1 # SPDX-License-Identifier: GPL-2.0 << 2 # 1 # 3 # Generic algorithms support 2 # Generic algorithms support 4 # 3 # 5 config XOR_BLOCKS 4 config XOR_BLOCKS 6 tristate 5 tristate 7 6 8 # 7 # 9 # async_tx api: hardware offloaded memory tran 8 # async_tx api: hardware offloaded memory transfer/transform support 10 # 9 # 11 source "crypto/async_tx/Kconfig" 10 source "crypto/async_tx/Kconfig" 12 11 13 # 12 # 14 # Cryptographic API Configuration 13 # Cryptographic API Configuration 15 # 14 # 16 menuconfig CRYPTO 15 menuconfig CRYPTO 17 tristate "Cryptographic API" 16 tristate "Cryptographic API" 18 select CRYPTO_LIB_UTILS << 19 help 17 help 20 This option provides the core Crypto 18 This option provides the core Cryptographic API. 21 19 22 if CRYPTO 20 if CRYPTO 23 21 24 menu "Crypto core or helper" !! 22 comment "Crypto core or helper" 25 23 26 config CRYPTO_FIPS 24 config CRYPTO_FIPS 27 bool "FIPS 200 compliance" 25 bool "FIPS 200 compliance" 28 depends on (CRYPTO_ANSI_CPRNG || CRYPT 26 depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS 29 depends on (MODULE_SIG || !MODULES) 27 depends on (MODULE_SIG || !MODULES) 30 help 28 help 31 This option enables the fips boot op !! 29 This options enables the fips boot option which is 32 required if you want the system to o !! 30 required if you want to system to operate in a FIPS 200 33 certification. You should say no un 31 certification. You should say no unless you know what 34 this is. 32 this is. 35 33 36 config CRYPTO_FIPS_NAME << 37 string "FIPS Module Name" << 38 default "Linux Kernel Cryptographic AP << 39 depends on CRYPTO_FIPS << 40 help << 41 This option sets the FIPS Module nam << 42 the /proc/sys/crypto/fips_name file. << 43 << 44 config CRYPTO_FIPS_CUSTOM_VERSION << 45 bool "Use Custom FIPS Module Version" << 46 depends on CRYPTO_FIPS << 47 default n << 48 << 49 config CRYPTO_FIPS_VERSION << 50 string "FIPS Module Version" << 51 default "(none)" << 52 depends on CRYPTO_FIPS_CUSTOM_VERSION << 53 help << 54 This option provides the ability to << 55 By default the KERNELRELEASE value i << 56 << 57 config CRYPTO_ALGAPI 34 config CRYPTO_ALGAPI 58 tristate 35 tristate 59 select CRYPTO_ALGAPI2 36 select CRYPTO_ALGAPI2 60 help 37 help 61 This option provides the API for cry 38 This option provides the API for cryptographic algorithms. 62 39 63 config CRYPTO_ALGAPI2 40 config CRYPTO_ALGAPI2 64 tristate 41 tristate 65 42 66 config CRYPTO_AEAD 43 config CRYPTO_AEAD 67 tristate 44 tristate 68 select CRYPTO_AEAD2 45 select CRYPTO_AEAD2 69 select CRYPTO_ALGAPI 46 select CRYPTO_ALGAPI 70 47 71 config CRYPTO_AEAD2 48 config CRYPTO_AEAD2 72 tristate 49 tristate 73 select CRYPTO_ALGAPI2 50 select CRYPTO_ALGAPI2 >> 51 select CRYPTO_NULL2 >> 52 select CRYPTO_RNG2 74 53 75 config CRYPTO_SIG !! 54 config CRYPTO_BLKCIPHER 76 tristate << 77 select CRYPTO_SIG2 << 78 select CRYPTO_ALGAPI << 79 << 80 config CRYPTO_SIG2 << 81 tristate << 82 select CRYPTO_ALGAPI2 << 83 << 84 config CRYPTO_SKCIPHER << 85 tristate 55 tristate 86 select CRYPTO_SKCIPHER2 !! 56 select CRYPTO_BLKCIPHER2 87 select CRYPTO_ALGAPI 57 select CRYPTO_ALGAPI 88 select CRYPTO_ECB << 89 58 90 config CRYPTO_SKCIPHER2 !! 59 config CRYPTO_BLKCIPHER2 91 tristate 60 tristate 92 select CRYPTO_ALGAPI2 61 select CRYPTO_ALGAPI2 >> 62 select CRYPTO_RNG2 >> 63 select CRYPTO_WORKQUEUE 93 64 94 config CRYPTO_HASH 65 config CRYPTO_HASH 95 tristate 66 tristate 96 select CRYPTO_HASH2 67 select CRYPTO_HASH2 97 select CRYPTO_ALGAPI 68 select CRYPTO_ALGAPI 98 69 99 config CRYPTO_HASH2 70 config CRYPTO_HASH2 100 tristate 71 tristate 101 select CRYPTO_ALGAPI2 72 select CRYPTO_ALGAPI2 102 73 103 config CRYPTO_RNG 74 config CRYPTO_RNG 104 tristate 75 tristate 105 select CRYPTO_RNG2 76 select CRYPTO_RNG2 106 select CRYPTO_ALGAPI 77 select CRYPTO_ALGAPI 107 78 108 config CRYPTO_RNG2 79 config CRYPTO_RNG2 109 tristate 80 tristate 110 select CRYPTO_ALGAPI2 81 select CRYPTO_ALGAPI2 111 82 112 config CRYPTO_RNG_DEFAULT 83 config CRYPTO_RNG_DEFAULT 113 tristate 84 tristate 114 select CRYPTO_DRBG_MENU 85 select CRYPTO_DRBG_MENU 115 86 116 config CRYPTO_AKCIPHER2 87 config CRYPTO_AKCIPHER2 117 tristate 88 tristate 118 select CRYPTO_ALGAPI2 89 select CRYPTO_ALGAPI2 119 90 120 config CRYPTO_AKCIPHER 91 config CRYPTO_AKCIPHER 121 tristate 92 tristate 122 select CRYPTO_AKCIPHER2 93 select CRYPTO_AKCIPHER2 123 select CRYPTO_ALGAPI 94 select CRYPTO_ALGAPI 124 95 125 config CRYPTO_KPP2 96 config CRYPTO_KPP2 126 tristate 97 tristate 127 select CRYPTO_ALGAPI2 98 select CRYPTO_ALGAPI2 128 99 129 config CRYPTO_KPP 100 config CRYPTO_KPP 130 tristate 101 tristate 131 select CRYPTO_ALGAPI 102 select CRYPTO_ALGAPI 132 select CRYPTO_KPP2 103 select CRYPTO_KPP2 133 104 134 config CRYPTO_ACOMP2 105 config CRYPTO_ACOMP2 135 tristate 106 tristate 136 select CRYPTO_ALGAPI2 107 select CRYPTO_ALGAPI2 137 select SGL_ALLOC << 138 108 139 config CRYPTO_ACOMP 109 config CRYPTO_ACOMP 140 tristate 110 tristate 141 select CRYPTO_ALGAPI 111 select CRYPTO_ALGAPI 142 select CRYPTO_ACOMP2 112 select CRYPTO_ACOMP2 143 113 >> 114 config CRYPTO_RSA >> 115 tristate "RSA algorithm" >> 116 select CRYPTO_AKCIPHER >> 117 select CRYPTO_MANAGER >> 118 select MPILIB >> 119 select ASN1 >> 120 help >> 121 Generic implementation of the RSA public key algorithm. >> 122 >> 123 config CRYPTO_DH >> 124 tristate "Diffie-Hellman algorithm" >> 125 select CRYPTO_KPP >> 126 select MPILIB >> 127 help >> 128 Generic implementation of the Diffie-Hellman algorithm. >> 129 >> 130 config CRYPTO_ECDH >> 131 tristate "ECDH algorithm" >> 132 select CRYTPO_KPP >> 133 help >> 134 Generic implementation of the ECDH algorithm >> 135 144 config CRYPTO_MANAGER 136 config CRYPTO_MANAGER 145 tristate "Cryptographic algorithm mana 137 tristate "Cryptographic algorithm manager" 146 select CRYPTO_MANAGER2 138 select CRYPTO_MANAGER2 147 help 139 help 148 Create default cryptographic templat 140 Create default cryptographic template instantiations such as 149 cbc(aes). 141 cbc(aes). 150 142 151 config CRYPTO_MANAGER2 143 config CRYPTO_MANAGER2 152 def_tristate CRYPTO_MANAGER || (CRYPTO 144 def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y) 153 select CRYPTO_ACOMP2 << 154 select CRYPTO_AEAD2 145 select CRYPTO_AEAD2 155 select CRYPTO_AKCIPHER2 << 156 select CRYPTO_SIG2 << 157 select CRYPTO_HASH2 146 select CRYPTO_HASH2 >> 147 select CRYPTO_BLKCIPHER2 >> 148 select CRYPTO_AKCIPHER2 158 select CRYPTO_KPP2 149 select CRYPTO_KPP2 159 select CRYPTO_RNG2 !! 150 select CRYPTO_ACOMP2 160 select CRYPTO_SKCIPHER2 << 161 151 162 config CRYPTO_USER 152 config CRYPTO_USER 163 tristate "Userspace cryptographic algo 153 tristate "Userspace cryptographic algorithm configuration" 164 depends on NET 154 depends on NET 165 select CRYPTO_MANAGER 155 select CRYPTO_MANAGER 166 help 156 help 167 Userspace configuration for cryptogr 157 Userspace configuration for cryptographic instantiations such as 168 cbc(aes). 158 cbc(aes). 169 159 170 config CRYPTO_MANAGER_DISABLE_TESTS 160 config CRYPTO_MANAGER_DISABLE_TESTS 171 bool "Disable run-time self tests" 161 bool "Disable run-time self tests" 172 default y 162 default y >> 163 depends on CRYPTO_MANAGER2 173 help 164 help 174 Disable run-time self tests that nor 165 Disable run-time self tests that normally take place at 175 algorithm registration. 166 algorithm registration. 176 167 177 config CRYPTO_MANAGER_EXTRA_TESTS !! 168 config CRYPTO_GF128MUL 178 bool "Enable extra run-time crypto sel !! 169 tristate "GF(2^128) multiplication functions" 179 depends on DEBUG_KERNEL && !CRYPTO_MAN << 180 help 170 help 181 Enable extra run-time self tests of !! 171 Efficient table driven implementation of multiplications in the 182 including randomized fuzz tests. !! 172 field GF(2^128). This is needed by some cypher modes. This 183 !! 173 option will be selected automatically if you select such a 184 This is intended for developer use o !! 174 cipher mode. Only select this option by hand if you expect to load 185 longer to run than the normal self t !! 175 an external module that requires these functions. 186 176 187 config CRYPTO_NULL 177 config CRYPTO_NULL 188 tristate "Null algorithms" 178 tristate "Null algorithms" 189 select CRYPTO_NULL2 179 select CRYPTO_NULL2 190 help 180 help 191 These are 'Null' algorithms, used by 181 These are 'Null' algorithms, used by IPsec, which do nothing. 192 182 193 config CRYPTO_NULL2 183 config CRYPTO_NULL2 194 tristate 184 tristate 195 select CRYPTO_ALGAPI2 185 select CRYPTO_ALGAPI2 196 select CRYPTO_SKCIPHER2 !! 186 select CRYPTO_BLKCIPHER2 197 select CRYPTO_HASH2 187 select CRYPTO_HASH2 198 188 199 config CRYPTO_PCRYPT 189 config CRYPTO_PCRYPT 200 tristate "Parallel crypto engine" 190 tristate "Parallel crypto engine" 201 depends on SMP 191 depends on SMP 202 select PADATA 192 select PADATA 203 select CRYPTO_MANAGER 193 select CRYPTO_MANAGER 204 select CRYPTO_AEAD 194 select CRYPTO_AEAD 205 help 195 help 206 This converts an arbitrary crypto al 196 This converts an arbitrary crypto algorithm into a parallel 207 algorithm that executes in kernel th 197 algorithm that executes in kernel threads. 208 198 >> 199 config CRYPTO_WORKQUEUE >> 200 tristate >> 201 209 config CRYPTO_CRYPTD 202 config CRYPTO_CRYPTD 210 tristate "Software async crypto daemon 203 tristate "Software async crypto daemon" 211 select CRYPTO_SKCIPHER !! 204 select CRYPTO_BLKCIPHER 212 select CRYPTO_HASH 205 select CRYPTO_HASH 213 select CRYPTO_MANAGER 206 select CRYPTO_MANAGER >> 207 select CRYPTO_WORKQUEUE 214 help 208 help 215 This is a generic software asynchron 209 This is a generic software asynchronous crypto daemon that 216 converts an arbitrary synchronous so 210 converts an arbitrary synchronous software crypto algorithm 217 into an asynchronous algorithm that 211 into an asynchronous algorithm that executes in a kernel thread. 218 212 >> 213 config CRYPTO_MCRYPTD >> 214 tristate "Software async multi-buffer crypto daemon" >> 215 select CRYPTO_BLKCIPHER >> 216 select CRYPTO_HASH >> 217 select CRYPTO_MANAGER >> 218 select CRYPTO_WORKQUEUE >> 219 help >> 220 This is a generic software asynchronous crypto daemon that >> 221 provides the kernel thread to assist multi-buffer crypto >> 222 algorithms for submitting jobs and flushing jobs in multi-buffer >> 223 crypto algorithms. Multi-buffer crypto algorithms are executed >> 224 in the context of this kernel thread and drivers can post >> 225 their crypto request asynchronously to be processed by this daemon. >> 226 219 config CRYPTO_AUTHENC 227 config CRYPTO_AUTHENC 220 tristate "Authenc support" 228 tristate "Authenc support" 221 select CRYPTO_AEAD 229 select CRYPTO_AEAD 222 select CRYPTO_SKCIPHER !! 230 select CRYPTO_BLKCIPHER 223 select CRYPTO_MANAGER 231 select CRYPTO_MANAGER 224 select CRYPTO_HASH 232 select CRYPTO_HASH 225 select CRYPTO_NULL 233 select CRYPTO_NULL 226 help 234 help 227 Authenc: Combined mode wrapper for I 235 Authenc: Combined mode wrapper for IPsec. 228 !! 236 This is required for IPSec. 229 This is required for IPSec ESP (XFRM << 230 237 231 config CRYPTO_TEST 238 config CRYPTO_TEST 232 tristate "Testing module" 239 tristate "Testing module" 233 depends on m || EXPERT !! 240 depends on m 234 select CRYPTO_MANAGER 241 select CRYPTO_MANAGER 235 help 242 help 236 Quick & dirty crypto test module. 243 Quick & dirty crypto test module. 237 244 >> 245 config CRYPTO_ABLK_HELPER >> 246 tristate >> 247 select CRYPTO_CRYPTD >> 248 238 config CRYPTO_SIMD 249 config CRYPTO_SIMD 239 tristate 250 tristate 240 select CRYPTO_CRYPTD 251 select CRYPTO_CRYPTD 241 252 >> 253 config CRYPTO_GLUE_HELPER_X86 >> 254 tristate >> 255 depends on X86 >> 256 select CRYPTO_BLKCIPHER >> 257 242 config CRYPTO_ENGINE 258 config CRYPTO_ENGINE 243 tristate 259 tristate 244 260 245 endmenu !! 261 comment "Authenticated Encryption with Associated Data" 246 262 247 menu "Public-key cryptography" !! 263 config CRYPTO_CCM >> 264 tristate "CCM support" >> 265 select CRYPTO_CTR >> 266 select CRYPTO_HASH >> 267 select CRYPTO_AEAD >> 268 help >> 269 Support for Counter with CBC MAC. Required for IPsec. 248 270 249 config CRYPTO_RSA !! 271 config CRYPTO_GCM 250 tristate "RSA (Rivest-Shamir-Adleman)" !! 