238 config CRYPTO_TEST 232 tristate "Testing module" 239 tristate "Testing module" 233 depends on m || EXPERT !! 240 depends on m 234 select CRYPTO_MANAGER 241 select CRYPTO_MANAGER 235 help 242 help 236 Quick & dirty crypto test module. 243 Quick & dirty crypto test module. 237 244 >> 245 config CRYPTO_ABLK_HELPER >> 246 tristate >> 247 select CRYPTO_CRYPTD >> 248 238 config CRYPTO_SIMD 249 config CRYPTO_SIMD 239 tristate 250 tristate 240 select CRYPTO_CRYPTD 251 select CRYPTO_CRYPTD 241 252 242 config CRYPTO_ENGINE !! 253 config CRYPTO_GLUE_HELPER_X86 243 tristate 254 tristate >> 255 depends on X86 >> 256 select CRYPTO_BLKCIPHER 244 257 245 endmenu !! 258 config CRYPTO_ENGINE >> 259 tristate 246 260 247 menu "Public-key cryptography" !! 261 comment "Authenticated Encryption with Associated Data" 248 262 249 config CRYPTO_RSA !! 263 config CRYPTO_CCM 250 tristate "RSA (Rivest-Shamir-Adleman)" !! 264 tristate "CCM support" 251 select CRYPTO_AKCIPHER !! 265 select CRYPTO_CTR 252 select CRYPTO_MANAGER !! 266 select CRYPTO_AEAD 253 select MPILIB << 254 select ASN1 << 255 help 267 help 256 RSA (Rivest-Shamir-Adleman) public k !! 268 Support for Counter with CBC MAC. Required for IPsec. 257 269 258 config CRYPTO_DH !! 270 config CRYPTO_GCM 259 tristate "DH (Diffie-Hellman)" !! 271 tristate "GCM/GMAC support" 260 select CRYPTO_KPP !! 272 select CRYPTO_CTR 261 select MPILIB !! 273 select CRYPTO_AEAD >> 274 select CRYPTO_GHASH >> 275 select CRYPTO_NULL 262 help 276 help 263 DH (Diffie-Hellman) key exchange alg !! 277 Support for Galois/Counter Mode (GCM) and Galois Message >> 278 Authentication Code (GMAC). Required for IPSec. 264 279 265 config CRYPTO_DH_RFC7919_GROUPS !! 280 config CRYPTO_CHACHA20POLY1305 266 bool "RFC 7919 FFDHE groups" !! 281 tristate "ChaCha20-Poly1305 AEAD support" 267 depends on CRYPTO_DH !! 282 select CRYPTO_CHACHA20 268 select CRYPTO_RNG_DEFAULT !! 283 select CRYPTO_POLY1305 >> 284 select CRYPTO_AEAD 269 help 285 help 270 FFDHE (Finite-Field-based Diffie-Hel !! 286 ChaCha20-Poly1305 AEAD support, RFC7539. 271 defined in RFC7919. << 272 287 273 Support these finite-field groups in !! 288 Support for the AEAD wrapper using the ChaCha20 stream cipher combined 274 - ffdhe2048, ffdhe3072, ffdhe4096, f !! 289 with the Poly1305 authenticator. It is defined in RFC7539 for use in >> 290 IETF protocols. 275 291 276 If unsure, say N. !! 292 config CRYPTO_SEQIV >> 293 tristate "Sequence Number IV Generator" >> 294 select CRYPTO_AEAD >> 295 select CRYPTO_BLKCIPHER >> 296 select CRYPTO_NULL >> 297 select CRYPTO_RNG_DEFAULT >> 298 help >> 299 This IV generator generates an IV based on a sequence number by >> 300 xoring it with a salt. This algorithm is mainly useful for CTR 277 301 278 config CRYPTO_ECC !! 302 config CRYPTO_ECHAINIV 279 tristate !! 303 tristate "Encrypted Chain IV Generator" >> 304 select CRYPTO_AEAD >> 305 select CRYPTO_NULL 280 select CRYPTO_RNG_DEFAULT 306 select CRYPTO_RNG_DEFAULT >> 307 default m >> 308 help >> 309 This IV generator generates an IV based on the encryption of >> 310 a sequence number xored with a salt. This is the default >> 311 algorithm for CBC. 281 312 282 config CRYPTO_ECDH !! 313 comment "Block modes" 283 tristate "ECDH (Elliptic Curve Diffie- !! 314 284 select CRYPTO_ECC !! 315 config CRYPTO_CBC 285 select CRYPTO_KPP !! 316 tristate "CBC support" >> 317 select CRYPTO_BLKCIPHER >> 318 select CRYPTO_MANAGER 286 help 319 help 287 ECDH (Elliptic Curve Diffie-Hellman) !! 320 CBC: Cipher Block Chaining mode 288 using curves P-192, P-256, and P-384 !! 321 This block cipher algorithm is required for IPSec. 289 322 290 config CRYPTO_ECDSA !! 323 config CRYPTO_CTR 291 tristate "ECDSA (Elliptic Curve Digita !! 324 tristate "CTR support" 292 select CRYPTO_ECC !! 325 select CRYPTO_BLKCIPHER 293 select CRYPTO_AKCIPHER !! 326 select CRYPTO_SEQIV 294 select ASN1 !! 327 select CRYPTO_MANAGER 295 help 328 help 296 ECDSA (Elliptic Curve Digital Signat !! 329 CTR: Counter mode 297 ISO/IEC 14888-3) !! 330 This block cipher algorithm is required for IPSec. 298 using curves P-192, P-256, and P-384 !! 331 299 !! 332 config CRYPTO_CTS 300 Only signature verification is imple !! 333 tristate "CTS support" 301 !! 334 select CRYPTO_BLKCIPHER 302 config CRYPTO_ECRDSA << 303 tristate "EC-RDSA (Elliptic Curve Russ << 304 select CRYPTO_ECC << 305 select CRYPTO_AKCIPHER << 306 select CRYPTO_STREEBOG << 307 select OID_REGISTRY << 308 select ASN1 << 309 help 335 help 310 Elliptic Curve Russian Digital Signa !! 336 CTS: Cipher Text Stealing 311 RFC 7091, ISO/IEC 14888-3) !! 337 This is the Cipher Text Stealing mode as described by >> 338 Section 8 of rfc2040 and referenced by rfc3962. >> 339 (rfc3962 includes errata information in its Appendix A) >> 340 This mode is required for Kerberos gss mechanism support >> 341 for AES encryption. 312 342 313 One of the Russian cryptographic sta !! 343 config CRYPTO_ECB 314 algorithms). Only signature verifica !! 344 tristate "ECB support" >> 345 select CRYPTO_BLKCIPHER >> 346 select CRYPTO_MANAGER >> 347 help >> 348 ECB: Electronic CodeBook mode >> 349 This is the simplest block cipher algorithm. It simply encrypts >> 350 the input block by block. 315 351 316 config CRYPTO_CURVE25519 !! 352 config CRYPTO_LRW 317 tristate "Curve25519" !! 353 tristate "LRW support" 318 select CRYPTO_KPP !! 354 select CRYPTO_BLKCIPHER 319 select CRYPTO_LIB_CURVE25519_GENERIC !! 355 select CRYPTO_MANAGER >> 356 select CRYPTO_GF128MUL 320 help 357 help 321 Curve25519 elliptic curve (RFC7748) !! 358 LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable >> 359 narrow block cipher mode for dm-crypt. Use it with cipher >> 360 specification string aes-lrw-benbi, the key must be 256, 320 or 384. >> 361 The first 128, 192 or 256 bits in the key are used for AES and the >> 362 rest is used to tie each cipher block to its logical position. 322 363 323 endmenu !! 364 config CRYPTO_PCBC >> 365 tristate "PCBC support" >> 366 select CRYPTO_BLKCIPHER >> 367 select CRYPTO_MANAGER >> 368 help >> 369 PCBC: Propagating Cipher Block Chaining mode >> 370 This block cipher algorithm is required for RxRPC. 324 371 325 menu "Block ciphers" !! 372 config CRYPTO_XTS >> 373 tristate "XTS support" >> 374 select CRYPTO_BLKCIPHER >> 375 select CRYPTO_MANAGER >> 376 select CRYPTO_GF128MUL >> 377 select CRYPTO_ECB >> 378 help >> 379 XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain, >> 380 key size 256, 384 or 512 bits. This implementation currently >> 381 can't handle a sectorsize which is not a multiple of 16 bytes. 326 382 327 config CRYPTO_AES !! 383 config CRYPTO_KEYWRAP 328 tristate "AES (Advanced Encryption Sta !! 384 tristate "Key wrapping support" 329 select CRYPTO_ALGAPI !! 385 select CRYPTO_BLKCIPHER 330 select CRYPTO_LIB_AES << 331 help 386 help 332 AES cipher algorithms (Rijndael)(FIP !! 387 Support for key wrapping (NIST SP800-38F / RFC3394) without >> 388 padding. 333 389 334 Rijndael appears to be consistently !! 390 comment "Hash modes" 335 both hardware and software across a << 336 environments regardless of its use i << 337 modes. Its key setup time is excelle << 338 good. Rijndael's very low memory req << 339 suited for restricted-space environm << 340 demonstrates excellent performance. << 341 among the easiest to defend against << 342 391 343 The AES specifies three key sizes: 1 !! 392 config CRYPTO_CMAC >> 393 tristate "CMAC support" >> 394 select CRYPTO_HASH >> 395 select CRYPTO_MANAGER >> 396 help >> 397 Cipher-based Message Authentication Code (CMAC) specified by >> 398 The National Institute of Standards and Technology (NIST). 344 399 345 config CRYPTO_AES_TI !! 400 https://tools.ietf.org/html/rfc4493 346 tristate "AES (Advanced Encryption Sta !! 401 http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf 347 select CRYPTO_ALGAPI !! 402 348 select CRYPTO_LIB_AES !! 403 config CRYPTO_HMAC >> 404 tristate "HMAC support" >> 405 select CRYPTO_HASH >> 406 select CRYPTO_MANAGER 349 help 407 help 350 AES cipher algorithms (Rijndael)(FIP !! 408 HMAC: Keyed-Hashing for Message Authentication (RFC2104). >> 409 This is required for IPSec. 351 410 352 This is a generic implementation of !! 411 config CRYPTO_XCBC 353 data dependent latencies as much as !! 412 tristate "XCBC support" 354 performance too much. It is intended !! 413 select CRYPTO_HASH 355 and GCM drivers, and other CTR or CM !! 414 select CRYPTO_MANAGER 356 solely on encryption (although decry !! 415 help 357 with a more dramatic performance hit !! 416 XCBC: Keyed-Hashing with encryption algorithm 358 !! 417 http://www.ietf.org/rfc/rfc3566.txt 359 Instead of using 16 lookup tables of !! 418 http://csrc.nist.gov/encryption/modes/proposedmodes/ 360 8 for decryption), this implementati !! 419 xcbc-mac/xcbc-mac-spec.pdf 361 256 bytes each, and attempts to elim << 362 prefetching the entire table into th << 363 block. Interrupts are also disabled << 364 are evicted when the CPU is interrup << 365 420 366 config CRYPTO_ANUBIS !! 421 config CRYPTO_VMAC 367 tristate "Anubis" !! 422 tristate "VMAC support" 368 depends on CRYPTO_USER_API_ENABLE_OBSO !! 423 select CRYPTO_HASH 369 select CRYPTO_ALGAPI !! 424 select CRYPTO_MANAGER 370 help 425 help 371 Anubis cipher algorithm !! 426 VMAC is a message authentication algorithm designed for >> 427 very high speed on 64-bit architectures. 372 428 373 Anubis is a variable key length ciph !! 429 See also: 374 128 bits to 320 bits in length. It !! 430 <http://fastcrypto.org/vmac> 375 in the NESSIE competition. << 376 431 377 See https://web.archive.org/web/2016 !! 432 comment "Digest" 378 for further information. << 379 433 380 config CRYPTO_ARIA !! 434 config CRYPTO_CRC32C 381 tristate "ARIA" !! 435 tristate "CRC32c CRC algorithm" 382 select CRYPTO_ALGAPI !! 436 select CRYPTO_HASH >> 437 select CRC32 >> 438 help >> 439 Castagnoli, et al Cyclic Redundancy-Check Algorithm. Used >> 440 by iSCSI for header and data digests and by others. >> 441 See Castagnoli93. Module will be crc32c. >> 442 >> 443 config CRYPTO_CRC32C_INTEL >> 444 tristate "CRC32c INTEL hardware acceleration" >> 445 depends on X86 >> 446 select CRYPTO_HASH >> 447 help >> 448 In Intel processor with SSE4.2 supported, the processor will >> 449 support CRC32C implementation using hardware accelerated CRC32 >> 450 instruction. This option will create 'crc32c-intel' module, >> 451 which will enable any routine to use the CRC32 instruction to >> 452 gain performance compared with software implementation. >> 453 Module will be crc32c-intel. >> 454 >> 455 config CRYPTO_CRC32C_VPMSUM >> 456 tristate "CRC32c CRC algorithm (powerpc64)" >> 457 depends on PPC64 && ALTIVEC >> 458 select CRYPTO_HASH >> 459 select CRC32 383 help 460 help 384 ARIA cipher algorithm (RFC5794) !! 