1 # SPDX-License-Identifier: GPL-2.0 1 # SPDX-License-Identifier: GPL-2.0 2 # 2 # 3 # Generic algorithms support 3 # Generic algorithms support 4 # 4 # 5 config XOR_BLOCKS 5 config XOR_BLOCKS 6 tristate 6 tristate 7 7 8 # 8 # 9 # async_tx api: hardware offloaded memory tran 9 # async_tx api: hardware offloaded memory transfer/transform support 10 # 10 # 11 source "crypto/async_tx/Kconfig" 11 source "crypto/async_tx/Kconfig" 12 12 13 # 13 # 14 # Cryptographic API Configuration 14 # Cryptographic API Configuration 15 # 15 # 16 menuconfig CRYPTO 16 menuconfig CRYPTO 17 tristate "Cryptographic API" 17 tristate "Cryptographic API" 18 select CRYPTO_LIB_UTILS !! 18 select LIB_MEMNEQ 19 help 19 help 20 This option provides the core Crypto 20 This option provides the core Cryptographic API. 21 21 22 if CRYPTO 22 if CRYPTO 23 23 24 menu "Crypto core or helper" !! 24 comment "Crypto core or helper" 25 25 26 config CRYPTO_FIPS 26 config CRYPTO_FIPS 27 bool "FIPS 200 compliance" 27 bool "FIPS 200 compliance" 28 depends on (CRYPTO_ANSI_CPRNG || CRYPT 28 depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS 29 depends on (MODULE_SIG || !MODULES) 29 depends on (MODULE_SIG || !MODULES) 30 help 30 help 31 This option enables the fips boot op 31 This option enables the fips boot option which is 32 required if you want the system to o 32 required if you want the system to operate in a FIPS 200 33 certification. You should say no un 33 certification. You should say no unless you know what 34 this is. 34 this is. 35 35 36 config CRYPTO_FIPS_NAME << 37 string "FIPS Module Name" << 38 default "Linux Kernel Cryptographic AP << 39 depends on CRYPTO_FIPS << 40 help << 41 This option sets the FIPS Module nam << 42 the /proc/sys/crypto/fips_name file. << 43 << 44 config CRYPTO_FIPS_CUSTOM_VERSION << 45 bool "Use Custom FIPS Module Version" << 46 depends on CRYPTO_FIPS << 47 default n << 48 << 49 config CRYPTO_FIPS_VERSION << 50 string "FIPS Module Version" << 51 default "(none)" << 52 depends on CRYPTO_FIPS_CUSTOM_VERSION << 53 help << 54 This option provides the ability to << 55 By default the KERNELRELEASE value i << 56 << 57 config CRYPTO_ALGAPI 36 config CRYPTO_ALGAPI 58 tristate 37 tristate 59 select CRYPTO_ALGAPI2 38 select CRYPTO_ALGAPI2 60 help 39 help 61 This option provides the API for cry 40 This option provides the API for cryptographic algorithms. 62 41 63 config CRYPTO_ALGAPI2 42 config CRYPTO_ALGAPI2 64 tristate 43 tristate 65 44 66 config CRYPTO_AEAD 45 config CRYPTO_AEAD 67 tristate 46 tristate 68 select CRYPTO_AEAD2 47 select CRYPTO_AEAD2 69 select CRYPTO_ALGAPI 48 select CRYPTO_ALGAPI 70 49 71 config CRYPTO_AEAD2 50 config CRYPTO_AEAD2 72 tristate 51 tristate 73 select CRYPTO_ALGAPI2 52 select CRYPTO_ALGAPI2 74 !! 53 select CRYPTO_NULL2 75 config CRYPTO_SIG !! 54 select CRYPTO_RNG2 76 tristate << 77 select CRYPTO_SIG2 << 78 select CRYPTO_ALGAPI << 79 << 80 config CRYPTO_SIG2 << 81 tristate << 82 select CRYPTO_ALGAPI2 << 83 55 84 config CRYPTO_SKCIPHER 56 config CRYPTO_SKCIPHER 85 tristate 57 tristate 86 select CRYPTO_SKCIPHER2 58 select CRYPTO_SKCIPHER2 87 select CRYPTO_ALGAPI 59 select CRYPTO_ALGAPI 88 select CRYPTO_ECB << 89 60 90 config CRYPTO_SKCIPHER2 61 config CRYPTO_SKCIPHER2 91 tristate 62 tristate 92 select CRYPTO_ALGAPI2 63 select CRYPTO_ALGAPI2 >> 64 select CRYPTO_RNG2 93 65 94 config CRYPTO_HASH 66 config CRYPTO_HASH 95 tristate 67 tristate 96 select CRYPTO_HASH2 68 select CRYPTO_HASH2 97 select CRYPTO_ALGAPI 69 select CRYPTO_ALGAPI 98 70 99 config CRYPTO_HASH2 71 config CRYPTO_HASH2 100 tristate 72 tristate 101 select CRYPTO_ALGAPI2 73 select CRYPTO_ALGAPI2 102 74 103 config CRYPTO_RNG 75 config CRYPTO_RNG 104 tristate 76 tristate 105 select CRYPTO_RNG2 77 select CRYPTO_RNG2 106 select CRYPTO_ALGAPI 78 select CRYPTO_ALGAPI 107 79 108 config CRYPTO_RNG2 80 config CRYPTO_RNG2 109 tristate 81 tristate 110 select CRYPTO_ALGAPI2 82 select CRYPTO_ALGAPI2 111 83 112 config CRYPTO_RNG_DEFAULT 84 config CRYPTO_RNG_DEFAULT 113 tristate 85 tristate 114 select CRYPTO_DRBG_MENU 86 select CRYPTO_DRBG_MENU 115 87 116 config CRYPTO_AKCIPHER2 88 config CRYPTO_AKCIPHER2 117 tristate 89 tristate 118 select CRYPTO_ALGAPI2 90 select CRYPTO_ALGAPI2 119 91 120 config CRYPTO_AKCIPHER 92 config CRYPTO_AKCIPHER 121 tristate 93 tristate 122 select CRYPTO_AKCIPHER2 94 select CRYPTO_AKCIPHER2 123 select CRYPTO_ALGAPI 95 select CRYPTO_ALGAPI 124 96 125 config CRYPTO_KPP2 97 config CRYPTO_KPP2 126 tristate 98 tristate 127 select CRYPTO_ALGAPI2 99 select CRYPTO_ALGAPI2 128 100 129 config CRYPTO_KPP 101 config CRYPTO_KPP 130 tristate 102 tristate 131 select CRYPTO_ALGAPI 103 select CRYPTO_ALGAPI 132 select CRYPTO_KPP2 104 select CRYPTO_KPP2 133 105 134 config CRYPTO_ACOMP2 106 config CRYPTO_ACOMP2 135 tristate 107 tristate 136 select CRYPTO_ALGAPI2 108 select CRYPTO_ALGAPI2 137 select SGL_ALLOC 109 select SGL_ALLOC 138 110 139 config CRYPTO_ACOMP 111 config CRYPTO_ACOMP 140 tristate 112 tristate 141 select CRYPTO_ALGAPI 113 select CRYPTO_ALGAPI 142 select CRYPTO_ACOMP2 114 select CRYPTO_ACOMP2 143 115 144 config CRYPTO_MANAGER 116 config CRYPTO_MANAGER 145 tristate "Cryptographic algorithm mana 117 tristate "Cryptographic algorithm manager" 146 select CRYPTO_MANAGER2 118 select CRYPTO_MANAGER2 147 help 119 help 148 Create default cryptographic templat 120 Create default cryptographic template instantiations such as 149 cbc(aes). 121 cbc(aes). 150 122 151 config CRYPTO_MANAGER2 123 config CRYPTO_MANAGER2 152 def_tristate CRYPTO_MANAGER || (CRYPTO 124 def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y) 153 select CRYPTO_ACOMP2 << 154 select CRYPTO_AEAD2 125 select CRYPTO_AEAD2 155 select CRYPTO_AKCIPHER2 << 156 select CRYPTO_SIG2 << 157 select CRYPTO_HASH2 126 select CRYPTO_HASH2 158 select CRYPTO_KPP2 << 159 select CRYPTO_RNG2 << 160 select CRYPTO_SKCIPHER2 127 select CRYPTO_SKCIPHER2 >> 128 select CRYPTO_AKCIPHER2 >> 129 select CRYPTO_KPP2 >> 130 select CRYPTO_ACOMP2 161 131 162 config CRYPTO_USER 132 config CRYPTO_USER 163 tristate "Userspace cryptographic algo 133 tristate "Userspace cryptographic algorithm configuration" 164 depends on NET 134 depends on NET 165 select CRYPTO_MANAGER 135 select CRYPTO_MANAGER 166 help 136 help 167 Userspace configuration for cryptogr 137 Userspace configuration for cryptographic instantiations such as 168 cbc(aes). 138 cbc(aes). 169 139 170 config CRYPTO_MANAGER_DISABLE_TESTS 140 config CRYPTO_MANAGER_DISABLE_TESTS 171 bool "Disable run-time self tests" 141 bool "Disable run-time self tests" 172 default y 142 default y 173 help 143 help 174 Disable run-time self tests that nor 144 Disable run-time self tests that normally take place at 175 algorithm registration. 145 algorithm registration. 176 146 177 config CRYPTO_MANAGER_EXTRA_TESTS 147 config CRYPTO_MANAGER_EXTRA_TESTS 178 bool "Enable extra run-time crypto sel 148 bool "Enable extra run-time crypto self tests" 179 depends on DEBUG_KERNEL && !CRYPTO_MAN 149 depends on DEBUG_KERNEL && !CRYPTO_MANAGER_DISABLE_TESTS && CRYPTO_MANAGER 180 help 150 help 181 Enable extra run-time self tests of 151 Enable extra run-time self tests of registered crypto algorithms, 182 including randomized fuzz tests. 152 including randomized fuzz tests. 183 153 184 This is intended for developer use o 154 This is intended for developer use only, as these tests take much 185 longer to run than the normal self t 155 longer to run than the normal self tests. 186 156 >> 157 config CRYPTO_GF128MUL >> 158 tristate >> 159 187 config CRYPTO_NULL 160 config CRYPTO_NULL 188 tristate "Null algorithms" 161 tristate "Null algorithms" 189 select CRYPTO_NULL2 162 select CRYPTO_NULL2 190 help 163 help 191 These are 'Null' algorithms, used by 164 These are 'Null' algorithms, used by IPsec, which do nothing. 192 165 193 config CRYPTO_NULL2 166 config CRYPTO_NULL2 194 tristate 167 tristate 195 select CRYPTO_ALGAPI2 168 select CRYPTO_ALGAPI2 196 select CRYPTO_SKCIPHER2 169 select CRYPTO_SKCIPHER2 197 select CRYPTO_HASH2 170 select CRYPTO_HASH2 198 171 199 config CRYPTO_PCRYPT 172 config CRYPTO_PCRYPT 200 tristate "Parallel crypto engine" 173 tristate "Parallel crypto engine" 201 depends on SMP 174 depends on SMP 202 select PADATA 175 select PADATA 203 select CRYPTO_MANAGER 176 select CRYPTO_MANAGER 204 select CRYPTO_AEAD 177 select CRYPTO_AEAD 205 help 178 help 206 This converts an arbitrary crypto al 179 This converts an arbitrary crypto algorithm into a parallel 207 algorithm that executes in kernel th 180 algorithm that executes in kernel threads. 208 181 209 config CRYPTO_CRYPTD 182 config CRYPTO_CRYPTD 210 tristate "Software async crypto daemon 183 tristate "Software async crypto daemon" 211 select CRYPTO_SKCIPHER 184 select CRYPTO_SKCIPHER 212 select CRYPTO_HASH 185 select CRYPTO_HASH 213 select CRYPTO_MANAGER 186 select CRYPTO_MANAGER 214 help 187 help 215 This is a generic software asynchron 188 This is a generic software asynchronous crypto daemon that 216 converts an arbitrary synchronous so 189 converts an arbitrary synchronous software crypto algorithm 217 into an asynchronous algorithm that 190 into an asynchronous algorithm that executes in a kernel thread. 218 191 219 config CRYPTO_AUTHENC 192 config CRYPTO_AUTHENC 220 tristate "Authenc support" 193 tristate "Authenc support" 221 select CRYPTO_AEAD 194 select CRYPTO_AEAD 222 select CRYPTO_SKCIPHER 195 select CRYPTO_SKCIPHER 223 select CRYPTO_MANAGER 196 select CRYPTO_MANAGER 224 select CRYPTO_HASH 197 select CRYPTO_HASH 225 select CRYPTO_NULL 198 select CRYPTO_NULL 226 help 199 help 227 Authenc: Combined mode wrapper for I 200 Authenc: Combined mode wrapper for IPsec. 228 !! 201 This is required for IPSec. 229 This is required for IPSec ESP (XFRM << 230 202 231 config CRYPTO_TEST 203 config CRYPTO_TEST 232 tristate "Testing module" 204 tristate "Testing module" 233 depends on m || EXPERT !! 205 depends on m 234 select CRYPTO_MANAGER 206 select CRYPTO_MANAGER 235 help 207 help 236 Quick & dirty crypto test module. 208 Quick & dirty crypto test module. 237 209 238 config CRYPTO_SIMD 210 config CRYPTO_SIMD 239 tristate 211 tristate 240 select CRYPTO_CRYPTD 212 select CRYPTO_CRYPTD 241 213 242 config CRYPTO_ENGINE !! 214 config CRYPTO_GLUE_HELPER_X86 243 tristate 215 tristate >> 216 depends on X86 >> 217 select CRYPTO_SKCIPHER 244 218 245 endmenu !! 219 config CRYPTO_ENGINE >> 220 tristate 246 221 247 menu "Public-key cryptography" !! 222 comment "Public-key cryptography" 248 223 249 config CRYPTO_RSA 224 config CRYPTO_RSA 250 tristate "RSA (Rivest-Shamir-Adleman)" !! 225 tristate "RSA algorithm" 251 select CRYPTO_AKCIPHER 226 select CRYPTO_AKCIPHER 252 select CRYPTO_MANAGER 227 select CRYPTO_MANAGER 253 select MPILIB 228 select MPILIB 254 select ASN1 229 select ASN1 255 help 230 help 256 RSA (Rivest-Shamir-Adleman) public k !! 231 Generic implementation of the RSA public key algorithm. 257 232 258 config CRYPTO_DH 233 config CRYPTO_DH 259 tristate "DH (Diffie-Hellman)" !! 234 tristate "Diffie-Hellman algorithm" 260 select CRYPTO_KPP 235 select CRYPTO_KPP 261 select MPILIB 236 select MPILIB 262 help 237 help 263 DH (Diffie-Hellman) key exchange alg !! 238 Generic implementation of the Diffie-Hellman algorithm. 264 << 265 config CRYPTO_DH_RFC7919_GROUPS << 266 bool "RFC 7919 FFDHE groups" << 267 depends on CRYPTO_DH << 268 select CRYPTO_RNG_DEFAULT << 269 help << 270 FFDHE (Finite-Field-based Diffie-Hel << 271 defined in RFC7919. << 272 << 273 Support these finite-field groups in << 274 - ffdhe2048, ffdhe3072, ffdhe4096, f << 275 << 276 If unsure, say N. << 277 239 278 config CRYPTO_ECC 240 config CRYPTO_ECC 279 tristate 241 tristate 280 select CRYPTO_RNG_DEFAULT 242 select CRYPTO_RNG_DEFAULT 281 243 282 config CRYPTO_ECDH 244 config CRYPTO_ECDH 283 tristate "ECDH (Elliptic Curve Diffie- !! 245 tristate "ECDH algorithm" 284 select CRYPTO_ECC 246 select CRYPTO_ECC 285 select CRYPTO_KPP 247 select CRYPTO_KPP 286 help 248 help 287 ECDH (Elliptic Curve Diffie-Hellman) !! 249 Generic implementation of the ECDH algorithm 288 using curves P-192, P-256, and P-384 << 289 << 290 config CRYPTO_ECDSA << 291 tristate "ECDSA (Elliptic Curve Digita << 292 select CRYPTO_ECC << 293 select CRYPTO_AKCIPHER << 294 select ASN1 << 295 help << 296 ECDSA (Elliptic Curve Digital Signat << 297 ISO/IEC 14888-3) << 298 using curves P-192, P-256, and P-384 << 299 << 300 Only signature verification is imple << 301 250 302 config CRYPTO_ECRDSA 251 config CRYPTO_ECRDSA 303 tristate "EC-RDSA (Elliptic Curve Russ !! 252 tristate "EC-RDSA (GOST 34.10) algorithm" 304 select CRYPTO_ECC 253 select CRYPTO_ECC 305 select CRYPTO_AKCIPHER 254 select CRYPTO_AKCIPHER 306 select CRYPTO_STREEBOG 255 select CRYPTO_STREEBOG 307 select OID_REGISTRY 256 select OID_REGISTRY 308 select ASN1 257 select ASN1 309 help 258 help 310 Elliptic Curve Russian Digital Signa 259 Elliptic Curve Russian Digital Signature Algorithm (GOST R 34.10-2012, 311 RFC 7091, ISO/IEC 14888-3) !! 