1 # SPDX-License-Identifier: GPL-2.0 1 # SPDX-License-Identifier: GPL-2.0 2 # 2 # 3 # Generic algorithms support 3 # Generic algorithms support 4 # 4 # 5 config XOR_BLOCKS 5 config XOR_BLOCKS 6 tristate 6 tristate 7 7 8 # 8 # 9 # async_tx api: hardware offloaded memory tran 9 # async_tx api: hardware offloaded memory transfer/transform support 10 # 10 # 11 source "crypto/async_tx/Kconfig" 11 source "crypto/async_tx/Kconfig" 12 12 13 # 13 # 14 # Cryptographic API Configuration 14 # Cryptographic API Configuration 15 # 15 # 16 menuconfig CRYPTO 16 menuconfig CRYPTO 17 tristate "Cryptographic API" 17 tristate "Cryptographic API" 18 select CRYPTO_LIB_UTILS << 19 help 18 help 20 This option provides the core Crypto 19 This option provides the core Cryptographic API. 21 20 22 if CRYPTO 21 if CRYPTO 23 22 24 menu "Crypto core or helper" !! 23 comment "Crypto core or helper" 25 24 26 config CRYPTO_FIPS 25 config CRYPTO_FIPS 27 bool "FIPS 200 compliance" 26 bool "FIPS 200 compliance" 28 depends on (CRYPTO_ANSI_CPRNG || CRYPT 27 depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS 29 depends on (MODULE_SIG || !MODULES) 28 depends on (MODULE_SIG || !MODULES) 30 help 29 help 31 This option enables the fips boot op 30 This option enables the fips boot option which is 32 required if you want the system to o 31 required if you want the system to operate in a FIPS 200 33 certification. You should say no un 32 certification. You should say no unless you know what 34 this is. 33 this is. 35 34 36 config CRYPTO_FIPS_NAME << 37 string "FIPS Module Name" << 38 default "Linux Kernel Cryptographic AP << 39 depends on CRYPTO_FIPS << 40 help << 41 This option sets the FIPS Module nam << 42 the /proc/sys/crypto/fips_name file. << 43 << 44 config CRYPTO_FIPS_CUSTOM_VERSION << 45 bool "Use Custom FIPS Module Version" << 46 depends on CRYPTO_FIPS << 47 default n << 48 << 49 config CRYPTO_FIPS_VERSION << 50 string "FIPS Module Version" << 51 default "(none)" << 52 depends on CRYPTO_FIPS_CUSTOM_VERSION << 53 help << 54 This option provides the ability to << 55 By default the KERNELRELEASE value i << 56 << 57 config CRYPTO_ALGAPI 35 config CRYPTO_ALGAPI 58 tristate 36 tristate 59 select CRYPTO_ALGAPI2 37 select CRYPTO_ALGAPI2 60 help 38 help 61 This option provides the API for cry 39 This option provides the API for cryptographic algorithms. 62 40 63 config CRYPTO_ALGAPI2 41 config CRYPTO_ALGAPI2 64 tristate 42 tristate 65 43 66 config CRYPTO_AEAD 44 config CRYPTO_AEAD 67 tristate 45 tristate 68 select CRYPTO_AEAD2 46 select CRYPTO_AEAD2 69 select CRYPTO_ALGAPI 47 select CRYPTO_ALGAPI 70 48 71 config CRYPTO_AEAD2 49 config CRYPTO_AEAD2 72 tristate 50 tristate 73 select CRYPTO_ALGAPI2 51 select CRYPTO_ALGAPI2 74 !! 52 select CRYPTO_NULL2 75 config CRYPTO_SIG !! 53 select CRYPTO_RNG2 76 tristate << 77 select CRYPTO_SIG2 << 78 select CRYPTO_ALGAPI << 79 << 80 config CRYPTO_SIG2 << 81 tristate << 82 select CRYPTO_ALGAPI2 << 83 54 84 config CRYPTO_SKCIPHER 55 config CRYPTO_SKCIPHER 85 tristate 56 tristate 86 select CRYPTO_SKCIPHER2 57 select CRYPTO_SKCIPHER2 87 select CRYPTO_ALGAPI 58 select CRYPTO_ALGAPI 88 select CRYPTO_ECB << 89 59 90 config CRYPTO_SKCIPHER2 60 config CRYPTO_SKCIPHER2 91 tristate 61 tristate 92 select CRYPTO_ALGAPI2 62 select CRYPTO_ALGAPI2 >> 63 select CRYPTO_RNG2 93 64 94 config CRYPTO_HASH 65 config CRYPTO_HASH 95 tristate 66 tristate 96 select CRYPTO_HASH2 67 select CRYPTO_HASH2 97 select CRYPTO_ALGAPI 68 select CRYPTO_ALGAPI 98 69 99 config CRYPTO_HASH2 70 config CRYPTO_HASH2 100 tristate 71 tristate 101 select CRYPTO_ALGAPI2 72 select CRYPTO_ALGAPI2 102 73 103 config CRYPTO_RNG 74 config CRYPTO_RNG 104 tristate 75 tristate 105 select CRYPTO_RNG2 76 select CRYPTO_RNG2 106 select CRYPTO_ALGAPI 77 select