461 CRC32c algorithm implemented using vector polynomial multiply-sum >> 462 (vpmsum) instructions, introduced in POWER8. Enable on POWER8 >> 463 and newer processors for improved performance. 385 464 386 ARIA is a standard encryption algori << 387 The ARIA specifies three key sizes a << 388 128-bit: 12 rounds. << 389 192-bit: 14 rounds. << 390 256-bit: 16 rounds. << 391 465 392 See: !! 466 config CRYPTO_CRC32C_SPARC64 393 https://seed.kisa.or.kr/kisa/algorit !! 467 tristate "CRC32c CRC algorithm (SPARC64)" >> 468 depends on SPARC64 >> 469 select CRYPTO_HASH >> 470 select CRC32 >> 471 help >> 472 CRC32c CRC algorithm implemented using sparc64 crypto instructions, >> 473 when available. 394 474 395 config CRYPTO_BLOWFISH !! 475 config CRYPTO_CRC32 396 tristate "Blowfish" !! 476 tristate "CRC32 CRC algorithm" 397 select CRYPTO_ALGAPI !! 477 select CRYPTO_HASH 398 select CRYPTO_BLOWFISH_COMMON !! 478 select CRC32 399 help 479 help 400 Blowfish cipher algorithm, by Bruce !! 480 CRC-32-IEEE 802.3 cyclic redundancy-check algorithm. >> 481 Shash crypto api wrappers to crc32_le function. 401 482 402 This is a variable key length cipher !! 483 config CRYPTO_CRC32_PCLMUL 403 bits to 448 bits in length. It's fa !! 484 tristate "CRC32 PCLMULQDQ hardware acceleration" 404 designed for use on "large microproc !! 485 depends on X86 >> 486 select CRYPTO_HASH >> 487 select CRC32 >> 488 help >> 489 From Intel Westmere and AMD Bulldozer processor with SSE4.2 >> 490 and PCLMULQDQ supported, the processor will support >> 491 CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ >> 492 instruction. This option will create 'crc32-plcmul' module, >> 493 which will enable any routine to use the CRC-32-IEEE 802.3 checksum >> 494 and gain better performance as compared with the table implementation. 405 495 406 See https://www.schneier.com/blowfis !! 496 config CRYPTO_CRCT10DIF >> 497 tristate "CRCT10DIF algorithm" >> 498 select CRYPTO_HASH >> 499 help >> 500 CRC T10 Data Integrity Field computation is being cast as >> 501 a crypto transform. This allows for faster crc t10 diff >> 502 transforms to be used if they are available. 407 503 408 config CRYPTO_BLOWFISH_COMMON !! 504 config CRYPTO_CRCT10DIF_PCLMUL 409 tristate !! 505 tristate "CRCT10DIF PCLMULQDQ hardware acceleration" >> 506 depends on X86 && 64BIT && CRC_T10DIF >> 507 select CRYPTO_HASH 410 help 508 help 411 Common parts of the Blowfish cipher !! 509 For x86_64 processors with SSE4.2 and PCLMULQDQ supported, 412 generic c and the assembler implemen !! 510 CRC T10 DIF PCLMULQDQ computation can be hardware >> 511 accelerated PCLMULQDQ instruction. This option will create >> 512 'crct10dif-plcmul' module, which is faster when computing the >> 513 crct10dif checksum as compared with the generic table implementation. 413 514 414 config CRYPTO_CAMELLIA !! 515 config CRYPTO_GHASH 415 tristate "Camellia" !! 516 tristate "GHASH digest algorithm" 416 select CRYPTO_ALGAPI !! 517 select CRYPTO_GF128MUL >> 518 select CRYPTO_HASH 417 help 519 help 418 Camellia cipher algorithms (ISO/IEC !! 520 GHASH is message digest algorithm for GCM (Galois/Counter Mode). 419 521 420 Camellia is a symmetric key block ci !! 522 config CRYPTO_POLY1305 421 at NTT and Mitsubishi Electric Corpo !! 523 tristate "Poly1305 authenticator algorithm" >> 524 select CRYPTO_HASH >> 525 help >> 526 Poly1305 authenticator algorithm, RFC7539. 422 527 423 The Camellia specifies three key siz !! 528 Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. >> 529 It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use >> 530 in IETF protocols. This is the portable C implementation of Poly1305. 424 531 425 See https://info.isl.ntt.co.jp/crypt !! 532 config CRYPTO_POLY1305_X86_64 >> 533 tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)" >> 534 depends on X86 && 64BIT >> 535 select CRYPTO_POLY1305 >> 536 help >> 537 Poly1305 authenticator algorithm, RFC7539. 426 538 427 config CRYPTO_CAST_COMMON !! 539 Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. 428 tristate !! 540 It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use >> 541 in IETF protocols. This is the x86_64 assembler implementation using SIMD >> 542 instructions. >> 543 >> 544 config CRYPTO_MD4 >> 545 tristate "MD4 digest algorithm" >> 546 select CRYPTO_HASH 429 help 547 help 430 Common parts of the CAST cipher algo !! 548 MD4 message digest algorithm (RFC1320). 431 generic c and the assembler implemen << 432 549 433 config CRYPTO_CAST5 !! 550 config CRYPTO_MD5 434 tristate "CAST5 (CAST-128)" !! 551 tristate "MD5 digest algorithm" 435 select CRYPTO_ALGAPI !! 552 select CRYPTO_HASH 436 select CRYPTO_CAST_COMMON << 437 help 553 help 438 CAST5 (CAST-128) cipher algorithm (R !! 554 MD5 message digest algorithm (RFC1321). 439 555 440 config CRYPTO_CAST6 !! 556 config CRYPTO_MD5_OCTEON 441 tristate "CAST6 (CAST-256)" !! 557 tristate "MD5 digest algorithm (OCTEON)" 442 select CRYPTO_ALGAPI !! 558 depends on CPU_CAVIUM_OCTEON 443 select CRYPTO_CAST_COMMON !! 559 select CRYPTO_MD5 >> 560 select CRYPTO_HASH 444 help 561 help 445 CAST6 (CAST-256) encryption algorith !! 562 MD5 message digest algorithm (RFC1321) implemented >> 563 using OCTEON crypto instructions, when available. 446 564 447 config CRYPTO_DES !! 565 config CRYPTO_MD5_PPC 448 tristate "DES and Triple DES EDE" !! 566 tristate "MD5 digest algorithm (PPC)" 449 select CRYPTO_ALGAPI !! 567 depends on PPC 450 select CRYPTO_LIB_DES !! 568 select CRYPTO_HASH 451 help 569 help 452 DES (Data Encryption Standard)(FIPS !! 570 MD5 message digest algorithm (RFC1321) implemented 453 Triple DES EDE (Encrypt/Decrypt/Encr !! 571 in PPC assembler. 454 cipher algorithms << 455 572 456 config CRYPTO_FCRYPT !! 573 config CRYPTO_MD5_SPARC64 457 tristate "FCrypt" !! 574 tristate "MD5 digest algorithm (SPARC64)" 458 select CRYPTO_ALGAPI !! 575 depends on SPARC64 459 select CRYPTO_SKCIPHER !! 576 select CRYPTO_MD5 >> 577 select CRYPTO_HASH 460 help 578 help 461 FCrypt algorithm used by RxRPC !! 579 MD5 message digest algorithm (RFC1321) implemented >> 580 using sparc64 crypto instructions, when available. 462 581 463 See https://ota.polyonymo.us/fcrypt- !! 582 config CRYPTO_MICHAEL_MIC >> 583 tristate "Michael MIC keyed digest algorithm" >> 584 select CRYPTO_HASH >> 585 help >> 586 Michael MIC is used for message integrity protection in TKIP >> 587 (IEEE 802.11i). This algorithm is required for TKIP, but it >> 588 should not be used for other purposes because of the weakness >> 589 of the algorithm. 464 590 465 config CRYPTO_KHAZAD !! 591 config CRYPTO_RMD128 466 tristate "Khazad" !! 592 tristate "RIPEMD-128 digest algorithm" 467 depends on CRYPTO_USER_API_ENABLE_OBSO !! 593 select CRYPTO_HASH 468 select CRYPTO_ALGAPI << 469 help 594 help 470 Khazad cipher algorithm !! 595 RIPEMD-128 (ISO/IEC 10118-3:2004). 471 596 472 Khazad was a finalist in the initial !! 597 RIPEMD-128 is a 128-bit cryptographic hash function. It should only 473 an algorithm optimized for 64-bit pr !! 598 be used as a secure replacement for RIPEMD. For other use cases, 474 on 32-bit processors. Khazad uses a !! 599 RIPEMD-160 should be used. 475 600 476 See https://web.archive.org/web/2017 !! 601 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 477 for further information. !! 602 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 478 603 479 config CRYPTO_SEED !! 604 config CRYPTO_RMD160 480 tristate "SEED" !! 605 tristate "RIPEMD-160 digest algorithm" 481 depends on CRYPTO_USER_API_ENABLE_OBSO !! 606 select CRYPTO_HASH 482 select CRYPTO_ALGAPI << 483 help 607 help 484 SEED cipher algorithm (RFC4269, ISO/ !! 608 RIPEMD-160 (ISO/IEC 10118-3:2004). 485 609 486 SEED is a 128-bit symmetric key bloc !! 610 RIPEMD-160 is a 160-bit cryptographic hash function. It is intended 487 developed by KISA (Korea Information !! 611 to be used as a secure replacement for the 128-bit hash functions 488 national standard encryption algorit !! 612 MD4, MD5 and it's predecessor RIPEMD 489 It is a 16 round block cipher with t !! 613 (not to be confused with RIPEMD-128). 490 614 491 See https://seed.kisa.or.kr/kisa/alg !! 615 It's speed is comparable to SHA1 and there are no known attacks 492 for further information. !! 616 against RIPEMD-160. 493 617 494 config CRYPTO_SERPENT !! 618 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 495 tristate "Serpent" !! 619 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 496 select CRYPTO_ALGAPI !! 620 >> 621 config CRYPTO_RMD256 >> 622 tristate "RIPEMD-256 digest algorithm" >> 623 select CRYPTO_HASH 497 help 624 help 498 Serpent cipher algorithm, by Anderso !! 625 RIPEMD-256 is an optional extension of RIPEMD-128 with a >> 626 256 bit hash. It is intended for applications that require >> 627 longer hash-results, without needing a larger security level >> 628 (than RIPEMD-128). 499 629 500 Keys are allowed to be from 0 to 256 !! 630 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 501 of 8 bits. !! 631 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 502 632 503 See https://www.cl.cam.ac.uk/~rja14/ !! 633 config CRYPTO_RMD320 >> 634 tristate "RIPEMD-320 digest algorithm" >> 635 select CRYPTO_HASH >> 636 help >> 637 RIPEMD-320 is an optional extension of RIPEMD-160 with a >> 638 320 bit hash. It is intended for applications that require >> 639 longer hash-results, without needing a larger security level >> 640 (than RIPEMD-160). 504 641 505 config CRYPTO_SM4 !! 642 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 506 tristate !! 643 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 507 644 508 config CRYPTO_SM4_GENERIC !! 645 config CRYPTO_SHA1 509 tristate "SM4 (ShangMi 4)" !! 646 tristate "SHA1 digest algorithm" 510 select CRYPTO_ALGAPI !! 647 select CRYPTO_HASH 511 select CRYPTO_SM4 << 512 help 648 help 513 SM4 cipher algorithms (OSCCA GB/T 32 !! 649 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). 514 ISO/IEC 18033-3:2010/Amd 1:2021) << 515 650 516 SM4 (GBT.32907-2016) is a cryptograp !! 651 config CRYPTO_SHA1_SSSE3 517 Organization of State Commercial Adm !! 652 tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" 518 as an authorized cryptographic algor !! 653 depends on X86 && 64BIT >> 654 select CRYPTO_SHA1 >> 655 select CRYPTO_HASH >> 656 help >> 657 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented >> 658 using Supplemental SSE3 (SSSE3) instructions or Advanced Vector >> 659 Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions), >> 660 when available. 