1 # SPDX-License-Identifier: GPL-2.0 1 # SPDX-License-Identifier: GPL-2.0 2 # 2 # 3 # Generic algorithms support 3 # Generic algorithms support 4 # 4 # 5 config XOR_BLOCKS 5 config XOR_BLOCKS 6 tristate 6 tristate 7 7 8 # 8 # 9 # async_tx api: hardware offloaded memory tran 9 # async_tx api: hardware offloaded memory transfer/transform support 10 # 10 # 11 source "crypto/async_tx/Kconfig" 11 source "crypto/async_tx/Kconfig" 12 12 13 # 13 # 14 # Cryptographic API Configuration 14 # Cryptographic API Configuration 15 # 15 # 16 menuconfig CRYPTO 16 menuconfig CRYPTO 17 tristate "Cryptographic API" 17 tristate "Cryptographic API" 18 select CRYPTO_LIB_UTILS << 19 help 18 help 20 This option provides the core Crypto 19 This option provides the core Cryptographic API. 21 20 22 if CRYPTO 21 if CRYPTO 23 22 24 menu "Crypto core or helper" !! 23 comment "Crypto core or helper" 25 24 26 config CRYPTO_FIPS 25 config CRYPTO_FIPS 27 bool "FIPS 200 compliance" 26 bool "FIPS 200 compliance" 28 depends on (CRYPTO_ANSI_CPRNG || CRYPT 27 depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS 29 depends on (MODULE_SIG || !MODULES) 28 depends on (MODULE_SIG || !MODULES) 30 help 29 help 31 This option enables the fips boot op !! 30 This options enables the fips boot option which is 32 required if you want the system to o !! 31 required if you want to system to operate in a FIPS 200 33 certification. You should say no un 32 certification. You should say no unless you know what 34 this is. 33 this is. 35 34 36 config CRYPTO_FIPS_NAME << 37 string "FIPS Module Name" << 38 default "Linux Kernel Cryptographic AP << 39 depends on CRYPTO_FIPS << 40 help << 41 This option sets the FIPS Module nam << 42 the /proc/sys/crypto/fips_name file. << 43 << 44 config CRYPTO_FIPS_CUSTOM_VERSION << 45 bool "Use Custom FIPS Module Version" << 46 depends on CRYPTO_FIPS << 47 default n << 48 << 49 config CRYPTO_FIPS_VERSION << 50 string "FIPS Module Version" << 51 default "(none)" << 52 depends on CRYPTO_FIPS_CUSTOM_VERSION << 53 help << 54 This option provides the ability to << 55 By default the KERNELRELEASE value i << 56 << 57 config CRYPTO_ALGAPI 35 config CRYPTO_ALGAPI 58 tristate 36 tristate 59 select CRYPTO_ALGAPI2 37 select CRYPTO_ALGAPI2 60 help 38 help 61 This option provides the API for cry 39 This option provides the API for cryptographic algorithms. 62 40 63 config CRYPTO_ALGAPI2 41 config CRYPTO_ALGAPI2 64 tristate 42 tristate 65 43 66 config CRYPTO_AEAD 44 config CRYPTO_AEAD 67 tristate 45 tristate 68 select CRYPTO_AEAD2 46 select CRYPTO_AEAD2 69 select CRYPTO_ALGAPI 47 select CRYPTO_ALGAPI 70 48 71 config CRYPTO_AEAD2 49 config CRYPTO_AEAD2 72 tristate 50 tristate 73 select CRYPTO_ALGAPI2 51 select CRYPTO_ALGAPI2 >> 52 select CRYPTO_NULL2 >> 53 select CRYPTO_RNG2 74 54 75 config CRYPTO_SIG !! 55 config CRYPTO_BLKCIPHER 76 tristate << 77 select CRYPTO_SIG2 << 78 select CRYPTO_ALGAPI << 79 << 80 config CRYPTO_SIG2 << 81 tristate << 82 select CRYPTO_ALGAPI2 << 83 << 84 config CRYPTO_SKCIPHER << 85 tristate 56 tristate 86 select CRYPTO_SKCIPHER2 !! 57 select CRYPTO_BLKCIPHER2 87 select CRYPTO_ALGAPI 58 select CRYPTO_ALGAPI 88 select CRYPTO_ECB << 89 59 90 config CRYPTO_SKCIPHER2 !! 60 config CRYPTO_BLKCIPHER2 91 tristate 61 tristate 92 select CRYPTO_ALGAPI2 62 select CRYPTO_ALGAPI2 >> 63 select CRYPTO_RNG2 >> 64 select CRYPTO_WORKQUEUE 93 65 94 config CRYPTO_HASH 66 config CRYPTO_HASH 95 tristate 67 tristate 96 select CRYPTO_HASH2 68 select CRYPTO_HASH2 97 select CRYPTO_ALGAPI 69 select CRYPTO_ALGAPI 98 70 99 config CRYPTO_HASH2 71 config CRYPTO_HASH2 100 tristate 72 tristate 101 select CRYPTO_ALGAPI2 73 select CRYPTO_ALGAPI2 102 74 103 config CRYPTO_RNG 75 config CRYPTO_RNG 104 tristate 76 tristate 105 select CRYPTO_RNG2 77 select CRYPTO_RNG2 106 select CRYPTO_ALGAPI 78 select CRYPTO_ALGAPI 107 79 108 config CRYPTO_RNG2 80 config CRYPTO_RNG2 109 tristate 81 tristate 110 select CRYPTO_ALGAPI2 82 select CRYPTO_ALGAPI2 111 83 112 config CRYPTO_RNG_DEFAULT 84 config CRYPTO_RNG_DEFAULT 113 tristate 85 tristate 114 select CRYPTO_DRBG_MENU 86 select CRYPTO_DRBG_MENU 115 87 116 config CRYPTO_AKCIPHER2 88 config CRYPTO_AKCIPHER2 117 tristate 89 tristate 118 select CRYPTO_ALGAPI2 90 select CRYPTO_ALGAPI2 119 91 120 config CRYPTO_AKCIPHER 92 config CRYPTO_AKCIPHER 121 tristate 93 tristate 122 select CRYPTO_AKCIPHER2 94 select CRYPTO_AKCIPHER2 123 select CRYPTO_ALGAPI 95 select CRYPTO_ALGAPI 124 96 125 config CRYPTO_KPP2 97 config CRYPTO_KPP2 126 tristate 98 tristate 127 select CRYPTO_ALGAPI2 99 select CRYPTO_ALGAPI2 128 100 129 config CRYPTO_KPP 101 config CRYPTO_KPP 130 tristate 102 tristate 131 select CRYPTO_ALGAPI 103 select CRYPTO_ALGAPI 132 select CRYPTO_KPP2 104 select CRYPTO_KPP2 133 105 134 config CRYPTO_ACOMP2 106 config CRYPTO_ACOMP2 135 tristate 107 tristate 136 select CRYPTO_ALGAPI2 108 select CRYPTO_ALGAPI2 137 select SGL_ALLOC 109 select SGL_ALLOC 138 110 139 config CRYPTO_ACOMP 111 config CRYPTO_ACOMP 140 tristate 112 tristate 141 select CRYPTO_ALGAPI 113 select CRYPTO_ALGAPI 142 select CRYPTO_ACOMP2 114 select CRYPTO_ACOMP2 143 115 >> 116 config CRYPTO_RSA >> 117 tristate "RSA algorithm" >> 118 select CRYPTO_AKCIPHER >> 119 select CRYPTO_MANAGER >> 120 select MPILIB >> 121 select ASN1 >> 122 help >> 123 Generic implementation of the RSA public key algorithm. >> 124 >> 125 config CRYPTO_DH >> 126 tristate "Diffie-Hellman algorithm" >> 127 select CRYPTO_KPP >> 128 select MPILIB >> 129 help >> 130 Generic implementation of the Diffie-Hellman algorithm. >> 131 >> 132 config CRYPTO_ECDH >> 133 tristate "ECDH algorithm" >> 134 select CRYPTO_KPP >> 135 select CRYPTO_RNG_DEFAULT >> 136 help >> 137 Generic implementation of the ECDH algorithm >> 138 144 config CRYPTO_MANAGER 139 config CRYPTO_MANAGER 145 tristate "Cryptographic algorithm mana 140 tristate "Cryptographic algorithm manager" 146 select CRYPTO_MANAGER2 141 select CRYPTO_MANAGER2 147 help 142 help 148 Create default cryptographic templat 143 Create default cryptographic template instantiations such as 149 cbc(aes). 144 cbc(aes). 150 145 151 config CRYPTO_MANAGER2 146 config CRYPTO_MANAGER2 152 def_tristate CRYPTO_MANAGER || (CRYPTO 147 def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y) 153 select CRYPTO_ACOMP2 << 154 select CRYPTO_AEAD2 148 select CRYPTO_AEAD2 155 select CRYPTO_AKCIPHER2 << 156 select CRYPTO_SIG2 << 157 select CRYPTO_HASH2 149 select CRYPTO_HASH2 >> 150 select CRYPTO_BLKCIPHER2 >> 151 select CRYPTO_AKCIPHER2 158 select CRYPTO_KPP2 152 select CRYPTO_KPP2 159 select CRYPTO_RNG2 !! 153 select CRYPTO_ACOMP2 160 select CRYPTO_SKCIPHER2 << 161 154 162 config CRYPTO_USER 155 config CRYPTO_USER 163 tristate "Userspace cryptographic algo 156 tristate "Userspace cryptographic algorithm configuration" 164 depends on NET 157 depends on NET 165 select CRYPTO_MANAGER 158 select CRYPTO_MANAGER 166 help 159 help 167 Userspace configuration for cryptogr 160 Userspace configuration for cryptographic instantiations such as 168 cbc(aes). 161 cbc(aes). 169 162 170 config CRYPTO_MANAGER_DISABLE_TESTS 163 config CRYPTO_MANAGER_DISABLE_TESTS 171 bool "Disable run-time self tests" 164 bool "Disable run-time self tests" 172 default y 165 default y >> 166 depends on CRYPTO_MANAGER2 173 help 167 help 174 Disable run-time self tests that nor 168 Disable run-time self tests that normally take place at 175 algorithm registration. 169 algorithm registration. 176 170 177 config CRYPTO_MANAGER_EXTRA_TESTS !! 171 config CRYPTO_GF128MUL 178 bool "Enable extra run-time crypto sel !! 172 tristate "GF(2^128) multiplication functions" 179 depends on DEBUG_KERNEL && !CRYPTO_MAN << 180 help 173 help 181 Enable extra run-time self tests of !! 174 Efficient table driven implementation of multiplications in the 182 including randomized fuzz tests. !! 175 field GF(2^128). This is needed by some cypher modes. This 183 !! 176 option will be selected automatically if you select such a 184 This is intended for developer use o !! 177 cipher mode. Only select this option by hand if you expect to load 185 longer to run than the normal self t !! 178 an external module that requires these functions. 186 179 187 config CRYPTO_NULL 180 config CRYPTO_NULL 188 tristate "Null algorithms" 181 tristate "Null algorithms" 189 select CRYPTO_NULL2 182 select CRYPTO_NULL2 190 help 183 help 191 These are 'Null' algorithms, used by 184 These are 'Null' algorithms, used by IPsec, which do nothing. 192 185 193 config CRYPTO_NULL2 186 config CRYPTO_NULL2 194 tristate 187 tristate 195 select CRYPTO_ALGAPI2 188 select CRYPTO_ALGAPI2 196 select CRYPTO_SKCIPHER2 !! 189 select CRYPTO_BLKCIPHER2 197 select CRYPTO_HASH2 190 select CRYPTO_HASH2 198 191 199 config CRYPTO_PCRYPT 192 config CRYPTO_PCRYPT 200 tristate "Parallel crypto engine" 193 tristate "Parallel crypto engine" 201 depends on SMP 194 depends on SMP 202 select PADATA 195 select PADATA 203 select CRYPTO_MANAGER 196 select CRYPTO_MANAGER 204 select CRYPTO_AEAD 197 select CRYPTO_AEAD 205 help 198 help 206 This converts an arbitrary crypto al 199 This converts an arbitrary crypto algorithm into a parallel 207 algorithm that executes in kernel th 200 algorithm that executes in kernel threads. 208 201 >> 202 config CRYPTO_WORKQUEUE >> 203 tristate >> 204 209 config CRYPTO_CRYPTD 205 config CRYPTO_CRYPTD 210 tristate "Software async crypto daemon 206 tristate "Software async crypto daemon" 211 select CRYPTO_SKCIPHER !! 207 select CRYPTO_BLKCIPHER 212 select CRYPTO_HASH 208 select CRYPTO_HASH 213 select CRYPTO_MANAGER 209 select CRYPTO_MANAGER >> 210 select CRYPTO_WORKQUEUE 214 help 211 help 215 This is a generic software asynchron 212 This is a generic software asynchronous crypto daemon that 216 converts an arbitrary synchronous so 213 converts an arbitrary synchronous software crypto algorithm 217 into an asynchronous algorithm that 214 into an asynchronous algorithm that executes in a kernel thread. 218 215 >> 216 config CRYPTO_MCRYPTD >> 217 tristate "Software async multi-buffer crypto daemon" >> 218 select CRYPTO_BLKCIPHER >> 219 select CRYPTO_HASH >> 220 select CRYPTO_MANAGER >> 221 select CRYPTO_WORKQUEUE >> 222 help >> 223 This is a generic software asynchronous crypto daemon that >> 224 provides the kernel thread to assist multi-buffer crypto >> 225 algorithms for submitting jobs and flushing jobs in multi-buffer >> 226 crypto algorithms. Multi-buffer crypto algorithms are executed >> 227 in the context of this kernel thread and drivers can post >> 228 their crypto request asynchronously to be processed by this daemon. >> 229 219 config CRYPTO_AUTHENC 230 config CRYPTO_AUTHENC 220 tristate "Authenc support" 231 tristate "Authenc support" 221 select CRYPTO_AEAD 232 select CRYPTO_AEAD 222 select CRYPTO_SKCIPHER !! 233 select CRYPTO_BLKCIPHER 223 select CRYPTO_MANAGER 234 select CRYPTO_MANAGER 224 select CRYPTO_HASH 235 select CRYPTO_HASH 225 select CRYPTO_NULL 236 select CRYPTO_NULL 226 help 237 help 227 Authenc: Combined mode wrapper for I 238 Authenc: Combined mode wrapper for IPsec. 228 !! 239 This is required for IPSec. 229 This is required for IPSec ESP (XFRM << 230 240 231 config CRYPTO_TEST 241 config CRYPTO_TEST 232 tristate "Testing module" 242 tristate "Testing module" 233 depends on m || EXPERT !! 243 depends on m 234 select CRYPTO_MANAGER 244 select CRYPTO_MANAGER 235 help 245 help 236 Quick & dirty crypto test module. 246 Quick & dirty crypto test module. 237 247 >> 248 config CRYPTO_ABLK_HELPER >> 249 tristate >> 250 select CRYPTO_CRYPTD >> 251 238 config CRYPTO_SIMD 252 config CRYPTO_SIMD 239 tristate 253 tristate 240 select CRYPTO_CRYPTD 254 select CRYPTO_CRYPTD 241 255 >> 256 config CRYPTO_GLUE_HELPER_X86 >> 257 tristate >> 258 depends on X86 >> 259 select CRYPTO_BLKCIPHER >> 260 242 config CRYPTO_ENGINE 261 config CRYPTO_ENGINE 243 tristate 262 tristate 244 263 245 endmenu !! 264 comment "Authenticated Encryption with Associated Data" 246 265 247 menu "Public-key cryptography" !! 266 config CRYPTO_CCM >> 267 tristate "CCM support" >> 268 select CRYPTO_CTR >> 269 select CRYPTO_HASH >> 270 select CRYPTO_AEAD >> 271 help >> 272 Support for Counter with CBC MAC. Required for IPsec. 248 273 249 config CRYPTO_RSA !! 