CRYPTO_ALGAPI 107 78 108 config CRYPTO_RNG2 79 config CRYPTO_RNG2 109 tristate 80 tristate 110 select CRYPTO_ALGAPI2 81 select CRYPTO_ALGAPI2 111 82 112 config CRYPTO_RNG_DEFAULT 83 config CRYPTO_RNG_DEFAULT 113 tristate 84 tristate 114 select CRYPTO_DRBG_MENU 85 select CRYPTO_DRBG_MENU 115 86 116 config CRYPTO_AKCIPHER2 87 config CRYPTO_AKCIPHER2 117 tristate 88 tristate 118 select CRYPTO_ALGAPI2 89 select CRYPTO_ALGAPI2 119 90 120 config CRYPTO_AKCIPHER 91 config CRYPTO_AKCIPHER 121 tristate 92 tristate 122 select CRYPTO_AKCIPHER2 93 select CRYPTO_AKCIPHER2 123 select CRYPTO_ALGAPI 94 select CRYPTO_ALGAPI 124 95 125 config CRYPTO_KPP2 96 config CRYPTO_KPP2 126 tristate 97 tristate 127 select CRYPTO_ALGAPI2 98 select CRYPTO_ALGAPI2 128 99 129 config CRYPTO_KPP 100 config CRYPTO_KPP 130 tristate 101 tristate 131 select CRYPTO_ALGAPI 102 select CRYPTO_ALGAPI 132 select CRYPTO_KPP2 103 select CRYPTO_KPP2 133 104 134 config CRYPTO_ACOMP2 105 config CRYPTO_ACOMP2 135 tristate 106 tristate 136 select CRYPTO_ALGAPI2 107 select CRYPTO_ALGAPI2 137 select SGL_ALLOC 108 select SGL_ALLOC 138 109 139 config CRYPTO_ACOMP 110 config CRYPTO_ACOMP 140 tristate 111 tristate 141 select CRYPTO_ALGAPI 112 select CRYPTO_ALGAPI 142 select CRYPTO_ACOMP2 113 select CRYPTO_ACOMP2 143 114 144 config CRYPTO_MANAGER 115 config CRYPTO_MANAGER 145 tristate "Cryptographic algorithm mana 116 tristate "Cryptographic algorithm manager" 146 select CRYPTO_MANAGER2 117 select CRYPTO_MANAGER2 147 help 118 help 148 Create default cryptographic templat 119 Create default cryptographic template instantiations such as 149 cbc(aes). 120 cbc(aes). 150 121 151 config CRYPTO_MANAGER2 122 config CRYPTO_MANAGER2 152 def_tristate CRYPTO_MANAGER || (CRYPTO 123 def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y) 153 select CRYPTO_ACOMP2 << 154 select CRYPTO_AEAD2 124 select CRYPTO_AEAD2 155 select CRYPTO_AKCIPHER2 << 156 select CRYPTO_SIG2 << 157 select CRYPTO_HASH2 125 select CRYPTO_HASH2 158 select CRYPTO_KPP2 << 159 select CRYPTO_RNG2 << 160 select CRYPTO_SKCIPHER2 126 select CRYPTO_SKCIPHER2 >> 127 select CRYPTO_AKCIPHER2 >> 128 select CRYPTO_KPP2 >> 129 select CRYPTO_ACOMP2 161 130 162 config CRYPTO_USER 131 config CRYPTO_USER 163 tristate "Userspace cryptographic algo 132 tristate "Userspace cryptographic algorithm configuration" 164 depends on NET 133 depends on NET 165 select CRYPTO_MANAGER 134 select CRYPTO_MANAGER 166 help 135 help 167 Userspace configuration for cryptogr 136 Userspace configuration for cryptographic instantiations such as 168 cbc(aes). 137 cbc(aes). 169 138 170 config CRYPTO_MANAGER_DISABLE_TESTS 139 config CRYPTO_MANAGER_DISABLE_TESTS 171 bool "Disable run-time self tests" 140 bool "Disable run-time self tests" 172 default y 141 default y 173 help 142 help 174 Disable run-time self tests that nor 143 Disable run-time self tests that normally take place at 175 algorithm registration. 144 algorithm registration. 176 145 177 config CRYPTO_MANAGER_EXTRA_TESTS 146 config CRYPTO_MANAGER_EXTRA_TESTS 178 bool "Enable extra run-time crypto sel 147 bool "Enable extra run-time crypto self tests" 179 depends on DEBUG_KERNEL && !CRYPTO_MAN 148 depends on DEBUG_KERNEL && !CRYPTO_MANAGER_DISABLE_TESTS && CRYPTO_MANAGER 180 help 149 help 181 Enable extra run-time self tests of 150 Enable extra run-time self tests of registered crypto algorithms, 182 including randomized fuzz tests. 151 including randomized fuzz tests. 183 152 184 This is intended for developer use o 153 This is intended for developer use only, as these tests take much 185 longer to run than the normal self t 154 longer to run than the normal self tests. 