272 tristate "GCM/GMAC support" 251 select CRYPTO_AKCIPHER !! 273 select CRYPTO_CTR 252 select CRYPTO_MANAGER !! 274 select CRYPTO_AEAD 253 select MPILIB !! 275 select CRYPTO_GHASH 254 select ASN1 !! 276 select CRYPTO_NULL 255 help 277 help 256 RSA (Rivest-Shamir-Adleman) public k !! 278 Support for Galois/Counter Mode (GCM) and Galois Message >> 279 Authentication Code (GMAC). Required for IPSec. 257 280 258 config CRYPTO_DH !! 281 config CRYPTO_CHACHA20POLY1305 259 tristate "DH (Diffie-Hellman)" !! 282 tristate "ChaCha20-Poly1305 AEAD support" 260 select CRYPTO_KPP !! 283 select CRYPTO_CHACHA20 261 select MPILIB !! 284 select CRYPTO_POLY1305 >> 285 select CRYPTO_AEAD 262 help 286 help 263 DH (Diffie-Hellman) key exchange alg !! 287 ChaCha20-Poly1305 AEAD support, RFC7539. 264 288 265 config CRYPTO_DH_RFC7919_GROUPS !! 289 Support for the AEAD wrapper using the ChaCha20 stream cipher combined 266 bool "RFC 7919 FFDHE groups" !! 290 with the Poly1305 authenticator. It is defined in RFC7539 for use in 267 depends on CRYPTO_DH !! 291 IETF protocols. >> 292 >> 293 config CRYPTO_SEQIV >> 294 tristate "Sequence Number IV Generator" >> 295 select CRYPTO_AEAD >> 296 select CRYPTO_BLKCIPHER >> 297 select CRYPTO_NULL 268 select CRYPTO_RNG_DEFAULT 298 select CRYPTO_RNG_DEFAULT 269 help 299 help 270 FFDHE (Finite-Field-based Diffie-Hel !! 300 This IV generator generates an IV based on a sequence number by 271 defined in RFC7919. !! 301 xoring it with a salt. This algorithm is mainly useful for CTR 272 302 273 Support these finite-field groups in !! 303 config CRYPTO_ECHAINIV 274 - ffdhe2048, ffdhe3072, ffdhe4096, f !! 304 tristate "Encrypted Chain IV Generator" >> 305 select CRYPTO_AEAD >> 306 select CRYPTO_NULL >> 307 select CRYPTO_RNG_DEFAULT >> 308 default m >> 309 help >> 310 This IV generator generates an IV based on the encryption of >> 311 a sequence number xored with a salt. This is the default >> 312 algorithm for CBC. 275 313 276 If unsure, say N. !! 314 comment "Block modes" 277 315 278 config CRYPTO_ECC !! 316 config CRYPTO_CBC 279 tristate !! 317 tristate "CBC support" 280 select CRYPTO_RNG_DEFAULT !! 318 select CRYPTO_BLKCIPHER >> 319 select CRYPTO_MANAGER >> 320 help >> 321 CBC: Cipher Block Chaining mode >> 322 This block cipher algorithm is required for IPSec. 281 323 282 config CRYPTO_ECDH !! 324 config CRYPTO_CTR 283 tristate "ECDH (Elliptic Curve Diffie- !! 325 tristate "CTR support" 284 select CRYPTO_ECC !! 326 select CRYPTO_BLKCIPHER 285 select CRYPTO_KPP !! 327 select CRYPTO_SEQIV >> 328 select CRYPTO_MANAGER 286 help 329 help 287 ECDH (Elliptic Curve Diffie-Hellman) !! 330 CTR: Counter mode 288 using curves P-192, P-256, and P-384 !! 331 This block cipher algorithm is required for IPSec. 289 332 290 config CRYPTO_ECDSA !! 333 config CRYPTO_CTS 291 tristate "ECDSA (Elliptic Curve Digita !! 334 tristate "CTS support" 292 select CRYPTO_ECC !! 335 select CRYPTO_BLKCIPHER 293 select CRYPTO_AKCIPHER << 294 select ASN1 << 295 help 336 help 296 ECDSA (Elliptic Curve Digital Signat !! 337 CTS: Cipher Text Stealing 297 ISO/IEC 14888-3) !! 338 This is the Cipher Text Stealing mode as described by 298 using curves P-192, P-256, and P-384 !! 339 Section 8 of rfc2040 and referenced by rfc3962. 299 !! 340 (rfc3962 includes errata information in its Appendix A) 300 Only signature verification is imple !! 341 This mode is required for Kerberos gss mechanism support 301 !! 342 for AES encryption. 302 config CRYPTO_ECRDSA !! 343 303 tristate "EC-RDSA (Elliptic Curve Russ !! 344 config CRYPTO_ECB 304 select CRYPTO_ECC !! 345 tristate "ECB support" 305 select CRYPTO_AKCIPHER !! 346 select CRYPTO_BLKCIPHER 306 select CRYPTO_STREEBOG !! 347 select CRYPTO_MANAGER 307 select OID_REGISTRY << 308 select ASN1 << 309 help 348 help 310 Elliptic Curve Russian Digital Signa !! 349 ECB: Electronic CodeBook mode 311 RFC 7091, ISO/IEC 14888-3) !! 350 This is the simplest block cipher algorithm. It simply encrypts >> 351 the input block by block. 312 352 313 One of the Russian cryptographic sta !! 353 config CRYPTO_LRW 314 algorithms). Only signature verifica !! 354 tristate "LRW support" >> 355 select CRYPTO_BLKCIPHER >> 356 select CRYPTO_MANAGER >> 357 select CRYPTO_GF128MUL >> 358 help >> 359 LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable >> 360 narrow block cipher mode for dm-crypt. Use it with cipher >> 361 specification string aes-lrw-benbi, the key must be 256, 320 or 384. >> 362 The first 128, 192 or 256 bits in the key are used for AES and the >> 363 rest is used to tie each cipher block to its logical position. 315 364 316 config CRYPTO_CURVE25519 !! 365 config CRYPTO_PCBC 317 tristate "Curve25519" !! 366 tristate "PCBC support" 318 select CRYPTO_KPP !! 367 select CRYPTO_BLKCIPHER 319 select CRYPTO_LIB_CURVE25519_GENERIC !! 368 select CRYPTO_MANAGER >> 369 help >> 370 PCBC: Propagating Cipher Block Chaining mode >> 371 This block cipher algorithm is required for RxRPC. >> 372 >> 373 config CRYPTO_XTS >> 374 tristate "XTS support" >> 375 select CRYPTO_BLKCIPHER >> 376 select CRYPTO_MANAGER >> 377 select CRYPTO_ECB 320 help 378 help 321 Curve25519 elliptic curve (RFC7748) !! 379 XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain, >> 380 key size 256, 384 or 512 bits. This implementation currently >> 381 can't handle a sectorsize which is not a multiple of 16 bytes. 322 382 323 endmenu !! 383 config CRYPTO_KEYWRAP >> 384 tristate "Key wrapping support" >> 385 select CRYPTO_BLKCIPHER >> 386 help >> 387 Support for key wrapping (NIST SP800-38F / RFC3394) without >> 388 padding. 324 389 325 menu "Block ciphers" !! 390 comment "Hash modes" 326 391 327 config CRYPTO_AES !! 392 config CRYPTO_CMAC 328 tristate "AES (Advanced Encryption Sta !! 393 tristate "CMAC support" 329 select CRYPTO_ALGAPI !! 394 select CRYPTO_HASH 330 select CRYPTO_LIB_AES !! 395 select CRYPTO_MANAGER 331 help 396 help 332 AES cipher algorithms (Rijndael)(FIP !! 397 Cipher-based Message Authentication Code (CMAC) specified by >> 398 The National Institute of Standards and Technology (NIST). 333 399 334 Rijndael appears to be consistently !! 400 https://tools.ietf.org/html/rfc4493 335 both hardware and software across a !! 401 http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf 336 environments regardless of its use i << 337 modes. Its key setup time is excelle << 338 good. Rijndael's very low memory req << 339 suited for restricted-space environm << 340 demonstrates excellent performance. << 341 among the easiest to defend against << 342 402 343 The AES specifies three key sizes: 1 !! 403 config CRYPTO_HMAC >> 404 tristate "HMAC support" >> 405 select CRYPTO_HASH >> 406 select CRYPTO_MANAGER >> 407 help >> 408 HMAC: Keyed-Hashing for Message Authentication (RFC2104). >> 409 This is required for IPSec. 344 410 345 config CRYPTO_AES_TI !! 411 config CRYPTO_XCBC 346 tristate "AES (Advanced Encryption Sta !! 412 tristate "XCBC support" 347 select CRYPTO_ALGAPI !! 413 select CRYPTO_HASH 348 select CRYPTO_LIB_AES !! 414 select CRYPTO_MANAGER 349 help 415 help 350 AES cipher algorithms (Rijndael)(FIP !! 416 XCBC: Keyed-Hashing with encryption algorithm >> 417 http://www.ietf.org/rfc/rfc3566.txt >> 418 http://csrc.nist.gov/encryption/modes/proposedmodes/ >> 419 xcbc-mac/xcbc-mac-spec.pdf 351 420 352 This is a generic implementation of !! 421 config CRYPTO_VMAC 353 data dependent latencies as much as !! 422 tristate "VMAC support" 354 performance too much. It is intended !! 423 select CRYPTO_HASH 355 and GCM drivers, and other CTR or CM !! 424 select CRYPTO_MANAGER 356 solely on encryption (although decry !! 425 help 357 with a more dramatic performance hit !! 426 VMAC is a message authentication algorithm designed for >> 427 very high speed on 64-bit architectures. 358 428 359 Instead of using 16 lookup tables of !! 429 See also: 360 8 for decryption), this implementati !! 430 <http://fastcrypto.org/vmac> 361 256 bytes each, and attempts to elim << 362 prefetching the entire table into th << 363 block. Interrupts are also disabled << 364 are evicted when the CPU is interrup << 365 431 366 config CRYPTO_ANUBIS !! 432 comment "Digest" 367 tristate "Anubis" !! 433 368 depends on CRYPTO_USER_API_ENABLE_OBSO !! 434 config CRYPTO_CRC32C 369 select CRYPTO_ALGAPI !! 435 tristate "CRC32c CRC algorithm" >> 436 select CRYPTO_HASH >> 437 select CRC32 370 help 438 help 371 Anubis cipher algorithm !! 439 Castagnoli, et al Cyclic Redundancy-Check Algorithm. Used >> 440 by iSCSI for header and data digests and by others. >> 441 See Castagnoli93. Module will be crc32c. >> 442 >> 443 config CRYPTO_CRC32C_INTEL >> 444 tristate "CRC32c INTEL hardware acceleration" >> 445 depends on X86 >> 446 select CRYPTO_HASH >> 447 help >> 448 In Intel processor with SSE4.2 supported, the processor will >> 449 support CRC32C implementation using hardware accelerated CRC32 >> 450 instruction. This option will create 'crc32c-intel' module, >> 451 which will enable any routine to use the CRC32 instruction to >> 452 gain performance compared with software implementation. >> 453 Module will be crc32c-intel. >> 454 >> 455 config CRYPTO_CRC32C_VPMSUM >> 456 tristate "CRC32c CRC algorithm (powerpc64)" >> 457 depends on PPC64 && ALTIVEC >> 458 select CRYPTO_HASH >> 459 select CRC32 >> 460 help >> 461 CRC32c algorithm implemented using vector polynomial multiply-sum >> 462 (vpmsum) instructions, introduced in POWER8. Enable on POWER8 >> 463 and newer processors for improved performance. 372 464 373 Anubis is a variable key length ciph << 374 128 bits to 320 bits in length. It << 375 in the NESSIE competition. << 376 465 377 See https://web.archive.org/web/2016 !! 466 config CRYPTO_CRC32C_SPARC64 378 for further information. !! 467 tristate "CRC32c CRC algorithm (SPARC64)" >> 468 depends on SPARC64 >> 469 select CRYPTO_HASH >> 470 select CRC32 >> 471 help >> 472 CRC32c CRC algorithm implemented using sparc64 crypto instructions, >> 473 when available. 379 474 380 config CRYPTO_ARIA !! 475 config CRYPTO_CRC32 381 tristate "ARIA" !! 476 tristate "CRC32 CRC algorithm" 382 select CRYPTO_ALGAPI !! 477 select CRYPTO_HASH >> 478 select CRC32 383 help 479 help 384 ARIA cipher algorithm (RFC5794) !! 480 CRC-32-IEEE 802.3 cyclic redundancy-check algorithm. >> 481 Shash crypto api wrappers to crc32_le function. 385 482 386 ARIA is a standard encryption algori !! 483 config CRYPTO_CRC32_PCLMUL 387 The ARIA specifies three key sizes a !! 484 tristate "CRC32 PCLMULQDQ hardware acceleration" 388 128-bit: 12 rounds. !! 485 depends on X86 389 192-bit: 14 rounds. !! 486 select CRYPTO_HASH 390 256-bit: 16 rounds. !! 487 select CRC32 >> 488 help >> 489 From Intel Westmere and AMD Bulldozer processor with SSE4.2 >> 490 and PCLMULQDQ supported, the processor will support >> 491 CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ >> 492 instruction. This option will create 'crc32-plcmul' module, >> 493 which will enable any routine to use the CRC-32-IEEE 802.3 checksum >> 494 and gain better performance as compared with the table implementation. 391 495 392 See: !! 496 config CRYPTO_CRCT10DIF 393 https://seed.kisa.or.kr/kisa/algorit !! 497 tristate "CRCT10DIF algorithm" >> 498 select CRYPTO_HASH >> 499 help >> 500 CRC T10 Data Integrity Field computation is being cast as >> 501 a crypto transform. This allows for faster crc t10 diff >> 502 transforms to be used if they are available. 394 503 395 config CRYPTO_BLOWFISH !! 504 config CRYPTO_CRCT10DIF_PCLMUL 396 tristate "Blowfish" !! 505 tristate "CRCT10DIF PCLMULQDQ hardware acceleration" 397 select CRYPTO_ALGAPI !! 506 depends on X86 && 64BIT && CRC_T10DIF 398 select CRYPTO_BLOWFISH_COMMON !! 507 select CRYPTO_HASH 399 help 508 help 400 Blowfish cipher algorithm, by Bruce !! 509 For x86_64 processors with SSE4.2 and PCLMULQDQ supported, >> 510 CRC T10 DIF PCLMULQDQ computation can be hardware >> 511 accelerated PCLMULQDQ instruction. This option will create >> 512 'crct10dif-plcmul' module, which is faster when computing the >> 513 crct10dif checksum as compared with the generic table implementation. 401 514 402 This is a variable key length cipher !! 