274 config CRYPTO_GCM 250 tristate "RSA (Rivest-Shamir-Adleman)" !! 275 tristate "GCM/GMAC support" 251 select CRYPTO_AKCIPHER !! 276 select CRYPTO_CTR 252 select CRYPTO_MANAGER !! 277 select CRYPTO_AEAD 253 select MPILIB !! 278 select CRYPTO_GHASH 254 select ASN1 !! 279 select CRYPTO_NULL 255 help 280 help 256 RSA (Rivest-Shamir-Adleman) public k !! 281 Support for Galois/Counter Mode (GCM) and Galois Message >> 282 Authentication Code (GMAC). Required for IPSec. 257 283 258 config CRYPTO_DH !! 284 config CRYPTO_CHACHA20POLY1305 259 tristate "DH (Diffie-Hellman)" !! 285 tristate "ChaCha20-Poly1305 AEAD support" 260 select CRYPTO_KPP !! 286 select CRYPTO_CHACHA20 261 select MPILIB !! 287 select CRYPTO_POLY1305 >> 288 select CRYPTO_AEAD 262 help 289 help 263 DH (Diffie-Hellman) key exchange alg !! 290 ChaCha20-Poly1305 AEAD support, RFC7539. >> 291 >> 292 Support for the AEAD wrapper using the ChaCha20 stream cipher combined >> 293 with the Poly1305 authenticator. It is defined in RFC7539 for use in >> 294 IETF protocols. 264 295 265 config CRYPTO_DH_RFC7919_GROUPS !! 296 config CRYPTO_SEQIV 266 bool "RFC 7919 FFDHE groups" !! 297 tristate "Sequence Number IV Generator" 267 depends on CRYPTO_DH !! 298 select CRYPTO_AEAD >> 299 select CRYPTO_BLKCIPHER >> 300 select CRYPTO_NULL 268 select CRYPTO_RNG_DEFAULT 301 select CRYPTO_RNG_DEFAULT 269 help 302 help 270 FFDHE (Finite-Field-based Diffie-Hel !! 303 This IV generator generates an IV based on a sequence number by 271 defined in RFC7919. !! 304 xoring it with a salt. This algorithm is mainly useful for CTR 272 305 273 Support these finite-field groups in !! 306 config CRYPTO_ECHAINIV 274 - ffdhe2048, ffdhe3072, ffdhe4096, f !! 307 tristate "Encrypted Chain IV Generator" >> 308 select CRYPTO_AEAD >> 309 select CRYPTO_NULL >> 310 select CRYPTO_RNG_DEFAULT >> 311 default m >> 312 help >> 313 This IV generator generates an IV based on the encryption of >> 314 a sequence number xored with a salt. This is the default >> 315 algorithm for CBC. 275 316 276 If unsure, say N. !! 317 comment "Block modes" 277 318 278 config CRYPTO_ECC !! 319 config CRYPTO_CBC 279 tristate !! 320 tristate "CBC support" 280 select CRYPTO_RNG_DEFAULT !! 321 select CRYPTO_BLKCIPHER >> 322 select CRYPTO_MANAGER >> 323 help >> 324 CBC: Cipher Block Chaining mode >> 325 This block cipher algorithm is required for IPSec. 281 326 282 config CRYPTO_ECDH !! 327 config CRYPTO_CTR 283 tristate "ECDH (Elliptic Curve Diffie- !! 328 tristate "CTR support" 284 select CRYPTO_ECC !! 329 select CRYPTO_BLKCIPHER 285 select CRYPTO_KPP !! 330 select CRYPTO_SEQIV >> 331 select CRYPTO_MANAGER 286 help 332 help 287 ECDH (Elliptic Curve Diffie-Hellman) !! 333 CTR: Counter mode 288 using curves P-192, P-256, and P-384 !! 334 This block cipher algorithm is required for IPSec. 289 335 290 config CRYPTO_ECDSA !! 336 config CRYPTO_CTS 291 tristate "ECDSA (Elliptic Curve Digita !! 337 tristate "CTS support" 292 select CRYPTO_ECC !! 338 select CRYPTO_BLKCIPHER 293 select CRYPTO_AKCIPHER << 294 select ASN1 << 295 help 339 help 296 ECDSA (Elliptic Curve Digital Signat !! 340 CTS: Cipher Text Stealing 297 ISO/IEC 14888-3) !! 341 This is the Cipher Text Stealing mode as described by 298 using curves P-192, P-256, and P-384 !! 342 Section 8 of rfc2040 and referenced by rfc3962. 299 !! 343 (rfc3962 includes errata information in its Appendix A) 300 Only signature verification is imple !! 344 This mode is required for Kerberos gss mechanism support 301 !! 345 for AES encryption. 302 config CRYPTO_ECRDSA !! 346 303 tristate "EC-RDSA (Elliptic Curve Russ !! 347 config CRYPTO_ECB 304 select CRYPTO_ECC !! 348 tristate "ECB support" 305 select CRYPTO_AKCIPHER !! 349 select CRYPTO_BLKCIPHER 306 select CRYPTO_STREEBOG !! 350 select CRYPTO_MANAGER 307 select OID_REGISTRY << 308 select ASN1 << 309 help 351 help 310 Elliptic Curve Russian Digital Signa !! 352 ECB: Electronic CodeBook mode 311 RFC 7091, ISO/IEC 14888-3) !! 353 This is the simplest block cipher algorithm. It simply encrypts >> 354 the input block by block. 312 355 313 One of the Russian cryptographic sta !! 356 config CRYPTO_LRW 314 algorithms). Only signature verifica !! 357 tristate "LRW support" >> 358 select CRYPTO_BLKCIPHER >> 359 select CRYPTO_MANAGER >> 360 select CRYPTO_GF128MUL >> 361 help >> 362 LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable >> 363 narrow block cipher mode for dm-crypt. Use it with cipher >> 364 specification string aes-lrw-benbi, the key must be 256, 320 or 384. >> 365 The first 128, 192 or 256 bits in the key are used for AES and the >> 366 rest is used to tie each cipher block to its logical position. 315 367 316 config CRYPTO_CURVE25519 !! 368 config CRYPTO_PCBC 317 tristate "Curve25519" !! 369 tristate "PCBC support" 318 select CRYPTO_KPP !! 370 select CRYPTO_BLKCIPHER 319 select CRYPTO_LIB_CURVE25519_GENERIC !! 371 select CRYPTO_MANAGER >> 372 help >> 373 PCBC: Propagating Cipher Block Chaining mode >> 374 This block cipher algorithm is required for RxRPC. >> 375 >> 376 config CRYPTO_XTS >> 377 tristate "XTS support" >> 378 select CRYPTO_BLKCIPHER >> 379 select CRYPTO_MANAGER >> 380 select CRYPTO_ECB 320 help 381 help 321 Curve25519 elliptic curve (RFC7748) !! 382 XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain, >> 383 key size 256, 384 or 512 bits. This implementation currently >> 384 can't handle a sectorsize which is not a multiple of 16 bytes. 322 385 323 endmenu !! 386 config CRYPTO_KEYWRAP >> 387 tristate "Key wrapping support" >> 388 select CRYPTO_BLKCIPHER >> 389 help >> 390 Support for key wrapping (NIST SP800-38F / RFC3394) without >> 391 padding. 324 392 325 menu "Block ciphers" !! 393 comment "Hash modes" 326 394 327 config CRYPTO_AES !! 395 config CRYPTO_CMAC 328 tristate "AES (Advanced Encryption Sta !! 396 tristate "CMAC support" 329 select CRYPTO_ALGAPI !! 397 select CRYPTO_HASH 330 select CRYPTO_LIB_AES !! 398 select CRYPTO_MANAGER 331 help 399 help 332 AES cipher algorithms (Rijndael)(FIP !! 400 Cipher-based Message Authentication Code (CMAC) specified by >> 401 The National Institute of Standards and Technology (NIST). 333 402 334 Rijndael appears to be consistently !! 403 https://tools.ietf.org/html/rfc4493 335 both hardware and software across a !! 404 http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf 336 environments regardless of its use i << 337 modes. Its key setup time is excelle << 338 good. Rijndael's very low memory req << 339 suited for restricted-space environm << 340 demonstrates excellent performance. << 341 among the easiest to defend against << 342 405 343 The AES specifies three key sizes: 1 !! 406 config CRYPTO_HMAC >> 407 tristate "HMAC support" >> 408 select CRYPTO_HASH >> 409 select CRYPTO_MANAGER >> 410 help >> 411 HMAC: Keyed-Hashing for Message Authentication (RFC2104). >> 412 This is required for IPSec. 344 413 345 config CRYPTO_AES_TI !! 414 config CRYPTO_XCBC 346 tristate "AES (Advanced Encryption Sta !! 415 tristate "XCBC support" 347 select CRYPTO_ALGAPI !! 416 select CRYPTO_HASH 348 select CRYPTO_LIB_AES !! 417 select CRYPTO_MANAGER 349 help 418 help 350 AES cipher algorithms (Rijndael)(FIP !! 419 XCBC: Keyed-Hashing with encryption algorithm >> 420 http://www.ietf.org/rfc/rfc3566.txt >> 421 http://csrc.nist.gov/encryption/modes/proposedmodes/ >> 422 xcbc-mac/xcbc-mac-spec.pdf 351 423 352 This is a generic implementation of !! 424 config CRYPTO_VMAC 353 data dependent latencies as much as !! 425 tristate "VMAC support" 354 performance too much. It is intended !! 426 select CRYPTO_HASH 355 and GCM drivers, and other CTR or CM !! 427 select CRYPTO_MANAGER 356 solely on encryption (although decry !! 428 help 357 with a more dramatic performance hit !! 429 VMAC is a message authentication algorithm designed for >> 430 very high speed on 64-bit architectures. 358 431 359 Instead of using 16 lookup tables of !! 432 See also: 360 8 for decryption), this implementati !! 433 <http://fastcrypto.org/vmac> 361 256 bytes each, and attempts to elim << 362 prefetching the entire table into th << 363 block. Interrupts are also disabled << 364 are evicted when the CPU is interrup << 365 434 366 config CRYPTO_ANUBIS !! 435 comment "Digest" 367 tristate "Anubis" !! 436 368 depends on CRYPTO_USER_API_ENABLE_OBSO !! 437 config CRYPTO_CRC32C 369 select CRYPTO_ALGAPI !! 438 tristate "CRC32c CRC algorithm" >> 439 select CRYPTO_HASH >> 440 select CRC32 >> 441 help >> 442 Castagnoli, et al Cyclic Redundancy-Check Algorithm. Used >> 443 by iSCSI for header and data digests and by others. >> 444 See Castagnoli93. Module will be crc32c. >> 445 >> 446 config CRYPTO_CRC32C_INTEL >> 447 tristate "CRC32c INTEL hardware acceleration" >> 448 depends on X86 >> 449 select CRYPTO_HASH >> 450 help >> 451 In Intel processor with SSE4.2 supported, the processor will >> 452 support CRC32C implementation using hardware accelerated CRC32 >> 453 instruction. This option will create 'crc32c-intel' module, >> 454 which will enable any routine to use the CRC32 instruction to >> 455 gain performance compared with software implementation. >> 456 Module will be crc32c-intel. >> 457 >> 458 config CRYPTO_CRC32C_VPMSUM >> 459 tristate "CRC32c CRC algorithm (powerpc64)" >> 460 depends on PPC64 && ALTIVEC >> 461 select CRYPTO_HASH >> 462 select CRC32 370 help 463 help 371 Anubis cipher algorithm !! 464 CRC32c algorithm implemented using vector polynomial multiply-sum >> 465 (vpmsum) instructions, introduced in POWER8. Enable on POWER8 >> 466 and newer processors for improved performance. 372 467 373 Anubis is a variable key length ciph << 374 128 bits to 320 bits in length. It << 375 in the NESSIE competition. << 376 468 377 See https://web.archive.org/web/2016 !! 469 config CRYPTO_CRC32C_SPARC64 378 for further information. !! 470 tristate "CRC32c CRC algorithm (SPARC64)" >> 471 depends on SPARC64 >> 472 select CRYPTO_HASH >> 473 select CRC32 >> 474 help >> 475 CRC32c CRC algorithm implemented using sparc64 crypto instructions, >> 476 when available. 379 477 380 config CRYPTO_ARIA !! 478 config CRYPTO_CRC32 381 tristate "ARIA" !! 479 tristate "CRC32 CRC algorithm" 382 select CRYPTO_ALGAPI !! 480 select CRYPTO_HASH >> 481 select CRC32 383 help 482 help 384 ARIA cipher algorithm (RFC5794) !! 483 CRC-32-IEEE 802.3 cyclic redundancy-check algorithm. >> 484 Shash crypto api wrappers to crc32_le function. 385 485 386 ARIA is a standard encryption algori !! 486 config CRYPTO_CRC32_PCLMUL 387 The ARIA specifies three key sizes a !! 487 tristate "CRC32 PCLMULQDQ hardware acceleration" 388 128-bit: 12 rounds. !! 488 depends on X86 389 192-bit: 14 rounds. !! 489 select CRYPTO_HASH 390 256-bit: 16 rounds. !! 490 select CRC32 >> 491 help >> 492 From Intel Westmere and AMD Bulldozer processor with SSE4.2 >> 493 and PCLMULQDQ supported, the processor will support >> 494 CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ >> 495 instruction. This option will create 'crc32-plcmul' module, >> 496 which will enable any routine to use the CRC-32-IEEE 802.3 checksum >> 497 and gain better performance as compared with the table implementation. 391 498 392 See: !! 499 config CRYPTO_CRCT10DIF 393 https://seed.kisa.or.kr/kisa/algorit !! 500 tristate "CRCT10DIF algorithm" >> 501 select CRYPTO_HASH >> 502 help >> 503 CRC T10 Data Integrity Field computation is being cast as >> 504 a crypto transform. This allows for faster crc t10 diff >> 505 transforms to be used if they are available. 394 506 395 config CRYPTO_BLOWFISH !! 507 config CRYPTO_CRCT10DIF_PCLMUL 396 tristate "Blowfish" !! 508 tristate "CRCT10DIF PCLMULQDQ hardware acceleration" 397 select CRYPTO_ALGAPI !! 509 depends on X86 && 64BIT && CRC_T10DIF 398 select CRYPTO_BLOWFISH_COMMON !! 510 select CRYPTO_HASH 399 help 511 help 400 Blowfish cipher algorithm, by Bruce !! 512 For x86_64 processors with SSE4.2 and PCLMULQDQ supported, >> 513 CRC T10 DIF PCLMULQDQ computation can be hardware >> 514 accelerated PCLMULQDQ instruction. This option will create >> 515 'crct10dif-plcmul' module, which is faster when computing the >> 516 crct10dif checksum as compared with the generic table implementation. 401 517 402 This is a variable key length cipher !! 518 config CRYPTO_CRCT10DIF_VPMSUM 403 bits to 448 bits in length. It's fa !! 