186 155 >> 156 config CRYPTO_GF128MUL >> 157 tristate >> 158 187 config CRYPTO_NULL 159 config CRYPTO_NULL 188 tristate "Null algorithms" 160 tristate "Null algorithms" 189 select CRYPTO_NULL2 161 select CRYPTO_NULL2 190 help 162 help 191 These are 'Null' algorithms, used by 163 These are 'Null' algorithms, used by IPsec, which do nothing. 192 164 193 config CRYPTO_NULL2 165 config CRYPTO_NULL2 194 tristate 166 tristate 195 select CRYPTO_ALGAPI2 167 select CRYPTO_ALGAPI2 196 select CRYPTO_SKCIPHER2 168 select CRYPTO_SKCIPHER2 197 select CRYPTO_HASH2 169 select CRYPTO_HASH2 198 170 199 config CRYPTO_PCRYPT 171 config CRYPTO_PCRYPT 200 tristate "Parallel crypto engine" 172 tristate "Parallel crypto engine" 201 depends on SMP 173 depends on SMP 202 select PADATA 174 select PADATA 203 select CRYPTO_MANAGER 175 select CRYPTO_MANAGER 204 select CRYPTO_AEAD 176 select CRYPTO_AEAD 205 help 177 help 206 This converts an arbitrary crypto al 178 This converts an arbitrary crypto algorithm into a parallel 207 algorithm that executes in kernel th 179 algorithm that executes in kernel threads. 208 180 209 config CRYPTO_CRYPTD 181 config CRYPTO_CRYPTD 210 tristate "Software async crypto daemon 182 tristate "Software async crypto daemon" 211 select CRYPTO_SKCIPHER 183 select CRYPTO_SKCIPHER 212 select CRYPTO_HASH 184 select CRYPTO_HASH 213 select CRYPTO_MANAGER 185 select CRYPTO_MANAGER 214 help 186 help 215 This is a generic software asynchron 187 This is a generic software asynchronous crypto daemon that 216 converts an arbitrary synchronous so 188 converts an arbitrary synchronous software crypto algorithm 217 into an asynchronous algorithm that 189 into an asynchronous algorithm that executes in a kernel thread. 218 190 219 config CRYPTO_AUTHENC 191 config CRYPTO_AUTHENC 220 tristate "Authenc support" 192 tristate "Authenc support" 221 select CRYPTO_AEAD 193 select CRYPTO_AEAD 222 select CRYPTO_SKCIPHER 194 select CRYPTO_SKCIPHER 223 select CRYPTO_MANAGER 195 select CRYPTO_MANAGER 224 select CRYPTO_HASH 196 select CRYPTO_HASH 225 select CRYPTO_NULL 197 select CRYPTO_NULL 226 help 198 help 227 Authenc: Combined mode wrapper for I 199 Authenc: Combined mode wrapper for IPsec. 228 !! 200 This is required for IPSec. 229 This is required for IPSec ESP (XFRM << 230 201 231 config CRYPTO_TEST 202 config CRYPTO_TEST 232 tristate "Testing module" 203 tristate "Testing module" 233 depends on m || EXPERT 204 depends on m || EXPERT 234 select CRYPTO_MANAGER 205 select CRYPTO_MANAGER 235 help 206 help 236 Quick & dirty crypto test module. 207 Quick & dirty crypto test module. 237 208 238 config CRYPTO_SIMD 209 config CRYPTO_SIMD 239 tristate 210 tristate 240 select CRYPTO_CRYPTD 211 select CRYPTO_CRYPTD 241 212 242 config CRYPTO_ENGINE !! 213 config CRYPTO_GLUE_HELPER_X86 243 tristate 214 tristate >> 215 depends on X86 >> 216 select CRYPTO_SKCIPHER 244 217 245 endmenu !! 218 config CRYPTO_ENGINE >> 219 tristate 246 220 247 menu "Public-key cryptography" !! 221 comment "Public-key cryptography" 248 222 249 config CRYPTO_RSA 223 config CRYPTO_RSA 250 tristate "RSA (Rivest-Shamir-Adleman)" !! 224 tristate "RSA algorithm" 251 select CRYPTO_AKCIPHER 225 select CRYPTO_AKCIPHER 252 select CRYPTO_MANAGER 226 select CRYPTO_MANAGER 253 select MPILIB 227 select MPILIB 254 select ASN1 228 select ASN1 255 help 229 help 256 RSA (Rivest-Shamir-Adleman) public k !! 230 Generic implementation of the RSA public key algorithm. 257 231 258 config CRYPTO_DH 232 config CRYPTO_DH 259 tristate "DH (Diffie-Hellman)" !! 233 tristate "Diffie-Hellman algorithm" 260 select CRYPTO_KPP 234 select CRYPTO_KPP 261 select MPILIB 235 select MPILIB 262 help 236 help 263 DH (Diffie-Hellman) key exchange alg !! 237 Generic implementation of the Diffie-Hellman algorithm. 