515 config CRYPTO_CRCT10DIF_VPMSUM 403 bits to 448 bits in length. It's fa !! 516 tristate "CRC32T10DIF powerpc64 hardware acceleration" 404 designed for use on "large microproc !! 517 depends on PPC64 && ALTIVEC && CRC_T10DIF >> 518 select CRYPTO_HASH >> 519 help >> 520 CRC10T10DIF algorithm implemented using vector polynomial >> 521 multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on >> 522 POWER8 and newer processors for improved performance. 405 523 406 See https://www.schneier.com/blowfis !! 524 config CRYPTO_VPMSUM_TESTER >> 525 tristate "Powerpc64 vpmsum hardware acceleration tester" >> 526 depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM >> 527 help >> 528 Stress test for CRC32c and CRC-T10DIF algorithms implemented with >> 529 POWER8 vpmsum instructions. >> 530 Unless you are testing these algorithms, you don't need this. 407 531 408 config CRYPTO_BLOWFISH_COMMON !! 532 config CRYPTO_GHASH 409 tristate !! 533 tristate "GHASH digest algorithm" >> 534 select CRYPTO_GF128MUL >> 535 select CRYPTO_HASH 410 help 536 help 411 Common parts of the Blowfish cipher !! 537 GHASH is message digest algorithm for GCM (Galois/Counter Mode). 412 generic c and the assembler implemen << 413 538 414 config CRYPTO_CAMELLIA !! 539 config CRYPTO_POLY1305 415 tristate "Camellia" !! 540 tristate "Poly1305 authenticator algorithm" 416 select CRYPTO_ALGAPI !! 541 select CRYPTO_HASH 417 help 542 help 418 Camellia cipher algorithms (ISO/IEC !! 543 Poly1305 authenticator algorithm, RFC7539. 419 544 420 Camellia is a symmetric key block ci !! 545 Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. 421 at NTT and Mitsubishi Electric Corpo !! 546 It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use >> 547 in IETF protocols. This is the portable C implementation of Poly1305. 422 548 423 The Camellia specifies three key siz !! 549 config CRYPTO_POLY1305_X86_64 >> 550 tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)" >> 551 depends on X86 && 64BIT >> 552 select CRYPTO_POLY1305 >> 553 help >> 554 Poly1305 authenticator algorithm, RFC7539. 424 555 425 See https://info.isl.ntt.co.jp/crypt !! 556 Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. >> 557 It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use >> 558 in IETF protocols. This is the x86_64 assembler implementation using SIMD >> 559 instructions. 426 560 427 config CRYPTO_CAST_COMMON !! 561 config CRYPTO_MD4 428 tristate !! 562 tristate "MD4 digest algorithm" >> 563 select CRYPTO_HASH 429 help 564 help 430 Common parts of the CAST cipher algo !! 565 MD4 message digest algorithm (RFC1320). 431 generic c and the assembler implemen << 432 566 433 config CRYPTO_CAST5 !! 567 config CRYPTO_MD5 434 tristate "CAST5 (CAST-128)" !! 568 tristate "MD5 digest algorithm" 435 select CRYPTO_ALGAPI !! 569 select CRYPTO_HASH 436 select CRYPTO_CAST_COMMON << 437 help 570 help 438 CAST5 (CAST-128) cipher algorithm (R !! 571 MD5 message digest algorithm (RFC1321). 439 572 440 config CRYPTO_CAST6 !! 573 config CRYPTO_MD5_OCTEON 441 tristate "CAST6 (CAST-256)" !! 574 tristate "MD5 digest algorithm (OCTEON)" 442 select CRYPTO_ALGAPI !! 575 depends on CPU_CAVIUM_OCTEON 443 select CRYPTO_CAST_COMMON !! 576 select CRYPTO_MD5 >> 577 select CRYPTO_HASH 444 help 578 help 445 CAST6 (CAST-256) encryption algorith !! 579 MD5 message digest algorithm (RFC1321) implemented >> 580 using OCTEON crypto instructions, when available. 446 581 447 config CRYPTO_DES !! 582 config CRYPTO_MD5_PPC 448 tristate "DES and Triple DES EDE" !! 583 tristate "MD5 digest algorithm (PPC)" 449 select CRYPTO_ALGAPI !! 584 depends on PPC 450 select CRYPTO_LIB_DES !! 585 select CRYPTO_HASH 451 help 586 help 452 DES (Data Encryption Standard)(FIPS !! 587 MD5 message digest algorithm (RFC1321) implemented 453 Triple DES EDE (Encrypt/Decrypt/Encr !! 588 in PPC assembler. 454 cipher algorithms << 455 589 456 config CRYPTO_FCRYPT !! 590 config CRYPTO_MD5_SPARC64 457 tristate "FCrypt" !! 591 tristate "MD5 digest algorithm (SPARC64)" 458 select CRYPTO_ALGAPI !! 592 depends on SPARC64 459 select CRYPTO_SKCIPHER !! 593 select CRYPTO_MD5 >> 594 select CRYPTO_HASH 460 help 595 help 461 FCrypt algorithm used by RxRPC !! 596 MD5 message digest algorithm (RFC1321) implemented >> 597 using sparc64 crypto instructions, when available. 462 598 463 See https://ota.polyonymo.us/fcrypt- !! 599 config CRYPTO_MICHAEL_MIC >> 600 tristate "Michael MIC keyed digest algorithm" >> 601 select CRYPTO_HASH >> 602 help >> 603 Michael MIC is used for message integrity protection in TKIP >> 604 (IEEE 802.11i). This algorithm is required for TKIP, but it >> 605 should not be used for other purposes because of the weakness >> 606 of the algorithm. 464 607 465 config CRYPTO_KHAZAD !! 608 config CRYPTO_RMD128 466 tristate "Khazad" !! 609 tristate "RIPEMD-128 digest algorithm" 467 depends on CRYPTO_USER_API_ENABLE_OBSO !! 610 select CRYPTO_HASH 468 select CRYPTO_ALGAPI << 469 help 611 help 470 Khazad cipher algorithm !! 612 RIPEMD-128 (ISO/IEC 10118-3:2004). 471 613 472 Khazad was a finalist in the initial !! 614 RIPEMD-128 is a 128-bit cryptographic hash function. It should only 473 an algorithm optimized for 64-bit pr !! 615 be used as a secure replacement for RIPEMD. For other use cases, 474 on 32-bit processors. Khazad uses a !! 616 RIPEMD-160 should be used. 475 617 476 See https://web.archive.org/web/2017 !! 618 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 477 for further information. !! 619 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 478 620 479 config CRYPTO_SEED !! 621 config CRYPTO_RMD160 480 tristate "SEED" !! 622 tristate "RIPEMD-160 digest algorithm" 481 depends on CRYPTO_USER_API_ENABLE_OBSO !! 623 select CRYPTO_HASH 482 select CRYPTO_ALGAPI << 483 help 624 help 484 SEED cipher algorithm (RFC4269, ISO/ !! 625 RIPEMD-160 (ISO/IEC 10118-3:2004). 485 626 486 SEED is a 128-bit symmetric key bloc !! 627 RIPEMD-160 is a 160-bit cryptographic hash function. It is intended 487 developed by KISA (Korea Information !! 628 to be used as a secure replacement for the 128-bit hash functions 488 national standard encryption algorit !! 629 MD4, MD5 and it's predecessor RIPEMD 489 It is a 16 round block cipher with t !! 630 (not to be confused with RIPEMD-128). 490 631 491 See https://seed.kisa.or.kr/kisa/alg !! 632 It's speed is comparable to SHA1 and there are no known attacks 492 for further information. !! 633 against RIPEMD-160. 493 634 494 config CRYPTO_SERPENT !! 635 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 495 tristate "Serpent" !! 636 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 496 select CRYPTO_ALGAPI !! 637 >> 638 config CRYPTO_RMD256 >> 639 tristate "RIPEMD-256 digest algorithm" >> 640 select CRYPTO_HASH 497 help 641 help 498 Serpent cipher algorithm, by Anderso !! 642 RIPEMD-256 is an optional extension of RIPEMD-128 with a >> 643 256 bit hash. It is intended for applications that require >> 644 longer hash-results, without needing a larger security level >> 645 (than RIPEMD-128). 499 646 500 Keys are allowed to be from 0 to 256 !! 647 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 501 of 8 bits. !! 648 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 502 649 503 See https://www.cl.cam.ac.uk/~rja14/ !! 650 config CRYPTO_RMD320 >> 651 tristate "RIPEMD-320 digest algorithm" >> 652 select CRYPTO_HASH >> 653 help >> 654 RIPEMD-320 is an optional extension of RIPEMD-160 with a >> 655 320 bit hash. It is intended for applications that require >> 656 longer hash-results, without needing a larger security level >> 657 (than RIPEMD-160). 504 658 505 config CRYPTO_SM4 !! 659 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 506 tristate !! 660 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 507 661 508 config CRYPTO_SM4_GENERIC !! 662 config CRYPTO_SHA1 509 tristate "SM4 (ShangMi 4)" !! 663 tristate "SHA1 digest algorithm" 510 select CRYPTO_ALGAPI !! 664 select CRYPTO_HASH 511 select CRYPTO_SM4 << 512 help 665 help 513 SM4 cipher algorithms (OSCCA GB/T 32 !! 666 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). 514 ISO/IEC 18033-3:2010/Amd 1:2021) << 515 667 516 SM4 (GBT.32907-2016) is a cryptograp !! 668 config CRYPTO_SHA1_SSSE3 517 Organization of State Commercial Adm !! 669 tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" 518 as an authorized cryptographic algor !! 670 depends on X86 && 64BIT >> 671 select CRYPTO_SHA1 >> 672 select CRYPTO_HASH >> 673 help >> 674 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented >> 675 using Supplemental SSE3 (SSSE3) instructions or Advanced Vector >> 676 Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions), >> 677 when available. 519 678 520 SMS4 was originally created for use !! 679 config CRYPTO_SHA256_SSSE3 521 networks, and is mandated in the Chi !! 680 tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" 522 Wireless LAN WAPI (Wired Authenticat !! 681 depends on X86 && 64BIT 523 (GB.15629.11-2003). !! 682 select CRYPTO_SHA256 >> 683 select CRYPTO_HASH >> 684 help >> 685 SHA-256 secure hash standard (DFIPS 180-2) implemented >> 686 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector >> 687 Extensions version 1 (AVX1), or Advanced Vector Extensions >> 688 version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New >> 689 Instructions) when available. >> 690 >> 691 config CRYPTO_SHA512_SSSE3 >> 692 tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)" >> 693 depends on X86 && 64BIT >> 694 select CRYPTO_SHA512 >> 695 select CRYPTO_HASH >> 696 help >> 697 SHA-512 secure hash standard (DFIPS 180-2) implemented >> 698 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector >> 699 Extensions version 1 (AVX1), or Advanced Vector Extensions >> 700 version 2 (AVX2) instructions, when available. >> 701 >> 702 config CRYPTO_SHA1_OCTEON >> 703 tristate "SHA1 digest algorithm (OCTEON)" >> 704 depends on CPU_CAVIUM_OCTEON >> 705 select CRYPTO_SHA1 >> 706 select CRYPTO_HASH >> 707 help >> 708 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented >> 709 using OCTEON crypto instructions, when available. >> 710 >> 711 config CRYPTO_SHA1_SPARC64 >> 712 tristate "SHA1 digest algorithm (SPARC64)" >> 713 depends on SPARC64 >> 714 select CRYPTO_SHA1 >> 715 select CRYPTO_HASH >> 716 help >> 717 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented >> 718 using sparc64 crypto instructions, when available. >> 719 >> 720 config CRYPTO_SHA1_PPC >> 721 tristate "SHA1 digest algorithm (powerpc)" >> 722 depends on PPC >> 723 help >> 724 This is the powerpc hardware accelerated implementation of the >> 725 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). >> 726 >> 727 config CRYPTO_SHA1_PPC_SPE >> 728 tristate "SHA1 digest algorithm (PPC SPE)" >> 729 depends on PPC && SPE >> 730 help >> 731 SHA-1 secure hash standard (DFIPS 180-4) implemented >> 732 using powerpc SPE SIMD instruction set. >> 733 >> 734 config CRYPTO_SHA1_MB >> 735 tristate "SHA1 digest algorithm (x86_64 Multi-Buffer, Experimental)" >> 736 depends on X86 && 64BIT >> 737 select CRYPTO_SHA1 >> 738 select CRYPTO_HASH >> 739 select CRYPTO_MCRYPTD >> 740 help >> 741 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented >> 742 using multi-buffer technique. This algorithm computes on >> 743 multiple data lanes concurrently with SIMD instructions for >> 744 better throughput. It should not be enabled by default but >> 745 used when there is significant amount of work to keep the keep >> 746 the data lanes filled to get performance benefit. If the data >> 747 lanes remain unfilled, a flush operation will be initiated to >> 748 process the crypto jobs, adding a slight latency. >> 749 >> 750 config CRYPTO_SHA256_MB >> 751 tristate "SHA256 digest algorithm (x86_64 Multi-Buffer, Experimental)" >> 752 depends on X86 && 64BIT >> 753 select CRYPTO_SHA256 >> 754 select CRYPTO_HASH >> 755 select CRYPTO_MCRYPTD >> 756 help >> 757 SHA-256 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented >> 758 using multi-buffer technique. This algorithm computes on >> 759 multiple data lanes concurrently with SIMD instructions for >> 760 better throughput. It should not be enabled by default but >> 761 used when there is significant amount of work to keep the keep >> 762 the data lanes filled to get performance benefit. If the data >> 763 lanes remain unfilled, a flush operation will be initiated to >> 764 process the crypto jobs, adding a slight latency. >> 765 >> 766 config CRYPTO_SHA512_MB >> 767 tristate "SHA512 digest algorithm (x86_64 Multi-Buffer, Experimental)" >> 768 depends on X86 && 64BIT >> 769 select CRYPTO_SHA512 >> 770 select CRYPTO_HASH >> 771 select CRYPTO_MCRYPTD >> 772 help >> 773 SHA-512 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented >> 774 using multi-buffer technique. This algorithm computes on >> 775 multiple data lanes concurrently with SIMD instructions for >> 776 better throughput. It should not be enabled by default but >> 777 used when there is significant amount of work to keep the keep >> 778 the data lanes filled to get performance benefit. If the data >> 779 lanes remain unfilled, a flush operation will be initiated to >> 780 process the crypto jobs, adding a slight latency. 