1 # SPDX-License-Identifier: GPL-2.0 1 # SPDX-License-Identifier: GPL-2.0 2 # 2 # 3 # Generic algorithms support 3 # Generic algorithms support 4 # 4 # 5 config XOR_BLOCKS 5 config XOR_BLOCKS 6 tristate 6 tristate 7 7 8 # 8 # 9 # async_tx api: hardware offloaded memory tran 9 # async_tx api: hardware offloaded memory transfer/transform support 10 # 10 # 11 source "crypto/async_tx/Kconfig" 11 source "crypto/async_tx/Kconfig" 12 12 13 # 13 # 14 # Cryptographic API Configuration 14 # Cryptographic API Configuration 15 # 15 # 16 menuconfig CRYPTO 16 menuconfig CRYPTO 17 tristate "Cryptographic API" 17 tristate "Cryptographic API" 18 select CRYPTO_LIB_UTILS << 19 help 18 help 20 This option provides the core Crypto 19 This option provides the core Cryptographic API. 21 20 22 if CRYPTO 21 if CRYPTO 23 22 24 menu "Crypto core or helper" !! 23 comment "Crypto core or helper" 25 24 26 config CRYPTO_FIPS 25 config CRYPTO_FIPS 27 bool "FIPS 200 compliance" 26 bool "FIPS 200 compliance" 28 depends on (CRYPTO_ANSI_CPRNG || CRYPT 27 depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS 29 depends on (MODULE_SIG || !MODULES) 28 depends on (MODULE_SIG || !MODULES) 30 help 29 help 31 This option enables the fips boot op !! 30 This options enables the fips boot option which is 32 required if you want the system to o !! 31 required if you want to system to operate in a FIPS 200 33 certification. You should say no un 32 certification. You should say no unless you know what 34 this is. 33 this is. 35 34 36 config CRYPTO_FIPS_NAME << 37 string "FIPS Module Name" << 38 default "Linux Kernel Cryptographic AP << 39 depends on CRYPTO_FIPS << 40 help << 41 This option sets the FIPS Module nam << 42 the /proc/sys/crypto/fips_name file. << 43 << 44 config CRYPTO_FIPS_CUSTOM_VERSION << 45 bool "Use Custom FIPS Module Version" << 46 depends on CRYPTO_FIPS << 47 default n << 48 << 49 config CRYPTO_FIPS_VERSION << 50 string "FIPS Module Version" << 51 default "(none)" << 52 depends on CRYPTO_FIPS_CUSTOM_VERSION << 53 help << 54 This option provides the ability to << 55 By default the KERNELRELEASE value i << 56 << 57 config CRYPTO_ALGAPI 35 config CRYPTO_ALGAPI 58 tristate 36 tristate 59 select CRYPTO_ALGAPI2 37 select CRYPTO_ALGAPI2 60 help 38 help 61 This option provides the API for cry 39 This option provides the API for cryptographic algorithms. 62 40 63 config CRYPTO_ALGAPI2 41 config CRYPTO_ALGAPI2 64 tristate 42 tristate 65 43 66 config CRYPTO_AEAD 44 config CRYPTO_AEAD 67 tristate 45 tristate 68 select CRYPTO_AEAD2 46 select CRYPTO_AEAD2 69 select CRYPTO_ALGAPI 47 select CRYPTO_ALGAPI 70 48 71 config CRYPTO_AEAD2 49 config CRYPTO_AEAD2 72 tristate 50 tristate 73 select CRYPTO_ALGAPI2 51 select CRYPTO_ALGAPI2 >> 52 select CRYPTO_NULL2 >> 53 select CRYPTO_RNG2 74 54 75 config CRYPTO_SIG !! 55 config CRYPTO_BLKCIPHER 76 tristate << 77 select CRYPTO_SIG2 << 78 select CRYPTO_ALGAPI << 79 << 80 config CRYPTO_SIG2 << 81 tristate << 82 select CRYPTO_ALGAPI2 << 83 << 84 config CRYPTO_SKCIPHER << 85 tristate 56 tristate 86 select CRYPTO_SKCIPHER2 !! 57 select CRYPTO_BLKCIPHER2 87 select CRYPTO_ALGAPI 58 select CRYPTO_ALGAPI 88 select CRYPTO_ECB << 89 59 90 config CRYPTO_SKCIPHER2 !! 60 config CRYPTO_BLKCIPHER2 91 tristate 61 tristate 92 select CRYPTO_ALGAPI2 62 select CRYPTO_ALGAPI2 >> 63 select CRYPTO_RNG2 >> 64 select CRYPTO_WORKQUEUE 93 65 94 config CRYPTO_HASH 66 config CRYPTO_HASH 95 tristate 67 tristate 96 select CRYPTO_HASH2 68 select CRYPTO_HASH2 97 select CRYPTO_ALGAPI 69 select CRYPTO_ALGAPI 98 70 99 config CRYPTO_HASH2 71 config CRYPTO_HASH2 100 tristate 72 tristate 101 select CRYPTO_ALGAPI2 73 select CRYPTO_ALGAPI2 102 74 103 config CRYPTO_RNG 75 config CRYPTO_RNG 104 tristate 76 tristate 105 select CRYPTO_RNG2 77 select CRYPTO_RNG2 106 select CRYPTO_ALGAPI 78 select CRYPTO_ALGAPI 107 79 108 config CRYPTO_RNG2 80 config CRYPTO_RNG2 109 tristate 81 tristate 110 select CRYPTO_ALGAPI2 82 select CRYPTO_ALGAPI2 111 83 112 config CRYPTO_RNG_DEFAULT 84 config CRYPTO_RNG_DEFAULT 113 tristate 85 tristate 114 select CRYPTO_DRBG_MENU 86 select CRYPTO_DRBG_MENU 115 87 116 config CRYPTO_AKCIPHER2 88 config CRYPTO_AKCIPHER2 117 tristate 89 tristate 118 select CRYPTO_ALGAPI2 90 select CRYPTO_ALGAPI2 119 91 120 config CRYPTO_AKCIPHER 92 config CRYPTO_AKCIPHER 121 tristate 93 tristate 122 select CRYPTO_AKCIPHER2 94 select CRYPTO_AKCIPHER2 123 select CRYPTO_ALGAPI 95 select CRYPTO_ALGAPI 124 96 125 config CRYPTO_KPP2 97 config CRYPTO_KPP2 126 tristate 98 tristate 127 select CRYPTO_ALGAPI2 99 select CRYPTO_ALGAPI2 128 100 129 config CRYPTO_KPP 101 config CRYPTO_KPP 130 tristate 102 tristate 131 select CRYPTO_ALGAPI 103 select CRYPTO_ALGAPI 132 select CRYPTO_KPP2 104 select CRYPTO_KPP2 133 105 134 config CRYPTO_ACOMP2 106 config CRYPTO_ACOMP2 135 tristate 107 tristate 136 select CRYPTO_ALGAPI2 108 select CRYPTO_ALGAPI2 137 select SGL_ALLOC << 138 109 139 config CRYPTO_ACOMP 110 config CRYPTO_ACOMP 140 tristate 111 tristate 141 select CRYPTO_ALGAPI 112 select CRYPTO_ALGAPI 142 select CRYPTO_ACOMP2 113 select CRYPTO_ACOMP2 143 114 >> 115 config CRYPTO_RSA >> 116 tristate "RSA algorithm" >> 117 select CRYPTO_AKCIPHER >> 118 select CRYPTO_MANAGER >> 119 select MPILIB >> 120 select ASN1 >> 121 help >> 122 Generic implementation of the RSA public key algorithm. >> 123 >> 124 config CRYPTO_DH >> 125 tristate "Diffie-Hellman algorithm" >> 126 select CRYPTO_KPP >> 127 select MPILIB >> 128 help >> 129 Generic implementation of the Diffie-Hellman algorithm. >> 130 >> 131 config CRYPTO_ECDH >> 132 tristate "ECDH algorithm" >> 133 select CRYPTO_KPP >> 134 select CRYPTO_RNG_DEFAULT >> 135 help >> 136 Generic implementation of the ECDH algorithm >> 137 144 config CRYPTO_MANAGER 138 config CRYPTO_MANAGER 145 tristate "Cryptographic algorithm mana 139 tristate "Cryptographic algorithm manager" 146 select CRYPTO_MANAGER2 140 select CRYPTO_MANAGER2 147 help 141 help 148 Create default cryptographic templat 142 Create default cryptographic template instantiations such as 149 cbc(aes). 143 cbc(aes). 150 144 151 config CRYPTO_MANAGER2 145 config CRYPTO_MANAGER2 152 def_tristate CRYPTO_MANAGER || (CRYPTO 146 def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y) 153 select CRYPTO_ACOMP2 << 154 select CRYPTO_AEAD2 147 select CRYPTO_AEAD2 155 select CRYPTO_AKCIPHER2 << 156 select CRYPTO_SIG2 << 157 select CRYPTO_HASH2 148 select CRYPTO_HASH2 >> 149 select CRYPTO_BLKCIPHER2 >> 150 select CRYPTO_AKCIPHER2 158 select CRYPTO_KPP2 151 select CRYPTO_KPP2 159 select CRYPTO_RNG2 !! 152 select CRYPTO_ACOMP2 160 select CRYPTO_SKCIPHER2 << 161 153 162 config CRYPTO_USER 154 config CRYPTO_USER 163 tristate "Userspace cryptographic algo 155 tristate "Userspace cryptographic algorithm configuration" 164 depends on NET 156 depends on NET 165 select CRYPTO_MANAGER 157 select CRYPTO_MANAGER 166 help 158 help 167 Userspace configuration for cryptogr 159 Userspace configuration for cryptographic instantiations such as 168 cbc(aes). 160 cbc(aes). 169 161 170 config CRYPTO_MANAGER_DISABLE_TESTS 162 config CRYPTO_MANAGER_DISABLE_TESTS 171 bool "Disable run-time self tests" 163 bool "Disable run-time self tests" 172 default y 164 default y >> 165 depends on CRYPTO_MANAGER2 173 help 166 help 174 Disable run-time self tests that nor 167 Disable run-time self tests that normally take place at 175 algorithm registration. 168 algorithm registration. 176 169 177 config CRYPTO_MANAGER_EXTRA_TESTS !! 170 config CRYPTO_GF128MUL 178 bool "Enable extra run-time crypto sel !! 171 tristate "GF(2^128) multiplication functions" 179 depends on DEBUG_KERNEL && !CRYPTO_MAN << 180 help 172 help 181 Enable extra run-time self tests of !! 173 Efficient table driven implementation of multiplications in the 182 including randomized fuzz tests. !! 174 field GF(2^128). This is needed by some cypher modes. This 183 !! 175 option will be selected automatically if you select such a 184 This is intended for developer use o !! 176 cipher mode. Only select this option by hand if you expect to load 185 longer to run than the normal self t !! 177 an external module that requires these functions. 186 178 187 config CRYPTO_NULL 179 config CRYPTO_NULL 188 tristate "Null algorithms" 180 tristate "Null algorithms" 189 select CRYPTO_NULL2 181 select CRYPTO_NULL2 190 help 182 help 191 These are 'Null' algorithms, used by 183 These are 'Null' algorithms, used by IPsec, which do nothing. 192 184 193 config CRYPTO_NULL2 185 config CRYPTO_NULL2 194 tristate 186 tristate 195 select CRYPTO_ALGAPI2 187 select CRYPTO_ALGAPI2 196 select CRYPTO_SKCIPHER2 !! 188 select CRYPTO_BLKCIPHER2 197 select CRYPTO_HASH2 189 select CRYPTO_HASH2 198 190 199 config CRYPTO_PCRYPT 191 config CRYPTO_PCRYPT 200 tristate "Parallel crypto engine" 192 tristate "Parallel crypto engine" 201 depends on SMP 193 depends on SMP 202 select PADATA 194 select PADATA 203 select CRYPTO_MANAGER 195 select CRYPTO_MANAGER 204 select CRYPTO_AEAD 196 select CRYPTO_AEAD 205 help 197 help 206 This converts an arbitrary crypto al 198 This converts an arbitrary crypto algorithm into a parallel 207 algorithm that executes in kernel th 199 algorithm that executes in kernel threads. 208 200 >> 201 config CRYPTO_WORKQUEUE >> 202 tristate >> 203 209 config CRYPTO_CRYPTD 204 config CRYPTO_CRYPTD 210 tristate "Software async crypto daemon 205 tristate "Software async crypto daemon" 211 select CRYPTO_SKCIPHER !! 206 select CRYPTO_BLKCIPHER 212 select CRYPTO_HASH 207 select CRYPTO_HASH 213 select CRYPTO_MANAGER 208 select CRYPTO_MANAGER >> 209 select CRYPTO_WORKQUEUE 214 help 210 help 215 This is a generic software asynchron 211 This is a generic software asynchronous crypto daemon that 216 converts an arbitrary synchronous so 212 converts an arbitrary synchronous software crypto algorithm 217 into an asynchronous algorithm that 213 into an asynchronous algorithm that executes in a kernel thread. 218 214 >> 215 config CRYPTO_MCRYPTD >> 216 tristate "Software async multi-buffer crypto daemon" >> 217 select CRYPTO_BLKCIPHER >> 218 select CRYPTO_HASH >> 219 select CRYPTO_MANAGER >> 220 select CRYPTO_WORKQUEUE >> 221 help >> 222 This is a generic software asynchronous crypto daemon that >> 223 provides the kernel thread to assist multi-buffer crypto >> 224 algorithms for submitting jobs and flushing jobs in multi-buffer >> 225 crypto algorithms. Multi-buffer crypto algorithms are executed >> 226 in the context of this kernel thread and drivers can post >> 227 their crypto request asynchronously to be processed by this daemon. >> 228 219 config CRYPTO_AUTHENC 229 config CRYPTO_AUTHENC 220 tristate "Authenc support" 230 tristate "Authenc support" 221 select CRYPTO_AEAD 231 select CRYPTO_AEAD 222 select CRYPTO_SKCIPHER !! 232 select CRYPTO_BLKCIPHER 223 select CRYPTO_MANAGER 233 select CRYPTO_MANAGER 224 select CRYPTO_HASH 234 select CRYPTO_HASH 225 select CRYPTO_NULL 235 select CRYPTO_NULL 226 help 236 help 227 Authenc: Combined mode wrapper for I 237 Authenc: Combined mode wrapper for IPsec. 228 !! 238 This is required for IPSec. 229 This is required for IPSec ESP (XFRM << 230 239 231 config CRYPTO_TEST 240 config CRYPTO_TEST 232 tristate "Testing module" 241 tristate "Testing module" 233 depends on m || EXPERT !! 242 depends on m 234 select CRYPTO_MANAGER 243 select CRYPTO_MANAGER 235 help 244 help 236 Quick & dirty crypto test module. 245 Quick & dirty crypto test module. 237 246 >> 247 config CRYPTO_ABLK_HELPER >> 248 tristate >> 249 select CRYPTO_CRYPTD >> 250 238 config CRYPTO_SIMD 251 config CRYPTO_SIMD 239 tristate 252 tristate 240 select CRYPTO_CRYPTD 253 select CRYPTO_CRYPTD 241 254 >> 255 config CRYPTO_GLUE_HELPER_X86 >> 256 tristate >> 257 depends on X86 >> 258 select CRYPTO_BLKCIPHER >> 259 242 config CRYPTO_ENGINE 260 config CRYPTO_ENGINE 243 tristate 261 tristate 244 262 245 endmenu !! 263 comment "Authenticated Encryption with Associated Data" 246 264 247 menu "Public-key cryptography" !! 265 config CRYPTO_CCM >> 266 tristate "CCM support" >> 267 select CRYPTO_CTR >> 268 select CRYPTO_HASH >> 269 select CRYPTO_AEAD >> 270 help >> 271 Support for Counter with CBC MAC. Required for IPsec. 248 272 249 config CRYPTO_RSA !! 