264 << 265 config CRYPTO_DH_RFC7919_GROUPS << 266 bool "RFC 7919 FFDHE groups" << 267 depends on CRYPTO_DH << 268 select CRYPTO_RNG_DEFAULT << 269 help << 270 FFDHE (Finite-Field-based Diffie-Hel << 271 defined in RFC7919. << 272 << 273 Support these finite-field groups in << 274 - ffdhe2048, ffdhe3072, ffdhe4096, f << 275 << 276 If unsure, say N. << 277 238 278 config CRYPTO_ECC 239 config CRYPTO_ECC 279 tristate 240 tristate 280 select CRYPTO_RNG_DEFAULT << 281 241 282 config CRYPTO_ECDH 242 config CRYPTO_ECDH 283 tristate "ECDH (Elliptic Curve Diffie- !! 243 tristate "ECDH algorithm" 284 select CRYPTO_ECC 244 select CRYPTO_ECC 285 select CRYPTO_KPP 245 select CRYPTO_KPP >> 246 select CRYPTO_RNG_DEFAULT 286 help 247 help 287 ECDH (Elliptic Curve Diffie-Hellman) !! 248 Generic implementation of the ECDH algorithm 288 using curves P-192, P-256, and P-384 << 289 << 290 config CRYPTO_ECDSA << 291 tristate "ECDSA (Elliptic Curve Digita << 292 select CRYPTO_ECC << 293 select CRYPTO_AKCIPHER << 294 select ASN1 << 295 help << 296 ECDSA (Elliptic Curve Digital Signat << 297 ISO/IEC 14888-3) << 298 using curves P-192, P-256, and P-384 << 299 << 300 Only signature verification is imple << 301 249 302 config CRYPTO_ECRDSA 250 config CRYPTO_ECRDSA 303 tristate "EC-RDSA (Elliptic Curve Russ !! 251 tristate "EC-RDSA (GOST 34.10) algorithm" 304 select CRYPTO_ECC 252 select CRYPTO_ECC 305 select CRYPTO_AKCIPHER 253 select CRYPTO_AKCIPHER 306 select CRYPTO_STREEBOG 254 select CRYPTO_STREEBOG 307 select OID_REGISTRY 255 select OID_REGISTRY 308 select ASN1 256 select ASN1 309 help 257 help 310 Elliptic Curve Russian Digital Signa 258 Elliptic Curve Russian Digital Signature Algorithm (GOST R 34.10-2012, 311 RFC 7091, ISO/IEC 14888-3) !! 259 RFC 7091, ISO/IEC 14888-3:2018) is one of the Russian cryptographic >> 260 standard algorithms (called GOST algorithms). Only signature verification >> 261 is implemented. 312 262 313 One of the Russian cryptographic sta !! 263 config CRYPTO_SM2 314 algorithms). Only signature verifica !! 264 tristate "SM2 algorithm" >> 265 select CRYPTO_SM3 >> 266 select CRYPTO_AKCIPHER >> 267 select CRYPTO_MANAGER >> 268 select MPILIB >> 269 select ASN1 >> 270 help >> 271 Generic implementation of the SM2 public key algorithm. It was >> 272 published by State Encryption Management Bureau, China. >> 273 as specified by OSCCA GM/T 0003.1-2012 -- 0003.5-2012. >> 274 >> 275 References: >> 276 https://tools.ietf.org/html/draft-shen-sm2-ecdsa-02 >> 277 http://www.oscca.gov.cn/sca/xxgk/2010-12/17/content_1002386.shtml >> 278 http://www.gmbz.org.cn/main/bzlb.html 315 279 316 config CRYPTO_CURVE25519 280 config CRYPTO_CURVE25519 317 tristate "Curve25519" !! 281 tristate "Curve25519 algorithm" 318 select CRYPTO_KPP 282 select CRYPTO_KPP 319 select CRYPTO_LIB_CURVE25519_GENERIC 283 select CRYPTO_LIB_CURVE25519_GENERIC 320 help << 321 Curve25519 elliptic curve (RFC7748) << 322 << 323 endmenu << 324 << 325 menu "Block ciphers" << 326 << 327 config CRYPTO_AES << 328 tristate "AES (Advanced Encryption Sta << 329 select CRYPTO_ALGAPI << 330 select CRYPTO_LIB_AES << 331 help << 332 AES cipher algorithms (Rijndael)(FIP << 333 << 334 Rijndael appears to be consistently << 335 both hardware and software across a << 336 environments regardless of its use i << 337 modes. Its key setup time is excelle << 338 good. Rijndael's very low memory req << 339 suited for restricted-space environm << 340 demonstrates excellent performance. << 341 among the easiest to defend against << 342 << 343 The AES specifies three key sizes: 1 << 344 << 345 config CRYPTO_AES_TI << 346 tristate "AES (Advanced Encryption Sta << 347 select CRYPTO_ALGAPI << 348 select CRYPTO_LIB_AES << 349 help << 350 AES cipher algorithms (Rijndael)(FIP << 351 << 352 This is a generic implementation of << 353 data dependent latencies as much as << 354 performance