260 RFC 7091, ISO/IEC 14888-3:2018) is one of the Russian cryptographic >> 261 standard algorithms (called GOST algorithms). Only signature verification >> 262 is implemented. >> 263 >> 264 config CRYPTO_SM2 >> 265 tristate "SM2 algorithm" >> 266 select CRYPTO_SM3 >> 267 select CRYPTO_AKCIPHER >> 268 select CRYPTO_MANAGER >> 269 select MPILIB >> 270 select ASN1 >> 271 help >> 272 Generic implementation of the SM2 public key algorithm. It was >> 273 published by State Encryption Management Bureau, China. >> 274 as specified by OSCCA GM/T 0003.1-2012 -- 0003.5-2012. 312 275 313 One of the Russian cryptographic sta !! 276 References: 314 algorithms). Only signature verifica !! 277 https://tools.ietf.org/html/draft-shen-sm2-ecdsa-02 >> 278 http://www.oscca.gov.cn/sca/xxgk/2010-12/17/content_1002386.shtml >> 279 http://www.gmbz.org.cn/main/bzlb.html 315 280 316 config CRYPTO_CURVE25519 281 config CRYPTO_CURVE25519 317 tristate "Curve25519" !! 282 tristate "Curve25519 algorithm" 318 select CRYPTO_KPP 283 select CRYPTO_KPP 319 select CRYPTO_LIB_CURVE25519_GENERIC 284 select CRYPTO_LIB_CURVE25519_GENERIC 320 help << 321 Curve25519 elliptic curve (RFC7748) << 322 << 323 endmenu << 324 << 325 menu "Block ciphers" << 326 << 327 config CRYPTO_AES << 328 tristate "AES (Advanced Encryption Sta << 329 select CRYPTO_ALGAPI << 330 select CRYPTO_LIB_AES << 331 help << 332 AES cipher algorithms (Rijndael)(FIP << 333 << 334 Rijndael appears to be consistently << 335 both hardware and software across a << 336 environments regardless of its use i << 337 modes. Its key setup time is excelle << 338 good. Rijndael's very low memory req << 339 suited for restricted-space environm << 340 demonstrates excellent performance. << 341 among the easiest to defend against << 342 << 343 The AES specifies three key sizes: 1 << 344 << 345 config CRYPTO_AES_TI << 346 tristate "AES (Advanced Encryption Sta << 347 select CRYPTO_ALGAPI << 348 select CRYPTO_LIB_AES << 349 help << 350 AES cipher algorithms (Rijndael)(FIP << 351 << 352 This is a generic implementation of << 353 data dependent latencies as much as << 354 performance too much. It is intended << 355 and GCM drivers, and other CTR or CM << 356 solely on encryption (although decry << 357 with a more dramatic performance hit << 358 << 359 Instead of using 16 lookup tables of << 360 8 for decryption), this implementati << 361 256 bytes each, and attempts to elim << 362 prefetching the entire table into th << 363 block. Interrupts are also disabled << 364 are evicted when the CPU is interrup << 365 << 366 config CRYPTO_ANUBIS << 367 tristate "Anubis" << 368 depends on CRYPTO_USER_API_ENABLE_OBSO << 369 select CRYPTO_ALGAPI << 370 help << 371 Anubis cipher algorithm << 372 << 373 Anubis is a variable key length ciph << 374 128 bits to 320 bits in length. It << 375 in the NESSIE competition. << 376 285 377 See https://web.archive.org/web/2016 !! 286 config CRYPTO_CURVE25519_X86 378 for further information. !! 287 tristate "x86_64 accelerated Curve25519 scalar multiplication library" 379 !! 288 depends on X86 && 64BIT 380 config CRYPTO_ARIA !! 289 select CRYPTO_LIB_CURVE25519_GENERIC 381 tristate "ARIA" !! 290 select CRYPTO_ARCH_HAVE_LIB_CURVE25519 382 select CRYPTO_ALGAPI << 383 help << 384 ARIA cipher algorithm (RFC5794) << 385 << 386 ARIA is a standard encryption algori << 387 The ARIA specifies three key sizes a << 388 128-bit: 12 rounds. << 389 192-bit: 14 rounds. << 390 256-bit: 16 rounds. << 391 291 392 See: !! 292 comment "Authenticated Encryption with Associated Data" 393 https://seed.kisa.or.kr/kisa/algorit << 394 293 395 config CRYPTO_BLOWFISH !! 294 config CRYPTO_CCM 396 tristate "Blowfish" !! 295 tristate "CCM support" 397 select CRYPTO_ALGAPI !! 296 select CRYPTO_CTR 398 select CRYPTO_BLOWFISH_COMMON !! 297 select CRYPTO_HASH >> 298 select CRYPTO_AEAD >> 299 select CRYPTO_MANAGER 399 help 300 help 400 Blowfish cipher algorithm, by Bruce !! 301 Support for Counter with CBC MAC. Required for IPsec. 401 302 402 This is a variable key length cipher !! 303 config CRYPTO_GCM 403 bits to 448 bits in length. It's fa !! 304 tristate "GCM/GMAC support" 404 designed for use on "large microproc !! 305 select CRYPTO_CTR 405 !! 306 select CRYPTO_AEAD 406 See https://www.schneier.com/blowfis !! 307 select CRYPTO_GHASH 407 !! 308 select CRYPTO_NULL 408 config CRYPTO_BLOWFISH_COMMON !! 309 select CRYPTO_MANAGER 409 tristate << 410 help 310 help 411 Common parts of the Blowfish cipher !! 311 Support for Galois/Counter Mode (GCM) and Galois Message 412 generic c and the assembler implemen !! 312 Authentication Code (GMAC). Required for IPSec. 413 313 414 config CRYPTO_CAMELLIA !! 314 config CRYPTO_CHACHA20POLY1305 415 tristate "Camellia" !! 315 tristate "ChaCha20-Poly1305 AEAD support" 416 select CRYPTO_ALGAPI !! 316 select CRYPTO_CHACHA20 >> 317 select CRYPTO_POLY1305 >> 318 select CRYPTO_AEAD >> 319 select CRYPTO_MANAGER 417 help 320 help 418 Camellia cipher algorithms (ISO/IEC !! 321 ChaCha20-Poly1305 AEAD support, RFC7539. 419 << 420 Camellia is a symmetric key block ci << 421 at NTT and Mitsubishi Electric Corpo << 422 << 423 The Camellia specifies three key siz << 424 << 425 See https://info.isl.ntt.co.jp/crypt << 426 322 427 config CRYPTO_CAST_COMMON !! 323 Support for the AEAD wrapper using the ChaCha20 stream cipher combined 428 tristate !! 324 with the Poly1305 authenticator. It is defined in RFC7539 for use in 429 help !! 325 IETF protocols. 430 Common parts of the CAST cipher algo << 431 generic c and the assembler implemen << 432 326 433 config CRYPTO_CAST5 !! 327 config CRYPTO_AEGIS128 434 tristate "CAST5 (CAST-128)" !! 328 tristate "AEGIS-128 AEAD algorithm" 435 select CRYPTO_ALGAPI !! 329 select CRYPTO_AEAD 436 select CRYPTO_CAST_COMMON !! 330 select CRYPTO_AES # for AES S-box tables 437 help 331 help 438 CAST5 (CAST-128) cipher algorithm (R !! 332 Support for the AEGIS-128 dedicated AEAD algorithm. 439 333 440 config CRYPTO_CAST6 !! 334 config CRYPTO_AEGIS128_SIMD 441 tristate "CAST6 (CAST-256)" !! 335 bool "Support SIMD acceleration for AEGIS-128" 442 select CRYPTO_ALGAPI !! 336 depends on CRYPTO_AEGIS128 && ((ARM || ARM64) && KERNEL_MODE_NEON) 443 select CRYPTO_CAST_COMMON !! 337 default y 444 help << 445 CAST6 (CAST-256) encryption algorith << 446 338 447 config CRYPTO_DES !! 339 config CRYPTO_AEGIS128_AESNI_SSE2 448 tristate "DES and Triple DES EDE" !! 340 tristate "AEGIS-128 AEAD algorithm (x86_64 AESNI+SSE2 implementation)" 449 select CRYPTO_ALGAPI !! 341 depends on X86 && 64BIT 450 select CRYPTO_LIB_DES !! 342 select CRYPTO_AEAD >> 343 select CRYPTO_SIMD 451 help 344 help 452 DES (Data Encryption Standard)(FIPS !! 345 AESNI+SSE2 implementation of the AEGIS-128 dedicated AEAD algorithm. 453 Triple DES EDE (Encrypt/Decrypt/Encr << 454 cipher algorithms << 455 346 456 config CRYPTO_FCRYPT !! 347 config CRYPTO_SEQIV 457 tristate "FCrypt" !! 348 tristate "Sequence Number IV Generator" 458 select CRYPTO_ALGAPI !! 349 select CRYPTO_AEAD 459 select CRYPTO_SKCIPHER 350 select CRYPTO_SKCIPHER 460 help !! 351 select CRYPTO_NULL 461 FCrypt algorithm used by RxRPC !! 352 select CRYPTO_RNG_DEFAULT 462 << 463 See https://ota.polyonymo.us/fcrypt- << 464 << 465 config CRYPTO_KHAZAD << 466 tristate "Khazad" << 467 depends on CRYPTO_USER_API_ENABLE_OBSO << 468 select CRYPTO_ALGAPI << 469 help << 470 Khazad cipher algorithm << 471 << 472 Khazad was a finalist in the initial << 473 an algorithm optimized for 64-bit pr << 474 on 32-bit processors. Khazad uses a << 475 << 476 See https://web.archive.org/web/2017 << 477 for further information. << 478 << 479 config CRYPTO_SEED << 480 tristate "SEED" << 481 depends on CRYPTO_USER_API_ENABLE_OBSO << 482 select CRYPTO_ALGAPI << 483 help << 484 SEED cipher algorithm (RFC4269, ISO/ << 485 << 486 SEED is a 128-bit symmetric key bloc << 487 developed by KISA (Korea Information << 488 national standard encryption algorit << 489 It is a 16 round block cipher with t << 490 << 491 See https://seed.kisa.or.kr/kisa/alg << 492 for further information. << 493 << 494 config CRYPTO_SERPENT << 495 tristate "Serpent" << 496 select CRYPTO_ALGAPI << 497 help << 498 Serpent cipher algorithm, by Anderso << 499 << 500 Keys are allowed to be from 0 to 256 << 501 of 8 bits. << 502 << 503 See https://www.cl.cam.ac.uk/~rja14/ << 504 << 505 config CRYPTO_SM4 << 506 tristate << 507 << 508 config CRYPTO_SM4_GENERIC << 509 tristate "SM4 (ShangMi 4)" << 510 select CRYPTO_ALGAPI << 511 select CRYPTO_SM4 << 512 help << 513 SM4 cipher algorithms (OSCCA GB/T 32 << 514 ISO/IEC 18033-3:2010/Amd 1:2021) << 515 << 516 SM4 (GBT.32907-2016) is a cryptograp << 517 Organization of State Commercial Adm << 518 as an authorized cryptographic algor << 519 << 520 SMS4 was originally created for use << 521 networks, and is mandated in the Chi << 522 Wireless LAN WAPI (Wired Authenticat << 523 (GB.15629.11-2003). << 524 << 525 The latest SM4 standard (GBT.32907-2 << 526 standardized through TC 260 of the S << 527 of the People's Republic of China (S << 528 << 529 The input, output, and key of SMS4 a << 530 << 531 See https://eprint.iacr.org/2008/329 << 532 << 533 If unsure, say N. << 534 << 535 config CRYPTO_TEA << 536 tristate "TEA, XTEA and XETA" << 537 depends on CRYPTO_USER_API_ENABLE_OBSO << 538 select CRYPTO_ALGAPI << 539 help << 540 TEA (Tiny Encryption Algorithm) ciph << 541 << 542 Tiny Encryption Algorithm is a simpl << 543 many rounds for security. It is ver << 544 little memory. << 545 << 546 Xtendend Tiny Encryption Algorithm i << 547 the TEA algorithm to address a poten << 548 in the TEA algorithm. << 549 << 550 Xtendend Encryption Tiny Algorithm i << 551 of the XTEA algorithm for compatibil << 552 << 553 config CRYPTO_TWOFISH << 554 tristate "Twofish" << 555 select CRYPTO_ALGAPI << 556 select CRYPTO_TWOFISH_COMMON << 557 help << 558 Twofish cipher algorithm << 559 << 560 Twofish was submitted as an AES (Adv << 561 candidate cipher by researchers at C << 562 16 round block cipher supporting key << 563 bits. << 564 << 565 See https://www.schneier.com/twofish << 566 << 567 config CRYPTO_TWOFISH_COMMON << 568 tristate << 569 help << 570 Common parts of the Twofish cipher a << 571 generic c and the assembler implemen << 572 << 573 endmenu << 574 << 575 menu "Length-preserving ciphers and modes" << 576 << 577 config CRYPTO_ADIANTUM << 578 tristate "Adiantum" << 579 select CRYPTO_CHACHA20 << 580 select CRYPTO_LIB_POLY1305_GENERIC << 581 select CRYPTO_NHPOLY1305 << 582 select CRYPTO_MANAGER 353 select CRYPTO_MANAGER 583 help 354 help 584 Adiantum tweakable, length-preservin !! 355 This IV generator generates an IV based on a sequence number by 585 !! 356 xoring it with a salt. This algorithm is mainly useful for CTR 586 Designed for fast and secure disk en << 587 CPUs without dedicated crypto instru << 588 each sector using the XChaCha12 stre << 589 an ε-almost-∆-universal hash func << 590 the AES-256 block cipher on a single << 591 without AES instructions, Adiantum i << 592 AES-XTS. << 593 << 594 Adiantum's security is provably redu << 595 underlying stream and block ciphers, << 596 bound. Unlike XTS, Adiantum is a tr << 597 mode, so it actually provides an eve << 598 security than XTS, subject to the se << 599 << 600 If unsure, say N. << 601 357 602 config CRYPTO_ARC4 !! 358 config CRYPTO_ECHAINIV 603 tristate "ARC4 (Alleged Rivest Cipher !! 359 tristate "Encrypted Chain IV Generator" 604 depends on CRYPTO_USER_API_ENABLE_OBSO !! 360 select CRYPTO_AEAD 605 select CRYPTO_SKCIPHER !! 361 select CRYPTO_NULL 606 select CRYPTO_LIB_ARC4 !! 362 select CRYPTO_RNG_DEFAULT >> 363 select CRYPTO_MANAGER 607 help 364 help 608 ARC4 cipher algorithm !! 365 This IV generator generates an IV based on the encryption of >> 366 a sequence number xored with a salt. This is the default >> 367 algorithm for CBC. 609 368 610 ARC4 is a stream cipher using keys r !! 369 comment "Block modes" 611 bits in length. This algorithm is r << 612 WEP, but it should not be for other << 613 weakness of the algorithm. << 614 370 615 config CRYPTO_CHACHA20 !! 371 config CRYPTO_CBC 616 tristate "ChaCha" !! 372 tristate "CBC support" 617 select CRYPTO_LIB_CHACHA_GENERIC << 618 select CRYPTO_SKCIPHER 373 select CRYPTO_SKCIPHER >> 374 select CRYPTO_MANAGER 619 help 375 help 620 The ChaCha20, XChaCha20, and XChaCha !! 376 CBC: Cipher Block Chaining mode >> 377 This block cipher algorithm is required for IPSec. 621 378 622 ChaCha20 is a 256-bit high-speed str !! 379 config CRYPTO_CFB 623 Bernstein and further specified in R !! 380 tristate "CFB support" 624 This is the portable C implementatio << 625 https://cr.yp.to/chacha/chacha-20080 << 626 << 627 XChaCha20 is the application of the << 628 rather than to Salsa20. XChaCha20 e << 629 from 64 bits (or 96 bits using the R << 630 while provably retaining ChaCha20's << 631 https://cr.yp.to/snuffle/xsalsa-2008 << 632 << 633 XChaCha12 is XChaCha20 reduced to 12 << 634 reduced security margin but increase << 635 in some performance-sensitive scenar << 636 << 637 config CRYPTO_CBC << 638 tristate "CBC (Cipher Block Chaining)" << 639 select CRYPTO_SKCIPHER 381 select CRYPTO_SKCIPHER 640 select CRYPTO_MANAGER 382 select CRYPTO_MANAGER 641 help 383 help 642 CBC (Cipher Block Chaining) mode (NI !! 