273 config CRYPTO_GCM 250 tristate "RSA (Rivest-Shamir-Adleman)" !! 274 tristate "GCM/GMAC support" 251 select CRYPTO_AKCIPHER !! 275 select CRYPTO_CTR 252 select CRYPTO_MANAGER !! 276 select CRYPTO_AEAD 253 select MPILIB !! 277 select CRYPTO_GHASH 254 select ASN1 !! 278 select CRYPTO_NULL 255 help 279 help 256 RSA (Rivest-Shamir-Adleman) public k !! 280 Support for Galois/Counter Mode (GCM) and Galois Message >> 281 Authentication Code (GMAC). Required for IPSec. 257 282 258 config CRYPTO_DH !! 283 config CRYPTO_CHACHA20POLY1305 259 tristate "DH (Diffie-Hellman)" !! 284 tristate "ChaCha20-Poly1305 AEAD support" 260 select CRYPTO_KPP !! 285 select CRYPTO_CHACHA20 261 select MPILIB !! 286 select CRYPTO_POLY1305 >> 287 select CRYPTO_AEAD 262 help 288 help 263 DH (Diffie-Hellman) key exchange alg !! 289 ChaCha20-Poly1305 AEAD support, RFC7539. >> 290 >> 291 Support for the AEAD wrapper using the ChaCha20 stream cipher combined >> 292 with the Poly1305 authenticator. It is defined in RFC7539 for use in >> 293 IETF protocols. 264 294 265 config CRYPTO_DH_RFC7919_GROUPS !! 295 config CRYPTO_SEQIV 266 bool "RFC 7919 FFDHE groups" !! 296 tristate "Sequence Number IV Generator" 267 depends on CRYPTO_DH !! 297 select CRYPTO_AEAD >> 298 select CRYPTO_BLKCIPHER >> 299 select CRYPTO_NULL 268 select CRYPTO_RNG_DEFAULT 300 select CRYPTO_RNG_DEFAULT 269 help 301 help 270 FFDHE (Finite-Field-based Diffie-Hel !! 302 This IV generator generates an IV based on a sequence number by 271 defined in RFC7919. !! 303 xoring it with a salt. This algorithm is mainly useful for CTR 272 304 273 Support these finite-field groups in !! 305 config CRYPTO_ECHAINIV 274 - ffdhe2048, ffdhe3072, ffdhe4096, f !! 306 tristate "Encrypted Chain IV Generator" >> 307 select CRYPTO_AEAD >> 308 select CRYPTO_NULL >> 309 select CRYPTO_RNG_DEFAULT >> 310 default m >> 311 help >> 312 This IV generator generates an IV based on the encryption of >> 313 a sequence number xored with a salt. This is the default >> 314 algorithm for CBC. 275 315 276 If unsure, say N. !! 316 comment "Block modes" 277 317 278 config CRYPTO_ECC !! 318 config CRYPTO_CBC 279 tristate !! 319 tristate "CBC support" 280 select CRYPTO_RNG_DEFAULT !! 320 select CRYPTO_BLKCIPHER >> 321 select CRYPTO_MANAGER >> 322 help >> 323 CBC: Cipher Block Chaining mode >> 324 This block cipher algorithm is required for IPSec. 281 325 282 config CRYPTO_ECDH !! 326 config CRYPTO_CTR 283 tristate "ECDH (Elliptic Curve Diffie- !! 327 tristate "CTR support" 284 select CRYPTO_ECC !! 328 select CRYPTO_BLKCIPHER 285 select CRYPTO_KPP !! 329 select CRYPTO_SEQIV >> 330 select CRYPTO_MANAGER 286 help 331 help 287 ECDH (Elliptic Curve Diffie-Hellman) !! 332 CTR: Counter mode 288 using curves P-192, P-256, and P-384 !! 333 This block cipher algorithm is required for IPSec. 289 334 290 config CRYPTO_ECDSA !! 335 config CRYPTO_CTS 291 tristate "ECDSA (Elliptic Curve Digita !! 336 tristate "CTS support" 292 select CRYPTO_ECC !! 337 select CRYPTO_BLKCIPHER 293 select CRYPTO_AKCIPHER << 294 select ASN1 << 295 help 338 help 296 ECDSA (Elliptic Curve Digital Signat !! 339 CTS: Cipher Text Stealing 297 ISO/IEC 14888-3) !! 340 This is the Cipher Text Stealing mode as described by 298 using curves P-192, P-256, and P-384 !! 341 Section 8 of rfc2040 and referenced by rfc3962. 299 !! 342 (rfc3962 includes errata information in its Appendix A) 300 Only signature verification is imple !! 343 This mode is required for Kerberos gss mechanism support 301 !! 344 for AES encryption. 302 config CRYPTO_ECRDSA !! 345 303 tristate "EC-RDSA (Elliptic Curve Russ !! 346 config CRYPTO_ECB 304 select CRYPTO_ECC !! 347 tristate "ECB support" 305 select CRYPTO_AKCIPHER !! 348 select CRYPTO_BLKCIPHER 306 select CRYPTO_STREEBOG !! 349 select CRYPTO_MANAGER 307 select OID_REGISTRY << 308 select ASN1 << 309 help 350 help 310 Elliptic Curve Russian Digital Signa !! 351 ECB: Electronic CodeBook mode 311 RFC 7091, ISO/IEC 14888-3) !! 352 This is the simplest block cipher algorithm. It simply encrypts >> 353 the input block by block. 312 354 313 One of the Russian cryptographic sta !! 355 config CRYPTO_LRW 314 algorithms). Only signature verifica !! 356 tristate "LRW support" >> 357 select CRYPTO_BLKCIPHER >> 358 select CRYPTO_MANAGER >> 359 select CRYPTO_GF128MUL >> 360 help >> 361 LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable >> 362 narrow block cipher mode for dm-crypt. Use it with cipher >> 363 specification string aes-lrw-benbi, the key must be 256, 320 or 384. >> 364 The first 128, 192 or 256 bits in the key are used for AES and the >> 365 rest is used to tie each cipher block to its logical position. 315 366 316 config CRYPTO_CURVE25519 !! 367 config CRYPTO_PCBC 317 tristate "Curve25519" !! 368 tristate "PCBC support" 318 select CRYPTO_KPP !! 369 select CRYPTO_BLKCIPHER 319 select CRYPTO_LIB_CURVE25519_GENERIC !! 370 select CRYPTO_MANAGER >> 371 help >> 372 PCBC: Propagating Cipher Block Chaining mode >> 373 This block cipher algorithm is required for RxRPC. >> 374 >> 375 config CRYPTO_XTS >> 376 tristate "XTS support" >> 377 select CRYPTO_BLKCIPHER >> 378 select CRYPTO_MANAGER >> 379 select CRYPTO_ECB 320 help 380 help 321 Curve25519 elliptic curve (RFC7748) !! 381 XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain, >> 382 key size 256, 384 or 512 bits. This implementation currently >> 383 can't handle a sectorsize which is not a multiple of 16 bytes. 322 384 323 endmenu !! 385 config CRYPTO_KEYWRAP >> 386 tristate "Key wrapping support" >> 387 select CRYPTO_BLKCIPHER >> 388 help >> 389 Support for key wrapping (NIST SP800-38F / RFC3394) without >> 390 padding. 324 391 325 menu "Block ciphers" !! 392 comment "Hash modes" 326 393 327 config CRYPTO_AES !! 394 config CRYPTO_CMAC 328 tristate "AES (Advanced Encryption Sta !! 395 tristate "CMAC support" 329 select CRYPTO_ALGAPI !! 396 select CRYPTO_HASH 330 select CRYPTO_LIB_AES !! 397 select CRYPTO_MANAGER 331 help 398 help 332 AES cipher algorithms (Rijndael)(FIP !! 399 Cipher-based Message Authentication Code (CMAC) specified by >> 400 The National Institute of Standards and Technology (NIST). 333 401 334 Rijndael appears to be consistently !! 402 https://tools.ietf.org/html/rfc4493 335 both hardware and software across a !! 403 http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf 336 environments regardless of its use i << 337 modes. Its key setup time is excelle << 338 good. Rijndael's very low memory req << 339 suited for restricted-space environm << 340 demonstrates excellent performance. << 341 among the easiest to defend against << 342 404 343 The AES specifies three key sizes: 1 !! 405 config CRYPTO_HMAC >> 406 tristate "HMAC support" >> 407 select CRYPTO_HASH >> 408 select CRYPTO_MANAGER >> 409 help >> 410 HMAC: Keyed-Hashing for Message Authentication (RFC2104). >> 411 This is required for IPSec. 344 412 345 config CRYPTO_AES_TI !! 413 config CRYPTO_XCBC 346 tristate "AES (Advanced Encryption Sta !! 414 tristate "XCBC support" 347 select CRYPTO_ALGAPI !! 415 select CRYPTO_HASH 348 select CRYPTO_LIB_AES !! 416 select CRYPTO_MANAGER 349 help 417 help 350 AES cipher algorithms (Rijndael)(FIP !! 418 XCBC: Keyed-Hashing with encryption algorithm >> 419 http://www.ietf.org/rfc/rfc3566.txt >> 420 http://csrc.nist.gov/encryption/modes/proposedmodes/ >> 421 xcbc-mac/xcbc-mac-spec.pdf 351 422 352 This is a generic implementation of !! 423 config CRYPTO_VMAC 353 data dependent latencies as much as !! 424 tristate "VMAC support" 354 performance too much. It is intended !! 425 select CRYPTO_HASH 355 and GCM drivers, and other CTR or CM !! 426 select CRYPTO_MANAGER 356 solely on encryption (although decry !! 427 help 357 with a more dramatic performance hit !! 428 VMAC is a message authentication algorithm designed for >> 429 very high speed on 64-bit architectures. 358 430 359 Instead of using 16 lookup tables of !! 431 See also: 360 8 for decryption), this implementati !! 432 <http://fastcrypto.org/vmac> 361 256 bytes each, and attempts to elim << 362 prefetching the entire table into th << 363 block. Interrupts are also disabled << 364 are evicted when the CPU is interrup << 365 433 366 config CRYPTO_ANUBIS !! 434 comment "Digest" 367 tristate "Anubis" !! 435 368 depends on CRYPTO_USER_API_ENABLE_OBSO !! 436 config CRYPTO_CRC32C 369 select CRYPTO_ALGAPI !! 437 tristate "CRC32c CRC algorithm" >> 438 select CRYPTO_HASH >> 439 select CRC32 >> 440 help >> 441 Castagnoli, et al Cyclic Redundancy-Check Algorithm. Used >> 442 by iSCSI for header and data digests and by others. >> 443 See Castagnoli93. Module will be crc32c. >> 444 >> 445 config CRYPTO_CRC32C_INTEL >> 446 tristate "CRC32c INTEL hardware acceleration" >> 447 depends on X86 >> 448 select CRYPTO_HASH >> 449 help >> 450 In Intel processor with SSE4.2 supported, the processor will >> 451 support CRC32C implementation using hardware accelerated CRC32 >> 452 instruction. This option will create 'crc32c-intel' module, >> 453 which will enable any routine to use the CRC32 instruction to >> 454 gain performance compared with software implementation. >> 455 Module will be crc32c-intel. >> 456 >> 457 config CRYPTO_CRC32C_VPMSUM >> 458 tristate "CRC32c CRC algorithm (powerpc64)" >> 459 depends on PPC64 && ALTIVEC >> 460 select CRYPTO_HASH >> 461 select CRC32 370 help 462 help 371 Anubis cipher algorithm !! 463 CRC32c algorithm implemented using vector polynomial multiply-sum >> 464 (vpmsum) instructions, introduced in POWER8. Enable on POWER8 >> 465 and newer processors for improved performance. 372 466 373 Anubis is a variable key length ciph << 374 128 bits to 320 bits in length. It << 375 in the NESSIE competition. << 376 467 377 See https://web.archive.org/web/2016 !! 468 config CRYPTO_CRC32C_SPARC64 378 for further information. !! 469 tristate "CRC32c CRC algorithm (SPARC64)" >> 470 depends on SPARC64 >> 471 select CRYPTO_HASH >> 472 select CRC32 >> 473 help >> 474 CRC32c CRC algorithm implemented using sparc64 crypto instructions, >> 475 when available. 379 476 380 config CRYPTO_ARIA !! 477 config CRYPTO_CRC32 381 tristate "ARIA" !! 478 tristate "CRC32 CRC algorithm" 382 select CRYPTO_ALGAPI !! 479 select CRYPTO_HASH >> 480 select CRC32 383 help 481 help 384 ARIA cipher algorithm (RFC5794) !! 482 CRC-32-IEEE 802.3 cyclic redundancy-check algorithm. >> 483 Shash crypto api wrappers to crc32_le function. 385 484 386 ARIA is a standard encryption algori !! 485 config CRYPTO_CRC32_PCLMUL 387 The ARIA specifies three key sizes a !! 486 tristate "CRC32 PCLMULQDQ hardware acceleration" 388 128-bit: 12 rounds. !! 487 depends on X86 389 192-bit: 14 rounds. !! 488 select CRYPTO_HASH 390 256-bit: 16 rounds. !! 489 select CRC32 >> 490 help >> 491 From Intel Westmere and AMD Bulldozer processor with SSE4.2 >> 492 and PCLMULQDQ supported, the processor will support >> 493 CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ >> 494 instruction. This option will create 'crc32-plcmul' module, >> 495 which will enable any routine to use the CRC-32-IEEE 802.3 checksum >> 496 and gain better performance as compared with the table implementation. 391 497 392 See: !! 498 config CRYPTO_CRCT10DIF 393 https://seed.kisa.or.kr/kisa/algorit !! 499 tristate "CRCT10DIF algorithm" >> 500 select CRYPTO_HASH >> 501 help >> 502 CRC T10 Data Integrity Field computation is being cast as >> 503 a crypto transform. This allows for faster crc t10 diff >> 504 transforms to be used if they are available. 394 505 395 config CRYPTO_BLOWFISH !! 506 config CRYPTO_CRCT10DIF_PCLMUL 396 tristate "Blowfish" !! 507 tristate "CRCT10DIF PCLMULQDQ hardware acceleration" 397 select CRYPTO_ALGAPI !! 508 depends on X86 && 64BIT && CRC_T10DIF 398 select CRYPTO_BLOWFISH_COMMON !! 509 select CRYPTO_HASH 399 help 510 help 400 Blowfish cipher algorithm, by Bruce !! 511 For x86_64 processors with SSE4.2 and PCLMULQDQ supported, >> 512 CRC T10 DIF PCLMULQDQ computation can be hardware >> 513 accelerated PCLMULQDQ instruction. This option will create >> 514 'crct10dif-plcmul' module, which is faster when computing the >> 515 crct10dif checksum as compared with the generic table implementation. 401 516 402 This is a variable key length cipher !! 517 config CRYPTO_CRCT10DIF_VPMSUM 403 bits to 448 bits in length. It's fa !! 