1 # SPDX-License-Identifier: GPL-2.0 1 # SPDX-License-Identifier: GPL-2.0 2 # 2 # 3 # Generic algorithms support 3 # Generic algorithms support 4 # 4 # 5 config XOR_BLOCKS 5 config XOR_BLOCKS 6 tristate 6 tristate 7 7 8 # 8 # 9 # async_tx api: hardware offloaded memory tran 9 # async_tx api: hardware offloaded memory transfer/transform support 10 # 10 # 11 source "crypto/async_tx/Kconfig" 11 source "crypto/async_tx/Kconfig" 12 12 13 # 13 # 14 # Cryptographic API Configuration 14 # Cryptographic API Configuration 15 # 15 # 16 menuconfig CRYPTO 16 menuconfig CRYPTO 17 tristate "Cryptographic API" 17 tristate "Cryptographic API" 18 select CRYPTO_LIB_UTILS << 19 help 18 help 20 This option provides the core Crypto 19 This option provides the core Cryptographic API. 21 20 22 if CRYPTO 21 if CRYPTO 23 22 24 menu "Crypto core or helper" !! 23 comment "Crypto core or helper" 25 24 26 config CRYPTO_FIPS 25 config CRYPTO_FIPS 27 bool "FIPS 200 compliance" 26 bool "FIPS 200 compliance" 28 depends on (CRYPTO_ANSI_CPRNG || CRYPT 27 depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS 29 depends on (MODULE_SIG || !MODULES) 28 depends on (MODULE_SIG || !MODULES) 30 help 29 help 31 This option enables the fips boot op 30 This option enables the fips boot option which is 32 required if you want the system to o 31 required if you want the system to operate in a FIPS 200 33 certification. You should say no un 32 certification. You should say no unless you know what 34 this is. 33 this is. 35 34 36 config CRYPTO_FIPS_NAME << 37 string "FIPS Module Name" << 38 default "Linux Kernel Cryptographic AP << 39 depends on CRYPTO_FIPS << 40 help << 41 This option sets the FIPS Module nam << 42 the /proc/sys/crypto/fips_name file. << 43 << 44 config CRYPTO_FIPS_CUSTOM_VERSION << 45 bool "Use Custom FIPS Module Version" << 46 depends on CRYPTO_FIPS << 47 default n << 48 << 49 config CRYPTO_FIPS_VERSION << 50 string "FIPS Module Version" << 51 default "(none)" << 52 depends on CRYPTO_FIPS_CUSTOM_VERSION << 53 help << 54 This option provides the ability to << 55 By default the KERNELRELEASE value i << 56 << 57 config CRYPTO_ALGAPI 35 config CRYPTO_ALGAPI 58 tristate 36 tristate 59 select CRYPTO_ALGAPI2 37 select CRYPTO_ALGAPI2 60 help 38 help 61 This option provides the API for cry 39 This option provides the API for cryptographic algorithms. 62 40 63 config CRYPTO_ALGAPI2 41 config CRYPTO_ALGAPI2 64 tristate 42 tristate 65 43 66 config CRYPTO_AEAD 44 config CRYPTO_AEAD 67 tristate 45 tristate 68 select CRYPTO_AEAD2 46 select CRYPTO_AEAD2 69 select CRYPTO_ALGAPI 47 select CRYPTO_ALGAPI 70 48 71 config CRYPTO_AEAD2 49 config CRYPTO_AEAD2 72 tristate 50 tristate 73 select CRYPTO_ALGAPI2 51 select CRYPTO_ALGAPI2 74 !! 52 select CRYPTO_NULL2 75 config CRYPTO_SIG !! 53 select CRYPTO_RNG2 76 tristate << 77 select CRYPTO_SIG2 << 78 select CRYPTO_ALGAPI << 79 << 80 config CRYPTO_SIG2 << 81 tristate << 82 select CRYPTO_ALGAPI2 << 83 54 84 config CRYPTO_SKCIPHER 55 config CRYPTO_SKCIPHER 85 tristate 56 tristate 86 select CRYPTO_SKCIPHER2 57 select CRYPTO_SKCIPHER2 87 select CRYPTO_ALGAPI 58 select CRYPTO_ALGAPI 88 select CRYPTO_ECB << 89 59 90 config CRYPTO_SKCIPHER2 60 config CRYPTO_SKCIPHER2 91 tristate 61 tristate 92 select CRYPTO_ALGAPI2 62 select CRYPTO_ALGAPI2 >> 63 select CRYPTO_RNG2 93 64 94 config CRYPTO_HASH 65 config CRYPTO_HASH 95 tristate 66 tristate 96 select CRYPTO_HASH2 67 select CRYPTO_HASH2 97 select CRYPTO_ALGAPI 68 select CRYPTO_ALGAPI 98 69 99 config CRYPTO_HASH2 70 config CRYPTO_HASH2 100 tristate 71 tristate 101 select CRYPTO_ALGAPI2 72 select CRYPTO_ALGAPI2 102 73 103 config CRYPTO_RNG 74 config CRYPTO_RNG 104 tristate 75 tristate 105 select CRYPTO_RNG2 76 select CRYPTO_RNG2 106 select CRYPTO_ALGAPI 77 select CRYPTO_ALGAPI 107 78 108 config CRYPTO_RNG2 79 config CRYPTO_RNG2 109 tristate 80 tristate 110 select CRYPTO_ALGAPI2 81 select CRYPTO_ALGAPI2 111 82 112 config CRYPTO_RNG_DEFAULT 83 config CRYPTO_RNG_DEFAULT 113 tristate 84 tristate 114 select CRYPTO_DRBG_MENU 85 select CRYPTO_DRBG_MENU 115 86 116 config CRYPTO_AKCIPHER2 87 config CRYPTO_AKCIPHER2 117 tristate 88 tristate 118 select CRYPTO_ALGAPI2 89 select CRYPTO_ALGAPI2 119 90 120 config CRYPTO_AKCIPHER 91 config CRYPTO_AKCIPHER 121 tristate 92 tristate 122 select CRYPTO_AKCIPHER2 93 select CRYPTO_AKCIPHER2 123 select CRYPTO_ALGAPI 94 select CRYPTO_ALGAPI 124 95 125 config CRYPTO_KPP2 96 config CRYPTO_KPP2 126 tristate 97 tristate 127 select CRYPTO_ALGAPI2 98 select CRYPTO_ALGAPI2 128 99 129 config CRYPTO_KPP 100 config CRYPTO_KPP 130 tristate 101 tristate 131 select CRYPTO_ALGAPI 102 select CRYPTO_ALGAPI 132 select CRYPTO_KPP2 103 select CRYPTO_KPP2 133 104 134 config CRYPTO_ACOMP2 105 config CRYPTO_ACOMP2 135 tristate 106 tristate 136 select CRYPTO_ALGAPI2 107 select CRYPTO_ALGAPI2 137 select SGL_ALLOC 108 select SGL_ALLOC 138 109 139 config CRYPTO_ACOMP 110 config CRYPTO_ACOMP 140 tristate 111 tristate 141 select CRYPTO_ALGAPI 112 select CRYPTO_ALGAPI 142 select CRYPTO_ACOMP2 113 select CRYPTO_ACOMP2 143 114 144 config CRYPTO_MANAGER 115 config CRYPTO_MANAGER 145 tristate "Cryptographic algorithm mana 116 tristate "Cryptographic algorithm manager" 146 select CRYPTO_MANAGER2 117 select CRYPTO_MANAGER2 147 help 118 help 148 Create default cryptographic templat 119 Create default cryptographic template instantiations such as 149 cbc(aes). 120 cbc(aes). 150 121 151 config CRYPTO_MANAGER2 122 config CRYPTO_MANAGER2 152 def_tristate CRYPTO_MANAGER || (CRYPTO 123 def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y) 153 select CRYPTO_ACOMP2 << 154 select CRYPTO_AEAD2 124 select CRYPTO_AEAD2 155 select CRYPTO_AKCIPHER2 << 156 select CRYPTO_SIG2 << 157 select CRYPTO_HASH2 125 select CRYPTO_HASH2 158 select CRYPTO_KPP2 << 159 select CRYPTO_RNG2 << 160 select CRYPTO_SKCIPHER2 126 select CRYPTO_SKCIPHER2 >> 127 select CRYPTO_AKCIPHER2 >> 128 select CRYPTO_KPP2 >> 129 select CRYPTO_ACOMP2 161 130 162 config CRYPTO_USER 131 config CRYPTO_USER 163 tristate "Userspace cryptographic algo 132 tristate "Userspace cryptographic algorithm configuration" 164 depends on NET 133 depends on NET 165 select CRYPTO_MANAGER 134 select CRYPTO_MANAGER 166 help 135 help 167 Userspace configuration for cryptogr 136 Userspace configuration for cryptographic instantiations such as 168 cbc(aes). 137 cbc(aes). 169 138 170 config CRYPTO_MANAGER_DISABLE_TESTS 139 config CRYPTO_MANAGER_DISABLE_TESTS 171 bool "Disable run-time self tests" 140 bool "Disable run-time self tests" 172 default y 141 default y 173 help 142 help 174 Disable run-time self tests that nor 143 Disable run-time self tests that normally take place at 175 algorithm registration. 144 algorithm registration. 176 145 177 config CRYPTO_MANAGER_EXTRA_TESTS 146 config CRYPTO_MANAGER_EXTRA_TESTS 178 bool "Enable extra run-time crypto sel 147 bool "Enable extra run-time crypto self tests" 179 depends on DEBUG_KERNEL && !CRYPTO_MAN !! 148 depends on DEBUG_KERNEL && !CRYPTO_MANAGER_DISABLE_TESTS 180 help 149 help 181 Enable extra run-time self tests of 150 Enable extra run-time self tests of registered crypto algorithms, 182 including randomized fuzz tests. 151 including randomized fuzz tests. 183 152 184 This is intended for developer use o 153 This is intended for developer use only, as these tests take much 185 longer to run than the normal self t 154 longer to run than the normal self tests. 186 155 >> 156 config CRYPTO_GF128MUL >> 157 tristate >> 158 187 config CRYPTO_NULL 159 config CRYPTO_NULL 188 tristate "Null algorithms" 160 tristate "Null algorithms" 189 select CRYPTO_NULL2 161 select CRYPTO_NULL2 190 help 162 help 191 These are 'Null' algorithms, used by 163 These are 'Null' algorithms, used by IPsec, which do nothing. 192 164 193 config CRYPTO_NULL2 165 config CRYPTO_NULL2 194 tristate 166 tristate 195 select CRYPTO_ALGAPI2 167 select CRYPTO_ALGAPI2 196 select CRYPTO_SKCIPHER2 168 select CRYPTO_SKCIPHER2 197 select CRYPTO_HASH2 169 select CRYPTO_HASH2 198 170 199 config CRYPTO_PCRYPT 171 config CRYPTO_PCRYPT 200 tristate "Parallel crypto engine" 172 tristate "Parallel crypto engine" 201 depends on SMP 173 depends on SMP 202 select PADATA 174 select PADATA 203 select CRYPTO_MANAGER 175 select CRYPTO_MANAGER 204 select CRYPTO_AEAD 176 select CRYPTO_AEAD 205 help 177 help 206 This converts an arbitrary crypto al 178 This converts an arbitrary crypto algorithm into a parallel 207 algorithm that executes in kernel th 179 algorithm that executes in kernel threads. 208 180 209 config CRYPTO_CRYPTD 181 config CRYPTO_CRYPTD 210 tristate "Software async crypto daemon 182 tristate "Software async crypto daemon" 211 select CRYPTO_SKCIPHER 183 select CRYPTO_SKCIPHER 212 select CRYPTO_HASH 184 select CRYPTO_HASH 213 select CRYPTO_MANAGER 185 select CRYPTO_MANAGER 214 help 186 help 215 This is a generic software asynchron 187 This is a generic software asynchronous crypto daemon that 216 converts an arbitrary synchronous so 188 converts an arbitrary synchronous software crypto algorithm 217 into an asynchronous algorithm that 189 into an asynchronous algorithm that executes in a kernel thread. 218 190 219 config CRYPTO_AUTHENC 191 config CRYPTO_AUTHENC 220 tristate "Authenc support" 192 tristate "Authenc support" 221 select CRYPTO_AEAD 193 select CRYPTO_AEAD 222 select CRYPTO_SKCIPHER 194 select CRYPTO_SKCIPHER 223 select CRYPTO_MANAGER 195 select CRYPTO_MANAGER 224 select CRYPTO_HASH 196 select CRYPTO_HASH 225 select CRYPTO_NULL 197 select CRYPTO_NULL 226 help 198 help 227 Authenc: Combined mode wrapper for I 199 Authenc: Combined mode wrapper for IPsec. 228 !! 200 This is required for IPSec. 229 This is required for IPSec ESP (XFRM << 230 201 231 config CRYPTO_TEST 202 config CRYPTO_TEST 232 tristate "Testing module" 203 tristate "Testing module" 233 depends on m || EXPERT !! 204 depends on m 234 select CRYPTO_MANAGER 205 select CRYPTO_MANAGER 235 help 206 help 236 Quick & dirty crypto test module. 207 Quick & dirty crypto test module. 237 208 238 config CRYPTO_SIMD 209 config CRYPTO_SIMD 239 tristate 210 tristate 240 select CRYPTO_CRYPTD 211 select CRYPTO_CRYPTD 241 212 242 config CRYPTO_ENGINE !! 213 config CRYPTO_GLUE_HELPER_X86 243 tristate 214 tristate >> 215 depends on X86 >> 216 select CRYPTO_SKCIPHER 244 217 245 endmenu !! 218 config CRYPTO_ENGINE >> 219 tristate 246 220 247 menu "Public-key cryptography" !! 221 comment "Public-key cryptography" 248 222 249 config CRYPTO_RSA 223 config CRYPTO_RSA 250 tristate "RSA (Rivest-Shamir-Adleman)" !! 224 tristate "RSA algorithm" 251 select CRYPTO_AKCIPHER 225 select CRYPTO_AKCIPHER 252 select CRYPTO_MANAGER 226 select CRYPTO_MANAGER 253 select MPILIB 227 select MPILIB 254 select ASN1 228 select ASN1 255 help 229 help 256 RSA (Rivest-Shamir-Adleman) public k !! 230 Generic implementation of the RSA public key algorithm. 257 231 258 config CRYPTO_DH 232 config CRYPTO_DH 259 tristate "DH (Diffie-Hellman)" !! 233 tristate "Diffie-Hellman algorithm" 260 select CRYPTO_KPP 234 select CRYPTO_KPP 261 select MPILIB 235 select MPILIB 262 help 236 help 263 DH (Diffie-Hellman) key exchange alg !! 237 Generic implementation of the Diffie-Hellman algorithm. 264 << 265 config CRYPTO_DH_RFC7919_GROUPS << 266 bool "RFC 7919 FFDHE groups" << 267 depends on CRYPTO_DH << 268 select CRYPTO_RNG_DEFAULT << 269 help << 270 FFDHE (Finite-Field-based Diffie-Hel << 271 defined in RFC7919. << 272 << 273 Support these finite-field groups in << 274 - ffdhe2048, ffdhe3072, ffdhe4096, f << 275 << 276 If unsure, say N. << 277 238 278 config CRYPTO_ECC 239 config CRYPTO_ECC 279 tristate 240 tristate 280 select CRYPTO_RNG_DEFAULT << 281 241 282 config CRYPTO_ECDH 242 config CRYPTO_ECDH 283 tristate "ECDH (Elliptic Curve Diffie- !! 243 tristate "ECDH algorithm" 284 select CRYPTO_ECC 244 select CRYPTO_ECC 285 select CRYPTO_KPP 245 select CRYPTO_KPP >> 246 select CRYPTO_RNG_DEFAULT 286 help 247 help 287 ECDH (Elliptic Curve Diffie-Hellman) !! 248 Generic implementation of the ECDH algorithm 288 using curves P-192, P-256, and P-384 << 289 << 290 config CRYPTO_ECDSA << 291 tristate "ECDSA (Elliptic Curve Digita << 292 select CRYPTO_ECC << 293 select CRYPTO_AKCIPHER << 294 select ASN1 << 295 help << 296 ECDSA (Elliptic Curve Digital Signat << 297 ISO/IEC 14888-3) << 298 using curves P-192, P-256, and P-384 << 299 << 300 Only signature verification is imple << 301 249 302 config CRYPTO_ECRDSA 250 config CRYPTO_ECRDSA 303 tristate "EC-RDSA (Elliptic Curve Russ !! 251 tristate "EC-RDSA (GOST 34.10) algorithm" 304 select CRYPTO_ECC 252 select CRYPTO_ECC 305 select CRYPTO_AKCIPHER 253 select CRYPTO_AKCIPHER 306 select CRYPTO_STREEBOG 254 select CRYPTO_STREEBOG 307 select OID_REGISTRY 255 select OID_REGISTRY 308 select ASN1 256 select ASN1 309 help 257 help 310 Elliptic Curve Russian Digital Signa 258 Elliptic Curve Russian Digital Signature Algorithm (GOST R 34.10-2012, 311 RFC 7091, ISO/IEC 14888-3) !! 