519 tristate "CRC32T10DIF powerpc64 hardware acceleration" 404 designed for use on "large microproc !! 520 depends on PPC64 && ALTIVEC && CRC_T10DIF >> 521 select CRYPTO_HASH >> 522 help >> 523 CRC10T10DIF algorithm implemented using vector polynomial >> 524 multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on >> 525 POWER8 and newer processors for improved performance. 405 526 406 See https://www.schneier.com/blowfis !! 527 config CRYPTO_VPMSUM_TESTER >> 528 tristate "Powerpc64 vpmsum hardware acceleration tester" >> 529 depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM >> 530 help >> 531 Stress test for CRC32c and CRC-T10DIF algorithms implemented with >> 532 POWER8 vpmsum instructions. >> 533 Unless you are testing these algorithms, you don't need this. 407 534 408 config CRYPTO_BLOWFISH_COMMON !! 535 config CRYPTO_GHASH 409 tristate !! 536 tristate "GHASH digest algorithm" >> 537 select CRYPTO_GF128MUL >> 538 select CRYPTO_HASH 410 help 539 help 411 Common parts of the Blowfish cipher !! 540 GHASH is message digest algorithm for GCM (Galois/Counter Mode). 412 generic c and the assembler implemen << 413 541 414 config CRYPTO_CAMELLIA !! 542 config CRYPTO_POLY1305 415 tristate "Camellia" !! 543 tristate "Poly1305 authenticator algorithm" 416 select CRYPTO_ALGAPI !! 544 select CRYPTO_HASH 417 help 545 help 418 Camellia cipher algorithms (ISO/IEC !! 546 Poly1305 authenticator algorithm, RFC7539. 419 547 420 Camellia is a symmetric key block ci !! 548 Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. 421 at NTT and Mitsubishi Electric Corpo !! 549 It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use >> 550 in IETF protocols. This is the portable C implementation of Poly1305. 422 551 423 The Camellia specifies three key siz !! 552 config CRYPTO_POLY1305_X86_64 >> 553 tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)" >> 554 depends on X86 && 64BIT >> 555 select CRYPTO_POLY1305 >> 556 help >> 557 Poly1305 authenticator algorithm, RFC7539. 424 558 425 See https://info.isl.ntt.co.jp/crypt !! 559 Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. >> 560 It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use >> 561 in IETF protocols. This is the x86_64 assembler implementation using SIMD >> 562 instructions. 426 563 427 config CRYPTO_CAST_COMMON !! 564 config CRYPTO_MD4 428 tristate !! 565 tristate "MD4 digest algorithm" >> 566 select CRYPTO_HASH 429 help 567 help 430 Common parts of the CAST cipher algo !! 568 MD4 message digest algorithm (RFC1320). 431 generic c and the assembler implemen << 432 569 433 config CRYPTO_CAST5 !! 570 config CRYPTO_MD5 434 tristate "CAST5 (CAST-128)" !! 571 tristate "MD5 digest algorithm" 435 select CRYPTO_ALGAPI !! 572 select CRYPTO_HASH 436 select CRYPTO_CAST_COMMON << 437 help 573 help 438 CAST5 (CAST-128) cipher algorithm (R !! 574 MD5 message digest algorithm (RFC1321). 439 575 440 config CRYPTO_CAST6 !! 576 config CRYPTO_MD5_OCTEON 441 tristate "CAST6 (CAST-256)" !! 577 tristate "MD5 digest algorithm (OCTEON)" 442 select CRYPTO_ALGAPI !! 578 depends on CPU_CAVIUM_OCTEON 443 select CRYPTO_CAST_COMMON !! 579 select CRYPTO_MD5 >> 580 select CRYPTO_HASH 444 help 581 help 445 CAST6 (CAST-256) encryption algorith !! 582 MD5 message digest algorithm (RFC1321) implemented >> 583 using OCTEON crypto instructions, when available. 446 584 447 config CRYPTO_DES !! 585 config CRYPTO_MD5_PPC 448 tristate "DES and Triple DES EDE" !! 586 tristate "MD5 digest algorithm (PPC)" 449 select CRYPTO_ALGAPI !! 587 depends on PPC 450 select CRYPTO_LIB_DES !! 588 select CRYPTO_HASH 451 help 589 help 452 DES (Data Encryption Standard)(FIPS !! 590 MD5 message digest algorithm (RFC1321) implemented 453 Triple DES EDE (Encrypt/Decrypt/Encr !! 591 in PPC assembler. 454 cipher algorithms << 455 592 456 config CRYPTO_FCRYPT !! 593 config CRYPTO_MD5_SPARC64 457 tristate "FCrypt" !! 594 tristate "MD5 digest algorithm (SPARC64)" 458 select CRYPTO_ALGAPI !! 595 depends on SPARC64 459 select CRYPTO_SKCIPHER !! 596 select CRYPTO_MD5 >> 597 select CRYPTO_HASH 460 help 598 help 461 FCrypt algorithm used by RxRPC !! 599 MD5 message digest algorithm (RFC1321) implemented 462 !! 600 using sparc64 crypto instructions, when available. 463 See https://ota.polyonymo.us/fcrypt- << 464 601 465 config CRYPTO_KHAZAD !! 602 config CRYPTO_MICHAEL_MIC 466 tristate "Khazad" !! 603 tristate "Michael MIC keyed digest algorithm" 467 depends on CRYPTO_USER_API_ENABLE_OBSO !! 604 select CRYPTO_HASH 468 select CRYPTO_ALGAPI << 469 help 605 help 470 Khazad cipher algorithm !! 606 Michael MIC is used for message integrity protection in TKIP 471 !! 607 (IEEE 802.11i). This algorithm is required for TKIP, but it 472 Khazad was a finalist in the initial !! 608 should not be used for other purposes because of the weakness 473 an algorithm optimized for 64-bit pr !! 609 of the algorithm. 474 on 32-bit processors. Khazad uses a << 475 << 476 See https://web.archive.org/web/2017 << 477 for further information. << 478 610 479 config CRYPTO_SEED !! 611 config CRYPTO_RMD128 480 tristate "SEED" !! 612 tristate "RIPEMD-128 digest algorithm" 481 depends on CRYPTO_USER_API_ENABLE_OBSO !! 613 select CRYPTO_HASH 482 select CRYPTO_ALGAPI << 483 help 614 help 484 SEED cipher algorithm (RFC4269, ISO/ !! 615 RIPEMD-128 (ISO/IEC 10118-3:2004). 485 616 486 SEED is a 128-bit symmetric key bloc !! 617 RIPEMD-128 is a 128-bit cryptographic hash function. It should only 487 developed by KISA (Korea Information !! 618 be used as a secure replacement for RIPEMD. For other use cases, 488 national standard encryption algorit !! 619 RIPEMD-160 should be used. 489 It is a 16 round block cipher with t << 490 620 491 See https://seed.kisa.or.kr/kisa/alg !! 621 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 492 for further information. !! 622 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 493 623 494 config CRYPTO_SERPENT !! 624 config CRYPTO_RMD160 495 tristate "Serpent" !! 625 tristate "RIPEMD-160 digest algorithm" 496 select CRYPTO_ALGAPI !! 626 select CRYPTO_HASH 497 help 627 help 498 Serpent cipher algorithm, by Anderso !! 628 RIPEMD-160 (ISO/IEC 10118-3:2004). 499 629 500 Keys are allowed to be from 0 to 256 !! 630 RIPEMD-160 is a 160-bit cryptographic hash function. It is intended 501 of 8 bits. !! 631 to be used as a secure replacement for the 128-bit hash functions >> 632 MD4, MD5 and it's predecessor RIPEMD >> 633 (not to be confused with RIPEMD-128). 502 634 503 See https://www.cl.cam.ac.uk/~rja14/ !! 635 It's speed is comparable to SHA1 and there are no known attacks >> 636 against RIPEMD-160. 504 637 505 config CRYPTO_SM4 !! 638 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 506 tristate !! 639 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 507 640 508 config CRYPTO_SM4_GENERIC !! 641 config CRYPTO_RMD256 509 tristate "SM4 (ShangMi 4)" !! 642 tristate "RIPEMD-256 digest algorithm" 510 select CRYPTO_ALGAPI !! 643 select CRYPTO_HASH 511 select CRYPTO_SM4 << 512 help 644 help 513 SM4 cipher algorithms (OSCCA GB/T 32 !! 645 RIPEMD-256 is an optional extension of RIPEMD-128 with a 514 ISO/IEC 18033-3:2010/Amd 1:2021) !! 646 256 bit hash. It is intended for applications that require >> 647 longer hash-results, without needing a larger security level >> 648 (than RIPEMD-128). 515 649 516 SM4 (GBT.32907-2016) is a cryptograp !! 650 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 517 Organization of State Commercial Adm !! 651 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 518 as an authorized cryptographic algor << 519 652 520 SMS4 was originally created for use !! 653 config CRYPTO_RMD320 521 networks, and is mandated in the Chi !! 654 tristate "RIPEMD-320 digest algorithm" 522 Wireless LAN WAPI (Wired Authenticat !! 655 select CRYPTO_HASH 523 (GB.15629.11-2003). !! 656 help >> 657 RIPEMD-320 is an optional extension of RIPEMD-160 with a >> 658 320 bit hash. It is intended for applications that require >> 659 longer hash-results, without needing a larger security level >> 660 (than RIPEMD-160). 524 661 525 The latest SM4 standard (GBT.32907-2 !! 662 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 526 standardized through TC 260 of the S !! 663 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 527 of the People's Republic of China (S << 528 664 529 The input, output, and key of SMS4 a !! 665 config CRYPTO_SHA1 >> 666 tristate "SHA1 digest algorithm" >> 667 select CRYPTO_HASH >> 668 help >> 669 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). 530 670 531 See https://eprint.iacr.org/2008/329 !! 671 config CRYPTO_SHA1_SSSE3 >> 672 tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" >> 673 depends on X86 && 64BIT >> 674 select CRYPTO_SHA1 >> 675 select CRYPTO_HASH >> 676 help >> 677 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented >> 678 using Supplemental SSE3 (SSSE3) instructions or Advanced Vector >> 679 Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions), >> 680 when available. 532 681 533 If unsure, say N. !! 682 config CRYPTO_SHA256_SSSE3 >> 683 tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" >> 684 depends on X86 && 64BIT >> 685 select CRYPTO_SHA256 >> 686 select CRYPTO_HASH >> 687 help >> 688 SHA-256 secure hash standard (DFIPS 180-2) implemented >> 689 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector >> 690 Extensions version 1 (AVX1), or Advanced Vector Extensions >> 691 version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New >> 692 Instructions) when available. >> 693 >> 694 config CRYPTO_SHA512_SSSE3 >> 695 tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)" >> 696 depends on X86 && 64BIT >> 697 select CRYPTO_SHA512 >> 698 select CRYPTO_HASH >> 699 help >> 700 SHA-512 secure hash standard (DFIPS 180-2) implemented >> 701 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector >> 702 Extensions version 1 (AVX1), or Advanced Vector Extensions >> 703 version 2 (AVX2) instructions, when available. >> 704 >> 705 config CRYPTO_SHA1_OCTEON >> 706 tristate "SHA1 digest algorithm (OCTEON)" >> 707 depends on CPU_CAVIUM_OCTEON >> 708 select CRYPTO_SHA1 >> 709 select CRYPTO_HASH >> 710 help >> 711 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented >> 712 using OCTEON crypto instructions, when available. >> 713 >> 714 config CRYPTO_SHA1_SPARC64 >> 715 tristate "SHA1 digest algorithm (SPARC64)" >> 716 depends on SPARC64 >> 717 select CRYPTO_SHA1 >> 718 select CRYPTO_HASH >> 719 help >> 720 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented >> 721 using sparc64 crypto instructions, when available. >> 722 >> 723 config CRYPTO_SHA1_PPC >> 724 tristate "SHA1 digest algorithm (powerpc)" >> 725 depends on PPC >> 726 help >> 727 This is the powerpc hardware accelerated implementation of the >> 728 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). >> 729 >> 730 config CRYPTO_SHA1_PPC_SPE >> 731 tristate "SHA1 digest algorithm (PPC SPE)" >> 732 depends on PPC && SPE >> 733 help >> 734 SHA-1 secure hash standard (DFIPS 180-4) implemented >> 735 using powerpc SPE SIMD instruction set. >> 736 >> 737 config CRYPTO_SHA1_MB >> 738 tristate "SHA1 digest algorithm (x86_64 Multi-Buffer, Experimental)" >> 739 depends on X86 && 64BIT >> 740 select CRYPTO_SHA1 >> 741 select CRYPTO_HASH >> 742 select CRYPTO_MCRYPTD >> 743 help >> 744 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented >> 745 using multi-buffer technique. This algorithm computes on >> 746 multiple data lanes concurrently with SIMD instructions for >> 747 better throughput. It should not be enabled by default but >> 748 used when there is significant amount of work to keep the keep >> 749 the data lanes filled to get performance benefit. If the data >> 750 lanes remain unfilled, a flush operation will be initiated to >> 751 process the crypto jobs, adding a slight latency. >> 752 >> 753 config CRYPTO_SHA256_MB >> 754 tristate "SHA256 digest algorithm (x86_64 Multi-Buffer, Experimental)" >> 755 depends on X86 && 64BIT >> 756 select CRYPTO_SHA256 >> 757 select CRYPTO_HASH >> 758 select CRYPTO_MCRYPTD >> 759 help >> 760 SHA-256 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented >> 761 using multi-buffer technique. This algorithm computes on >> 762 multiple data lanes concurrently with SIMD instructions for >> 763 better throughput. It should not be enabled by default but >> 764 used when there is significant amount of work to keep the keep >> 765 the data lanes filled to get performance benefit. If the data >> 766 lanes remain unfilled, a flush operation will be initiated to >> 767 process the crypto jobs, adding a slight latency. >> 768 >> 769 config CRYPTO_SHA512_MB >> 770 tristate "SHA512 digest algorithm (x86_64 Multi-Buffer, Experimental)" >> 771 depends on X86 && 64BIT >> 772 select CRYPTO_SHA512 >> 773 select CRYPTO_HASH >> 774 select CRYPTO_MCRYPTD >> 775 help >> 776 SHA-512 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented >> 777 using multi-buffer technique. This algorithm computes on >> 778 multiple data lanes concurrently with SIMD instructions for >> 779 better throughput. It should not be enabled by default but >> 780 used when there is significant amount of work to keep the keep >> 781 the data lanes filled to get performance benefit. If the data >> 782 lanes remain unfilled, a flush operation will be initiated to >> 783 process the crypto jobs, adding a slight latency. 