518 tristate "CRC32T10DIF powerpc64 hardware acceleration" 404 designed for use on "large microproc !! 519 depends on PPC64 && ALTIVEC && CRC_T10DIF >> 520 select CRYPTO_HASH >> 521 help >> 522 CRC10T10DIF algorithm implemented using vector polynomial >> 523 multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on >> 524 POWER8 and newer processors for improved performance. 405 525 406 See https://www.schneier.com/blowfis !! 526 config CRYPTO_VPMSUM_TESTER >> 527 tristate "Powerpc64 vpmsum hardware acceleration tester" >> 528 depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM >> 529 help >> 530 Stress test for CRC32c and CRC-T10DIF algorithms implemented with >> 531 POWER8 vpmsum instructions. >> 532 Unless you are testing these algorithms, you don't need this. 407 533 408 config CRYPTO_BLOWFISH_COMMON !! 534 config CRYPTO_GHASH 409 tristate !! 535 tristate "GHASH digest algorithm" >> 536 select CRYPTO_GF128MUL >> 537 select CRYPTO_HASH 410 help 538 help 411 Common parts of the Blowfish cipher !! 539 GHASH is message digest algorithm for GCM (Galois/Counter Mode). 412 generic c and the assembler implemen << 413 540 414 config CRYPTO_CAMELLIA !! 541 config CRYPTO_POLY1305 415 tristate "Camellia" !! 542 tristate "Poly1305 authenticator algorithm" 416 select CRYPTO_ALGAPI !! 543 select CRYPTO_HASH 417 help 544 help 418 Camellia cipher algorithms (ISO/IEC !! 545 Poly1305 authenticator algorithm, RFC7539. 419 546 420 Camellia is a symmetric key block ci !! 547 Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. 421 at NTT and Mitsubishi Electric Corpo !! 548 It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use >> 549 in IETF protocols. This is the portable C implementation of Poly1305. 422 550 423 The Camellia specifies three key siz !! 551 config CRYPTO_POLY1305_X86_64 >> 552 tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)" >> 553 depends on X86 && 64BIT >> 554 select CRYPTO_POLY1305 >> 555 help >> 556 Poly1305 authenticator algorithm, RFC7539. 424 557 425 See https://info.isl.ntt.co.jp/crypt !! 558 Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. >> 559 It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use >> 560 in IETF protocols. This is the x86_64 assembler implementation using SIMD >> 561 instructions. 426 562 427 config CRYPTO_CAST_COMMON !! 563 config CRYPTO_MD4 428 tristate !! 564 tristate "MD4 digest algorithm" >> 565 select CRYPTO_HASH 429 help 566 help 430 Common parts of the CAST cipher algo !! 567 MD4 message digest algorithm (RFC1320). 431 generic c and the assembler implemen << 432 568 433 config CRYPTO_CAST5 !! 569 config CRYPTO_MD5 434 tristate "CAST5 (CAST-128)" !! 570 tristate "MD5 digest algorithm" 435 select CRYPTO_ALGAPI !! 571 select CRYPTO_HASH 436 select CRYPTO_CAST_COMMON << 437 help 572 help 438 CAST5 (CAST-128) cipher algorithm (R !! 573 MD5 message digest algorithm (RFC1321). 439 574 440 config CRYPTO_CAST6 !! 575 config CRYPTO_MD5_OCTEON 441 tristate "CAST6 (CAST-256)" !! 576 tristate "MD5 digest algorithm (OCTEON)" 442 select CRYPTO_ALGAPI !! 577 depends on CPU_CAVIUM_OCTEON 443 select CRYPTO_CAST_COMMON !! 578 select CRYPTO_MD5 >> 579 select CRYPTO_HASH 444 help 580 help 445 CAST6 (CAST-256) encryption algorith !! 581 MD5 message digest algorithm (RFC1321) implemented >> 582 using OCTEON crypto instructions, when available. 446 583 447 config CRYPTO_DES !! 584 config CRYPTO_MD5_PPC 448 tristate "DES and Triple DES EDE" !! 585 tristate "MD5 digest algorithm (PPC)" 449 select CRYPTO_ALGAPI !! 586 depends on PPC 450 select CRYPTO_LIB_DES !! 587 select CRYPTO_HASH 451 help 588 help 452 DES (Data Encryption Standard)(FIPS !! 589 MD5 message digest algorithm (RFC1321) implemented 453 Triple DES EDE (Encrypt/Decrypt/Encr !! 590 in PPC assembler. 454 cipher algorithms << 455 591 456 config CRYPTO_FCRYPT !! 592 config CRYPTO_MD5_SPARC64 457 tristate "FCrypt" !! 593 tristate "MD5 digest algorithm (SPARC64)" 458 select CRYPTO_ALGAPI !! 594 depends on SPARC64 459 select CRYPTO_SKCIPHER !! 595 select CRYPTO_MD5 >> 596 select CRYPTO_HASH 460 help 597 help 461 FCrypt algorithm used by RxRPC !! 598 MD5 message digest algorithm (RFC1321) implemented 462 !! 599 using sparc64 crypto instructions, when available. 463 See https://ota.polyonymo.us/fcrypt- << 464 600 465 config CRYPTO_KHAZAD !! 601 config CRYPTO_MICHAEL_MIC 466 tristate "Khazad" !! 602 tristate "Michael MIC keyed digest algorithm" 467 depends on CRYPTO_USER_API_ENABLE_OBSO !! 603 select CRYPTO_HASH 468 select CRYPTO_ALGAPI << 469 help 604 help 470 Khazad cipher algorithm !! 605 Michael MIC is used for message integrity protection in TKIP 471 !! 606 (IEEE 802.11i). This algorithm is required for TKIP, but it 472 Khazad was a finalist in the initial !! 607 should not be used for other purposes because of the weakness 473 an algorithm optimized for 64-bit pr !! 608 of the algorithm. 474 on 32-bit processors. Khazad uses a << 475 << 476 See https://web.archive.org/web/2017 << 477 for further information. << 478 609 479 config CRYPTO_SEED !! 610 config CRYPTO_RMD128 480 tristate "SEED" !! 611 tristate "RIPEMD-128 digest algorithm" 481 depends on CRYPTO_USER_API_ENABLE_OBSO !! 612 select CRYPTO_HASH 482 select CRYPTO_ALGAPI << 483 help 613 help 484 SEED cipher algorithm (RFC4269, ISO/ !! 614 RIPEMD-128 (ISO/IEC 10118-3:2004). 485 615 486 SEED is a 128-bit symmetric key bloc !! 616 RIPEMD-128 is a 128-bit cryptographic hash function. It should only 487 developed by KISA (Korea Information !! 617 be used as a secure replacement for RIPEMD. For other use cases, 488 national standard encryption algorit !! 618 RIPEMD-160 should be used. 489 It is a 16 round block cipher with t << 490 619 491 See https://seed.kisa.or.kr/kisa/alg !! 620 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 492 for further information. !! 621 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 493 622 494 config CRYPTO_SERPENT !! 623 config CRYPTO_RMD160 495 tristate "Serpent" !! 624 tristate "RIPEMD-160 digest algorithm" 496 select CRYPTO_ALGAPI !! 625 select CRYPTO_HASH 497 help 626 help 498 Serpent cipher algorithm, by Anderso !! 627 RIPEMD-160 (ISO/IEC 10118-3:2004). 499 628 500 Keys are allowed to be from 0 to 256 !! 629 RIPEMD-160 is a 160-bit cryptographic hash function. It is intended 501 of 8 bits. !! 630 to be used as a secure replacement for the 128-bit hash functions >> 631 MD4, MD5 and it's predecessor RIPEMD >> 632 (not to be confused with RIPEMD-128). 502 633 503 See https://www.cl.cam.ac.uk/~rja14/ !! 634 It's speed is comparable to SHA1 and there are no known attacks >> 635 against RIPEMD-160. 504 636 505 config CRYPTO_SM4 !! 637 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 506 tristate !! 638 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 507 639 508 config CRYPTO_SM4_GENERIC !! 640 config CRYPTO_RMD256 509 tristate "SM4 (ShangMi 4)" !! 641 tristate "RIPEMD-256 digest algorithm" 510 select CRYPTO_ALGAPI !! 642 select CRYPTO_HASH 511 select CRYPTO_SM4 << 512 help 643 help 513 SM4 cipher algorithms (OSCCA GB/T 32 !! 644 RIPEMD-256 is an optional extension of RIPEMD-128 with a 514 ISO/IEC 18033-3:2010/Amd 1:2021) !! 645 256 bit hash. It is intended for applications that require >> 646 longer hash-results, without needing a larger security level >> 647 (than RIPEMD-128). 515 648 516 SM4 (GBT.32907-2016) is a cryptograp !! 649 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 517 Organization of State Commercial Adm !! 650 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 518 as an authorized cryptographic algor << 519 651 520 SMS4 was originally created for use !! 652 config CRYPTO_RMD320 521 networks, and is mandated in the Chi !! 653 tristate "RIPEMD-320 digest algorithm" 522 Wireless LAN WAPI (Wired Authenticat !! 654 select CRYPTO_HASH 523 (GB.15629.11-2003). !! 655 help >> 656 RIPEMD-320 is an optional extension of RIPEMD-160 with a >> 657 320 bit hash. It is intended for applications that require >> 658 longer hash-results, without needing a larger security level >> 659 (than RIPEMD-160). 524 660 525 The latest SM4 standard (GBT.32907-2 !! 661 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 526 standardized through TC 260 of the S !! 662 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 527 of the People's Republic of China (S << 528 663 529 The input, output, and key of SMS4 a !! 664 config CRYPTO_SHA1 >> 665 tristate "SHA1 digest algorithm" >> 666 select CRYPTO_HASH >> 667 help >> 668 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). 530 669 531 See https://eprint.iacr.org/2008/329 !! 670 config CRYPTO_SHA1_SSSE3 >> 671 tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" >> 672 depends on X86 && 64BIT >> 673 select CRYPTO_SHA1 >> 674 select CRYPTO_HASH >> 675 help >> 676 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented >> 677 using Supplemental SSE3 (SSSE3) instructions or Advanced Vector >> 678 Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions), >> 679 when available. 532 680 533 If unsure, say N. !! 681 config CRYPTO_SHA256_SSSE3 >> 682 tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" >> 683 depends on X86 && 64BIT >> 684 select CRYPTO_SHA256 >> 685 select CRYPTO_HASH >> 686 help >> 687 SHA-256 secure hash standard (DFIPS 180-2) implemented >> 688 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector >> 689 Extensions version 1 (AVX1), or Advanced Vector Extensions >> 690 version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New >> 691 Instructions) when available. >> 692 >> 693 config CRYPTO_SHA512_SSSE3 >> 694 tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)" >> 695 depends on X86 && 64BIT >> 696 select CRYPTO_SHA512 >> 697 select CRYPTO_HASH >> 698 help >> 699 SHA-512 secure hash standard (DFIPS 180-2) implemented >> 700 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector >> 701 Extensions version 1 (AVX1), or Advanced Vector Extensions >> 702 version 2 (AVX2) instructions, when available. >> 703 >> 704 config CRYPTO_SHA1_OCTEON >> 705 tristate "SHA1 digest algorithm (OCTEON)" >> 706 depends on CPU_CAVIUM_OCTEON >> 707 select CRYPTO_SHA1 >> 708 select CRYPTO_HASH >> 709 help >> 710 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented >> 711 using OCTEON crypto instructions, when available. >> 712 >> 713 config CRYPTO_SHA1_SPARC64 >> 714 tristate "SHA1 digest algorithm (SPARC64)" >> 715 depends on SPARC64 >> 716 select CRYPTO_SHA1 >> 717 select CRYPTO_HASH >> 718 help >> 719 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented >> 720 using sparc64 crypto instructions, when available. >> 721 >> 722 config CRYPTO_SHA1_PPC >> 723 tristate "SHA1 digest algorithm (powerpc)" >> 724 depends on PPC >> 725 help >> 726 This is the powerpc hardware accelerated implementation of the >> 727 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). >> 728 >> 729 config CRYPTO_SHA1_PPC_SPE >> 730 tristate "SHA1 digest algorithm (PPC SPE)" >> 731 depends on PPC && SPE >> 732 help >> 733 SHA-1 secure hash standard (DFIPS 180-4) implemented >> 734 using powerpc SPE SIMD instruction set. >> 735 >> 736 config CRYPTO_SHA1_MB >> 737 tristate "SHA1 digest algorithm (x86_64 Multi-Buffer, Experimental)" >> 738 depends on X86 && 64BIT >> 739 select CRYPTO_SHA1 >> 740 select CRYPTO_HASH >> 741 select CRYPTO_MCRYPTD >> 742 help >> 743 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented >> 744 using multi-buffer technique. This algorithm computes on >> 745 multiple data lanes concurrently with SIMD instructions for >> 746 better throughput. It should not be enabled by default but >> 747 used when there is significant amount of work to keep the keep >> 748 the data lanes filled to get performance benefit. If the data >> 749 lanes remain unfilled, a flush operation will be initiated to >> 750 process the crypto jobs, adding a slight latency. >> 751 >> 752 config CRYPTO_SHA256_MB >> 753 tristate "SHA256 digest algorithm (x86_64 Multi-Buffer, Experimental)" >> 754 depends on X86 && 64BIT >> 755 select CRYPTO_SHA256 >> 756 select CRYPTO_HASH >> 757 select CRYPTO_MCRYPTD >> 758 help >> 759 SHA-256 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented >> 760 using multi-buffer technique. This algorithm computes on >> 761 multiple data lanes concurrently with SIMD instructions for >> 762 better throughput. It should not be enabled by default but >> 763 used when there is significant amount of work to keep the keep >> 764 the data lanes filled to get performance benefit. If the data >> 765 lanes remain unfilled, a flush operation will be initiated to >> 766 process the crypto jobs, adding a slight latency. >> 767 >> 768 config CRYPTO_SHA512_MB >> 769 tristate "SHA512 digest algorithm (x86_64 Multi-Buffer, Experimental)" >> 770 depends on X86 && 64BIT >> 771 select CRYPTO_SHA512 >> 772 select CRYPTO_HASH >> 773 select CRYPTO_MCRYPTD >> 774 help >> 775 SHA-512 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented >> 776 using multi-buffer technique. This algorithm computes on >> 777 multiple data lanes concurrently with SIMD instructions for >> 778 better throughput. It should not be enabled by default but >> 779 used when there is significant amount of work to keep the keep >> 780 the data lanes filled to get performance benefit. If the data >> 781 lanes remain unfilled, a flush operation will be initiated to >> 782 process the crypto jobs, adding a slight latency. 