259 RFC 7091, ISO/IEC 14888-3:2018) is one of the Russian cryptographic 312 !! 260 standard algorithms (called GOST algorithms). Only signature verification 313 One of the Russian cryptographic sta !! 261 is implemented. 314 algorithms). Only signature verifica << 315 262 316 config CRYPTO_CURVE25519 263 config CRYPTO_CURVE25519 317 tristate "Curve25519" !! 264 tristate "Curve25519 algorithm" 318 select CRYPTO_KPP 265 select CRYPTO_KPP 319 select CRYPTO_LIB_CURVE25519_GENERIC 266 select CRYPTO_LIB_CURVE25519_GENERIC 320 help << 321 Curve25519 elliptic curve (RFC7748) << 322 << 323 endmenu << 324 267 325 menu "Block ciphers" !! 268 config CRYPTO_CURVE25519_X86 326 !! 269 tristate "x86_64 accelerated Curve25519 scalar multiplication library" 327 config CRYPTO_AES !! 270 depends on X86 && 64BIT 328 tristate "AES (Advanced Encryption Sta !! 271 select CRYPTO_LIB_CURVE25519_GENERIC 329 select CRYPTO_ALGAPI !! 272 select CRYPTO_ARCH_HAVE_LIB_CURVE25519 330 select CRYPTO_LIB_AES << 331 help << 332 AES cipher algorithms (Rijndael)(FIP << 333 << 334 Rijndael appears to be consistently << 335 both hardware and software across a << 336 environments regardless of its use i << 337 modes. Its key setup time is excelle << 338 good. Rijndael's very low memory req << 339 suited for restricted-space environm << 340 demonstrates excellent performance. << 341 among the easiest to defend against << 342 << 343 The AES specifies three key sizes: 1 << 344 << 345 config CRYPTO_AES_TI << 346 tristate "AES (Advanced Encryption Sta << 347 select CRYPTO_ALGAPI << 348 select CRYPTO_LIB_AES << 349 help << 350 AES cipher algorithms (Rijndael)(FIP << 351 << 352 This is a generic implementation of << 353 data dependent latencies as much as << 354 performance too much. It is intended << 355 and GCM drivers, and other CTR or CM << 356 solely on encryption (although decry << 357 with a more dramatic performance hit << 358 << 359 Instead of using 16 lookup tables of << 360 8 for decryption), this implementati << 361 256 bytes each, and attempts to elim << 362 prefetching the entire table into th << 363 block. Interrupts are also disabled << 364 are evicted when the CPU is interrup << 365 << 366 config CRYPTO_ANUBIS << 367 tristate "Anubis" << 368 depends on CRYPTO_USER_API_ENABLE_OBSO << 369 select CRYPTO_ALGAPI << 370 help << 371 Anubis cipher algorithm << 372 << 373 Anubis is a variable key length ciph << 374 128 bits to 320 bits in length. It << 375 in the NESSIE competition. << 376 273 377 See https://web.archive.org/web/2016 !! 274 comment "Authenticated Encryption with Associated Data" 378 for further information. << 379 275 380 config CRYPTO_ARIA !! 276 config CRYPTO_CCM 381 tristate "ARIA" !! 277 tristate "CCM support" 382 select CRYPTO_ALGAPI !! 278 select CRYPTO_CTR >> 279 select CRYPTO_HASH >> 280 select CRYPTO_AEAD >> 281 select CRYPTO_MANAGER 383 help 282 help 384 ARIA cipher algorithm (RFC5794) !! 283 Support for Counter with CBC MAC. Required for IPsec. 385 284 386 ARIA is a standard encryption algori !! 285 config CRYPTO_GCM 387 The ARIA specifies three key sizes a !! 286 tristate "GCM/GMAC support" 388 128-bit: 12 rounds. !! 287 select CRYPTO_CTR 389 192-bit: 14 rounds. !! 288 select CRYPTO_AEAD 390 256-bit: 16 rounds. !! 289 select CRYPTO_GHASH 391 !! 290 select CRYPTO_NULL 392 See: !! 291 select CRYPTO_MANAGER 393 https://seed.kisa.or.kr/kisa/algorit << 394 << 395 config CRYPTO_BLOWFISH << 396 tristate "Blowfish" << 397 select CRYPTO_ALGAPI << 398 select CRYPTO_BLOWFISH_COMMON << 399 help 292 help 400 Blowfish cipher algorithm, by Bruce !! 293 Support for Galois/Counter Mode (GCM) and Galois Message 401 !! 294 Authentication Code (GMAC). Required for IPSec. 402 This is a variable key length cipher << 403 bits to 448 bits in length. It's fa << 404 designed for use on "large microproc << 405 295 406 See https://www.schneier.com/blowfis !! 296 config CRYPTO_CHACHA20POLY1305 407 !! 297 tristate "ChaCha20-Poly1305 AEAD support" 408 config CRYPTO_BLOWFISH_COMMON !! 298 select CRYPTO_CHACHA20 409 tristate !! 299 select CRYPTO_POLY1305 >> 300 select CRYPTO_AEAD >> 301 select CRYPTO_MANAGER 410 help 302 help 411 Common parts of the Blowfish cipher !! 303 ChaCha20-Poly1305 AEAD support, RFC7539. 412 generic c and the assembler implemen << 413 304 414 config CRYPTO_CAMELLIA !! 305 Support for the AEAD wrapper using the ChaCha20 stream cipher combined 415 tristate "Camellia" !! 306 with the Poly1305 authenticator. It is defined in RFC7539 for use in 416 select CRYPTO_ALGAPI !! 307 IETF protocols. 417 help << 418 Camellia cipher algorithms (ISO/IEC << 419 308 420 Camellia is a symmetric key block ci !! 309 config CRYPTO_AEGIS128 421 at NTT and Mitsubishi Electric Corpo !! 310 tristate "AEGIS-128 AEAD algorithm" 422 !! 311 select CRYPTO_AEAD 423 The Camellia specifies three key siz !! 312 select CRYPTO_AES # for AES S-box tables 424 << 425 See https://info.isl.ntt.co.jp/crypt << 426 << 427 config CRYPTO_CAST_COMMON << 428 tristate << 429 help << 430 Common parts of the CAST cipher algo << 431 generic c and the assembler implemen << 432 << 433 config CRYPTO_CAST5 << 434 tristate "CAST5 (CAST-128)" << 435 select CRYPTO_ALGAPI << 436 select CRYPTO_CAST_COMMON << 437 help 313 help 438 CAST5 (CAST-128) cipher algorithm (R !! 314 Support for the AEGIS-128 dedicated AEAD algorithm. 439 315 440 config CRYPTO_CAST6 !! 316 config CRYPTO_AEGIS128_SIMD 441 tristate "CAST6 (CAST-256)" !! 317 bool "Support SIMD acceleration for AEGIS-128" 442 select CRYPTO_ALGAPI !! 318 depends on CRYPTO_AEGIS128 && ((ARM || ARM64) && KERNEL_MODE_NEON) 443 select CRYPTO_CAST_COMMON !! 319 depends on !ARM || CC_IS_CLANG || GCC_VERSION >= 40800 444 help !! 320 default y 445 CAST6 (CAST-256) encryption algorith << 446 321 447 config CRYPTO_DES !! 322 config CRYPTO_AEGIS128_AESNI_SSE2 448 tristate "DES and Triple DES EDE" !! 323 tristate "AEGIS-128 AEAD algorithm (x86_64 AESNI+SSE2 implementation)" 449 select CRYPTO_ALGAPI !! 324 depends on X86 && 64BIT 450 select CRYPTO_LIB_DES !! 325 select CRYPTO_AEAD >> 326 select CRYPTO_SIMD 451 help 327 help 452 DES (Data Encryption Standard)(FIPS !! 328 AESNI+SSE2 implementation of the AEGIS-128 dedicated AEAD algorithm. 453 Triple DES EDE (Encrypt/Decrypt/Encr << 454 cipher algorithms << 455 329 456 config CRYPTO_FCRYPT !! 330 config CRYPTO_SEQIV 457 tristate "FCrypt" !! 331 tristate "Sequence Number IV Generator" 458 select CRYPTO_ALGAPI !! 332 select CRYPTO_AEAD 459 select CRYPTO_SKCIPHER 333 select CRYPTO_SKCIPHER 460 help !! 334 select CRYPTO_NULL 461 FCrypt algorithm used by RxRPC !! 335 select CRYPTO_RNG_DEFAULT 462 << 463 See https://ota.polyonymo.us/fcrypt- << 464 << 465 config CRYPTO_KHAZAD << 466 tristate "Khazad" << 467 depends on CRYPTO_USER_API_ENABLE_OBSO << 468 select CRYPTO_ALGAPI << 469 help << 470 Khazad cipher algorithm << 471 << 472 Khazad was a finalist in the initial << 473 an algorithm optimized for 64-bit pr << 474 on 32-bit processors. Khazad uses a << 475 << 476 See https://web.archive.org/web/2017 << 477 for further information. << 478 << 479 config CRYPTO_SEED << 480 tristate "SEED" << 481 depends on CRYPTO_USER_API_ENABLE_OBSO << 482 select CRYPTO_ALGAPI << 483 help << 484 SEED cipher algorithm (RFC4269, ISO/ << 485 << 486 SEED is a 128-bit symmetric key bloc << 487 developed by KISA (Korea Information << 488 national standard encryption algorit << 489 It is a 16 round block cipher with t << 490 << 491 See https://seed.kisa.or.kr/kisa/alg << 492 for further information. << 493 << 494 config CRYPTO_SERPENT << 495 tristate "Serpent" << 496 select CRYPTO_ALGAPI << 497 help << 498 Serpent cipher algorithm, by Anderso << 499 << 500 Keys are allowed to be from 0 to 256 << 501 of 8 bits. << 502 << 503 See https://www.cl.cam.ac.uk/~rja14/ << 504 << 505 config CRYPTO_SM4 << 506 tristate << 507 << 508 config CRYPTO_SM4_GENERIC << 509 tristate "SM4 (ShangMi 4)" << 510 select CRYPTO_ALGAPI << 511 select CRYPTO_SM4 << 512 help << 513 SM4 cipher algorithms (OSCCA GB/T 32 << 514 ISO/IEC 18033-3:2010/Amd 1:2021) << 515 << 516 SM4 (GBT.32907-2016) is a cryptograp << 517 Organization of State Commercial Adm << 518 as an authorized cryptographic algor << 519 << 520 SMS4 was originally created for use << 521 networks, and is mandated in the Chi << 522 Wireless LAN WAPI (Wired Authenticat << 523 (GB.15629.11-2003). << 524 << 525 The latest SM4 standard (GBT.32907-2 << 526 standardized through TC 260 of the S << 527 of the People's Republic of China (S << 528 << 529 The input, output, and key of SMS4 a << 530 << 531 See https://eprint.iacr.org/2008/329 << 532 << 533 If unsure, say N. << 534 << 535 config CRYPTO_TEA << 536 tristate "TEA, XTEA and XETA" << 537 depends on CRYPTO_USER_API_ENABLE_OBSO << 538 select CRYPTO_ALGAPI << 539 help << 540 TEA (Tiny Encryption Algorithm) ciph << 541 << 542 Tiny Encryption Algorithm is a simpl << 543 many rounds for security. It is ver << 544 little memory. << 545 << 546 Xtendend Tiny Encryption Algorithm i << 547 the TEA algorithm to address a poten << 548 in the TEA algorithm. << 549 << 550 Xtendend Encryption Tiny Algorithm i << 551 of the XTEA algorithm for compatibil << 552 << 553 config CRYPTO_TWOFISH << 554 tristate "Twofish" << 555 select CRYPTO_ALGAPI << 556 select CRYPTO_TWOFISH_COMMON << 557 help << 558 Twofish cipher algorithm << 559 << 560 Twofish was submitted as an AES (Adv << 561 candidate cipher by researchers at C << 562 16 round block cipher supporting key << 563 bits. << 564 << 565 See https://www.schneier.com/twofish << 566 << 567 config CRYPTO_TWOFISH_COMMON << 568 tristate << 569 help << 570 Common parts of the Twofish cipher a << 571 generic c and the assembler implemen << 572 << 573 endmenu << 574 << 575 menu "Length-preserving ciphers and modes" << 576 << 577 config CRYPTO_ADIANTUM << 578 tristate "Adiantum" << 579 select CRYPTO_CHACHA20 << 580 select CRYPTO_LIB_POLY1305_GENERIC << 581 select CRYPTO_NHPOLY1305 << 582 select CRYPTO_MANAGER 336 select CRYPTO_MANAGER 583 help 337 help 584 Adiantum tweakable, length-preservin !! 338 This IV generator generates an IV based on a sequence number by 585 !! 339 xoring it with a salt. This algorithm is mainly useful for CTR 586 Designed for fast and secure disk en << 587 CPUs without dedicated crypto instru << 588 each sector using the XChaCha12 stre << 589 an ε-almost-∆-universal hash func << 590 the AES-256 block cipher on a single << 591 without AES instructions, Adiantum i << 592 AES-XTS. << 593 << 594 Adiantum's security is provably redu << 595 underlying stream and block ciphers, << 596 bound. Unlike XTS, Adiantum is a tr << 597 mode, so it actually provides an eve << 598 security than XTS, subject to the se << 599 << 600 If unsure, say N. << 601 340 602 config CRYPTO_ARC4 !! 341 config CRYPTO_ECHAINIV 603 tristate "ARC4 (Alleged Rivest Cipher !! 342 tristate "Encrypted Chain IV Generator" 604 depends on CRYPTO_USER_API_ENABLE_OBSO !! 343 select CRYPTO_AEAD 605 select CRYPTO_SKCIPHER !! 344 select CRYPTO_NULL 606 select CRYPTO_LIB_ARC4 !! 345 select CRYPTO_RNG_DEFAULT >> 346 select CRYPTO_MANAGER 607 help 347 help 608 ARC4 cipher algorithm !! 348 This IV generator generates an IV based on the encryption of >> 349 a sequence number xored with a salt. This is the default >> 350 algorithm for CBC. 609 351 610 ARC4 is a stream cipher using keys r !! 352 comment "Block modes" 611 bits in length. This algorithm is r << 612 WEP, but it should not be for other << 613 weakness of the algorithm. << 614 353 615 config CRYPTO_CHACHA20 !! 354 config CRYPTO_CBC 616 tristate "ChaCha" !! 355 tristate "CBC support" 617 select CRYPTO_LIB_CHACHA_GENERIC << 618 select CRYPTO_SKCIPHER 356 select CRYPTO_SKCIPHER >> 357 select CRYPTO_MANAGER 619 help 358 help 620 The ChaCha20, XChaCha20, and XChaCha !! 359 CBC: Cipher Block Chaining mode 621 !! 360 This block cipher algorithm is required for IPSec. 622 ChaCha20 is a 256-bit high-speed str << 623 Bernstein and further specified in R << 624 This is the portable C implementatio << 625 https://cr.yp.to/chacha/chacha-20080 << 626 << 627 XChaCha20 is the application of the << 628 rather than to Salsa20. XChaCha20 e << 629 from 64 bits (or 96 bits using the R << 630 while provably retaining ChaCha20's << 631 https://cr.yp.to/snuffle/xsalsa-2008 << 632 << 633 XChaCha12 is XChaCha20 reduced to 12 << 634 reduced security margin but increase << 635 in some performance-sensitive scenar << 636 361 637 config CRYPTO_CBC !! 362 config CRYPTO_CFB 638 tristate "CBC (Cipher Block Chaining)" !! 363 tristate "CFB support" 639 select CRYPTO_SKCIPHER 364 select CRYPTO_SKCIPHER 640 select CRYPTO_MANAGER 365 select CRYPTO_MANAGER 641 help 366 help 642 CBC (Cipher Block Chaining) mode (NI !! 367 CFB: Cipher FeedBack mode 643 !! 