too much. It is intended << 355 and GCM drivers, and other CTR or CM << 356 solely on encryption (although decry << 357 with a more dramatic performance hit << 358 << 359 Instead of using 16 lookup tables of << 360 8 for decryption), this implementati << 361 256 bytes each, and attempts to elim << 362 prefetching the entire table into th << 363 block. Interrupts are also disabled << 364 are evicted when the CPU is interrup << 365 << 366 config CRYPTO_ANUBIS << 367 tristate "Anubis" << 368 depends on CRYPTO_USER_API_ENABLE_OBSO << 369 select CRYPTO_ALGAPI << 370 help << 371 Anubis cipher algorithm << 372 << 373 Anubis is a variable key length ciph << 374 128 bits to 320 bits in length. It << 375 in the NESSIE competition. << 376 << 377 See https://web.archive.org/web/2016 << 378 for further information. << 379 << 380 config CRYPTO_ARIA << 381 tristate "ARIA" << 382 select CRYPTO_ALGAPI << 383 help << 384 ARIA cipher algorithm (RFC5794) << 385 284 386 ARIA is a standard encryption algori !! 285 config CRYPTO_CURVE25519_X86 387 The ARIA specifies three key sizes a !! 286 tristate "x86_64 accelerated Curve25519 scalar multiplication library" 388 128-bit: 12 rounds. !! 287 depends on X86 && 64BIT 389 192-bit: 14 rounds. !! 288 select CRYPTO_LIB_CURVE25519_GENERIC 390 256-bit: 16 rounds. !! 289 select CRYPTO_ARCH_HAVE_LIB_CURVE25519 391 290 392 See: !! 291 comment "Authenticated Encryption with Associated Data" 393 https://seed.kisa.or.kr/kisa/algorit << 394 292 395 config CRYPTO_BLOWFISH !! 293 config CRYPTO_CCM 396 tristate "Blowfish" !! 294 tristate "CCM support" 397 select CRYPTO_ALGAPI !! 295 select CRYPTO_CTR 398 select CRYPTO_BLOWFISH_COMMON !! 296 select CRYPTO_HASH >> 297 select CRYPTO_AEAD >> 298 select CRYPTO_MANAGER 399 help 299 help 400 Blowfish cipher algorithm, by Bruce !! 300 Support for Counter with CBC MAC. Required for IPsec. 401 301 402 This is a variable key length cipher !! 302 config CRYPTO_GCM 403 bits to 448 bits in length. It's fa !! 303 tristate "GCM/GMAC support" 404 designed for use on "large microproc !! 304 select CRYPTO_CTR 405 !! 305 select CRYPTO_AEAD 406 See https://www.schneier.com/blowfis !! 306 select CRYPTO_GHASH 407 !! 307 select CRYPTO_NULL 408 config CRYPTO_BLOWFISH_COMMON !! 308 select CRYPTO_MANAGER 409 tristate << 410 help 309 help 411 Common parts of the Blowfish cipher !! 310 Support for Galois/Counter Mode (GCM) and Galois Message 412 generic c and the assembler implemen !! 311 Authentication Code (GMAC). Required for IPSec. 413 312 414 config CRYPTO_CAMELLIA !! 313 config CRYPTO_CHACHA20POLY1305 415 tristate "Camellia" !! 314 tristate "ChaCha20-Poly1305 AEAD support" 416 select CRYPTO_ALGAPI !! 315 select CRYPTO_CHACHA20 >> 316 select CRYPTO_POLY1305 >> 317 select CRYPTO_AEAD >> 318 select CRYPTO_MANAGER 417 help 319 help 418 Camellia cipher algorithms (ISO/IEC !! 320 ChaCha20-Poly1305 AEAD support, RFC7539. 419 << 420 Camellia is a symmetric key block ci << 421 at NTT and Mitsubishi Electric Corpo << 422 << 423 The Camellia specifies three key siz << 424 321 425 See https://info.isl.ntt.co.jp/crypt !! 322 Support for the AEAD wrapper using the ChaCha20 stream cipher combined >> 323 with the Poly1305 authenticator. It is defined in RFC7539 for use in >> 324 IETF protocols. 426 325 427 config CRYPTO_CAST_COMMON !! 326 config CRYPTO_AEGIS128 428 tristate !! 327 tristate "AEGIS-128 AEAD algorithm" 429 help !! 328 select CRYPTO_AEAD 430 Common parts of the CAST cipher algo !! 329 select CRYPTO_AES # for AES S-box tables 431 generic c and the assembler implemen << 432 << 433 config CRYPTO_CAST5 << 434 tristate "CAST5 (CAST-128)" << 435 select CRYPTO_ALGAPI << 436 select CRYPTO_CAST_COMMON << 437 help 330 help 438 CAST5 (CAST-128) cipher algorithm (R !! 