534 783 535 config CRYPTO_TEA !! 784 config CRYPTO_SHA256 536 tristate "TEA, XTEA and XETA" !! 785 tristate "SHA224 and SHA256 digest algorithm" 537 depends on CRYPTO_USER_API_ENABLE_OBSO !! 786 select CRYPTO_HASH 538 select CRYPTO_ALGAPI << 539 help 787 help 540 TEA (Tiny Encryption Algorithm) ciph !! 788 SHA256 secure hash standard (DFIPS 180-2). 541 789 542 Tiny Encryption Algorithm is a simpl !! 790 This version of SHA implements a 256 bit hash with 128 bits of 543 many rounds for security. It is ver !! 791 security against collision attacks. 544 little memory. << 545 792 546 Xtendend Tiny Encryption Algorithm i !! 793 This code also includes SHA-224, a 224 bit hash with 112 bits 547 the TEA algorithm to address a poten !! 794 of security against collision attacks. 548 in the TEA algorithm. << 549 << 550 Xtendend Encryption Tiny Algorithm i << 551 of the XTEA algorithm for compatibil << 552 795 553 config CRYPTO_TWOFISH !! 796 config CRYPTO_SHA256_PPC_SPE 554 tristate "Twofish" !! 797 tristate "SHA224 and SHA256 digest algorithm (PPC SPE)" 555 select CRYPTO_ALGAPI !! 798 depends on PPC && SPE 556 select CRYPTO_TWOFISH_COMMON !! 799 select CRYPTO_SHA256 >> 800 select CRYPTO_HASH 557 help 801 help 558 Twofish cipher algorithm !! 802 SHA224 and SHA256 secure hash standard (DFIPS 180-2) >> 803 implemented using powerpc SPE SIMD instruction set. 559 804 560 Twofish was submitted as an AES (Adv !! 805 config CRYPTO_SHA256_OCTEON 561 candidate cipher by researchers at C !! 806 tristate "SHA224 and SHA256 digest algorithm (OCTEON)" 562 16 round block cipher supporting key !! 807 depends on CPU_CAVIUM_OCTEON 563 bits. !! 808 select CRYPTO_SHA256 >> 809 select CRYPTO_HASH >> 810 help >> 811 SHA-256 secure hash standard (DFIPS 180-2) implemented >> 812 using OCTEON crypto instructions, when available. 564 813 565 See https://www.schneier.com/twofish !! 814 config CRYPTO_SHA256_SPARC64 >> 815 tristate "SHA224 and SHA256 digest algorithm (SPARC64)" >> 816 depends on SPARC64 >> 817 select CRYPTO_SHA256 >> 818 select CRYPTO_HASH >> 819 help >> 820 SHA-256 secure hash standard (DFIPS 180-2) implemented >> 821 using sparc64 crypto instructions, when available. 566 822 567 config CRYPTO_TWOFISH_COMMON !! 823 config CRYPTO_SHA512 568 tristate !! 824 tristate "SHA384 and SHA512 digest algorithms" >> 825 select CRYPTO_HASH 569 help 826 help 570 Common parts of the Twofish cipher a !! 827 SHA512 secure hash standard (DFIPS 180-2). 571 generic c and the assembler implemen << 572 828 573 endmenu !! 829 This version of SHA implements a 512 bit hash with 256 bits of >> 830 security against collision attacks. 574 831 575 menu "Length-preserving ciphers and modes" !! 832 This code also includes SHA-384, a 384 bit hash with 192 bits >> 833 of security against collision attacks. 576 834 577 config CRYPTO_ADIANTUM !! 835 config CRYPTO_SHA512_OCTEON 578 tristate "Adiantum" !! 836 tristate "SHA384 and SHA512 digest algorithms (OCTEON)" 579 select CRYPTO_CHACHA20 !! 837 depends on CPU_CAVIUM_OCTEON 580 select CRYPTO_LIB_POLY1305_GENERIC !! 838 select CRYPTO_SHA512 581 select CRYPTO_NHPOLY1305 !! 839 select CRYPTO_HASH 582 select CRYPTO_MANAGER << 583 help 840 help 584 Adiantum tweakable, length-preservin !! 841 SHA-512 secure hash standard (DFIPS 180-2) implemented >> 842 using OCTEON crypto instructions, when available. 585 843 586 Designed for fast and secure disk en !! 844 config CRYPTO_SHA512_SPARC64 587 CPUs without dedicated crypto instru !! 845 tristate "SHA384 and SHA512 digest algorithm (SPARC64)" 588 each sector using the XChaCha12 stre !! 846 depends on SPARC64 589 an ε-almost-∆-universal hash func !! 847 select CRYPTO_SHA512 590 the AES-256 block cipher on a single !! 848 select CRYPTO_HASH 591 without AES instructions, Adiantum i !! 849 help 592 AES-XTS. !! 850 SHA-512 secure hash standard (DFIPS 180-2) implemented 593 !! 851 using sparc64 crypto instructions, when available. 594 Adiantum's security is provably redu << 595 underlying stream and block ciphers, << 596 bound. Unlike XTS, Adiantum is a tr << 597 mode, so it actually provides an eve << 598 security than XTS, subject to the se << 599 852 600 If unsure, say N. !! 853 config CRYPTO_SHA3 >> 854 tristate "SHA3 digest algorithm" >> 855 select CRYPTO_HASH >> 856 help >> 857 SHA-3 secure hash standard (DFIPS 202). It's based on >> 858 cryptographic sponge function family called Keccak. 601 859 602 config CRYPTO_ARC4 !! 860 References: 603 tristate "ARC4 (Alleged Rivest Cipher !! 861 http://keccak.noekeon.org/ 604 depends on CRYPTO_USER_API_ENABLE_OBSO !! 862 605 select CRYPTO_SKCIPHER !! 863 config CRYPTO_SM3 606 select CRYPTO_LIB_ARC4 !! 864 tristate "SM3 digest algorithm" >> 865 select CRYPTO_HASH 607 help 866 help 608 ARC4 cipher algorithm !! 867 SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3). >> 868 It is part of the Chinese Commercial Cryptography suite. 609 869 610 ARC4 is a stream cipher using keys r !! 870 References: 611 bits in length. This algorithm is r !! 871 http://www.oscca.gov.cn/UpFile/20101222141857786.pdf 612 WEP, but it should not be for other !! 872 https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash 613 weakness of the algorithm. << 614 873 615 config CRYPTO_CHACHA20 !! 874 config CRYPTO_TGR192 616 tristate "ChaCha" !! 875 tristate "Tiger digest algorithms" 617 select CRYPTO_LIB_CHACHA_GENERIC !! 876 select CRYPTO_HASH 618 select CRYPTO_SKCIPHER << 619 help 877 help 620 The ChaCha20, XChaCha20, and XChaCha !! 878 Tiger hash algorithm 192, 160 and 128-bit hashes 621 879 622 ChaCha20 is a 256-bit high-speed str !! 880 Tiger is a hash function optimized for 64-bit processors while 623 Bernstein and further specified in R !! 881 still having decent performance on 32-bit processors. 624 This is the portable C implementatio !! 882 Tiger was developed by Ross Anderson and Eli Biham. 625 https://cr.yp.to/chacha/chacha-20080 << 626 883 627 XChaCha20 is the application of the !! 884 See also: 628 rather than to Salsa20. XChaCha20 e !! 885 <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>. 629 from 64 bits (or 96 bits using the R << 630 while provably retaining ChaCha20's << 631 https://cr.yp.to/snuffle/xsalsa-2008 << 632 << 633 XChaCha12 is XChaCha20 reduced to 12 << 634 reduced security margin but increase << 635 in some performance-sensitive scenar << 636 886 637 config CRYPTO_CBC !! 887 config CRYPTO_WP512 638 tristate "CBC (Cipher Block Chaining)" !! 888 tristate "Whirlpool digest algorithms" 639 select CRYPTO_SKCIPHER !! 889 select CRYPTO_HASH 640 select CRYPTO_MANAGER << 641 help 890 help 642 CBC (Cipher Block Chaining) mode (NI !! 891 Whirlpool hash algorithm 512, 384 and 256-bit hashes 643 892 644 This block cipher mode is required f !! 893 Whirlpool-512 is part of the NESSIE cryptographic primitives. >> 894 Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard 645 895 646 config CRYPTO_CTR !! 896 See also: 647 tristate "CTR (Counter)" !! 897 <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html> 648 select CRYPTO_SKCIPHER << 649 select CRYPTO_MANAGER << 650 help << 651 CTR (Counter) mode (NIST SP800-38A) << 652 898 653 config CRYPTO_CTS !! 899 config CRYPTO_GHASH_CLMUL_NI_INTEL 654 tristate "CTS (Cipher Text Stealing)" !! 900 tristate "GHASH digest algorithm (CLMUL-NI accelerated)" 655 select CRYPTO_SKCIPHER !! 901 depends on X86 && 64BIT 656 select CRYPTO_MANAGER !! 902 select CRYPTO_CRYPTD 657 help 903 help 658 CBC-CS3 variant of CTS (Cipher Text !! 904 GHASH is message digest algorithm for GCM (Galois/Counter Mode). 659 Addendum to SP800-38A (October 2010) !! 905 The implementation is accelerated by CLMUL-NI of Intel. 660 906 661 This mode is required for Kerberos g !! 907 comment "Ciphers" 662 for AES encryption. << 663 908 664 config CRYPTO_ECB !! 909 config CRYPTO_AES 665 tristate "ECB (Electronic Codebook)" !! 910 tristate "AES cipher algorithms" 666 select CRYPTO_SKCIPHER2 !! 911 select CRYPTO_ALGAPI 667 select CRYPTO_MANAGER << 668 help 912 help 669 ECB (Electronic Codebook) mode (NIST !! 913 AES cipher algorithms (FIPS-197). AES uses the Rijndael >> 914 algorithm. 670 915 671 config CRYPTO_HCTR2 !! 916 Rijndael appears to be consistently a very good performer in 672 tristate "HCTR2" !! 917 both hardware and software across a wide range of computing 673 select CRYPTO_XCTR !! 918 environments regardless of its use in feedback or non-feedback 674 select CRYPTO_POLYVAL !! 919 modes. Its key setup time is excellent, and its key agility is 675 select CRYPTO_MANAGER !! 920 good. Rijndael's very low memory requirements make it very well 676 help !! 921 suited for restricted-space environments, in which it also 677 HCTR2 length-preserving encryption m !! 922 demonstrates excellent performance. Rijndael's operations are >> 923 among the easiest to defend against power and timing attacks. 678 924 679 A mode for storage encryption that i !! 925 The AES specifies three key sizes: 128, 192 and 256 bits 680 instructions to accelerate AES and c << 681 x86 processors with AES-NI and CLMUL << 682 ARMv8 crypto extensions. << 683 926 684 See https://eprint.iacr.org/2021/144 !! 927 See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information. 685 928 686 config CRYPTO_KEYWRAP !! 929 config CRYPTO_AES_TI 687 tristate "KW (AES Key Wrap)" !! 930 tristate "Fixed time AES cipher" 688 select CRYPTO_SKCIPHER !! 931 select CRYPTO_ALGAPI 689 select CRYPTO_MANAGER << 690 help 932 help 691 KW (AES Key Wrap) authenticated encr !! 933 This is a generic implementation of AES that attempts to eliminate 692 and RFC3394) without padding. !! 934 data dependent latencies as much as possible without affecting >> 935 performance too much. It is intended for use by the generic CCM >> 936 and GCM drivers, and other CTR or CMAC/XCBC based modes that rely >> 937 solely on encryption (although decryption is supported as well, but >> 938 with a more dramatic performance hit) 693 939 694 config CRYPTO_LRW !! 940 Instead of using 16 lookup tables of 1 KB each, (8 for encryption and 695 tristate "LRW (Liskov Rivest Wagner)" !! 941 8 for decryption), this implementation only uses just two S-boxes of 696 select CRYPTO_LIB_GF128MUL !! 942 256 bytes each, and attempts to eliminate data dependent latencies by 697 select CRYPTO_SKCIPHER !! 943 prefetching the entire table into the cache at the start of each 698 select CRYPTO_MANAGER !! 944 block. 699 select CRYPTO_ECB !! 945 >> 946 config CRYPTO_AES_586 >> 947 tristate "AES cipher algorithms (i586)" >> 948 depends on (X86 || UML_X86) && !64BIT >> 949 select CRYPTO_ALGAPI >> 950 select CRYPTO_AES 700 help 951 help 701 LRW (Liskov Rivest Wagner) mode !! 952 AES cipher algorithms (FIPS-197). AES uses the Rijndael >> 953 algorithm. 702 954 703 A tweakable, non malleable, non mova !! 955 Rijndael appears to be consistently a very good performer in 704 narrow block cipher mode for dm-cryp !! 956 both hardware and software across a wide range of computing 705 specification string aes-lrw-benbi, !! 