368 This block cipher algorithm is required for TPM2 Cryptography. 644 This block cipher mode is required f << 645 369 646 config CRYPTO_CTR 370 config CRYPTO_CTR 647 tristate "CTR (Counter)" !! 371 tristate "CTR support" 648 select CRYPTO_SKCIPHER 372 select CRYPTO_SKCIPHER >> 373 select CRYPTO_SEQIV 649 select CRYPTO_MANAGER 374 select CRYPTO_MANAGER 650 help 375 help 651 CTR (Counter) mode (NIST SP800-38A) !! 376 CTR: Counter mode >> 377 This block cipher algorithm is required for IPSec. 652 378 653 config CRYPTO_CTS 379 config CRYPTO_CTS 654 tristate "CTS (Cipher Text Stealing)" !! 380 tristate "CTS support" 655 select CRYPTO_SKCIPHER 381 select CRYPTO_SKCIPHER 656 select CRYPTO_MANAGER 382 select CRYPTO_MANAGER 657 help 383 help 658 CBC-CS3 variant of CTS (Cipher Text !! 384 CTS: Cipher Text Stealing 659 Addendum to SP800-38A (October 2010) !! 385 This is the Cipher Text Stealing mode as described by 660 !! 386 Section 8 of rfc2040 and referenced by rfc3962 >> 387 (rfc3962 includes errata information in its Appendix A) or >> 388 CBC-CS3 as defined by NIST in Sp800-38A addendum from Oct 2010. 661 This mode is required for Kerberos g 389 This mode is required for Kerberos gss mechanism support 662 for AES encryption. 390 for AES encryption. 663 391 664 config CRYPTO_ECB !! 392 See: https://csrc.nist.gov/publications/detail/sp/800-38a/addendum/final 665 tristate "ECB (Electronic Codebook)" << 666 select CRYPTO_SKCIPHER2 << 667 select CRYPTO_MANAGER << 668 help << 669 ECB (Electronic Codebook) mode (NIST << 670 << 671 config CRYPTO_HCTR2 << 672 tristate "HCTR2" << 673 select CRYPTO_XCTR << 674 select CRYPTO_POLYVAL << 675 select CRYPTO_MANAGER << 676 help << 677 HCTR2 length-preserving encryption m << 678 << 679 A mode for storage encryption that i << 680 instructions to accelerate AES and c << 681 x86 processors with AES-NI and CLMUL << 682 ARMv8 crypto extensions. << 683 << 684 See https://eprint.iacr.org/2021/144 << 685 393 686 config CRYPTO_KEYWRAP !! 394 config CRYPTO_ECB 687 tristate "KW (AES Key Wrap)" !! 395 tristate "ECB support" 688 select CRYPTO_SKCIPHER 396 select CRYPTO_SKCIPHER 689 select CRYPTO_MANAGER 397 select CRYPTO_MANAGER 690 help 398 help 691 KW (AES Key Wrap) authenticated encr !! 399 ECB: Electronic CodeBook mode 692 and RFC3394) without padding. !! 400 This is the simplest block cipher algorithm. It simply encrypts >> 401 the input block by block. 693 402 694 config CRYPTO_LRW 403 config CRYPTO_LRW 695 tristate "LRW (Liskov Rivest Wagner)" !! 404 tristate "LRW support" 696 select CRYPTO_LIB_GF128MUL << 697 select CRYPTO_SKCIPHER 405 select CRYPTO_SKCIPHER 698 select CRYPTO_MANAGER 406 select CRYPTO_MANAGER 699 select CRYPTO_ECB !! 407 select CRYPTO_GF128MUL 700 help 408 help 701 LRW (Liskov Rivest Wagner) mode !! 409 LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable 702 << 703 A tweakable, non malleable, non mova << 704 narrow block cipher mode for dm-cryp 410 narrow block cipher mode for dm-crypt. Use it with cipher 705 specification string aes-lrw-benbi, 411 specification string aes-lrw-benbi, the key must be 256, 320 or 384. 706 The first 128, 192 or 256 bits in th 412 The first 128, 192 or 256 bits in the key are used for AES and the 707 rest is used to tie each cipher bloc 413 rest is used to tie each cipher block to its logical position. 708 414 709 See https://people.csail.mit.edu/riv !! 415 config CRYPTO_OFB 710 !! 416 tristate "OFB support" 711 config CRYPTO_PCBC << 712 tristate "PCBC (Propagating Cipher Blo << 713 select CRYPTO_SKCIPHER 417 select CRYPTO_SKCIPHER 714 select CRYPTO_MANAGER 418 select CRYPTO_MANAGER 715 help 419 help 716 PCBC (Propagating Cipher Block Chain !! 420 OFB: the Output Feedback mode makes a block cipher into a synchronous >> 421 stream cipher. It generates keystream blocks, which are then XORed >> 422 with the plaintext blocks to get the ciphertext. Flipping a bit in the >> 423 ciphertext produces a flipped bit in the plaintext at the same >> 424 location. This property allows many error correcting codes to function >> 425 normally even when applied before encryption. 717 426 718 This block cipher mode is required f !! 427 config CRYPTO_PCBC 719 !! 428 tristate "PCBC support" 720 config CRYPTO_XCTR << 721 tristate << 722 select CRYPTO_SKCIPHER 429 select CRYPTO_SKCIPHER 723 select CRYPTO_MANAGER 430 select CRYPTO_MANAGER 724 help 431 help 725 XCTR (XOR Counter) mode for HCTR2 !! 432 PCBC: Propagating Cipher Block Chaining mode 726 !! 433 This block cipher algorithm is required for RxRPC. 727 This blockcipher mode is a variant o << 728 addition rather than big-endian arit << 729 << 730 XCTR mode is used to implement HCTR2 << 731 434 732 config CRYPTO_XTS 435 config CRYPTO_XTS 733 tristate "XTS (XOR Encrypt XOR with ci !! 436 tristate "XTS support" 734 select CRYPTO_SKCIPHER 437 select CRYPTO_SKCIPHER 735 select CRYPTO_MANAGER 438 select CRYPTO_MANAGER 736 select CRYPTO_ECB 439 select CRYPTO_ECB 737 help 440 help 738 XTS (XOR Encrypt XOR with ciphertext !! 441 XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain, 739 and IEEE 1619) !! 442 key size 256, 384 or 512 bits. This implementation currently >> 443 can't handle a sectorsize which is not a multiple of 16 bytes. 740 444 741 Use with aes-xts-plain, key size 256 !! 445 config CRYPTO_KEYWRAP 742 implementation currently can't handl !! 446 tristate "Key wrapping support" 743 multiple of 16 bytes. !! 447 select CRYPTO_SKCIPHER >> 448 select CRYPTO_MANAGER >> 449 help >> 450 Support for key wrapping (NIST SP800-38F / RFC3394) without >> 451 padding. 744 452 745 config CRYPTO_NHPOLY1305 453 config CRYPTO_NHPOLY1305 746 tristate 454 tristate 747 select CRYPTO_HASH 455 select CRYPTO_HASH 748 select CRYPTO_LIB_POLY1305_GENERIC 456 select CRYPTO_LIB_POLY1305_GENERIC 749 457 750 endmenu !! 458 config CRYPTO_NHPOLY1305_SSE2 751 !! 459 tristate "NHPoly1305 hash function (x86_64 SSE2 implementation)" 752 menu "AEAD (authenticated encryption with asso !! 460 depends on X86 && 64BIT 753 !! 461 select CRYPTO_NHPOLY1305 754 config CRYPTO_AEGIS128 << 755 tristate "AEGIS-128" << 756 select CRYPTO_AEAD << 757 select CRYPTO_AES # for AES S-box tab << 758 help 462 help 759 AEGIS-128 AEAD algorithm !! 463 SSE2 optimized implementation of the hash function used by the >> 464 Adiantum encryption mode. 760 465 761 config CRYPTO_AEGIS128_SIMD !! 466 config CRYPTO_NHPOLY1305_AVX2 762 bool "AEGIS-128 (arm NEON, arm64 NEON) !! 467 tristate "NHPoly1305 hash function (x86_64 AVX2 implementation)" 763 depends on CRYPTO_AEGIS128 && ((ARM || !! 468 depends on X86 && 64BIT 764 default y !! 469 select CRYPTO_NHPOLY1305 765 help 470 help 766 AEGIS-128 AEAD algorithm !! 471 AVX2 optimized implementation of the hash function used by the 767 !! 472 Adiantum encryption mode. 768 Architecture: arm or arm64 using: << 769 - NEON (Advanced SIMD) extension << 770 473 771 config CRYPTO_CHACHA20POLY1305 !! 474 config CRYPTO_ADIANTUM 772 tristate "ChaCha20-Poly1305" !! 475 tristate "Adiantum support" 773 select CRYPTO_CHACHA20 476 select CRYPTO_CHACHA20 774 select CRYPTO_POLY1305 !! 477 select CRYPTO_LIB_POLY1305_GENERIC 775 select CRYPTO_AEAD !! 478 select CRYPTO_NHPOLY1305 776 select CRYPTO_MANAGER << 777 help << 778 ChaCha20 stream cipher and Poly1305 << 779 mode (RFC8439) << 780 << 781 config CRYPTO_CCM << 782 tristate "CCM (Counter with Cipher Blo << 783 select CRYPTO_CTR << 784 select CRYPTO_HASH << 785 select CRYPTO_AEAD << 786 select CRYPTO_MANAGER << 787 help << 788 CCM (Counter with Cipher Block Chain << 789 authenticated encryption mode (NIST << 790 << 791 config CRYPTO_GCM << 792 tristate "GCM (Galois/Counter Mode) an << 793 select CRYPTO_CTR << 794 select CRYPTO_AEAD << 795 select CRYPTO_GHASH << 796 select CRYPTO_NULL << 797 select CRYPTO_MANAGER << 798 help << 799 GCM (Galois/Counter Mode) authentica << 800 (GCM Message Authentication Code) (N << 801 << 802 This is required for IPSec ESP (XFRM << 803 << 804 config CRYPTO_GENIV << 805 tristate << 806 select CRYPTO_AEAD << 807 select CRYPTO_NULL << 808 select CRYPTO_MANAGER 479 select CRYPTO_MANAGER 809 select CRYPTO_RNG_DEFAULT << 810 << 811 config CRYPTO_SEQIV << 812 tristate "Sequence Number IV Generator << 813 select CRYPTO_GENIV << 814 help 480 help 815 Sequence Number IV generator !! 481 Adiantum is a tweakable, length-preserving encryption mode 816 !! 482 designed for fast and secure disk encryption, especially on 817 This IV generator generates an IV ba !! 483 CPUs without dedicated crypto instructions. It encrypts 818 xoring it with a salt. This algorit !! 484 each sector using the XChaCha12 stream cipher, two passes of 819 !! 485 an ε-almost-∆-universal hash function, and an invocation of 820 This is required for IPsec ESP (XFRM !! 486 the AES-256 block cipher on a single 16-byte block. On CPUs >> 487 without AES instructions, Adiantum is much faster than >> 488 AES-XTS. 821 489 822 config CRYPTO_ECHAINIV !! 490 Adiantum's security is provably reducible to that of its 823 tristate "Encrypted Chain IV Generator !! 491 underlying stream and block ciphers, subject to a security 824 select CRYPTO_GENIV !! 492 bound. Unlike XTS, Adiantum is a true wide-block encryption 825 help !! 493 mode, so it actually provides an even stronger notion of 826 Encrypted Chain IV generator !! 494 security than XTS, subject to the security bound. 827 495 828 This IV generator generates an IV ba !! 496 If unsure, say N. 829 a sequence number xored with a salt. << 830 algorithm for CBC. << 831 497 832 config CRYPTO_ESSIV 498 config CRYPTO_ESSIV 833 tristate "Encrypted Salt-Sector IV Gen !! 499 tristate "ESSIV support for block encryption" 834 select CRYPTO_AUTHENC 500 select CRYPTO_AUTHENC 835 help 501 help 836 Encrypted Salt-Sector IV generator !! 502 Encrypted salt-sector initialization vector (ESSIV) is an IV 837 !! 503 generation method that is used in some cases by fscrypt and/or 838 This IV generator is used in some ca << 839 dm-crypt. It uses the hash of the bl 504 dm-crypt. It uses the hash of the block encryption key as the 840 symmetric key for a block encryption 505 symmetric key for a block encryption pass applied to the input 841 IV, making low entropy IV sources mo 506 IV, making low entropy IV sources more suitable for block 842 encryption. 507 encryption. 843 508 844 This driver implements a crypto API 509 This driver implements a crypto API template that can be 845 instantiated either as an skcipher o 510 instantiated either as an skcipher or as an AEAD (depending on the 846 type of the first template argument) 511 type of the first template argument), and which defers encryption 847 and decryption requests to the encap 512 and decryption requests to the encapsulated cipher after applying 848 ESSIV to the input IV. Note that in 513 ESSIV to the input IV. Note that in the AEAD case, it is assumed 849 that the keys are presented in the s 514 that the keys are presented in the same format used by the authenc 850 template, and that the IV appears at 515 template, and that the IV appears at the end of the authenticated 851 associated data (AAD) region (which 516 associated data (AAD) region (which is how dm-crypt uses it.) 852 517 853 Note that the use of ESSIV is not re 518 Note that the use of ESSIV is not recommended for new deployments, 854 and so this only needs to be enabled 519 and so this only needs to be enabled when interoperability with 855 existing encrypted volumes of filesy 520 existing encrypted volumes of filesystems is required, or when 856 building for a particular system tha 521 building for a particular system that requires it (e.g., when 857 the SoC in question has accelerated 522 the SoC in question has accelerated CBC but not XTS, making CBC 858 combined with ESSIV the only feasibl 523 combined with ESSIV the only feasible mode for h/w accelerated 859 block encryption) 524 block encryption) 860 525 861 endmenu !! 526 comment "Hash modes" 862 527 863 menu "Hashes, digests, and MACs" !! 528 config CRYPTO_CMAC >> 529 tristate "CMAC support" >> 530 select CRYPTO_HASH >> 531 select CRYPTO_MANAGER >> 532 help >> 533 Cipher-based Message Authentication Code (CMAC) specified by >> 534 The National Institute of Standards and Technology (NIST). 864 535 865 config CRYPTO_BLAKE2B !! 536 https://tools.ietf.org/html/rfc4493 866 tristate "BLAKE2b" !! 