384 CFB: Cipher FeedBack mode 643 !! 385 This block cipher algorithm is required for TPM2 Cryptography. 644 This block cipher mode is required f << 645 386 646 config CRYPTO_CTR 387 config CRYPTO_CTR 647 tristate "CTR (Counter)" !! 388 tristate "CTR support" 648 select CRYPTO_SKCIPHER 389 select CRYPTO_SKCIPHER 649 select CRYPTO_MANAGER 390 select CRYPTO_MANAGER 650 help 391 help 651 CTR (Counter) mode (NIST SP800-38A) !! 392 CTR: Counter mode >> 393 This block cipher algorithm is required for IPSec. 652 394 653 config CRYPTO_CTS 395 config CRYPTO_CTS 654 tristate "CTS (Cipher Text Stealing)" !! 396 tristate "CTS support" 655 select CRYPTO_SKCIPHER 397 select CRYPTO_SKCIPHER 656 select CRYPTO_MANAGER 398 select CRYPTO_MANAGER 657 help 399 help 658 CBC-CS3 variant of CTS (Cipher Text !! 400 CTS: Cipher Text Stealing 659 Addendum to SP800-38A (October 2010) !! 401 This is the Cipher Text Stealing mode as described by 660 !! 402 Section 8 of rfc2040 and referenced by rfc3962 >> 403 (rfc3962 includes errata information in its Appendix A) or >> 404 CBC-CS3 as defined by NIST in Sp800-38A addendum from Oct 2010. 661 This mode is required for Kerberos g 405 This mode is required for Kerberos gss mechanism support 662 for AES encryption. 406 for AES encryption. 663 407 664 config CRYPTO_ECB !! 408 See: https://csrc.nist.gov/publications/detail/sp/800-38a/addendum/final 665 tristate "ECB (Electronic Codebook)" << 666 select CRYPTO_SKCIPHER2 << 667 select CRYPTO_MANAGER << 668 help << 669 ECB (Electronic Codebook) mode (NIST << 670 << 671 config CRYPTO_HCTR2 << 672 tristate "HCTR2" << 673 select CRYPTO_XCTR << 674 select CRYPTO_POLYVAL << 675 select CRYPTO_MANAGER << 676 help << 677 HCTR2 length-preserving encryption m << 678 << 679 A mode for storage encryption that i << 680 instructions to accelerate AES and c << 681 x86 processors with AES-NI and CLMUL << 682 ARMv8 crypto extensions. << 683 << 684 See https://eprint.iacr.org/2021/144 << 685 409 686 config CRYPTO_KEYWRAP !! 410 config CRYPTO_ECB 687 tristate "KW (AES Key Wrap)" !! 411 tristate "ECB support" 688 select CRYPTO_SKCIPHER 412 select CRYPTO_SKCIPHER 689 select CRYPTO_MANAGER 413 select CRYPTO_MANAGER 690 help 414 help 691 KW (AES Key Wrap) authenticated encr !! 415 ECB: Electronic CodeBook mode 692 and RFC3394) without padding. !! 416 This is the simplest block cipher algorithm. It simply encrypts >> 417 the input block by block. 693 418 694 config CRYPTO_LRW 419 config CRYPTO_LRW 695 tristate "LRW (Liskov Rivest Wagner)" !! 420 tristate "LRW support" 696 select CRYPTO_LIB_GF128MUL << 697 select CRYPTO_SKCIPHER 421 select CRYPTO_SKCIPHER 698 select CRYPTO_MANAGER 422 select CRYPTO_MANAGER 699 select CRYPTO_ECB !! 423 select CRYPTO_GF128MUL 700 help 424 help 701 LRW (Liskov Rivest Wagner) mode !! 425 LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable 702 << 703 A tweakable, non malleable, non mova << 704 narrow block cipher mode for dm-cryp 426 narrow block cipher mode for dm-crypt. Use it with cipher 705 specification string aes-lrw-benbi, 427 specification string aes-lrw-benbi, the key must be 256, 320 or 384. 706 The first 128, 192 or 256 bits in th 428 The first 128, 192 or 256 bits in the key are used for AES and the 707 rest is used to tie each cipher bloc 429 rest is used to tie each cipher block to its logical position. 708 430 709 See https://people.csail.mit.edu/riv !! 431 config CRYPTO_OFB 710 !! 432 tristate "OFB support" 711 config CRYPTO_PCBC << 712 tristate "PCBC (Propagating Cipher Blo << 713 select CRYPTO_SKCIPHER 433 select CRYPTO_SKCIPHER 714 select CRYPTO_MANAGER 434 select CRYPTO_MANAGER 715 help 435 help 716 PCBC (Propagating Cipher Block Chain !! 436 OFB: the Output Feedback mode makes a block cipher into a synchronous >> 437 stream cipher. It generates keystream blocks, which are then XORed >> 438 with the plaintext blocks to get the ciphertext. Flipping a bit in the >> 439 ciphertext produces a flipped bit in the plaintext at the same >> 440 location. This property allows many error correcting codes to function >> 441 normally even when applied before encryption. 717 442 718 This block cipher mode is required f !! 443 config CRYPTO_PCBC 719 !! 444 tristate "PCBC support" 720 config CRYPTO_XCTR << 721 tristate << 722 select CRYPTO_SKCIPHER 445 select CRYPTO_SKCIPHER 723 select CRYPTO_MANAGER 446 select CRYPTO_MANAGER 724 help 447 help 725 XCTR (XOR Counter) mode for HCTR2 !! 448 PCBC: Propagating Cipher Block Chaining mode 726 !! 449 This block cipher algorithm is required for RxRPC. 727 This blockcipher mode is a variant o << 728 addition rather than big-endian arit << 729 << 730 XCTR mode is used to implement HCTR2 << 731 450 732 config CRYPTO_XTS 451 config CRYPTO_XTS 733 tristate "XTS (XOR Encrypt XOR with ci !! 452 tristate "XTS support" 734 select CRYPTO_SKCIPHER 453 select CRYPTO_SKCIPHER 735 select CRYPTO_MANAGER 454 select CRYPTO_MANAGER 736 select CRYPTO_ECB 455 select CRYPTO_ECB 737 help 456 help 738 XTS (XOR Encrypt XOR with ciphertext !! 457 XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain, 739 and IEEE 1619) !! 458 key size 256, 384 or 512 bits. This implementation currently >> 459 can't handle a sectorsize which is not a multiple of 16 bytes. 740 460 741 Use with aes-xts-plain, key size 256 !! 461 config CRYPTO_KEYWRAP 742 implementation currently can't handl !! 462 tristate "Key wrapping support" 743 multiple of 16 bytes. !! 463 select CRYPTO_SKCIPHER >> 464 select CRYPTO_MANAGER >> 465 help >> 466 Support for key wrapping (NIST SP800-38F / RFC3394) without >> 467 padding. 744 468 745 config CRYPTO_NHPOLY1305 469 config CRYPTO_NHPOLY1305 746 tristate 470 tristate 747 select CRYPTO_HASH 471 select CRYPTO_HASH 748 select CRYPTO_LIB_POLY1305_GENERIC 472 select CRYPTO_LIB_POLY1305_GENERIC 749 473 750 endmenu !! 474 config CRYPTO_NHPOLY1305_SSE2 751 !! 475 tristate "NHPoly1305 hash function (x86_64 SSE2 implementation)" 752 menu "AEAD (authenticated encryption with asso !! 476 depends on X86 && 64BIT 753 !! 477 select CRYPTO_NHPOLY1305 754 config CRYPTO_AEGIS128 << 755 tristate "AEGIS-128" << 756 select CRYPTO_AEAD << 757 select CRYPTO_AES # for AES S-box tab << 758 help 478 help 759 AEGIS-128 AEAD algorithm !! 479 SSE2 optimized implementation of the hash function used by the >> 480 Adiantum encryption mode. 760 481 761 config CRYPTO_AEGIS128_SIMD !! 482 config CRYPTO_NHPOLY1305_AVX2 762 bool "AEGIS-128 (arm NEON, arm64 NEON) !! 483 tristate "NHPoly1305 hash function (x86_64 AVX2 implementation)" 763 depends on CRYPTO_AEGIS128 && ((ARM || !! 484 depends on X86 && 64BIT 764 default y !! 485 select CRYPTO_NHPOLY1305 765 help 486 help 766 AEGIS-128 AEAD algorithm !! 487 AVX2 optimized implementation of the hash function used by the >> 488 Adiantum encryption mode. 767 489 768 Architecture: arm or arm64 using: !! 490 config CRYPTO_ADIANTUM 769 - NEON (Advanced SIMD) extension !! 491 tristate "Adiantum support" 770 << 771 config CRYPTO_CHACHA20POLY1305 << 772 tristate "ChaCha20-Poly1305" << 773 select CRYPTO_CHACHA20 492 select CRYPTO_CHACHA20 774 select CRYPTO_POLY1305 !! 493 select CRYPTO_LIB_POLY1305_GENERIC 775 select CRYPTO_AEAD !! 494 select CRYPTO_NHPOLY1305 776 select CRYPTO_MANAGER << 777 help << 778 ChaCha20 stream cipher and Poly1305 << 779 mode (RFC8439) << 780 << 781 config CRYPTO_CCM << 782 tristate "CCM (Counter with Cipher Blo << 783 select CRYPTO_CTR << 784 select CRYPTO_HASH << 785 select CRYPTO_AEAD << 786 select CRYPTO_MANAGER << 787 help << 788 CCM (Counter with Cipher Block Chain << 789 authenticated encryption mode (NIST << 790 << 791 config CRYPTO_GCM << 792 tristate "GCM (Galois/Counter Mode) an << 793 select CRYPTO_CTR << 794 select CRYPTO_AEAD << 795 select CRYPTO_GHASH << 796 select CRYPTO_NULL << 797 select CRYPTO_MANAGER 495 select CRYPTO_MANAGER 798 help 496 help 799 GCM (Galois/Counter Mode) authentica !! 497 Adiantum is a tweakable, length-preserving encryption mode 800 (GCM Message Authentication Code) (N !! 498 designed for fast and secure disk encryption, especially on 801 !! 499 CPUs without dedicated crypto instructions. It encrypts 802 This is required for IPSec ESP (XFRM !! 500 each sector using the XChaCha12 stream cipher, two passes of 803 !! 501 an ε-almost-∆-universal hash function, and an invocation of 804 config CRYPTO_GENIV !! 502 the AES-256 block cipher on a single 16-byte block. On CPUs 805 tristate !! 503 without AES instructions, Adiantum is much faster than 806 select CRYPTO_AEAD !! 504 AES-XTS. 807 select CRYPTO_NULL << 808 select CRYPTO_MANAGER << 809 select CRYPTO_RNG_DEFAULT << 810 << 811 config CRYPTO_SEQIV << 812 tristate "Sequence Number IV Generator << 813 select CRYPTO_GENIV << 814 help << 815 Sequence Number IV generator << 816 << 817 This IV generator generates an IV ba << 818 xoring it with a salt. This algorit << 819 << 820 This is required for IPsec ESP (XFRM << 821 505 822 config CRYPTO_ECHAINIV !! 506 Adiantum's security is provably reducible to that of its 823 tristate "Encrypted Chain IV Generator !! 507 underlying stream and block ciphers, subject to a security 824 select CRYPTO_GENIV !! 508 bound. Unlike XTS, Adiantum is a true wide-block encryption 825 help !! 509 mode, so it actually provides an even stronger notion of 826 Encrypted Chain IV generator !! 510 security than XTS, subject to the security bound. 827 511 828 This IV generator generates an IV ba !! 512 If unsure, say N. 829 a sequence number xored with a salt. << 830 algorithm for CBC. << 831 513 832 config CRYPTO_ESSIV 514 config CRYPTO_ESSIV 833 tristate "Encrypted Salt-Sector IV Gen !! 515 tristate "ESSIV support for block encryption" 834 select CRYPTO_AUTHENC 516 select CRYPTO_AUTHENC 835 help 517 help 836 Encrypted Salt-Sector IV generator !! 518 Encrypted salt-sector initialization vector (ESSIV) is an IV 837 !! 519 generation method that is used in some cases by fscrypt and/or 838 This IV generator is used in some ca << 839 dm-crypt. It uses the hash of the bl 520 dm-crypt. It uses the hash of the block encryption key as the 840 symmetric key for a block encryption 521 symmetric key for a block encryption pass applied to the input 841 IV, making low entropy IV sources mo 522 IV, making low entropy IV sources more suitable for block 842 encryption. 523 encryption. 843 524 844 This driver implements a crypto API 525 This driver implements a crypto API template that can be 845 instantiated either as an skcipher o 526 instantiated either as an skcipher or as an AEAD (depending on the 846 type of the first template argument) 527 type of the first template argument), and which defers encryption 847 and decryption requests to the encap 528 and decryption requests to the encapsulated cipher after applying 848 ESSIV to the input IV. Note that in 529 ESSIV to the input IV. Note that in the AEAD case, it is assumed 849 that the keys are presented in the s 530 that the keys are presented in the same format used by the authenc 850 template, and that the IV appears at 531 template, and that the IV appears at the end of the authenticated 851 associated data (AAD) region (which 532 associated data (AAD) region (which is how dm-crypt uses it.) 852 533 853 Note that the use of ESSIV is not re 534 Note that the use of ESSIV is not recommended for new deployments, 854 and so this only needs to be enabled 535 and so this only needs to be enabled when interoperability with 855 existing encrypted volumes of filesy 536 existing encrypted volumes of filesystems is required, or when 856 building for a particular system tha 537 building for a particular system that requires it (e.g., when 857 the SoC in question has accelerated 538 the SoC in question has accelerated CBC but not XTS, making CBC 858 combined with ESSIV the only feasibl 539 combined with ESSIV the only feasible mode for h/w accelerated 859 block encryption) 540 block encryption) 860 541 861 endmenu !! 542 comment "Hash modes" 862 543 863 menu "Hashes, digests, and MACs" !! 544 config CRYPTO_CMAC >> 545 tristate "CMAC support" >> 546 select CRYPTO_HASH >> 547 select CRYPTO_MANAGER >> 548 help >> 549 Cipher-based Message Authentication Code (CMAC) specified by >> 550 The National Institute of Standards and Technology (NIST). 864 551 865 config CRYPTO_BLAKE2B !! 552 https://tools.ietf.org/html/rfc4493 866 tristate "BLAKE2b" !! 553 http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf >> 554 >> 555 config CRYPTO_HMAC >> 556 tristate "HMAC support" >> 557 select CRYPTO_HASH >> 558 select CRYPTO_MANAGER >> 559 help >> 560 HMAC: Keyed-Hashing for Message Authentication (RFC2104). >> 561 This is required for IPSec. >> 562 >> 563 config CRYPTO_XCBC >> 564 tristate "XCBC support" >> 565 select CRYPTO_HASH >> 566 select CRYPTO_MANAGER >> 567 help >> 568 XCBC: Keyed-Hashing with encryption algorithm >> 569 https://www.ietf.org/rfc/rfc3566.txt >> 570 http://csrc.nist.gov/encryption/modes/proposedmodes/ >> 571 xcbc-mac/xcbc-mac-spec.pdf >> 572 >> 573 config CRYPTO_VMAC >> 574 tristate "VMAC support" 867 select CRYPTO_HASH 575 select CRYPTO_HASH >> 576 select CRYPTO_MANAGER 868 help 577 help 869 BLAKE2b cryptographic hash function !! 