524 781 525 The latest SM4 standard (GBT.32907-2 !! 782 config CRYPTO_SHA256 526 standardized through TC 260 of the S !! 783 tristate "SHA224 and SHA256 digest algorithm" 527 of the People's Republic of China (S !! 784 select CRYPTO_HASH >> 785 help >> 786 SHA256 secure hash standard (DFIPS 180-2). 528 787 529 The input, output, and key of SMS4 a !! 788 This version of SHA implements a 256 bit hash with 128 bits of >> 789 security against collision attacks. 530 790 531 See https://eprint.iacr.org/2008/329 !! 791 This code also includes SHA-224, a 224 bit hash with 112 bits >> 792 of security against collision attacks. 532 793 533 If unsure, say N. !! 794 config CRYPTO_SHA256_PPC_SPE >> 795 tristate "SHA224 and SHA256 digest algorithm (PPC SPE)" >> 796 depends on PPC && SPE >> 797 select CRYPTO_SHA256 >> 798 select CRYPTO_HASH >> 799 help >> 800 SHA224 and SHA256 secure hash standard (DFIPS 180-2) >> 801 implemented using powerpc SPE SIMD instruction set. 534 802 535 config CRYPTO_TEA !! 803 config CRYPTO_SHA256_OCTEON 536 tristate "TEA, XTEA and XETA" !! 804 tristate "SHA224 and SHA256 digest algorithm (OCTEON)" 537 depends on CRYPTO_USER_API_ENABLE_OBSO !! 805 depends on CPU_CAVIUM_OCTEON 538 select CRYPTO_ALGAPI !! 806 select CRYPTO_SHA256 >> 807 select CRYPTO_HASH 539 help 808 help 540 TEA (Tiny Encryption Algorithm) ciph !! 809 SHA-256 secure hash standard (DFIPS 180-2) implemented >> 810 using OCTEON crypto instructions, when available. 541 811 542 Tiny Encryption Algorithm is a simpl !! 812 config CRYPTO_SHA256_SPARC64 543 many rounds for security. It is ver !! 813 tristate "SHA224 and SHA256 digest algorithm (SPARC64)" 544 little memory. !! 814 depends on SPARC64 >> 815 select CRYPTO_SHA256 >> 816 select CRYPTO_HASH >> 817 help >> 818 SHA-256 secure hash standard (DFIPS 180-2) implemented >> 819 using sparc64 crypto instructions, when available. 545 820 546 Xtendend Tiny Encryption Algorithm i !! 821 config CRYPTO_SHA512 547 the TEA algorithm to address a poten !! 822 tristate "SHA384 and SHA512 digest algorithms" 548 in the TEA algorithm. !! 823 select CRYPTO_HASH >> 824 help >> 825 SHA512 secure hash standard (DFIPS 180-2). 549 826 550 Xtendend Encryption Tiny Algorithm i !! 827 This version of SHA implements a 512 bit hash with 256 bits of 551 of the XTEA algorithm for compatibil !! 828 security against collision attacks. 552 829 553 config CRYPTO_TWOFISH !! 830 This code also includes SHA-384, a 384 bit hash with 192 bits 554 tristate "Twofish" !! 831 of security against collision attacks. 555 select CRYPTO_ALGAPI !! 832 556 select CRYPTO_TWOFISH_COMMON !! 833 config CRYPTO_SHA512_OCTEON >> 834 tristate "SHA384 and SHA512 digest algorithms (OCTEON)" >> 835 depends on CPU_CAVIUM_OCTEON >> 836 select CRYPTO_SHA512 >> 837 select CRYPTO_HASH 557 help 838 help 558 Twofish cipher algorithm !! 839 SHA-512 secure hash standard (DFIPS 180-2) implemented >> 840 using OCTEON crypto instructions, when available. 559 841 560 Twofish was submitted as an AES (Adv !! 842 config CRYPTO_SHA512_SPARC64 561 candidate cipher by researchers at C !! 843 tristate "SHA384 and SHA512 digest algorithm (SPARC64)" 562 16 round block cipher supporting key !! 844 depends on SPARC64 563 bits. !! 845 select CRYPTO_SHA512 >> 846 select CRYPTO_HASH >> 847 help >> 848 SHA-512 secure hash standard (DFIPS 180-2) implemented >> 849 using sparc64 crypto instructions, when available. >> 850 >> 851 config CRYPTO_SHA3 >> 852 tristate "SHA3 digest algorithm" >> 853 select CRYPTO_HASH >> 854 help >> 855 SHA-3 secure hash standard (DFIPS 202). It's based on >> 856 cryptographic sponge function family called Keccak. 564 857 565 See https://www.schneier.com/twofish !! 858 References: >> 859 http://keccak.noekeon.org/ 566 860 567 config CRYPTO_TWOFISH_COMMON !! 861 config CRYPTO_TGR192 568 tristate !! 862 tristate "Tiger digest algorithms" >> 863 select CRYPTO_HASH 569 help 864 help 570 Common parts of the Twofish cipher a !! 865 Tiger hash algorithm 192, 160 and 128-bit hashes 571 generic c and the assembler implemen << 572 866 573 endmenu !! 867 Tiger is a hash function optimized for 64-bit processors while >> 868 still having decent performance on 32-bit processors. >> 869 Tiger was developed by Ross Anderson and Eli Biham. 574 870 575 menu "Length-preserving ciphers and modes" !! 871 See also: >> 872 <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>. 576 873 577 config CRYPTO_ADIANTUM !! 874 config CRYPTO_WP512 578 tristate "Adiantum" !! 875 tristate "Whirlpool digest algorithms" 579 select CRYPTO_CHACHA20 !! 876 select CRYPTO_HASH 580 select CRYPTO_LIB_POLY1305_GENERIC << 581 select CRYPTO_NHPOLY1305 << 582 select CRYPTO_MANAGER << 583 help 877 help 584 Adiantum tweakable, length-preservin !! 878 Whirlpool hash algorithm 512, 384 and 256-bit hashes 585 879 586 Designed for fast and secure disk en !! 880 Whirlpool-512 is part of the NESSIE cryptographic primitives. 587 CPUs without dedicated crypto instru !! 881 Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard 588 each sector using the XChaCha12 stre << 589 an ε-almost-∆-universal hash func << 590 the AES-256 block cipher on a single << 591 without AES instructions, Adiantum i << 592 AES-XTS. << 593 << 594 Adiantum's security is provably redu << 595 underlying stream and block ciphers, << 596 bound. Unlike XTS, Adiantum is a tr << 597 mode, so it actually provides an eve << 598 security than XTS, subject to the se << 599 882 600 If unsure, say N. !! 883 See also: >> 884 <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html> 601 885 602 config CRYPTO_ARC4 !! 886 config CRYPTO_GHASH_CLMUL_NI_INTEL 603 tristate "ARC4 (Alleged Rivest Cipher !! 887 tristate "GHASH digest algorithm (CLMUL-NI accelerated)" 604 depends on CRYPTO_USER_API_ENABLE_OBSO !! 888 depends on X86 && 64BIT 605 select CRYPTO_SKCIPHER !! 889 select CRYPTO_CRYPTD 606 select CRYPTO_LIB_ARC4 << 607 help 890 help 608 ARC4 cipher algorithm !! 891 GHASH is message digest algorithm for GCM (Galois/Counter Mode). >> 892 The implementation is accelerated by CLMUL-NI of Intel. 609 893 610 ARC4 is a stream cipher using keys r !! 894 comment "Ciphers" 611 bits in length. This algorithm is r << 612 WEP, but it should not be for other << 613 weakness of the algorithm. << 614 895 615 config CRYPTO_CHACHA20 !! 896 config CRYPTO_AES 616 tristate "ChaCha" !! 897 tristate "AES cipher algorithms" 617 select CRYPTO_LIB_CHACHA_GENERIC !! 898 select CRYPTO_ALGAPI 618 select CRYPTO_SKCIPHER << 619 help 899 help 620 The ChaCha20, XChaCha20, and XChaCha !! 900 AES cipher algorithms (FIPS-197). AES uses the Rijndael >> 901 algorithm. 621 902 622 ChaCha20 is a 256-bit high-speed str !! 903 Rijndael appears to be consistently a very good performer in 623 Bernstein and further specified in R !! 904 both hardware and software across a wide range of computing 624 This is the portable C implementatio !! 905 environments regardless of its use in feedback or non-feedback 625 https://cr.yp.to/chacha/chacha-20080 !! 906 modes. Its key setup time is excellent, and its key agility is >> 907 good. Rijndael's very low memory requirements make it very well >> 908 suited for restricted-space environments, in which it also >> 909 demonstrates excellent performance. Rijndael's operations are >> 910 among the easiest to defend against power and timing attacks. 626 911 627 XChaCha20 is the application of the !! 912 The AES specifies three key sizes: 128, 192 and 256 bits 628 rather than to Salsa20. XChaCha20 e << 629 from 64 bits (or 96 bits using the R << 630 while provably retaining ChaCha20's << 631 https://cr.yp.to/snuffle/xsalsa-2008 << 632 << 633 XChaCha12 is XChaCha20 reduced to 12 << 634 reduced security margin but increase << 635 in some performance-sensitive scenar << 636 913 637 config CRYPTO_CBC !! 914 See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information. 638 tristate "CBC (Cipher Block Chaining)" !! 915 639 select CRYPTO_SKCIPHER !! 916 config CRYPTO_AES_TI 640 select CRYPTO_MANAGER !! 917 tristate "Fixed time AES cipher" >> 918 select CRYPTO_ALGAPI 641 help 919 help 642 CBC (Cipher Block Chaining) mode (NI !! 920 This is a generic implementation of AES that attempts to eliminate >> 921 data dependent latencies as much as possible without affecting >> 922 performance too much. It is intended for use by the generic CCM >> 923 and GCM drivers, and other CTR or CMAC/XCBC based modes that rely >> 924 solely on encryption (although decryption is supported as well, but >> 925 with a more dramatic performance hit) 643 926 644 This block cipher mode is required f !! 927 Instead of using 16 lookup tables of 1 KB each, (8 for encryption and >> 928 8 for decryption), this implementation only uses just two S-boxes of >> 929 256 bytes each, and attempts to eliminate data dependent latencies by >> 930 prefetching the entire table into the cache at the start of each >> 931 block. 645 932 646 config CRYPTO_CTR !! 933 config CRYPTO_AES_586 647 tristate "CTR (Counter)" !! 934 tristate "AES cipher algorithms (i586)" 648 select CRYPTO_SKCIPHER !! 935 depends on (X86 || UML_X86) && !64BIT 649 select CRYPTO_MANAGER !! 936 select CRYPTO_ALGAPI >> 937 select CRYPTO_AES 650 help 938 help 651 CTR (Counter) mode (NIST SP800-38A) !! 939 AES cipher algorithms (FIPS-197). AES uses the Rijndael >> 940 algorithm. 652 941 653 config CRYPTO_CTS !! 942 Rijndael appears to be consistently a very good performer in 654 tristate "CTS (Cipher Text Stealing)" !! 943 both hardware and software across a wide range of computing 655 select CRYPTO_SKCIPHER !! 944 environments regardless of its use in feedback or non-feedback 656 select CRYPTO_MANAGER !! 945 modes. Its key setup time is excellent, and its key agility is 657 help !! 946 good. Rijndael's very low memory requirements make it very well 658 CBC-CS3 variant of CTS (Cipher Text !! 947 suited for restricted-space environments, in which it also 659 Addendum to SP800-38A (October 2010) !! 948 demonstrates excellent performance. Rijndael's operations are >> 949 among the easiest to defend against power and timing attacks. 660 950 661 This mode is required for Kerberos g !! 951 The AES specifies three key sizes: 128, 192 and 256 bits 662 for AES encryption. << 663 952 664 config CRYPTO_ECB !! 953 See <http://csrc.nist.gov/encryption/aes/> for more information. 665 tristate "ECB (Electronic Codebook)" << 666 select CRYPTO_SKCIPHER2 << 667 select CRYPTO_MANAGER << 668 help << 669 ECB (Electronic Codebook) mode (NIST << 670 954 671 config CRYPTO_HCTR2 !! 955 config CRYPTO_AES_X86_64 672 tristate "HCTR2" !! 956 tristate "AES cipher algorithms (x86_64)" 673 select CRYPTO_XCTR !! 957 depends on (X86 || UML_X86) && 64BIT 674 select CRYPTO_POLYVAL !! 958 select CRYPTO_ALGAPI 675 select CRYPTO_MANAGER !! 959 select CRYPTO_AES 676 help 960 help 677 HCTR2 length-preserving encryption m !! 961 AES cipher algorithms (FIPS-197). AES uses the Rijndael >> 962 algorithm. 678 963 679 A mode for storage encryption that i !! 964 Rijndael appears to be consistently a very good performer in 680 instructions to accelerate AES and c !! 