519 661 520 SMS4 was originally created for use !! 662 config CRYPTO_SHA256_SSSE3 521 networks, and is mandated in the Chi !! 663 tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" 522 Wireless LAN WAPI (Wired Authenticat !! 664 depends on X86 && 64BIT 523 (GB.15629.11-2003). !! 665 select CRYPTO_SHA256 >> 666 select CRYPTO_HASH >> 667 help >> 668 SHA-256 secure hash standard (DFIPS 180-2) implemented >> 669 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector >> 670 Extensions version 1 (AVX1), or Advanced Vector Extensions >> 671 version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New >> 672 Instructions) when available. >> 673 >> 674 config CRYPTO_SHA512_SSSE3 >> 675 tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)" >> 676 depends on X86 && 64BIT >> 677 select CRYPTO_SHA512 >> 678 select CRYPTO_HASH >> 679 help >> 680 SHA-512 secure hash standard (DFIPS 180-2) implemented >> 681 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector >> 682 Extensions version 1 (AVX1), or Advanced Vector Extensions >> 683 version 2 (AVX2) instructions, when available. >> 684 >> 685 config CRYPTO_SHA1_OCTEON >> 686 tristate "SHA1 digest algorithm (OCTEON)" >> 687 depends on CPU_CAVIUM_OCTEON >> 688 select CRYPTO_SHA1 >> 689 select CRYPTO_HASH >> 690 help >> 691 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented >> 692 using OCTEON crypto instructions, when available. >> 693 >> 694 config CRYPTO_SHA1_SPARC64 >> 695 tristate "SHA1 digest algorithm (SPARC64)" >> 696 depends on SPARC64 >> 697 select CRYPTO_SHA1 >> 698 select CRYPTO_HASH >> 699 help >> 700 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented >> 701 using sparc64 crypto instructions, when available. >> 702 >> 703 config CRYPTO_SHA1_PPC >> 704 tristate "SHA1 digest algorithm (powerpc)" >> 705 depends on PPC >> 706 help >> 707 This is the powerpc hardware accelerated implementation of the >> 708 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). >> 709 >> 710 config CRYPTO_SHA1_PPC_SPE >> 711 tristate "SHA1 digest algorithm (PPC SPE)" >> 712 depends on PPC && SPE >> 713 help >> 714 SHA-1 secure hash standard (DFIPS 180-4) implemented >> 715 using powerpc SPE SIMD instruction set. >> 716 >> 717 config CRYPTO_SHA1_MB >> 718 tristate "SHA1 digest algorithm (x86_64 Multi-Buffer, Experimental)" >> 719 depends on X86 && 64BIT >> 720 select CRYPTO_SHA1 >> 721 select CRYPTO_HASH >> 722 select CRYPTO_MCRYPTD >> 723 help >> 724 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented >> 725 using multi-buffer technique. This algorithm computes on >> 726 multiple data lanes concurrently with SIMD instructions for >> 727 better throughput. It should not be enabled by default but >> 728 used when there is significant amount of work to keep the keep >> 729 the data lanes filled to get performance benefit. If the data >> 730 lanes remain unfilled, a flush operation will be initiated to >> 731 process the crypto jobs, adding a slight latency. >> 732 >> 733 config CRYPTO_SHA256_MB >> 734 tristate "SHA256 digest algorithm (x86_64 Multi-Buffer, Experimental)" >> 735 depends on X86 && 64BIT >> 736 select CRYPTO_SHA256 >> 737 select CRYPTO_HASH >> 738 select CRYPTO_MCRYPTD >> 739 help >> 740 SHA-256 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented >> 741 using multi-buffer technique. This algorithm computes on >> 742 multiple data lanes concurrently with SIMD instructions for >> 743 better throughput. It should not be enabled by default but >> 744 used when there is significant amount of work to keep the keep >> 745 the data lanes filled to get performance benefit. If the data >> 746 lanes remain unfilled, a flush operation will be initiated to >> 747 process the crypto jobs, adding a slight latency. >> 748 >> 749 config CRYPTO_SHA512_MB >> 750 tristate "SHA512 digest algorithm (x86_64 Multi-Buffer, Experimental)" >> 751 depends on X86 && 64BIT >> 752 select CRYPTO_SHA512 >> 753 select CRYPTO_HASH >> 754 select CRYPTO_MCRYPTD >> 755 help >> 756 SHA-512 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented >> 757 using multi-buffer technique. This algorithm computes on >> 758 multiple data lanes concurrently with SIMD instructions for >> 759 better throughput. It should not be enabled by default but >> 760 used when there is significant amount of work to keep the keep >> 761 the data lanes filled to get performance benefit. If the data >> 762 lanes remain unfilled, a flush operation will be initiated to >> 763 process the crypto jobs, adding a slight latency. 524 764 525 The latest SM4 standard (GBT.32907-2 !! 765 config CRYPTO_SHA256 526 standardized through TC 260 of the S !! 766 tristate "SHA224 and SHA256 digest algorithm" 527 of the People's Republic of China (S !! 767 select CRYPTO_HASH >> 768 help >> 769 SHA256 secure hash standard (DFIPS 180-2). 528 770 529 The input, output, and key of SMS4 a !! 771 This version of SHA implements a 256 bit hash with 128 bits of >> 772 security against collision attacks. 530 773 531 See https://eprint.iacr.org/2008/329 !! 774 This code also includes SHA-224, a 224 bit hash with 112 bits >> 775 of security against collision attacks. 532 776 533 If unsure, say N. !! 777 config CRYPTO_SHA256_PPC_SPE >> 778 tristate "SHA224 and SHA256 digest algorithm (PPC SPE)" >> 779 depends on PPC && SPE >> 780 select CRYPTO_SHA256 >> 781 select CRYPTO_HASH >> 782 help >> 783 SHA224 and SHA256 secure hash standard (DFIPS 180-2) >> 784 implemented using powerpc SPE SIMD instruction set. 534 785 535 config CRYPTO_TEA !! 786 config CRYPTO_SHA256_OCTEON 536 tristate "TEA, XTEA and XETA" !! 787 tristate "SHA224 and SHA256 digest algorithm (OCTEON)" 537 depends on CRYPTO_USER_API_ENABLE_OBSO !! 788 depends on CPU_CAVIUM_OCTEON 538 select CRYPTO_ALGAPI !! 789 select CRYPTO_SHA256 >> 790 select CRYPTO_HASH 539 help 791 help 540 TEA (Tiny Encryption Algorithm) ciph !! 792 SHA-256 secure hash standard (DFIPS 180-2) implemented >> 793 using OCTEON crypto instructions, when available. 541 794 542 Tiny Encryption Algorithm is a simpl !! 795 config CRYPTO_SHA256_SPARC64 543 many rounds for security. It is ver !! 796 tristate "SHA224 and SHA256 digest algorithm (SPARC64)" 544 little memory. !! 797 depends on SPARC64 >> 798 select CRYPTO_SHA256 >> 799 select CRYPTO_HASH >> 800 help >> 801 SHA-256 secure hash standard (DFIPS 180-2) implemented >> 802 using sparc64 crypto instructions, when available. 545 803 546 Xtendend Tiny Encryption Algorithm i !! 804 config CRYPTO_SHA512 547 the TEA algorithm to address a poten !! 805 tristate "SHA384 and SHA512 digest algorithms" 548 in the TEA algorithm. !! 806 select CRYPTO_HASH >> 807 help >> 808 SHA512 secure hash standard (DFIPS 180-2). 549 809 550 Xtendend Encryption Tiny Algorithm i !! 810 This version of SHA implements a 512 bit hash with 256 bits of 551 of the XTEA algorithm for compatibil !! 811 security against collision attacks. 552 812 553 config CRYPTO_TWOFISH !! 813 This code also includes SHA-384, a 384 bit hash with 192 bits 554 tristate "Twofish" !! 814 of security against collision attacks. 555 select CRYPTO_ALGAPI !! 815 556 select CRYPTO_TWOFISH_COMMON !! 816 config CRYPTO_SHA512_OCTEON >> 817 tristate "SHA384 and SHA512 digest algorithms (OCTEON)" >> 818 depends on CPU_CAVIUM_OCTEON >> 819 select CRYPTO_SHA512 >> 820 select CRYPTO_HASH 557 help 821 help 558 Twofish cipher algorithm !! 822 SHA-512 secure hash standard (DFIPS 180-2) implemented >> 823 using OCTEON crypto instructions, when available. 559 824 560 Twofish was submitted as an AES (Adv !! 825 config CRYPTO_SHA512_SPARC64 561 candidate cipher by researchers at C !! 826 tristate "SHA384 and SHA512 digest algorithm (SPARC64)" 562 16 round block cipher supporting key !! 827 depends on SPARC64 563 bits. !! 828 select CRYPTO_SHA512 >> 829 select CRYPTO_HASH >> 830 help >> 831 SHA-512 secure hash standard (DFIPS 180-2) implemented >> 832 using sparc64 crypto instructions, when available. 564 833 565 See https://www.schneier.com/twofish !! 834 config CRYPTO_SHA3 >> 835 tristate "SHA3 digest algorithm" >> 836 select CRYPTO_HASH >> 837 help >> 838 SHA-3 secure hash standard (DFIPS 202). It's based on >> 839 cryptographic sponge function family called Keccak. 566 840 567 config CRYPTO_TWOFISH_COMMON !! 841 References: 568 tristate !! 842 http://keccak.noekeon.org/ >> 843 >> 844 config CRYPTO_TGR192 >> 845 tristate "Tiger digest algorithms" >> 846 select CRYPTO_HASH 569 help 847 help 570 Common parts of the Twofish cipher a !! 848 Tiger hash algorithm 192, 160 and 128-bit hashes 571 generic c and the assembler implemen << 572 849 573 endmenu !! 850 Tiger is a hash function optimized for 64-bit processors while >> 851 still having decent performance on 32-bit processors. >> 852 Tiger was developed by Ross Anderson and Eli Biham. 574 853 575 menu "Length-preserving ciphers and modes" !! 854 See also: >> 855 <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>. 576 856 577 config CRYPTO_ADIANTUM !! 857 config CRYPTO_WP512 578 tristate "Adiantum" !! 858 tristate "Whirlpool digest algorithms" 579 select CRYPTO_CHACHA20 !! 859 select CRYPTO_HASH 580 select CRYPTO_LIB_POLY1305_GENERIC << 581 select CRYPTO_NHPOLY1305 << 582 select CRYPTO_MANAGER << 583 help 860 help 584 Adiantum tweakable, length-preservin !! 861 Whirlpool hash algorithm 512, 384 and 256-bit hashes 585 862 586 Designed for fast and secure disk en !! 863 Whirlpool-512 is part of the NESSIE cryptographic primitives. 587 CPUs without dedicated crypto instru !! 864 Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard 588 each sector using the XChaCha12 stre << 589 an ε-almost-∆-universal hash func << 590 the AES-256 block cipher on a single << 591 without AES instructions, Adiantum i << 592 AES-XTS. << 593 << 594 Adiantum's security is provably redu << 595 underlying stream and block ciphers, << 596 bound. Unlike XTS, Adiantum is a tr << 597 mode, so it actually provides an eve << 598 security than XTS, subject to the se << 599 865 600 If unsure, say N. !! 866 See also: >> 867 <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html> 601 868 602 config CRYPTO_ARC4 !! 869 config CRYPTO_GHASH_CLMUL_NI_INTEL 603 tristate "ARC4 (Alleged Rivest Cipher !! 870 tristate "GHASH digest algorithm (CLMUL-NI accelerated)" 604 depends on CRYPTO_USER_API_ENABLE_OBSO !! 871 depends on X86 && 64BIT 605 select CRYPTO_SKCIPHER !! 872 select CRYPTO_CRYPTD 606 select CRYPTO_LIB_ARC4 << 607 help 873 help 608 ARC4 cipher algorithm !! 