578 VMAC is a message authentication algorithm designed for >> 579 very high speed on 64-bit architectures. >> 580 >> 581 See also: >> 582 <https://fastcrypto.org/vmac> 870 583 871 BLAKE2b is optimized for 64-bit plat !! 584 comment "Digest" 872 of any size between 1 and 64 bytes. !! 585 >> 586 config CRYPTO_CRC32C >> 587 tristate "CRC32c CRC algorithm" >> 588 select CRYPTO_HASH >> 589 select CRC32 >> 590 help >> 591 Castagnoli, et al Cyclic Redundancy-Check Algorithm. Used >> 592 by iSCSI for header and data digests and by others. >> 593 See Castagnoli93. Module will be crc32c. >> 594 >> 595 config CRYPTO_CRC32C_INTEL >> 596 tristate "CRC32c INTEL hardware acceleration" >> 597 depends on X86 >> 598 select CRYPTO_HASH >> 599 help >> 600 In Intel processor with SSE4.2 supported, the processor will >> 601 support CRC32C implementation using hardware accelerated CRC32 >> 602 instruction. This option will create 'crc32c-intel' module, >> 603 which will enable any routine to use the CRC32 instruction to >> 604 gain performance compared with software implementation. >> 605 Module will be crc32c-intel. >> 606 >> 607 config CRYPTO_CRC32C_VPMSUM >> 608 tristate "CRC32c CRC algorithm (powerpc64)" >> 609 depends on PPC64 && ALTIVEC >> 610 select CRYPTO_HASH >> 611 select CRC32 >> 612 help >> 613 CRC32c algorithm implemented using vector polynomial multiply-sum >> 614 (vpmsum) instructions, introduced in POWER8. Enable on POWER8 >> 615 and newer processors for improved performance. >> 616 >> 617 >> 618 config CRYPTO_CRC32C_SPARC64 >> 619 tristate "CRC32c CRC algorithm (SPARC64)" >> 620 depends on SPARC64 >> 621 select CRYPTO_HASH >> 622 select CRC32 >> 623 help >> 624 CRC32c CRC algorithm implemented using sparc64 crypto instructions, >> 625 when available. >> 626 >> 627 config CRYPTO_CRC32 >> 628 tristate "CRC32 CRC algorithm" >> 629 select CRYPTO_HASH >> 630 select CRC32 >> 631 help >> 632 CRC-32-IEEE 802.3 cyclic redundancy-check algorithm. >> 633 Shash crypto api wrappers to crc32_le function. >> 634 >> 635 config CRYPTO_CRC32_PCLMUL >> 636 tristate "CRC32 PCLMULQDQ hardware acceleration" >> 637 depends on X86 >> 638 select CRYPTO_HASH >> 639 select CRC32 >> 640 help >> 641 From Intel Westmere and AMD Bulldozer processor with SSE4.2 >> 642 and PCLMULQDQ supported, the processor will support >> 643 CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ >> 644 instruction. This option will create 'crc32-pclmul' module, >> 645 which will enable any routine to use the CRC-32-IEEE 802.3 checksum >> 646 and gain better performance as compared with the table implementation. >> 647 >> 648 config CRYPTO_CRC32_MIPS >> 649 tristate "CRC32c and CRC32 CRC algorithm (MIPS)" >> 650 depends on MIPS_CRC_SUPPORT >> 651 select CRYPTO_HASH >> 652 help >> 653 CRC32c and CRC32 CRC algorithms implemented using mips crypto >> 654 instructions, when available. >> 655 >> 656 >> 657 config CRYPTO_XXHASH >> 658 tristate "xxHash hash algorithm" >> 659 select CRYPTO_HASH >> 660 select XXHASH >> 661 help >> 662 xxHash non-cryptographic hash algorithm. Extremely fast, working at >> 663 speeds close to RAM limits. >> 664 >> 665 config CRYPTO_BLAKE2B >> 666 tristate "BLAKE2b digest algorithm" >> 667 select CRYPTO_HASH >> 668 help >> 669 Implementation of cryptographic hash function BLAKE2b (or just BLAKE2), >> 670 optimized for 64bit platforms and can produce digests of any size >> 671 between 1 to 64. The keyed hash is also implemented. 873 672 874 This module provides the following a 673 This module provides the following algorithms: >> 674 875 - blake2b-160 675 - blake2b-160 876 - blake2b-256 676 - blake2b-256 877 - blake2b-384 677 - blake2b-384 878 - blake2b-512 678 - blake2b-512 879 679 880 Used by the btrfs filesystem. !! 680 See https://blake2.net for further information. >> 681 >> 682 config CRYPTO_BLAKE2S >> 683 tristate "BLAKE2s digest algorithm" >> 684 select CRYPTO_LIB_BLAKE2S_GENERIC >> 685 select CRYPTO_HASH >> 686 help >> 687 Implementation of cryptographic hash function BLAKE2s >> 688 optimized for 8-32bit platforms and can produce digests of any size >> 689 between 1 to 32. The keyed hash is also implemented. >> 690 >> 691 This module provides the following algorithms: >> 692 >> 693 - blake2s-128 >> 694 - blake2s-160 >> 695 - blake2s-224 >> 696 - blake2s-256 881 697 882 See https://blake2.net for further i 698 See https://blake2.net for further information. 883 699 884 config CRYPTO_CMAC !! 700 config CRYPTO_BLAKE2S_X86 885 tristate "CMAC (Cipher-based MAC)" !! 701 tristate "BLAKE2s digest algorithm (x86 accelerated version)" >> 702 depends on X86 && 64BIT >> 703 select CRYPTO_LIB_BLAKE2S_GENERIC >> 704 select CRYPTO_ARCH_HAVE_LIB_BLAKE2S >> 705 >> 706 config CRYPTO_CRCT10DIF >> 707 tristate "CRCT10DIF algorithm" 886 select CRYPTO_HASH 708 select CRYPTO_HASH 887 select CRYPTO_MANAGER << 888 help 709 help 889 CMAC (Cipher-based Message Authentic !! 710 CRC T10 Data Integrity Field computation is being cast as 890 mode (NIST SP800-38B and IETF RFC449 !! 711 a crypto transform. This allows for faster crc t10 diff >> 712 transforms to be used if they are available. >> 713 >> 714 config CRYPTO_CRCT10DIF_PCLMUL >> 715 tristate "CRCT10DIF PCLMULQDQ hardware acceleration" >> 716 depends on X86 && 64BIT && CRC_T10DIF >> 717 select CRYPTO_HASH >> 718 help >> 719 For x86_64 processors with SSE4.2 and PCLMULQDQ supported, >> 720 CRC T10 DIF PCLMULQDQ computation can be hardware >> 721 accelerated PCLMULQDQ instruction. This option will create >> 722 'crct10dif-pclmul' module, which is faster when computing the >> 723 crct10dif checksum as compared with the generic table implementation. >> 724 >> 725 config CRYPTO_CRCT10DIF_VPMSUM >> 726 tristate "CRC32T10DIF powerpc64 hardware acceleration" >> 727 depends on PPC64 && ALTIVEC && CRC_T10DIF >> 728 select CRYPTO_HASH >> 729 help >> 730 CRC10T10DIF algorithm implemented using vector polynomial >> 731 multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on >> 732 POWER8 and newer processors for improved performance. >> 733 >> 734 config CRYPTO_VPMSUM_TESTER >> 735 tristate "Powerpc64 vpmsum hardware acceleration tester" >> 736 depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM >> 737 help >> 738 Stress test for CRC32c and CRC-T10DIF algorithms implemented with >> 739 POWER8 vpmsum instructions. >> 740 Unless you are testing these algorithms, you don't need this. 891 741 892 config CRYPTO_GHASH 742 config CRYPTO_GHASH 893 tristate "GHASH" !! 743 tristate "GHASH hash function" >> 744 select CRYPTO_GF128MUL 894 select CRYPTO_HASH 745 select CRYPTO_HASH 895 select CRYPTO_LIB_GF128MUL << 896 help 746 help 897 GCM GHASH function (NIST SP800-38D) !! 747 GHASH is the hash function used in GCM (Galois/Counter Mode). >> 748 It is not a general-purpose cryptographic hash function. 898 749 899 config CRYPTO_HMAC !! 750 config CRYPTO_POLY1305 900 tristate "HMAC (Keyed-Hash MAC)" !! 751 tristate "Poly1305 authenticator algorithm" 901 select CRYPTO_HASH 752 select CRYPTO_HASH 902 select CRYPTO_MANAGER !! 753 select CRYPTO_LIB_POLY1305_GENERIC >> 754 help >> 755 Poly1305 authenticator algorithm, RFC7539. >> 756 >> 757 Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. >> 758 It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use >> 759 in IETF protocols. This is the portable C implementation of Poly1305. >> 760 >> 761 config CRYPTO_POLY1305_X86_64 >> 762 tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)" >> 763 depends on X86 && 64BIT >> 764 select CRYPTO_LIB_POLY1305_GENERIC >> 765 select CRYPTO_ARCH_HAVE_LIB_POLY1305 903 help 766 help 904 HMAC (Keyed-Hash Message Authenticat !! 767 Poly1305 authenticator algorithm, RFC7539. 905 RFC2104) << 906 768 907 This is required for IPsec AH (XFRM_ !! 769 Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. >> 770 It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use >> 771 in IETF protocols. This is the x86_64 assembler implementation using SIMD >> 772 instructions. >> 773 >> 774 config CRYPTO_POLY1305_MIPS >> 775 tristate "Poly1305 authenticator algorithm (MIPS optimized)" >> 776 depends on MIPS >> 777 select CRYPTO_ARCH_HAVE_LIB_POLY1305 908 778 909 config CRYPTO_MD4 779 config CRYPTO_MD4 910 tristate "MD4" !! 780 tristate "MD4 digest algorithm" 911 select CRYPTO_HASH 781 select CRYPTO_HASH 912 help 782 help 913 MD4 message digest algorithm (RFC132 !! 783 MD4 message digest algorithm (RFC1320). 914 784 915 config CRYPTO_MD5 785 config CRYPTO_MD5 916 tristate "MD5" !! 786 tristate "MD5 digest algorithm" 917 select CRYPTO_HASH 787 select CRYPTO_HASH 918 help 788 help 919 MD5 message digest algorithm (RFC132 !! 789 MD5 message digest algorithm (RFC1321). 920 790 921 config CRYPTO_MICHAEL_MIC !! 791 config CRYPTO_MD5_OCTEON 922 tristate "Michael MIC" !! 792 tristate "MD5 digest algorithm (OCTEON)" >> 793 depends on CPU_CAVIUM_OCTEON >> 794 select CRYPTO_MD5 923 select CRYPTO_HASH 795 select CRYPTO_HASH 924 help 796 help 925 Michael MIC (Message Integrity Code) !! 797 MD5 message digest algorithm (RFC1321) implemented >> 798 using OCTEON crypto instructions, when available. 926 799 927 Defined by the IEEE 802.11i TKIP (Te !! 800 config CRYPTO_MD5_PPC 928 known as WPA (Wif-Fi Protected Acces !! 801 tristate "MD5 digest algorithm (PPC)" 929 !! 802 depends on PPC 930 This algorithm is required for TKIP, !! 803 select CRYPTO_HASH 931 other purposes because of the weakne !! 804 help >> 805 MD5 message digest algorithm (RFC1321) implemented >> 806 in PPC assembler. 932 807 933 config CRYPTO_POLYVAL !! 808 config CRYPTO_MD5_SPARC64 934 tristate !! 809 tristate "MD5 digest algorithm (SPARC64)" >> 810 depends on SPARC64 >> 811 select CRYPTO_MD5 935 select CRYPTO_HASH 812 select CRYPTO_HASH 936 select CRYPTO_LIB_GF128MUL << 937 help 813 help 938 POLYVAL hash function for HCTR2 !! 814 MD5 message digest algorithm (RFC1321) implemented >> 815 using sparc64 crypto instructions, when available. 939 816 940 This is used in HCTR2. It is not a !! 817 config CRYPTO_MICHAEL_MIC 941 cryptographic hash function. !! 818 tristate "Michael MIC keyed digest algorithm" >> 819 select CRYPTO_HASH >> 820 help >> 821 Michael MIC is used for message integrity protection in TKIP >> 822 (IEEE 802.11i). This algorithm is required for TKIP, but it >> 823 should not be used for other purposes because of the weakness >> 824 of the algorithm. 942 825 943 config CRYPTO_POLY1305 !! 826 config CRYPTO_RMD128 944 tristate "Poly1305" !! 827 tristate "RIPEMD-128 digest algorithm" 945 select CRYPTO_HASH 828 select CRYPTO_HASH 946 select CRYPTO_LIB_POLY1305_GENERIC << 947 help 829 help 948 Poly1305 authenticator algorithm (RF !! 830 RIPEMD-128 (ISO/IEC 10118-3:2004). 949 831 950 Poly1305 is an authenticator algorit !! 832 RIPEMD-128 is a 128-bit cryptographic hash function. It should only 951 It is used for the ChaCha20-Poly1305 !! 833 be used as a secure replacement for RIPEMD. For other use cases, 952 in IETF protocols. This is the porta !! 834 RIPEMD-160 should be used. >> 835 >> 836 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. >> 837 See <https://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 953 838 954 config CRYPTO_RMD160 839 config CRYPTO_RMD160 955 tristate "RIPEMD-160" !! 840 tristate "RIPEMD-160 digest algorithm" 956 select CRYPTO_HASH 841 select CRYPTO_HASH 957 help 842 help 958 RIPEMD-160 hash function (ISO/IEC 10 !! 843 RIPEMD-160 (ISO/IEC 10118-3:2004). 959 844 960 RIPEMD-160 is a 160-bit cryptographi 845 RIPEMD-160 is a 160-bit cryptographic hash function. It is intended 961 to be used as a secure replacement f 846 to be used as a secure replacement for the 128-bit hash functions 962 MD4, MD5 and its predecessor RIPEMD !! 847 MD4, MD5 and it's predecessor RIPEMD 963 (not to be confused with RIPEMD-128) 848 (not to be confused with RIPEMD-128). 964 849 965 Its speed is comparable to SHA-1 and !! 850 It's speed is comparable to SHA1 and there are no known attacks 966 against RIPEMD-160. 851 against RIPEMD-160. 967 852 968 Developed by Hans Dobbertin, Antoon 853 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 969 See https://homes.esat.kuleuven.be/~ !! 854 See <https://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 970 for further information. !! 855 >> 856 config CRYPTO_RMD256 >> 857 tristate "RIPEMD-256 digest algorithm" >> 858 select CRYPTO_HASH >> 859 help >> 860 RIPEMD-256 is an optional extension of RIPEMD-128 with a >> 861 256 bit hash. It is intended for applications that require >> 862 longer hash-results, without needing a larger security level >> 863 (than RIPEMD-128). >> 864 >> 865 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. >> 866 See <https://homes.esat.kuleuven.be/~bosselae/ripemd160.html> >> 867 >> 868 config CRYPTO_RMD320 >> 869 tristate "RIPEMD-320 digest algorithm" >> 870 select CRYPTO_HASH >> 871 help >> 872 RIPEMD-320 is an optional extension of RIPEMD-160 with a >> 873 320 bit hash. It is intended for applications that require >> 874 longer hash-results, without needing a larger security level >> 875 (than RIPEMD-160). >> 876 >> 877 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. >> 878 See <https://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 971 879 972 config CRYPTO_SHA1 880 config CRYPTO_SHA1 973 tristate "SHA-1" !! 