534 784 535 config CRYPTO_TEA !! 785 config CRYPTO_SHA256 536 tristate "TEA, XTEA and XETA" !! 786 tristate "SHA224 and SHA256 digest algorithm" 537 depends on CRYPTO_USER_API_ENABLE_OBSO !! 787 select CRYPTO_HASH 538 select CRYPTO_ALGAPI << 539 help 788 help 540 TEA (Tiny Encryption Algorithm) ciph !! 789 SHA256 secure hash standard (DFIPS 180-2). 541 790 542 Tiny Encryption Algorithm is a simpl !! 791 This version of SHA implements a 256 bit hash with 128 bits of 543 many rounds for security. It is ver !! 792 security against collision attacks. 544 little memory. << 545 793 546 Xtendend Tiny Encryption Algorithm i !! 794 This code also includes SHA-224, a 224 bit hash with 112 bits 547 the TEA algorithm to address a poten !! 795 of security against collision attacks. 548 in the TEA algorithm. << 549 << 550 Xtendend Encryption Tiny Algorithm i << 551 of the XTEA algorithm for compatibil << 552 796 553 config CRYPTO_TWOFISH !! 797 config CRYPTO_SHA256_PPC_SPE 554 tristate "Twofish" !! 798 tristate "SHA224 and SHA256 digest algorithm (PPC SPE)" 555 select CRYPTO_ALGAPI !! 799 depends on PPC && SPE 556 select CRYPTO_TWOFISH_COMMON !! 800 select CRYPTO_SHA256 >> 801 select CRYPTO_HASH 557 help 802 help 558 Twofish cipher algorithm !! 803 SHA224 and SHA256 secure hash standard (DFIPS 180-2) >> 804 implemented using powerpc SPE SIMD instruction set. 559 805 560 Twofish was submitted as an AES (Adv !! 806 config CRYPTO_SHA256_OCTEON 561 candidate cipher by researchers at C !! 807 tristate "SHA224 and SHA256 digest algorithm (OCTEON)" 562 16 round block cipher supporting key !! 808 depends on CPU_CAVIUM_OCTEON 563 bits. !! 809 select CRYPTO_SHA256 >> 810 select CRYPTO_HASH >> 811 help >> 812 SHA-256 secure hash standard (DFIPS 180-2) implemented >> 813 using OCTEON crypto instructions, when available. 564 814 565 See https://www.schneier.com/twofish !! 815 config CRYPTO_SHA256_SPARC64 >> 816 tristate "SHA224 and SHA256 digest algorithm (SPARC64)" >> 817 depends on SPARC64 >> 818 select CRYPTO_SHA256 >> 819 select CRYPTO_HASH >> 820 help >> 821 SHA-256 secure hash standard (DFIPS 180-2) implemented >> 822 using sparc64 crypto instructions, when available. 566 823 567 config CRYPTO_TWOFISH_COMMON !! 824 config CRYPTO_SHA512 568 tristate !! 825 tristate "SHA384 and SHA512 digest algorithms" >> 826 select CRYPTO_HASH 569 help 827 help 570 Common parts of the Twofish cipher a !! 828 SHA512 secure hash standard (DFIPS 180-2). 571 generic c and the assembler implemen << 572 829 573 endmenu !! 830 This version of SHA implements a 512 bit hash with 256 bits of >> 831 security against collision attacks. 574 832 575 menu "Length-preserving ciphers and modes" !! 833 This code also includes SHA-384, a 384 bit hash with 192 bits >> 834 of security against collision attacks. 576 835 577 config CRYPTO_ADIANTUM !! 836 config CRYPTO_SHA512_OCTEON 578 tristate "Adiantum" !! 837 tristate "SHA384 and SHA512 digest algorithms (OCTEON)" 579 select CRYPTO_CHACHA20 !! 838 depends on CPU_CAVIUM_OCTEON 580 select CRYPTO_LIB_POLY1305_GENERIC !! 839 select CRYPTO_SHA512 581 select CRYPTO_NHPOLY1305 !! 840 select CRYPTO_HASH 582 select CRYPTO_MANAGER << 583 help 841 help 584 Adiantum tweakable, length-preservin !! 842 SHA-512 secure hash standard (DFIPS 180-2) implemented >> 843 using OCTEON crypto instructions, when available. 585 844 586 Designed for fast and secure disk en !! 845 config CRYPTO_SHA512_SPARC64 587 CPUs without dedicated crypto instru !! 846 tristate "SHA384 and SHA512 digest algorithm (SPARC64)" 588 each sector using the XChaCha12 stre !! 847 depends on SPARC64 589 an ε-almost-∆-universal hash func !! 848 select CRYPTO_SHA512 590 the AES-256 block cipher on a single !! 849 select CRYPTO_HASH 591 without AES instructions, Adiantum i !! 850 help 592 AES-XTS. !! 851 SHA-512 secure hash standard (DFIPS 180-2) implemented 593 !! 852 using sparc64 crypto instructions, when available. 594 Adiantum's security is provably redu << 595 underlying stream and block ciphers, << 596 bound. Unlike XTS, Adiantum is a tr << 597 mode, so it actually provides an eve << 598 security than XTS, subject to the se << 599 853 600 If unsure, say N. !! 854 config CRYPTO_SHA3 >> 855 tristate "SHA3 digest algorithm" >> 856 select CRYPTO_HASH >> 857 help >> 858 SHA-3 secure hash standard (DFIPS 202). It's based on >> 859 cryptographic sponge function family called Keccak. 601 860 602 config CRYPTO_ARC4 !! 861 References: 603 tristate "ARC4 (Alleged Rivest Cipher !! 862 http://keccak.noekeon.org/ 604 depends on CRYPTO_USER_API_ENABLE_OBSO !! 863 605 select CRYPTO_SKCIPHER !! 864 config CRYPTO_SM3 606 select CRYPTO_LIB_ARC4 !! 865 tristate "SM3 digest algorithm" >> 866 select CRYPTO_HASH 607 help 867 help 608 ARC4 cipher algorithm !! 868 SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3). >> 869 It is part of the Chinese Commercial Cryptography suite. 609 870 610 ARC4 is a stream cipher using keys r !! 871 References: 611 bits in length. This algorithm is r !! 872 http://www.oscca.gov.cn/UpFile/20101222141857786.pdf 612 WEP, but it should not be for other !! 873 https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash 613 weakness of the algorithm. << 614 874 615 config CRYPTO_CHACHA20 !! 875 config CRYPTO_TGR192 616 tristate "ChaCha" !! 876 tristate "Tiger digest algorithms" 617 select CRYPTO_LIB_CHACHA_GENERIC !! 877 select CRYPTO_HASH 618 select CRYPTO_SKCIPHER << 619 help 878 help 620 The ChaCha20, XChaCha20, and XChaCha !! 879 Tiger hash algorithm 192, 160 and 128-bit hashes 621 880 622 ChaCha20 is a 256-bit high-speed str !! 881 Tiger is a hash function optimized for 64-bit processors while 623 Bernstein and further specified in R !! 882 still having decent performance on 32-bit processors. 624 This is the portable C implementatio !! 883 Tiger was developed by Ross Anderson and Eli Biham. 625 https://cr.yp.to/chacha/chacha-20080 << 626 884 627 XChaCha20 is the application of the !! 885 See also: 628 rather than to Salsa20. XChaCha20 e !! 886 <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>. 629 from 64 bits (or 96 bits using the R << 630 while provably retaining ChaCha20's << 631 https://cr.yp.to/snuffle/xsalsa-2008 << 632 << 633 XChaCha12 is XChaCha20 reduced to 12 << 634 reduced security margin but increase << 635 in some performance-sensitive scenar << 636 887 637 config CRYPTO_CBC !! 888 config CRYPTO_WP512 638 tristate "CBC (Cipher Block Chaining)" !! 889 tristate "Whirlpool digest algorithms" 639 select CRYPTO_SKCIPHER !! 890 select CRYPTO_HASH 640 select CRYPTO_MANAGER << 641 help 891 help 642 CBC (Cipher Block Chaining) mode (NI !! 892 Whirlpool hash algorithm 512, 384 and 256-bit hashes 643 893 644 This block cipher mode is required f !! 894 Whirlpool-512 is part of the NESSIE cryptographic primitives. >> 895 Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard 645 896 646 config CRYPTO_CTR !! 897 See also: 647 tristate "CTR (Counter)" !! 898 <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html> 648 select CRYPTO_SKCIPHER << 649 select CRYPTO_MANAGER << 650 help << 651 CTR (Counter) mode (NIST SP800-38A) << 652 899 653 config CRYPTO_CTS !! 900 config CRYPTO_GHASH_CLMUL_NI_INTEL 654 tristate "CTS (Cipher Text Stealing)" !! 901 tristate "GHASH digest algorithm (CLMUL-NI accelerated)" 655 select CRYPTO_SKCIPHER !! 902 depends on X86 && 64BIT 656 select CRYPTO_MANAGER !! 903 select CRYPTO_CRYPTD 657 help 904 help 658 CBC-CS3 variant of CTS (Cipher Text !! 905 GHASH is message digest algorithm for GCM (Galois/Counter Mode). 659 Addendum to SP800-38A (October 2010) !! 906 The implementation is accelerated by CLMUL-NI of Intel. 660 907 661 This mode is required for Kerberos g !! 908 comment "Ciphers" 662 for AES encryption. << 663 909 664 config CRYPTO_ECB !! 910 config CRYPTO_AES 665 tristate "ECB (Electronic Codebook)" !! 911 tristate "AES cipher algorithms" 666 select CRYPTO_SKCIPHER2 !! 912 select CRYPTO_ALGAPI 667 select CRYPTO_MANAGER << 668 help 913 help 669 ECB (Electronic Codebook) mode (NIST !! 914 AES cipher algorithms (FIPS-197). AES uses the Rijndael >> 915 algorithm. 670 916 671 config CRYPTO_HCTR2 !! 917 Rijndael appears to be consistently a very good performer in 672 tristate "HCTR2" !! 918 both hardware and software across a wide range of computing 673 select CRYPTO_XCTR !! 919 environments regardless of its use in feedback or non-feedback 674 select CRYPTO_POLYVAL !! 920 modes. Its key setup time is excellent, and its key agility is 675 select CRYPTO_MANAGER !! 921 good. Rijndael's very low memory requirements make it very well 676 help !! 922 suited for restricted-space environments, in which it also 677 HCTR2 length-preserving encryption m !! 923 demonstrates excellent performance. Rijndael's operations are >> 924 among the easiest to defend against power and timing attacks. 678 925 679 A mode for storage encryption that i !! 926 The AES specifies three key sizes: 128, 192 and 256 bits 680 instructions to accelerate AES and c << 681 x86 processors with AES-NI and CLMUL << 682 ARMv8 crypto extensions. << 683 927 684 See https://eprint.iacr.org/2021/144 !! 928 See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information. 685 929 686 config CRYPTO_KEYWRAP !! 930 config CRYPTO_AES_TI 687 tristate "KW (AES Key Wrap)" !! 931 tristate "Fixed time AES cipher" 688 select CRYPTO_SKCIPHER !! 932 select CRYPTO_ALGAPI 689 select CRYPTO_MANAGER << 690 help 933 help 691 KW (AES Key Wrap) authenticated encr !! 934 This is a generic implementation of AES that attempts to eliminate 692 and RFC3394) without padding. !! 935 data dependent latencies as much as possible without affecting >> 936 performance too much. It is intended for use by the generic CCM >> 937 and GCM drivers, and other CTR or CMAC/XCBC based modes that rely >> 938 solely on encryption (although decryption is supported as well, but >> 939 with a more dramatic performance hit) 693 940 694 config CRYPTO_LRW !! 941 Instead of using 16 lookup tables of 1 KB each, (8 for encryption and 695 tristate "LRW (Liskov Rivest Wagner)" !! 942 8 for decryption), this implementation only uses just two S-boxes of 696 select CRYPTO_LIB_GF128MUL !! 943 256 bytes each, and attempts to eliminate data dependent latencies by 697 select CRYPTO_SKCIPHER !! 944 prefetching the entire table into the cache at the start of each 698 select CRYPTO_MANAGER !! 945 block. 699 select CRYPTO_ECB !! 946 >> 947 config CRYPTO_AES_586 >> 948 tristate "AES cipher algorithms (i586)" >> 949 depends on (X86 || UML_X86) && !64BIT >> 950 select CRYPTO_ALGAPI >> 951 select CRYPTO_AES 700 help 952 help 701 LRW (Liskov Rivest Wagner) mode !! 953 AES cipher algorithms (FIPS-197). AES uses the Rijndael >> 954 algorithm. 702 955 703 A tweakable, non malleable, non mova !! 956 Rijndael appears to be consistently a very good performer in 704 narrow block cipher mode for dm-cryp !! 957 both hardware and software across a wide range of computing 705 specification string aes-lrw-benbi, !! 