537 http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf >> 538 >> 539 config CRYPTO_HMAC >> 540 tristate "HMAC support" >> 541 select CRYPTO_HASH >> 542 select CRYPTO_MANAGER >> 543 help >> 544 HMAC: Keyed-Hashing for Message Authentication (RFC2104). >> 545 This is required for IPSec. >> 546 >> 547 config CRYPTO_XCBC >> 548 tristate "XCBC support" >> 549 select CRYPTO_HASH >> 550 select CRYPTO_MANAGER >> 551 help >> 552 XCBC: Keyed-Hashing with encryption algorithm >> 553 http://www.ietf.org/rfc/rfc3566.txt >> 554 http://csrc.nist.gov/encryption/modes/proposedmodes/ >> 555 xcbc-mac/xcbc-mac-spec.pdf >> 556 >> 557 config CRYPTO_VMAC >> 558 tristate "VMAC support" >> 559 select CRYPTO_HASH >> 560 select CRYPTO_MANAGER >> 561 help >> 562 VMAC is a message authentication algorithm designed for >> 563 very high speed on 64-bit architectures. >> 564 >> 565 See also: >> 566 <http://fastcrypto.org/vmac> >> 567 >> 568 comment "Digest" >> 569 >> 570 config CRYPTO_CRC32C >> 571 tristate "CRC32c CRC algorithm" >> 572 select CRYPTO_HASH >> 573 select CRC32 >> 574 help >> 575 Castagnoli, et al Cyclic Redundancy-Check Algorithm. Used >> 576 by iSCSI for header and data digests and by others. >> 577 See Castagnoli93. Module will be crc32c. >> 578 >> 579 config CRYPTO_CRC32C_INTEL >> 580 tristate "CRC32c INTEL hardware acceleration" >> 581 depends on X86 >> 582 select CRYPTO_HASH >> 583 help >> 584 In Intel processor with SSE4.2 supported, the processor will >> 585 support CRC32C implementation using hardware accelerated CRC32 >> 586 instruction. This option will create 'crc32c-intel' module, >> 587 which will enable any routine to use the CRC32 instruction to >> 588 gain performance compared with software implementation. >> 589 Module will be crc32c-intel. >> 590 >> 591 config CRYPTO_CRC32C_VPMSUM >> 592 tristate "CRC32c CRC algorithm (powerpc64)" >> 593 depends on PPC64 && ALTIVEC >> 594 select CRYPTO_HASH >> 595 select CRC32 >> 596 help >> 597 CRC32c algorithm implemented using vector polynomial multiply-sum >> 598 (vpmsum) instructions, introduced in POWER8. Enable on POWER8 >> 599 and newer processors for improved performance. >> 600 >> 601 >> 602 config CRYPTO_CRC32C_SPARC64 >> 603 tristate "CRC32c CRC algorithm (SPARC64)" >> 604 depends on SPARC64 >> 605 select CRYPTO_HASH >> 606 select CRC32 >> 607 help >> 608 CRC32c CRC algorithm implemented using sparc64 crypto instructions, >> 609 when available. >> 610 >> 611 config CRYPTO_CRC32 >> 612 tristate "CRC32 CRC algorithm" >> 613 select CRYPTO_HASH >> 614 select CRC32 >> 615 help >> 616 CRC-32-IEEE 802.3 cyclic redundancy-check algorithm. >> 617 Shash crypto api wrappers to crc32_le function. >> 618 >> 619 config CRYPTO_CRC32_PCLMUL >> 620 tristate "CRC32 PCLMULQDQ hardware acceleration" >> 621 depends on X86 >> 622 select CRYPTO_HASH >> 623 select CRC32 >> 624 help >> 625 From Intel Westmere and AMD Bulldozer processor with SSE4.2 >> 626 and PCLMULQDQ supported, the processor will support >> 627 CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ >> 628 instruction. This option will create 'crc32-pclmul' module, >> 629 which will enable any routine to use the CRC-32-IEEE 802.3 checksum >> 630 and gain better performance as compared with the table implementation. >> 631 >> 632 config CRYPTO_CRC32_MIPS >> 633 tristate "CRC32c and CRC32 CRC algorithm (MIPS)" >> 634 depends on MIPS_CRC_SUPPORT >> 635 select CRYPTO_HASH >> 636 help >> 637 CRC32c and CRC32 CRC algorithms implemented using mips crypto >> 638 instructions, when available. >> 639 >> 640 >> 641 config CRYPTO_XXHASH >> 642 tristate "xxHash hash algorithm" 867 select CRYPTO_HASH 643 select CRYPTO_HASH >> 644 select XXHASH 868 help 645 help 869 BLAKE2b cryptographic hash function !! 646 xxHash non-cryptographic hash algorithm. Extremely fast, working at >> 647 speeds close to RAM limits. 870 648 871 BLAKE2b is optimized for 64-bit plat !! 649 config CRYPTO_BLAKE2B 872 of any size between 1 and 64 bytes. !! 650 tristate "BLAKE2b digest algorithm" >> 651 select CRYPTO_HASH >> 652 help >> 653 Implementation of cryptographic hash function BLAKE2b (or just BLAKE2), >> 654 optimized for 64bit platforms and can produce digests of any size >> 655 between 1 to 64. The keyed hash is also implemented. 873 656 874 This module provides the following a 657 This module provides the following algorithms: >> 658 875 - blake2b-160 659 - blake2b-160 876 - blake2b-256 660 - blake2b-256 877 - blake2b-384 661 - blake2b-384 878 - blake2b-512 662 - blake2b-512 879 663 880 Used by the btrfs filesystem. !! 664 See https://blake2.net for further information. >> 665 >> 666 config CRYPTO_BLAKE2S >> 667 tristate "BLAKE2s digest algorithm" >> 668 select CRYPTO_LIB_BLAKE2S_GENERIC >> 669 select CRYPTO_HASH >> 670 help >> 671 Implementation of cryptographic hash function BLAKE2s >> 672 optimized for 8-32bit platforms and can produce digests of any size >> 673 between 1 to 32. The keyed hash is also implemented. >> 674 >> 675 This module provides the following algorithms: >> 676 >> 677 - blake2s-128 >> 678 - blake2s-160 >> 679 - blake2s-224 >> 680 - blake2s-256 881 681 882 See https://blake2.net for further i 682 See https://blake2.net for further information. 883 683 884 config CRYPTO_CMAC !! 684 config CRYPTO_BLAKE2S_X86 885 tristate "CMAC (Cipher-based MAC)" !! 685 tristate "BLAKE2s digest algorithm (x86 accelerated version)" >> 686 depends on X86 && 64BIT >> 687 select CRYPTO_LIB_BLAKE2S_GENERIC >> 688 select CRYPTO_ARCH_HAVE_LIB_BLAKE2S >> 689 >> 690 config CRYPTO_CRCT10DIF >> 691 tristate "CRCT10DIF algorithm" 886 select CRYPTO_HASH 692 select CRYPTO_HASH 887 select CRYPTO_MANAGER << 888 help 693 help 889 CMAC (Cipher-based Message Authentic !! 694 CRC T10 Data Integrity Field computation is being cast as 890 mode (NIST SP800-38B and IETF RFC449 !! 695 a crypto transform. This allows for faster crc t10 diff >> 696 transforms to be used if they are available. >> 697 >> 698 config CRYPTO_CRCT10DIF_PCLMUL >> 699 tristate "CRCT10DIF PCLMULQDQ hardware acceleration" >> 700 depends on X86 && 64BIT && CRC_T10DIF >> 701 select CRYPTO_HASH >> 702 help >> 703 For x86_64 processors with SSE4.2 and PCLMULQDQ supported, >> 704 CRC T10 DIF PCLMULQDQ computation can be hardware >> 705 accelerated PCLMULQDQ instruction. This option will create >> 706 'crct10dif-pclmul' module, which is faster when computing the >> 707 crct10dif checksum as compared with the generic table implementation. >> 708 >> 709 config CRYPTO_CRCT10DIF_VPMSUM >> 710 tristate "CRC32T10DIF powerpc64 hardware acceleration" >> 711 depends on PPC64 && ALTIVEC && CRC_T10DIF >> 712 select CRYPTO_HASH >> 713 help >> 714 CRC10T10DIF algorithm implemented using vector polynomial >> 715 multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on >> 716 POWER8 and newer processors for improved performance. >> 717 >> 718 config CRYPTO_VPMSUM_TESTER >> 719 tristate "Powerpc64 vpmsum hardware acceleration tester" >> 720 depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM >> 721 help >> 722 Stress test for CRC32c and CRC-T10DIF algorithms implemented with >> 723 POWER8 vpmsum instructions. >> 724 Unless you are testing these algorithms, you don't need this. 891 725 892 config CRYPTO_GHASH 726 config CRYPTO_GHASH 893 tristate "GHASH" !! 727 tristate "GHASH hash function" >> 728 select CRYPTO_GF128MUL 894 select CRYPTO_HASH 729 select CRYPTO_HASH 895 select CRYPTO_LIB_GF128MUL << 896 help 730 help 897 GCM GHASH function (NIST SP800-38D) !! 731 GHASH is the hash function used in GCM (Galois/Counter Mode). >> 732 It is not a general-purpose cryptographic hash function. 898 733 899 config CRYPTO_HMAC !! 734 config CRYPTO_POLY1305 900 tristate "HMAC (Keyed-Hash MAC)" !! 735 tristate "Poly1305 authenticator algorithm" 901 select CRYPTO_HASH 736 select CRYPTO_HASH 902 select CRYPTO_MANAGER !! 737 select CRYPTO_LIB_POLY1305_GENERIC >> 738 help >> 739 Poly1305 authenticator algorithm, RFC7539. >> 740 >> 741 Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. >> 742 It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use >> 743 in IETF protocols. This is the portable C implementation of Poly1305. >> 744 >> 745 config CRYPTO_POLY1305_X86_64 >> 746 tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)" >> 747 depends on X86 && 64BIT >> 748 select CRYPTO_LIB_POLY1305_GENERIC >> 749 select CRYPTO_ARCH_HAVE_LIB_POLY1305 903 help 750 help 904 HMAC (Keyed-Hash Message Authenticat !! 751 Poly1305 authenticator algorithm, RFC7539. 905 RFC2104) << 906 752 907 This is required for IPsec AH (XFRM_ !! 753 Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. >> 754 It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use >> 755 in IETF protocols. This is the x86_64 assembler implementation using SIMD >> 756 instructions. >> 757 >> 758 config CRYPTO_POLY1305_MIPS >> 759 tristate "Poly1305 authenticator algorithm (MIPS optimized)" >> 760 depends on CPU_MIPS32 || (CPU_MIPS64 && 64BIT) >> 761 select CRYPTO_ARCH_HAVE_LIB_POLY1305 908 762 909 config CRYPTO_MD4 763 config CRYPTO_MD4 910 tristate "MD4" !! 764 tristate "MD4 digest algorithm" 911 select CRYPTO_HASH 765 select CRYPTO_HASH 912 help 766 help 913 MD4 message digest algorithm (RFC132 !! 767 MD4 message digest algorithm (RFC1320). 914 768 915 config CRYPTO_MD5 769 config CRYPTO_MD5 916 tristate "MD5" !! 770 tristate "MD5 digest algorithm" 917 select CRYPTO_HASH 771 select CRYPTO_HASH 918 help 772 help 919 MD5 message digest algorithm (RFC132 !! 773 MD5 message digest algorithm (RFC1321). 920 774 921 config CRYPTO_MICHAEL_MIC !! 775 config CRYPTO_MD5_OCTEON 922 tristate "Michael MIC" !! 776 tristate "MD5 digest algorithm (OCTEON)" >> 777 depends on CPU_CAVIUM_OCTEON >> 778 select CRYPTO_MD5 923 select CRYPTO_HASH 779 select CRYPTO_HASH 924 help 780 help 925 Michael MIC (Message Integrity Code) !! 781 MD5 message digest algorithm (RFC1321) implemented >> 782 using OCTEON crypto instructions, when available. 926 783 927 Defined by the IEEE 802.11i TKIP (Te !! 784 config CRYPTO_MD5_PPC 928 known as WPA (Wif-Fi Protected Acces !! 785 tristate "MD5 digest algorithm (PPC)" 929 !! 786 depends on PPC 930 This algorithm is required for TKIP, !! 787 select CRYPTO_HASH 931 other purposes because of the weakne !! 788 help >> 789 MD5 message digest algorithm (RFC1321) implemented >> 790 in PPC assembler. 932 791 933 config CRYPTO_POLYVAL !! 792 config CRYPTO_MD5_SPARC64 934 tristate !! 793 tristate "MD5 digest algorithm (SPARC64)" >> 794 depends on SPARC64 >> 795 select CRYPTO_MD5 935 select CRYPTO_HASH 796 select CRYPTO_HASH 936 select CRYPTO_LIB_GF128MUL << 937 help 797 help 938 POLYVAL hash function for HCTR2 !! 798 MD5 message digest algorithm (RFC1321) implemented >> 799 using sparc64 crypto instructions, when available. 939 800 940 This is used in HCTR2. It is not a !! 801 config CRYPTO_MICHAEL_MIC 941 cryptographic hash function. !! 802 tristate "Michael MIC keyed digest algorithm" >> 803 select CRYPTO_HASH >> 804 help >> 805 Michael MIC is used for message integrity protection in TKIP >> 806 (IEEE 802.11i). This algorithm is required for TKIP, but it >> 807 should not be used for other purposes because of the weakness >> 808 of the algorithm. 942 809 943 config CRYPTO_POLY1305 !! 810 config CRYPTO_RMD128 944 tristate "Poly1305" !! 811 tristate "RIPEMD-128 digest algorithm" 945 select CRYPTO_HASH 812 select CRYPTO_HASH 946 select CRYPTO_LIB_POLY1305_GENERIC << 947 help 813 help 948 Poly1305 authenticator algorithm (RF !! 814 RIPEMD-128 (ISO/IEC 10118-3:2004). 949 815 950 Poly1305 is an authenticator algorit !! 816 RIPEMD-128 is a 128-bit cryptographic hash function. It should only 951 It is used for the ChaCha20-Poly1305 !! 817 be used as a secure replacement for RIPEMD. For other use cases, 952 in IETF protocols. This is the porta !! 818 RIPEMD-160 should be used. >> 819 >> 820 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. >> 821 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 953 822 954 config CRYPTO_RMD160 823 config CRYPTO_RMD160 955 tristate "RIPEMD-160" !! 824 tristate "RIPEMD-160 digest algorithm" 956 select CRYPTO_HASH 825 select CRYPTO_HASH 957 help 826 help 958 RIPEMD-160 hash function (ISO/IEC 10 !! 827 RIPEMD-160 (ISO/IEC 10118-3:2004). 959 828 960 RIPEMD-160 is a 160-bit cryptographi 829 RIPEMD-160 is a 160-bit cryptographic hash function. It is intended 961 to be used as a secure replacement f 830 to be used as a secure replacement for the 128-bit hash functions 962 MD4, MD5 and its predecessor RIPEMD !! 831 MD4, MD5 and it's predecessor RIPEMD 963 (not to be confused with RIPEMD-128) 832 (not to be confused with RIPEMD-128). 964 833 965 Its speed is comparable to SHA-1 and !! 834 It's speed is comparable to SHA1 and there are no known attacks 966 against RIPEMD-160. 835 against RIPEMD-160. 967 836 968 Developed by Hans Dobbertin, Antoon 837 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 969 See https://homes.esat.kuleuven.be/~ !! 838 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 970 for further information. !! 