331 Support for the AEGIS-128 dedicated AEAD algorithm. 439 332 440 config CRYPTO_CAST6 !! 333 config CRYPTO_AEGIS128_SIMD 441 tristate "CAST6 (CAST-256)" !! 334 bool "Support SIMD acceleration for AEGIS-128" 442 select CRYPTO_ALGAPI !! 335 depends on CRYPTO_AEGIS128 && ((ARM || ARM64) && KERNEL_MODE_NEON) 443 select CRYPTO_CAST_COMMON !! 336 default y 444 help << 445 CAST6 (CAST-256) encryption algorith << 446 337 447 config CRYPTO_DES !! 338 config CRYPTO_AEGIS128_AESNI_SSE2 448 tristate "DES and Triple DES EDE" !! 339 tristate "AEGIS-128 AEAD algorithm (x86_64 AESNI+SSE2 implementation)" 449 select CRYPTO_ALGAPI !! 340 depends on X86 && 64BIT 450 select CRYPTO_LIB_DES !! 341 select CRYPTO_AEAD >> 342 select CRYPTO_SIMD 451 help 343 help 452 DES (Data Encryption Standard)(FIPS !! 344 AESNI+SSE2 implementation of the AEGIS-128 dedicated AEAD algorithm. 453 Triple DES EDE (Encrypt/Decrypt/Encr << 454 cipher algorithms << 455 345 456 config CRYPTO_FCRYPT !! 346 config CRYPTO_SEQIV 457 tristate "FCrypt" !! 347 tristate "Sequence Number IV Generator" 458 select CRYPTO_ALGAPI !! 348 select CRYPTO_AEAD 459 select CRYPTO_SKCIPHER 349 select CRYPTO_SKCIPHER 460 help !! 350 select CRYPTO_NULL 461 FCrypt algorithm used by RxRPC !! 351 select CRYPTO_RNG_DEFAULT 462 << 463 See https://ota.polyonymo.us/fcrypt- << 464 << 465 config CRYPTO_KHAZAD << 466 tristate "Khazad" << 467 depends on CRYPTO_USER_API_ENABLE_OBSO << 468 select CRYPTO_ALGAPI << 469 help << 470 Khazad cipher algorithm << 471 << 472 Khazad was a finalist in the initial << 473 an algorithm optimized for 64-bit pr << 474 on 32-bit processors. Khazad uses a << 475 << 476 See https://web.archive.org/web/2017 << 477 for further information. << 478 << 479 config CRYPTO_SEED << 480 tristate "SEED" << 481 depends on CRYPTO_USER_API_ENABLE_OBSO << 482 select CRYPTO_ALGAPI << 483 help << 484 SEED cipher algorithm (RFC4269, ISO/ << 485 << 486 SEED is a 128-bit symmetric key bloc << 487 developed by KISA (Korea Information << 488 national standard encryption algorit << 489 It is a 16 round block cipher with t << 490 << 491 See https://seed.kisa.or.kr/kisa/alg << 492 for further information. << 493 << 494 config CRYPTO_SERPENT << 495 tristate "Serpent" << 496 select CRYPTO_ALGAPI << 497 help << 498 Serpent cipher algorithm, by Anderso << 499 << 500 Keys are allowed to be from 0 to 256 << 501 of 8 bits. << 502 << 503 See https://www.cl.cam.ac.uk/~rja14/ << 504 << 505 config CRYPTO_SM4 << 506 tristate << 507 << 508 config CRYPTO_SM4_GENERIC << 509 tristate "SM4 (ShangMi 4)" << 510 select CRYPTO_ALGAPI << 511 select CRYPTO_SM4 << 512 help << 513 SM4 cipher algorithms (OSCCA GB/T 32 << 514 ISO/IEC 18033-3:2010/Amd 1:2021) << 515 << 516 SM4 (GBT.32907-2016) is a cryptograp << 517 Organization of State Commercial Adm << 518 as an authorized cryptographic algor << 519 << 520 SMS4 was originally created for use << 521 networks, and is mandated in the Chi << 522 Wireless LAN WAPI (Wired Authenticat << 523 (GB.15629.11-2003). << 524 << 525 The latest SM4 standard (GBT.32907-2 << 526 standardized through TC 260 of the S << 527 of the People's Republic of China (S << 528 << 529 The input, output, and key of SMS4 a << 530 << 531 See https://eprint.iacr.org/2008/329 << 532 << 533 If unsure, say N. << 534 << 535 config CRYPTO_TEA << 536 tristate "TEA, XTEA and XETA" << 537 depends on CRYPTO_USER_API_ENABLE_OBSO << 538 select CRYPTO_ALGAPI << 539 help << 540 TEA (Tiny Encryption Algorithm) ciph << 541 << 542 Tiny Encryption Algorithm is a simpl << 543 many rounds for security. It is ver << 544 little memory. << 545 << 546 Xtendend Tiny Encryption Algorithm i << 547 the TEA algorithm to address a poten << 548 in the TEA algorithm. << 549 << 550 Xtendend Encryption Tiny Algorithm