958 environments regardless of its use in feedback or non-feedback 706 The first 128, 192 or 256 bits in th !! 959 modes. Its key setup time is excellent, and its key agility is 707 rest is used to tie each cipher bloc !! 960 good. Rijndael's very low memory requirements make it very well >> 961 suited for restricted-space environments, in which it also >> 962 demonstrates excellent performance. Rijndael's operations are >> 963 among the easiest to defend against power and timing attacks. 708 964 709 See https://people.csail.mit.edu/riv !! 965 The AES specifies three key sizes: 128, 192 and 256 bits 710 966 711 config CRYPTO_PCBC !! 967 See <http://csrc.nist.gov/encryption/aes/> for more information. 712 tristate "PCBC (Propagating Cipher Blo !! 968 713 select CRYPTO_SKCIPHER !! 969 config CRYPTO_AES_X86_64 714 select CRYPTO_MANAGER !! 970 tristate "AES cipher algorithms (x86_64)" >> 971 depends on (X86 || UML_X86) && 64BIT >> 972 select CRYPTO_ALGAPI >> 973 select CRYPTO_AES 715 help 974 help 716 PCBC (Propagating Cipher Block Chain !! 975 AES cipher algorithms (FIPS-197). AES uses the Rijndael >> 976 algorithm. 717 977 718 This block cipher mode is required f !! 978 Rijndael appears to be consistently a very good performer in >> 979 both hardware and software across a wide range of computing >> 980 environments regardless of its use in feedback or non-feedback >> 981 modes. Its key setup time is excellent, and its key agility is >> 982 good. Rijndael's very low memory requirements make it very well >> 983 suited for restricted-space environments, in which it also >> 984 demonstrates excellent performance. Rijndael's operations are >> 985 among the easiest to defend against power and timing attacks. 719 986 720 config CRYPTO_XCTR !! 987 The AES specifies three key sizes: 128, 192 and 256 bits 721 tristate !! 988 722 select CRYPTO_SKCIPHER !! 989 See <http://csrc.nist.gov/encryption/aes/> for more information. 723 select CRYPTO_MANAGER !! 990 >> 991 config CRYPTO_AES_NI_INTEL >> 992 tristate "AES cipher algorithms (AES-NI)" >> 993 depends on X86 >> 994 select CRYPTO_AEAD >> 995 select CRYPTO_AES_X86_64 if 64BIT >> 996 select CRYPTO_AES_586 if !64BIT >> 997 select CRYPTO_ALGAPI >> 998 select CRYPTO_BLKCIPHER >> 999 select CRYPTO_GLUE_HELPER_X86 if 64BIT >> 1000 select CRYPTO_SIMD 724 help 1001 help 725 XCTR (XOR Counter) mode for HCTR2 !! 1002 Use Intel AES-NI instructions for AES algorithm. >> 1003 >> 1004 AES cipher algorithms (FIPS-197). AES uses the Rijndael >> 1005 algorithm. >> 1006 >> 1007 Rijndael appears to be consistently a very good performer in >> 1008 both hardware and software across a wide range of computing >> 1009 environments regardless of its use in feedback or non-feedback >> 1010 modes. Its key setup time is excellent, and its key agility is >> 1011 good. Rijndael's very low memory requirements make it very well >> 1012 suited for restricted-space environments, in which it also >> 1013 demonstrates excellent performance. Rijndael's operations are >> 1014 among the easiest to defend against power and timing attacks. 726 1015 727 This blockcipher mode is a variant o !! 1016 The AES specifies three key sizes: 128, 192 and 256 bits 728 addition rather than big-endian arit << 729 1017 730 XCTR mode is used to implement HCTR2 !! 1018 See <http://csrc.nist.gov/encryption/aes/> for more information. 731 1019 732 config CRYPTO_XTS !! 1020 In addition to AES cipher algorithm support, the acceleration 733 tristate "XTS (XOR Encrypt XOR with ci !! 1021 for some popular block cipher mode is supported too, including 734 select CRYPTO_SKCIPHER !! 1022 ECB, CBC, LRW, PCBC, XTS. The 64 bit version has additional 735 select CRYPTO_MANAGER !! 1023 acceleration for CTR. 736 select CRYPTO_ECB !! 1024 >> 1025 config CRYPTO_AES_SPARC64 >> 1026 tristate "AES cipher algorithms (SPARC64)" >> 1027 depends on SPARC64 >> 1028 select CRYPTO_CRYPTD >> 1029 select CRYPTO_ALGAPI 737 help 1030 help 738 XTS (XOR Encrypt XOR with ciphertext !! 1031 Use SPARC64 crypto opcodes for AES algorithm. 739 and IEEE 1619) << 740 1032 741 Use with aes-xts-plain, key size 256 !! 1033 AES cipher algorithms (FIPS-197). AES uses the Rijndael 742 implementation currently can't handl !! 1034 algorithm. 743 multiple of 16 bytes. << 744 1035 745 config CRYPTO_NHPOLY1305 !! 1036 Rijndael appears to be consistently a very good performer in 746 tristate !! 1037 both hardware and software across a wide range of computing 747 select CRYPTO_HASH !! 1038 environments regardless of its use in feedback or non-feedback 748 select CRYPTO_LIB_POLY1305_GENERIC !! 1039 modes. Its key setup time is excellent, and its key agility is >> 1040 good. Rijndael's very low memory requirements make it very well >> 1041 suited for restricted-space environments, in which it also >> 1042 demonstrates excellent performance. Rijndael's operations are >> 1043 among the easiest to defend against power and timing attacks. 749 1044 750 endmenu !! 1045 The AES specifies three key sizes: 128, 192 and 256 bits 751 1046 752 menu "AEAD (authenticated encryption with asso !! 1047 See <http://csrc.nist.gov/encryption/aes/> for more information. 753 1048 754 config CRYPTO_AEGIS128 !! 1049 In addition to AES cipher algorithm support, the acceleration 755 tristate "AEGIS-128" !! 1050 for some popular block cipher mode is supported too, including 756 select CRYPTO_AEAD !! 1051 ECB and CBC. 757 select CRYPTO_AES # for AES S-box tab !! 1052 >> 1053 config CRYPTO_AES_PPC_SPE >> 1054 tristate "AES cipher algorithms (PPC SPE)" >> 1055 depends on PPC && SPE >> 1056 help >> 1057 AES cipher algorithms (FIPS-197). Additionally the acceleration >> 1058 for popular block cipher modes ECB, CBC, CTR and XTS is supported. >> 1059 This module should only be used for low power (router) devices >> 1060 without hardware AES acceleration (e.g. caam crypto). It reduces the >> 1061 size of the AES tables from 16KB to 8KB + 256 bytes and mitigates >> 1062 timining attacks. Nevertheless it might be not as secure as other >> 1063 architecture specific assembler implementations that work on 1KB >> 1064 tables or 256 bytes S-boxes. >> 1065 >> 1066 config CRYPTO_ANUBIS >> 1067 tristate "Anubis cipher algorithm" >> 1068 select CRYPTO_ALGAPI 758 help 1069 help 759 AEGIS-128 AEAD algorithm !! 1070 Anubis cipher algorithm. 760 1071 761 config CRYPTO_AEGIS128_SIMD !! 1072 Anubis is a variable key length cipher which can use keys from 762 bool "AEGIS-128 (arm NEON, arm64 NEON) !! 1073 128 bits to 320 bits in length. It was evaluated as a entrant 763 depends on CRYPTO_AEGIS128 && ((ARM || !! 1074 in the NESSIE competition. 764 default y !! 1075 >> 1076 See also: >> 1077 <https://www.cosic.esat.kuleuven.be/nessie/reports/> >> 1078 <http://www.larc.usp.br/~pbarreto/AnubisPage.html> >> 1079 >> 1080 config CRYPTO_ARC4 >> 1081 tristate "ARC4 cipher algorithm" >> 1082 select CRYPTO_BLKCIPHER 765 help 1083 help 766 AEGIS-128 AEAD algorithm !! 1084 ARC4 cipher algorithm. 767 1085 768 Architecture: arm or arm64 using: !! 1086 ARC4 is a stream cipher using keys ranging from 8 bits to 2048 769 - NEON (Advanced SIMD) extension !! 1087 bits in length. This algorithm is required for driver-based >> 1088 WEP, but it should not be for other purposes because of the >> 1089 weakness of the algorithm. 770 1090 771 config CRYPTO_CHACHA20POLY1305 !! 1091 config CRYPTO_BLOWFISH 772 tristate "ChaCha20-Poly1305" !! 1092 tristate "Blowfish cipher algorithm" 773 select CRYPTO_CHACHA20 !! 1093 select CRYPTO_ALGAPI 774 select CRYPTO_POLY1305 !! 1094 select CRYPTO_BLOWFISH_COMMON 775 select CRYPTO_AEAD << 776 select CRYPTO_MANAGER << 777 help 1095 help 778 ChaCha20 stream cipher and Poly1305 !! 1096 Blowfish cipher algorithm, by Bruce Schneier. 779 mode (RFC8439) << 780 1097 781 config CRYPTO_CCM !! 1098 This is a variable key length cipher which can use keys from 32 782 tristate "CCM (Counter with Cipher Blo !! 1099 bits to 448 bits in length. It's fast, simple and specifically 783 select CRYPTO_CTR !! 1100 designed for use on "large microprocessors". 784 select CRYPTO_HASH !! 1101 785 select CRYPTO_AEAD !! 1102 See also: 786 select CRYPTO_MANAGER !! 1103 <http://www.schneier.com/blowfish.html> >> 1104 >> 1105 config CRYPTO_BLOWFISH_COMMON >> 1106 tristate 787 help 1107 help 788 CCM (Counter with Cipher Block Chain !! 1108 Common parts of the Blowfish cipher algorithm shared by the 789 authenticated encryption mode (NIST !! 1109 generic c and the assembler implementations. 790 1110 791 config CRYPTO_GCM !! 1111 See also: 792 tristate "GCM (Galois/Counter Mode) an !! 1112 <http://www.schneier.com/blowfish.html> 793 select CRYPTO_CTR !! 1113 794 select CRYPTO_AEAD !! 1114 config CRYPTO_BLOWFISH_X86_64 795 select CRYPTO_GHASH !! 1115 tristate "Blowfish cipher algorithm (x86_64)" 796 select CRYPTO_NULL !! 1116 depends on X86 && 64BIT 797 select CRYPTO_MANAGER !! 1117 select CRYPTO_ALGAPI >> 1118 select CRYPTO_BLOWFISH_COMMON 798 help 1119 help 799 GCM (Galois/Counter Mode) authentica !! 1120 Blowfish cipher algorithm (x86_64), by Bruce Schneier. 800 (GCM Message Authentication Code) (N << 801 1121 802 This is required for IPSec ESP (XFRM !! 1122 This is a variable key length cipher which can use keys from 32 >> 1123 bits to 448 bits in length. It's fast, simple and specifically >> 1124 designed for use on "large microprocessors". 803 1125 804 config CRYPTO_GENIV !! 1126 See also: 805 tristate !! 1127 <http://www.schneier.com/blowfish.html> 806 select CRYPTO_AEAD << 807 select CRYPTO_NULL << 808 select CRYPTO_MANAGER << 809 select CRYPTO_RNG_DEFAULT << 810 1128 811 config CRYPTO_SEQIV !! 1129 config CRYPTO_CAMELLIA 812 tristate "Sequence Number IV Generator !! 1130 tristate "Camellia cipher algorithms" 813 select CRYPTO_GENIV !! 1131 depends on CRYPTO >> 1132 select CRYPTO_ALGAPI 814 help 1133 help 815 Sequence Number IV generator !! 1134 Camellia cipher algorithms module. 816 1135 817 This IV generator generates an IV ba !! 1136 Camellia is a symmetric key block cipher developed jointly 818 xoring it with a salt. This algorit !! 1137 at NTT and Mitsubishi Electric Corporation. 819 1138 820 This is required for IPsec ESP (XFRM !! 1139 The Camellia specifies three key sizes: 128, 192 and 256 bits. 821 1140 822 config CRYPTO_ECHAINIV !! 1141 See also: 823 tristate "Encrypted Chain IV Generator !! 1142 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 824 select CRYPTO_GENIV !! 1143 >> 1144 config CRYPTO_CAMELLIA_X86_64 >> 1145 tristate "Camellia cipher algorithm (x86_64)" >> 1146 depends on X86 && 64BIT >> 1147 depends on CRYPTO >> 1148 select CRYPTO_ALGAPI >> 1149 select CRYPTO_GLUE_HELPER_X86 >> 1150 select CRYPTO_LRW >> 1151 select CRYPTO_XTS 825 help 1152 help 826 Encrypted Chain IV generator !! 1153 Camellia cipher algorithm module (x86_64). 827 1154 828 This IV generator generates an IV ba !! 1155 Camellia is a symmetric key block cipher developed jointly 829 a sequence number xored with a salt. !! 1156 at NTT and Mitsubishi Electric Corporation. 830 algorithm for CBC. !! 1157 >> 1158 The Camellia specifies three key sizes: 128, 192 and 256 bits. >> 1159 >> 1160 See also: >> 1161 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 831 1162 832 config CRYPTO_ESSIV !! 1163 config CRYPTO_CAMELLIA_AESNI_AVX_X86_64 833 tristate "Encrypted Salt-Sector IV Gen !! 1164 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)" 834 select CRYPTO_AUTHENC !! 1165 depends on X86 && 64BIT >> 1166 depends on CRYPTO >> 1167 select CRYPTO_ALGAPI >> 1168 select CRYPTO_CRYPTD >> 1169 select CRYPTO_ABLK_HELPER >> 1170 select CRYPTO_GLUE_HELPER_X86 >> 1171 select CRYPTO_CAMELLIA_X86_64 >> 1172 select CRYPTO_LRW >> 1173 select CRYPTO_XTS 835 help 1174 help 836 Encrypted Salt-Sector IV generator !! 1175 Camellia cipher algorithm module (x86_64/AES-NI/AVX). 837 1176 838 This IV generator is used in some ca !! 1177 Camellia is a symmetric key block cipher developed jointly 839 dm-crypt. It uses the hash of the bl !! 1178 at NTT and Mitsubishi Electric Corporation. 840 symmetric key for a block encryption << 841 IV, making low entropy IV sources mo << 842 encryption. << 843 1179 844 This driver implements a crypto API !! 