881 tristate "SHA1 digest algorithm" >> 882 select CRYPTO_HASH >> 883 help >> 884 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). >> 885 >> 886 config CRYPTO_SHA1_SSSE3 >> 887 tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" >> 888 depends on X86 && 64BIT >> 889 select CRYPTO_SHA1 >> 890 select CRYPTO_HASH >> 891 help >> 892 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented >> 893 using Supplemental SSE3 (SSSE3) instructions or Advanced Vector >> 894 Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions), >> 895 when available. >> 896 >> 897 config CRYPTO_SHA256_SSSE3 >> 898 tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" >> 899 depends on X86 && 64BIT >> 900 select CRYPTO_SHA256 >> 901 select CRYPTO_HASH >> 902 help >> 903 SHA-256 secure hash standard (DFIPS 180-2) implemented >> 904 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector >> 905 Extensions version 1 (AVX1), or Advanced Vector Extensions >> 906 version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New >> 907 Instructions) when available. >> 908 >> 909 config CRYPTO_SHA512_SSSE3 >> 910 tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)" >> 911 depends on X86 && 64BIT >> 912 select CRYPTO_SHA512 >> 913 select CRYPTO_HASH >> 914 help >> 915 SHA-512 secure hash standard (DFIPS 180-2) implemented >> 916 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector >> 917 Extensions version 1 (AVX1), or Advanced Vector Extensions >> 918 version 2 (AVX2) instructions, when available. >> 919 >> 920 config CRYPTO_SHA1_OCTEON >> 921 tristate "SHA1 digest algorithm (OCTEON)" >> 922 depends on CPU_CAVIUM_OCTEON >> 923 select CRYPTO_SHA1 >> 924 select CRYPTO_HASH >> 925 help >> 926 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented >> 927 using OCTEON crypto instructions, when available. >> 928 >> 929 config CRYPTO_SHA1_SPARC64 >> 930 tristate "SHA1 digest algorithm (SPARC64)" >> 931 depends on SPARC64 >> 932 select CRYPTO_SHA1 974 select CRYPTO_HASH 933 select CRYPTO_HASH 975 select CRYPTO_LIB_SHA1 << 976 help 934 help 977 SHA-1 secure hash algorithm (FIPS 18 !! 935 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented >> 936 using sparc64 crypto instructions, when available. >> 937 >> 938 config CRYPTO_SHA1_PPC >> 939 tristate "SHA1 digest algorithm (powerpc)" >> 940 depends on PPC >> 941 help >> 942 This is the powerpc hardware accelerated implementation of the >> 943 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). >> 944 >> 945 config CRYPTO_SHA1_PPC_SPE >> 946 tristate "SHA1 digest algorithm (PPC SPE)" >> 947 depends on PPC && SPE >> 948 help >> 949 SHA-1 secure hash standard (DFIPS 180-4) implemented >> 950 using powerpc SPE SIMD instruction set. 978 951 979 config CRYPTO_SHA256 952 config CRYPTO_SHA256 980 tristate "SHA-224 and SHA-256" !! 953 tristate "SHA224 and SHA256 digest algorithm" 981 select CRYPTO_HASH 954 select CRYPTO_HASH 982 select CRYPTO_LIB_SHA256 955 select CRYPTO_LIB_SHA256 983 help 956 help 984 SHA-224 and SHA-256 secure hash algo !! 957 SHA256 secure hash standard (DFIPS 180-2). >> 958 >> 959 This version of SHA implements a 256 bit hash with 128 bits of >> 960 security against collision attacks. >> 961 >> 962 This code also includes SHA-224, a 224 bit hash with 112 bits >> 963 of security against collision attacks. >> 964 >> 965 config CRYPTO_SHA256_PPC_SPE >> 966 tristate "SHA224 and SHA256 digest algorithm (PPC SPE)" >> 967 depends on PPC && SPE >> 968 select CRYPTO_SHA256 >> 969 select CRYPTO_HASH >> 970 help >> 971 SHA224 and SHA256 secure hash standard (DFIPS 180-2) >> 972 implemented using powerpc SPE SIMD instruction set. 985 973 986 This is required for IPsec AH (XFRM_ !! 974 config CRYPTO_SHA256_OCTEON 987 Used by the btrfs filesystem, Ceph, !! 975 tristate "SHA224 and SHA256 digest algorithm (OCTEON)" >> 976 depends on CPU_CAVIUM_OCTEON >> 977 select CRYPTO_SHA256 >> 978 select CRYPTO_HASH >> 979 help >> 980 SHA-256 secure hash standard (DFIPS 180-2) implemented >> 981 using OCTEON crypto instructions, when available. >> 982 >> 983 config CRYPTO_SHA256_SPARC64 >> 984 tristate "SHA224 and SHA256 digest algorithm (SPARC64)" >> 985 depends on SPARC64 >> 986 select CRYPTO_SHA256 >> 987 select CRYPTO_HASH >> 988 help >> 989 SHA-256 secure hash standard (DFIPS 180-2) implemented >> 990 using sparc64 crypto instructions, when available. 988 991 989 config CRYPTO_SHA512 992 config CRYPTO_SHA512 990 tristate "SHA-384 and SHA-512" !! 993 tristate "SHA384 and SHA512 digest algorithms" 991 select CRYPTO_HASH 994 select CRYPTO_HASH 992 help 995 help 993 SHA-384 and SHA-512 secure hash algo !! 996 SHA512 secure hash standard (DFIPS 180-2). 994 997 995 config CRYPTO_SHA3 !! 998 This version of SHA implements a 512 bit hash with 256 bits of 996 tristate "SHA-3" !! 999 security against collision attacks. >> 1000 >> 1001 This code also includes SHA-384, a 384 bit hash with 192 bits >> 1002 of security against collision attacks. >> 1003 >> 1004 config CRYPTO_SHA512_OCTEON >> 1005 tristate "SHA384 and SHA512 digest algorithms (OCTEON)" >> 1006 depends on CPU_CAVIUM_OCTEON >> 1007 select CRYPTO_SHA512 997 select CRYPTO_HASH 1008 select CRYPTO_HASH 998 help 1009 help 999 SHA-3 secure hash algorithms (FIPS 2 !! 1010 SHA-512 secure hash standard (DFIPS 180-2) implemented >> 1011 using OCTEON crypto instructions, when available. 1000 1012 1001 config CRYPTO_SM3 !! 1013 config CRYPTO_SHA512_SPARC64 1002 tristate !! 1014 tristate "SHA384 and SHA512 digest algorithm (SPARC64)" >> 1015 depends on SPARC64 >> 1016 select CRYPTO_SHA512 >> 1017 select CRYPTO_HASH >> 1018 help >> 1019 SHA-512 secure hash standard (DFIPS 180-2) implemented >> 1020 using sparc64 crypto instructions, when available. 1003 1021 1004 config CRYPTO_SM3_GENERIC !! 1022 config CRYPTO_SHA3 1005 tristate "SM3 (ShangMi 3)" !! 1023 tristate "SHA3 digest algorithm" 1006 select CRYPTO_HASH 1024 select CRYPTO_HASH 1007 select CRYPTO_SM3 << 1008 help 1025 help 1009 SM3 (ShangMi 3) secure hash functio !! 1026 SHA-3 secure hash standard (DFIPS 202). It's based on >> 1027 cryptographic sponge function family called Keccak. >> 1028 >> 1029 References: >> 1030 http://keccak.noekeon.org/ 1010 1031 1011 This is part of the Chinese Commerc !! 1032 config CRYPTO_SM3 >> 1033 tristate "SM3 digest algorithm" >> 1034 select CRYPTO_HASH >> 1035 help >> 1036 SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3). >> 1037 It is part of the Chinese Commercial Cryptography suite. 1012 1038 1013 References: 1039 References: 1014 http://www.oscca.gov.cn/UpFile/2010 1040 http://www.oscca.gov.cn/UpFile/20101222141857786.pdf 1015 https://datatracker.ietf.org/doc/ht 1041 https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash 1016 1042 1017 config CRYPTO_STREEBOG 1043 config CRYPTO_STREEBOG 1018 tristate "Streebog" !! 1044 tristate "Streebog Hash Function" 1019 select CRYPTO_HASH 1045 select CRYPTO_HASH 1020 help 1046 help 1021 Streebog Hash Function (GOST R 34.1 !! 1047 Streebog Hash Function (GOST R 34.11-2012, RFC 6986) is one of the Russian 1022 !! 1048 cryptographic standard algorithms (called GOST algorithms). 1023 This is one of the Russian cryptogr !! 1049 This setting enables two hash algorithms with 256 and 512 bits output. 1024 GOST algorithms). This setting enab << 1025 256 and 512 bits output. << 1026 1050 1027 References: 1051 References: 1028 https://tc26.ru/upload/iblock/fed/f 1052 https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf 1029 https://tools.ietf.org/html/rfc6986 1053 https://tools.ietf.org/html/rfc6986 1030 1054 1031 config CRYPTO_VMAC !! 1055 config CRYPTO_TGR192 1032 tristate "VMAC" !! 1056 tristate "Tiger digest algorithms" 1033 select CRYPTO_HASH 1057 select CRYPTO_HASH 1034 select CRYPTO_MANAGER << 1035 help 1058 help 1036 VMAC is a message authentication al !! 1059 Tiger hash algorithm 192, 160 and 128-bit hashes 1037 very high speed on 64-bit architect !! 1060 >> 1061 Tiger is a hash function optimized for 64-bit processors while >> 1062 still having decent performance on 32-bit processors. >> 1063 Tiger was developed by Ross Anderson and Eli Biham. 1038 1064 1039 See https://fastcrypto.org/vmac for !! 1065 See also: >> 1066 <https://www.cs.technion.ac.il/~biham/Reports/Tiger/>. 1040 1067 1041 config CRYPTO_WP512 1068 config CRYPTO_WP512 1042 tristate "Whirlpool" !! 1069 tristate "Whirlpool digest algorithms" 1043 select CRYPTO_HASH 1070 select CRYPTO_HASH 1044 help 1071 help 1045 Whirlpool hash function (ISO/IEC 10 !! 1072 Whirlpool hash algorithm 512, 384 and 256-bit hashes 1046 << 1047 512, 384 and 256-bit hashes. << 1048 1073 1049 Whirlpool-512 is part of the NESSIE 1074 Whirlpool-512 is part of the NESSIE cryptographic primitives. >> 1075 Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard 1050 1076 1051 See https://web.archive.org/web/201 !! 1077 See also: 1052 for further information. !! 1078 <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html> 1053 1079 1054 config CRYPTO_XCBC !! 1080 config CRYPTO_GHASH_CLMUL_NI_INTEL 1055 tristate "XCBC-MAC (Extended Cipher B !! 1081 tristate "GHASH hash function (CLMUL-NI accelerated)" 1056 select CRYPTO_HASH !! 1082 depends on X86 && 64BIT 1057 select CRYPTO_MANAGER !! 1083 select CRYPTO_CRYPTD 1058 help 1084 help 1059 XCBC-MAC (Extended Cipher Block Cha !! 1085 This is the x86_64 CLMUL-NI accelerated implementation of 1060 Code) (RFC3566) !! 1086 GHASH, the hash function used in GCM (Galois/Counter mode). 1061 1087 1062 config CRYPTO_XXHASH !! 1088 comment "Ciphers" 1063 tristate "xxHash" !! 1089 1064 select CRYPTO_HASH !! 1090 config CRYPTO_AES 1065 select XXHASH !! 1091 tristate "AES cipher algorithms" >> 1092 select CRYPTO_ALGAPI >> 1093 select CRYPTO_LIB_AES 1066 help 1094 help 1067 xxHash non-cryptographic hash algor !! 1095 AES cipher algorithms (FIPS-197). AES uses the Rijndael >> 1096 algorithm. >> 1097 >> 1098 Rijndael appears to be consistently a very good performer in >> 1099 both hardware and software across a wide range of computing >> 1100 environments regardless of its use in feedback or non-feedback >> 1101 modes. Its key setup time is excellent, and its key agility is >> 1102 good. Rijndael's very low memory requirements make it very well >> 1103 suited for restricted-space environments, in which it also >> 1104 demonstrates excellent performance. Rijndael's operations are >> 1105 among the easiest to defend against power and timing attacks. 1068 1106 1069 Extremely fast, working at speeds c !! 1107 The AES specifies three key sizes: 128, 192 and 256 bits 1070 1108 1071 Used by the btrfs filesystem. !! 1109 See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information. 1072 1110 1073 endmenu !! 1111 config CRYPTO_AES_TI >> 1112 tristate "Fixed time AES cipher" >> 1113 select CRYPTO_ALGAPI >> 1114 select CRYPTO_LIB_AES >> 1115 help >> 1116 This is a generic implementation of AES that attempts to eliminate >> 1117 data dependent latencies as much as possible without affecting >> 1118 performance too much. It is intended for use by the generic CCM >> 1119 and GCM drivers, and other CTR or CMAC/XCBC based modes that rely >> 1120 solely on encryption (although decryption is supported as well, but >> 1121 with a more dramatic performance hit) 1074 1122 1075 menu "CRCs (cyclic redundancy checks)" !! 1123 Instead of using 16 lookup tables of 1 KB each, (8 for encryption and >> 1124 8 for decryption), this implementation only uses just two S-boxes of >> 1125 256 bytes each, and attempts to eliminate data dependent latencies by >> 1126 prefetching the entire table into the cache at the start of each >> 1127 block. Interrupts are also disabled to avoid races where cachelines >> 1128 are evicted when the CPU is interrupted to do something else. 1076 1129 1077 config CRYPTO_CRC32C !! 1130 config CRYPTO_AES_NI_INTEL 1078 tristate "CRC32c" !! 1131 tristate "AES cipher algorithms (AES-NI)" 1079 select CRYPTO_HASH !! 1132 depends on X86 1080 select CRC32 !! 1133 select CRYPTO_AEAD >> 1134 select CRYPTO_LIB_AES >> 1135 select CRYPTO_ALGAPI >> 1136 select CRYPTO_SKCIPHER >> 1137 select CRYPTO_GLUE_HELPER_X86 if 64BIT >> 1138 select CRYPTO_SIMD 1081 help 1139 help 1082 CRC32c CRC algorithm with the iSCSI !! 1140 Use Intel AES-NI instructions for AES algorithm. 1083 1141 1084 A 32-bit CRC (cyclic redundancy che !! 1142 AES cipher algorithms (FIPS-197). AES uses the Rijndael 1085 by G. Castagnoli, S. Braeuer and M. !! 1143 algorithm. 1086 Redundancy-Check Codes with 24 and << 1087 on Communications, Vol. 41, No. 6, << 1088 iSCSI. << 1089 1144 1090 Used by btrfs, ext4, jbd2, NVMeoF/T !! 