874 GHASH is message digest algorithm for GCM (Galois/Counter Mode). >> 875 The implementation is accelerated by CLMUL-NI of Intel. 609 876 610 ARC4 is a stream cipher using keys r !! 877 comment "Ciphers" 611 bits in length. This algorithm is r << 612 WEP, but it should not be for other << 613 weakness of the algorithm. << 614 878 615 config CRYPTO_CHACHA20 !! 879 config CRYPTO_AES 616 tristate "ChaCha" !! 880 tristate "AES cipher algorithms" 617 select CRYPTO_LIB_CHACHA_GENERIC !! 881 select CRYPTO_ALGAPI 618 select CRYPTO_SKCIPHER << 619 help 882 help 620 The ChaCha20, XChaCha20, and XChaCha !! 883 AES cipher algorithms (FIPS-197). AES uses the Rijndael >> 884 algorithm. 621 885 622 ChaCha20 is a 256-bit high-speed str !! 886 Rijndael appears to be consistently a very good performer in 623 Bernstein and further specified in R !! 887 both hardware and software across a wide range of computing 624 This is the portable C implementatio !! 888 environments regardless of its use in feedback or non-feedback 625 https://cr.yp.to/chacha/chacha-20080 !! 889 modes. Its key setup time is excellent, and its key agility is >> 890 good. Rijndael's very low memory requirements make it very well >> 891 suited for restricted-space environments, in which it also >> 892 demonstrates excellent performance. Rijndael's operations are >> 893 among the easiest to defend against power and timing attacks. 626 894 627 XChaCha20 is the application of the !! 895 The AES specifies three key sizes: 128, 192 and 256 bits 628 rather than to Salsa20. XChaCha20 e << 629 from 64 bits (or 96 bits using the R << 630 while provably retaining ChaCha20's << 631 https://cr.yp.to/snuffle/xsalsa-2008 << 632 << 633 XChaCha12 is XChaCha20 reduced to 12 << 634 reduced security margin but increase << 635 in some performance-sensitive scenar << 636 896 637 config CRYPTO_CBC !! 897 See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information. 638 tristate "CBC (Cipher Block Chaining)" !! 898 639 select CRYPTO_SKCIPHER !! 899 config CRYPTO_AES_586 640 select CRYPTO_MANAGER !! 900 tristate "AES cipher algorithms (i586)" >> 901 depends on (X86 || UML_X86) && !64BIT >> 902 select CRYPTO_ALGAPI >> 903 select CRYPTO_AES 641 help 904 help 642 CBC (Cipher Block Chaining) mode (NI !! 905 AES cipher algorithms (FIPS-197). AES uses the Rijndael >> 906 algorithm. >> 907 >> 908 Rijndael appears to be consistently a very good performer in >> 909 both hardware and software across a wide range of computing >> 910 environments regardless of its use in feedback or non-feedback >> 911 modes. Its key setup time is excellent, and its key agility is >> 912 good. Rijndael's very low memory requirements make it very well >> 913 suited for restricted-space environments, in which it also >> 914 demonstrates excellent performance. Rijndael's operations are >> 915 among the easiest to defend against power and timing attacks. 643 916 644 This block cipher mode is required f !! 917 The AES specifies three key sizes: 128, 192 and 256 bits 645 918 646 config CRYPTO_CTR !! 919 See <http://csrc.nist.gov/encryption/aes/> for more information. 647 tristate "CTR (Counter)" << 648 select CRYPTO_SKCIPHER << 649 select CRYPTO_MANAGER << 650 help << 651 CTR (Counter) mode (NIST SP800-38A) << 652 920 653 config CRYPTO_CTS !! 921 config CRYPTO_AES_X86_64 654 tristate "CTS (Cipher Text Stealing)" !! 922 tristate "AES cipher algorithms (x86_64)" 655 select CRYPTO_SKCIPHER !! 923 depends on (X86 || UML_X86) && 64BIT 656 select CRYPTO_MANAGER !! 924 select CRYPTO_ALGAPI >> 925 select CRYPTO_AES 657 help 926 help 658 CBC-CS3 variant of CTS (Cipher Text !! 927 AES cipher algorithms (FIPS-197). AES uses the Rijndael 659 Addendum to SP800-38A (October 2010) !! 928 algorithm. 660 929 661 This mode is required for Kerberos g !! 930 Rijndael appears to be consistently a very good performer in 662 for AES encryption. !! 931 both hardware and software across a wide range of computing >> 932 environments regardless of its use in feedback or non-feedback >> 933 modes. Its key setup time is excellent, and its key agility is >> 934 good. Rijndael's very low memory requirements make it very well >> 935 suited for restricted-space environments, in which it also >> 936 demonstrates excellent performance. Rijndael's operations are >> 937 among the easiest to defend against power and timing attacks. 663 938 664 config CRYPTO_ECB !! 939 The AES specifies three key sizes: 128, 192 and 256 bits 665 tristate "ECB (Electronic Codebook)" << 666 select CRYPTO_SKCIPHER2 << 667 select CRYPTO_MANAGER << 668 help << 669 ECB (Electronic Codebook) mode (NIST << 670 940 671 config CRYPTO_HCTR2 !! 941 See <http://csrc.nist.gov/encryption/aes/> for more information. 672 tristate "HCTR2" !! 942 673 select CRYPTO_XCTR !! 943 config CRYPTO_AES_NI_INTEL 674 select CRYPTO_POLYVAL !! 944 tristate "AES cipher algorithms (AES-NI)" 675 select CRYPTO_MANAGER !! 945 depends on X86 >> 946 select CRYPTO_AEAD >> 947 select CRYPTO_AES_X86_64 if 64BIT >> 948 select CRYPTO_AES_586 if !64BIT >> 949 select CRYPTO_ALGAPI >> 950 select CRYPTO_BLKCIPHER >> 951 select CRYPTO_GLUE_HELPER_X86 if 64BIT >> 952 select CRYPTO_SIMD 676 help 953 help 677 HCTR2 length-preserving encryption m !! 954 Use Intel AES-NI instructions for AES algorithm. >> 955 >> 956 AES cipher algorithms (FIPS-197). AES uses the Rijndael >> 957 algorithm. 678 958 679 A mode for storage encryption that i !! 959 Rijndael appears to be consistently a very good performer in 680 instructions to accelerate AES and c !! 960 both hardware and software across a wide range of computing 681 x86 processors with AES-NI and CLMUL !! 961 environments regardless of its use in feedback or non-feedback 682 ARMv8 crypto extensions. !! 962 modes. Its key setup time is excellent, and its key agility is >> 963 good. Rijndael's very low memory requirements make it very well >> 964 suited for restricted-space environments, in which it also >> 965 demonstrates excellent performance. Rijndael's operations are >> 966 among the easiest to defend against power and timing attacks. 683 967 684 See https://eprint.iacr.org/2021/144 !! 968 The AES specifies three key sizes: 128, 192 and 256 bits 685 969 686 config CRYPTO_KEYWRAP !! 970 See <http://csrc.nist.gov/encryption/aes/> for more information. 687 tristate "KW (AES Key Wrap)" << 688 select CRYPTO_SKCIPHER << 689 select CRYPTO_MANAGER << 690 help << 691 KW (AES Key Wrap) authenticated encr << 692 and RFC3394) without padding. << 693 971 694 config CRYPTO_LRW !! 972 In addition to AES cipher algorithm support, the acceleration 695 tristate "LRW (Liskov Rivest Wagner)" !! 973 for some popular block cipher mode is supported too, including 696 select CRYPTO_LIB_GF128MUL !! 974 ECB, CBC, LRW, PCBC, XTS. The 64 bit version has additional 697 select CRYPTO_SKCIPHER !! 975 acceleration for CTR. 698 select CRYPTO_MANAGER !! 976 699 select CRYPTO_ECB !! 977 config CRYPTO_AES_SPARC64 >> 978 tristate "AES cipher algorithms (SPARC64)" >> 979 depends on SPARC64 >> 980 select CRYPTO_CRYPTD >> 981 select CRYPTO_ALGAPI 700 help 982 help 701 LRW (Liskov Rivest Wagner) mode !! 983 Use SPARC64 crypto opcodes for AES algorithm. 702 984 703 A tweakable, non malleable, non mova !! 985 AES cipher algorithms (FIPS-197). AES uses the Rijndael 704 narrow block cipher mode for dm-cryp !! 986 algorithm. 705 specification string aes-lrw-benbi, << 706 The first 128, 192 or 256 bits in th << 707 rest is used to tie each cipher bloc << 708 987 709 See https://people.csail.mit.edu/riv !! 988 Rijndael appears to be consistently a very good performer in >> 989 both hardware and software across a wide range of computing >> 990 environments regardless of its use in feedback or non-feedback >> 991 modes. Its key setup time is excellent, and its key agility is >> 992 good. Rijndael's very low memory requirements make it very well >> 993 suited for restricted-space environments, in which it also >> 994 demonstrates excellent performance. Rijndael's operations are >> 995 among the easiest to defend against power and timing attacks. 710 996 711 config CRYPTO_PCBC !! 997 The AES specifies three key sizes: 128, 192 and 256 bits 712 tristate "PCBC (Propagating Cipher Blo << 713 select CRYPTO_SKCIPHER << 714 select CRYPTO_MANAGER << 715 help << 716 PCBC (Propagating Cipher Block Chain << 717 998 718 This block cipher mode is required f !! 999 See <http://csrc.nist.gov/encryption/aes/> for more information. 719 1000 720 config CRYPTO_XCTR !! 1001 In addition to AES cipher algorithm support, the acceleration 721 tristate !! 1002 for some popular block cipher mode is supported too, including 722 select CRYPTO_SKCIPHER !! 1003 ECB and CBC. 723 select CRYPTO_MANAGER !! 1004 >> 1005 config CRYPTO_AES_PPC_SPE >> 1006 tristate "AES cipher algorithms (PPC SPE)" >> 1007 depends on PPC && SPE >> 1008 help >> 1009 AES cipher algorithms (FIPS-197). Additionally the acceleration >> 1010 for popular block cipher modes ECB, CBC, CTR and XTS is supported. >> 1011 This module should only be used for low power (router) devices >> 1012 without hardware AES acceleration (e.g. caam crypto). It reduces the >> 1013 size of the AES tables from 16KB to 8KB + 256 bytes and mitigates >> 1014 timining attacks. Nevertheless it might be not as secure as other >> 1015 architecture specific assembler implementations that work on 1KB >> 1016 tables or 256 bytes S-boxes. >> 1017 >> 1018 config CRYPTO_ANUBIS >> 1019 tristate "Anubis cipher algorithm" >> 1020 select CRYPTO_ALGAPI 724 help 1021 help 725 XCTR (XOR Counter) mode for HCTR2 !! 1022 Anubis cipher algorithm. 726 1023 727 This blockcipher mode is a variant o !! 1024 Anubis is a variable key length cipher which can use keys from 728 addition rather than big-endian arit !! 1025 128 bits to 320 bits in length. It was evaluated as a entrant >> 1026 in the NESSIE competition. 729 1027 730 XCTR mode is used to implement HCTR2 !! 1028 See also: >> 1029 <https://www.cosic.esat.kuleuven.be/nessie/reports/> >> 1030 <http://www.larc.usp.br/~pbarreto/AnubisPage.html> 731 1031 732 config CRYPTO_XTS !! 1032 config CRYPTO_ARC4 733 tristate "XTS (XOR Encrypt XOR with ci !! 1033 tristate "ARC4 cipher algorithm" 734 select CRYPTO_SKCIPHER !! 1034 select CRYPTO_BLKCIPHER 735 select CRYPTO_MANAGER << 736 select CRYPTO_ECB << 737 help 1035 help 738 XTS (XOR Encrypt XOR with ciphertext !! 1036 ARC4 cipher algorithm. 739 and IEEE 1619) << 740 1037 741 Use with aes-xts-plain, key size 256 !! 1038 ARC4 is a stream cipher using keys ranging from 8 bits to 2048 742 implementation currently can't handl !! 