1180 The Camellia specifies three key sizes: 128, 192 and 256 bits. 845 instantiated either as an skcipher o << 846 type of the first template argument) << 847 and decryption requests to the encap << 848 ESSIV to the input IV. Note that in << 849 that the keys are presented in the s << 850 template, and that the IV appears at << 851 associated data (AAD) region (which << 852 1181 853 Note that the use of ESSIV is not re !! 1182 See also: 854 and so this only needs to be enabled !! 1183 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 855 existing encrypted volumes of filesy << 856 building for a particular system tha << 857 the SoC in question has accelerated << 858 combined with ESSIV the only feasibl << 859 block encryption) << 860 1184 861 endmenu !! 1185 config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64 >> 1186 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)" >> 1187 depends on X86 && 64BIT >> 1188 depends on CRYPTO >> 1189 select CRYPTO_ALGAPI >> 1190 select CRYPTO_CRYPTD >> 1191 select CRYPTO_ABLK_HELPER >> 1192 select CRYPTO_GLUE_HELPER_X86 >> 1193 select CRYPTO_CAMELLIA_X86_64 >> 1194 select CRYPTO_CAMELLIA_AESNI_AVX_X86_64 >> 1195 select CRYPTO_LRW >> 1196 select CRYPTO_XTS >> 1197 help >> 1198 Camellia cipher algorithm module (x86_64/AES-NI/AVX2). 862 1199 863 menu "Hashes, digests, and MACs" !! 1200 Camellia is a symmetric key block cipher developed jointly >> 1201 at NTT and Mitsubishi Electric Corporation. 864 1202 865 config CRYPTO_BLAKE2B !! 1203 The Camellia specifies three key sizes: 128, 192 and 256 bits. 866 tristate "BLAKE2b" !! 1204 867 select CRYPTO_HASH !! 1205 See also: >> 1206 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> >> 1207 >> 1208 config CRYPTO_CAMELLIA_SPARC64 >> 1209 tristate "Camellia cipher algorithm (SPARC64)" >> 1210 depends on SPARC64 >> 1211 depends on CRYPTO >> 1212 select CRYPTO_ALGAPI 868 help 1213 help 869 BLAKE2b cryptographic hash function !! 1214 Camellia cipher algorithm module (SPARC64). 870 1215 871 BLAKE2b is optimized for 64-bit plat !! 1216 Camellia is a symmetric key block cipher developed jointly 872 of any size between 1 and 64 bytes. !! 1217 at NTT and Mitsubishi Electric Corporation. 873 1218 874 This module provides the following a !! 1219 The Camellia specifies three key sizes: 128, 192 and 256 bits. 875 - blake2b-160 << 876 - blake2b-256 << 877 - blake2b-384 << 878 - blake2b-512 << 879 1220 880 Used by the btrfs filesystem. !! 1221 See also: >> 1222 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 881 1223 882 See https://blake2.net for further i !! 1224 config CRYPTO_CAST_COMMON >> 1225 tristate >> 1226 help >> 1227 Common parts of the CAST cipher algorithms shared by the >> 1228 generic c and the assembler implementations. 883 1229 884 config CRYPTO_CMAC !! 1230 config CRYPTO_CAST5 885 tristate "CMAC (Cipher-based MAC)" !! 1231 tristate "CAST5 (CAST-128) cipher algorithm" 886 select CRYPTO_HASH !! 1232 select CRYPTO_ALGAPI 887 select CRYPTO_MANAGER !! 1233 select CRYPTO_CAST_COMMON 888 help 1234 help 889 CMAC (Cipher-based Message Authentic !! 1235 The CAST5 encryption algorithm (synonymous with CAST-128) is 890 mode (NIST SP800-38B and IETF RFC449 !! 1236 described in RFC2144. 891 1237 892 config CRYPTO_GHASH !! 1238 config CRYPTO_CAST5_AVX_X86_64 893 tristate "GHASH" !! 1239 tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)" 894 select CRYPTO_HASH !! 1240 depends on X86 && 64BIT 895 select CRYPTO_LIB_GF128MUL !! 1241 select CRYPTO_ALGAPI >> 1242 select CRYPTO_CRYPTD >> 1243 select CRYPTO_ABLK_HELPER >> 1244 select CRYPTO_CAST_COMMON >> 1245 select CRYPTO_CAST5 896 help 1246 help 897 GCM GHASH function (NIST SP800-38D) !! 1247 The CAST5 encryption algorithm (synonymous with CAST-128) is >> 1248 described in RFC2144. 898 1249 899 config CRYPTO_HMAC !! 1250 This module provides the Cast5 cipher algorithm that processes 900 tristate "HMAC (Keyed-Hash MAC)" !! 1251 sixteen blocks parallel using the AVX instruction set. 901 select CRYPTO_HASH !! 1252 902 select CRYPTO_MANAGER !! 1253 config CRYPTO_CAST6 >> 1254 tristate "CAST6 (CAST-256) cipher algorithm" >> 1255 select CRYPTO_ALGAPI >> 1256 select CRYPTO_CAST_COMMON >> 1257 help >> 1258 The CAST6 encryption algorithm (synonymous with CAST-256) is >> 1259 described in RFC2612. >> 1260 >> 1261 config CRYPTO_CAST6_AVX_X86_64 >> 1262 tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)" >> 1263 depends on X86 && 64BIT >> 1264 select CRYPTO_ALGAPI >> 1265 select CRYPTO_CRYPTD >> 1266 select CRYPTO_ABLK_HELPER >> 1267 select CRYPTO_GLUE_HELPER_X86 >> 1268 select CRYPTO_CAST_COMMON >> 1269 select CRYPTO_CAST6 >> 1270 select CRYPTO_LRW >> 1271 select CRYPTO_XTS 903 help 1272 help 904 HMAC (Keyed-Hash Message Authenticat !! 1273 The CAST6 encryption algorithm (synonymous with CAST-256) is 905 RFC2104) !! 1274 described in RFC2612. 906 1275 907 This is required for IPsec AH (XFRM_ !! 1276 This module provides the Cast6 cipher algorithm that processes >> 1277 eight blocks parallel using the AVX instruction set. 908 1278 909 config CRYPTO_MD4 !! 1279 config CRYPTO_DES 910 tristate "MD4" !! 1280 tristate "DES and Triple DES EDE cipher algorithms" 911 select CRYPTO_HASH !! 1281 select CRYPTO_ALGAPI 912 help 1282 help 913 MD4 message digest algorithm (RFC132 !! 1283 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3). 914 1284 915 config CRYPTO_MD5 !! 1285 config CRYPTO_DES_SPARC64 916 tristate "MD5" !! 1286 tristate "DES and Triple DES EDE cipher algorithms (SPARC64)" 917 select CRYPTO_HASH !! 1287 depends on SPARC64 >> 1288 select CRYPTO_ALGAPI >> 1289 select CRYPTO_DES 918 help 1290 help 919 MD5 message digest algorithm (RFC132 !! 1291 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3), >> 1292 optimized using SPARC64 crypto opcodes. 920 1293 921 config CRYPTO_MICHAEL_MIC !! 1294 config CRYPTO_DES3_EDE_X86_64 922 tristate "Michael MIC" !! 1295 tristate "Triple DES EDE cipher algorithm (x86-64)" 923 select CRYPTO_HASH !! 1296 depends on X86 && 64BIT >> 1297 select CRYPTO_ALGAPI >> 1298 select CRYPTO_DES 924 help 1299 help 925 Michael MIC (Message Integrity Code) !! 1300 Triple DES EDE (FIPS 46-3) algorithm. 926 1301 927 Defined by the IEEE 802.11i TKIP (Te !! 1302 This module provides implementation of the Triple DES EDE cipher 928 known as WPA (Wif-Fi Protected Acces !! 1303 algorithm that is optimized for x86-64 processors. Two versions of >> 1304 algorithm are provided; regular processing one input block and >> 1305 one that processes three blocks parallel. 929 1306 930 This algorithm is required for TKIP, !! 1307 config CRYPTO_FCRYPT 931 other purposes because of the weakne !! 1308 tristate "FCrypt cipher algorithm" >> 1309 select CRYPTO_ALGAPI >> 1310 select CRYPTO_BLKCIPHER >> 1311 help >> 1312 FCrypt algorithm used by RxRPC. 932 1313 933 config CRYPTO_POLYVAL !! 1314 config CRYPTO_KHAZAD 934 tristate !! 1315 tristate "Khazad cipher algorithm" 935 select CRYPTO_HASH !! 1316 select CRYPTO_ALGAPI 936 select CRYPTO_LIB_GF128MUL << 937 help 1317 help 938 POLYVAL hash function for HCTR2 !! 1318 Khazad cipher algorithm. 939 1319 940 This is used in HCTR2. It is not a !! 1320 Khazad was a finalist in the initial NESSIE competition. It is 941 cryptographic hash function. !! 1321 an algorithm optimized for 64-bit processors with good performance >> 1322 on 32-bit processors. Khazad uses an 128 bit key size. 942 1323 943 config CRYPTO_POLY1305 !! 1324 See also: 944 tristate "Poly1305" !! 1325 <http://www.larc.usp.br/~pbarreto/KhazadPage.html> 945 select CRYPTO_HASH !! 1326 946 select CRYPTO_LIB_POLY1305_GENERIC !! 1327 config CRYPTO_SALSA20 >> 1328 tristate "Salsa20 stream cipher algorithm" >> 1329 select CRYPTO_BLKCIPHER 947 help 1330 help 948 Poly1305 authenticator algorithm (RF !! 1331 Salsa20 stream cipher algorithm. 949 1332 950 Poly1305 is an authenticator algorit !! 1333 Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT 951 It is used for the ChaCha20-Poly1305 !! 1334 Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/> 952 in IETF protocols. This is the porta << 953 1335 954 config CRYPTO_RMD160 !! 1336 The Salsa20 stream cipher algorithm is designed by Daniel J. 955 tristate "RIPEMD-160" !! 1337 Bernstein <http://cr.yp.to/snuffle.html">djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html> 956 select CRYPTO_HASH << 957 help << 958 RIPEMD-160 hash function (ISO/IEC 10 << 959 1338 960 RIPEMD-160 is a 160-bit cryptographi !! 1339 config CRYPTO_SALSA20_586 961 to be used as a secure replacement f !! 1340 tristate "Salsa20 stream cipher algorithm (i586)" 962 MD4, MD5 and its predecessor RIPEMD !! 1341 depends on (X86 || UML_X86) && !64BIT 963 (not to be confused with RIPEMD-128) !! 1342 select CRYPTO_BLKCIPHER >> 1343 select CRYPTO_SALSA20 >> 1344 help >> 1345 Salsa20 stream cipher algorithm. 964 1346 965 Its speed is comparable to SHA-1 and !! 1347 Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT 966 against RIPEMD-160. !! 1348 Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/> 967 1349 968 Developed by Hans Dobbertin, Antoon !! 1350 The Salsa20 stream cipher algorithm is designed by Daniel J. 969 See https://homes.esat.kuleuven.be/~ !! 1351 Bernstein <http://cr.yp.to/snuffle.html">djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html> 970 for further information. << 971 1352 972 config CRYPTO_SHA1 !! 1353 config CRYPTO_SALSA20_X86_64 973 tristate "SHA-1" !! 1354 tristate "Salsa20 stream cipher algorithm (x86_64)" 974 select CRYPTO_HASH !! 1355 depends on (X86 || UML_X86) && 64BIT 975 select CRYPTO_LIB_SHA1 !! 1356 select CRYPTO_BLKCIPHER >> 1357 select CRYPTO_SALSA20 976 help 1358 help 977 SHA-1 secure hash algorithm (FIPS 18 !! 1359 Salsa20 stream cipher algorithm. 978 1360 979 config CRYPTO_SHA256 !! 1361 Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT 980 tristate "SHA-224 and SHA-256" !! 1362 Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/> 981 select CRYPTO_HASH !! 1363 982 select CRYPTO_LIB_SHA256 !! 1364 The Salsa20 stream cipher algorithm is designed by Daniel J. >> 1365 Bernstein <http://cr.yp.to/snuffle.html">djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html> >> 1366 >> 1367 config CRYPTO_CHACHA20 >> 1368 tristate "ChaCha20 cipher algorithm" >> 1369 select CRYPTO_BLKCIPHER 983 help 1370 help 984 SHA-224 and SHA-256 secure hash algo !! 1371 ChaCha20 cipher algorithm, RFC7539. 985 1372 986 This is required for IPsec AH (XFRM_ !! 1373 ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J. 987 Used by the btrfs filesystem, Ceph, !! 1374 Bernstein and further specified in RFC7539 for use in IETF protocols. >> 1375 This is the portable C implementation of ChaCha20. 988 1376 989 config CRYPTO_SHA512 !! 1377 See also: 990 tristate "SHA-384 and SHA-512" !! 1378 <http://cr.yp.to/chacha/chacha-20080128.pdf> 991 select CRYPTO_HASH !! 1379 >> 1380 config CRYPTO_CHACHA20_X86_64 >> 1381 tristate "ChaCha20 cipher algorithm (x86_64/SSSE3/AVX2)" >> 1382 depends on X86 && 64BIT >> 1383 select CRYPTO_BLKCIPHER >> 1384 select CRYPTO_CHACHA20 992 help 1385 help 993 SHA-384 and SHA-512 secure hash algo !! 1386 ChaCha20 cipher algorithm, RFC7539. 994 1387 995 config CRYPTO_SHA3 !! 1388 ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J. 996 tristate "SHA-3" !! 1389 Bernstein and further specified in RFC7539 for use in IETF protocols. 997 select CRYPTO_HASH !! 1390 This is the x86_64 assembler implementation using SIMD instructions. >> 1391 >> 1392 See also: >> 1393 <http://cr.yp.to/chacha/chacha-20080128.pdf> >> 1394 >> 1395 config CRYPTO_SEED >> 1396 tristate "SEED cipher algorithm" >> 1397 select CRYPTO_ALGAPI 998 help 1398 help 999 SHA-3 secure hash algorithms (FIPS 2 !! 1399 SEED cipher algorithm (RFC4269). 1000 1400 1001 config CRYPTO_SM3 !! 1401 SEED is a 128-bit symmetric key block cipher that has been 1002 tristate !! 1402 developed by KISA (Korea Information Security Agency) as a >> 1403 national standard encryption algorithm of the Republic of Korea. >> 1404 It is a 16 round block cipher with the key size of 128 bit. 1003 1405 1004 config CRYPTO_SM3_GENERIC !! 1406 See also: 1005 tristate "SM3 (ShangMi 3)" !! 1407 <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp> 1006 select CRYPTO_HASH !! 1408 1007 select CRYPTO_SM3 !! 