839 >> 840 config CRYPTO_RMD256 >> 841 tristate "RIPEMD-256 digest algorithm" >> 842 select CRYPTO_HASH >> 843 help >> 844 RIPEMD-256 is an optional extension of RIPEMD-128 with a >> 845 256 bit hash. It is intended for applications that require >> 846 longer hash-results, without needing a larger security level >> 847 (than RIPEMD-128). >> 848 >> 849 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. >> 850 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> >> 851 >> 852 config CRYPTO_RMD320 >> 853 tristate "RIPEMD-320 digest algorithm" >> 854 select CRYPTO_HASH >> 855 help >> 856 RIPEMD-320 is an optional extension of RIPEMD-160 with a >> 857 320 bit hash. It is intended for applications that require >> 858 longer hash-results, without needing a larger security level >> 859 (than RIPEMD-160). >> 860 >> 861 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. >> 862 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 971 863 972 config CRYPTO_SHA1 864 config CRYPTO_SHA1 973 tristate "SHA-1" !! 865 tristate "SHA1 digest algorithm" >> 866 select CRYPTO_HASH >> 867 help >> 868 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). >> 869 >> 870 config CRYPTO_SHA1_SSSE3 >> 871 tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" >> 872 depends on X86 && 64BIT >> 873 select CRYPTO_SHA1 974 select CRYPTO_HASH 874 select CRYPTO_HASH 975 select CRYPTO_LIB_SHA1 << 976 help 875 help 977 SHA-1 secure hash algorithm (FIPS 18 !! 876 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented >> 877 using Supplemental SSE3 (SSSE3) instructions or Advanced Vector >> 878 Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions), >> 879 when available. >> 880 >> 881 config CRYPTO_SHA256_SSSE3 >> 882 tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" >> 883 depends on X86 && 64BIT >> 884 select CRYPTO_SHA256 >> 885 select CRYPTO_HASH >> 886 help >> 887 SHA-256 secure hash standard (DFIPS 180-2) implemented >> 888 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector >> 889 Extensions version 1 (AVX1), or Advanced Vector Extensions >> 890 version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New >> 891 Instructions) when available. >> 892 >> 893 config CRYPTO_SHA512_SSSE3 >> 894 tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)" >> 895 depends on X86 && 64BIT >> 896 select CRYPTO_SHA512 >> 897 select CRYPTO_HASH >> 898 help >> 899 SHA-512 secure hash standard (DFIPS 180-2) implemented >> 900 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector >> 901 Extensions version 1 (AVX1), or Advanced Vector Extensions >> 902 version 2 (AVX2) instructions, when available. >> 903 >> 904 config CRYPTO_SHA1_OCTEON >> 905 tristate "SHA1 digest algorithm (OCTEON)" >> 906 depends on CPU_CAVIUM_OCTEON >> 907 select CRYPTO_SHA1 >> 908 select CRYPTO_HASH >> 909 help >> 910 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented >> 911 using OCTEON crypto instructions, when available. >> 912 >> 913 config CRYPTO_SHA1_SPARC64 >> 914 tristate "SHA1 digest algorithm (SPARC64)" >> 915 depends on SPARC64 >> 916 select CRYPTO_SHA1 >> 917 select CRYPTO_HASH >> 918 help >> 919 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented >> 920 using sparc64 crypto instructions, when available. >> 921 >> 922 config CRYPTO_SHA1_PPC >> 923 tristate "SHA1 digest algorithm (powerpc)" >> 924 depends on PPC >> 925 help >> 926 This is the powerpc hardware accelerated implementation of the >> 927 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). >> 928 >> 929 config CRYPTO_SHA1_PPC_SPE >> 930 tristate "SHA1 digest algorithm (PPC SPE)" >> 931 depends on PPC && SPE >> 932 help >> 933 SHA-1 secure hash standard (DFIPS 180-4) implemented >> 934 using powerpc SPE SIMD instruction set. 978 935 979 config CRYPTO_SHA256 936 config CRYPTO_SHA256 980 tristate "SHA-224 and SHA-256" !! 937 tristate "SHA224 and SHA256 digest algorithm" 981 select CRYPTO_HASH 938 select CRYPTO_HASH 982 select CRYPTO_LIB_SHA256 939 select CRYPTO_LIB_SHA256 983 help 940 help 984 SHA-224 and SHA-256 secure hash algo !! 941 SHA256 secure hash standard (DFIPS 180-2). >> 942 >> 943 This version of SHA implements a 256 bit hash with 128 bits of >> 944 security against collision attacks. >> 945 >> 946 This code also includes SHA-224, a 224 bit hash with 112 bits >> 947 of security against collision attacks. >> 948 >> 949 config CRYPTO_SHA256_PPC_SPE >> 950 tristate "SHA224 and SHA256 digest algorithm (PPC SPE)" >> 951 depends on PPC && SPE >> 952 select CRYPTO_SHA256 >> 953 select CRYPTO_HASH >> 954 help >> 955 SHA224 and SHA256 secure hash standard (DFIPS 180-2) >> 956 implemented using powerpc SPE SIMD instruction set. 985 957 986 This is required for IPsec AH (XFRM_ !! 958 config CRYPTO_SHA256_OCTEON 987 Used by the btrfs filesystem, Ceph, !! 959 tristate "SHA224 and SHA256 digest algorithm (OCTEON)" >> 960 depends on CPU_CAVIUM_OCTEON >> 961 select CRYPTO_SHA256 >> 962 select CRYPTO_HASH >> 963 help >> 964 SHA-256 secure hash standard (DFIPS 180-2) implemented >> 965 using OCTEON crypto instructions, when available. >> 966 >> 967 config CRYPTO_SHA256_SPARC64 >> 968 tristate "SHA224 and SHA256 digest algorithm (SPARC64)" >> 969 depends on SPARC64 >> 970 select CRYPTO_SHA256 >> 971 select CRYPTO_HASH >> 972 help >> 973 SHA-256 secure hash standard (DFIPS 180-2) implemented >> 974 using sparc64 crypto instructions, when available. 988 975 989 config CRYPTO_SHA512 976 config CRYPTO_SHA512 990 tristate "SHA-384 and SHA-512" !! 977 tristate "SHA384 and SHA512 digest algorithms" 991 select CRYPTO_HASH 978 select CRYPTO_HASH 992 help 979 help 993 SHA-384 and SHA-512 secure hash algo !! 980 SHA512 secure hash standard (DFIPS 180-2). 994 981 995 config CRYPTO_SHA3 !! 982 This version of SHA implements a 512 bit hash with 256 bits of 996 tristate "SHA-3" !! 983 security against collision attacks. >> 984 >> 985 This code also includes SHA-384, a 384 bit hash with 192 bits >> 986 of security against collision attacks. >> 987 >> 988 config CRYPTO_SHA512_OCTEON >> 989 tristate "SHA384 and SHA512 digest algorithms (OCTEON)" >> 990 depends on CPU_CAVIUM_OCTEON >> 991 select CRYPTO_SHA512 997 select CRYPTO_HASH 992 select CRYPTO_HASH 998 help 993 help 999 SHA-3 secure hash algorithms (FIPS 2 !! 994 SHA-512 secure hash standard (DFIPS 180-2) implemented >> 995 using OCTEON crypto instructions, when available. 1000 996 1001 config CRYPTO_SM3 !! 997 config CRYPTO_SHA512_SPARC64 1002 tristate !! 998 tristate "SHA384 and SHA512 digest algorithm (SPARC64)" >> 999 depends on SPARC64 >> 1000 select CRYPTO_SHA512 >> 1001 select CRYPTO_HASH >> 1002 help >> 1003 SHA-512 secure hash standard (DFIPS 180-2) implemented >> 1004 using sparc64 crypto instructions, when available. 1003 1005 1004 config CRYPTO_SM3_GENERIC !! 1006 config CRYPTO_SHA3 1005 tristate "SM3 (ShangMi 3)" !! 1007 tristate "SHA3 digest algorithm" 1006 select CRYPTO_HASH 1008 select CRYPTO_HASH 1007 select CRYPTO_SM3 << 1008 help 1009 help 1009 SM3 (ShangMi 3) secure hash functio !! 1010 SHA-3 secure hash standard (DFIPS 202). It's based on >> 1011 cryptographic sponge function family called Keccak. 1010 1012 1011 This is part of the Chinese Commerc !! 1013 References: >> 1014 http://keccak.noekeon.org/ >> 1015 >> 1016 config CRYPTO_SM3 >> 1017 tristate "SM3 digest algorithm" >> 1018 select CRYPTO_HASH >> 1019 help >> 1020 SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3). >> 1021 It is part of the Chinese Commercial Cryptography suite. 1012 1022 1013 References: 1023 References: 1014 http://www.oscca.gov.cn/UpFile/2010 1024 http://www.oscca.gov.cn/UpFile/20101222141857786.pdf 1015 https://datatracker.ietf.org/doc/ht 1025 https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash 1016 1026 1017 config CRYPTO_STREEBOG 1027 config CRYPTO_STREEBOG 1018 tristate "Streebog" !! 1028 tristate "Streebog Hash Function" 1019 select CRYPTO_HASH 1029 select CRYPTO_HASH 1020 help 1030 help 1021 Streebog Hash Function (GOST R 34.1 !! 1031 Streebog Hash Function (GOST R 34.11-2012, RFC 6986) is one of the Russian 1022 !! 1032 cryptographic standard algorithms (called GOST algorithms). 1023 This is one of the Russian cryptogr !! 1033 This setting enables two hash algorithms with 256 and 512 bits output. 1024 GOST algorithms). This setting enab << 1025 256 and 512 bits output. << 1026 1034 1027 References: 1035 References: 1028 https://tc26.ru/upload/iblock/fed/f 1036 https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf 1029 https://tools.ietf.org/html/rfc6986 1037 https://tools.ietf.org/html/rfc6986 1030 1038 1031 config CRYPTO_VMAC !! 1039 config CRYPTO_TGR192 1032 tristate "VMAC" !! 1040 tristate "Tiger digest algorithms" 1033 select CRYPTO_HASH 1041 select CRYPTO_HASH 1034 select CRYPTO_MANAGER << 1035 help 1042 help 1036 VMAC is a message authentication al !! 1043 Tiger hash algorithm 192, 160 and 128-bit hashes 1037 very high speed on 64-bit architect << 1038 1044 1039 See https://fastcrypto.org/vmac for !! 1045 Tiger is a hash function optimized for 64-bit processors while >> 1046 still having decent performance on 32-bit processors. >> 1047 Tiger was developed by Ross Anderson and Eli Biham. >> 1048 >> 1049 See also: >> 1050 <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>. 1040 1051 1041 config CRYPTO_WP512 1052 config CRYPTO_WP512 1042 tristate "Whirlpool" !! 1053 tristate "Whirlpool digest algorithms" 1043 select CRYPTO_HASH 1054 select CRYPTO_HASH 1044 help 1055 help 1045 Whirlpool hash function (ISO/IEC 10 !! 1056 Whirlpool hash algorithm 512, 384 and 256-bit hashes 1046 << 1047 512, 384 and 256-bit hashes. << 1048 1057 1049 Whirlpool-512 is part of the NESSIE 1058 Whirlpool-512 is part of the NESSIE cryptographic primitives. >> 1059 Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard 1050 1060 1051 See https://web.archive.org/web/201 !! 1061 See also: 1052 for further information. !! 1062 <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html> 1053 1063 1054 config CRYPTO_XCBC !! 1064 config CRYPTO_GHASH_CLMUL_NI_INTEL 1055 tristate "XCBC-MAC (Extended Cipher B !! 1065 tristate "GHASH hash function (CLMUL-NI accelerated)" 1056 select CRYPTO_HASH !! 1066 depends on X86 && 64BIT 1057 select CRYPTO_MANAGER !! 1067 select CRYPTO_CRYPTD 1058 help 1068 help 1059 XCBC-MAC (Extended Cipher Block Cha !! 1069 This is the x86_64 CLMUL-NI accelerated implementation of 1060 Code) (RFC3566) !! 1070 GHASH, the hash function used in GCM (Galois/Counter mode). 1061 1071 1062 config CRYPTO_XXHASH !! 1072 comment "Ciphers" 1063 tristate "xxHash" !! 1073 1064 select CRYPTO_HASH !! 1074 config CRYPTO_AES 1065 select XXHASH !! 1075 tristate "AES cipher algorithms" >> 1076 select CRYPTO_ALGAPI >> 1077 select CRYPTO_LIB_AES 1066 help 1078 help 1067 xxHash non-cryptographic hash algor !! 1079 AES cipher algorithms (FIPS-197). AES uses the Rijndael >> 1080 algorithm. 1068 1081 1069 Extremely fast, working at speeds c !! 1082 Rijndael appears to be consistently a very good performer in >> 1083 both hardware and software across a wide range of computing >> 1084 environments regardless of its use in feedback or non-feedback >> 1085 modes. Its key setup time is excellent, and its key agility is >> 1086 good. Rijndael's very low memory requirements make it very well >> 1087 suited for restricted-space environments, in which it also >> 1088 demonstrates excellent performance. Rijndael's operations are >> 1089 among the easiest to defend against power and timing attacks. 1070 1090 1071 Used by the btrfs filesystem. !! 1091 The AES specifies three key sizes: 128, 192 and 256 bits 1072 1092 1073 endmenu !! 1093 See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information. 1074 1094 1075 menu "CRCs (cyclic redundancy checks)" !! 1095 config CRYPTO_AES_TI >> 1096 tristate "Fixed time AES cipher" >> 1097 select CRYPTO_ALGAPI >> 1098 select CRYPTO_LIB_AES >> 1099 help >> 1100 This is a generic implementation of AES that attempts to eliminate >> 1101 data dependent latencies as much as possible without affecting >> 1102 performance too much. It is intended for use by the generic CCM >> 1103 and GCM drivers, and other CTR or CMAC/XCBC based modes that rely >> 1104 solely on encryption (although decryption is supported as well, but >> 1105 with a more dramatic performance hit) 1076 1106 1077 config CRYPTO_CRC32C !! 1107 Instead of using 16 lookup tables of 1 KB each, (8 for encryption and 1078 tristate "CRC32c" !! 1108 8 for decryption), this implementation only uses just two S-boxes of 1079 select CRYPTO_HASH !! 1109 256 bytes each, and attempts to eliminate data dependent latencies by 1080 select CRC32 !! 1110 prefetching the entire table into the cache at the start of each >> 1111 block. Interrupts are also disabled to avoid races where cachelines >> 1112 are evicted when the CPU is interrupted to do something else. >> 1113 >> 1114 config CRYPTO_AES_NI_INTEL >> 1115 tristate "AES cipher algorithms (AES-NI)" >> 1116 depends on X86 >> 1117 select CRYPTO_AEAD >> 1118 select CRYPTO_LIB_AES >> 1119 select CRYPTO_ALGAPI >> 1120 select CRYPTO_SKCIPHER >> 1121 select CRYPTO_GLUE_HELPER_X86 if 64BIT >> 1122 select CRYPTO_SIMD 1081 help 1123 help 1082 CRC32c CRC algorithm with the iSCSI !! 