1039 bits in length. This algorithm is required for driver-based 743 multiple of 16 bytes. !! 1040 WEP, but it should not be for other purposes because of the >> 1041 weakness of the algorithm. 744 1042 745 config CRYPTO_NHPOLY1305 !! 1043 config CRYPTO_BLOWFISH 746 tristate !! 1044 tristate "Blowfish cipher algorithm" 747 select CRYPTO_HASH !! 1045 select CRYPTO_ALGAPI 748 select CRYPTO_LIB_POLY1305_GENERIC !! 1046 select CRYPTO_BLOWFISH_COMMON >> 1047 help >> 1048 Blowfish cipher algorithm, by Bruce Schneier. 749 1049 750 endmenu !! 1050 This is a variable key length cipher which can use keys from 32 >> 1051 bits to 448 bits in length. It's fast, simple and specifically >> 1052 designed for use on "large microprocessors". 751 1053 752 menu "AEAD (authenticated encryption with asso !! 1054 See also: >> 1055 <http://www.schneier.com/blowfish.html> 753 1056 754 config CRYPTO_AEGIS128 !! 1057 config CRYPTO_BLOWFISH_COMMON 755 tristate "AEGIS-128" !! 1058 tristate 756 select CRYPTO_AEAD << 757 select CRYPTO_AES # for AES S-box tab << 758 help 1059 help 759 AEGIS-128 AEAD algorithm !! 1060 Common parts of the Blowfish cipher algorithm shared by the >> 1061 generic c and the assembler implementations. 760 1062 761 config CRYPTO_AEGIS128_SIMD !! 1063 See also: 762 bool "AEGIS-128 (arm NEON, arm64 NEON) !! 1064 <http://www.schneier.com/blowfish.html> 763 depends on CRYPTO_AEGIS128 && ((ARM || !! 1065 764 default y !! 1066 config CRYPTO_BLOWFISH_X86_64 >> 1067 tristate "Blowfish cipher algorithm (x86_64)" >> 1068 depends on X86 && 64BIT >> 1069 select CRYPTO_ALGAPI >> 1070 select CRYPTO_BLOWFISH_COMMON 765 help 1071 help 766 AEGIS-128 AEAD algorithm !! 1072 Blowfish cipher algorithm (x86_64), by Bruce Schneier. 767 1073 768 Architecture: arm or arm64 using: !! 1074 This is a variable key length cipher which can use keys from 32 769 - NEON (Advanced SIMD) extension !! 1075 bits to 448 bits in length. It's fast, simple and specifically >> 1076 designed for use on "large microprocessors". 770 1077 771 config CRYPTO_CHACHA20POLY1305 !! 1078 See also: 772 tristate "ChaCha20-Poly1305" !! 1079 <http://www.schneier.com/blowfish.html> 773 select CRYPTO_CHACHA20 << 774 select CRYPTO_POLY1305 << 775 select CRYPTO_AEAD << 776 select CRYPTO_MANAGER << 777 help << 778 ChaCha20 stream cipher and Poly1305 << 779 mode (RFC8439) << 780 1080 781 config CRYPTO_CCM !! 1081 config CRYPTO_CAMELLIA 782 tristate "CCM (Counter with Cipher Blo !! 1082 tristate "Camellia cipher algorithms" 783 select CRYPTO_CTR !! 1083 depends on CRYPTO 784 select CRYPTO_HASH !! 1084 select CRYPTO_ALGAPI 785 select CRYPTO_AEAD << 786 select CRYPTO_MANAGER << 787 help 1085 help 788 CCM (Counter with Cipher Block Chain !! 1086 Camellia cipher algorithms module. 789 authenticated encryption mode (NIST << 790 1087 791 config CRYPTO_GCM !! 1088 Camellia is a symmetric key block cipher developed jointly 792 tristate "GCM (Galois/Counter Mode) an !! 1089 at NTT and Mitsubishi Electric Corporation. 793 select CRYPTO_CTR << 794 select CRYPTO_AEAD << 795 select CRYPTO_GHASH << 796 select CRYPTO_NULL << 797 select CRYPTO_MANAGER << 798 help << 799 GCM (Galois/Counter Mode) authentica << 800 (GCM Message Authentication Code) (N << 801 1090 802 This is required for IPSec ESP (XFRM !! 1091 The Camellia specifies three key sizes: 128, 192 and 256 bits. 803 1092 804 config CRYPTO_GENIV !! 1093 See also: 805 tristate !! 1094 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 806 select CRYPTO_AEAD << 807 select CRYPTO_NULL << 808 select CRYPTO_MANAGER << 809 select CRYPTO_RNG_DEFAULT << 810 1095 811 config CRYPTO_SEQIV !! 1096 config CRYPTO_CAMELLIA_X86_64 812 tristate "Sequence Number IV Generator !! 1097 tristate "Camellia cipher algorithm (x86_64)" 813 select CRYPTO_GENIV !! 1098 depends on X86 && 64BIT >> 1099 depends on CRYPTO >> 1100 select CRYPTO_ALGAPI >> 1101 select CRYPTO_GLUE_HELPER_X86 >> 1102 select CRYPTO_LRW >> 1103 select CRYPTO_XTS 814 help 1104 help 815 Sequence Number IV generator !! 1105 Camellia cipher algorithm module (x86_64). 816 1106 817 This IV generator generates an IV ba !! 1107 Camellia is a symmetric key block cipher developed jointly 818 xoring it with a salt. This algorit !! 1108 at NTT and Mitsubishi Electric Corporation. 819 1109 820 This is required for IPsec ESP (XFRM !! 1110 The Camellia specifies three key sizes: 128, 192 and 256 bits. 821 1111 822 config CRYPTO_ECHAINIV !! 1112 See also: 823 tristate "Encrypted Chain IV Generator !! 1113 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 824 select CRYPTO_GENIV !! 1114 >> 1115 config CRYPTO_CAMELLIA_AESNI_AVX_X86_64 >> 1116 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)" >> 1117 depends on X86 && 64BIT >> 1118 depends on CRYPTO >> 1119 select CRYPTO_ALGAPI >> 1120 select CRYPTO_CRYPTD >> 1121 select CRYPTO_ABLK_HELPER >> 1122 select CRYPTO_GLUE_HELPER_X86 >> 1123 select CRYPTO_CAMELLIA_X86_64 >> 1124 select CRYPTO_LRW >> 1125 select CRYPTO_XTS 825 help 1126 help 826 Encrypted Chain IV generator !! 1127 Camellia cipher algorithm module (x86_64/AES-NI/AVX). 827 1128 828 This IV generator generates an IV ba !! 1129 Camellia is a symmetric key block cipher developed jointly 829 a sequence number xored with a salt. !! 1130 at NTT and Mitsubishi Electric Corporation. 830 algorithm for CBC. << 831 1131 832 config CRYPTO_ESSIV !! 1132 The Camellia specifies three key sizes: 128, 192 and 256 bits. 833 tristate "Encrypted Salt-Sector IV Gen << 834 select CRYPTO_AUTHENC << 835 help << 836 Encrypted Salt-Sector IV generator << 837 1133 838 This IV generator is used in some ca !! 1134 See also: 839 dm-crypt. It uses the hash of the bl !! 1135 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 840 symmetric key for a block encryption << 841 IV, making low entropy IV sources mo << 842 encryption. << 843 1136 844 This driver implements a crypto API !! 1137 config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64 845 instantiated either as an skcipher o !! 1138 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)" 846 type of the first template argument) !! 1139 depends on X86 && 64BIT 847 and decryption requests to the encap !! 1140 depends on CRYPTO 848 ESSIV to the input IV. Note that in !! 1141 select CRYPTO_ALGAPI 849 that the keys are presented in the s !! 1142 select CRYPTO_CRYPTD 850 template, and that the IV appears at !! 1143 select CRYPTO_ABLK_HELPER 851 associated data (AAD) region (which !! 1144 select CRYPTO_GLUE_HELPER_X86 >> 1145 select CRYPTO_CAMELLIA_X86_64 >> 1146 select CRYPTO_CAMELLIA_AESNI_AVX_X86_64 >> 1147 select CRYPTO_LRW >> 1148 select CRYPTO_XTS >> 1149 help >> 1150 Camellia cipher algorithm module (x86_64/AES-NI/AVX2). 852 1151 853 Note that the use of ESSIV is not re !! 1152 Camellia is a symmetric key block cipher developed jointly 854 and so this only needs to be enabled !! 1153 at NTT and Mitsubishi Electric Corporation. 855 existing encrypted volumes of filesy << 856 building for a particular system tha << 857 the SoC in question has accelerated << 858 combined with ESSIV the only feasibl << 859 block encryption) << 860 1154 861 endmenu !! 1155 The Camellia specifies three key sizes: 128, 192 and 256 bits. 862 1156 863 menu "Hashes, digests, and MACs" !! 1157 See also: >> 1158 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 864 1159 865 config CRYPTO_BLAKE2B !! 1160 config CRYPTO_CAMELLIA_SPARC64 866 tristate "BLAKE2b" !! 1161 tristate "Camellia cipher algorithm (SPARC64)" 867 select CRYPTO_HASH !! 1162 depends on SPARC64 >> 1163 depends on CRYPTO >> 1164 select CRYPTO_ALGAPI 868 help 1165 help 869 BLAKE2b cryptographic hash function !! 1166 Camellia cipher algorithm module (SPARC64). 870 1167 871 BLAKE2b is optimized for 64-bit plat !! 1168 Camellia is a symmetric key block cipher developed jointly 872 of any size between 1 and 64 bytes. !! 1169 at NTT and Mitsubishi Electric Corporation. 873 1170 874 This module provides the following a !! 1171 The Camellia specifies three key sizes: 128, 192 and 256 bits. 875 - blake2b-160 << 876 - blake2b-256 << 877 - blake2b-384 << 878 - blake2b-512 << 879 1172 880 Used by the btrfs filesystem. !! 1173 See also: >> 1174 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 881 1175 882 See https://blake2.net for further i !! 1176 config CRYPTO_CAST_COMMON >> 1177 tristate >> 1178 help >> 1179 Common parts of the CAST cipher algorithms shared by the >> 1180 generic c and the assembler implementations. 883 1181 884 config CRYPTO_CMAC !! 1182 config CRYPTO_CAST5 885 tristate "CMAC (Cipher-based MAC)" !! 1183 tristate "CAST5 (CAST-128) cipher algorithm" 886 select CRYPTO_HASH !! 1184 select CRYPTO_ALGAPI 887 select CRYPTO_MANAGER !! 1185 select CRYPTO_CAST_COMMON 888 help 1186 help 889 CMAC (Cipher-based Message Authentic !! 1187 The CAST5 encryption algorithm (synonymous with CAST-128) is 890 mode (NIST SP800-38B and IETF RFC449 !! 1188 described in RFC2144. 891 1189 892 config CRYPTO_GHASH !! 1190 config CRYPTO_CAST5_AVX_X86_64 893 tristate "GHASH" !! 1191 tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)" 894 select CRYPTO_HASH !! 1192 depends on X86 && 64BIT 895 select CRYPTO_LIB_GF128MUL !! 1193 select CRYPTO_ALGAPI >> 1194 select CRYPTO_CRYPTD >> 1195 select CRYPTO_ABLK_HELPER >> 1196 select CRYPTO_CAST_COMMON >> 1197 select CRYPTO_CAST5 896 help 1198 help 897 GCM GHASH function (NIST SP800-38D) !! 1199 The CAST5 encryption algorithm (synonymous with CAST-128) is >> 1200 described in RFC2144. 898 1201 899 config CRYPTO_HMAC !! 1202 This module provides the Cast5 cipher algorithm that processes 900 tristate "HMAC (Keyed-Hash MAC)" !! 1203 sixteen blocks parallel using the AVX instruction set. 901 select CRYPTO_HASH !! 1204 902 select CRYPTO_MANAGER !! 1205 config CRYPTO_CAST6 >> 1206 tristate "CAST6 (CAST-256) cipher algorithm" >> 1207 select CRYPTO_ALGAPI >> 1208 select CRYPTO_CAST_COMMON >> 1209 help >> 1210 The CAST6 encryption algorithm (synonymous with CAST-256) is >> 1211 described in RFC2612. >> 1212 >> 1213 config CRYPTO_CAST6_AVX_X86_64 >> 1214 tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)" >> 1215 depends on X86 && 64BIT >> 1216 select CRYPTO_ALGAPI >> 1217 select CRYPTO_CRYPTD >> 1218 select CRYPTO_ABLK_HELPER >> 1219 select CRYPTO_GLUE_HELPER_X86 >> 1220 select CRYPTO_CAST_COMMON >> 1221 select CRYPTO_CAST6 >> 1222 select CRYPTO_LRW >> 1223 select CRYPTO_XTS 903 help 1224 help 904 HMAC (Keyed-Hash Message Authenticat !! 1225 The CAST6 encryption algorithm (synonymous with CAST-256) is 905 RFC2104) !! 1226 described in RFC2612. 