1409 config CRYPTO_SERPENT >> 1410 tristate "Serpent cipher algorithm" >> 1411 select CRYPTO_ALGAPI 1008 help 1412 help 1009 SM3 (ShangMi 3) secure hash functio !! 1413 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1010 1414 1011 This is part of the Chinese Commerc !! 1415 Keys are allowed to be from 0 to 256 bits in length, in steps >> 1416 of 8 bits. Also includes the 'Tnepres' algorithm, a reversed >> 1417 variant of Serpent for compatibility with old kerneli.org code. 1012 1418 1013 References: !! 1419 See also: 1014 http://www.oscca.gov.cn/UpFile/2010 !! 1420 <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1015 https://datatracker.ietf.org/doc/ht << 1016 1421 1017 config CRYPTO_STREEBOG !! 1422 config CRYPTO_SERPENT_SSE2_X86_64 1018 tristate "Streebog" !! 1423 tristate "Serpent cipher algorithm (x86_64/SSE2)" 1019 select CRYPTO_HASH !! 1424 depends on X86 && 64BIT >> 1425 select CRYPTO_ALGAPI >> 1426 select CRYPTO_CRYPTD >> 1427 select CRYPTO_ABLK_HELPER >> 1428 select CRYPTO_GLUE_HELPER_X86 >> 1429 select CRYPTO_SERPENT >> 1430 select CRYPTO_LRW >> 1431 select CRYPTO_XTS 1020 help 1432 help 1021 Streebog Hash Function (GOST R 34.1 !! 1433 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1022 1434 1023 This is one of the Russian cryptogr !! 1435 Keys are allowed to be from 0 to 256 bits in length, in steps 1024 GOST algorithms). This setting enab !! 1436 of 8 bits. 1025 256 and 512 bits output. << 1026 1437 1027 References: !! 1438 This module provides Serpent cipher algorithm that processes eight 1028 https://tc26.ru/upload/iblock/fed/f !! 1439 blocks parallel using SSE2 instruction set. 1029 https://tools.ietf.org/html/rfc6986 << 1030 1440 1031 config CRYPTO_VMAC !! 1441 See also: 1032 tristate "VMAC" !! 1442 <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1033 select CRYPTO_HASH !! 1443 1034 select CRYPTO_MANAGER !! 1444 config CRYPTO_SERPENT_SSE2_586 >> 1445 tristate "Serpent cipher algorithm (i586/SSE2)" >> 1446 depends on X86 && !64BIT >> 1447 select CRYPTO_ALGAPI >> 1448 select CRYPTO_CRYPTD >> 1449 select CRYPTO_ABLK_HELPER >> 1450 select CRYPTO_GLUE_HELPER_X86 >> 1451 select CRYPTO_SERPENT >> 1452 select CRYPTO_LRW >> 1453 select CRYPTO_XTS 1035 help 1454 help 1036 VMAC is a message authentication al !! 1455 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1037 very high speed on 64-bit architect << 1038 1456 1039 See https://fastcrypto.org/vmac for !! 1457 Keys are allowed to be from 0 to 256 bits in length, in steps >> 1458 of 8 bits. 1040 1459 1041 config CRYPTO_WP512 !! 1460 This module provides Serpent cipher algorithm that processes four 1042 tristate "Whirlpool" !! 1461 blocks parallel using SSE2 instruction set. 1043 select CRYPTO_HASH !! 1462 >> 1463 See also: >> 1464 <http://www.cl.cam.ac.uk/~rja14/serpent.html> >> 1465 >> 1466 config CRYPTO_SERPENT_AVX_X86_64 >> 1467 tristate "Serpent cipher algorithm (x86_64/AVX)" >> 1468 depends on X86 && 64BIT >> 1469 select CRYPTO_ALGAPI >> 1470 select CRYPTO_CRYPTD >> 1471 select CRYPTO_ABLK_HELPER >> 1472 select CRYPTO_GLUE_HELPER_X86 >> 1473 select CRYPTO_SERPENT >> 1474 select CRYPTO_LRW >> 1475 select CRYPTO_XTS 1044 help 1476 help 1045 Whirlpool hash function (ISO/IEC 10 !! 1477 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1046 1478 1047 512, 384 and 256-bit hashes. !! 1479 Keys are allowed to be from 0 to 256 bits in length, in steps >> 1480 of 8 bits. 1048 1481 1049 Whirlpool-512 is part of the NESSIE !! 1482 This module provides the Serpent cipher algorithm that processes >> 1483 eight blocks parallel using the AVX instruction set. 1050 1484 1051 See https://web.archive.org/web/201 !! 1485 See also: 1052 for further information. !! 1486 <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1053 1487 1054 config CRYPTO_XCBC !! 1488 config CRYPTO_SERPENT_AVX2_X86_64 1055 tristate "XCBC-MAC (Extended Cipher B !! 1489 tristate "Serpent cipher algorithm (x86_64/AVX2)" 1056 select CRYPTO_HASH !! 1490 depends on X86 && 64BIT 1057 select CRYPTO_MANAGER !! 1491 select CRYPTO_ALGAPI >> 1492 select CRYPTO_CRYPTD >> 1493 select CRYPTO_ABLK_HELPER >> 1494 select CRYPTO_GLUE_HELPER_X86 >> 1495 select CRYPTO_SERPENT >> 1496 select CRYPTO_SERPENT_AVX_X86_64 >> 1497 select CRYPTO_LRW >> 1498 select CRYPTO_XTS 1058 help 1499 help 1059 XCBC-MAC (Extended Cipher Block Cha !! 1500 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1060 Code) (RFC3566) << 1061 1501 1062 config CRYPTO_XXHASH !! 1502 Keys are allowed to be from 0 to 256 bits in length, in steps 1063 tristate "xxHash" !! 1503 of 8 bits. 1064 select CRYPTO_HASH !! 1504 1065 select XXHASH !! 1505 This module provides Serpent cipher algorithm that processes 16 >> 1506 blocks parallel using AVX2 instruction set. >> 1507 >> 1508 See also: >> 1509 <http://www.cl.cam.ac.uk/~rja14/serpent.html> >> 1510 >> 1511 config CRYPTO_TEA >> 1512 tristate "TEA, XTEA and XETA cipher algorithms" >> 1513 select CRYPTO_ALGAPI 1066 help 1514 help 1067 xxHash non-cryptographic hash algor !! 1515 TEA cipher algorithm. 1068 1516 1069 Extremely fast, working at speeds c !! 1517 Tiny Encryption Algorithm is a simple cipher that uses >> 1518 many rounds for security. It is very fast and uses >> 1519 little memory. 1070 1520 1071 Used by the btrfs filesystem. !! 1521 Xtendend Tiny Encryption Algorithm is a modification to >> 1522 the TEA algorithm to address a potential key weakness >> 1523 in the TEA algorithm. 1072 1524 1073 endmenu !! 1525 Xtendend Encryption Tiny Algorithm is a mis-implementation >> 1526 of the XTEA algorithm for compatibility purposes. 1074 1527 1075 menu "CRCs (cyclic redundancy checks)" !! 1528 config CRYPTO_TWOFISH >> 1529 tristate "Twofish cipher algorithm" >> 1530 select CRYPTO_ALGAPI >> 1531 select CRYPTO_TWOFISH_COMMON >> 1532 help >> 1533 Twofish cipher algorithm. 1076 1534 1077 config CRYPTO_CRC32C !! 1535 Twofish was submitted as an AES (Advanced Encryption Standard) 1078 tristate "CRC32c" !! 1536 candidate cipher by researchers at CounterPane Systems. It is a 1079 select CRYPTO_HASH !! 1537 16 round block cipher supporting key sizes of 128, 192, and 256 1080 select CRC32 !! 1538 bits. >> 1539 >> 1540 See also: >> 1541 <http://www.schneier.com/twofish.html> >> 1542 >> 1543 config CRYPTO_TWOFISH_COMMON >> 1544 tristate 1081 help 1545 help 1082 CRC32c CRC algorithm with the iSCSI !! 1546 Common parts of the Twofish cipher algorithm shared by the >> 1547 generic c and the assembler implementations. 1083 1548 1084 A 32-bit CRC (cyclic redundancy che !! 1549 config CRYPTO_TWOFISH_586 1085 by G. Castagnoli, S. Braeuer and M. !! 1550 tristate "Twofish cipher algorithms (i586)" 1086 Redundancy-Check Codes with 24 and !! 1551 depends on (X86 || UML_X86) && !64BIT 1087 on Communications, Vol. 41, No. 6, !! 1552 select CRYPTO_ALGAPI 1088 iSCSI. !! 1553 select CRYPTO_TWOFISH_COMMON >> 1554 help >> 1555 Twofish cipher algorithm. 1089 1556 1090 Used by btrfs, ext4, jbd2, NVMeoF/T !! 1557 Twofish was submitted as an AES (Advanced Encryption Standard) >> 1558 candidate cipher by researchers at CounterPane Systems. It is a >> 1559 16 round block cipher supporting key sizes of 128, 192, and 256 >> 1560 bits. 1091 1561 1092 config CRYPTO_CRC32 !! 1562 See also: 1093 tristate "CRC32" !! 1563 <http://www.schneier.com/twofish.html> 1094 select CRYPTO_HASH !! 1564 1095 select CRC32 !! 1565 config CRYPTO_TWOFISH_X86_64 >> 1566 tristate "Twofish cipher algorithm (x86_64)" >> 1567 depends on (X86 || UML_X86) && 64BIT >> 1568 select CRYPTO_ALGAPI >> 1569 select CRYPTO_TWOFISH_COMMON 1096 help 1570 help 1097 CRC32 CRC algorithm (IEEE 802.3) !! 1571 Twofish cipher algorithm (x86_64). >> 1572 >> 1573 Twofish was submitted as an AES (Advanced Encryption Standard) >> 1574 candidate cipher by researchers at CounterPane Systems. It is a >> 1575 16 round block cipher supporting key sizes of 128, 192, and 256 >> 1576 bits. 1098 1577 1099 Used by RoCEv2 and f2fs. !! 1578 See also: >> 1579 <http://www.schneier.com/twofish.html> 1100 1580 1101 config CRYPTO_CRCT10DIF !! 1581 config CRYPTO_TWOFISH_X86_64_3WAY 1102 tristate "CRCT10DIF" !! 1582 tristate "Twofish cipher algorithm (x86_64, 3-way parallel)" 1103 select CRYPTO_HASH !! 1583 depends on X86 && 64BIT >> 1584 select CRYPTO_ALGAPI >> 1585 select CRYPTO_TWOFISH_COMMON >> 1586 select CRYPTO_TWOFISH_X86_64 >> 1587 select CRYPTO_GLUE_HELPER_X86 >> 1588 select CRYPTO_LRW >> 1589 select CRYPTO_XTS 1104 help 1590 help 1105 CRC16 CRC algorithm used for the T1 !! 1591 Twofish cipher algorithm (x86_64, 3-way parallel). 1106 1592 1107 CRC algorithm used by the SCSI Bloc !! 1593 Twofish was submitted as an AES (Advanced Encryption Standard) >> 1594 candidate cipher by researchers at CounterPane Systems. It is a >> 1595 16 round block cipher supporting key sizes of 128, 192, and 256 >> 1596 bits. 1108 1597 1109 config CRYPTO_CRC64_ROCKSOFT !! 1598 This module provides Twofish cipher algorithm that processes three 1110 tristate "CRC64 based on Rocksoft Mod !! 1599 blocks parallel, utilizing resources of out-of-order CPUs better. 1111 depends on CRC64 !! 1600 1112 select CRYPTO_HASH !! 1601 See also: >> 1602 <http://www.schneier.com/twofish.html> >> 1603 >> 1604 config CRYPTO_TWOFISH_AVX_X86_64 >> 1605 tristate "Twofish cipher algorithm (x86_64/AVX)" >> 1606 depends on X86 && 64BIT >> 1607 select CRYPTO_ALGAPI >> 1608 select CRYPTO_CRYPTD >> 1609 select CRYPTO_ABLK_HELPER >> 1610 select CRYPTO_GLUE_HELPER_X86 >> 1611 select CRYPTO_TWOFISH_COMMON >> 1612 select CRYPTO_TWOFISH_X86_64 >> 1613 select CRYPTO_TWOFISH_X86_64_3WAY >> 1614 select CRYPTO_LRW >> 1615 select CRYPTO_XTS 1113 help 1616 help 1114 CRC64 CRC algorithm based on the Ro !! 1617 Twofish cipher algorithm (x86_64/AVX). 1115 1618 1116 Used by the NVMe implementation of !! 1619 Twofish was submitted as an AES (Advanced Encryption Standard) >> 1620 candidate cipher by researchers at CounterPane Systems. It is a >> 1621 16 round block cipher supporting key sizes of 128, 192, and 256 >> 1622 bits. 1117 1623 1118 See https://zlib.net/crc_v3.txt !! 1624 This module provides the Twofish cipher algorithm that processes >> 1625 eight blocks parallel using the AVX Instruction Set. 1119 1626 1120 endmenu !! 1627 See also: >> 1628 <http://www.schneier.com/twofish.html> 1121 1629 1122 menu "Compression" !! 1630 comment "Compression" 1123 1631 1124 config CRYPTO_DEFLATE 1632 config CRYPTO_DEFLATE 1125 tristate "Deflate" !! 1633 tristate "Deflate compression algorithm" 1126 select CRYPTO_ALGAPI 1634 select CRYPTO_ALGAPI 1127 select CRYPTO_ACOMP2 1635 select CRYPTO_ACOMP2 1128 select ZLIB_INFLATE 1636 select ZLIB_INFLATE 1129 select ZLIB_DEFLATE 1637 select ZLIB_DEFLATE 1130 help 1638 help 1131 Deflate compression algorithm (RFC1 !! 1639 This is the Deflate algorithm (RFC1951), specified for use in >> 1640 IPSec with the IPCOMP protocol (RFC3173, RFC2394). 1132 1641 1133 Used by IPSec with the IPCOMP proto !! 1642 You will most probably want this if using IPSec. 1134 1643 1135 config CRYPTO_LZO 1644 config CRYPTO_LZO 1136 tristate "LZO" !! 1645 tristate "LZO compression algorithm" 1137 select CRYPTO_ALGAPI 1646 select CRYPTO_ALGAPI 1138 select CRYPTO_ACOMP2 1647 select CRYPTO_ACOMP2 1139 select LZO_COMPRESS 1648 select LZO_COMPRESS 1140 select LZO_DECOMPRESS 1649 select LZO_DECOMPRESS 1141 help 1650 help 1142 LZO compression algorithm !! 1651 This is the LZO algorithm. 1143 << 1144 See https://www.oberhumer.com/opens << 1145 1652 1146 config CRYPTO_842 1653 config CRYPTO_842 1147 tristate "842" !! 1654 tristate "842 compression algorithm" 1148 select CRYPTO_ALGAPI 1655 select CRYPTO_ALGAPI 1149 select CRYPTO_ACOMP2 1656 select CRYPTO_ACOMP2 1150 select 842_COMPRESS 1657 select 842_COMPRESS 1151 select 842_DECOMPRESS 1658 select 842_DECOMPRESS 1152 help 1659 help 1153 842 compression algorithm by IBM !! 1660 This is the 842 algorithm. 1154 << 1155 See https://github.com/plauth/lib84 << 1156 1661 1157 config CRYPTO_LZ4 1662 config CRYPTO_LZ4 1158 tristate "LZ4" !! 1663 tristate "LZ4 compression algorithm" 1159 select CRYPTO_ALGAPI 1664 select CRYPTO_ALGAPI 1160 select CRYPTO_ACOMP2 1665 select CRYPTO_ACOMP2 1161 select LZ4_COMPRESS 1666 select LZ4_COMPRESS 1162 select LZ4_DECOMPRESS 1667 select LZ4_DECOMPRESS 1163 help 1668 help 1164 LZ4 compression algorithm !! 