957 environments regardless of its use in feedback or non-feedback 706 The first 128, 192 or 256 bits in th !! 958 modes. Its key setup time is excellent, and its key agility is 707 rest is used to tie each cipher bloc !! 959 good. Rijndael's very low memory requirements make it very well >> 960 suited for restricted-space environments, in which it also >> 961 demonstrates excellent performance. Rijndael's operations are >> 962 among the easiest to defend against power and timing attacks. 708 963 709 See https://people.csail.mit.edu/riv !! 964 The AES specifies three key sizes: 128, 192 and 256 bits 710 965 711 config CRYPTO_PCBC !! 966 See <http://csrc.nist.gov/encryption/aes/> for more information. 712 tristate "PCBC (Propagating Cipher Blo !! 967 713 select CRYPTO_SKCIPHER !! 968 config CRYPTO_AES_X86_64 714 select CRYPTO_MANAGER !! 969 tristate "AES cipher algorithms (x86_64)" >> 970 depends on (X86 || UML_X86) && 64BIT >> 971 select CRYPTO_ALGAPI >> 972 select CRYPTO_AES 715 help 973 help 716 PCBC (Propagating Cipher Block Chain !! 974 AES cipher algorithms (FIPS-197). AES uses the Rijndael >> 975 algorithm. 717 976 718 This block cipher mode is required f !! 977 Rijndael appears to be consistently a very good performer in >> 978 both hardware and software across a wide range of computing >> 979 environments regardless of its use in feedback or non-feedback >> 980 modes. Its key setup time is excellent, and its key agility is >> 981 good. Rijndael's very low memory requirements make it very well >> 982 suited for restricted-space environments, in which it also >> 983 demonstrates excellent performance. Rijndael's operations are >> 984 among the easiest to defend against power and timing attacks. 719 985 720 config CRYPTO_XCTR !! 986 The AES specifies three key sizes: 128, 192 and 256 bits 721 tristate !! 987 722 select CRYPTO_SKCIPHER !! 988 See <http://csrc.nist.gov/encryption/aes/> for more information. 723 select CRYPTO_MANAGER !! 989 >> 990 config CRYPTO_AES_NI_INTEL >> 991 tristate "AES cipher algorithms (AES-NI)" >> 992 depends on X86 >> 993 select CRYPTO_AEAD >> 994 select CRYPTO_AES_X86_64 if 64BIT >> 995 select CRYPTO_AES_586 if !64BIT >> 996 select CRYPTO_ALGAPI >> 997 select CRYPTO_BLKCIPHER >> 998 select CRYPTO_GLUE_HELPER_X86 if 64BIT >> 999 select CRYPTO_SIMD 724 help 1000 help 725 XCTR (XOR Counter) mode for HCTR2 !! 1001 Use Intel AES-NI instructions for AES algorithm. >> 1002 >> 1003 AES cipher algorithms (FIPS-197). AES uses the Rijndael >> 1004 algorithm. >> 1005 >> 1006 Rijndael appears to be consistently a very good performer in >> 1007 both hardware and software across a wide range of computing >> 1008 environments regardless of its use in feedback or non-feedback >> 1009 modes. Its key setup time is excellent, and its key agility is >> 1010 good. Rijndael's very low memory requirements make it very well >> 1011 suited for restricted-space environments, in which it also >> 1012 demonstrates excellent performance. Rijndael's operations are >> 1013 among the easiest to defend against power and timing attacks. 726 1014 727 This blockcipher mode is a variant o !! 1015 The AES specifies three key sizes: 128, 192 and 256 bits 728 addition rather than big-endian arit << 729 1016 730 XCTR mode is used to implement HCTR2 !! 1017 See <http://csrc.nist.gov/encryption/aes/> for more information. 731 1018 732 config CRYPTO_XTS !! 1019 In addition to AES cipher algorithm support, the acceleration 733 tristate "XTS (XOR Encrypt XOR with ci !! 1020 for some popular block cipher mode is supported too, including 734 select CRYPTO_SKCIPHER !! 1021 ECB, CBC, LRW, PCBC, XTS. The 64 bit version has additional 735 select CRYPTO_MANAGER !! 1022 acceleration for CTR. 736 select CRYPTO_ECB !! 1023 >> 1024 config CRYPTO_AES_SPARC64 >> 1025 tristate "AES cipher algorithms (SPARC64)" >> 1026 depends on SPARC64 >> 1027 select CRYPTO_CRYPTD >> 1028 select CRYPTO_ALGAPI 737 help 1029 help 738 XTS (XOR Encrypt XOR with ciphertext !! 1030 Use SPARC64 crypto opcodes for AES algorithm. 739 and IEEE 1619) << 740 1031 741 Use with aes-xts-plain, key size 256 !! 1032 AES cipher algorithms (FIPS-197). AES uses the Rijndael 742 implementation currently can't handl !! 1033 algorithm. 743 multiple of 16 bytes. << 744 1034 745 config CRYPTO_NHPOLY1305 !! 1035 Rijndael appears to be consistently a very good performer in 746 tristate !! 1036 both hardware and software across a wide range of computing 747 select CRYPTO_HASH !! 1037 environments regardless of its use in feedback or non-feedback 748 select CRYPTO_LIB_POLY1305_GENERIC !! 1038 modes. Its key setup time is excellent, and its key agility is >> 1039 good. Rijndael's very low memory requirements make it very well >> 1040 suited for restricted-space environments, in which it also >> 1041 demonstrates excellent performance. Rijndael's operations are >> 1042 among the easiest to defend against power and timing attacks. 749 1043 750 endmenu !! 1044 The AES specifies three key sizes: 128, 192 and 256 bits 751 1045 752 menu "AEAD (authenticated encryption with asso !! 1046 See <http://csrc.nist.gov/encryption/aes/> for more information. 753 1047 754 config CRYPTO_AEGIS128 !! 1048 In addition to AES cipher algorithm support, the acceleration 755 tristate "AEGIS-128" !! 1049 for some popular block cipher mode is supported too, including 756 select CRYPTO_AEAD !! 1050 ECB and CBC. 757 select CRYPTO_AES # for AES S-box tab !! 1051 >> 1052 config CRYPTO_AES_PPC_SPE >> 1053 tristate "AES cipher algorithms (PPC SPE)" >> 1054 depends on PPC && SPE >> 1055 help >> 1056 AES cipher algorithms (FIPS-197). Additionally the acceleration >> 1057 for popular block cipher modes ECB, CBC, CTR and XTS is supported. >> 1058 This module should only be used for low power (router) devices >> 1059 without hardware AES acceleration (e.g. caam crypto). It reduces the >> 1060 size of the AES tables from 16KB to 8KB + 256 bytes and mitigates >> 1061 timining attacks. Nevertheless it might be not as secure as other >> 1062 architecture specific assembler implementations that work on 1KB >> 1063 tables or 256 bytes S-boxes. >> 1064 >> 1065 config CRYPTO_ANUBIS >> 1066 tristate "Anubis cipher algorithm" >> 1067 select CRYPTO_ALGAPI 758 help 1068 help 759 AEGIS-128 AEAD algorithm !! 1069 Anubis cipher algorithm. 760 1070 761 config CRYPTO_AEGIS128_SIMD !! 1071 Anubis is a variable key length cipher which can use keys from 762 bool "AEGIS-128 (arm NEON, arm64 NEON) !! 1072 128 bits to 320 bits in length. It was evaluated as a entrant 763 depends on CRYPTO_AEGIS128 && ((ARM || !! 1073 in the NESSIE competition. 764 default y !! 1074 >> 1075 See also: >> 1076 <https://www.cosic.esat.kuleuven.be/nessie/reports/> >> 1077 <http://www.larc.usp.br/~pbarreto/AnubisPage.html> >> 1078 >> 1079 config CRYPTO_ARC4 >> 1080 tristate "ARC4 cipher algorithm" >> 1081 select CRYPTO_BLKCIPHER 765 help 1082 help 766 AEGIS-128 AEAD algorithm !! 1083 ARC4 cipher algorithm. 767 1084 768 Architecture: arm or arm64 using: !! 1085 ARC4 is a stream cipher using keys ranging from 8 bits to 2048 769 - NEON (Advanced SIMD) extension !! 1086 bits in length. This algorithm is required for driver-based >> 1087 WEP, but it should not be for other purposes because of the >> 1088 weakness of the algorithm. 770 1089 771 config CRYPTO_CHACHA20POLY1305 !! 1090 config CRYPTO_BLOWFISH 772 tristate "ChaCha20-Poly1305" !! 1091 tristate "Blowfish cipher algorithm" 773 select CRYPTO_CHACHA20 !! 1092 select CRYPTO_ALGAPI 774 select CRYPTO_POLY1305 !! 1093 select CRYPTO_BLOWFISH_COMMON 775 select CRYPTO_AEAD << 776 select CRYPTO_MANAGER << 777 help 1094 help 778 ChaCha20 stream cipher and Poly1305 !! 1095 Blowfish cipher algorithm, by Bruce Schneier. 779 mode (RFC8439) << 780 1096 781 config CRYPTO_CCM !! 1097 This is a variable key length cipher which can use keys from 32 782 tristate "CCM (Counter with Cipher Blo !! 1098 bits to 448 bits in length. It's fast, simple and specifically 783 select CRYPTO_CTR !! 1099 designed for use on "large microprocessors". 784 select CRYPTO_HASH !! 1100 785 select CRYPTO_AEAD !! 1101 See also: 786 select CRYPTO_MANAGER !! 1102 <http://www.schneier.com/blowfish.html> >> 1103 >> 1104 config CRYPTO_BLOWFISH_COMMON >> 1105 tristate 787 help 1106 help 788 CCM (Counter with Cipher Block Chain !! 1107 Common parts of the Blowfish cipher algorithm shared by the 789 authenticated encryption mode (NIST !! 1108 generic c and the assembler implementations. 790 1109 791 config CRYPTO_GCM !! 1110 See also: 792 tristate "GCM (Galois/Counter Mode) an !! 1111 <http://www.schneier.com/blowfish.html> 793 select CRYPTO_CTR !! 1112 794 select CRYPTO_AEAD !! 1113 config CRYPTO_BLOWFISH_X86_64 795 select CRYPTO_GHASH !! 1114 tristate "Blowfish cipher algorithm (x86_64)" 796 select CRYPTO_NULL !! 1115 depends on X86 && 64BIT 797 select CRYPTO_MANAGER !! 1116 select CRYPTO_ALGAPI >> 1117 select CRYPTO_BLOWFISH_COMMON 798 help 1118 help 799 GCM (Galois/Counter Mode) authentica !! 1119 Blowfish cipher algorithm (x86_64), by Bruce Schneier. 800 (GCM Message Authentication Code) (N << 801 1120 802 This is required for IPSec ESP (XFRM !! 1121 This is a variable key length cipher which can use keys from 32 >> 1122 bits to 448 bits in length. It's fast, simple and specifically >> 1123 designed for use on "large microprocessors". 803 1124 804 config CRYPTO_GENIV !! 1125 See also: 805 tristate !! 1126 <http://www.schneier.com/blowfish.html> 806 select CRYPTO_AEAD << 807 select CRYPTO_NULL << 808 select CRYPTO_MANAGER << 809 select CRYPTO_RNG_DEFAULT << 810 1127 811 config CRYPTO_SEQIV !! 1128 config CRYPTO_CAMELLIA 812 tristate "Sequence Number IV Generator !! 1129 tristate "Camellia cipher algorithms" 813 select CRYPTO_GENIV !! 1130 depends on CRYPTO >> 1131 select CRYPTO_ALGAPI 814 help 1132 help 815 Sequence Number IV generator !! 1133 Camellia cipher algorithms module. 816 1134 817 This IV generator generates an IV ba !! 1135 Camellia is a symmetric key block cipher developed jointly 818 xoring it with a salt. This algorit !! 1136 at NTT and Mitsubishi Electric Corporation. 819 1137 820 This is required for IPsec ESP (XFRM !! 1138 The Camellia specifies three key sizes: 128, 192 and 256 bits. 821 1139 822 config CRYPTO_ECHAINIV !! 1140 See also: 823 tristate "Encrypted Chain IV Generator !! 1141 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 824 select CRYPTO_GENIV !! 1142 >> 1143 config CRYPTO_CAMELLIA_X86_64 >> 1144 tristate "Camellia cipher algorithm (x86_64)" >> 1145 depends on X86 && 64BIT >> 1146 depends on CRYPTO >> 1147 select CRYPTO_ALGAPI >> 1148 select CRYPTO_GLUE_HELPER_X86 >> 1149 select CRYPTO_LRW >> 1150 select CRYPTO_XTS 825 help 1151 help 826 Encrypted Chain IV generator !! 1152 Camellia cipher algorithm module (x86_64). 827 1153 828 This IV generator generates an IV ba !! 1154 Camellia is a symmetric key block cipher developed jointly 829 a sequence number xored with a salt. !! 1155 at NTT and Mitsubishi Electric Corporation. 830 algorithm for CBC. !! 1156 >> 1157 The Camellia specifies three key sizes: 128, 192 and 256 bits. >> 1158 >> 1159 See also: >> 1160 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 831 1161 832 config CRYPTO_ESSIV !! 1162 config CRYPTO_CAMELLIA_AESNI_AVX_X86_64 833 tristate "Encrypted Salt-Sector IV Gen !! 1163 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)" 834 select CRYPTO_AUTHENC !! 1164 depends on X86 && 64BIT >> 1165 depends on CRYPTO >> 1166 select CRYPTO_ALGAPI >> 1167 select CRYPTO_CRYPTD >> 1168 select CRYPTO_ABLK_HELPER >> 1169 select CRYPTO_GLUE_HELPER_X86 >> 1170 select CRYPTO_CAMELLIA_X86_64 >> 1171 select CRYPTO_LRW >> 1172 select CRYPTO_XTS 835 help 1173 help 836 Encrypted Salt-Sector IV generator !! 1174 Camellia cipher algorithm module (x86_64/AES-NI/AVX). 837 1175 838 This IV generator is used in some ca !! 1176 Camellia is a symmetric key block cipher developed jointly 839 dm-crypt. It uses the hash of the bl !! 1177 at NTT and Mitsubishi Electric Corporation. 840 symmetric key for a block encryption << 841 IV, making low entropy IV sources mo << 842 encryption. << 843 1178 844 This driver implements a crypto API !! 