i << 551 of the XTEA algorithm for compatibil << 552 << 553 config CRYPTO_TWOFISH << 554 tristate "Twofish" << 555 select CRYPTO_ALGAPI << 556 select CRYPTO_TWOFISH_COMMON << 557 help << 558 Twofish cipher algorithm << 559 << 560 Twofish was submitted as an AES (Adv << 561 candidate cipher by researchers at C << 562 16 round block cipher supporting key << 563 bits. << 564 << 565 See https://www.schneier.com/twofish << 566 << 567 config CRYPTO_TWOFISH_COMMON << 568 tristate << 569 help << 570 Common parts of the Twofish cipher a << 571 generic c and the assembler implemen << 572 << 573 endmenu << 574 << 575 menu "Length-preserving ciphers and modes" << 576 << 577 config CRYPTO_ADIANTUM << 578 tristate "Adiantum" << 579 select CRYPTO_CHACHA20 << 580 select CRYPTO_LIB_POLY1305_GENERIC << 581 select CRYPTO_NHPOLY1305 << 582 select CRYPTO_MANAGER 352 select CRYPTO_MANAGER 583 help 353 help 584 Adiantum tweakable, length-preservin !! 354 This IV generator generates an IV based on a sequence number by 585 !! 355 xoring it with a salt. This algorithm is mainly useful for CTR 586 Designed for fast and secure disk en << 587 CPUs without dedicated crypto instru << 588 each sector using the XChaCha12 stre << 589 an ε-almost-∆-universal hash func << 590 the AES-256 block cipher on a single << 591 without AES instructions, Adiantum i << 592 AES-XTS. << 593 << 594 Adiantum's security is provably redu << 595 underlying stream and block ciphers, << 596 bound. Unlike XTS, Adiantum is a tr << 597 mode, so it actually provides an eve << 598 security than XTS, subject to the se << 599 << 600 If unsure, say N. << 601 356 602 config CRYPTO_ARC4 !! 357 config CRYPTO_ECHAINIV 603 tristate "ARC4 (Alleged Rivest Cipher !! 358 tristate "Encrypted Chain IV Generator" 604 depends on CRYPTO_USER_API_ENABLE_OBSO !! 359 select CRYPTO_AEAD 605 select CRYPTO_SKCIPHER !! 360 select CRYPTO_NULL 606 select CRYPTO_LIB_ARC4 !! 361 select CRYPTO_RNG_DEFAULT >> 362 select CRYPTO_MANAGER 607 help 363 help 608 ARC4 cipher algorithm !! 364 This IV generator generates an IV based on the encryption of >> 365 a sequence number xored with a salt. This is the default >> 366 algorithm for CBC. 609 367 610 ARC4 is a stream cipher using keys r !! 368 comment "Block modes" 611 bits in length. This algorithm is r << 612 WEP, but it should not be for other << 613 weakness of the algorithm. << 614 369 615 config CRYPTO_CHACHA20 !! 370 config CRYPTO_CBC 616 tristate "ChaCha" !! 371 tristate "CBC support" 617 select CRYPTO_LIB_CHACHA_GENERIC << 618 select CRYPTO_SKCIPHER 372 select CRYPTO_SKCIPHER >> 373 select CRYPTO_MANAGER 619 help 374 help 620 The ChaCha20, XChaCha20, and XChaCha !! 375 CBC: Cipher Block Chaining mode 621 !! 376 This block cipher algorithm is required for IPSec. 622 ChaCha20 is a 256-bit high-speed str << 623 Bernstein and further specified in R << 624 This is the portable C implementatio << 625 https://cr.yp.to/chacha/chacha-20080 << 626 377 627 XChaCha20 is the application of the !! 378 config CRYPTO_CFB 628 rather than to Salsa20. XChaCha20 e !! 379 tristate "CFB support" 629 from 64 bits (or 96 bits using the R << 630 while provably retaining ChaCha20's << 631 https://cr.yp.to/snuffle/xsalsa-2008 << 632 << 633 XChaCha12 is XChaCha20 reduced to 12 << 634 reduced security margin but increase << 635 in some performance-sensitive scenar << 636 << 637 config CRYPTO_CBC << 638 tristate "CBC (Cipher Block Chaining)" << 639 select CRYPTO_SKCIPHER 380 select CRYPTO_SKCIPHER 640 select CRYPTO_MANAGER 381 select CRYPTO_MANAGER 641 help 382 help 642 CBC (Cipher Block Chaining) mode (NI !! 383 CFB: Cipher FeedBack mode 643 !! 384 This block cipher algorithm is required for TPM2 Cryptography. 