1124 Use Intel AES-NI instructions for AES algorithm. 1083 1125 1084 A 32-bit CRC (cyclic redundancy che !! 1126 AES cipher algorithms (FIPS-197). AES uses the Rijndael 1085 by G. Castagnoli, S. Braeuer and M. !! 1127 algorithm. 1086 Redundancy-Check Codes with 24 and << 1087 on Communications, Vol. 41, No. 6, << 1088 iSCSI. << 1089 1128 1090 Used by btrfs, ext4, jbd2, NVMeoF/T !! 1129 Rijndael appears to be consistently a very good performer in >> 1130 both hardware and software across a wide range of computing >> 1131 environments regardless of its use in feedback or non-feedback >> 1132 modes. Its key setup time is excellent, and its key agility is >> 1133 good. Rijndael's very low memory requirements make it very well >> 1134 suited for restricted-space environments, in which it also >> 1135 demonstrates excellent performance. Rijndael's operations are >> 1136 among the easiest to defend against power and timing attacks. 1091 1137 1092 config CRYPTO_CRC32 !! 1138 The AES specifies three key sizes: 128, 192 and 256 bits 1093 tristate "CRC32" !! 1139 1094 select CRYPTO_HASH !! 1140 See <http://csrc.nist.gov/encryption/aes/> for more information. 1095 select CRC32 !! 1141 >> 1142 In addition to AES cipher algorithm support, the acceleration >> 1143 for some popular block cipher mode is supported too, including >> 1144 ECB, CBC, LRW, XTS. The 64 bit version has additional >> 1145 acceleration for CTR. >> 1146 >> 1147 config CRYPTO_AES_SPARC64 >> 1148 tristate "AES cipher algorithms (SPARC64)" >> 1149 depends on SPARC64 >> 1150 select CRYPTO_SKCIPHER 1096 help 1151 help 1097 CRC32 CRC algorithm (IEEE 802.3) !! 1152 Use SPARC64 crypto opcodes for AES algorithm. 1098 1153 1099 Used by RoCEv2 and f2fs. !! 1154 AES cipher algorithms (FIPS-197). AES uses the Rijndael >> 1155 algorithm. 1100 1156 1101 config CRYPTO_CRCT10DIF !! 1157 Rijndael appears to be consistently a very good performer in 1102 tristate "CRCT10DIF" !! 1158 both hardware and software across a wide range of computing 1103 select CRYPTO_HASH !! 1159 environments regardless of its use in feedback or non-feedback >> 1160 modes. Its key setup time is excellent, and its key agility is >> 1161 good. Rijndael's very low memory requirements make it very well >> 1162 suited for restricted-space environments, in which it also >> 1163 demonstrates excellent performance. Rijndael's operations are >> 1164 among the easiest to defend against power and timing attacks. >> 1165 >> 1166 The AES specifies three key sizes: 128, 192 and 256 bits >> 1167 >> 1168 See <http://csrc.nist.gov/encryption/aes/> for more information. >> 1169 >> 1170 In addition to AES cipher algorithm support, the acceleration >> 1171 for some popular block cipher mode is supported too, including >> 1172 ECB and CBC. >> 1173 >> 1174 config CRYPTO_AES_PPC_SPE >> 1175 tristate "AES cipher algorithms (PPC SPE)" >> 1176 depends on PPC && SPE >> 1177 select CRYPTO_SKCIPHER 1104 help 1178 help 1105 CRC16 CRC algorithm used for the T1 !! 1179 AES cipher algorithms (FIPS-197). Additionally the acceleration >> 1180 for popular block cipher modes ECB, CBC, CTR and XTS is supported. >> 1181 This module should only be used for low power (router) devices >> 1182 without hardware AES acceleration (e.g. caam crypto). It reduces the >> 1183 size of the AES tables from 16KB to 8KB + 256 bytes and mitigates >> 1184 timining attacks. Nevertheless it might be not as secure as other >> 1185 architecture specific assembler implementations that work on 1KB >> 1186 tables or 256 bytes S-boxes. 1106 1187 1107 CRC algorithm used by the SCSI Bloc !! 1188 config CRYPTO_ANUBIS >> 1189 tristate "Anubis cipher algorithm" >> 1190 select CRYPTO_ALGAPI >> 1191 help >> 1192 Anubis cipher algorithm. 1108 1193 1109 config CRYPTO_CRC64_ROCKSOFT !! 1194 Anubis is a variable key length cipher which can use keys from 1110 tristate "CRC64 based on Rocksoft Mod !! 1195 128 bits to 320 bits in length. It was evaluated as a entrant 1111 depends on CRC64 !! 1196 in the NESSIE competition. 1112 select CRYPTO_HASH !! 1197 >> 1198 See also: >> 1199 <https://www.cosic.esat.kuleuven.be/nessie/reports/> >> 1200 <http://www.larc.usp.br/~pbarreto/AnubisPage.html> >> 1201 >> 1202 config CRYPTO_ARC4 >> 1203 tristate "ARC4 cipher algorithm" >> 1204 select CRYPTO_SKCIPHER >> 1205 select CRYPTO_LIB_ARC4 >> 1206 help >> 1207 ARC4 cipher algorithm. >> 1208 >> 1209 ARC4 is a stream cipher using keys ranging from 8 bits to 2048 >> 1210 bits in length. This algorithm is required for driver-based >> 1211 WEP, but it should not be for other purposes because of the >> 1212 weakness of the algorithm. >> 1213 >> 1214 config CRYPTO_BLOWFISH >> 1215 tristate "Blowfish cipher algorithm" >> 1216 select CRYPTO_ALGAPI >> 1217 select CRYPTO_BLOWFISH_COMMON >> 1218 help >> 1219 Blowfish cipher algorithm, by Bruce Schneier. >> 1220 >> 1221 This is a variable key length cipher which can use keys from 32 >> 1222 bits to 448 bits in length. It's fast, simple and specifically >> 1223 designed for use on "large microprocessors". >> 1224 >> 1225 See also: >> 1226 <http://www.schneier.com/blowfish.html> >> 1227 >> 1228 config CRYPTO_BLOWFISH_COMMON >> 1229 tristate >> 1230 help >> 1231 Common parts of the Blowfish cipher algorithm shared by the >> 1232 generic c and the assembler implementations. >> 1233 >> 1234 See also: >> 1235 <http://www.schneier.com/blowfish.html> >> 1236 >> 1237 config CRYPTO_BLOWFISH_X86_64 >> 1238 tristate "Blowfish cipher algorithm (x86_64)" >> 1239 depends on X86 && 64BIT >> 1240 select CRYPTO_SKCIPHER >> 1241 select CRYPTO_BLOWFISH_COMMON >> 1242 help >> 1243 Blowfish cipher algorithm (x86_64), by Bruce Schneier. >> 1244 >> 1245 This is a variable key length cipher which can use keys from 32 >> 1246 bits to 448 bits in length. It's fast, simple and specifically >> 1247 designed for use on "large microprocessors". >> 1248 >> 1249 See also: >> 1250 <http://www.schneier.com/blowfish.html> >> 1251 >> 1252 config CRYPTO_CAMELLIA >> 1253 tristate "Camellia cipher algorithms" >> 1254 depends on CRYPTO >> 1255 select CRYPTO_ALGAPI 1113 help 1256 help 1114 CRC64 CRC algorithm based on the Ro !! 1257 Camellia cipher algorithms module. >> 1258 >> 1259 Camellia is a symmetric key block cipher developed jointly >> 1260 at NTT and Mitsubishi Electric Corporation. 1115 1261 1116 Used by the NVMe implementation of !! 1262 The Camellia specifies three key sizes: 128, 192 and 256 bits. >> 1263 >> 1264 See also: >> 1265 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> >> 1266 >> 1267 config CRYPTO_CAMELLIA_X86_64 >> 1268 tristate "Camellia cipher algorithm (x86_64)" >> 1269 depends on X86 && 64BIT >> 1270 depends on CRYPTO >> 1271 select CRYPTO_SKCIPHER >> 1272 select CRYPTO_GLUE_HELPER_X86 >> 1273 help >> 1274 Camellia cipher algorithm module (x86_64). 1117 1275 1118 See https://zlib.net/crc_v3.txt !! 1276 Camellia is a symmetric key block cipher developed jointly >> 1277 at NTT and Mitsubishi Electric Corporation. 1119 1278 1120 endmenu !! 1279 The Camellia specifies three key sizes: 128, 192 and 256 bits. 1121 1280 1122 menu "Compression" !! 1281 See also: >> 1282 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> >> 1283 >> 1284 config CRYPTO_CAMELLIA_AESNI_AVX_X86_64 >> 1285 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)" >> 1286 depends on X86 && 64BIT >> 1287 depends on CRYPTO >> 1288 select CRYPTO_SKCIPHER >> 1289 select CRYPTO_CAMELLIA_X86_64 >> 1290 select CRYPTO_GLUE_HELPER_X86 >> 1291 select CRYPTO_SIMD >> 1292 select CRYPTO_XTS >> 1293 help >> 1294 Camellia cipher algorithm module (x86_64/AES-NI/AVX). >> 1295 >> 1296 Camellia is a symmetric key block cipher developed jointly >> 1297 at NTT and Mitsubishi Electric Corporation. >> 1298 >> 1299 The Camellia specifies three key sizes: 128, 192 and 256 bits. >> 1300 >> 1301 See also: >> 1302 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> >> 1303 >> 1304 config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64 >> 1305 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)" >> 1306 depends on X86 && 64BIT >> 1307 depends on CRYPTO >> 1308 select CRYPTO_CAMELLIA_AESNI_AVX_X86_64 >> 1309 help >> 1310 Camellia cipher algorithm module (x86_64/AES-NI/AVX2). >> 1311 >> 1312 Camellia is a symmetric key block cipher developed jointly >> 1313 at NTT and Mitsubishi Electric Corporation. >> 1314 >> 1315 The Camellia specifies three key sizes: 128, 192 and 256 bits. >> 1316 >> 1317 See also: >> 1318 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> >> 1319 >> 1320 config CRYPTO_CAMELLIA_SPARC64 >> 1321 tristate "Camellia cipher algorithm (SPARC64)" >> 1322 depends on SPARC64 >> 1323 depends on CRYPTO >> 1324 select CRYPTO_ALGAPI >> 1325 select CRYPTO_SKCIPHER >> 1326 help >> 1327 Camellia cipher algorithm module (SPARC64). >> 1328 >> 1329 Camellia is a symmetric key block cipher developed jointly >> 1330 at NTT and Mitsubishi Electric Corporation. >> 1331 >> 1332 The Camellia specifies three key sizes: 128, 192 and 256 bits. >> 1333 >> 1334 See also: >> 1335 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> >> 1336 >> 1337 config CRYPTO_CAST_COMMON >> 1338 tristate >> 1339 help >> 1340 Common parts of the CAST cipher algorithms shared by the >> 1341 generic c and the assembler implementations. >> 1342 >> 1343 config CRYPTO_CAST5 >> 1344 tristate "CAST5 (CAST-128) cipher algorithm" >> 1345 select CRYPTO_ALGAPI >> 1346 select CRYPTO_CAST_COMMON >> 1347 help >> 1348 The CAST5 encryption algorithm (synonymous with CAST-128) is >> 1349 described in RFC2144. >> 1350 >> 1351 config CRYPTO_CAST5_AVX_X86_64 >> 1352 tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)" >> 1353 depends on X86 && 64BIT >> 1354 select CRYPTO_SKCIPHER >> 1355 select CRYPTO_CAST5 >> 1356 select CRYPTO_CAST_COMMON >> 1357 select CRYPTO_SIMD >> 1358 help >> 1359 The CAST5 encryption algorithm (synonymous with CAST-128) is >> 1360 described in RFC2144. >> 1361 >> 1362 This module provides the Cast5 cipher algorithm that processes >> 1363 sixteen blocks parallel using the AVX instruction set. >> 1364 >> 1365 config CRYPTO_CAST6 >> 1366 tristate "CAST6 (CAST-256) cipher algorithm" >> 1367 select CRYPTO_ALGAPI >> 1368 select CRYPTO_CAST_COMMON >> 1369 help >> 1370 The CAST6 encryption algorithm (synonymous with CAST-256) is >> 1371 described in RFC2612. >> 1372 >> 1373 config CRYPTO_CAST6_AVX_X86_64 >> 1374 tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)" >> 1375 depends on X86 && 64BIT >> 1376 select CRYPTO_SKCIPHER >> 1377 select CRYPTO_CAST6 >> 1378 select CRYPTO_CAST_COMMON >> 1379 select CRYPTO_GLUE_HELPER_X86 >> 1380 select CRYPTO_SIMD >> 1381 select CRYPTO_XTS >> 1382 help >> 1383 The CAST6 encryption algorithm (synonymous with CAST-256) is >> 1384 described in RFC2612. >> 1385 >> 1386 This module provides the Cast6 cipher algorithm that processes >> 1387 eight blocks parallel using the AVX instruction set. >> 1388 >> 1389 config CRYPTO_DES >> 1390 tristate "DES and Triple DES EDE cipher algorithms" >> 1391 select CRYPTO_ALGAPI >> 1392 select CRYPTO_LIB_DES >> 1393 help >> 1394 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3). >> 1395 >> 1396 config CRYPTO_DES_SPARC64 >> 1397 tristate "DES and Triple DES EDE cipher algorithms (SPARC64)" >> 1398 depends on SPARC64 >> 1399 select CRYPTO_ALGAPI >> 1400 select CRYPTO_LIB_DES >> 1401 select CRYPTO_SKCIPHER >> 1402 help >> 1403 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3), >> 1404 optimized using SPARC64 crypto opcodes. >> 1405 >> 1406 config CRYPTO_DES3_EDE_X86_64 >> 1407 tristate "Triple DES EDE cipher algorithm (x86-64)" >> 1408 depends on X86 && 64BIT >> 1409 select CRYPTO_SKCIPHER >> 1410 select CRYPTO_LIB_DES >> 1411 help >> 1412 Triple DES EDE (FIPS 46-3) algorithm. >> 1413 >> 1414 This module provides implementation of the Triple DES EDE cipher >> 1415 algorithm that is optimized for x86-64 processors. Two versions of >> 1416 algorithm are provided; regular processing one input block and >> 1417 one that processes three blocks parallel. >> 1418 >> 1419 config CRYPTO_FCRYPT >> 1420 tristate "FCrypt cipher algorithm" >> 1421 select CRYPTO_ALGAPI >> 1422 select CRYPTO_SKCIPHER >> 1423 help >> 1424 FCrypt algorithm used by RxRPC. >> 1425 >> 1426 config CRYPTO_KHAZAD >> 1427 tristate "Khazad cipher algorithm" >> 1428 select CRYPTO_ALGAPI >> 1429 help >> 1430 Khazad cipher algorithm. >> 1431 >> 1432 Khazad was a finalist in the initial NESSIE competition. It is >> 1433 an algorithm optimized for 64-bit processors with good performance >> 1434 on 32-bit processors. Khazad uses an 128 bit key size. >> 1435 >> 1436 See also: >> 1437 <http://www.larc.usp.br/~pbarreto/KhazadPage.html> >> 1438 >> 1439 config CRYPTO_SALSA20 >> 1440 tristate "Salsa20 stream cipher algorithm" >> 