1179 The Camellia specifies three key sizes: 128, 192 and 256 bits. 845 instantiated either as an skcipher o << 846 type of the first template argument) << 847 and decryption requests to the encap << 848 ESSIV to the input IV. Note that in << 849 that the keys are presented in the s << 850 template, and that the IV appears at << 851 associated data (AAD) region (which << 852 1180 853 Note that the use of ESSIV is not re !! 1181 See also: 854 and so this only needs to be enabled !! 1182 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 855 existing encrypted volumes of filesy << 856 building for a particular system tha << 857 the SoC in question has accelerated << 858 combined with ESSIV the only feasibl << 859 block encryption) << 860 1183 861 endmenu !! 1184 config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64 >> 1185 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)" >> 1186 depends on X86 && 64BIT >> 1187 depends on CRYPTO >> 1188 select CRYPTO_ALGAPI >> 1189 select CRYPTO_CRYPTD >> 1190 select CRYPTO_ABLK_HELPER >> 1191 select CRYPTO_GLUE_HELPER_X86 >> 1192 select CRYPTO_CAMELLIA_X86_64 >> 1193 select CRYPTO_CAMELLIA_AESNI_AVX_X86_64 >> 1194 select CRYPTO_LRW >> 1195 select CRYPTO_XTS >> 1196 help >> 1197 Camellia cipher algorithm module (x86_64/AES-NI/AVX2). 862 1198 863 menu "Hashes, digests, and MACs" !! 1199 Camellia is a symmetric key block cipher developed jointly >> 1200 at NTT and Mitsubishi Electric Corporation. 864 1201 865 config CRYPTO_BLAKE2B !! 1202 The Camellia specifies three key sizes: 128, 192 and 256 bits. 866 tristate "BLAKE2b" !! 1203 867 select CRYPTO_HASH !! 1204 See also: >> 1205 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> >> 1206 >> 1207 config CRYPTO_CAMELLIA_SPARC64 >> 1208 tristate "Camellia cipher algorithm (SPARC64)" >> 1209 depends on SPARC64 >> 1210 depends on CRYPTO >> 1211 select CRYPTO_ALGAPI 868 help 1212 help 869 BLAKE2b cryptographic hash function !! 1213 Camellia cipher algorithm module (SPARC64). 870 1214 871 BLAKE2b is optimized for 64-bit plat !! 1215 Camellia is a symmetric key block cipher developed jointly 872 of any size between 1 and 64 bytes. !! 1216 at NTT and Mitsubishi Electric Corporation. 873 1217 874 This module provides the following a !! 1218 The Camellia specifies three key sizes: 128, 192 and 256 bits. 875 - blake2b-160 << 876 - blake2b-256 << 877 - blake2b-384 << 878 - blake2b-512 << 879 1219 880 Used by the btrfs filesystem. !! 1220 See also: >> 1221 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 881 1222 882 See https://blake2.net for further i !! 1223 config CRYPTO_CAST_COMMON >> 1224 tristate >> 1225 help >> 1226 Common parts of the CAST cipher algorithms shared by the >> 1227 generic c and the assembler implementations. 883 1228 884 config CRYPTO_CMAC !! 1229 config CRYPTO_CAST5 885 tristate "CMAC (Cipher-based MAC)" !! 1230 tristate "CAST5 (CAST-128) cipher algorithm" 886 select CRYPTO_HASH !! 1231 select CRYPTO_ALGAPI 887 select CRYPTO_MANAGER !! 1232 select CRYPTO_CAST_COMMON 888 help 1233 help 889 CMAC (Cipher-based Message Authentic !! 1234 The CAST5 encryption algorithm (synonymous with CAST-128) is 890 mode (NIST SP800-38B and IETF RFC449 !! 1235 described in RFC2144. 891 1236 892 config CRYPTO_GHASH !! 1237 config CRYPTO_CAST5_AVX_X86_64 893 tristate "GHASH" !! 1238 tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)" 894 select CRYPTO_HASH !! 1239 depends on X86 && 64BIT 895 select CRYPTO_LIB_GF128MUL !! 1240 select CRYPTO_ALGAPI >> 1241 select CRYPTO_CRYPTD >> 1242 select CRYPTO_ABLK_HELPER >> 1243 select CRYPTO_CAST_COMMON >> 1244 select CRYPTO_CAST5 896 help 1245 help 897 GCM GHASH function (NIST SP800-38D) !! 1246 The CAST5 encryption algorithm (synonymous with CAST-128) is >> 1247 described in RFC2144. 898 1248 899 config CRYPTO_HMAC !! 1249 This module provides the Cast5 cipher algorithm that processes 900 tristate "HMAC (Keyed-Hash MAC)" !! 1250 sixteen blocks parallel using the AVX instruction set. 901 select CRYPTO_HASH !! 1251 902 select CRYPTO_MANAGER !! 1252 config CRYPTO_CAST6 >> 1253 tristate "CAST6 (CAST-256) cipher algorithm" >> 1254 select CRYPTO_ALGAPI >> 1255 select CRYPTO_CAST_COMMON >> 1256 help >> 1257 The CAST6 encryption algorithm (synonymous with CAST-256) is >> 1258 described in RFC2612. >> 1259 >> 1260 config CRYPTO_CAST6_AVX_X86_64 >> 1261 tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)" >> 1262 depends on X86 && 64BIT >> 1263 select CRYPTO_ALGAPI >> 1264 select CRYPTO_CRYPTD >> 1265 select CRYPTO_ABLK_HELPER >> 1266 select CRYPTO_GLUE_HELPER_X86 >> 1267 select CRYPTO_CAST_COMMON >> 1268 select CRYPTO_CAST6 >> 1269 select CRYPTO_LRW >> 1270 select CRYPTO_XTS 903 help 1271 help 904 HMAC (Keyed-Hash Message Authenticat !! 1272 The CAST6 encryption algorithm (synonymous with CAST-256) is 905 RFC2104) !! 1273 described in RFC2612. 906 1274 907 This is required for IPsec AH (XFRM_ !! 1275 This module provides the Cast6 cipher algorithm that processes >> 1276 eight blocks parallel using the AVX instruction set. 908 1277 909 config CRYPTO_MD4 !! 1278 config CRYPTO_DES 910 tristate "MD4" !! 1279 tristate "DES and Triple DES EDE cipher algorithms" 911 select CRYPTO_HASH !! 1280 select CRYPTO_ALGAPI 912 help 1281 help 913 MD4 message digest algorithm (RFC132 !! 1282 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3). 914 1283 915 config CRYPTO_MD5 !! 1284 config CRYPTO_DES_SPARC64 916 tristate "MD5" !! 1285 tristate "DES and Triple DES EDE cipher algorithms (SPARC64)" 917 select CRYPTO_HASH !! 1286 depends on SPARC64 >> 1287 select CRYPTO_ALGAPI >> 1288 select CRYPTO_DES 918 help 1289 help 919 MD5 message digest algorithm (RFC132 !! 1290 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3), >> 1291 optimized using SPARC64 crypto opcodes. 920 1292 921 config CRYPTO_MICHAEL_MIC !! 1293 config CRYPTO_DES3_EDE_X86_64 922 tristate "Michael MIC" !! 1294 tristate "Triple DES EDE cipher algorithm (x86-64)" 923 select CRYPTO_HASH !! 1295 depends on X86 && 64BIT >> 1296 select CRYPTO_ALGAPI >> 1297 select CRYPTO_DES 924 help 1298 help 925 Michael MIC (Message Integrity Code) !! 1299 Triple DES EDE (FIPS 46-3) algorithm. 926 1300 927 Defined by the IEEE 802.11i TKIP (Te !! 1301 This module provides implementation of the Triple DES EDE cipher 928 known as WPA (Wif-Fi Protected Acces !! 1302 algorithm that is optimized for x86-64 processors. Two versions of >> 1303 algorithm are provided; regular processing one input block and >> 1304 one that processes three blocks parallel. 929 1305 930 This algorithm is required for TKIP, !! 1306 config CRYPTO_FCRYPT 931 other purposes because of the weakne !! 1307 tristate "FCrypt cipher algorithm" >> 1308 select CRYPTO_ALGAPI >> 1309 select CRYPTO_BLKCIPHER >> 1310 help >> 1311 FCrypt algorithm used by RxRPC. 932 1312 933 config CRYPTO_POLYVAL !! 1313 config CRYPTO_KHAZAD 934 tristate !! 1314 tristate "Khazad cipher algorithm" 935 select CRYPTO_HASH !! 1315 select CRYPTO_ALGAPI 936 select CRYPTO_LIB_GF128MUL << 937 help 1316 help 938 POLYVAL hash function for HCTR2 !! 1317 Khazad cipher algorithm. 939 1318 940 This is used in HCTR2. It is not a !! 1319 Khazad was a finalist in the initial NESSIE competition. It is 941 cryptographic hash function. !! 1320 an algorithm optimized for 64-bit processors with good performance >> 1321 on 32-bit processors. Khazad uses an 128 bit key size. 942 1322 943 config CRYPTO_POLY1305 !! 1323 See also: 944 tristate "Poly1305" !! 1324 <http://www.larc.usp.br/~pbarreto/KhazadPage.html> 945 select CRYPTO_HASH !! 1325 946 select CRYPTO_LIB_POLY1305_GENERIC !! 1326 config CRYPTO_SALSA20 >> 1327 tristate "Salsa20 stream cipher algorithm" >> 1328 select CRYPTO_BLKCIPHER 947 help 1329 help 948 Poly1305 authenticator algorithm (RF !! 1330 Salsa20 stream cipher algorithm. 949 1331 950 Poly1305 is an authenticator algorit !! 1332 Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT 951 It is used for the ChaCha20-Poly1305 !! 1333 Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/> 952 in IETF protocols. This is the porta << 953 1334 954 config CRYPTO_RMD160 !! 1335 The Salsa20 stream cipher algorithm is designed by Daniel J. 955 tristate "RIPEMD-160" !! 1336 Bernstein <http://cr.yp.to/snuffle.html">djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html> 956 select CRYPTO_HASH << 957 help << 958 RIPEMD-160 hash function (ISO/IEC 10 << 959 1337 960 RIPEMD-160 is a 160-bit cryptographi !! 1338 config CRYPTO_SALSA20_586 961 to be used as a secure replacement f !! 1339 tristate "Salsa20 stream cipher algorithm (i586)" 962 MD4, MD5 and its predecessor RIPEMD !! 1340 depends on (X86 || UML_X86) && !64BIT 963 (not to be confused with RIPEMD-128) !! 1341 select CRYPTO_BLKCIPHER >> 1342 help >> 1343 Salsa20 stream cipher algorithm. 964 1344 965 Its speed is comparable to SHA-1 and !! 1345 Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT 966 against RIPEMD-160. !! 1346 Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/> 967 1347 968 Developed by Hans Dobbertin, Antoon !! 1348 The Salsa20 stream cipher algorithm is designed by Daniel J. 969 See https://homes.esat.kuleuven.be/~ !! 1349 Bernstein <http://cr.yp.to/snuffle.html">djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html> 970 for further information. << 971 1350 972 config CRYPTO_SHA1 !! 1351 config CRYPTO_SALSA20_X86_64 973 tristate "SHA-1" !! 1352 tristate "Salsa20 stream cipher algorithm (x86_64)" 974 select CRYPTO_HASH !! 1353 depends on (X86 || UML_X86) && 64BIT 975 select CRYPTO_LIB_SHA1 !! 1354 select CRYPTO_BLKCIPHER 976 help 1355 help 977 SHA-1 secure hash algorithm (FIPS 18 !! 1356 Salsa20 stream cipher algorithm. 978 1357 979 config CRYPTO_SHA256 !! 1358 Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT 980 tristate "SHA-224 and SHA-256" !! 1359 Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/> 981 select CRYPTO_HASH !! 1360 982 select CRYPTO_LIB_SHA256 !! 1361 The Salsa20 stream cipher algorithm is designed by Daniel J. >> 1362 Bernstein <http://cr.yp.to/snuffle.html">djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html> >> 1363 >> 1364 config CRYPTO_CHACHA20 >> 1365 tristate "ChaCha20 cipher algorithm" >> 1366 select CRYPTO_BLKCIPHER 983 help 1367 help 984 SHA-224 and SHA-256 secure hash algo !! 1368 ChaCha20 cipher algorithm, RFC7539. 985 1369 986 This is required for IPsec AH (XFRM_ !! 1370 ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J. 987 Used by the btrfs filesystem, Ceph, !! 1371 Bernstein and further specified in RFC7539 for use in IETF protocols. >> 1372 This is the portable C implementation of ChaCha20. 988 1373 989 config CRYPTO_SHA512 !! 1374 See also: 990 tristate "SHA-384 and SHA-512" !! 1375 <http://cr.yp.to/chacha/chacha-20080128.pdf> 991 select CRYPTO_HASH !! 1376 >> 1377 config CRYPTO_CHACHA20_X86_64 >> 1378 tristate "ChaCha20 cipher algorithm (x86_64/SSSE3/AVX2)" >> 1379 depends on X86 && 64BIT >> 1380 select CRYPTO_BLKCIPHER >> 1381 select CRYPTO_CHACHA20 992 help 1382 help 993 SHA-384 and SHA-512 secure hash algo !! 1383 ChaCha20 cipher algorithm, RFC7539. 994 1384 995 config CRYPTO_SHA3 !! 1385 ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J. 996 tristate "SHA-3" !! 1386 Bernstein and further specified in RFC7539 for use in IETF protocols. 997 select CRYPTO_HASH !! 1387 This is the x86_64 assembler implementation using SIMD instructions. >> 1388 >> 1389 See also: >> 1390 <http://cr.yp.to/chacha/chacha-20080128.pdf> >> 1391 >> 1392 config CRYPTO_SEED >> 1393 tristate "SEED cipher algorithm" >> 1394 select CRYPTO_ALGAPI 998 help 1395 help 999 SHA-3 secure hash algorithms (FIPS 2 !! 1396 SEED cipher algorithm (RFC4269). 1000 1397 1001 config CRYPTO_SM3 !! 1398 SEED is a 128-bit symmetric key block cipher that has been 1002 tristate !! 1399 developed by KISA (Korea Information Security Agency) as a >> 1400 national standard encryption algorithm of the Republic of Korea. >> 1401 It is a 16 round block cipher with the key size of 128 bit. 1003 1402 1004 config CRYPTO_SM3_GENERIC !! 1403 See also: 1005 tristate "SM3 (ShangMi 3)" !! 1404 <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp> 1006 select CRYPTO_HASH !! 1405 1007 select CRYPTO_SM3 !! 