965 both hardware and software across a wide range of computing 681 x86 processors with AES-NI and CLMUL !! 966 environments regardless of its use in feedback or non-feedback 682 ARMv8 crypto extensions. !! 967 modes. Its key setup time is excellent, and its key agility is >> 968 good. Rijndael's very low memory requirements make it very well >> 969 suited for restricted-space environments, in which it also >> 970 demonstrates excellent performance. Rijndael's operations are >> 971 among the easiest to defend against power and timing attacks. 683 972 684 See https://eprint.iacr.org/2021/144 !! 973 The AES specifies three key sizes: 128, 192 and 256 bits 685 974 686 config CRYPTO_KEYWRAP !! 975 See <http://csrc.nist.gov/encryption/aes/> for more information. 687 tristate "KW (AES Key Wrap)" << 688 select CRYPTO_SKCIPHER << 689 select CRYPTO_MANAGER << 690 help << 691 KW (AES Key Wrap) authenticated encr << 692 and RFC3394) without padding. << 693 976 694 config CRYPTO_LRW !! 977 config CRYPTO_AES_NI_INTEL 695 tristate "LRW (Liskov Rivest Wagner)" !! 978 tristate "AES cipher algorithms (AES-NI)" 696 select CRYPTO_LIB_GF128MUL !! 979 depends on X86 697 select CRYPTO_SKCIPHER !! 980 select CRYPTO_AEAD 698 select CRYPTO_MANAGER !! 981 select CRYPTO_AES_X86_64 if 64BIT 699 select CRYPTO_ECB !! 982 select CRYPTO_AES_586 if !64BIT >> 983 select CRYPTO_ALGAPI >> 984 select CRYPTO_BLKCIPHER >> 985 select CRYPTO_GLUE_HELPER_X86 if 64BIT >> 986 select CRYPTO_SIMD 700 help 987 help 701 LRW (Liskov Rivest Wagner) mode !! 988 Use Intel AES-NI instructions for AES algorithm. 702 989 703 A tweakable, non malleable, non mova !! 990 AES cipher algorithms (FIPS-197). AES uses the Rijndael 704 narrow block cipher mode for dm-cryp !! 991 algorithm. 705 specification string aes-lrw-benbi, << 706 The first 128, 192 or 256 bits in th << 707 rest is used to tie each cipher bloc << 708 992 709 See https://people.csail.mit.edu/riv !! 993 Rijndael appears to be consistently a very good performer in >> 994 both hardware and software across a wide range of computing >> 995 environments regardless of its use in feedback or non-feedback >> 996 modes. Its key setup time is excellent, and its key agility is >> 997 good. Rijndael's very low memory requirements make it very well >> 998 suited for restricted-space environments, in which it also >> 999 demonstrates excellent performance. Rijndael's operations are >> 1000 among the easiest to defend against power and timing attacks. 710 1001 711 config CRYPTO_PCBC !! 1002 The AES specifies three key sizes: 128, 192 and 256 bits 712 tristate "PCBC (Propagating Cipher Blo << 713 select CRYPTO_SKCIPHER << 714 select CRYPTO_MANAGER << 715 help << 716 PCBC (Propagating Cipher Block Chain << 717 1003 718 This block cipher mode is required f !! 1004 See <http://csrc.nist.gov/encryption/aes/> for more information. 719 1005 720 config CRYPTO_XCTR !! 1006 In addition to AES cipher algorithm support, the acceleration 721 tristate !! 1007 for some popular block cipher mode is supported too, including 722 select CRYPTO_SKCIPHER !! 1008 ECB, CBC, LRW, PCBC, XTS. The 64 bit version has additional 723 select CRYPTO_MANAGER !! 1009 acceleration for CTR. >> 1010 >> 1011 config CRYPTO_AES_SPARC64 >> 1012 tristate "AES cipher algorithms (SPARC64)" >> 1013 depends on SPARC64 >> 1014 select CRYPTO_CRYPTD >> 1015 select CRYPTO_ALGAPI 724 help 1016 help 725 XCTR (XOR Counter) mode for HCTR2 !! 1017 Use SPARC64 crypto opcodes for AES algorithm. >> 1018 >> 1019 AES cipher algorithms (FIPS-197). AES uses the Rijndael >> 1020 algorithm. 726 1021 727 This blockcipher mode is a variant o !! 1022 Rijndael appears to be consistently a very good performer in 728 addition rather than big-endian arit !! 1023 both hardware and software across a wide range of computing >> 1024 environments regardless of its use in feedback or non-feedback >> 1025 modes. Its key setup time is excellent, and its key agility is >> 1026 good. Rijndael's very low memory requirements make it very well >> 1027 suited for restricted-space environments, in which it also >> 1028 demonstrates excellent performance. Rijndael's operations are >> 1029 among the easiest to defend against power and timing attacks. 729 1030 730 XCTR mode is used to implement HCTR2 !! 1031 The AES specifies three key sizes: 128, 192 and 256 bits 731 1032 732 config CRYPTO_XTS !! 1033 See <http://csrc.nist.gov/encryption/aes/> for more information. 733 tristate "XTS (XOR Encrypt XOR with ci << 734 select CRYPTO_SKCIPHER << 735 select CRYPTO_MANAGER << 736 select CRYPTO_ECB << 737 help << 738 XTS (XOR Encrypt XOR with ciphertext << 739 and IEEE 1619) << 740 1034 741 Use with aes-xts-plain, key size 256 !! 1035 In addition to AES cipher algorithm support, the acceleration 742 implementation currently can't handl !! 1036 for some popular block cipher mode is supported too, including 743 multiple of 16 bytes. !! 1037 ECB and CBC. >> 1038 >> 1039 config CRYPTO_AES_PPC_SPE >> 1040 tristate "AES cipher algorithms (PPC SPE)" >> 1041 depends on PPC && SPE >> 1042 help >> 1043 AES cipher algorithms (FIPS-197). Additionally the acceleration >> 1044 for popular block cipher modes ECB, CBC, CTR and XTS is supported. >> 1045 This module should only be used for low power (router) devices >> 1046 without hardware AES acceleration (e.g. caam crypto). It reduces the >> 1047 size of the AES tables from 16KB to 8KB + 256 bytes and mitigates >> 1048 timining attacks. Nevertheless it might be not as secure as other >> 1049 architecture specific assembler implementations that work on 1KB >> 1050 tables or 256 bytes S-boxes. 744 1051 745 config CRYPTO_NHPOLY1305 !! 1052 config CRYPTO_ANUBIS 746 tristate !! 1053 tristate "Anubis cipher algorithm" 747 select CRYPTO_HASH !! 1054 select CRYPTO_ALGAPI 748 select CRYPTO_LIB_POLY1305_GENERIC !! 1055 help >> 1056 Anubis cipher algorithm. 749 1057 750 endmenu !! 1058 Anubis is a variable key length cipher which can use keys from >> 1059 128 bits to 320 bits in length. It was evaluated as a entrant >> 1060 in the NESSIE competition. 751 1061 752 menu "AEAD (authenticated encryption with asso !! 1062 See also: >> 1063 <https://www.cosic.esat.kuleuven.be/nessie/reports/> >> 1064 <http://www.larc.usp.br/~pbarreto/AnubisPage.html> 753 1065 754 config CRYPTO_AEGIS128 !! 1066 config CRYPTO_ARC4 755 tristate "AEGIS-128" !! 1067 tristate "ARC4 cipher algorithm" 756 select CRYPTO_AEAD !! 1068 select CRYPTO_BLKCIPHER 757 select CRYPTO_AES # for AES S-box tab << 758 help 1069 help 759 AEGIS-128 AEAD algorithm !! 1070 ARC4 cipher algorithm. 760 1071 761 config CRYPTO_AEGIS128_SIMD !! 1072 ARC4 is a stream cipher using keys ranging from 8 bits to 2048 762 bool "AEGIS-128 (arm NEON, arm64 NEON) !! 1073 bits in length. This algorithm is required for driver-based 763 depends on CRYPTO_AEGIS128 && ((ARM || !! 1074 WEP, but it should not be for other purposes because of the 764 default y !! 1075 weakness of the algorithm. >> 1076 >> 1077 config CRYPTO_BLOWFISH >> 1078 tristate "Blowfish cipher algorithm" >> 1079 select CRYPTO_ALGAPI >> 1080 select CRYPTO_BLOWFISH_COMMON 765 help 1081 help 766 AEGIS-128 AEAD algorithm !! 1082 Blowfish cipher algorithm, by Bruce Schneier. 767 1083 768 Architecture: arm or arm64 using: !! 1084 This is a variable key length cipher which can use keys from 32 769 - NEON (Advanced SIMD) extension !! 1085 bits to 448 bits in length. It's fast, simple and specifically >> 1086 designed for use on "large microprocessors". 770 1087 771 config CRYPTO_CHACHA20POLY1305 !! 1088 See also: 772 tristate "ChaCha20-Poly1305" !! 1089 <http://www.schneier.com/blowfish.html> 773 select CRYPTO_CHACHA20 << 774 select CRYPTO_POLY1305 << 775 select CRYPTO_AEAD << 776 select CRYPTO_MANAGER << 777 help << 778 ChaCha20 stream cipher and Poly1305 << 779 mode (RFC8439) << 780 1090 781 config CRYPTO_CCM !! 1091 config CRYPTO_BLOWFISH_COMMON 782 tristate "CCM (Counter with Cipher Blo !! 1092 tristate 783 select CRYPTO_CTR << 784 select CRYPTO_HASH << 785 select CRYPTO_AEAD << 786 select CRYPTO_MANAGER << 787 help 1093 help 788 CCM (Counter with Cipher Block Chain !! 1094 Common parts of the Blowfish cipher algorithm shared by the 789 authenticated encryption mode (NIST !! 1095 generic c and the assembler implementations. 790 1096 791 config CRYPTO_GCM !! 1097 See also: 792 tristate "GCM (Galois/Counter Mode) an !! 1098 <http://www.schneier.com/blowfish.html> 793 select CRYPTO_CTR !! 1099 794 select CRYPTO_AEAD !! 1100 config CRYPTO_BLOWFISH_X86_64 795 select CRYPTO_GHASH !! 1101 tristate "Blowfish cipher algorithm (x86_64)" 796 select CRYPTO_NULL !! 1102 depends on X86 && 64BIT 797 select CRYPTO_MANAGER !! 1103 select CRYPTO_ALGAPI >> 1104 select CRYPTO_BLOWFISH_COMMON 798 help 1105 help 799 GCM (Galois/Counter Mode) authentica !! 1106 Blowfish cipher algorithm (x86_64), by Bruce Schneier. 800 (GCM Message Authentication Code) (N << 801 1107 802 This is required for IPSec ESP (XFRM !! 1108 This is a variable key length cipher which can use keys from 32 >> 1109 bits to 448 bits in length. It's fast, simple and specifically >> 1110 designed for use on "large microprocessors". 803 1111 804 config CRYPTO_GENIV !! 1112 See also: 805 tristate !! 1113 <http://www.schneier.com/blowfish.html> 806 select CRYPTO_AEAD << 807 select CRYPTO_NULL << 808 select CRYPTO_MANAGER << 809 select CRYPTO_RNG_DEFAULT << 810 1114 811 config CRYPTO_SEQIV !! 1115 config CRYPTO_CAMELLIA 812 tristate "Sequence Number IV Generator !! 1116 tristate "Camellia cipher algorithms" 813 select CRYPTO_GENIV !! 1117 depends on CRYPTO >> 1118 select CRYPTO_ALGAPI 814 help 1119 help 815 Sequence Number IV generator !! 1120 Camellia cipher algorithms module. 816 1121 817 This IV generator generates an IV ba !! 1122 Camellia is a symmetric key block cipher developed jointly 818 xoring it with a salt. This algorit !! 1123 at NTT and Mitsubishi Electric Corporation. >> 1124 >> 1125 The Camellia specifies three key sizes: 128, 192 and 256 bits. 819 1126 820 This is required for IPsec ESP (XFRM !! 1127 See also: >> 1128 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 821 1129 822 config CRYPTO_ECHAINIV !! 1130 config CRYPTO_CAMELLIA_X86_64 823 tristate "Encrypted Chain IV Generator !! 1131 tristate "Camellia cipher algorithm (x86_64)" 824 select CRYPTO_GENIV !! 1132 depends on X86 && 64BIT >> 1133 depends on CRYPTO >> 1134 select CRYPTO_ALGAPI >> 1135 select CRYPTO_GLUE_HELPER_X86 >> 1136 select CRYPTO_LRW >> 1137 select CRYPTO_XTS 825 help 1138 help 826 Encrypted Chain IV generator !! 1139 Camellia cipher algorithm module (x86_64). 827 1140 828 This IV generator generates an IV ba !! 1141 Camellia is a symmetric key block cipher developed jointly 829 a sequence number xored with a salt. !! 1142 at NTT and Mitsubishi Electric Corporation. 830 algorithm for CBC. !! 1143 >> 1144 The Camellia specifies three key sizes: 128, 192 and 256 bits. >> 1145 >> 1146 See also: >> 1147 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 831 1148 832 config CRYPTO_ESSIV !! 1149 config CRYPTO_CAMELLIA_AESNI_AVX_X86_64 833 tristate "Encrypted Salt-Sector IV Gen !! 1150 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)" 834 select CRYPTO_AUTHENC !! 1151 depends on X86 && 64BIT >> 1152 depends on CRYPTO >> 1153 select CRYPTO_ALGAPI >> 1154 select CRYPTO_CRYPTD >> 1155 select CRYPTO_ABLK_HELPER >> 1156 select CRYPTO_GLUE_HELPER_X86 >> 1157 select CRYPTO_CAMELLIA_X86_64 >> 1158 select CRYPTO_LRW >> 1159 select CRYPTO_XTS 835 help 1160 help 836 Encrypted Salt-Sector IV generator !! 1161 Camellia cipher algorithm module (x86_64/AES-NI/AVX). >> 1162 >> 1163 Camellia is a symmetric key block cipher developed jointly >> 1164 at NTT and Mitsubishi Electric Corporation. 837 1165 838 This IV generator is used in some ca !! 1166 The Camellia specifies three key sizes: 128, 192 and 256 bits. 839 dm-crypt. It uses the hash of the bl << 840 symmetric key for a block encryption << 841 IV, making low entropy IV sources mo << 842 encryption. << 843 1167 844 This driver implements a crypto API !! 1168 See also: 845 instantiated either as an skcipher o !! 