906 1227 907 This is required for IPsec AH (XFRM_ !! 1228 This module provides the Cast6 cipher algorithm that processes >> 1229 eight blocks parallel using the AVX instruction set. 908 1230 909 config CRYPTO_MD4 !! 1231 config CRYPTO_DES 910 tristate "MD4" !! 1232 tristate "DES and Triple DES EDE cipher algorithms" 911 select CRYPTO_HASH !! 1233 select CRYPTO_ALGAPI 912 help 1234 help 913 MD4 message digest algorithm (RFC132 !! 1235 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3). 914 1236 915 config CRYPTO_MD5 !! 1237 config CRYPTO_DES_SPARC64 916 tristate "MD5" !! 1238 tristate "DES and Triple DES EDE cipher algorithms (SPARC64)" 917 select CRYPTO_HASH !! 1239 depends on SPARC64 >> 1240 select CRYPTO_ALGAPI >> 1241 select CRYPTO_DES 918 help 1242 help 919 MD5 message digest algorithm (RFC132 !! 1243 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3), >> 1244 optimized using SPARC64 crypto opcodes. 920 1245 921 config CRYPTO_MICHAEL_MIC !! 1246 config CRYPTO_DES3_EDE_X86_64 922 tristate "Michael MIC" !! 1247 tristate "Triple DES EDE cipher algorithm (x86-64)" 923 select CRYPTO_HASH !! 1248 depends on X86 && 64BIT >> 1249 select CRYPTO_ALGAPI >> 1250 select CRYPTO_DES 924 help 1251 help 925 Michael MIC (Message Integrity Code) !! 1252 Triple DES EDE (FIPS 46-3) algorithm. 926 1253 927 Defined by the IEEE 802.11i TKIP (Te !! 1254 This module provides implementation of the Triple DES EDE cipher 928 known as WPA (Wif-Fi Protected Acces !! 1255 algorithm that is optimized for x86-64 processors. Two versions of >> 1256 algorithm are provided; regular processing one input block and >> 1257 one that processes three blocks parallel. 929 1258 930 This algorithm is required for TKIP, !! 1259 config CRYPTO_FCRYPT 931 other purposes because of the weakne !! 1260 tristate "FCrypt cipher algorithm" >> 1261 select CRYPTO_ALGAPI >> 1262 select CRYPTO_BLKCIPHER >> 1263 help >> 1264 FCrypt algorithm used by RxRPC. 932 1265 933 config CRYPTO_POLYVAL !! 1266 config CRYPTO_KHAZAD 934 tristate !! 1267 tristate "Khazad cipher algorithm" 935 select CRYPTO_HASH !! 1268 select CRYPTO_ALGAPI 936 select CRYPTO_LIB_GF128MUL << 937 help 1269 help 938 POLYVAL hash function for HCTR2 !! 1270 Khazad cipher algorithm. 939 1271 940 This is used in HCTR2. It is not a !! 1272 Khazad was a finalist in the initial NESSIE competition. It is 941 cryptographic hash function. !! 1273 an algorithm optimized for 64-bit processors with good performance >> 1274 on 32-bit processors. Khazad uses an 128 bit key size. 942 1275 943 config CRYPTO_POLY1305 !! 1276 See also: 944 tristate "Poly1305" !! 1277 <http://www.larc.usp.br/~pbarreto/KhazadPage.html> 945 select CRYPTO_HASH !! 1278 946 select CRYPTO_LIB_POLY1305_GENERIC !! 1279 config CRYPTO_SALSA20 >> 1280 tristate "Salsa20 stream cipher algorithm" >> 1281 select CRYPTO_BLKCIPHER 947 help 1282 help 948 Poly1305 authenticator algorithm (RF !! 1283 Salsa20 stream cipher algorithm. 949 1284 950 Poly1305 is an authenticator algorit !! 1285 Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT 951 It is used for the ChaCha20-Poly1305 !! 1286 Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/> 952 in IETF protocols. This is the porta << 953 1287 954 config CRYPTO_RMD160 !! 1288 The Salsa20 stream cipher algorithm is designed by Daniel J. 955 tristate "RIPEMD-160" !! 1289 Bernstein <http://cr.yp.to/snuffle.html">djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html> 956 select CRYPTO_HASH << 957 help << 958 RIPEMD-160 hash function (ISO/IEC 10 << 959 1290 960 RIPEMD-160 is a 160-bit cryptographi !! 1291 config CRYPTO_SALSA20_586 961 to be used as a secure replacement f !! 1292 tristate "Salsa20 stream cipher algorithm (i586)" 962 MD4, MD5 and its predecessor RIPEMD !! 1293 depends on (X86 || UML_X86) && !64BIT 963 (not to be confused with RIPEMD-128) !! 1294 select CRYPTO_BLKCIPHER >> 1295 help >> 1296 Salsa20 stream cipher algorithm. 964 1297 965 Its speed is comparable to SHA-1 and !! 1298 Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT 966 against RIPEMD-160. !! 1299 Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/> 967 1300 968 Developed by Hans Dobbertin, Antoon !! 1301 The Salsa20 stream cipher algorithm is designed by Daniel J. 969 See https://homes.esat.kuleuven.be/~ !! 1302 Bernstein <http://cr.yp.to/snuffle.html">djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html> 970 for further information. << 971 1303 972 config CRYPTO_SHA1 !! 1304 config CRYPTO_SALSA20_X86_64 973 tristate "SHA-1" !! 1305 tristate "Salsa20 stream cipher algorithm (x86_64)" 974 select CRYPTO_HASH !! 1306 depends on (X86 || UML_X86) && 64BIT 975 select CRYPTO_LIB_SHA1 !! 1307 select CRYPTO_BLKCIPHER 976 help 1308 help 977 SHA-1 secure hash algorithm (FIPS 18 !! 1309 Salsa20 stream cipher algorithm. 978 1310 979 config CRYPTO_SHA256 !! 1311 Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT 980 tristate "SHA-224 and SHA-256" !! 1312 Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/> 981 select CRYPTO_HASH !! 1313 982 select CRYPTO_LIB_SHA256 !! 1314 The Salsa20 stream cipher algorithm is designed by Daniel J. >> 1315 Bernstein <http://cr.yp.to/snuffle.html">djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html> >> 1316 >> 1317 config CRYPTO_CHACHA20 >> 1318 tristate "ChaCha20 cipher algorithm" >> 1319 select CRYPTO_BLKCIPHER 983 help 1320 help 984 SHA-224 and SHA-256 secure hash algo !! 1321 ChaCha20 cipher algorithm, RFC7539. 985 1322 986 This is required for IPsec AH (XFRM_ !! 1323 ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J. 987 Used by the btrfs filesystem, Ceph, !! 1324 Bernstein and further specified in RFC7539 for use in IETF protocols. >> 1325 This is the portable C implementation of ChaCha20. 988 1326 989 config CRYPTO_SHA512 !! 1327 See also: 990 tristate "SHA-384 and SHA-512" !! 1328 <http://cr.yp.to/chacha/chacha-20080128.pdf> 991 select CRYPTO_HASH !! 1329 >> 1330 config CRYPTO_CHACHA20_X86_64 >> 1331 tristate "ChaCha20 cipher algorithm (x86_64/SSSE3/AVX2)" >> 1332 depends on X86 && 64BIT >> 1333 select CRYPTO_BLKCIPHER >> 1334 select CRYPTO_CHACHA20 992 help 1335 help 993 SHA-384 and SHA-512 secure hash algo !! 1336 ChaCha20 cipher algorithm, RFC7539. 994 1337 995 config CRYPTO_SHA3 !! 1338 ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J. 996 tristate "SHA-3" !! 1339 Bernstein and further specified in RFC7539 for use in IETF protocols. 997 select CRYPTO_HASH !! 1340 This is the x86_64 assembler implementation using SIMD instructions. >> 1341 >> 1342 See also: >> 1343 <http://cr.yp.to/chacha/chacha-20080128.pdf> >> 1344 >> 1345 config CRYPTO_SEED >> 1346 tristate "SEED cipher algorithm" >> 1347 select CRYPTO_ALGAPI 998 help 1348 help 999 SHA-3 secure hash algorithms (FIPS 2 !! 1349 SEED cipher algorithm (RFC4269). 1000 1350 1001 config CRYPTO_SM3 !! 1351 SEED is a 128-bit symmetric key block cipher that has been 1002 tristate !! 1352 developed by KISA (Korea Information Security Agency) as a >> 1353 national standard encryption algorithm of the Republic of Korea. >> 1354 It is a 16 round block cipher with the key size of 128 bit. 1003 1355 1004 config CRYPTO_SM3_GENERIC !! 1356 See also: 1005 tristate "SM3 (ShangMi 3)" !! 1357 <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp> 1006 select CRYPTO_HASH !! 1358 1007 select CRYPTO_SM3 !! 1359 config CRYPTO_SERPENT >> 1360 tristate "Serpent cipher algorithm" >> 1361 select CRYPTO_ALGAPI 1008 help 1362 help 1009 SM3 (ShangMi 3) secure hash functio !! 1363 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1010 1364 1011 This is part of the Chinese Commerc !! 1365 Keys are allowed to be from 0 to 256 bits in length, in steps >> 1366 of 8 bits. Also includes the 'Tnepres' algorithm, a reversed >> 1367 variant of Serpent for compatibility with old kerneli.org code. 1012 1368 1013 References: !! 1369 See also: 1014 http://www.oscca.gov.cn/UpFile/2010 !! 1370 <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1015 https://datatracker.ietf.org/doc/ht << 1016 1371 1017 config CRYPTO_STREEBOG !! 1372 config CRYPTO_SERPENT_SSE2_X86_64 1018 tristate "Streebog" !! 1373 tristate "Serpent cipher algorithm (x86_64/SSE2)" 1019 select CRYPTO_HASH !! 1374 depends on X86 && 64BIT >> 1375 select CRYPTO_ALGAPI >> 1376 select CRYPTO_CRYPTD >> 1377 select CRYPTO_ABLK_HELPER >> 1378 select CRYPTO_GLUE_HELPER_X86 >> 1379 select CRYPTO_SERPENT >> 1380 select CRYPTO_LRW >> 1381 select CRYPTO_XTS 1020 help 1382 help 1021 Streebog Hash Function (GOST R 34.1 !! 1383 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1022 1384 1023 This is one of the Russian cryptogr !! 1385 Keys are allowed to be from 0 to 256 bits in length, in steps 1024 GOST algorithms). This setting enab !! 1386 of 8 bits. 1025 256 and 512 bits output. << 1026 1387 1027 References: !! 1388 This module provides Serpent cipher algorithm that processes eight 1028 https://tc26.ru/upload/iblock/fed/f !! 1389 blocks parallel using SSE2 instruction set. 1029 https://tools.ietf.org/html/rfc6986 << 1030 1390 1031 config CRYPTO_VMAC !! 1391 See also: 1032 tristate "VMAC" !! 1392 <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1033 select CRYPTO_HASH !! 1393 1034 select CRYPTO_MANAGER !! 1394 config CRYPTO_SERPENT_SSE2_586 >> 1395 tristate "Serpent cipher algorithm (i586/SSE2)" >> 1396 depends on X86 && !64BIT >> 1397 select CRYPTO_ALGAPI >> 1398 select CRYPTO_CRYPTD >> 1399 select CRYPTO_ABLK_HELPER >> 1400 select CRYPTO_GLUE_HELPER_X86 >> 1401 select CRYPTO_SERPENT >> 1402 select CRYPTO_LRW >> 1403 select CRYPTO_XTS 1035 help 1404 help 1036 VMAC is a message authentication al !! 1405 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1037 very high speed on 64-bit architect << 1038 1406 1039 See https://fastcrypto.org/vmac for !! 1407 Keys are allowed to be from 0 to 256 bits in length, in steps >> 1408 of 8 bits. 1040 1409 1041 config CRYPTO_WP512 !! 1410 This module provides Serpent cipher algorithm that processes four 1042 tristate "Whirlpool" !! 1411 blocks parallel using SSE2 instruction set. 1043 select CRYPTO_HASH !! 1412 >> 1413 See also: >> 1414 <http://www.cl.cam.ac.uk/~rja14/serpent.html> >> 1415 >> 1416 config CRYPTO_SERPENT_AVX_X86_64 >> 1417 tristate "Serpent cipher algorithm (x86_64/AVX)" >> 1418 depends on X86 && 64BIT >> 1419 select CRYPTO_ALGAPI >> 1420 select CRYPTO_CRYPTD >> 1421 select CRYPTO_ABLK_HELPER >> 1422 select CRYPTO_GLUE_HELPER_X86 >> 1423 select CRYPTO_SERPENT >> 1424 select CRYPTO_LRW >> 1425 select CRYPTO_XTS 1044 help 1426 help 1045 Whirlpool hash function (ISO/IEC 10 !! 