1441 select CRYPTO_SKCIPHER >> 1442 help >> 1443 Salsa20 stream cipher algorithm. >> 1444 >> 1445 Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT >> 1446 Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/> >> 1447 >> 1448 The Salsa20 stream cipher algorithm is designed by Daniel J. >> 1449 Bernstein <http://cr.yp.to/snuffle.html">djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html> >> 1450 >> 1451 config CRYPTO_CHACHA20 >> 1452 tristate "ChaCha stream cipher algorithms" >> 1453 select CRYPTO_LIB_CHACHA_GENERIC >> 1454 select CRYPTO_SKCIPHER >> 1455 help >> 1456 The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms. >> 1457 >> 1458 ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J. >> 1459 Bernstein and further specified in RFC7539 for use in IETF protocols. >> 1460 This is the portable C implementation of ChaCha20. See also: >> 1461 <http://cr.yp.to/chacha/chacha-20080128.pdf> >> 1462 >> 1463 XChaCha20 is the application of the XSalsa20 construction to ChaCha20 >> 1464 rather than to Salsa20. XChaCha20 extends ChaCha20's nonce length >> 1465 from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits, >> 1466 while provably retaining ChaCha20's security. See also: >> 1467 <https://cr.yp.to/snuffle/xsalsa-20081128.pdf> >> 1468 >> 1469 XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly >> 1470 reduced security margin but increased performance. It can be needed >> 1471 in some performance-sensitive scenarios. >> 1472 >> 1473 config CRYPTO_CHACHA20_X86_64 >> 1474 tristate "ChaCha stream cipher algorithms (x86_64/SSSE3/AVX2/AVX-512VL)" >> 1475 depends on X86 && 64BIT >> 1476 select CRYPTO_SKCIPHER >> 1477 select CRYPTO_LIB_CHACHA_GENERIC >> 1478 select CRYPTO_ARCH_HAVE_LIB_CHACHA >> 1479 help >> 1480 SSSE3, AVX2, and AVX-512VL optimized implementations of the ChaCha20, >> 1481 XChaCha20, and XChaCha12 stream ciphers. >> 1482 >> 1483 config CRYPTO_CHACHA_MIPS >> 1484 tristate "ChaCha stream cipher algorithms (MIPS 32r2 optimized)" >> 1485 depends on CPU_MIPS32_R2 >> 1486 select CRYPTO_SKCIPHER >> 1487 select CRYPTO_ARCH_HAVE_LIB_CHACHA >> 1488 >> 1489 config CRYPTO_SEED >> 1490 tristate "SEED cipher algorithm" >> 1491 select CRYPTO_ALGAPI >> 1492 help >> 1493 SEED cipher algorithm (RFC4269). >> 1494 >> 1495 SEED is a 128-bit symmetric key block cipher that has been >> 1496 developed by KISA (Korea Information Security Agency) as a >> 1497 national standard encryption algorithm of the Republic of Korea. >> 1498 It is a 16 round block cipher with the key size of 128 bit. >> 1499 >> 1500 See also: >> 1501 <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp> >> 1502 >> 1503 config CRYPTO_SERPENT >> 1504 tristate "Serpent cipher algorithm" >> 1505 select CRYPTO_ALGAPI >> 1506 help >> 1507 Serpent cipher algorithm, by Anderson, Biham & Knudsen. >> 1508 >> 1509 Keys are allowed to be from 0 to 256 bits in length, in steps >> 1510 of 8 bits. Also includes the 'Tnepres' algorithm, a reversed >> 1511 variant of Serpent for compatibility with old kerneli.org code. >> 1512 >> 1513 See also: >> 1514 <http://www.cl.cam.ac.uk/~rja14/serpent.html> >> 1515 >> 1516 config CRYPTO_SERPENT_SSE2_X86_64 >> 1517 tristate "Serpent cipher algorithm (x86_64/SSE2)" >> 1518 depends on X86 && 64BIT >> 1519 select CRYPTO_SKCIPHER >> 1520 select CRYPTO_GLUE_HELPER_X86 >> 1521 select CRYPTO_SERPENT >> 1522 select CRYPTO_SIMD >> 1523 help >> 1524 Serpent cipher algorithm, by Anderson, Biham & Knudsen. >> 1525 >> 1526 Keys are allowed to be from 0 to 256 bits in length, in steps >> 1527 of 8 bits. >> 1528 >> 1529 This module provides Serpent cipher algorithm that processes eight >> 1530 blocks parallel using SSE2 instruction set. >> 1531 >> 1532 See also: >> 1533 <http://www.cl.cam.ac.uk/~rja14/serpent.html> >> 1534 >> 1535 config CRYPTO_SERPENT_SSE2_586 >> 1536 tristate "Serpent cipher algorithm (i586/SSE2)" >> 1537 depends on X86 && !64BIT >> 1538 select CRYPTO_SKCIPHER >> 1539 select CRYPTO_GLUE_HELPER_X86 >> 1540 select CRYPTO_SERPENT >> 1541 select CRYPTO_SIMD >> 1542 help >> 1543 Serpent cipher algorithm, by Anderson, Biham & Knudsen. >> 1544 >> 1545 Keys are allowed to be from 0 to 256 bits in length, in steps >> 1546 of 8 bits. >> 1547 >> 1548 This module provides Serpent cipher algorithm that processes four >> 1549 blocks parallel using SSE2 instruction set. >> 1550 >> 1551 See also: >> 1552 <http://www.cl.cam.ac.uk/~rja14/serpent.html> >> 1553 >> 1554 config CRYPTO_SERPENT_AVX_X86_64 >> 1555 tristate "Serpent cipher algorithm (x86_64/AVX)" >> 1556 depends on X86 && 64BIT >> 1557 select CRYPTO_SKCIPHER >> 1558 select CRYPTO_GLUE_HELPER_X86 >> 1559 select CRYPTO_SERPENT >> 1560 select CRYPTO_SIMD >> 1561 select CRYPTO_XTS >> 1562 help >> 1563 Serpent cipher algorithm, by Anderson, Biham & Knudsen. >> 1564 >> 1565 Keys are allowed to be from 0 to 256 bits in length, in steps >> 1566 of 8 bits. >> 1567 >> 1568 This module provides the Serpent cipher algorithm that processes >> 1569 eight blocks parallel using the AVX instruction set. >> 1570 >> 1571 See also: >> 1572 <http://www.cl.cam.ac.uk/~rja14/serpent.html> >> 1573 >> 1574 config CRYPTO_SERPENT_AVX2_X86_64 >> 1575 tristate "Serpent cipher algorithm (x86_64/AVX2)" >> 1576 depends on X86 && 64BIT >> 1577 select CRYPTO_SERPENT_AVX_X86_64 >> 1578 help >> 1579 Serpent cipher algorithm, by Anderson, Biham & Knudsen. >> 1580 >> 1581 Keys are allowed to be from 0 to 256 bits in length, in steps >> 1582 of 8 bits. >> 1583 >> 1584 This module provides Serpent cipher algorithm that processes 16 >> 1585 blocks parallel using AVX2 instruction set. >> 1586 >> 1587 See also: >> 1588 <http://www.cl.cam.ac.uk/~rja14/serpent.html> >> 1589 >> 1590 config CRYPTO_SM4 >> 1591 tristate "SM4 cipher algorithm" >> 1592 select CRYPTO_ALGAPI >> 1593 help >> 1594 SM4 cipher algorithms (OSCCA GB/T 32907-2016). >> 1595 >> 1596 SM4 (GBT.32907-2016) is a cryptographic standard issued by the >> 1597 Organization of State Commercial Administration of China (OSCCA) >> 1598 as an authorized cryptographic algorithms for the use within China. >> 1599 >> 1600 SMS4 was originally created for use in protecting wireless >> 1601 networks, and is mandated in the Chinese National Standard for >> 1602 Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure) >> 1603 (GB.15629.11-2003). >> 1604 >> 1605 The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and >> 1606 standardized through TC 260 of the Standardization Administration >> 1607 of the People's Republic of China (SAC). >> 1608 >> 1609 The input, output, and key of SMS4 are each 128 bits. >> 1610 >> 1611 See also: <https://eprint.iacr.org/2008/329.pdf> >> 1612 >> 1613 If unsure, say N. >> 1614 >> 1615 config CRYPTO_TEA >> 1616 tristate "TEA, XTEA and XETA cipher algorithms" >> 1617 select CRYPTO_ALGAPI >> 1618 help >> 1619 TEA cipher algorithm. >> 1620 >> 1621 Tiny Encryption Algorithm is a simple cipher that uses >> 1622 many rounds for security. It is very fast and uses >> 1623 little memory. >> 1624 >> 1625 Xtendend Tiny Encryption Algorithm is a modification to >> 1626 the TEA algorithm to address a potential key weakness >> 1627 in the TEA algorithm. >> 1628 >> 1629 Xtendend Encryption Tiny Algorithm is a mis-implementation >> 1630 of the XTEA algorithm for compatibility purposes. >> 1631 >> 1632 config CRYPTO_TWOFISH >> 1633 tristate "Twofish cipher algorithm" >> 1634 select CRYPTO_ALGAPI >> 1635 select CRYPTO_TWOFISH_COMMON >> 1636 help >> 1637 Twofish cipher algorithm. >> 1638 >> 1639 Twofish was submitted as an AES (Advanced Encryption Standard) >> 1640 candidate cipher by researchers at CounterPane Systems. It is a >> 1641 16 round block cipher supporting key sizes of 128, 192, and 256 >> 1642 bits. >> 1643 >> 1644 See also: >> 1645 <http://www.schneier.com/twofish.html> >> 1646 >> 1647 config CRYPTO_TWOFISH_COMMON >> 1648 tristate >> 1649 help >> 1650 Common parts of the Twofish cipher algorithm shared by the >> 1651 generic c and the assembler implementations. >> 1652 >> 1653 config CRYPTO_TWOFISH_586 >> 1654 tristate "Twofish cipher algorithms (i586)" >> 1655 depends on (X86 || UML_X86) && !64BIT >> 1656 select CRYPTO_ALGAPI >> 1657 select CRYPTO_TWOFISH_COMMON >> 1658 help >> 1659 Twofish cipher algorithm. >> 1660 >> 1661 Twofish was submitted as an AES (Advanced Encryption Standard) >> 1662 candidate cipher by researchers at CounterPane Systems. It is a >> 1663 16 round block cipher supporting key sizes of 128, 192, and 256 >> 1664 bits. >> 1665 >> 1666 See also: >> 1667 <http://www.schneier.com/twofish.html> >> 1668 >> 1669 config CRYPTO_TWOFISH_X86_64 >> 1670 tristate "Twofish cipher algorithm (x86_64)" >> 1671 depends on (X86 || UML_X86) && 64BIT >> 1672 select CRYPTO_ALGAPI >> 1673 select CRYPTO_TWOFISH_COMMON >> 1674 help >> 1675 Twofish cipher algorithm (x86_64). >> 1676 >> 1677 Twofish was submitted as an AES (Advanced Encryption Standard) >> 1678 candidate cipher by researchers at CounterPane Systems. It is a >> 1679 16 round block cipher supporting key sizes of 128, 192, and 256 >> 1680 bits. >> 1681 >> 1682 See also: >> 1683 <http://www.schneier.com/twofish.html> >> 1684 >> 1685 config CRYPTO_TWOFISH_X86_64_3WAY >> 1686 tristate "Twofish cipher algorithm (x86_64, 3-way parallel)" >> 1687 depends on X86 && 64BIT >> 1688 select CRYPTO_SKCIPHER >> 1689 select CRYPTO_TWOFISH_COMMON >> 1690 select CRYPTO_TWOFISH_X86_64 >> 1691 select CRYPTO_GLUE_HELPER_X86 >> 1692 help >> 1693 Twofish cipher algorithm (x86_64, 3-way parallel). >> 1694 >> 1695 Twofish was submitted as an AES (Advanced Encryption Standard) >> 1696 candidate cipher by researchers at CounterPane Systems. It is a >> 1697 16 round block cipher supporting key sizes of 128, 192, and 256 >> 1698 bits. >> 1699 >> 1700 This module provides Twofish cipher algorithm that processes three >> 1701 blocks parallel, utilizing resources of out-of-order CPUs better. >> 1702 >> 1703 See also: >> 1704 <http://www.schneier.com/twofish.html> >> 1705 >> 1706 config CRYPTO_TWOFISH_AVX_X86_64 >> 1707 tristate "Twofish cipher algorithm (x86_64/AVX)" >> 1708 depends on X86 && 64BIT >> 1709 select CRYPTO_SKCIPHER >> 1710 select CRYPTO_GLUE_HELPER_X86 >> 1711 select CRYPTO_SIMD >> 1712 select CRYPTO_TWOFISH_COMMON >> 1713 select CRYPTO_TWOFISH_X86_64 >> 1714 select CRYPTO_TWOFISH_X86_64_3WAY >> 1715 help >> 1716 Twofish cipher algorithm (x86_64/AVX). >> 1717 >> 1718 Twofish was submitted as an AES (Advanced Encryption Standard) >> 1719 candidate cipher by researchers at CounterPane Systems. It is a >> 1720 16 round block cipher supporting key sizes of 128, 192, and 256 >> 1721 bits. >> 1722 >> 1723 This module provides the Twofish cipher algorithm that processes >> 1724 eight blocks parallel using the AVX Instruction Set. >> 1725 >> 1726 See also: >> 1727 <http://www.schneier.com/twofish.html> >> 1728 >> 1729 comment "Compression" 1123 1730 1124 config CRYPTO_DEFLATE 1731 config CRYPTO_DEFLATE 1125 tristate "Deflate" !! 1732 tristate "Deflate compression algorithm" 1126 select CRYPTO_ALGAPI 1733 select CRYPTO_ALGAPI 1127 select CRYPTO_ACOMP2 1734 select CRYPTO_ACOMP2 1128 select ZLIB_INFLATE 1735 select ZLIB_INFLATE 1129 select ZLIB_DEFLATE 1736 select ZLIB_DEFLATE 1130 help 1737 help 1131 Deflate compression algorithm (RFC1 !! 1738 This is the Deflate algorithm (RFC1951), specified for use in >> 1739 IPSec with the IPCOMP protocol (RFC3173, RFC2394). 1132 1740 1133 Used by IPSec with the IPCOMP proto !! 1741 You will most probably want this if using IPSec. 1134 1742 1135 config CRYPTO_LZO 1743 config CRYPTO_LZO 1136 tristate "LZO" !! 1744 tristate "LZO compression algorithm" 1137 select CRYPTO_ALGAPI 1745 select CRYPTO_ALGAPI 1138 select CRYPTO_ACOMP2 1746 select CRYPTO_ACOMP2 1139 select LZO_COMPRESS 1747 select LZO_COMPRESS 1140 select LZO_DECOMPRESS 1748 select LZO_DECOMPRESS 1141 help 1749 help 1142 LZO compression algorithm !! 1750 This is the LZO algorithm. 1143 << 1144 See https://www.oberhumer.com/opens << 1145 1751 1146 config CRYPTO_842 1752 config CRYPTO_842 1147 tristate "842" !! 1753 tristate "842 compression algorithm" 1148 select CRYPTO_ALGAPI 1754 select CRYPTO_ALGAPI 1149 select CRYPTO_ACOMP2 1755 select CRYPTO_ACOMP2 1150 select 842_COMPRESS 1756 select 842_COMPRESS 1151 select 842_DECOMPRESS 1757 select 842_DECOMPRESS 1152 help 1758 help 1153 842 compression algorithm by IBM !! 1759 This is the 842 algorithm. 1154 << 1155 See https://github.com/plauth/lib84 << 1156 1760 1157 config CRYPTO_LZ4 1761 config CRYPTO_LZ4 1158 tristate "LZ4" !! 1762 tristate "LZ4 compression algorithm" 1159 select CRYPTO_ALGAPI 1763 select CRYPTO_ALGAPI 1160 select CRYPTO_ACOMP2 1764 select CRYPTO_ACOMP2 1161 select LZ4_COMPRESS 1765 select LZ4_COMPRESS 1162 select LZ4_DECOMPRESS 1766 select LZ4_DECOMPRESS 1163 help 1767 help 1164 LZ4 compression algorithm !! 