1406 config CRYPTO_SERPENT >> 1407 tristate "Serpent cipher algorithm" >> 1408 select CRYPTO_ALGAPI 1008 help 1409 help 1009 SM3 (ShangMi 3) secure hash functio !! 1410 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1010 1411 1011 This is part of the Chinese Commerc !! 1412 Keys are allowed to be from 0 to 256 bits in length, in steps >> 1413 of 8 bits. Also includes the 'Tnepres' algorithm, a reversed >> 1414 variant of Serpent for compatibility with old kerneli.org code. 1012 1415 1013 References: !! 1416 See also: 1014 http://www.oscca.gov.cn/UpFile/2010 !! 1417 <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1015 https://datatracker.ietf.org/doc/ht << 1016 1418 1017 config CRYPTO_STREEBOG !! 1419 config CRYPTO_SERPENT_SSE2_X86_64 1018 tristate "Streebog" !! 1420 tristate "Serpent cipher algorithm (x86_64/SSE2)" 1019 select CRYPTO_HASH !! 1421 depends on X86 && 64BIT >> 1422 select CRYPTO_ALGAPI >> 1423 select CRYPTO_CRYPTD >> 1424 select CRYPTO_ABLK_HELPER >> 1425 select CRYPTO_GLUE_HELPER_X86 >> 1426 select CRYPTO_SERPENT >> 1427 select CRYPTO_LRW >> 1428 select CRYPTO_XTS 1020 help 1429 help 1021 Streebog Hash Function (GOST R 34.1 !! 1430 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1022 1431 1023 This is one of the Russian cryptogr !! 1432 Keys are allowed to be from 0 to 256 bits in length, in steps 1024 GOST algorithms). This setting enab !! 1433 of 8 bits. 1025 256 and 512 bits output. << 1026 1434 1027 References: !! 1435 This module provides Serpent cipher algorithm that processes eight 1028 https://tc26.ru/upload/iblock/fed/f !! 1436 blocks parallel using SSE2 instruction set. 1029 https://tools.ietf.org/html/rfc6986 << 1030 1437 1031 config CRYPTO_VMAC !! 1438 See also: 1032 tristate "VMAC" !! 1439 <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1033 select CRYPTO_HASH !! 1440 1034 select CRYPTO_MANAGER !! 1441 config CRYPTO_SERPENT_SSE2_586 >> 1442 tristate "Serpent cipher algorithm (i586/SSE2)" >> 1443 depends on X86 && !64BIT >> 1444 select CRYPTO_ALGAPI >> 1445 select CRYPTO_CRYPTD >> 1446 select CRYPTO_ABLK_HELPER >> 1447 select CRYPTO_GLUE_HELPER_X86 >> 1448 select CRYPTO_SERPENT >> 1449 select CRYPTO_LRW >> 1450 select CRYPTO_XTS 1035 help 1451 help 1036 VMAC is a message authentication al !! 1452 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1037 very high speed on 64-bit architect << 1038 1453 1039 See https://fastcrypto.org/vmac for !! 1454 Keys are allowed to be from 0 to 256 bits in length, in steps >> 1455 of 8 bits. 1040 1456 1041 config CRYPTO_WP512 !! 1457 This module provides Serpent cipher algorithm that processes four 1042 tristate "Whirlpool" !! 1458 blocks parallel using SSE2 instruction set. 1043 select CRYPTO_HASH !! 1459 >> 1460 See also: >> 1461 <http://www.cl.cam.ac.uk/~rja14/serpent.html> >> 1462 >> 1463 config CRYPTO_SERPENT_AVX_X86_64 >> 1464 tristate "Serpent cipher algorithm (x86_64/AVX)" >> 1465 depends on X86 && 64BIT >> 1466 select CRYPTO_ALGAPI >> 1467 select CRYPTO_CRYPTD >> 1468 select CRYPTO_ABLK_HELPER >> 1469 select CRYPTO_GLUE_HELPER_X86 >> 1470 select CRYPTO_SERPENT >> 1471 select CRYPTO_LRW >> 1472 select CRYPTO_XTS 1044 help 1473 help 1045 Whirlpool hash function (ISO/IEC 10 !! 1474 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1046 1475 1047 512, 384 and 256-bit hashes. !! 1476 Keys are allowed to be from 0 to 256 bits in length, in steps >> 1477 of 8 bits. 1048 1478 1049 Whirlpool-512 is part of the NESSIE !! 1479 This module provides the Serpent cipher algorithm that processes >> 1480 eight blocks parallel using the AVX instruction set. 1050 1481 1051 See https://web.archive.org/web/201 !! 1482 See also: 1052 for further information. !! 1483 <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1053 1484 1054 config CRYPTO_XCBC !! 1485 config CRYPTO_SERPENT_AVX2_X86_64 1055 tristate "XCBC-MAC (Extended Cipher B !! 1486 tristate "Serpent cipher algorithm (x86_64/AVX2)" 1056 select CRYPTO_HASH !! 1487 depends on X86 && 64BIT 1057 select CRYPTO_MANAGER !! 1488 select CRYPTO_ALGAPI >> 1489 select CRYPTO_CRYPTD >> 1490 select CRYPTO_ABLK_HELPER >> 1491 select CRYPTO_GLUE_HELPER_X86 >> 1492 select CRYPTO_SERPENT >> 1493 select CRYPTO_SERPENT_AVX_X86_64 >> 1494 select CRYPTO_LRW >> 1495 select CRYPTO_XTS 1058 help 1496 help 1059 XCBC-MAC (Extended Cipher Block Cha !! 1497 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1060 Code) (RFC3566) << 1061 1498 1062 config CRYPTO_XXHASH !! 1499 Keys are allowed to be from 0 to 256 bits in length, in steps 1063 tristate "xxHash" !! 1500 of 8 bits. 1064 select CRYPTO_HASH !! 1501 1065 select XXHASH !! 1502 This module provides Serpent cipher algorithm that processes 16 >> 1503 blocks parallel using AVX2 instruction set. >> 1504 >> 1505 See also: >> 1506 <http://www.cl.cam.ac.uk/~rja14/serpent.html> >> 1507 >> 1508 config CRYPTO_TEA >> 1509 tristate "TEA, XTEA and XETA cipher algorithms" >> 1510 select CRYPTO_ALGAPI 1066 help 1511 help 1067 xxHash non-cryptographic hash algor !! 1512 TEA cipher algorithm. 1068 1513 1069 Extremely fast, working at speeds c !! 1514 Tiny Encryption Algorithm is a simple cipher that uses >> 1515 many rounds for security. It is very fast and uses >> 1516 little memory. 1070 1517 1071 Used by the btrfs filesystem. !! 1518 Xtendend Tiny Encryption Algorithm is a modification to >> 1519 the TEA algorithm to address a potential key weakness >> 1520 in the TEA algorithm. 1072 1521 1073 endmenu !! 1522 Xtendend Encryption Tiny Algorithm is a mis-implementation >> 1523 of the XTEA algorithm for compatibility purposes. 1074 1524 1075 menu "CRCs (cyclic redundancy checks)" !! 1525 config CRYPTO_TWOFISH >> 1526 tristate "Twofish cipher algorithm" >> 1527 select CRYPTO_ALGAPI >> 1528 select CRYPTO_TWOFISH_COMMON >> 1529 help >> 1530 Twofish cipher algorithm. 1076 1531 1077 config CRYPTO_CRC32C !! 1532 Twofish was submitted as an AES (Advanced Encryption Standard) 1078 tristate "CRC32c" !! 1533 candidate cipher by researchers at CounterPane Systems. It is a 1079 select CRYPTO_HASH !! 1534 16 round block cipher supporting key sizes of 128, 192, and 256 1080 select CRC32 !! 1535 bits. >> 1536 >> 1537 See also: >> 1538 <http://www.schneier.com/twofish.html> >> 1539 >> 1540 config CRYPTO_TWOFISH_COMMON >> 1541 tristate 1081 help 1542 help 1082 CRC32c CRC algorithm with the iSCSI !! 1543 Common parts of the Twofish cipher algorithm shared by the >> 1544 generic c and the assembler implementations. 1083 1545 1084 A 32-bit CRC (cyclic redundancy che !! 1546 config CRYPTO_TWOFISH_586 1085 by G. Castagnoli, S. Braeuer and M. !! 1547 tristate "Twofish cipher algorithms (i586)" 1086 Redundancy-Check Codes with 24 and !! 1548 depends on (X86 || UML_X86) && !64BIT 1087 on Communications, Vol. 41, No. 6, !! 1549 select CRYPTO_ALGAPI 1088 iSCSI. !! 1550 select CRYPTO_TWOFISH_COMMON >> 1551 help >> 1552 Twofish cipher algorithm. 1089 1553 1090 Used by btrfs, ext4, jbd2, NVMeoF/T !! 1554 Twofish was submitted as an AES (Advanced Encryption Standard) >> 1555 candidate cipher by researchers at CounterPane Systems. It is a >> 1556 16 round block cipher supporting key sizes of 128, 192, and 256 >> 1557 bits. 1091 1558 1092 config CRYPTO_CRC32 !! 1559 See also: 1093 tristate "CRC32" !! 1560 <http://www.schneier.com/twofish.html> 1094 select CRYPTO_HASH !! 1561 1095 select CRC32 !! 1562 config CRYPTO_TWOFISH_X86_64 >> 1563 tristate "Twofish cipher algorithm (x86_64)" >> 1564 depends on (X86 || UML_X86) && 64BIT >> 1565 select CRYPTO_ALGAPI >> 1566 select CRYPTO_TWOFISH_COMMON 1096 help 1567 help 1097 CRC32 CRC algorithm (IEEE 802.3) !! 1568 Twofish cipher algorithm (x86_64). >> 1569 >> 1570 Twofish was submitted as an AES (Advanced Encryption Standard) >> 1571 candidate cipher by researchers at CounterPane Systems. It is a >> 1572 16 round block cipher supporting key sizes of 128, 192, and 256 >> 1573 bits. 1098 1574 1099 Used by RoCEv2 and f2fs. !! 1575 See also: >> 1576 <http://www.schneier.com/twofish.html> 1100 1577 1101 config CRYPTO_CRCT10DIF !! 1578 config CRYPTO_TWOFISH_X86_64_3WAY 1102 tristate "CRCT10DIF" !! 1579 tristate "Twofish cipher algorithm (x86_64, 3-way parallel)" 1103 select CRYPTO_HASH !! 1580 depends on X86 && 64BIT >> 1581 select CRYPTO_ALGAPI >> 1582 select CRYPTO_TWOFISH_COMMON >> 1583 select CRYPTO_TWOFISH_X86_64 >> 1584 select CRYPTO_GLUE_HELPER_X86 >> 1585 select CRYPTO_LRW >> 1586 select CRYPTO_XTS 1104 help 1587 help 1105 CRC16 CRC algorithm used for the T1 !! 1588 Twofish cipher algorithm (x86_64, 3-way parallel). 1106 1589 1107 CRC algorithm used by the SCSI Bloc !! 1590 Twofish was submitted as an AES (Advanced Encryption Standard) >> 1591 candidate cipher by researchers at CounterPane Systems. It is a >> 1592 16 round block cipher supporting key sizes of 128, 192, and 256 >> 1593 bits. 1108 1594 1109 config CRYPTO_CRC64_ROCKSOFT !! 1595 This module provides Twofish cipher algorithm that processes three 1110 tristate "CRC64 based on Rocksoft Mod !! 1596 blocks parallel, utilizing resources of out-of-order CPUs better. 1111 depends on CRC64 !! 1597 1112 select CRYPTO_HASH !! 1598 See also: >> 1599 <http://www.schneier.com/twofish.html> >> 1600 >> 1601 config CRYPTO_TWOFISH_AVX_X86_64 >> 1602 tristate "Twofish cipher algorithm (x86_64/AVX)" >> 1603 depends on X86 && 64BIT >> 1604 select CRYPTO_ALGAPI >> 1605 select CRYPTO_CRYPTD >> 1606 select CRYPTO_ABLK_HELPER >> 1607 select CRYPTO_GLUE_HELPER_X86 >> 1608 select CRYPTO_TWOFISH_COMMON >> 1609 select CRYPTO_TWOFISH_X86_64 >> 1610 select CRYPTO_TWOFISH_X86_64_3WAY >> 1611 select CRYPTO_LRW >> 1612 select CRYPTO_XTS 1113 help 1613 help 1114 CRC64 CRC algorithm based on the Ro !! 1614 Twofish cipher algorithm (x86_64/AVX). 1115 1615 1116 Used by the NVMe implementation of !! 1616 Twofish was submitted as an AES (Advanced Encryption Standard) >> 1617 candidate cipher by researchers at CounterPane Systems. It is a >> 1618 16 round block cipher supporting key sizes of 128, 192, and 256 >> 1619 bits. 1117 1620 1118 See https://zlib.net/crc_v3.txt !! 1621 This module provides the Twofish cipher algorithm that processes >> 1622 eight blocks parallel using the AVX Instruction Set. 1119 1623 1120 endmenu !! 1624 See also: >> 1625 <http://www.schneier.com/twofish.html> 1121 1626 1122 menu "Compression" !! 1627 comment "Compression" 1123 1628 1124 config CRYPTO_DEFLATE 1629 config CRYPTO_DEFLATE 1125 tristate "Deflate" !! 1630 tristate "Deflate compression algorithm" 1126 select CRYPTO_ALGAPI 1631 select CRYPTO_ALGAPI 1127 select CRYPTO_ACOMP2 1632 select CRYPTO_ACOMP2 1128 select ZLIB_INFLATE 1633 select ZLIB_INFLATE 1129 select ZLIB_DEFLATE 1634 select ZLIB_DEFLATE 1130 help 1635 help 1131 Deflate compression algorithm (RFC1 !! 1636 This is the Deflate algorithm (RFC1951), specified for use in >> 1637 IPSec with the IPCOMP protocol (RFC3173, RFC2394). 1132 1638 1133 Used by IPSec with the IPCOMP proto !! 1639 You will most probably want this if using IPSec. 1134 1640 1135 config CRYPTO_LZO 1641 config CRYPTO_LZO 1136 tristate "LZO" !! 1642 tristate "LZO compression algorithm" 1137 select CRYPTO_ALGAPI 1643 select CRYPTO_ALGAPI 1138 select CRYPTO_ACOMP2 1644 select CRYPTO_ACOMP2 1139 select LZO_COMPRESS 1645 select LZO_COMPRESS 1140 select LZO_DECOMPRESS 1646 select LZO_DECOMPRESS 1141 help 1647 help 1142 LZO compression algorithm !! 1648 This is the LZO algorithm. 1143 << 1144 See https://www.oberhumer.com/opens << 1145 1649 1146 config CRYPTO_842 1650 config CRYPTO_842 1147 tristate "842" !! 1651 tristate "842 compression algorithm" 1148 select CRYPTO_ALGAPI 1652 select CRYPTO_ALGAPI 1149 select CRYPTO_ACOMP2 1653 select CRYPTO_ACOMP2 1150 select 842_COMPRESS 1654 select 842_COMPRESS 1151 select 842_DECOMPRESS 1655 select 842_DECOMPRESS 1152 help 1656 help 1153 842 compression algorithm by IBM !! 1657 This is the 842 algorithm. 1154 << 1155 See https://github.com/plauth/lib84 << 1156 1658 1157 config CRYPTO_LZ4 1659 config CRYPTO_LZ4 1158 tristate "LZ4" !! 1660 tristate "LZ4 compression algorithm" 1159 select CRYPTO_ALGAPI 1661 select CRYPTO_ALGAPI 1160 select CRYPTO_ACOMP2 1662 select CRYPTO_ACOMP2 1161 select LZ4_COMPRESS 1663 select LZ4_COMPRESS 1162 select LZ4_DECOMPRESS 1664 select LZ4_DECOMPRESS 1163 help 1665 help 1164 LZ4 compression algorithm !! 