1427 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1046 1428 1047 512, 384 and 256-bit hashes. !! 1429 Keys are allowed to be from 0 to 256 bits in length, in steps >> 1430 of 8 bits. 1048 1431 1049 Whirlpool-512 is part of the NESSIE !! 1432 This module provides the Serpent cipher algorithm that processes >> 1433 eight blocks parallel using the AVX instruction set. 1050 1434 1051 See https://web.archive.org/web/201 !! 1435 See also: 1052 for further information. !! 1436 <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1053 1437 1054 config CRYPTO_XCBC !! 1438 config CRYPTO_SERPENT_AVX2_X86_64 1055 tristate "XCBC-MAC (Extended Cipher B !! 1439 tristate "Serpent cipher algorithm (x86_64/AVX2)" 1056 select CRYPTO_HASH !! 1440 depends on X86 && 64BIT 1057 select CRYPTO_MANAGER !! 1441 select CRYPTO_ALGAPI >> 1442 select CRYPTO_CRYPTD >> 1443 select CRYPTO_ABLK_HELPER >> 1444 select CRYPTO_GLUE_HELPER_X86 >> 1445 select CRYPTO_SERPENT >> 1446 select CRYPTO_SERPENT_AVX_X86_64 >> 1447 select CRYPTO_LRW >> 1448 select CRYPTO_XTS 1058 help 1449 help 1059 XCBC-MAC (Extended Cipher Block Cha !! 1450 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1060 Code) (RFC3566) << 1061 1451 1062 config CRYPTO_XXHASH !! 1452 Keys are allowed to be from 0 to 256 bits in length, in steps 1063 tristate "xxHash" !! 1453 of 8 bits. 1064 select CRYPTO_HASH !! 1454 1065 select XXHASH !! 1455 This module provides Serpent cipher algorithm that processes 16 >> 1456 blocks parallel using AVX2 instruction set. >> 1457 >> 1458 See also: >> 1459 <http://www.cl.cam.ac.uk/~rja14/serpent.html> >> 1460 >> 1461 config CRYPTO_TEA >> 1462 tristate "TEA, XTEA and XETA cipher algorithms" >> 1463 select CRYPTO_ALGAPI 1066 help 1464 help 1067 xxHash non-cryptographic hash algor !! 1465 TEA cipher algorithm. 1068 1466 1069 Extremely fast, working at speeds c !! 1467 Tiny Encryption Algorithm is a simple cipher that uses >> 1468 many rounds for security. It is very fast and uses >> 1469 little memory. 1070 1470 1071 Used by the btrfs filesystem. !! 1471 Xtendend Tiny Encryption Algorithm is a modification to >> 1472 the TEA algorithm to address a potential key weakness >> 1473 in the TEA algorithm. 1072 1474 1073 endmenu !! 1475 Xtendend Encryption Tiny Algorithm is a mis-implementation >> 1476 of the XTEA algorithm for compatibility purposes. 1074 1477 1075 menu "CRCs (cyclic redundancy checks)" !! 1478 config CRYPTO_TWOFISH >> 1479 tristate "Twofish cipher algorithm" >> 1480 select CRYPTO_ALGAPI >> 1481 select CRYPTO_TWOFISH_COMMON >> 1482 help >> 1483 Twofish cipher algorithm. 1076 1484 1077 config CRYPTO_CRC32C !! 1485 Twofish was submitted as an AES (Advanced Encryption Standard) 1078 tristate "CRC32c" !! 1486 candidate cipher by researchers at CounterPane Systems. It is a 1079 select CRYPTO_HASH !! 1487 16 round block cipher supporting key sizes of 128, 192, and 256 1080 select CRC32 !! 1488 bits. >> 1489 >> 1490 See also: >> 1491 <http://www.schneier.com/twofish.html> >> 1492 >> 1493 config CRYPTO_TWOFISH_COMMON >> 1494 tristate 1081 help 1495 help 1082 CRC32c CRC algorithm with the iSCSI !! 1496 Common parts of the Twofish cipher algorithm shared by the >> 1497 generic c and the assembler implementations. 1083 1498 1084 A 32-bit CRC (cyclic redundancy che !! 1499 config CRYPTO_TWOFISH_586 1085 by G. Castagnoli, S. Braeuer and M. !! 1500 tristate "Twofish cipher algorithms (i586)" 1086 Redundancy-Check Codes with 24 and !! 1501 depends on (X86 || UML_X86) && !64BIT 1087 on Communications, Vol. 41, No. 6, !! 1502 select CRYPTO_ALGAPI 1088 iSCSI. !! 1503 select CRYPTO_TWOFISH_COMMON >> 1504 help >> 1505 Twofish cipher algorithm. 1089 1506 1090 Used by btrfs, ext4, jbd2, NVMeoF/T !! 1507 Twofish was submitted as an AES (Advanced Encryption Standard) >> 1508 candidate cipher by researchers at CounterPane Systems. It is a >> 1509 16 round block cipher supporting key sizes of 128, 192, and 256 >> 1510 bits. 1091 1511 1092 config CRYPTO_CRC32 !! 1512 See also: 1093 tristate "CRC32" !! 1513 <http://www.schneier.com/twofish.html> 1094 select CRYPTO_HASH !! 1514 1095 select CRC32 !! 1515 config CRYPTO_TWOFISH_X86_64 >> 1516 tristate "Twofish cipher algorithm (x86_64)" >> 1517 depends on (X86 || UML_X86) && 64BIT >> 1518 select CRYPTO_ALGAPI >> 1519 select CRYPTO_TWOFISH_COMMON 1096 help 1520 help 1097 CRC32 CRC algorithm (IEEE 802.3) !! 1521 Twofish cipher algorithm (x86_64). >> 1522 >> 1523 Twofish was submitted as an AES (Advanced Encryption Standard) >> 1524 candidate cipher by researchers at CounterPane Systems. It is a >> 1525 16 round block cipher supporting key sizes of 128, 192, and 256 >> 1526 bits. 1098 1527 1099 Used by RoCEv2 and f2fs. !! 1528 See also: >> 1529 <http://www.schneier.com/twofish.html> 1100 1530 1101 config CRYPTO_CRCT10DIF !! 1531 config CRYPTO_TWOFISH_X86_64_3WAY 1102 tristate "CRCT10DIF" !! 1532 tristate "Twofish cipher algorithm (x86_64, 3-way parallel)" 1103 select CRYPTO_HASH !! 1533 depends on X86 && 64BIT >> 1534 select CRYPTO_ALGAPI >> 1535 select CRYPTO_TWOFISH_COMMON >> 1536 select CRYPTO_TWOFISH_X86_64 >> 1537 select CRYPTO_GLUE_HELPER_X86 >> 1538 select CRYPTO_LRW >> 1539 select CRYPTO_XTS 1104 help 1540 help 1105 CRC16 CRC algorithm used for the T1 !! 1541 Twofish cipher algorithm (x86_64, 3-way parallel). 1106 1542 1107 CRC algorithm used by the SCSI Bloc !! 1543 Twofish was submitted as an AES (Advanced Encryption Standard) >> 1544 candidate cipher by researchers at CounterPane Systems. It is a >> 1545 16 round block cipher supporting key sizes of 128, 192, and 256 >> 1546 bits. 1108 1547 1109 config CRYPTO_CRC64_ROCKSOFT !! 1548 This module provides Twofish cipher algorithm that processes three 1110 tristate "CRC64 based on Rocksoft Mod !! 1549 blocks parallel, utilizing resources of out-of-order CPUs better. 1111 depends on CRC64 !! 1550 1112 select CRYPTO_HASH !! 1551 See also: >> 1552 <http://www.schneier.com/twofish.html> >> 1553 >> 1554 config CRYPTO_TWOFISH_AVX_X86_64 >> 1555 tristate "Twofish cipher algorithm (x86_64/AVX)" >> 1556 depends on X86 && 64BIT >> 1557 select CRYPTO_ALGAPI >> 1558 select CRYPTO_CRYPTD >> 1559 select CRYPTO_ABLK_HELPER >> 1560 select CRYPTO_GLUE_HELPER_X86 >> 1561 select CRYPTO_TWOFISH_COMMON >> 1562 select CRYPTO_TWOFISH_X86_64 >> 1563 select CRYPTO_TWOFISH_X86_64_3WAY >> 1564 select CRYPTO_LRW >> 1565 select CRYPTO_XTS 1113 help 1566 help 1114 CRC64 CRC algorithm based on the Ro !! 1567 Twofish cipher algorithm (x86_64/AVX). 1115 1568 1116 Used by the NVMe implementation of !! 1569 Twofish was submitted as an AES (Advanced Encryption Standard) >> 1570 candidate cipher by researchers at CounterPane Systems. It is a >> 1571 16 round block cipher supporting key sizes of 128, 192, and 256 >> 1572 bits. 1117 1573 1118 See https://zlib.net/crc_v3.txt !! 1574 This module provides the Twofish cipher algorithm that processes >> 1575 eight blocks parallel using the AVX Instruction Set. 1119 1576 1120 endmenu !! 1577 See also: >> 1578 <http://www.schneier.com/twofish.html> 1121 1579 1122 menu "Compression" !! 1580 comment "Compression" 1123 1581 1124 config CRYPTO_DEFLATE 1582 config CRYPTO_DEFLATE 1125 tristate "Deflate" !! 1583 tristate "Deflate compression algorithm" 1126 select CRYPTO_ALGAPI 1584 select CRYPTO_ALGAPI 1127 select CRYPTO_ACOMP2 1585 select CRYPTO_ACOMP2 1128 select ZLIB_INFLATE 1586 select ZLIB_INFLATE 1129 select ZLIB_DEFLATE 1587 select ZLIB_DEFLATE 1130 help 1588 help 1131 Deflate compression algorithm (RFC1 !! 1589 This is the Deflate algorithm (RFC1951), specified for use in >> 1590 IPSec with the IPCOMP protocol (RFC3173, RFC2394). 1132 1591 1133 Used by IPSec with the IPCOMP proto !! 1592 You will most probably want this if using IPSec. 1134 1593 1135 config CRYPTO_LZO 1594 config CRYPTO_LZO 1136 tristate "LZO" !! 1595 tristate "LZO compression algorithm" 1137 select CRYPTO_ALGAPI 1596 select CRYPTO_ALGAPI 1138 select CRYPTO_ACOMP2 1597 select CRYPTO_ACOMP2 1139 select LZO_COMPRESS 1598 select LZO_COMPRESS 1140 select LZO_DECOMPRESS 1599 select LZO_DECOMPRESS 1141 help 1600 help 1142 LZO compression algorithm !! 1601 This is the LZO algorithm. 1143 << 1144 See https://www.oberhumer.com/opens << 1145 1602 1146 config CRYPTO_842 1603 config CRYPTO_842 1147 tristate "842" !! 1604 tristate "842 compression algorithm" 1148 select CRYPTO_ALGAPI 1605 select CRYPTO_ALGAPI 1149 select CRYPTO_ACOMP2 1606 select CRYPTO_ACOMP2 1150 select 842_COMPRESS 1607 select 842_COMPRESS 1151 select 842_DECOMPRESS 1608 select 842_DECOMPRESS 1152 help 1609 help 1153 842 compression algorithm by IBM !! 1610 This is the 842 algorithm. 1154 << 1155 See https://github.com/plauth/lib84 << 1156 1611 1157 config CRYPTO_LZ4 1612 config CRYPTO_LZ4 1158 tristate "LZ4" !! 1613 tristate "LZ4 compression algorithm" 1159 select CRYPTO_ALGAPI 1614 select CRYPTO_ALGAPI 1160 select CRYPTO_ACOMP2 1615 select CRYPTO_ACOMP2 1161 select LZ4_COMPRESS 1616 select LZ4_COMPRESS 1162 select LZ4_DECOMPRESS 1617 select LZ4_DECOMPRESS 1163 help 1618 help 1164 LZ4 compression algorithm !! 1619 This is the LZ4 algorithm. 1165 << 1166 See https://github.com/lz4/lz4 for << 1167 1620 1168 config CRYPTO_LZ4HC 1621 config CRYPTO_LZ4HC 1169 tristate "LZ4HC" !! 1622 tristate "LZ4HC compression algorithm" 1170 select CRYPTO_ALGAPI 1623 select CRYPTO_ALGAPI 1171 select CRYPTO_ACOMP2 1624 select CRYPTO_ACOMP2 1172 select LZ4HC_COMPRESS 1625 select LZ4HC_COMPRESS 1173 select LZ4_DECOMPRESS 1626 select LZ4_DECOMPRESS 1174 help 1627 help 1175 LZ4 high compression mode algorithm !! 1628 This is the LZ4 high compression mode algorithm. 1176 << 1177 See https://github.com/lz4/lz4 for << 1178 1629 1179 config CRYPTO_ZSTD !! 1630 comment "Random Number Generation" 1180 tristate "Zstd" << 1181 select CRYPTO_ALGAPI << 1182 select CRYPTO_ACOMP2 << 1183 select ZSTD_COMPRESS << 1184 select ZSTD_DECOMPRESS << 1185 help << 1186 zstd compression algorithm << 1187 << 1188 See https://github.com/facebook/zst << 1189 << 1190 endmenu << 1191 << 1192 menu "Random number generation" << 1193 1631 1194 config CRYPTO_ANSI_CPRNG 1632 config CRYPTO_ANSI_CPRNG 1195 tristate "ANSI PRNG (Pseudo Random Nu !! 1633 tristate "Pseudo Random Number Generation for Cryptographic modules" 1196 select CRYPTO_AES 1634 select CRYPTO_AES 1197 select CRYPTO_RNG 1635 select CRYPTO_RNG 1198 help 1636 help 1199 Pseudo RNG (random number generator !! 1637 This option enables the generic pseudo random number generator 1200 !! 1638 for cryptographic modules. Uses the Algorithm specified in 1201 This uses the AES cipher algorithm. !! 