1145 Rijndael appears to be consistently a very good performer in >> 1146 both hardware and software across a wide range of computing >> 1147 environments regardless of its use in feedback or non-feedback >> 1148 modes. Its key setup time is excellent, and its key agility is >> 1149 good. Rijndael's very low memory requirements make it very well >> 1150 suited for restricted-space environments, in which it also >> 1151 demonstrates excellent performance. Rijndael's operations are >> 1152 among the easiest to defend against power and timing attacks. 1091 1153 1092 config CRYPTO_CRC32 !! 1154 The AES specifies three key sizes: 128, 192 and 256 bits 1093 tristate "CRC32" !! 1155 1094 select CRYPTO_HASH !! 1156 See <http://csrc.nist.gov/encryption/aes/> for more information. 1095 select CRC32 !! 1157 >> 1158 In addition to AES cipher algorithm support, the acceleration >> 1159 for some popular block cipher mode is supported too, including >> 1160 ECB, CBC, LRW, XTS. The 64 bit version has additional >> 1161 acceleration for CTR. >> 1162 >> 1163 config CRYPTO_AES_SPARC64 >> 1164 tristate "AES cipher algorithms (SPARC64)" >> 1165 depends on SPARC64 >> 1166 select CRYPTO_SKCIPHER 1096 help 1167 help 1097 CRC32 CRC algorithm (IEEE 802.3) !! 1168 Use SPARC64 crypto opcodes for AES algorithm. 1098 1169 1099 Used by RoCEv2 and f2fs. !! 1170 AES cipher algorithms (FIPS-197). AES uses the Rijndael >> 1171 algorithm. 1100 1172 1101 config CRYPTO_CRCT10DIF !! 1173 Rijndael appears to be consistently a very good performer in 1102 tristate "CRCT10DIF" !! 1174 both hardware and software across a wide range of computing 1103 select CRYPTO_HASH !! 1175 environments regardless of its use in feedback or non-feedback >> 1176 modes. Its key setup time is excellent, and its key agility is >> 1177 good. Rijndael's very low memory requirements make it very well >> 1178 suited for restricted-space environments, in which it also >> 1179 demonstrates excellent performance. Rijndael's operations are >> 1180 among the easiest to defend against power and timing attacks. >> 1181 >> 1182 The AES specifies three key sizes: 128, 192 and 256 bits >> 1183 >> 1184 See <http://csrc.nist.gov/encryption/aes/> for more information. >> 1185 >> 1186 In addition to AES cipher algorithm support, the acceleration >> 1187 for some popular block cipher mode is supported too, including >> 1188 ECB and CBC. >> 1189 >> 1190 config CRYPTO_AES_PPC_SPE >> 1191 tristate "AES cipher algorithms (PPC SPE)" >> 1192 depends on PPC && SPE >> 1193 select CRYPTO_SKCIPHER 1104 help 1194 help 1105 CRC16 CRC algorithm used for the T1 !! 1195 AES cipher algorithms (FIPS-197). Additionally the acceleration >> 1196 for popular block cipher modes ECB, CBC, CTR and XTS is supported. >> 1197 This module should only be used for low power (router) devices >> 1198 without hardware AES acceleration (e.g. caam crypto). It reduces the >> 1199 size of the AES tables from 16KB to 8KB + 256 bytes and mitigates >> 1200 timining attacks. Nevertheless it might be not as secure as other >> 1201 architecture specific assembler implementations that work on 1KB >> 1202 tables or 256 bytes S-boxes. 1106 1203 1107 CRC algorithm used by the SCSI Bloc !! 1204 config CRYPTO_ANUBIS >> 1205 tristate "Anubis cipher algorithm" >> 1206 depends on CRYPTO_USER_API_ENABLE_OBSOLETE >> 1207 select CRYPTO_ALGAPI >> 1208 help >> 1209 Anubis cipher algorithm. 1108 1210 1109 config CRYPTO_CRC64_ROCKSOFT !! 1211 Anubis is a variable key length cipher which can use keys from 1110 tristate "CRC64 based on Rocksoft Mod !! 1212 128 bits to 320 bits in length. It was evaluated as a entrant 1111 depends on CRC64 !! 1213 in the NESSIE competition. 1112 select CRYPTO_HASH !! 1214 >> 1215 See also: >> 1216 <https://www.cosic.esat.kuleuven.be/nessie/reports/> >> 1217 <http://www.larc.usp.br/~pbarreto/AnubisPage.html> >> 1218 >> 1219 config CRYPTO_ARC4 >> 1220 tristate "ARC4 cipher algorithm" >> 1221 depends on CRYPTO_USER_API_ENABLE_OBSOLETE >> 1222 select CRYPTO_SKCIPHER >> 1223 select CRYPTO_LIB_ARC4 >> 1224 help >> 1225 ARC4 cipher algorithm. >> 1226 >> 1227 ARC4 is a stream cipher using keys ranging from 8 bits to 2048 >> 1228 bits in length. This algorithm is required for driver-based >> 1229 WEP, but it should not be for other purposes because of the >> 1230 weakness of the algorithm. >> 1231 >> 1232 config CRYPTO_BLOWFISH >> 1233 tristate "Blowfish cipher algorithm" >> 1234 select CRYPTO_ALGAPI >> 1235 select CRYPTO_BLOWFISH_COMMON >> 1236 help >> 1237 Blowfish cipher algorithm, by Bruce Schneier. >> 1238 >> 1239 This is a variable key length cipher which can use keys from 32 >> 1240 bits to 448 bits in length. It's fast, simple and specifically >> 1241 designed for use on "large microprocessors". >> 1242 >> 1243 See also: >> 1244 <https://www.schneier.com/blowfish.html> >> 1245 >> 1246 config CRYPTO_BLOWFISH_COMMON >> 1247 tristate >> 1248 help >> 1249 Common parts of the Blowfish cipher algorithm shared by the >> 1250 generic c and the assembler implementations. >> 1251 >> 1252 See also: >> 1253 <https://www.schneier.com/blowfish.html> >> 1254 >> 1255 config CRYPTO_BLOWFISH_X86_64 >> 1256 tristate "Blowfish cipher algorithm (x86_64)" >> 1257 depends on X86 && 64BIT >> 1258 select CRYPTO_SKCIPHER >> 1259 select CRYPTO_BLOWFISH_COMMON >> 1260 help >> 1261 Blowfish cipher algorithm (x86_64), by Bruce Schneier. >> 1262 >> 1263 This is a variable key length cipher which can use keys from 32 >> 1264 bits to 448 bits in length. It's fast, simple and specifically >> 1265 designed for use on "large microprocessors". >> 1266 >> 1267 See also: >> 1268 <https://www.schneier.com/blowfish.html> >> 1269 >> 1270 config CRYPTO_CAMELLIA >> 1271 tristate "Camellia cipher algorithms" >> 1272 depends on CRYPTO >> 1273 select CRYPTO_ALGAPI >> 1274 help >> 1275 Camellia cipher algorithms module. >> 1276 >> 1277 Camellia is a symmetric key block cipher developed jointly >> 1278 at NTT and Mitsubishi Electric Corporation. >> 1279 >> 1280 The Camellia specifies three key sizes: 128, 192 and 256 bits. >> 1281 >> 1282 See also: >> 1283 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> >> 1284 >> 1285 config CRYPTO_CAMELLIA_X86_64 >> 1286 tristate "Camellia cipher algorithm (x86_64)" >> 1287 depends on X86 && 64BIT >> 1288 depends on CRYPTO >> 1289 select CRYPTO_SKCIPHER >> 1290 select CRYPTO_GLUE_HELPER_X86 >> 1291 help >> 1292 Camellia cipher algorithm module (x86_64). >> 1293 >> 1294 Camellia is a symmetric key block cipher developed jointly >> 1295 at NTT and Mitsubishi Electric Corporation. >> 1296 >> 1297 The Camellia specifies three key sizes: 128, 192 and 256 bits. >> 1298 >> 1299 See also: >> 1300 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> >> 1301 >> 1302 config CRYPTO_CAMELLIA_AESNI_AVX_X86_64 >> 1303 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)" >> 1304 depends on X86 && 64BIT >> 1305 depends on CRYPTO >> 1306 select CRYPTO_SKCIPHER >> 1307 select CRYPTO_CAMELLIA_X86_64 >> 1308 select CRYPTO_GLUE_HELPER_X86 >> 1309 select CRYPTO_SIMD >> 1310 select CRYPTO_XTS >> 1311 help >> 1312 Camellia cipher algorithm module (x86_64/AES-NI/AVX). >> 1313 >> 1314 Camellia is a symmetric key block cipher developed jointly >> 1315 at NTT and Mitsubishi Electric Corporation. >> 1316 >> 1317 The Camellia specifies three key sizes: 128, 192 and 256 bits. >> 1318 >> 1319 See also: >> 1320 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> >> 1321 >> 1322 config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64 >> 1323 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)" >> 1324 depends on X86 && 64BIT >> 1325 depends on CRYPTO >> 1326 select CRYPTO_CAMELLIA_AESNI_AVX_X86_64 >> 1327 help >> 1328 Camellia cipher algorithm module (x86_64/AES-NI/AVX2). >> 1329 >> 1330 Camellia is a symmetric key block cipher developed jointly >> 1331 at NTT and Mitsubishi Electric Corporation. >> 1332 >> 1333 The Camellia specifies three key sizes: 128, 192 and 256 bits. >> 1334 >> 1335 See also: >> 1336 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> >> 1337 >> 1338 config CRYPTO_CAMELLIA_SPARC64 >> 1339 tristate "Camellia cipher algorithm (SPARC64)" >> 1340 depends on SPARC64 >> 1341 depends on CRYPTO >> 1342 select CRYPTO_ALGAPI >> 1343 select CRYPTO_SKCIPHER >> 1344 help >> 1345 Camellia cipher algorithm module (SPARC64). >> 1346 >> 1347 Camellia is a symmetric key block cipher developed jointly >> 1348 at NTT and Mitsubishi Electric Corporation. >> 1349 >> 1350 The Camellia specifies three key sizes: 128, 192 and 256 bits. >> 1351 >> 1352 See also: >> 1353 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> >> 1354 >> 1355 config CRYPTO_CAST_COMMON >> 1356 tristate >> 1357 help >> 1358 Common parts of the CAST cipher algorithms shared by the >> 1359 generic c and the assembler implementations. >> 1360 >> 1361 config CRYPTO_CAST5 >> 1362 tristate "CAST5 (CAST-128) cipher algorithm" >> 1363 select CRYPTO_ALGAPI >> 1364 select CRYPTO_CAST_COMMON >> 1365 help >> 1366 The CAST5 encryption algorithm (synonymous with CAST-128) is >> 1367 described in RFC2144. >> 1368 >> 1369 config CRYPTO_CAST5_AVX_X86_64 >> 1370 tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)" >> 1371 depends on X86 && 64BIT >> 1372 select CRYPTO_SKCIPHER >> 1373 select CRYPTO_CAST5 >> 1374 select CRYPTO_CAST_COMMON >> 1375 select CRYPTO_SIMD >> 1376 help >> 1377 The CAST5 encryption algorithm (synonymous with CAST-128) is >> 1378 described in RFC2144. >> 1379 >> 1380 This module provides the Cast5 cipher algorithm that processes >> 1381 sixteen blocks parallel using the AVX instruction set. >> 1382 >> 1383 config CRYPTO_CAST6 >> 1384 tristate "CAST6 (CAST-256) cipher algorithm" >> 1385 select CRYPTO_ALGAPI >> 1386 select CRYPTO_CAST_COMMON >> 1387 help >> 1388 The CAST6 encryption algorithm (synonymous with CAST-256) is >> 1389 described in RFC2612. >> 1390 >> 1391 config CRYPTO_CAST6_AVX_X86_64 >> 1392 tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)" >> 1393 depends on X86 && 64BIT >> 1394 select CRYPTO_SKCIPHER >> 1395 select CRYPTO_CAST6 >> 1396 select CRYPTO_CAST_COMMON >> 1397 select CRYPTO_GLUE_HELPER_X86 >> 1398 select CRYPTO_SIMD >> 1399 select CRYPTO_XTS >> 1400 help >> 1401 The CAST6 encryption algorithm (synonymous with CAST-256) is >> 1402 described in RFC2612. >> 1403 >> 1404 This module provides the Cast6 cipher algorithm that processes >> 1405 eight blocks parallel using the AVX instruction set. >> 1406 >> 1407 config CRYPTO_DES >> 1408 tristate "DES and Triple DES EDE cipher algorithms" >> 1409 select CRYPTO_ALGAPI >> 1410 select CRYPTO_LIB_DES >> 1411 help >> 1412 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3). >> 1413 >> 1414 config CRYPTO_DES_SPARC64 >> 1415 tristate "DES and Triple DES EDE cipher algorithms (SPARC64)" >> 1416 depends on SPARC64 >> 1417 select CRYPTO_ALGAPI >> 1418 select CRYPTO_LIB_DES >> 1419 select CRYPTO_SKCIPHER >> 1420 help >> 1421 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3), >> 1422 optimized using SPARC64 crypto opcodes. >> 1423 >> 1424 config CRYPTO_DES3_EDE_X86_64 >> 1425 tristate "Triple DES EDE cipher algorithm (x86-64)" >> 1426 depends on X86 && 64BIT >> 1427 select CRYPTO_SKCIPHER >> 1428 select CRYPTO_LIB_DES >> 1429 help >> 1430 Triple DES EDE (FIPS 46-3) algorithm. >> 1431 >> 1432 This module provides implementation of the Triple DES EDE cipher >> 1433 algorithm that is optimized for x86-64 processors. Two versions of >> 1434 algorithm are provided; regular processing one input block and >> 1435 one that processes three blocks parallel. >> 1436 >> 1437 config CRYPTO_FCRYPT >> 1438 tristate "FCrypt cipher algorithm" >> 1439 select CRYPTO_ALGAPI >> 1440 select CRYPTO_SKCIPHER >> 1441 help >> 1442 FCrypt algorithm used by RxRPC. >> 1443 >> 1444 config CRYPTO_KHAZAD >> 1445 tristate "Khazad cipher algorithm" >> 1446 depends on CRYPTO_USER_API_ENABLE_OBSOLETE >> 1447 select CRYPTO_ALGAPI >> 1448 help >> 1449 Khazad cipher algorithm. >> 1450 >> 1451 Khazad was a finalist in the initial NESSIE competition. It is >> 1452 an algorithm optimized for 64-bit processors with good performance >> 1453 on 32-bit processors. Khazad uses an 128 bit key size. >> 1454 >> 1455 See also: >> 1456 <http://www.larc.usp.br/~pbarreto/KhazadPage.html> >> 1457 >> 1458 config CRYPTO_SALSA20 >> 1459 tristate "Salsa20 stream cipher algorithm" >> 1460 select CRYPTO_SKCIPHER >> 1461 help >> 1462 Salsa20 stream cipher algorithm. >> 1463 >> 1464 Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT >> 1465 Stream Cipher Project. See <https://www.ecrypt.eu.org/stream/> >> 1466 >> 1467 The Salsa20 stream cipher algorithm is designed by Daniel J. >> 1468 Bernstein <https://cr.yp.to/snuffle.html">djb@cr.yp.to>. See <https://cr.yp.to/snuffle.html> >> 1469 >> 1470 config CRYPTO_CHACHA20 >> 1471 tristate "ChaCha stream cipher algorithms" >> 1472 select CRYPTO_LIB_CHACHA_GENERIC >> 1473 select CRYPTO_SKCIPHER >> 1474 help >> 1475 