1169 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 846 type of the first template argument) << 847 and decryption requests to the encap << 848 ESSIV to the input IV. Note that in << 849 that the keys are presented in the s << 850 template, and that the IV appears at << 851 associated data (AAD) region (which << 852 1170 853 Note that the use of ESSIV is not re !! 1171 config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64 854 and so this only needs to be enabled !! 1172 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)" 855 existing encrypted volumes of filesy !! 1173 depends on X86 && 64BIT 856 building for a particular system tha !! 1174 depends on CRYPTO 857 the SoC in question has accelerated !! 1175 select CRYPTO_ALGAPI 858 combined with ESSIV the only feasibl !! 1176 select CRYPTO_CRYPTD 859 block encryption) !! 1177 select CRYPTO_ABLK_HELPER >> 1178 select CRYPTO_GLUE_HELPER_X86 >> 1179 select CRYPTO_CAMELLIA_X86_64 >> 1180 select CRYPTO_CAMELLIA_AESNI_AVX_X86_64 >> 1181 select CRYPTO_LRW >> 1182 select CRYPTO_XTS >> 1183 help >> 1184 Camellia cipher algorithm module (x86_64/AES-NI/AVX2). 860 1185 861 endmenu !! 1186 Camellia is a symmetric key block cipher developed jointly >> 1187 at NTT and Mitsubishi Electric Corporation. 862 1188 863 menu "Hashes, digests, and MACs" !! 1189 The Camellia specifies three key sizes: 128, 192 and 256 bits. 864 1190 865 config CRYPTO_BLAKE2B !! 1191 See also: 866 tristate "BLAKE2b" !! 1192 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 867 select CRYPTO_HASH !! 1193 >> 1194 config CRYPTO_CAMELLIA_SPARC64 >> 1195 tristate "Camellia cipher algorithm (SPARC64)" >> 1196 depends on SPARC64 >> 1197 depends on CRYPTO >> 1198 select CRYPTO_ALGAPI 868 help 1199 help 869 BLAKE2b cryptographic hash function !! 1200 Camellia cipher algorithm module (SPARC64). 870 1201 871 BLAKE2b is optimized for 64-bit plat !! 1202 Camellia is a symmetric key block cipher developed jointly 872 of any size between 1 and 64 bytes. !! 1203 at NTT and Mitsubishi Electric Corporation. 873 1204 874 This module provides the following a !! 1205 The Camellia specifies three key sizes: 128, 192 and 256 bits. 875 - blake2b-160 << 876 - blake2b-256 << 877 - blake2b-384 << 878 - blake2b-512 << 879 1206 880 Used by the btrfs filesystem. !! 1207 See also: >> 1208 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 881 1209 882 See https://blake2.net for further i !! 1210 config CRYPTO_CAST_COMMON >> 1211 tristate >> 1212 help >> 1213 Common parts of the CAST cipher algorithms shared by the >> 1214 generic c and the assembler implementations. 883 1215 884 config CRYPTO_CMAC !! 1216 config CRYPTO_CAST5 885 tristate "CMAC (Cipher-based MAC)" !! 1217 tristate "CAST5 (CAST-128) cipher algorithm" 886 select CRYPTO_HASH !! 1218 select CRYPTO_ALGAPI 887 select CRYPTO_MANAGER !! 1219 select CRYPTO_CAST_COMMON 888 help 1220 help 889 CMAC (Cipher-based Message Authentic !! 1221 The CAST5 encryption algorithm (synonymous with CAST-128) is 890 mode (NIST SP800-38B and IETF RFC449 !! 1222 described in RFC2144. 891 1223 892 config CRYPTO_GHASH !! 1224 config CRYPTO_CAST5_AVX_X86_64 893 tristate "GHASH" !! 1225 tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)" 894 select CRYPTO_HASH !! 1226 depends on X86 && 64BIT 895 select CRYPTO_LIB_GF128MUL !! 1227 select CRYPTO_ALGAPI >> 1228 select CRYPTO_CRYPTD >> 1229 select CRYPTO_ABLK_HELPER >> 1230 select CRYPTO_CAST_COMMON >> 1231 select CRYPTO_CAST5 896 help 1232 help 897 GCM GHASH function (NIST SP800-38D) !! 1233 The CAST5 encryption algorithm (synonymous with CAST-128) is >> 1234 described in RFC2144. 898 1235 899 config CRYPTO_HMAC !! 1236 This module provides the Cast5 cipher algorithm that processes 900 tristate "HMAC (Keyed-Hash MAC)" !! 1237 sixteen blocks parallel using the AVX instruction set. 901 select CRYPTO_HASH !! 1238 902 select CRYPTO_MANAGER !! 1239 config CRYPTO_CAST6 >> 1240 tristate "CAST6 (CAST-256) cipher algorithm" >> 1241 select CRYPTO_ALGAPI >> 1242 select CRYPTO_CAST_COMMON >> 1243 help >> 1244 The CAST6 encryption algorithm (synonymous with CAST-256) is >> 1245 described in RFC2612. >> 1246 >> 1247 config CRYPTO_CAST6_AVX_X86_64 >> 1248 tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)" >> 1249 depends on X86 && 64BIT >> 1250 select CRYPTO_ALGAPI >> 1251 select CRYPTO_CRYPTD >> 1252 select CRYPTO_ABLK_HELPER >> 1253 select CRYPTO_GLUE_HELPER_X86 >> 1254 select CRYPTO_CAST_COMMON >> 1255 select CRYPTO_CAST6 >> 1256 select CRYPTO_LRW >> 1257 select CRYPTO_XTS 903 help 1258 help 904 HMAC (Keyed-Hash Message Authenticat !! 1259 The CAST6 encryption algorithm (synonymous with CAST-256) is 905 RFC2104) !! 1260 described in RFC2612. 906 1261 907 This is required for IPsec AH (XFRM_ !! 1262 This module provides the Cast6 cipher algorithm that processes >> 1263 eight blocks parallel using the AVX instruction set. 908 1264 909 config CRYPTO_MD4 !! 1265 config CRYPTO_DES 910 tristate "MD4" !! 1266 tristate "DES and Triple DES EDE cipher algorithms" 911 select CRYPTO_HASH !! 1267 select CRYPTO_ALGAPI 912 help 1268 help 913 MD4 message digest algorithm (RFC132 !! 1269 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3). 914 1270 915 config CRYPTO_MD5 !! 1271 config CRYPTO_DES_SPARC64 916 tristate "MD5" !! 1272 tristate "DES and Triple DES EDE cipher algorithms (SPARC64)" 917 select CRYPTO_HASH !! 1273 depends on SPARC64 >> 1274 select CRYPTO_ALGAPI >> 1275 select CRYPTO_DES 918 help 1276 help 919 MD5 message digest algorithm (RFC132 !! 1277 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3), >> 1278 optimized using SPARC64 crypto opcodes. 920 1279 921 config CRYPTO_MICHAEL_MIC !! 1280 config CRYPTO_DES3_EDE_X86_64 922 tristate "Michael MIC" !! 1281 tristate "Triple DES EDE cipher algorithm (x86-64)" 923 select CRYPTO_HASH !! 1282 depends on X86 && 64BIT >> 1283 select CRYPTO_ALGAPI >> 1284 select CRYPTO_DES 924 help 1285 help 925 Michael MIC (Message Integrity Code) !! 1286 Triple DES EDE (FIPS 46-3) algorithm. 926 1287 927 Defined by the IEEE 802.11i TKIP (Te !! 1288 This module provides implementation of the Triple DES EDE cipher 928 known as WPA (Wif-Fi Protected Acces !! 1289 algorithm that is optimized for x86-64 processors. Two versions of >> 1290 algorithm are provided; regular processing one input block and >> 1291 one that processes three blocks parallel. 929 1292 930 This algorithm is required for TKIP, !! 1293 config CRYPTO_FCRYPT 931 other purposes because of the weakne !! 1294 tristate "FCrypt cipher algorithm" >> 1295 select CRYPTO_ALGAPI >> 1296 select CRYPTO_BLKCIPHER >> 1297 help >> 1298 FCrypt algorithm used by RxRPC. 932 1299 933 config CRYPTO_POLYVAL !! 1300 config CRYPTO_KHAZAD 934 tristate !! 1301 tristate "Khazad cipher algorithm" 935 select CRYPTO_HASH !! 1302 select CRYPTO_ALGAPI 936 select CRYPTO_LIB_GF128MUL << 937 help 1303 help 938 POLYVAL hash function for HCTR2 !! 1304 Khazad cipher algorithm. 939 1305 940 This is used in HCTR2. It is not a !! 1306 Khazad was a finalist in the initial NESSIE competition. It is 941 cryptographic hash function. !! 1307 an algorithm optimized for 64-bit processors with good performance >> 1308 on 32-bit processors. Khazad uses an 128 bit key size. 942 1309 943 config CRYPTO_POLY1305 !! 1310 See also: 944 tristate "Poly1305" !! 1311 <http://www.larc.usp.br/~pbarreto/KhazadPage.html> 945 select CRYPTO_HASH !! 1312 946 select CRYPTO_LIB_POLY1305_GENERIC !! 1313 config CRYPTO_SALSA20 >> 1314 tristate "Salsa20 stream cipher algorithm" >> 1315 select CRYPTO_BLKCIPHER 947 help 1316 help 948 Poly1305 authenticator algorithm (RF !! 1317 Salsa20 stream cipher algorithm. 949 1318 950 Poly1305 is an authenticator algorit !! 1319 Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT 951 It is used for the ChaCha20-Poly1305 !! 1320 Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/> 952 in IETF protocols. This is the porta << 953 1321 954 config CRYPTO_RMD160 !! 1322 The Salsa20 stream cipher algorithm is designed by Daniel J. 955 tristate "RIPEMD-160" !! 1323 Bernstein <http://cr.yp.to/snuffle.html">djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html> 956 select CRYPTO_HASH << 957 help << 958 RIPEMD-160 hash function (ISO/IEC 10 << 959 1324 960 RIPEMD-160 is a 160-bit cryptographi !! 1325 config CRYPTO_SALSA20_586 961 to be used as a secure replacement f !! 1326 tristate "Salsa20 stream cipher algorithm (i586)" 962 MD4, MD5 and its predecessor RIPEMD !! 1327 depends on (X86 || UML_X86) && !64BIT 963 (not to be confused with RIPEMD-128) !! 1328 select CRYPTO_BLKCIPHER >> 1329 help >> 1330 Salsa20 stream cipher algorithm. 964 1331 965 Its speed is comparable to SHA-1 and !! 1332 Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT 966 against RIPEMD-160. !! 1333 Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/> 967 1334 968 Developed by Hans Dobbertin, Antoon !! 1335 The Salsa20 stream cipher algorithm is designed by Daniel J. 969 See https://homes.esat.kuleuven.be/~ !! 1336 Bernstein <http://cr.yp.to/snuffle.html">djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html> 970 for further information. << 971 1337 972 config CRYPTO_SHA1 !! 1338 config CRYPTO_SALSA20_X86_64 973 tristate "SHA-1" !! 1339 tristate "Salsa20 stream cipher algorithm (x86_64)" 974 select CRYPTO_HASH !! 1340 depends on (X86 || UML_X86) && 64BIT 975 select CRYPTO_LIB_SHA1 !! 1341 select CRYPTO_BLKCIPHER 976 help 1342 help 977 SHA-1 secure hash algorithm (FIPS 18 !! 1343 Salsa20 stream cipher algorithm. 978 1344 979 config CRYPTO_SHA256 !! 1345 Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT 980 tristate "SHA-224 and SHA-256" !! 1346 Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/> 981 select CRYPTO_HASH !! 1347 982 select CRYPTO_LIB_SHA256 !! 1348 The Salsa20 stream cipher algorithm is designed by Daniel J. >> 1349 Bernstein <http://cr.yp.to/snuffle.html">djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html> >> 1350 >> 1351 config CRYPTO_CHACHA20 >> 1352 tristate "ChaCha20 cipher algorithm" >> 1353 select CRYPTO_BLKCIPHER 983 help 1354 help 984 SHA-224 and SHA-256 secure hash algo !! 1355 ChaCha20 cipher algorithm, RFC7539. 985 1356 986 This is required for IPsec AH (XFRM_ !! 1357 ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J. 987 Used by the btrfs filesystem, Ceph, !! 1358 Bernstein and further specified in RFC7539 for use in IETF protocols. >> 1359 This is the portable C implementation of ChaCha20. 988 1360 989 config CRYPTO_SHA512 !! 1361 See also: 990 tristate "SHA-384 and SHA-512" !! 1362 <http://cr.yp.to/chacha/chacha-20080128.pdf> 991 select CRYPTO_HASH !! 1363 >> 1364 config CRYPTO_CHACHA20_X86_64 >> 1365 tristate "ChaCha20 cipher algorithm (x86_64/SSSE3/AVX2)" >> 1366 depends on X86 && 64BIT >> 1367 select CRYPTO_BLKCIPHER >> 1368 select CRYPTO_CHACHA20 992 help 1369 help 993 SHA-384 and SHA-512 secure hash algo !! 1370 ChaCha20 cipher algorithm, RFC7539. 994 1371 995 config CRYPTO_SHA3 !! 1372 ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J. 996 tristate "SHA-3" !! 1373 Bernstein and further specified in RFC7539 for use in IETF protocols. 997 select CRYPTO_HASH !! 1374 This is the x86_64 assembler implementation using SIMD instructions. >> 1375 >> 1376 See also: >> 1377 <http://cr.yp.to/chacha/chacha-20080128.pdf> >> 1378 >> 1379 config CRYPTO_SEED >> 1380 tristate "SEED cipher algorithm" >> 1381 select CRYPTO_ALGAPI 998 help 1382 help 999 SHA-3 secure hash algorithms (FIPS 2 !! 1383 SEED cipher algorithm (RFC4269). 1000 1384 1001 config CRYPTO_SM3 !! 1385 SEED is a 128-bit symmetric key block cipher that has been 1002 tristate !! 1386 developed by KISA (Korea Information Security Agency) as a >> 1387 national standard encryption algorithm of the Republic of Korea. >> 1388 It is a 16 round block cipher with the key size of 128 bit. 1003 1389 1004 config CRYPTO_SM3_GENERIC !! 1390 See also: 1005 tristate "SM3 (ShangMi 3)" !! 1391 <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp> 1006 select CRYPTO_HASH !! 1392 1007 select CRYPTO_SM3 !! 