1639 ANSI X9.31 A.2.4. Note that this option must be enabled if 1202 !! 1640 CRYPTO_FIPS is selected 1203 Note that this option must be enabl << 1204 1641 1205 menuconfig CRYPTO_DRBG_MENU 1642 menuconfig CRYPTO_DRBG_MENU 1206 tristate "NIST SP800-90A DRBG (Determ !! 1643 tristate "NIST SP800-90A DRBG" 1207 help 1644 help 1208 DRBG (Deterministic Random Bit Gene !! 1645 NIST SP800-90A compliant DRBG. In the following submenu, one or 1209 !! 1646 more of the DRBG types must be selected. 1210 In the following submenu, one or mo << 1211 1647 1212 if CRYPTO_DRBG_MENU 1648 if CRYPTO_DRBG_MENU 1213 1649 1214 config CRYPTO_DRBG_HMAC 1650 config CRYPTO_DRBG_HMAC 1215 bool 1651 bool 1216 default y 1652 default y 1217 select CRYPTO_HMAC 1653 select CRYPTO_HMAC 1218 select CRYPTO_SHA512 !! 1654 select CRYPTO_SHA256 1219 1655 1220 config CRYPTO_DRBG_HASH 1656 config CRYPTO_DRBG_HASH 1221 bool "Hash_DRBG" !! 1657 bool "Enable Hash DRBG" 1222 select CRYPTO_SHA256 1658 select CRYPTO_SHA256 1223 help 1659 help 1224 Hash_DRBG variant as defined in NIS !! 1660 Enable the Hash DRBG variant as defined in NIST SP800-90A. 1225 << 1226 This uses the SHA-1, SHA-256, SHA-3 << 1227 1661 1228 config CRYPTO_DRBG_CTR 1662 config CRYPTO_DRBG_CTR 1229 bool "CTR_DRBG" !! 1663 bool "Enable CTR DRBG" 1230 select CRYPTO_AES 1664 select CRYPTO_AES 1231 select CRYPTO_CTR !! 1665 depends on CRYPTO_CTR 1232 help 1666 help 1233 CTR_DRBG variant as defined in NIST !! 1667 Enable the CTR DRBG variant as defined in NIST SP800-90A. 1234 << 1235 This uses the AES cipher algorithm << 1236 1668 1237 config CRYPTO_DRBG 1669 config CRYPTO_DRBG 1238 tristate 1670 tristate 1239 default CRYPTO_DRBG_MENU 1671 default CRYPTO_DRBG_MENU 1240 select CRYPTO_RNG 1672 select CRYPTO_RNG 1241 select CRYPTO_JITTERENTROPY 1673 select CRYPTO_JITTERENTROPY 1242 1674 1243 endif # if CRYPTO_DRBG_MENU 1675 endif # if CRYPTO_DRBG_MENU 1244 1676 1245 config CRYPTO_JITTERENTROPY 1677 config CRYPTO_JITTERENTROPY 1246 tristate "CPU Jitter Non-Deterministi !! 1678 tristate "Jitterentropy Non-Deterministic Random Number Generator" 1247 select CRYPTO_RNG 1679 select CRYPTO_RNG 1248 select CRYPTO_SHA3 << 1249 help 1680 help 1250 CPU Jitter RNG (Random Number Gener !! 1681 The Jitterentropy RNG is a noise that is intended 1251 !! 1682 to provide seed to another RNG. The RNG does not 1252 A non-physical non-deterministic (" !! 1683 perform any cryptographic whitening of the generated 1253 compliant with NIST SP800-90B) inte !! 1684 random numbers. This Jitterentropy RNG registers with 1254 deterministic RNG (e.g., per NIST S !! 1685 the kernel crypto API and can be used by any caller. 1255 This RNG does not perform any crypt << 1256 random numbers. << 1257 << 1258 See https://www.chronox.de/jent/ << 1259 << 1260 if CRYPTO_JITTERENTROPY << 1261 if CRYPTO_FIPS && EXPERT << 1262 << 1263 choice << 1264 prompt "CPU Jitter RNG Memory Size" << 1265 default CRYPTO_JITTERENTROPY_MEMSIZE_ << 1266 help << 1267 The Jitter RNG measures the executi << 1268 Multiple consecutive memory accesse << 1269 size fits into a cache (e.g. L1), o << 1270 to that cache is measured. The clos << 1271 the less variations are measured an << 1272 obtained. Thus, if the memory size << 1273 obtained entropy is less than if th << 1274 L1 + L2, which in turn is less if t << 1275 L1 + L2 + L3. Thus, by selecting a << 1276 the entropy rate produced by the Ji << 1277 << 1278 config CRYPTO_JITTERENTROPY_MEMSIZE_2 << 1279 bool "2048 Bytes (default)" << 1280 << 1281 config CRYPTO_JITTERENTROPY_MEMSIZE_1 << 1282 bool "128 kBytes" << 1283 << 1284 config CRYPTO_JITTERENTROPY_MEMSIZE_1 << 1285 bool "1024 kBytes" << 1286 << 1287 config CRYPTO_JITTERENTROPY_MEMSIZE_8 << 1288 bool "8192 kBytes" << 1289 endchoice << 1290 << 1291 config CRYPTO_JITTERENTROPY_MEMORY_BLOCKS << 1292 int << 1293 default 64 if CRYPTO_JITTERENTROPY_ME << 1294 default 512 if CRYPTO_JITTERENTROPY_M << 1295 default 1024 if CRYPTO_JITTERENTROPY_ << 1296 default 4096 if CRYPTO_JITTERENTROPY_ << 1297 << 1298 config CRYPTO_JITTERENTROPY_MEMORY_BLOCKSIZE << 1299 int << 1300 default 32 if CRYPTO_JITTERENTROPY_ME << 1301 default 256 if CRYPTO_JITTERENTROPY_M << 1302 default 1024 if CRYPTO_JITTERENTROPY_ << 1303 default 2048 if CRYPTO_JITTERENTROPY_ << 1304 << 1305 config CRYPTO_JITTERENTROPY_OSR << 1306 int "CPU Jitter RNG Oversampling Rate << 1307 range 1 15 << 1308 default 3 << 1309 help << 1310 The Jitter RNG allows the specifica << 1311 The Jitter RNG operation requires a << 1312 measurements to produce one output << 1313 OSR value is multiplied with the am << 1314 generate one output block. Thus, th << 1315 by the OSR factor. The oversampling << 1316 on hardware whose timers deliver li << 1317 the timer is coarse) by setting the << 1318 trade-off, however, is that the Jit << 1319 to generate random numbers. << 1320 << 1321 config CRYPTO_JITTERENTROPY_TESTINTERFACE << 1322 bool "CPU Jitter RNG Test Interface" << 1323 help << 1324 The test interface allows a privile << 1325 the raw unconditioned high resoluti << 1326 is collected by the Jitter RNG for << 1327 this data is used at the same time << 1328 the Jitter RNG operates in an insec << 1329 recording is enabled. This interfac << 1330 intended for testing purposes and i << 1331 production systems. << 1332 << 1333 The raw noise data can be obtained << 1334 debugfs file. Using the option << 1335 jitterentropy_testing.boot_raw_hire << 1336 the first 1000 entropy events since << 1337 << 1338 If unsure, select N. << 1339 << 1340 endif # if CRYPTO_FIPS && EXPERT << 1341 << 1342 if !(CRYPTO_FIPS && EXPERT) << 1343 << 1344 config CRYPTO_JITTERENTROPY_MEMORY_BLOCKS << 1345 int << 1346 default 64 << 1347 << 1348 config CRYPTO_JITTERENTROPY_MEMORY_BLOCKSIZE << 1349 int << 1350 default 32 << 1351 << 1352 config CRYPTO_JITTERENTROPY_OSR << 1353 int << 1354 default 1 << 1355 << 1356 config CRYPTO_JITTERENTROPY_TESTINTERFACE << 1357 bool << 1358 << 1359 endif # if !(CRYPTO_FIPS && EXPERT) << 1360 endif # if CRYPTO_JITTERENTROPY << 1361 << 1362 config CRYPTO_KDF800108_CTR << 1363 tristate << 1364 select CRYPTO_HMAC << 1365 select CRYPTO_SHA256 << 1366 << 1367 endmenu << 1368 menu "Userspace interface" << 1369 1686 1370 config CRYPTO_USER_API 1687 config CRYPTO_USER_API 1371 tristate 1688 tristate 1372 1689 1373 config CRYPTO_USER_API_HASH 1690 config CRYPTO_USER_API_HASH 1374 tristate "Hash algorithms" !! 1691 tristate "User-space interface for hash algorithms" 1375 depends on NET 1692 depends on NET 1376 select CRYPTO_HASH 1693 select CRYPTO_HASH 1377 select CRYPTO_USER_API 1694 select CRYPTO_USER_API 1378 help 1695 help 1379 Enable the userspace interface for !! 1696 This option enables the user-spaces interface for hash 1380 !! 1697 algorithms. 1381 See Documentation/crypto/userspace- << 1382 https://www.chronox.de/libkcapi/htm << 1383 1698 1384 config CRYPTO_USER_API_SKCIPHER 1699 config CRYPTO_USER_API_SKCIPHER 1385 tristate "Symmetric key cipher algori !! 1700 tristate "User-space interface for symmetric key cipher algorithms" 1386 depends on NET 1701 depends on NET 1387 select CRYPTO_SKCIPHER !! 1702 select CRYPTO_BLKCIPHER 1388 select CRYPTO_USER_API 1703 select CRYPTO_USER_API 1389 help 1704 help 1390 Enable the userspace interface for !! 1705 This option enables the user-spaces interface for symmetric 1391 !! 1706 key cipher algorithms. 1392 See Documentation/crypto/userspace- << 1393 https://www.chronox.de/libkcapi/htm << 1394 1707 1395 config CRYPTO_USER_API_RNG 1708 config CRYPTO_USER_API_RNG 1396 tristate "RNG (random number generato !! 1709 tristate "User-space interface for random number generator algorithms" 1397 depends on NET 1710 depends on NET 1398 select CRYPTO_RNG 1711 select CRYPTO_RNG 1399 select CRYPTO_USER_API 1712 select CRYPTO_USER_API 1400 help 1713 help 1401 Enable the userspace interface for !! 1714 This option enables the user-spaces interface for random 1402 algorithms. !! 1715 number generator algorithms. 1403 << 1404 See Documentation/crypto/userspace- << 1405 https://www.chronox.de/libkcapi/htm << 1406 << 1407 config CRYPTO_USER_API_RNG_CAVP << 1408 bool "Enable CAVP testing of DRBG" << 1409 depends on CRYPTO_USER_API_RNG && CRY << 1410 help << 1411 Enable extra APIs in the userspace << 1412 (Cryptographic Algorithm Validation << 1413 - resetting DRBG entropy << 1414 - providing Additional Data << 1415 << 1416 This should only be enabled for CAV << 1417 no unless you know what this is. << 1418 1716 1419 config CRYPTO_USER_API_AEAD 1717 config CRYPTO_USER_API_AEAD 1420 tristate "AEAD cipher algorithms" !! 1718 tristate "User-space interface for AEAD cipher algorithms" 1421 depends on NET 1719 depends on NET 1422 select CRYPTO_AEAD 1720 select CRYPTO_AEAD 1423 select CRYPTO_SKCIPHER << 1424 select CRYPTO_NULL << 1425 select CRYPTO_USER_API 1721 select CRYPTO_USER_API 1426 help 1722 help 1427 Enable the userspace interface for !! 1723 This option enables the user-spaces interface for AEAD 1428 !! 1724 cipher algorithms. 1429 See Documentation/crypto/userspace- << 1430 https://www.chronox.de/libkcapi/htm << 1431 << 1432 config CRYPTO_USER_API_ENABLE_OBSOLETE << 1433 bool "Obsolete cryptographic algorith << 1434 depends on CRYPTO_USER_API << 1435 default y << 1436 help << 1437 Allow obsolete cryptographic algori << 1438 already been phased out from intern << 1439 only useful for userspace clients t << 1440 << 1441 endmenu << 1442 1725 1443 config CRYPTO_HASH_INFO 1726 config CRYPTO_HASH_INFO 1444 bool 1727 bool 1445 1728 1446 if !KMSAN # avoid false positives from assemb << 1447 if ARM << 1448 source "arch/arm/crypto/Kconfig" << 1449 endif << 1450 if ARM64 << 1451 source "arch/arm64/crypto/Kconfig" << 1452 endif << 1453 if LOONGARCH << 1454 source "arch/loongarch/crypto/Kconfig" << 1455 endif << 1456 if MIPS << 1457 source "arch/mips/crypto/Kconfig" << 1458 endif << 1459 if PPC << 1460 source "arch/powerpc/crypto/Kconfig" << 1461 endif << 1462 if RISCV << 1463 source "arch/riscv/crypto/Kconfig" << 1464 endif << 1465 if S390 << 1466 source "arch/s390/crypto/Kconfig" << 1467 endif << 1468 if SPARC << 1469 source "arch/sparc/crypto/Kconfig" << 1470 endif << 1471 if X86 << 1472 source "arch/x86/crypto/Kconfig" << 1473 endif << 1474 endif << 1475 << 1476 source "drivers/crypto/Kconfig" 1729 source "drivers/crypto/Kconfig" 1477 source "crypto/asymmetric_keys/Kconfig" !! 1730 source crypto/asymmetric_keys/Kconfig 1478 source "certs/Kconfig" !! 1731 source certs/Kconfig 1479 1732 1480 endif # if CRYPTO 1733 endif # if CRYPTO
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.