1669 This is the LZ4 algorithm. 1165 << 1166 See https://github.com/lz4/lz4 for << 1167 1670 1168 config CRYPTO_LZ4HC 1671 config CRYPTO_LZ4HC 1169 tristate "LZ4HC" !! 1672 tristate "LZ4HC compression algorithm" 1170 select CRYPTO_ALGAPI 1673 select CRYPTO_ALGAPI 1171 select CRYPTO_ACOMP2 1674 select CRYPTO_ACOMP2 1172 select LZ4HC_COMPRESS 1675 select LZ4HC_COMPRESS 1173 select LZ4_DECOMPRESS 1676 select LZ4_DECOMPRESS 1174 help 1677 help 1175 LZ4 high compression mode algorithm !! 1678 This is the LZ4 high compression mode algorithm. 1176 << 1177 See https://github.com/lz4/lz4 for << 1178 << 1179 config CRYPTO_ZSTD << 1180 tristate "Zstd" << 1181 select CRYPTO_ALGAPI << 1182 select CRYPTO_ACOMP2 << 1183 select ZSTD_COMPRESS << 1184 select ZSTD_DECOMPRESS << 1185 help << 1186 zstd compression algorithm << 1187 << 1188 See https://github.com/facebook/zst << 1189 << 1190 endmenu << 1191 1679 1192 menu "Random number generation" !! 1680 comment "Random Number Generation" 1193 1681 1194 config CRYPTO_ANSI_CPRNG 1682 config CRYPTO_ANSI_CPRNG 1195 tristate "ANSI PRNG (Pseudo Random Nu !! 1683 tristate "Pseudo Random Number Generation for Cryptographic modules" 1196 select CRYPTO_AES 1684 select CRYPTO_AES 1197 select CRYPTO_RNG 1685 select CRYPTO_RNG 1198 help 1686 help 1199 Pseudo RNG (random number generator !! 1687 This option enables the generic pseudo random number generator 1200 !! 1688 for cryptographic modules. Uses the Algorithm specified in 1201 This uses the AES cipher algorithm. !! 1689 ANSI X9.31 A.2.4. Note that this option must be enabled if 1202 !! 1690 CRYPTO_FIPS is selected 1203 Note that this option must be enabl << 1204 1691 1205 menuconfig CRYPTO_DRBG_MENU 1692 menuconfig CRYPTO_DRBG_MENU 1206 tristate "NIST SP800-90A DRBG (Determ !! 1693 tristate "NIST SP800-90A DRBG" 1207 help 1694 help 1208 DRBG (Deterministic Random Bit Gene !! 1695 NIST SP800-90A compliant DRBG. In the following submenu, one or 1209 !! 1696 more of the DRBG types must be selected. 1210 In the following submenu, one or mo << 1211 1697 1212 if CRYPTO_DRBG_MENU 1698 if CRYPTO_DRBG_MENU 1213 1699 1214 config CRYPTO_DRBG_HMAC 1700 config CRYPTO_DRBG_HMAC 1215 bool 1701 bool 1216 default y 1702 default y 1217 select CRYPTO_HMAC 1703 select CRYPTO_HMAC 1218 select CRYPTO_SHA512 !! 1704 select CRYPTO_SHA256 1219 1705 1220 config CRYPTO_DRBG_HASH 1706 config CRYPTO_DRBG_HASH 1221 bool "Hash_DRBG" !! 1707 bool "Enable Hash DRBG" 1222 select CRYPTO_SHA256 1708 select CRYPTO_SHA256 1223 help 1709 help 1224 Hash_DRBG variant as defined in NIS !! 1710 Enable the Hash DRBG variant as defined in NIST SP800-90A. 1225 << 1226 This uses the SHA-1, SHA-256, SHA-3 << 1227 1711 1228 config CRYPTO_DRBG_CTR 1712 config CRYPTO_DRBG_CTR 1229 bool "CTR_DRBG" !! 1713 bool "Enable CTR DRBG" 1230 select CRYPTO_AES 1714 select CRYPTO_AES 1231 select CRYPTO_CTR !! 1715 depends on CRYPTO_CTR 1232 help 1716 help 1233 CTR_DRBG variant as defined in NIST !! 1717 Enable the CTR DRBG variant as defined in NIST SP800-90A. 1234 << 1235 This uses the AES cipher algorithm << 1236 1718 1237 config CRYPTO_DRBG 1719 config CRYPTO_DRBG 1238 tristate 1720 tristate 1239 default CRYPTO_DRBG_MENU 1721 default CRYPTO_DRBG_MENU 1240 select CRYPTO_RNG 1722 select CRYPTO_RNG 1241 select CRYPTO_JITTERENTROPY 1723 select CRYPTO_JITTERENTROPY 1242 1724 1243 endif # if CRYPTO_DRBG_MENU 1725 endif # if CRYPTO_DRBG_MENU 1244 1726 1245 config CRYPTO_JITTERENTROPY 1727 config CRYPTO_JITTERENTROPY 1246 tristate "CPU Jitter Non-Deterministi !! 1728 tristate "Jitterentropy Non-Deterministic Random Number Generator" 1247 select CRYPTO_RNG 1729 select CRYPTO_RNG 1248 select CRYPTO_SHA3 << 1249 help 1730 help 1250 CPU Jitter RNG (Random Number Gener !! 1731 The Jitterentropy RNG is a noise that is intended 1251 !! 1732 to provide seed to another RNG. The RNG does not 1252 A non-physical non-deterministic (" !! 1733 perform any cryptographic whitening of the generated 1253 compliant with NIST SP800-90B) inte !! 1734 random numbers. This Jitterentropy RNG registers with 1254 deterministic RNG (e.g., per NIST S !! 1735 the kernel crypto API and can be used by any caller. 1255 This RNG does not perform any crypt << 1256 random numbers. << 1257 << 1258 See https://www.chronox.de/jent/ << 1259 << 1260 if CRYPTO_JITTERENTROPY << 1261 if CRYPTO_FIPS && EXPERT << 1262 << 1263 choice << 1264 prompt "CPU Jitter RNG Memory Size" << 1265 default CRYPTO_JITTERENTROPY_MEMSIZE_ << 1266 help << 1267 The Jitter RNG measures the executi << 1268 Multiple consecutive memory accesse << 1269 size fits into a cache (e.g. L1), o << 1270 to that cache is measured. The clos << 1271 the less variations are measured an << 1272 obtained. Thus, if the memory size << 1273 obtained entropy is less than if th << 1274 L1 + L2, which in turn is less if t << 1275 L1 + L2 + L3. Thus, by selecting a << 1276 the entropy rate produced by the Ji << 1277 << 1278 config CRYPTO_JITTERENTROPY_MEMSIZE_2 << 1279 bool "2048 Bytes (default)" << 1280 << 1281 config CRYPTO_JITTERENTROPY_MEMSIZE_1 << 1282 bool "128 kBytes" << 1283 << 1284 config CRYPTO_JITTERENTROPY_MEMSIZE_1 << 1285 bool "1024 kBytes" << 1286 << 1287 config CRYPTO_JITTERENTROPY_MEMSIZE_8 << 1288 bool "8192 kBytes" << 1289 endchoice << 1290 << 1291 config CRYPTO_JITTERENTROPY_MEMORY_BLOCKS << 1292 int << 1293 default 64 if CRYPTO_JITTERENTROPY_ME << 1294 default 512 if CRYPTO_JITTERENTROPY_M << 1295 default 1024 if CRYPTO_JITTERENTROPY_ << 1296 default 4096 if CRYPTO_JITTERENTROPY_ << 1297 << 1298 config CRYPTO_JITTERENTROPY_MEMORY_BLOCKSIZE << 1299 int << 1300 default 32 if CRYPTO_JITTERENTROPY_ME << 1301 default 256 if CRYPTO_JITTERENTROPY_M << 1302 default 1024 if CRYPTO_JITTERENTROPY_ << 1303 default 2048 if CRYPTO_JITTERENTROPY_ << 1304 << 1305 config CRYPTO_JITTERENTROPY_OSR << 1306 int "CPU Jitter RNG Oversampling Rate << 1307 range 1 15 << 1308 default 3 << 1309 help << 1310 The Jitter RNG allows the specifica << 1311 The Jitter RNG operation requires a << 1312 measurements to produce one output << 1313 OSR value is multiplied with the am << 1314 generate one output block. Thus, th << 1315 by the OSR factor. The oversampling << 1316 on hardware whose timers deliver li << 1317 the timer is coarse) by setting the << 1318 trade-off, however, is that the Jit << 1319 to generate random numbers. << 1320 << 1321 config CRYPTO_JITTERENTROPY_TESTINTERFACE << 1322 bool "CPU Jitter RNG Test Interface" << 1323 help << 1324 The test interface allows a privile << 1325 the raw unconditioned high resoluti << 1326 is collected by the Jitter RNG for << 1327 this data is used at the same time << 1328 the Jitter RNG operates in an insec << 1329 recording is enabled. This interfac << 1330 intended for testing purposes and i << 1331 production systems. << 1332 << 1333 The raw noise data can be obtained << 1334 debugfs file. Using the option << 1335 jitterentropy_testing.boot_raw_hire << 1336 the first 1000 entropy events since << 1337 << 1338 If unsure, select N. << 1339 << 1340 endif # if CRYPTO_FIPS && EXPERT << 1341 << 1342 if !(CRYPTO_FIPS && EXPERT) << 1343 << 1344 config CRYPTO_JITTERENTROPY_MEMORY_BLOCKS << 1345 int << 1346 default 64 << 1347 << 1348 config CRYPTO_JITTERENTROPY_MEMORY_BLOCKSIZE << 1349 int << 1350 default 32 << 1351 << 1352 config CRYPTO_JITTERENTROPY_OSR << 1353 int << 1354 default 1 << 1355 << 1356 config CRYPTO_JITTERENTROPY_TESTINTERFACE << 1357 bool << 1358 << 1359 endif # if !(CRYPTO_FIPS && EXPERT) << 1360 endif # if CRYPTO_JITTERENTROPY << 1361 << 1362 config CRYPTO_KDF800108_CTR << 1363 tristate << 1364 select CRYPTO_HMAC << 1365 select CRYPTO_SHA256 << 1366 << 1367 endmenu << 1368 menu "Userspace interface" << 1369 1736 1370 config CRYPTO_USER_API 1737 config CRYPTO_USER_API 1371 tristate 1738 tristate 1372 1739 1373 config CRYPTO_USER_API_HASH 1740 config CRYPTO_USER_API_HASH 1374 tristate "Hash algorithms" !! 1741 tristate "User-space interface for hash algorithms" 1375 depends on NET 1742 depends on NET 1376 select CRYPTO_HASH 1743 select CRYPTO_HASH 1377 select CRYPTO_USER_API 1744 select CRYPTO_USER_API 1378 help 1745 help 1379 Enable the userspace interface for !! 1746 This option enables the user-spaces interface for hash 1380 !! 1747 algorithms. 1381 See Documentation/crypto/userspace- << 1382 https://www.chronox.de/libkcapi/htm << 1383 1748 1384 config CRYPTO_USER_API_SKCIPHER 1749 config CRYPTO_USER_API_SKCIPHER 1385 tristate "Symmetric key cipher algori !! 1750 tristate "User-space interface for symmetric key cipher algorithms" 1386 depends on NET 1751 depends on NET 1387 select CRYPTO_SKCIPHER !! 1752 select CRYPTO_BLKCIPHER 1388 select CRYPTO_USER_API 1753 select CRYPTO_USER_API 1389 help 1754 help 1390 Enable the userspace interface for !! 1755 This option enables the user-spaces interface for symmetric 1391 !! 1756 key cipher algorithms. 1392 See Documentation/crypto/userspace- << 1393 https://www.chronox.de/libkcapi/htm << 1394 1757 1395 config CRYPTO_USER_API_RNG 1758 config CRYPTO_USER_API_RNG 1396 tristate "RNG (random number generato !! 1759 tristate "User-space interface for random number generator algorithms" 1397 depends on NET 1760 depends on NET 1398 select CRYPTO_RNG 1761 select CRYPTO_RNG 1399 select CRYPTO_USER_API 1762 select CRYPTO_USER_API 1400 help 1763 help 1401 Enable the userspace interface for !! 1764 This option enables the user-spaces interface for random 1402 algorithms. !! 1765 number generator algorithms. 1403 << 1404 See Documentation/crypto/userspace- << 1405 https://www.chronox.de/libkcapi/htm << 1406 << 1407 config CRYPTO_USER_API_RNG_CAVP << 1408 bool "Enable CAVP testing of DRBG" << 1409 depends on CRYPTO_USER_API_RNG && CRY << 1410 help << 1411 Enable extra APIs in the userspace << 1412 (Cryptographic Algorithm Validation << 1413 - resetting DRBG entropy << 1414 - providing Additional Data << 1415 << 1416 This should only be enabled for CAV << 1417 no unless you know what this is. << 1418 1766 1419 config CRYPTO_USER_API_AEAD 1767 config CRYPTO_USER_API_AEAD 1420 tristate "AEAD cipher algorithms" !! 1768 tristate "User-space interface for AEAD cipher algorithms" 1421 depends on NET 1769 depends on NET 1422 select CRYPTO_AEAD 1770 select CRYPTO_AEAD 1423 select CRYPTO_SKCIPHER !! 1771 select CRYPTO_BLKCIPHER 1424 select CRYPTO_NULL 1772 select CRYPTO_NULL 1425 select CRYPTO_USER_API 1773 select CRYPTO_USER_API 1426 help 1774 help 1427 Enable the userspace interface for !! 1775 This option enables the user-spaces interface for AEAD 1428 !! 1776 cipher algorithms. 1429 See Documentation/crypto/userspace- << 1430 https://www.chronox.de/libkcapi/htm << 1431 << 1432 config CRYPTO_USER_API_ENABLE_OBSOLETE << 1433 bool "Obsolete cryptographic algorith << 1434 depends on CRYPTO_USER_API << 1435 default y << 1436 help << 1437 Allow obsolete cryptographic algori << 1438 already been phased out from intern << 1439 only useful for userspace clients t << 1440 << 1441 endmenu << 1442 1777 1443 config CRYPTO_HASH_INFO 1778 config CRYPTO_HASH_INFO 1444 bool 1779 bool 1445 1780 1446 if !KMSAN # avoid false positives from assemb << 1447 if ARM << 1448 source "arch/arm/crypto/Kconfig" << 1449 endif << 1450 if ARM64 << 1451 source "arch/arm64/crypto/Kconfig" << 1452 endif << 1453 if LOONGARCH << 1454 source "arch/loongarch/crypto/Kconfig" << 1455 endif << 1456 if MIPS << 1457 source "arch/mips/crypto/Kconfig" << 1458 endif << 1459 if PPC << 1460 source "arch/powerpc/crypto/Kconfig" << 1461 endif << 1462 if RISCV << 1463 source "arch/riscv/crypto/Kconfig" << 1464 endif << 1465 if S390 << 1466 source "arch/s390/crypto/Kconfig" << 1467 endif << 1468 if SPARC << 1469 source "arch/sparc/crypto/Kconfig" << 1470 endif << 1471 if X86 << 1472 source "arch/x86/crypto/Kconfig" << 1473 endif << 1474 endif << 1475 << 1476 source "drivers/crypto/Kconfig" 1781 source "drivers/crypto/Kconfig" 1477 source "crypto/asymmetric_keys/Kconfig" !! 1782 source crypto/asymmetric_keys/Kconfig 1478 source "certs/Kconfig" !! 1783 source certs/Kconfig 1479 1784 1480 endif # if CRYPTO 1785 endif # if CRYPTO
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.