1393 config CRYPTO_SERPENT >> 1394 tristate "Serpent cipher algorithm" >> 1395 select CRYPTO_ALGAPI 1008 help 1396 help 1009 SM3 (ShangMi 3) secure hash functio !! 1397 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1010 1398 1011 This is part of the Chinese Commerc !! 1399 Keys are allowed to be from 0 to 256 bits in length, in steps >> 1400 of 8 bits. Also includes the 'Tnepres' algorithm, a reversed >> 1401 variant of Serpent for compatibility with old kerneli.org code. 1012 1402 1013 References: !! 1403 See also: 1014 http://www.oscca.gov.cn/UpFile/2010 !! 1404 <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1015 https://datatracker.ietf.org/doc/ht << 1016 1405 1017 config CRYPTO_STREEBOG !! 1406 config CRYPTO_SERPENT_SSE2_X86_64 1018 tristate "Streebog" !! 1407 tristate "Serpent cipher algorithm (x86_64/SSE2)" 1019 select CRYPTO_HASH !! 1408 depends on X86 && 64BIT >> 1409 select CRYPTO_ALGAPI >> 1410 select CRYPTO_CRYPTD >> 1411 select CRYPTO_ABLK_HELPER >> 1412 select CRYPTO_GLUE_HELPER_X86 >> 1413 select CRYPTO_SERPENT >> 1414 select CRYPTO_LRW >> 1415 select CRYPTO_XTS 1020 help 1416 help 1021 Streebog Hash Function (GOST R 34.1 !! 1417 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1022 1418 1023 This is one of the Russian cryptogr !! 1419 Keys are allowed to be from 0 to 256 bits in length, in steps 1024 GOST algorithms). This setting enab !! 1420 of 8 bits. 1025 256 and 512 bits output. << 1026 1421 1027 References: !! 1422 This module provides Serpent cipher algorithm that processes eight 1028 https://tc26.ru/upload/iblock/fed/f !! 1423 blocks parallel using SSE2 instruction set. 1029 https://tools.ietf.org/html/rfc6986 << 1030 1424 1031 config CRYPTO_VMAC !! 1425 See also: 1032 tristate "VMAC" !! 1426 <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1033 select CRYPTO_HASH !! 1427 1034 select CRYPTO_MANAGER !! 1428 config CRYPTO_SERPENT_SSE2_586 >> 1429 tristate "Serpent cipher algorithm (i586/SSE2)" >> 1430 depends on X86 && !64BIT >> 1431 select CRYPTO_ALGAPI >> 1432 select CRYPTO_CRYPTD >> 1433 select CRYPTO_ABLK_HELPER >> 1434 select CRYPTO_GLUE_HELPER_X86 >> 1435 select CRYPTO_SERPENT >> 1436 select CRYPTO_LRW >> 1437 select CRYPTO_XTS 1035 help 1438 help 1036 VMAC is a message authentication al !! 1439 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1037 very high speed on 64-bit architect << 1038 1440 1039 See https://fastcrypto.org/vmac for !! 1441 Keys are allowed to be from 0 to 256 bits in length, in steps >> 1442 of 8 bits. 1040 1443 1041 config CRYPTO_WP512 !! 1444 This module provides Serpent cipher algorithm that processes four 1042 tristate "Whirlpool" !! 1445 blocks parallel using SSE2 instruction set. 1043 select CRYPTO_HASH !! 1446 >> 1447 See also: >> 1448 <http://www.cl.cam.ac.uk/~rja14/serpent.html> >> 1449 >> 1450 config CRYPTO_SERPENT_AVX_X86_64 >> 1451 tristate "Serpent cipher algorithm (x86_64/AVX)" >> 1452 depends on X86 && 64BIT >> 1453 select CRYPTO_ALGAPI >> 1454 select CRYPTO_CRYPTD >> 1455 select CRYPTO_ABLK_HELPER >> 1456 select CRYPTO_GLUE_HELPER_X86 >> 1457 select CRYPTO_SERPENT >> 1458 select CRYPTO_LRW >> 1459 select CRYPTO_XTS 1044 help 1460 help 1045 Whirlpool hash function (ISO/IEC 10 !! 1461 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1046 1462 1047 512, 384 and 256-bit hashes. !! 1463 Keys are allowed to be from 0 to 256 bits in length, in steps >> 1464 of 8 bits. 1048 1465 1049 Whirlpool-512 is part of the NESSIE !! 1466 This module provides the Serpent cipher algorithm that processes >> 1467 eight blocks parallel using the AVX instruction set. 1050 1468 1051 See https://web.archive.org/web/201 !! 1469 See also: 1052 for further information. !! 1470 <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1053 1471 1054 config CRYPTO_XCBC !! 1472 config CRYPTO_SERPENT_AVX2_X86_64 1055 tristate "XCBC-MAC (Extended Cipher B !! 1473 tristate "Serpent cipher algorithm (x86_64/AVX2)" 1056 select CRYPTO_HASH !! 1474 depends on X86 && 64BIT 1057 select CRYPTO_MANAGER !! 1475 select CRYPTO_ALGAPI >> 1476 select CRYPTO_CRYPTD >> 1477 select CRYPTO_ABLK_HELPER >> 1478 select CRYPTO_GLUE_HELPER_X86 >> 1479 select CRYPTO_SERPENT >> 1480 select CRYPTO_SERPENT_AVX_X86_64 >> 1481 select CRYPTO_LRW >> 1482 select CRYPTO_XTS 1058 help 1483 help 1059 XCBC-MAC (Extended Cipher Block Cha !! 1484 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1060 Code) (RFC3566) << 1061 1485 1062 config CRYPTO_XXHASH !! 1486 Keys are allowed to be from 0 to 256 bits in length, in steps 1063 tristate "xxHash" !! 1487 of 8 bits. 1064 select CRYPTO_HASH !! 1488 1065 select XXHASH !! 1489 This module provides Serpent cipher algorithm that processes 16 >> 1490 blocks parallel using AVX2 instruction set. >> 1491 >> 1492 See also: >> 1493 <http://www.cl.cam.ac.uk/~rja14/serpent.html> >> 1494 >> 1495 config CRYPTO_TEA >> 1496 tristate "TEA, XTEA and XETA cipher algorithms" >> 1497 select CRYPTO_ALGAPI 1066 help 1498 help 1067 xxHash non-cryptographic hash algor !! 1499 TEA cipher algorithm. >> 1500 >> 1501 Tiny Encryption Algorithm is a simple cipher that uses >> 1502 many rounds for security. It is very fast and uses >> 1503 little memory. >> 1504 >> 1505 Xtendend Tiny Encryption Algorithm is a modification to >> 1506 the TEA algorithm to address a potential key weakness >> 1507 in the TEA algorithm. >> 1508 >> 1509 Xtendend Encryption Tiny Algorithm is a mis-implementation >> 1510 of the XTEA algorithm for compatibility purposes. 1068 1511 1069 Extremely fast, working at speeds c !! 1512 config CRYPTO_TWOFISH >> 1513 tristate "Twofish cipher algorithm" >> 1514 select CRYPTO_ALGAPI >> 1515 select CRYPTO_TWOFISH_COMMON >> 1516 help >> 1517 Twofish cipher algorithm. 1070 1518 1071 Used by the btrfs filesystem. !! 1519 Twofish was submitted as an AES (Advanced Encryption Standard) >> 1520 candidate cipher by researchers at CounterPane Systems. It is a >> 1521 16 round block cipher supporting key sizes of 128, 192, and 256 >> 1522 bits. 1072 1523 1073 endmenu !! 1524 See also: >> 1525 <http://www.schneier.com/twofish.html> 1074 1526 1075 menu "CRCs (cyclic redundancy checks)" !! 1527 config CRYPTO_TWOFISH_COMMON >> 1528 tristate >> 1529 help >> 1530 Common parts of the Twofish cipher algorithm shared by the >> 1531 generic c and the assembler implementations. 1076 1532 1077 config CRYPTO_CRC32C !! 1533 config CRYPTO_TWOFISH_586 1078 tristate "CRC32c" !! 1534 tristate "Twofish cipher algorithms (i586)" 1079 select CRYPTO_HASH !! 1535 depends on (X86 || UML_X86) && !64BIT 1080 select CRC32 !! 1536 select CRYPTO_ALGAPI >> 1537 select CRYPTO_TWOFISH_COMMON 1081 help 1538 help 1082 CRC32c CRC algorithm with the iSCSI !! 1539 Twofish cipher algorithm. 1083 1540 1084 A 32-bit CRC (cyclic redundancy che !! 1541 Twofish was submitted as an AES (Advanced Encryption Standard) 1085 by G. Castagnoli, S. Braeuer and M. !! 1542 candidate cipher by researchers at CounterPane Systems. It is a 1086 Redundancy-Check Codes with 24 and !! 1543 16 round block cipher supporting key sizes of 128, 192, and 256 1087 on Communications, Vol. 41, No. 6, !! 1544 bits. 1088 iSCSI. << 1089 1545 1090 Used by btrfs, ext4, jbd2, NVMeoF/T !! 1546 See also: >> 1547 <http://www.schneier.com/twofish.html> 1091 1548 1092 config CRYPTO_CRC32 !! 1549 config CRYPTO_TWOFISH_X86_64 1093 tristate "CRC32" !! 1550 tristate "Twofish cipher algorithm (x86_64)" 1094 select CRYPTO_HASH !! 1551 depends on (X86 || UML_X86) && 64BIT 1095 select CRC32 !! 1552 select CRYPTO_ALGAPI >> 1553 select CRYPTO_TWOFISH_COMMON 1096 help 1554 help 1097 CRC32 CRC algorithm (IEEE 802.3) !! 1555 Twofish cipher algorithm (x86_64). >> 1556 >> 1557 Twofish was submitted as an AES (Advanced Encryption Standard) >> 1558 candidate cipher by researchers at CounterPane Systems. It is a >> 1559 16 round block cipher supporting key sizes of 128, 192, and 256 >> 1560 bits. 1098 1561 1099 Used by RoCEv2 and f2fs. !! 1562 See also: >> 1563 <http://www.schneier.com/twofish.html> 1100 1564 1101 config CRYPTO_CRCT10DIF !! 1565 config CRYPTO_TWOFISH_X86_64_3WAY 1102 tristate "CRCT10DIF" !! 1566 tristate "Twofish cipher algorithm (x86_64, 3-way parallel)" 1103 select CRYPTO_HASH !! 1567 depends on X86 && 64BIT >> 1568 select CRYPTO_ALGAPI >> 1569 select CRYPTO_TWOFISH_COMMON >> 1570 select CRYPTO_TWOFISH_X86_64 >> 1571 select CRYPTO_GLUE_HELPER_X86 >> 1572 select CRYPTO_LRW >> 1573 select CRYPTO_XTS 1104 help 1574 help 1105 CRC16 CRC algorithm used for the T1 !! 1575 Twofish cipher algorithm (x86_64, 3-way parallel). >> 1576 >> 1577 Twofish was submitted as an AES (Advanced Encryption Standard) >> 1578 candidate cipher by researchers at CounterPane Systems. It is a >> 1579 16 round block cipher supporting key sizes of 128, 192, and 256 >> 1580 bits. 1106 1581 1107 CRC algorithm used by the SCSI Bloc !! 1582 This module provides Twofish cipher algorithm that processes three >> 1583 blocks parallel, utilizing resources of out-of-order CPUs better. 1108 1584 1109 config CRYPTO_CRC64_ROCKSOFT !! 1585 See also: 1110 tristate "CRC64 based on Rocksoft Mod !! 1586 <http://www.schneier.com/twofish.html> 1111 depends on CRC64 !! 1587 1112 select CRYPTO_HASH !! 1588 config CRYPTO_TWOFISH_AVX_X86_64 >> 1589 tristate "Twofish cipher algorithm (x86_64/AVX)" >> 1590 depends on X86 && 64BIT >> 1591 select CRYPTO_ALGAPI >> 1592 select CRYPTO_CRYPTD >> 1593 select CRYPTO_ABLK_HELPER >> 1594 select CRYPTO_GLUE_HELPER_X86 >> 1595 select CRYPTO_TWOFISH_COMMON >> 1596 select CRYPTO_TWOFISH_X86_64 >> 1597 select CRYPTO_TWOFISH_X86_64_3WAY >> 1598 select CRYPTO_LRW >> 1599 select CRYPTO_XTS 1113 help 1600 help 1114 CRC64 CRC algorithm based on the Ro !! 1601 Twofish cipher algorithm (x86_64/AVX). 1115 1602 1116 Used by the NVMe implementation of !! 1603 Twofish was submitted as an AES (Advanced Encryption Standard) >> 1604 candidate cipher by researchers at CounterPane Systems. It is a >> 1605 16 round block cipher supporting key sizes of 128, 192, and 256 >> 1606 bits. 1117 1607 1118 See https://zlib.net/crc_v3.txt !! 1608 This module provides the Twofish cipher algorithm that processes >> 1609 eight blocks parallel using the AVX Instruction Set. 1119 1610 1120 endmenu !! 1611 See also: >> 1612 <http://www.schneier.com/twofish.html> 1121 1613 1122 menu "Compression" !! 1614 comment "Compression" 1123 1615 1124 config CRYPTO_DEFLATE 1616 config CRYPTO_DEFLATE 1125 tristate "Deflate" !! 1617 tristate "Deflate compression algorithm" 1126 select CRYPTO_ALGAPI 1618 select CRYPTO_ALGAPI 1127 select CRYPTO_ACOMP2 1619 select CRYPTO_ACOMP2 1128 select ZLIB_INFLATE 1620 select ZLIB_INFLATE 1129 select ZLIB_DEFLATE 1621 select ZLIB_DEFLATE 1130 help 1622 help 1131 Deflate compression algorithm (RFC1 !! 1623 This is the Deflate algorithm (RFC1951), specified for use in >> 1624 IPSec with the IPCOMP protocol (RFC3173, RFC2394). 1132 1625 1133 Used by IPSec with the IPCOMP proto !! 1626 You will most probably want this if using IPSec. 1134 1627 1135 config CRYPTO_LZO 1628 config CRYPTO_LZO 1136 tristate "LZO" !! 1629 tristate "LZO compression algorithm" 1137 select CRYPTO_ALGAPI 1630 select CRYPTO_ALGAPI 1138 select CRYPTO_ACOMP2 1631 select CRYPTO_ACOMP2 1139 select LZO_COMPRESS 1632 select LZO_COMPRESS 1140 select LZO_DECOMPRESS 1633 select LZO_DECOMPRESS 1141 help 1634 help 1142 LZO compression algorithm !! 1635 This is the LZO algorithm. 1143 << 1144 See https://www.oberhumer.com/opens << 1145 1636 1146 config CRYPTO_842 1637 config CRYPTO_842 1147 tristate "842" !! 1638 tristate "842 compression algorithm" 1148 select CRYPTO_ALGAPI 1639 select CRYPTO_ALGAPI 1149 select CRYPTO_ACOMP2 1640 select CRYPTO_ACOMP2 1150 select 842_COMPRESS 1641 select 842_COMPRESS 1151 select 842_DECOMPRESS 1642 select 842_DECOMPRESS 1152 help 1643 help 1153 842 compression algorithm by IBM !! 1644 This is the 842 algorithm. 1154 << 1155 See https://github.com/plauth/lib84 << 1156 1645 1157 config CRYPTO_LZ4 1646 config CRYPTO_LZ4 1158 tristate "LZ4" !! 1647 tristate "LZ4 compression algorithm" 1159 select CRYPTO_ALGAPI 1648 select CRYPTO_ALGAPI 1160 select CRYPTO_ACOMP2 1649 select CRYPTO_ACOMP2 1161 select LZ4_COMPRESS 1650 select LZ4_COMPRESS 1162 select LZ4_DECOMPRESS 1651 select LZ4_DECOMPRESS 1163 help 1652 help 1164 LZ4 compression algorithm !! 