The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms. >> 1476 >> 1477 ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J. >> 1478 Bernstein and further specified in RFC7539 for use in IETF protocols. >> 1479 This is the portable C implementation of ChaCha20. See also: >> 1480 <https://cr.yp.to/chacha/chacha-20080128.pdf> >> 1481 >> 1482 XChaCha20 is the application of the XSalsa20 construction to ChaCha20 >> 1483 rather than to Salsa20. XChaCha20 extends ChaCha20's nonce length >> 1484 from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits, >> 1485 while provably retaining ChaCha20's security. See also: >> 1486 <https://cr.yp.to/snuffle/xsalsa-20081128.pdf> >> 1487 >> 1488 XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly >> 1489 reduced security margin but increased performance. It can be needed >> 1490 in some performance-sensitive scenarios. >> 1491 >> 1492 config CRYPTO_CHACHA20_X86_64 >> 1493 tristate "ChaCha stream cipher algorithms (x86_64/SSSE3/AVX2/AVX-512VL)" >> 1494 depends on X86 && 64BIT >> 1495 select CRYPTO_SKCIPHER >> 1496 select CRYPTO_LIB_CHACHA_GENERIC >> 1497 select CRYPTO_ARCH_HAVE_LIB_CHACHA >> 1498 help >> 1499 SSSE3, AVX2, and AVX-512VL optimized implementations of the ChaCha20, >> 1500 XChaCha20, and XChaCha12 stream ciphers. >> 1501 >> 1502 config CRYPTO_CHACHA_MIPS >> 1503 tristate "ChaCha stream cipher algorithms (MIPS 32r2 optimized)" >> 1504 depends on CPU_MIPS32_R2 >> 1505 select CRYPTO_SKCIPHER >> 1506 select CRYPTO_ARCH_HAVE_LIB_CHACHA >> 1507 >> 1508 config CRYPTO_SEED >> 1509 tristate "SEED cipher algorithm" >> 1510 depends on CRYPTO_USER_API_ENABLE_OBSOLETE >> 1511 select CRYPTO_ALGAPI >> 1512 help >> 1513 SEED cipher algorithm (RFC4269). >> 1514 >> 1515 SEED is a 128-bit symmetric key block cipher that has been >> 1516 developed by KISA (Korea Information Security Agency) as a >> 1517 national standard encryption algorithm of the Republic of Korea. >> 1518 It is a 16 round block cipher with the key size of 128 bit. >> 1519 >> 1520 See also: >> 1521 <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp> >> 1522 >> 1523 config CRYPTO_SERPENT >> 1524 tristate "Serpent cipher algorithm" >> 1525 select CRYPTO_ALGAPI >> 1526 help >> 1527 Serpent cipher algorithm, by Anderson, Biham & Knudsen. >> 1528 >> 1529 Keys are allowed to be from 0 to 256 bits in length, in steps >> 1530 of 8 bits. Also includes the 'Tnepres' algorithm, a reversed >> 1531 variant of Serpent for compatibility with old kerneli.org code. >> 1532 >> 1533 See also: >> 1534 <https://www.cl.cam.ac.uk/~rja14/serpent.html> >> 1535 >> 1536 config CRYPTO_SERPENT_SSE2_X86_64 >> 1537 tristate "Serpent cipher algorithm (x86_64/SSE2)" >> 1538 depends on X86 && 64BIT >> 1539 select CRYPTO_SKCIPHER >> 1540 select CRYPTO_GLUE_HELPER_X86 >> 1541 select CRYPTO_SERPENT >> 1542 select CRYPTO_SIMD >> 1543 help >> 1544 Serpent cipher algorithm, by Anderson, Biham & Knudsen. >> 1545 >> 1546 Keys are allowed to be from 0 to 256 bits in length, in steps >> 1547 of 8 bits. >> 1548 >> 1549 This module provides Serpent cipher algorithm that processes eight >> 1550 blocks parallel using SSE2 instruction set. >> 1551 >> 1552 See also: >> 1553 <https://www.cl.cam.ac.uk/~rja14/serpent.html> >> 1554 >> 1555 config CRYPTO_SERPENT_SSE2_586 >> 1556 tristate "Serpent cipher algorithm (i586/SSE2)" >> 1557 depends on X86 && !64BIT >> 1558 select CRYPTO_SKCIPHER >> 1559 select CRYPTO_GLUE_HELPER_X86 >> 1560 select CRYPTO_SERPENT >> 1561 select CRYPTO_SIMD 1113 help 1562 help 1114 CRC64 CRC algorithm based on the Ro !! 1563 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1115 1564 1116 Used by the NVMe implementation of !! 1565 Keys are allowed to be from 0 to 256 bits in length, in steps >> 1566 of 8 bits. 1117 1567 1118 See https://zlib.net/crc_v3.txt !! 1568 This module provides Serpent cipher algorithm that processes four >> 1569 blocks parallel using SSE2 instruction set. 1119 1570 1120 endmenu !! 1571 See also: >> 1572 <https://www.cl.cam.ac.uk/~rja14/serpent.html> 1121 1573 1122 menu "Compression" !! 1574 config CRYPTO_SERPENT_AVX_X86_64 >> 1575 tristate "Serpent cipher algorithm (x86_64/AVX)" >> 1576 depends on X86 && 64BIT >> 1577 select CRYPTO_SKCIPHER >> 1578 select CRYPTO_GLUE_HELPER_X86 >> 1579 select CRYPTO_SERPENT >> 1580 select CRYPTO_SIMD >> 1581 select CRYPTO_XTS >> 1582 help >> 1583 Serpent cipher algorithm, by Anderson, Biham & Knudsen. >> 1584 >> 1585 Keys are allowed to be from 0 to 256 bits in length, in steps >> 1586 of 8 bits. >> 1587 >> 1588 This module provides the Serpent cipher algorithm that processes >> 1589 eight blocks parallel using the AVX instruction set. >> 1590 >> 1591 See also: >> 1592 <https://www.cl.cam.ac.uk/~rja14/serpent.html> >> 1593 >> 1594 config CRYPTO_SERPENT_AVX2_X86_64 >> 1595 tristate "Serpent cipher algorithm (x86_64/AVX2)" >> 1596 depends on X86 && 64BIT >> 1597 select CRYPTO_SERPENT_AVX_X86_64 >> 1598 help >> 1599 Serpent cipher algorithm, by Anderson, Biham & Knudsen. >> 1600 >> 1601 Keys are allowed to be from 0 to 256 bits in length, in steps >> 1602 of 8 bits. >> 1603 >> 1604 This module provides Serpent cipher algorithm that processes 16 >> 1605 blocks parallel using AVX2 instruction set. >> 1606 >> 1607 See also: >> 1608 <https://www.cl.cam.ac.uk/~rja14/serpent.html> >> 1609 >> 1610 config CRYPTO_SM4 >> 1611 tristate "SM4 cipher algorithm" >> 1612 select CRYPTO_ALGAPI >> 1613 help >> 1614 SM4 cipher algorithms (OSCCA GB/T 32907-2016). >> 1615 >> 1616 SM4 (GBT.32907-2016) is a cryptographic standard issued by the >> 1617 Organization of State Commercial Administration of China (OSCCA) >> 1618 as an authorized cryptographic algorithms for the use within China. >> 1619 >> 1620 SMS4 was originally created for use in protecting wireless >> 1621 networks, and is mandated in the Chinese National Standard for >> 1622 Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure) >> 1623 (GB.15629.11-2003). >> 1624 >> 1625 The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and >> 1626 standardized through TC 260 of the Standardization Administration >> 1627 of the People's Republic of China (SAC). >> 1628 >> 1629 The input, output, and key of SMS4 are each 128 bits. >> 1630 >> 1631 See also: <https://eprint.iacr.org/2008/329.pdf> >> 1632 >> 1633 If unsure, say N. >> 1634 >> 1635 config CRYPTO_TEA >> 1636 tristate "TEA, XTEA and XETA cipher algorithms" >> 1637 depends on CRYPTO_USER_API_ENABLE_OBSOLETE >> 1638 select CRYPTO_ALGAPI >> 1639 help >> 1640 TEA cipher algorithm. >> 1641 >> 1642 Tiny Encryption Algorithm is a simple cipher that uses >> 1643 many rounds for security. It is very fast and uses >> 1644 little memory. >> 1645 >> 1646 Xtendend Tiny Encryption Algorithm is a modification to >> 1647 the TEA algorithm to address a potential key weakness >> 1648 in the TEA algorithm. >> 1649 >> 1650 Xtendend Encryption Tiny Algorithm is a mis-implementation >> 1651 of the XTEA algorithm for compatibility purposes. >> 1652 >> 1653 config CRYPTO_TWOFISH >> 1654 tristate "Twofish cipher algorithm" >> 1655 select CRYPTO_ALGAPI >> 1656 select CRYPTO_TWOFISH_COMMON >> 1657 help >> 1658 Twofish cipher algorithm. >> 1659 >> 1660 Twofish was submitted as an AES (Advanced Encryption Standard) >> 1661 candidate cipher by researchers at CounterPane Systems. It is a >> 1662 16 round block cipher supporting key sizes of 128, 192, and 256 >> 1663 bits. >> 1664 >> 1665 See also: >> 1666 <https://www.schneier.com/twofish.html> >> 1667 >> 1668 config CRYPTO_TWOFISH_COMMON >> 1669 tristate >> 1670 help >> 1671 Common parts of the Twofish cipher algorithm shared by the >> 1672 generic c and the assembler implementations. >> 1673 >> 1674 config CRYPTO_TWOFISH_586 >> 1675 tristate "Twofish cipher algorithms (i586)" >> 1676 depends on (X86 || UML_X86) && !64BIT >> 1677 select CRYPTO_ALGAPI >> 1678 select CRYPTO_TWOFISH_COMMON >> 1679 help >> 1680 Twofish cipher algorithm. >> 1681 >> 1682 Twofish was submitted as an AES (Advanced Encryption Standard) >> 1683 candidate cipher by researchers at CounterPane Systems. It is a >> 1684 16 round block cipher supporting key sizes of 128, 192, and 256 >> 1685 bits. >> 1686 >> 1687 See also: >> 1688 <https://www.schneier.com/twofish.html> >> 1689 >> 1690 config CRYPTO_TWOFISH_X86_64 >> 1691 tristate "Twofish cipher algorithm (x86_64)" >> 1692 depends on (X86 || UML_X86) && 64BIT >> 1693 select CRYPTO_ALGAPI >> 1694 select CRYPTO_TWOFISH_COMMON >> 1695 help >> 1696 Twofish cipher algorithm (x86_64). >> 1697 >> 1698 Twofish was submitted as an AES (Advanced Encryption Standard) >> 1699 candidate cipher by researchers at CounterPane Systems. It is a >> 1700 16 round block cipher supporting key sizes of 128, 192, and 256 >> 1701 bits. >> 1702 >> 1703 See also: >> 1704 <https://www.schneier.com/twofish.html> >> 1705 >> 1706 config CRYPTO_TWOFISH_X86_64_3WAY >> 1707 tristate "Twofish cipher algorithm (x86_64, 3-way parallel)" >> 1708 depends on X86 && 64BIT >> 1709 select CRYPTO_SKCIPHER >> 1710 select CRYPTO_TWOFISH_COMMON >> 1711 select CRYPTO_TWOFISH_X86_64 >> 1712 select CRYPTO_GLUE_HELPER_X86 >> 1713 help >> 1714 Twofish cipher algorithm (x86_64, 3-way parallel). >> 1715 >> 1716 Twofish was submitted as an AES (Advanced Encryption Standard) >> 1717 candidate cipher by researchers at CounterPane Systems. It is a >> 1718 16 round block cipher supporting key sizes of 128, 192, and 256 >> 1719 bits. >> 1720 >> 1721 This module provides Twofish cipher algorithm that processes three >> 1722 blocks parallel, utilizing resources of out-of-order CPUs better. >> 1723 >> 1724 See also: >> 1725 <https://www.schneier.com/twofish.html> >> 1726 >> 1727 config CRYPTO_TWOFISH_AVX_X86_64 >> 1728 tristate "Twofish cipher algorithm (x86_64/AVX)" >> 1729 depends on X86 && 64BIT >> 1730 select CRYPTO_SKCIPHER >> 1731 select CRYPTO_GLUE_HELPER_X86 >> 1732 select CRYPTO_SIMD >> 1733 select CRYPTO_TWOFISH_COMMON >> 1734 select CRYPTO_TWOFISH_X86_64 >> 1735 select CRYPTO_TWOFISH_X86_64_3WAY >> 1736 help >> 1737 Twofish cipher algorithm (x86_64/AVX). >> 1738 >> 1739 Twofish was submitted as an AES (Advanced Encryption Standard) >> 1740 candidate cipher by researchers at CounterPane Systems. It is a >> 1741 16 round block cipher supporting key sizes of 128, 192, and 256 >> 1742 bits. >> 1743 >> 1744 This module provides the Twofish cipher algorithm that processes >> 1745 eight blocks parallel using the AVX Instruction Set. >> 1746 >> 1747 See also: >> 1748 <https://www.schneier.com/twofish.html> >> 1749 >> 1750 comment "Compression" 1123 1751 1124 config CRYPTO_DEFLATE 1752 config CRYPTO_DEFLATE 1125 tristate "Deflate" !! 1753 tristate "Deflate compression algorithm" 1126 select CRYPTO_ALGAPI 1754 select CRYPTO_ALGAPI 1127 select CRYPTO_ACOMP2 1755 select CRYPTO_ACOMP2 1128 select ZLIB_INFLATE 1756 select ZLIB_INFLATE 1129 select ZLIB_DEFLATE 1757 select ZLIB_DEFLATE 1130 help 1758 help 1131 Deflate compression algorithm (RFC1 !! 1759 This is the Deflate algorithm (RFC1951), specified for use in >> 1760 IPSec with the IPCOMP protocol (RFC3173, RFC2394). 1132 1761 1133 Used by IPSec with the IPCOMP proto !! 1762 You will most probably want this if using IPSec. 1134 1763 1135 config CRYPTO_LZO 1764 config CRYPTO_LZO 1136 tristate "LZO" !! 1765 tristate "LZO compression algorithm" 1137 select CRYPTO_ALGAPI 1766 select CRYPTO_ALGAPI 1138 select CRYPTO_ACOMP2 1767 select CRYPTO_ACOMP2 1139 select LZO_COMPRESS 1768 select LZO_COMPRESS 1140 select LZO_DECOMPRESS 1769 select LZO_DECOMPRESS 1141 help 1770 help 1142 LZO compression algorithm !! 1771 This is the LZO algorithm. 1143 << 1144 See https://www.oberhumer.com/opens << 1145 1772 1146 config CRYPTO_842 1773 config CRYPTO_842 1147 tristate "842" !! 1774 tristate "842 compression algorithm" 1148 select CRYPTO_ALGAPI 1775 select CRYPTO_ALGAPI 1149 select CRYPTO_ACOMP2 1776 select CRYPTO_ACOMP2 1150 select 842_COMPRESS 1777 select 842_COMPRESS 1151 select 842_DECOMPRESS 1778 select 842_DECOMPRESS 1152 help 1779 help 1153 842 compression algorithm by IBM !! 1780 This is the 842 algorithm. 1154 << 1155 See https://github.com/plauth/lib84 << 1156 1781 1157 config CRYPTO_LZ4 1782 config CRYPTO_LZ4 1158 tristate "LZ4" !! 1783 tristate "LZ4 compression algorithm" 1159 select CRYPTO_ALGAPI 1784 select CRYPTO_ALGAPI 1160 select CRYPTO_ACOMP2 1785 select CRYPTO_ACOMP2 1161 select LZ4_COMPRESS 1786 select LZ4_COMPRESS 1162 select LZ4_DECOMPRESS 1787 select LZ4_DECOMPRESS 1163 help 1788 help 1164 LZ4 compression algorithm !! 1789 This is the LZ4 algorithm. 1165 << 1166 See https://github.com/lz4/lz4 for << 1167 1790 1168 config CRYPTO_LZ4HC 1791 config CRYPTO_LZ4HC 1169 tristate "LZ4HC" !! 1792 tristate "LZ4HC compression algorithm" 1170 select CRYPTO_ALGAPI 1793 select CRYPTO_ALGAPI 1171 select CRYPTO_ACOMP2 1794 select CRYPTO_ACOMP2 1172 select LZ4HC_COMPRESS 1795 select LZ4HC_COMPRESS 1173 select LZ4_DECOMPRESS 1796 select LZ4_DECOMPRESS 1174 help 1797 help 1175 LZ4 high compression mode algorithm !! 1798 This is the LZ4 high compression mode algorithm. 