1768 This is the LZ4 algorithm. 1165 << 1166 See https://github.com/lz4/lz4 for << 1167 1769 1168 config CRYPTO_LZ4HC 1770 config CRYPTO_LZ4HC 1169 tristate "LZ4HC" !! 1771 tristate "LZ4HC compression algorithm" 1170 select CRYPTO_ALGAPI 1772 select CRYPTO_ALGAPI 1171 select CRYPTO_ACOMP2 1773 select CRYPTO_ACOMP2 1172 select LZ4HC_COMPRESS 1774 select LZ4HC_COMPRESS 1173 select LZ4_DECOMPRESS 1775 select LZ4_DECOMPRESS 1174 help 1776 help 1175 LZ4 high compression mode algorithm !! 1777 This is the LZ4 high compression mode algorithm. 1176 << 1177 See https://github.com/lz4/lz4 for << 1178 1778 1179 config CRYPTO_ZSTD 1779 config CRYPTO_ZSTD 1180 tristate "Zstd" !! 1780 tristate "Zstd compression algorithm" 1181 select CRYPTO_ALGAPI 1781 select CRYPTO_ALGAPI 1182 select CRYPTO_ACOMP2 1782 select CRYPTO_ACOMP2 1183 select ZSTD_COMPRESS 1783 select ZSTD_COMPRESS 1184 select ZSTD_DECOMPRESS 1784 select ZSTD_DECOMPRESS 1185 help 1785 help 1186 zstd compression algorithm !! 1786 This is the zstd algorithm. 1187 << 1188 See https://github.com/facebook/zst << 1189 1787 1190 endmenu !! 1788 comment "Random Number Generation" 1191 << 1192 menu "Random number generation" << 1193 1789 1194 config CRYPTO_ANSI_CPRNG 1790 config CRYPTO_ANSI_CPRNG 1195 tristate "ANSI PRNG (Pseudo Random Nu !! 1791 tristate "Pseudo Random Number Generation for Cryptographic modules" 1196 select CRYPTO_AES 1792 select CRYPTO_AES 1197 select CRYPTO_RNG 1793 select CRYPTO_RNG 1198 help 1794 help 1199 Pseudo RNG (random number generator !! 1795 This option enables the generic pseudo random number generator 1200 !! 1796 for cryptographic modules. Uses the Algorithm specified in 1201 This uses the AES cipher algorithm. !! 1797 ANSI X9.31 A.2.4. Note that this option must be enabled if 1202 !! 1798 CRYPTO_FIPS is selected 1203 Note that this option must be enabl << 1204 1799 1205 menuconfig CRYPTO_DRBG_MENU 1800 menuconfig CRYPTO_DRBG_MENU 1206 tristate "NIST SP800-90A DRBG (Determ !! 1801 tristate "NIST SP800-90A DRBG" 1207 help 1802 help 1208 DRBG (Deterministic Random Bit Gene !! 1803 NIST SP800-90A compliant DRBG. In the following submenu, one or 1209 !! 1804 more of the DRBG types must be selected. 1210 In the following submenu, one or mo << 1211 1805 1212 if CRYPTO_DRBG_MENU 1806 if CRYPTO_DRBG_MENU 1213 1807 1214 config CRYPTO_DRBG_HMAC 1808 config CRYPTO_DRBG_HMAC 1215 bool 1809 bool 1216 default y 1810 default y 1217 select CRYPTO_HMAC 1811 select CRYPTO_HMAC 1218 select CRYPTO_SHA512 !! 1812 select CRYPTO_SHA256 1219 1813 1220 config CRYPTO_DRBG_HASH 1814 config CRYPTO_DRBG_HASH 1221 bool "Hash_DRBG" !! 1815 bool "Enable Hash DRBG" 1222 select CRYPTO_SHA256 1816 select CRYPTO_SHA256 1223 help 1817 help 1224 Hash_DRBG variant as defined in NIS !! 1818 Enable the Hash DRBG variant as defined in NIST SP800-90A. 1225 << 1226 This uses the SHA-1, SHA-256, SHA-3 << 1227 1819 1228 config CRYPTO_DRBG_CTR 1820 config CRYPTO_DRBG_CTR 1229 bool "CTR_DRBG" !! 1821 bool "Enable CTR DRBG" 1230 select CRYPTO_AES 1822 select CRYPTO_AES 1231 select CRYPTO_CTR !! 1823 depends on CRYPTO_CTR 1232 help 1824 help 1233 CTR_DRBG variant as defined in NIST !! 1825 Enable the CTR DRBG variant as defined in NIST SP800-90A. 1234 << 1235 This uses the AES cipher algorithm << 1236 1826 1237 config CRYPTO_DRBG 1827 config CRYPTO_DRBG 1238 tristate 1828 tristate 1239 default CRYPTO_DRBG_MENU 1829 default CRYPTO_DRBG_MENU 1240 select CRYPTO_RNG 1830 select CRYPTO_RNG 1241 select CRYPTO_JITTERENTROPY 1831 select CRYPTO_JITTERENTROPY 1242 1832 1243 endif # if CRYPTO_DRBG_MENU 1833 endif # if CRYPTO_DRBG_MENU 1244 1834 1245 config CRYPTO_JITTERENTROPY 1835 config CRYPTO_JITTERENTROPY 1246 tristate "CPU Jitter Non-Deterministi !! 1836 tristate "Jitterentropy Non-Deterministic Random Number Generator" 1247 select CRYPTO_RNG 1837 select CRYPTO_RNG 1248 select CRYPTO_SHA3 << 1249 help 1838 help 1250 CPU Jitter RNG (Random Number Gener !! 1839 The Jitterentropy RNG is a noise that is intended 1251 !! 1840 to provide seed to another RNG. The RNG does not 1252 A non-physical non-deterministic (" !! 1841 perform any cryptographic whitening of the generated 1253 compliant with NIST SP800-90B) inte !! 1842 random numbers. This Jitterentropy RNG registers with 1254 deterministic RNG (e.g., per NIST S !! 1843 the kernel crypto API and can be used by any caller. 1255 This RNG does not perform any crypt << 1256 random numbers. << 1257 << 1258 See https://www.chronox.de/jent/ << 1259 << 1260 if CRYPTO_JITTERENTROPY << 1261 if CRYPTO_FIPS && EXPERT << 1262 << 1263 choice << 1264 prompt "CPU Jitter RNG Memory Size" << 1265 default CRYPTO_JITTERENTROPY_MEMSIZE_ << 1266 help << 1267 The Jitter RNG measures the executi << 1268 Multiple consecutive memory accesse << 1269 size fits into a cache (e.g. L1), o << 1270 to that cache is measured. The clos << 1271 the less variations are measured an << 1272 obtained. Thus, if the memory size << 1273 obtained entropy is less than if th << 1274 L1 + L2, which in turn is less if t << 1275 L1 + L2 + L3. Thus, by selecting a << 1276 the entropy rate produced by the Ji << 1277 << 1278 config CRYPTO_JITTERENTROPY_MEMSIZE_2 << 1279 bool "2048 Bytes (default)" << 1280 << 1281 config CRYPTO_JITTERENTROPY_MEMSIZE_1 << 1282 bool "128 kBytes" << 1283 << 1284 config CRYPTO_JITTERENTROPY_MEMSIZE_1 << 1285 bool "1024 kBytes" << 1286 << 1287 config CRYPTO_JITTERENTROPY_MEMSIZE_8 << 1288 bool "8192 kBytes" << 1289 endchoice << 1290 << 1291 config CRYPTO_JITTERENTROPY_MEMORY_BLOCKS << 1292 int << 1293 default 64 if CRYPTO_JITTERENTROPY_ME << 1294 default 512 if CRYPTO_JITTERENTROPY_M << 1295 default 1024 if CRYPTO_JITTERENTROPY_ << 1296 default 4096 if CRYPTO_JITTERENTROPY_ << 1297 << 1298 config CRYPTO_JITTERENTROPY_MEMORY_BLOCKSIZE << 1299 int << 1300 default 32 if CRYPTO_JITTERENTROPY_ME << 1301 default 256 if CRYPTO_JITTERENTROPY_M << 1302 default 1024 if CRYPTO_JITTERENTROPY_ << 1303 default 2048 if CRYPTO_JITTERENTROPY_ << 1304 << 1305 config CRYPTO_JITTERENTROPY_OSR << 1306 int "CPU Jitter RNG Oversampling Rate << 1307 range 1 15 << 1308 default 3 << 1309 help << 1310 The Jitter RNG allows the specifica << 1311 The Jitter RNG operation requires a << 1312 measurements to produce one output << 1313 OSR value is multiplied with the am << 1314 generate one output block. Thus, th << 1315 by the OSR factor. The oversampling << 1316 on hardware whose timers deliver li << 1317 the timer is coarse) by setting the << 1318 trade-off, however, is that the Jit << 1319 to generate random numbers. << 1320 << 1321 config CRYPTO_JITTERENTROPY_TESTINTERFACE << 1322 bool "CPU Jitter RNG Test Interface" << 1323 help << 1324 The test interface allows a privile << 1325 the raw unconditioned high resoluti << 1326 is collected by the Jitter RNG for << 1327 this data is used at the same time << 1328 the Jitter RNG operates in an insec << 1329 recording is enabled. This interfac << 1330 intended for testing purposes and i << 1331 production systems. << 1332 << 1333 The raw noise data can be obtained << 1334 debugfs file. Using the option << 1335 jitterentropy_testing.boot_raw_hire << 1336 the first 1000 entropy events since << 1337 << 1338 If unsure, select N. << 1339 << 1340 endif # if CRYPTO_FIPS && EXPERT << 1341 << 1342 if !(CRYPTO_FIPS && EXPERT) << 1343 << 1344 config CRYPTO_JITTERENTROPY_MEMORY_BLOCKS << 1345 int << 1346 default 64 << 1347 << 1348 config CRYPTO_JITTERENTROPY_MEMORY_BLOCKSIZE << 1349 int << 1350 default 32 << 1351 << 1352 config CRYPTO_JITTERENTROPY_OSR << 1353 int << 1354 default 1 << 1355 << 1356 config CRYPTO_JITTERENTROPY_TESTINTERFACE << 1357 bool << 1358 << 1359 endif # if !(CRYPTO_FIPS && EXPERT) << 1360 endif # if CRYPTO_JITTERENTROPY << 1361 << 1362 config CRYPTO_KDF800108_CTR << 1363 tristate << 1364 select CRYPTO_HMAC << 1365 select CRYPTO_SHA256 << 1366 << 1367 endmenu << 1368 menu "Userspace interface" << 1369 1844 1370 config CRYPTO_USER_API 1845 config CRYPTO_USER_API 1371 tristate 1846 tristate 1372 1847 1373 config CRYPTO_USER_API_HASH 1848 config CRYPTO_USER_API_HASH 1374 tristate "Hash algorithms" !! 1849 tristate "User-space interface for hash algorithms" 1375 depends on NET 1850 depends on NET 1376 select CRYPTO_HASH 1851 select CRYPTO_HASH 1377 select CRYPTO_USER_API 1852 select CRYPTO_USER_API 1378 help 1853 help 1379 Enable the userspace interface for !! 1854 This option enables the user-spaces interface for hash 1380 !! 1855 algorithms. 1381 See Documentation/crypto/userspace- << 1382 https://www.chronox.de/libkcapi/htm << 1383 1856 1384 config CRYPTO_USER_API_SKCIPHER 1857 config CRYPTO_USER_API_SKCIPHER 1385 tristate "Symmetric key cipher algori !! 1858 tristate "User-space interface for symmetric key cipher algorithms" 1386 depends on NET 1859 depends on NET 1387 select CRYPTO_SKCIPHER 1860 select CRYPTO_SKCIPHER 1388 select CRYPTO_USER_API 1861 select CRYPTO_USER_API 1389 help 1862 help 1390 Enable the userspace interface for !! 1863 This option enables the user-spaces interface for symmetric 1391 !! 1864 key cipher algorithms. 1392 See Documentation/crypto/userspace- << 1393 https://www.chronox.de/libkcapi/htm << 1394 1865 1395 config CRYPTO_USER_API_RNG 1866 config CRYPTO_USER_API_RNG 1396 tristate "RNG (random number generato !! 1867 tristate "User-space interface for random number generator algorithms" 1397 depends on NET 1868 depends on NET 1398 select CRYPTO_RNG 1869 select CRYPTO_RNG 1399 select CRYPTO_USER_API 1870 select CRYPTO_USER_API 1400 help 1871 help 1401 Enable the userspace interface for !! 1872 This option enables the user-spaces interface for random 1402 algorithms. !! 1873 number generator algorithms. 1403 << 1404 See Documentation/crypto/userspace- << 1405 https://www.chronox.de/libkcapi/htm << 1406 << 1407 config CRYPTO_USER_API_RNG_CAVP << 1408 bool "Enable CAVP testing of DRBG" << 1409 depends on CRYPTO_USER_API_RNG && CRY << 1410 help << 1411 Enable extra APIs in the userspace << 1412 (Cryptographic Algorithm Validation << 1413 - resetting DRBG entropy << 1414 - providing Additional Data << 1415 << 1416 This should only be enabled for CAV << 1417 no unless you know what this is. << 1418 1874 1419 config CRYPTO_USER_API_AEAD 1875 config CRYPTO_USER_API_AEAD 1420 tristate "AEAD cipher algorithms" !! 1876 tristate "User-space interface for AEAD cipher algorithms" 1421 depends on NET 1877 depends on NET 1422 select CRYPTO_AEAD 1878 select CRYPTO_AEAD 1423 select CRYPTO_SKCIPHER 1879 select CRYPTO_SKCIPHER 1424 select CRYPTO_NULL 1880 select CRYPTO_NULL 1425 select CRYPTO_USER_API 1881 select CRYPTO_USER_API 1426 help 1882 help 1427 Enable the userspace interface for !! 1883 This option enables the user-spaces interface for AEAD >> 1884 cipher algorithms. 1428 1885 1429 See Documentation/crypto/userspace- !! 1886 config CRYPTO_STATS 1430 https://www.chronox.de/libkcapi/htm !! 1887 bool "Crypto usage statistics for User-space" 1431 !! 1888 depends on CRYPTO_USER 1432 config CRYPTO_USER_API_ENABLE_OBSOLETE !! 1889 help 1433 bool "Obsolete cryptographic algorith !! 1890 This option enables the gathering of crypto stats. 1434 depends on CRYPTO_USER_API !! 1891 This will collect: 1435 default y !! 1892 - encrypt/decrypt size and numbers of symmeric operations 1436 help !! 1893 - compress/decompress size and numbers of compress operations 1437 Allow obsolete cryptographic algori !! 1894 - size and numbers of hash operations 1438 already been phased out from intern !! 1895 - encrypt/decrypt/sign/verify numbers for asymmetric operations 1439 only useful for userspace clients t !! 1896 - generate/seed numbers for rng operations 1440 << 1441 endmenu << 1442 1897 1443 config CRYPTO_HASH_INFO 1898 config CRYPTO_HASH_INFO 1444 bool 1899 bool 1445 1900 1446 if !KMSAN # avoid false positives from assemb !! 1901 source "lib/crypto/Kconfig" 1447 if ARM << 1448 source "arch/arm/crypto/Kconfig" << 1449 endif << 1450 if ARM64 << 1451 source "arch/arm64/crypto/Kconfig" << 1452 endif << 1453 if LOONGARCH << 1454 source "arch/loongarch/crypto/Kconfig" << 1455 endif << 1456 if MIPS << 1457 source "arch/mips/crypto/Kconfig" << 1458 endif << 1459 if PPC << 1460 source "arch/powerpc/crypto/Kconfig" << 1461 endif << 1462 if RISCV << 1463 source "arch/riscv/crypto/Kconfig" << 1464 endif << 1465 if S390 << 1466 source "arch/s390/crypto/Kconfig" << 1467 endif << 1468 if SPARC << 1469 source "arch/sparc/crypto/Kconfig" << 1470 endif << 1471 if X86 << 1472 source "arch/x86/crypto/Kconfig" << 1473 endif << 1474 endif << 1475 << 1476 source "drivers/crypto/Kconfig" 1902 source "drivers/crypto/Kconfig" 1477 source "crypto/asymmetric_keys/Kconfig" 1903 source "crypto/asymmetric_keys/Kconfig" 1478 source "certs/Kconfig" 1904 source "certs/Kconfig" 1479 1905 1480 endif # if CRYPTO 1906 endif # if CRYPTO
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.