1666 This is the LZ4 algorithm. 1165 << 1166 See https://github.com/lz4/lz4 for << 1167 1667 1168 config CRYPTO_LZ4HC 1668 config CRYPTO_LZ4HC 1169 tristate "LZ4HC" !! 1669 tristate "LZ4HC compression algorithm" 1170 select CRYPTO_ALGAPI 1670 select CRYPTO_ALGAPI 1171 select CRYPTO_ACOMP2 1671 select CRYPTO_ACOMP2 1172 select LZ4HC_COMPRESS 1672 select LZ4HC_COMPRESS 1173 select LZ4_DECOMPRESS 1673 select LZ4_DECOMPRESS 1174 help 1674 help 1175 LZ4 high compression mode algorithm !! 1675 This is the LZ4 high compression mode algorithm. 1176 << 1177 See https://github.com/lz4/lz4 for << 1178 << 1179 config CRYPTO_ZSTD << 1180 tristate "Zstd" << 1181 select CRYPTO_ALGAPI << 1182 select CRYPTO_ACOMP2 << 1183 select ZSTD_COMPRESS << 1184 select ZSTD_DECOMPRESS << 1185 help << 1186 zstd compression algorithm << 1187 << 1188 See https://github.com/facebook/zst << 1189 << 1190 endmenu << 1191 1676 1192 menu "Random number generation" !! 1677 comment "Random Number Generation" 1193 1678 1194 config CRYPTO_ANSI_CPRNG 1679 config CRYPTO_ANSI_CPRNG 1195 tristate "ANSI PRNG (Pseudo Random Nu !! 1680 tristate "Pseudo Random Number Generation for Cryptographic modules" 1196 select CRYPTO_AES 1681 select CRYPTO_AES 1197 select CRYPTO_RNG 1682 select CRYPTO_RNG 1198 help 1683 help 1199 Pseudo RNG (random number generator !! 1684 This option enables the generic pseudo random number generator 1200 !! 1685 for cryptographic modules. Uses the Algorithm specified in 1201 This uses the AES cipher algorithm. !! 1686 ANSI X9.31 A.2.4. Note that this option must be enabled if 1202 !! 1687 CRYPTO_FIPS is selected 1203 Note that this option must be enabl << 1204 1688 1205 menuconfig CRYPTO_DRBG_MENU 1689 menuconfig CRYPTO_DRBG_MENU 1206 tristate "NIST SP800-90A DRBG (Determ !! 1690 tristate "NIST SP800-90A DRBG" 1207 help 1691 help 1208 DRBG (Deterministic Random Bit Gene !! 1692 NIST SP800-90A compliant DRBG. In the following submenu, one or 1209 !! 1693 more of the DRBG types must be selected. 1210 In the following submenu, one or mo << 1211 1694 1212 if CRYPTO_DRBG_MENU 1695 if CRYPTO_DRBG_MENU 1213 1696 1214 config CRYPTO_DRBG_HMAC 1697 config CRYPTO_DRBG_HMAC 1215 bool 1698 bool 1216 default y 1699 default y 1217 select CRYPTO_HMAC 1700 select CRYPTO_HMAC 1218 select CRYPTO_SHA512 !! 1701 select CRYPTO_SHA256 1219 1702 1220 config CRYPTO_DRBG_HASH 1703 config CRYPTO_DRBG_HASH 1221 bool "Hash_DRBG" !! 1704 bool "Enable Hash DRBG" 1222 select CRYPTO_SHA256 1705 select CRYPTO_SHA256 1223 help 1706 help 1224 Hash_DRBG variant as defined in NIS !! 1707 Enable the Hash DRBG variant as defined in NIST SP800-90A. 1225 << 1226 This uses the SHA-1, SHA-256, SHA-3 << 1227 1708 1228 config CRYPTO_DRBG_CTR 1709 config CRYPTO_DRBG_CTR 1229 bool "CTR_DRBG" !! 1710 bool "Enable CTR DRBG" 1230 select CRYPTO_AES 1711 select CRYPTO_AES 1231 select CRYPTO_CTR !! 1712 depends on CRYPTO_CTR 1232 help 1713 help 1233 CTR_DRBG variant as defined in NIST !! 1714 Enable the CTR DRBG variant as defined in NIST SP800-90A. 1234 << 1235 This uses the AES cipher algorithm << 1236 1715 1237 config CRYPTO_DRBG 1716 config CRYPTO_DRBG 1238 tristate 1717 tristate 1239 default CRYPTO_DRBG_MENU 1718 default CRYPTO_DRBG_MENU 1240 select CRYPTO_RNG 1719 select CRYPTO_RNG 1241 select CRYPTO_JITTERENTROPY 1720 select CRYPTO_JITTERENTROPY 1242 1721 1243 endif # if CRYPTO_DRBG_MENU 1722 endif # if CRYPTO_DRBG_MENU 1244 1723 1245 config CRYPTO_JITTERENTROPY 1724 config CRYPTO_JITTERENTROPY 1246 tristate "CPU Jitter Non-Deterministi !! 1725 tristate "Jitterentropy Non-Deterministic Random Number Generator" 1247 select CRYPTO_RNG 1726 select CRYPTO_RNG 1248 select CRYPTO_SHA3 << 1249 help 1727 help 1250 CPU Jitter RNG (Random Number Gener !! 1728 The Jitterentropy RNG is a noise that is intended 1251 !! 1729 to provide seed to another RNG. The RNG does not 1252 A non-physical non-deterministic (" !! 1730 perform any cryptographic whitening of the generated 1253 compliant with NIST SP800-90B) inte !! 1731 random numbers. This Jitterentropy RNG registers with 1254 deterministic RNG (e.g., per NIST S !! 1732 the kernel crypto API and can be used by any caller. 1255 This RNG does not perform any crypt << 1256 random numbers. << 1257 << 1258 See https://www.chronox.de/jent/ << 1259 << 1260 if CRYPTO_JITTERENTROPY << 1261 if CRYPTO_FIPS && EXPERT << 1262 << 1263 choice << 1264 prompt "CPU Jitter RNG Memory Size" << 1265 default CRYPTO_JITTERENTROPY_MEMSIZE_ << 1266 help << 1267 The Jitter RNG measures the executi << 1268 Multiple consecutive memory accesse << 1269 size fits into a cache (e.g. L1), o << 1270 to that cache is measured. The clos << 1271 the less variations are measured an << 1272 obtained. Thus, if the memory size << 1273 obtained entropy is less than if th << 1274 L1 + L2, which in turn is less if t << 1275 L1 + L2 + L3. Thus, by selecting a << 1276 the entropy rate produced by the Ji << 1277 << 1278 config CRYPTO_JITTERENTROPY_MEMSIZE_2 << 1279 bool "2048 Bytes (default)" << 1280 << 1281 config CRYPTO_JITTERENTROPY_MEMSIZE_1 << 1282 bool "128 kBytes" << 1283 << 1284 config CRYPTO_JITTERENTROPY_MEMSIZE_1 << 1285 bool "1024 kBytes" << 1286 << 1287 config CRYPTO_JITTERENTROPY_MEMSIZE_8 << 1288 bool "8192 kBytes" << 1289 endchoice << 1290 << 1291 config CRYPTO_JITTERENTROPY_MEMORY_BLOCKS << 1292 int << 1293 default 64 if CRYPTO_JITTERENTROPY_ME << 1294 default 512 if CRYPTO_JITTERENTROPY_M << 1295 default 1024 if CRYPTO_JITTERENTROPY_ << 1296 default 4096 if CRYPTO_JITTERENTROPY_ << 1297 << 1298 config CRYPTO_JITTERENTROPY_MEMORY_BLOCKSIZE << 1299 int << 1300 default 32 if CRYPTO_JITTERENTROPY_ME << 1301 default 256 if CRYPTO_JITTERENTROPY_M << 1302 default 1024 if CRYPTO_JITTERENTROPY_ << 1303 default 2048 if CRYPTO_JITTERENTROPY_ << 1304 << 1305 config CRYPTO_JITTERENTROPY_OSR << 1306 int "CPU Jitter RNG Oversampling Rate << 1307 range 1 15 << 1308 default 3 << 1309 help << 1310 The Jitter RNG allows the specifica << 1311 The Jitter RNG operation requires a << 1312 measurements to produce one output << 1313 OSR value is multiplied with the am << 1314 generate one output block. Thus, th << 1315 by the OSR factor. The oversampling << 1316 on hardware whose timers deliver li << 1317 the timer is coarse) by setting the << 1318 trade-off, however, is that the Jit << 1319 to generate random numbers. << 1320 << 1321 config CRYPTO_JITTERENTROPY_TESTINTERFACE << 1322 bool "CPU Jitter RNG Test Interface" << 1323 help << 1324 The test interface allows a privile << 1325 the raw unconditioned high resoluti << 1326 is collected by the Jitter RNG for << 1327 this data is used at the same time << 1328 the Jitter RNG operates in an insec << 1329 recording is enabled. This interfac << 1330 intended for testing purposes and i << 1331 production systems. << 1332 << 1333 The raw noise data can be obtained << 1334 debugfs file. Using the option << 1335 jitterentropy_testing.boot_raw_hire << 1336 the first 1000 entropy events since << 1337 << 1338 If unsure, select N. << 1339 << 1340 endif # if CRYPTO_FIPS && EXPERT << 1341 << 1342 if !(CRYPTO_FIPS && EXPERT) << 1343 << 1344 config CRYPTO_JITTERENTROPY_MEMORY_BLOCKS << 1345 int << 1346 default 64 << 1347 << 1348 config CRYPTO_JITTERENTROPY_MEMORY_BLOCKSIZE << 1349 int << 1350 default 32 << 1351 << 1352 config CRYPTO_JITTERENTROPY_OSR << 1353 int << 1354 default 1 << 1355 << 1356 config CRYPTO_JITTERENTROPY_TESTINTERFACE << 1357 bool << 1358 << 1359 endif # if !(CRYPTO_FIPS && EXPERT) << 1360 endif # if CRYPTO_JITTERENTROPY << 1361 << 1362 config CRYPTO_KDF800108_CTR << 1363 tristate << 1364 select CRYPTO_HMAC << 1365 select CRYPTO_SHA256 << 1366 << 1367 endmenu << 1368 menu "Userspace interface" << 1369 1733 1370 config CRYPTO_USER_API 1734 config CRYPTO_USER_API 1371 tristate 1735 tristate 1372 1736 1373 config CRYPTO_USER_API_HASH 1737 config CRYPTO_USER_API_HASH 1374 tristate "Hash algorithms" !! 1738 tristate "User-space interface for hash algorithms" 1375 depends on NET 1739 depends on NET 1376 select CRYPTO_HASH 1740 select CRYPTO_HASH 1377 select CRYPTO_USER_API 1741 select CRYPTO_USER_API 1378 help 1742 help 1379 Enable the userspace interface for !! 1743 This option enables the user-spaces interface for hash 1380 !! 1744 algorithms. 1381 See Documentation/crypto/userspace- << 1382 https://www.chronox.de/libkcapi/htm << 1383 1745 1384 config CRYPTO_USER_API_SKCIPHER 1746 config CRYPTO_USER_API_SKCIPHER 1385 tristate "Symmetric key cipher algori !! 1747 tristate "User-space interface for symmetric key cipher algorithms" 1386 depends on NET 1748 depends on NET 1387 select CRYPTO_SKCIPHER !! 1749 select CRYPTO_BLKCIPHER 1388 select CRYPTO_USER_API 1750 select CRYPTO_USER_API 1389 help 1751 help 1390 Enable the userspace interface for !! 1752 This option enables the user-spaces interface for symmetric 1391 !! 1753 key cipher algorithms. 1392 See Documentation/crypto/userspace- << 1393 https://www.chronox.de/libkcapi/htm << 1394 1754 1395 config CRYPTO_USER_API_RNG 1755 config CRYPTO_USER_API_RNG 1396 tristate "RNG (random number generato !! 1756 tristate "User-space interface for random number generator algorithms" 1397 depends on NET 1757 depends on NET 1398 select CRYPTO_RNG 1758 select CRYPTO_RNG 1399 select CRYPTO_USER_API 1759 select CRYPTO_USER_API 1400 help 1760 help 1401 Enable the userspace interface for !! 1761 This option enables the user-spaces interface for random 1402 algorithms. !! 1762 number generator algorithms. 1403 << 1404 See Documentation/crypto/userspace- << 1405 https://www.chronox.de/libkcapi/htm << 1406 << 1407 config CRYPTO_USER_API_RNG_CAVP << 1408 bool "Enable CAVP testing of DRBG" << 1409 depends on CRYPTO_USER_API_RNG && CRY << 1410 help << 1411 Enable extra APIs in the userspace << 1412 (Cryptographic Algorithm Validation << 1413 - resetting DRBG entropy << 1414 - providing Additional Data << 1415 << 1416 This should only be enabled for CAV << 1417 no unless you know what this is. << 1418 1763 1419 config CRYPTO_USER_API_AEAD 1764 config CRYPTO_USER_API_AEAD 1420 tristate "AEAD cipher algorithms" !! 1765 tristate "User-space interface for AEAD cipher algorithms" 1421 depends on NET 1766 depends on NET 1422 select CRYPTO_AEAD 1767 select CRYPTO_AEAD 1423 select CRYPTO_SKCIPHER !! 1768 select CRYPTO_BLKCIPHER 1424 select CRYPTO_NULL 1769 select CRYPTO_NULL 1425 select CRYPTO_USER_API 1770 select CRYPTO_USER_API 1426 help 1771 help 1427 Enable the userspace interface for !! 1772 This option enables the user-spaces interface for AEAD 1428 !! 1773 cipher algorithms. 1429 See Documentation/crypto/userspace- << 1430 https://www.chronox.de/libkcapi/htm << 1431 << 1432 config CRYPTO_USER_API_ENABLE_OBSOLETE << 1433 bool "Obsolete cryptographic algorith << 1434 depends on CRYPTO_USER_API << 1435 default y << 1436 help << 1437 Allow obsolete cryptographic algori << 1438 already been phased out from intern << 1439 only useful for userspace clients t << 1440 << 1441 endmenu << 1442 1774 1443 config CRYPTO_HASH_INFO 1775 config CRYPTO_HASH_INFO 1444 bool 1776 bool 1445 1777 1446 if !KMSAN # avoid false positives from assemb << 1447 if ARM << 1448 source "arch/arm/crypto/Kconfig" << 1449 endif << 1450 if ARM64 << 1451 source "arch/arm64/crypto/Kconfig" << 1452 endif << 1453 if LOONGARCH << 1454 source "arch/loongarch/crypto/Kconfig" << 1455 endif << 1456 if MIPS << 1457 source "arch/mips/crypto/Kconfig" << 1458 endif << 1459 if PPC << 1460 source "arch/powerpc/crypto/Kconfig" << 1461 endif << 1462 if RISCV << 1463 source "arch/riscv/crypto/Kconfig" << 1464 endif << 1465 if S390 << 1466 source "arch/s390/crypto/Kconfig" << 1467 endif << 1468 if SPARC << 1469 source "arch/sparc/crypto/Kconfig" << 1470 endif << 1471 if X86 << 1472 source "arch/x86/crypto/Kconfig" << 1473 endif << 1474 endif << 1475 << 1476 source "drivers/crypto/Kconfig" 1778 source "drivers/crypto/Kconfig" 1477 source "crypto/asymmetric_keys/Kconfig" !! 1779 source crypto/asymmetric_keys/Kconfig 1478 source "certs/Kconfig" !! 1780 source certs/Kconfig 1479 1781 1480 endif # if CRYPTO 1782 endif # if CRYPTO
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.