1653 This is the LZ4 algorithm. 1165 << 1166 See https://github.com/lz4/lz4 for << 1167 1654 1168 config CRYPTO_LZ4HC 1655 config CRYPTO_LZ4HC 1169 tristate "LZ4HC" !! 1656 tristate "LZ4HC compression algorithm" 1170 select CRYPTO_ALGAPI 1657 select CRYPTO_ALGAPI 1171 select CRYPTO_ACOMP2 1658 select CRYPTO_ACOMP2 1172 select LZ4HC_COMPRESS 1659 select LZ4HC_COMPRESS 1173 select LZ4_DECOMPRESS 1660 select LZ4_DECOMPRESS 1174 help 1661 help 1175 LZ4 high compression mode algorithm !! 1662 This is the LZ4 high compression mode algorithm. 1176 << 1177 See https://github.com/lz4/lz4 for << 1178 << 1179 config CRYPTO_ZSTD << 1180 tristate "Zstd" << 1181 select CRYPTO_ALGAPI << 1182 select CRYPTO_ACOMP2 << 1183 select ZSTD_COMPRESS << 1184 select ZSTD_DECOMPRESS << 1185 help << 1186 zstd compression algorithm << 1187 1663 1188 See https://github.com/facebook/zst !! 1664 comment "Random Number Generation" 1189 << 1190 endmenu << 1191 << 1192 menu "Random number generation" << 1193 1665 1194 config CRYPTO_ANSI_CPRNG 1666 config CRYPTO_ANSI_CPRNG 1195 tristate "ANSI PRNG (Pseudo Random Nu !! 1667 tristate "Pseudo Random Number Generation for Cryptographic modules" 1196 select CRYPTO_AES 1668 select CRYPTO_AES 1197 select CRYPTO_RNG 1669 select CRYPTO_RNG 1198 help 1670 help 1199 Pseudo RNG (random number generator !! 1671 This option enables the generic pseudo random number generator 1200 !! 1672 for cryptographic modules. Uses the Algorithm specified in 1201 This uses the AES cipher algorithm. !! 1673 ANSI X9.31 A.2.4. Note that this option must be enabled if 1202 !! 1674 CRYPTO_FIPS is selected 1203 Note that this option must be enabl << 1204 1675 1205 menuconfig CRYPTO_DRBG_MENU 1676 menuconfig CRYPTO_DRBG_MENU 1206 tristate "NIST SP800-90A DRBG (Determ !! 1677 tristate "NIST SP800-90A DRBG" 1207 help 1678 help 1208 DRBG (Deterministic Random Bit Gene !! 1679 NIST SP800-90A compliant DRBG. In the following submenu, one or 1209 !! 1680 more of the DRBG types must be selected. 1210 In the following submenu, one or mo << 1211 1681 1212 if CRYPTO_DRBG_MENU 1682 if CRYPTO_DRBG_MENU 1213 1683 1214 config CRYPTO_DRBG_HMAC 1684 config CRYPTO_DRBG_HMAC 1215 bool 1685 bool 1216 default y 1686 default y 1217 select CRYPTO_HMAC 1687 select CRYPTO_HMAC 1218 select CRYPTO_SHA512 !! 1688 select CRYPTO_SHA256 1219 1689 1220 config CRYPTO_DRBG_HASH 1690 config CRYPTO_DRBG_HASH 1221 bool "Hash_DRBG" !! 1691 bool "Enable Hash DRBG" 1222 select CRYPTO_SHA256 1692 select CRYPTO_SHA256 1223 help 1693 help 1224 Hash_DRBG variant as defined in NIS !! 1694 Enable the Hash DRBG variant as defined in NIST SP800-90A. 1225 << 1226 This uses the SHA-1, SHA-256, SHA-3 << 1227 1695 1228 config CRYPTO_DRBG_CTR 1696 config CRYPTO_DRBG_CTR 1229 bool "CTR_DRBG" !! 1697 bool "Enable CTR DRBG" 1230 select CRYPTO_AES 1698 select CRYPTO_AES 1231 select CRYPTO_CTR !! 1699 depends on CRYPTO_CTR 1232 help 1700 help 1233 CTR_DRBG variant as defined in NIST !! 1701 Enable the CTR DRBG variant as defined in NIST SP800-90A. 1234 << 1235 This uses the AES cipher algorithm << 1236 1702 1237 config CRYPTO_DRBG 1703 config CRYPTO_DRBG 1238 tristate 1704 tristate 1239 default CRYPTO_DRBG_MENU 1705 default CRYPTO_DRBG_MENU 1240 select CRYPTO_RNG 1706 select CRYPTO_RNG 1241 select CRYPTO_JITTERENTROPY 1707 select CRYPTO_JITTERENTROPY 1242 1708 1243 endif # if CRYPTO_DRBG_MENU 1709 endif # if CRYPTO_DRBG_MENU 1244 1710 1245 config CRYPTO_JITTERENTROPY 1711 config CRYPTO_JITTERENTROPY 1246 tristate "CPU Jitter Non-Deterministi !! 1712 tristate "Jitterentropy Non-Deterministic Random Number Generator" 1247 select CRYPTO_RNG 1713 select CRYPTO_RNG 1248 select CRYPTO_SHA3 << 1249 help 1714 help 1250 CPU Jitter RNG (Random Number Gener !! 1715 The Jitterentropy RNG is a noise that is intended 1251 !! 1716 to provide seed to another RNG. The RNG does not 1252 A non-physical non-deterministic (" !! 1717 perform any cryptographic whitening of the generated 1253 compliant with NIST SP800-90B) inte !! 1718 random numbers. This Jitterentropy RNG registers with 1254 deterministic RNG (e.g., per NIST S !! 1719 the kernel crypto API and can be used by any caller. 1255 This RNG does not perform any crypt << 1256 random numbers. << 1257 << 1258 See https://www.chronox.de/jent/ << 1259 << 1260 if CRYPTO_JITTERENTROPY << 1261 if CRYPTO_FIPS && EXPERT << 1262 << 1263 choice << 1264 prompt "CPU Jitter RNG Memory Size" << 1265 default CRYPTO_JITTERENTROPY_MEMSIZE_ << 1266 help << 1267 The Jitter RNG measures the executi << 1268 Multiple consecutive memory accesse << 1269 size fits into a cache (e.g. L1), o << 1270 to that cache is measured. The clos << 1271 the less variations are measured an << 1272 obtained. Thus, if the memory size << 1273 obtained entropy is less than if th << 1274 L1 + L2, which in turn is less if t << 1275 L1 + L2 + L3. Thus, by selecting a << 1276 the entropy rate produced by the Ji << 1277 << 1278 config CRYPTO_JITTERENTROPY_MEMSIZE_2 << 1279 bool "2048 Bytes (default)" << 1280 << 1281 config CRYPTO_JITTERENTROPY_MEMSIZE_1 << 1282 bool "128 kBytes" << 1283 << 1284 config CRYPTO_JITTERENTROPY_MEMSIZE_1 << 1285 bool "1024 kBytes" << 1286 << 1287 config CRYPTO_JITTERENTROPY_MEMSIZE_8 << 1288 bool "8192 kBytes" << 1289 endchoice << 1290 << 1291 config CRYPTO_JITTERENTROPY_MEMORY_BLOCKS << 1292 int << 1293 default 64 if CRYPTO_JITTERENTROPY_ME << 1294 default 512 if CRYPTO_JITTERENTROPY_M << 1295 default 1024 if CRYPTO_JITTERENTROPY_ << 1296 default 4096 if CRYPTO_JITTERENTROPY_ << 1297 << 1298 config CRYPTO_JITTERENTROPY_MEMORY_BLOCKSIZE << 1299 int << 1300 default 32 if CRYPTO_JITTERENTROPY_ME << 1301 default 256 if CRYPTO_JITTERENTROPY_M << 1302 default 1024 if CRYPTO_JITTERENTROPY_ << 1303 default 2048 if CRYPTO_JITTERENTROPY_ << 1304 << 1305 config CRYPTO_JITTERENTROPY_OSR << 1306 int "CPU Jitter RNG Oversampling Rate << 1307 range 1 15 << 1308 default 3 << 1309 help << 1310 The Jitter RNG allows the specifica << 1311 The Jitter RNG operation requires a << 1312 measurements to produce one output << 1313 OSR value is multiplied with the am << 1314 generate one output block. Thus, th << 1315 by the OSR factor. The oversampling << 1316 on hardware whose timers deliver li << 1317 the timer is coarse) by setting the << 1318 trade-off, however, is that the Jit << 1319 to generate random numbers. << 1320 << 1321 config CRYPTO_JITTERENTROPY_TESTINTERFACE << 1322 bool "CPU Jitter RNG Test Interface" << 1323 help << 1324 The test interface allows a privile << 1325 the raw unconditioned high resoluti << 1326 is collected by the Jitter RNG for << 1327 this data is used at the same time << 1328 the Jitter RNG operates in an insec << 1329 recording is enabled. This interfac << 1330 intended for testing purposes and i << 1331 production systems. << 1332 << 1333 The raw noise data can be obtained << 1334 debugfs file. Using the option << 1335 jitterentropy_testing.boot_raw_hire << 1336 the first 1000 entropy events since << 1337 << 1338 If unsure, select N. << 1339 << 1340 endif # if CRYPTO_FIPS && EXPERT << 1341 << 1342 if !(CRYPTO_FIPS && EXPERT) << 1343 << 1344 config CRYPTO_JITTERENTROPY_MEMORY_BLOCKS << 1345 int << 1346 default 64 << 1347 << 1348 config CRYPTO_JITTERENTROPY_MEMORY_BLOCKSIZE << 1349 int << 1350 default 32 << 1351 << 1352 config CRYPTO_JITTERENTROPY_OSR << 1353 int << 1354 default 1 << 1355 << 1356 config CRYPTO_JITTERENTROPY_TESTINTERFACE << 1357 bool << 1358 << 1359 endif # if !(CRYPTO_FIPS && EXPERT) << 1360 endif # if CRYPTO_JITTERENTROPY << 1361 << 1362 config CRYPTO_KDF800108_CTR << 1363 tristate << 1364 select CRYPTO_HMAC << 1365 select CRYPTO_SHA256 << 1366 << 1367 endmenu << 1368 menu "Userspace interface" << 1369 1720 1370 config CRYPTO_USER_API 1721 config CRYPTO_USER_API 1371 tristate 1722 tristate 1372 1723 1373 config CRYPTO_USER_API_HASH 1724 config CRYPTO_USER_API_HASH 1374 tristate "Hash algorithms" !! 1725 tristate "User-space interface for hash algorithms" 1375 depends on NET 1726 depends on NET 1376 select CRYPTO_HASH 1727 select CRYPTO_HASH 1377 select CRYPTO_USER_API 1728 select CRYPTO_USER_API 1378 help 1729 help 1379 Enable the userspace interface for !! 1730 This option enables the user-spaces interface for hash 1380 !! 1731 algorithms. 1381 See Documentation/crypto/userspace- << 1382 https://www.chronox.de/libkcapi/htm << 1383 1732 1384 config CRYPTO_USER_API_SKCIPHER 1733 config CRYPTO_USER_API_SKCIPHER 1385 tristate "Symmetric key cipher algori !! 1734 tristate "User-space interface for symmetric key cipher algorithms" 1386 depends on NET 1735 depends on NET 1387 select CRYPTO_SKCIPHER !! 1736 select CRYPTO_BLKCIPHER 1388 select CRYPTO_USER_API 1737 select CRYPTO_USER_API 1389 help 1738 help 1390 Enable the userspace interface for !! 1739 This option enables the user-spaces interface for symmetric 1391 !! 1740 key cipher algorithms. 1392 See Documentation/crypto/userspace- << 1393 https://www.chronox.de/libkcapi/htm << 1394 1741 1395 config CRYPTO_USER_API_RNG 1742 config CRYPTO_USER_API_RNG 1396 tristate "RNG (random number generato !! 1743 tristate "User-space interface for random number generator algorithms" 1397 depends on NET 1744 depends on NET 1398 select CRYPTO_RNG 1745 select CRYPTO_RNG 1399 select CRYPTO_USER_API 1746 select CRYPTO_USER_API 1400 help 1747 help 1401 Enable the userspace interface for !! 1748 This option enables the user-spaces interface for random 1402 algorithms. !! 1749 number generator algorithms. 1403 << 1404 See Documentation/crypto/userspace- << 1405 https://www.chronox.de/libkcapi/htm << 1406 << 1407 config CRYPTO_USER_API_RNG_CAVP << 1408 bool "Enable CAVP testing of DRBG" << 1409 depends on CRYPTO_USER_API_RNG && CRY << 1410 help << 1411 Enable extra APIs in the userspace << 1412 (Cryptographic Algorithm Validation << 1413 - resetting DRBG entropy << 1414 - providing Additional Data << 1415 << 1416 This should only be enabled for CAV << 1417 no unless you know what this is. << 1418 1750 1419 config CRYPTO_USER_API_AEAD 1751 config CRYPTO_USER_API_AEAD 1420 tristate "AEAD cipher algorithms" !! 1752 tristate "User-space interface for AEAD cipher algorithms" 1421 depends on NET 1753 depends on NET 1422 select CRYPTO_AEAD 1754 select CRYPTO_AEAD 1423 select CRYPTO_SKCIPHER << 1424 select CRYPTO_NULL << 1425 select CRYPTO_USER_API 1755 select CRYPTO_USER_API 1426 help 1756 help 1427 Enable the userspace interface for !! 1757 This option enables the user-spaces interface for AEAD 1428 !! 1758 cipher algorithms. 1429 See Documentation/crypto/userspace- << 1430 https://www.chronox.de/libkcapi/htm << 1431 << 1432 config CRYPTO_USER_API_ENABLE_OBSOLETE << 1433 bool "Obsolete cryptographic algorith << 1434 depends on CRYPTO_USER_API << 1435 default y << 1436 help << 1437 Allow obsolete cryptographic algori << 1438 already been phased out from intern << 1439 only useful for userspace clients t << 1440 << 1441 endmenu << 1442 1759 1443 config CRYPTO_HASH_INFO 1760 config CRYPTO_HASH_INFO 1444 bool 1761 bool 1445 1762 1446 if !KMSAN # avoid false positives from assemb << 1447 if ARM << 1448 source "arch/arm/crypto/Kconfig" << 1449 endif << 1450 if ARM64 << 1451 source "arch/arm64/crypto/Kconfig" << 1452 endif << 1453 if LOONGARCH << 1454 source "arch/loongarch/crypto/Kconfig" << 1455 endif << 1456 if MIPS << 1457 source "arch/mips/crypto/Kconfig" << 1458 endif << 1459 if PPC << 1460 source "arch/powerpc/crypto/Kconfig" << 1461 endif << 1462 if RISCV << 1463 source "arch/riscv/crypto/Kconfig" << 1464 endif << 1465 if S390 << 1466 source "arch/s390/crypto/Kconfig" << 1467 endif << 1468 if SPARC << 1469 source "arch/sparc/crypto/Kconfig" << 1470 endif << 1471 if X86 << 1472 source "arch/x86/crypto/Kconfig" << 1473 endif << 1474 endif << 1475 << 1476 source "drivers/crypto/Kconfig" 1763 source "drivers/crypto/Kconfig" 1477 source "crypto/asymmetric_keys/Kconfig" !! 1764 source crypto/asymmetric_keys/Kconfig 1478 source "certs/Kconfig" !! 1765 source certs/Kconfig 1479 1766 1480 endif # if CRYPTO 1767 endif # if CRYPTO
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.