1176 << 1177 See https://github.com/lz4/lz4 for << 1178 1799 1179 config CRYPTO_ZSTD 1800 config CRYPTO_ZSTD 1180 tristate "Zstd" !! 1801 tristate "Zstd compression algorithm" 1181 select CRYPTO_ALGAPI 1802 select CRYPTO_ALGAPI 1182 select CRYPTO_ACOMP2 1803 select CRYPTO_ACOMP2 1183 select ZSTD_COMPRESS 1804 select ZSTD_COMPRESS 1184 select ZSTD_DECOMPRESS 1805 select ZSTD_DECOMPRESS 1185 help 1806 help 1186 zstd compression algorithm !! 1807 This is the zstd algorithm. 1187 1808 1188 See https://github.com/facebook/zst !! 1809 comment "Random Number Generation" 1189 << 1190 endmenu << 1191 << 1192 menu "Random number generation" << 1193 1810 1194 config CRYPTO_ANSI_CPRNG 1811 config CRYPTO_ANSI_CPRNG 1195 tristate "ANSI PRNG (Pseudo Random Nu !! 1812 tristate "Pseudo Random Number Generation for Cryptographic modules" 1196 select CRYPTO_AES 1813 select CRYPTO_AES 1197 select CRYPTO_RNG 1814 select CRYPTO_RNG 1198 help 1815 help 1199 Pseudo RNG (random number generator !! 1816 This option enables the generic pseudo random number generator 1200 !! 1817 for cryptographic modules. Uses the Algorithm specified in 1201 This uses the AES cipher algorithm. !! 1818 ANSI X9.31 A.2.4. Note that this option must be enabled if 1202 !! 1819 CRYPTO_FIPS is selected 1203 Note that this option must be enabl << 1204 1820 1205 menuconfig CRYPTO_DRBG_MENU 1821 menuconfig CRYPTO_DRBG_MENU 1206 tristate "NIST SP800-90A DRBG (Determ !! 1822 tristate "NIST SP800-90A DRBG" 1207 help 1823 help 1208 DRBG (Deterministic Random Bit Gene !! 1824 NIST SP800-90A compliant DRBG. In the following submenu, one or 1209 !! 1825 more of the DRBG types must be selected. 1210 In the following submenu, one or mo << 1211 1826 1212 if CRYPTO_DRBG_MENU 1827 if CRYPTO_DRBG_MENU 1213 1828 1214 config CRYPTO_DRBG_HMAC 1829 config CRYPTO_DRBG_HMAC 1215 bool 1830 bool 1216 default y 1831 default y 1217 select CRYPTO_HMAC 1832 select CRYPTO_HMAC 1218 select CRYPTO_SHA512 !! 1833 select CRYPTO_SHA256 1219 1834 1220 config CRYPTO_DRBG_HASH 1835 config CRYPTO_DRBG_HASH 1221 bool "Hash_DRBG" !! 1836 bool "Enable Hash DRBG" 1222 select CRYPTO_SHA256 1837 select CRYPTO_SHA256 1223 help 1838 help 1224 Hash_DRBG variant as defined in NIS !! 1839 Enable the Hash DRBG variant as defined in NIST SP800-90A. 1225 << 1226 This uses the SHA-1, SHA-256, SHA-3 << 1227 1840 1228 config CRYPTO_DRBG_CTR 1841 config CRYPTO_DRBG_CTR 1229 bool "CTR_DRBG" !! 1842 bool "Enable CTR DRBG" 1230 select CRYPTO_AES 1843 select CRYPTO_AES 1231 select CRYPTO_CTR 1844 select CRYPTO_CTR 1232 help 1845 help 1233 CTR_DRBG variant as defined in NIST !! 1846 Enable the CTR DRBG variant as defined in NIST SP800-90A. 1234 << 1235 This uses the AES cipher algorithm << 1236 1847 1237 config CRYPTO_DRBG 1848 config CRYPTO_DRBG 1238 tristate 1849 tristate 1239 default CRYPTO_DRBG_MENU 1850 default CRYPTO_DRBG_MENU 1240 select CRYPTO_RNG 1851 select CRYPTO_RNG 1241 select CRYPTO_JITTERENTROPY 1852 select CRYPTO_JITTERENTROPY 1242 1853 1243 endif # if CRYPTO_DRBG_MENU 1854 endif # if CRYPTO_DRBG_MENU 1244 1855 1245 config CRYPTO_JITTERENTROPY 1856 config CRYPTO_JITTERENTROPY 1246 tristate "CPU Jitter Non-Deterministi !! 1857 tristate "Jitterentropy Non-Deterministic Random Number Generator" 1247 select CRYPTO_RNG 1858 select CRYPTO_RNG 1248 select CRYPTO_SHA3 << 1249 help 1859 help 1250 CPU Jitter RNG (Random Number Gener !! 1860 The Jitterentropy RNG is a noise that is intended 1251 !! 1861 to provide seed to another RNG. The RNG does not 1252 A non-physical non-deterministic (" !! 1862 perform any cryptographic whitening of the generated 1253 compliant with NIST SP800-90B) inte !! 1863 random numbers. This Jitterentropy RNG registers with 1254 deterministic RNG (e.g., per NIST S !! 1864 the kernel crypto API and can be used by any caller. 1255 This RNG does not perform any crypt << 1256 random numbers. << 1257 << 1258 See https://www.chronox.de/jent/ << 1259 << 1260 if CRYPTO_JITTERENTROPY << 1261 if CRYPTO_FIPS && EXPERT << 1262 << 1263 choice << 1264 prompt "CPU Jitter RNG Memory Size" << 1265 default CRYPTO_JITTERENTROPY_MEMSIZE_ << 1266 help << 1267 The Jitter RNG measures the executi << 1268 Multiple consecutive memory accesse << 1269 size fits into a cache (e.g. L1), o << 1270 to that cache is measured. The clos << 1271 the less variations are measured an << 1272 obtained. Thus, if the memory size << 1273 obtained entropy is less than if th << 1274 L1 + L2, which in turn is less if t << 1275 L1 + L2 + L3. Thus, by selecting a << 1276 the entropy rate produced by the Ji << 1277 << 1278 config CRYPTO_JITTERENTROPY_MEMSIZE_2 << 1279 bool "2048 Bytes (default)" << 1280 << 1281 config CRYPTO_JITTERENTROPY_MEMSIZE_1 << 1282 bool "128 kBytes" << 1283 << 1284 config CRYPTO_JITTERENTROPY_MEMSIZE_1 << 1285 bool "1024 kBytes" << 1286 << 1287 config CRYPTO_JITTERENTROPY_MEMSIZE_8 << 1288 bool "8192 kBytes" << 1289 endchoice << 1290 << 1291 config CRYPTO_JITTERENTROPY_MEMORY_BLOCKS << 1292 int << 1293 default 64 if CRYPTO_JITTERENTROPY_ME << 1294 default 512 if CRYPTO_JITTERENTROPY_M << 1295 default 1024 if CRYPTO_JITTERENTROPY_ << 1296 default 4096 if CRYPTO_JITTERENTROPY_ << 1297 << 1298 config CRYPTO_JITTERENTROPY_MEMORY_BLOCKSIZE << 1299 int << 1300 default 32 if CRYPTO_JITTERENTROPY_ME << 1301 default 256 if CRYPTO_JITTERENTROPY_M << 1302 default 1024 if CRYPTO_JITTERENTROPY_ << 1303 default 2048 if CRYPTO_JITTERENTROPY_ << 1304 << 1305 config CRYPTO_JITTERENTROPY_OSR << 1306 int "CPU Jitter RNG Oversampling Rate << 1307 range 1 15 << 1308 default 3 << 1309 help << 1310 The Jitter RNG allows the specifica << 1311 The Jitter RNG operation requires a << 1312 measurements to produce one output << 1313 OSR value is multiplied with the am << 1314 generate one output block. Thus, th << 1315 by the OSR factor. The oversampling << 1316 on hardware whose timers deliver li << 1317 the timer is coarse) by setting the << 1318 trade-off, however, is that the Jit << 1319 to generate random numbers. << 1320 << 1321 config CRYPTO_JITTERENTROPY_TESTINTERFACE << 1322 bool "CPU Jitter RNG Test Interface" << 1323 help << 1324 The test interface allows a privile << 1325 the raw unconditioned high resoluti << 1326 is collected by the Jitter RNG for << 1327 this data is used at the same time << 1328 the Jitter RNG operates in an insec << 1329 recording is enabled. This interfac << 1330 intended for testing purposes and i << 1331 production systems. << 1332 << 1333 The raw noise data can be obtained << 1334 debugfs file. Using the option << 1335 jitterentropy_testing.boot_raw_hire << 1336 the first 1000 entropy events since << 1337 << 1338 If unsure, select N. << 1339 << 1340 endif # if CRYPTO_FIPS && EXPERT << 1341 << 1342 if !(CRYPTO_FIPS && EXPERT) << 1343 << 1344 config CRYPTO_JITTERENTROPY_MEMORY_BLOCKS << 1345 int << 1346 default 64 << 1347 << 1348 config CRYPTO_JITTERENTROPY_MEMORY_BLOCKSIZE << 1349 int << 1350 default 32 << 1351 << 1352 config CRYPTO_JITTERENTROPY_OSR << 1353 int << 1354 default 1 << 1355 << 1356 config CRYPTO_JITTERENTROPY_TESTINTERFACE << 1357 bool << 1358 << 1359 endif # if !(CRYPTO_FIPS && EXPERT) << 1360 endif # if CRYPTO_JITTERENTROPY << 1361 << 1362 config CRYPTO_KDF800108_CTR << 1363 tristate << 1364 select CRYPTO_HMAC << 1365 select CRYPTO_SHA256 << 1366 << 1367 endmenu << 1368 menu "Userspace interface" << 1369 1865 1370 config CRYPTO_USER_API 1866 config CRYPTO_USER_API 1371 tristate 1867 tristate 1372 1868 1373 config CRYPTO_USER_API_HASH 1869 config CRYPTO_USER_API_HASH 1374 tristate "Hash algorithms" !! 1870 tristate "User-space interface for hash algorithms" 1375 depends on NET 1871 depends on NET 1376 select CRYPTO_HASH 1872 select CRYPTO_HASH 1377 select CRYPTO_USER_API 1873 select CRYPTO_USER_API 1378 help 1874 help 1379 Enable the userspace interface for !! 1875 This option enables the user-spaces interface for hash 1380 !! 1876 algorithms. 1381 See Documentation/crypto/userspace- << 1382 https://www.chronox.de/libkcapi/htm << 1383 1877 1384 config CRYPTO_USER_API_SKCIPHER 1878 config CRYPTO_USER_API_SKCIPHER 1385 tristate "Symmetric key cipher algori !! 1879 tristate "User-space interface for symmetric key cipher algorithms" 1386 depends on NET 1880 depends on NET 1387 select CRYPTO_SKCIPHER 1881 select CRYPTO_SKCIPHER 1388 select CRYPTO_USER_API 1882 select CRYPTO_USER_API 1389 help 1883 help 1390 Enable the userspace interface for !! 1884 This option enables the user-spaces interface for symmetric 1391 !! 1885 key cipher algorithms. 1392 See Documentation/crypto/userspace- << 1393 https://www.chronox.de/libkcapi/htm << 1394 1886 1395 config CRYPTO_USER_API_RNG 1887 config CRYPTO_USER_API_RNG 1396 tristate "RNG (random number generato !! 1888 tristate "User-space interface for random number generator algorithms" 1397 depends on NET 1889 depends on NET 1398 select CRYPTO_RNG 1890 select CRYPTO_RNG 1399 select CRYPTO_USER_API 1891 select CRYPTO_USER_API 1400 help 1892 help 1401 Enable the userspace interface for !! 1893 This option enables the user-spaces interface for random 1402 algorithms. !! 1894 number generator algorithms. 1403 << 1404 See Documentation/crypto/userspace- << 1405 https://www.chronox.de/libkcapi/htm << 1406 1895 1407 config CRYPTO_USER_API_RNG_CAVP 1896 config CRYPTO_USER_API_RNG_CAVP 1408 bool "Enable CAVP testing of DRBG" 1897 bool "Enable CAVP testing of DRBG" 1409 depends on CRYPTO_USER_API_RNG && CRY 1898 depends on CRYPTO_USER_API_RNG && CRYPTO_DRBG 1410 help 1899 help 1411 Enable extra APIs in the userspace !! 1900 This option enables extra API for CAVP testing via the user-space 1412 (Cryptographic Algorithm Validation !! 1901 interface: resetting of DRBG entropy, and providing Additional Data. 1413 - resetting DRBG entropy << 1414 - providing Additional Data << 1415 << 1416 This should only be enabled for CAV 1902 This should only be enabled for CAVP testing. You should say 1417 no unless you know what this is. 1903 no unless you know what this is. 1418 1904 1419 config CRYPTO_USER_API_AEAD 1905 config CRYPTO_USER_API_AEAD 1420 tristate "AEAD cipher algorithms" !! 1906 tristate "User-space interface for AEAD cipher algorithms" 1421 depends on NET 1907 depends on NET 1422 select CRYPTO_AEAD 1908 select CRYPTO_AEAD 1423 select CRYPTO_SKCIPHER 1909 select CRYPTO_SKCIPHER 1424 select CRYPTO_NULL 1910 select CRYPTO_NULL 1425 select CRYPTO_USER_API 1911 select CRYPTO_USER_API 1426 help 1912 help 1427 Enable the userspace interface for !! 1913 This option enables the user-spaces interface for AEAD 1428 !! 1914 cipher algorithms. 1429 See Documentation/crypto/userspace- << 1430 https://www.chronox.de/libkcapi/htm << 1431 1915 1432 config CRYPTO_USER_API_ENABLE_OBSOLETE 1916 config CRYPTO_USER_API_ENABLE_OBSOLETE 1433 bool "Obsolete cryptographic algorith !! 1917 bool "Enable obsolete cryptographic algorithms for userspace" 1434 depends on CRYPTO_USER_API 1918 depends on CRYPTO_USER_API 1435 default y 1919 default y 1436 help 1920 help 1437 Allow obsolete cryptographic algori 1921 Allow obsolete cryptographic algorithms to be selected that have 1438 already been phased out from intern 1922 already been phased out from internal use by the kernel, and are 1439 only useful for userspace clients t 1923 only useful for userspace clients that still rely on them. 1440 1924 1441 endmenu !! 1925 config CRYPTO_STATS >> 1926 bool "Crypto usage statistics for User-space" >> 1927 depends on CRYPTO_USER >> 1928 help >> 1929 This option enables the gathering of crypto stats. >> 1930 This will collect: >> 1931 - encrypt/decrypt size and numbers of symmeric operations >> 1932 - compress/decompress size and numbers of compress operations >> 1933 - size and numbers of hash operations >> 1934 - encrypt/decrypt/sign/verify numbers for asymmetric operations >> 1935 - generate/seed numbers for rng operations 1442 1936 1443 config CRYPTO_HASH_INFO 1937 config CRYPTO_HASH_INFO 1444 bool 1938 bool 1445 << 1446 if !KMSAN # avoid false positives from assemb << 1447 if ARM << 1448 source "arch/arm/crypto/Kconfig" << 1449 endif << 1450 if ARM64 << 1451 source "arch/arm64/crypto/Kconfig" << 1452 endif << 1453 if LOONGARCH << 1454 source "arch/loongarch/crypto/Kconfig" << 1455 endif << 1456 if MIPS << 1457 source "arch/mips/crypto/Kconfig" << 1458 endif << 1459 if PPC << 1460 source "arch/powerpc/crypto/Kconfig" << 1461 endif << 1462 if RISCV << 1463 source "arch/riscv/crypto/Kconfig" << 1464 endif << 1465 if S390 << 1466 source "arch/s390/crypto/Kconfig" << 1467 endif << 1468 if SPARC << 1469 source "arch/sparc/crypto/Kconfig" << 1470 endif << 1471 if X86 << 1472 source "arch/x86/crypto/Kconfig" << 1473 endif << 1474 endif << 1475 1939 1476 source "drivers/crypto/Kconfig" 1940 source "drivers/crypto/Kconfig" 1477 source "crypto/asymmetric_keys/Kconfig" 1941 source "crypto/asymmetric_keys/Kconfig" 1478 source "certs/Kconfig" 1942 source "certs/Kconfig" 1479 1943 1480 endif # if CRYPTO 1944 endif # if CRYPTO
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.