644 This block cipher mode is required f << 645 385 646 config CRYPTO_CTR 386 config CRYPTO_CTR 647 tristate "CTR (Counter)" !! 387 tristate "CTR support" 648 select CRYPTO_SKCIPHER 388 select CRYPTO_SKCIPHER 649 select CRYPTO_MANAGER 389 select CRYPTO_MANAGER 650 help 390 help 651 CTR (Counter) mode (NIST SP800-38A) !! 391 CTR: Counter mode >> 392 This block cipher algorithm is required for IPSec. 652 393 653 config CRYPTO_CTS 394 config CRYPTO_CTS 654 tristate "CTS (Cipher Text Stealing)" !! 395 tristate "CTS support" 655 select CRYPTO_SKCIPHER 396 select CRYPTO_SKCIPHER 656 select CRYPTO_MANAGER 397 select CRYPTO_MANAGER 657 help 398 help 658 CBC-CS3 variant of CTS (Cipher Text !! 399 CTS: Cipher Text Stealing 659 Addendum to SP800-38A (October 2010) !! 400 This is the Cipher Text Stealing mode as described by 660 !! 401 Section 8 of rfc2040 and referenced by rfc3962 >> 402 (rfc3962 includes errata information in its Appendix A) or >> 403 CBC-CS3 as defined by NIST in Sp800-38A addendum from Oct 2010. 661 This mode is required for Kerberos g 404 This mode is required for Kerberos gss mechanism support 662 for AES encryption. 405 for AES encryption. 663 406 664 config CRYPTO_ECB !! 407 See: https://csrc.nist.gov/publications/detail/sp/800-38a/addendum/final 665 tristate "ECB (Electronic Codebook)" << 666 select CRYPTO_SKCIPHER2 << 667 select CRYPTO_MANAGER << 668 help << 669 ECB (Electronic Codebook) mode (NIST << 670 << 671 config CRYPTO_HCTR2 << 672 tristate "HCTR2" << 673 select CRYPTO_XCTR << 674 select CRYPTO_POLYVAL << 675 select CRYPTO_MANAGER << 676 help << 677 HCTR2 length-preserving encryption m << 678 << 679 A mode for storage encryption that i << 680 instructions to accelerate AES and c << 681 x86 processors with AES-NI and CLMUL << 682 ARMv8 crypto extensions. << 683 << 684 See https://eprint.iacr.org/2021/144 << 685 408 686 config CRYPTO_KEYWRAP !! 409 config CRYPTO_ECB 687 tristate "KW (AES Key Wrap)" !! 410 tristate "ECB support" 688 select CRYPTO_SKCIPHER 411 select CRYPTO_SKCIPHER 689 select CRYPTO_MANAGER 412 select CRYPTO_MANAGER 690 help 413 help 691 KW (AES Key Wrap) authenticated encr !! 414 ECB: Electronic CodeBook mode 692 and RFC3394) without padding. !! 415 This is the simplest block cipher algorithm. It simply encrypts >> 416 the input block by block. 693 417 694 config CRYPTO_LRW 418 config CRYPTO_LRW 695 tristate "LRW (Liskov Rivest Wagner)" !! 419 tristate "LRW support" 696 select CRYPTO_LIB_GF128MUL << 697 select CRYPTO_SKCIPHER 420 select CRYPTO_SKCIPHER 698 select CRYPTO_MANAGER 421 select CRYPTO_MANAGER 699 select CRYPTO_ECB !! 422 select CRYPTO_GF128MUL 700 help 423 help 701 LRW (Liskov Rivest Wagner) mode !! 424 LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable 702 << 703 A tweakable, non malleable, non mova << 704 narrow block cipher mode for dm-cryp 425 narrow block cipher mode for dm-crypt. Use it with cipher 705 specification string aes-lrw-benbi, 426 specification string aes-lrw-benbi, the key must be 256, 320 or 384. 706 The first 128, 192 or 256 bits in th 427 The first 128, 192 or 256 bits in the key are used for AES and the 707 rest is used to tie each cipher bloc 428 rest is used to tie each cipher block to its logical position. 708 429 709 See https://people.csail.mit.edu/riv !! 430 config CRYPTO_OFB 710 !! 431 tristate "OFB support" 711 config CRYPTO_PCBC << 712 tristate "PCBC (Propagating Cipher Blo << 713 select CRYPTO_SKCIPHER 432 select CRYPTO_SKCIPHER 714 select CRYPTO_MANAGER 433 select CRYPTO_MANAGER 715 help 434 help 716 PCBC (Propagating Cipher Block Chain !! 435 OFB: the Output Feedback mode makes a block cipher into a synchronous >> 436 stream cipher. It generates keystream blocks, which are then XORed >> 437 with the plaintext blocks to get the ciphertext. Flipping a bit in the >> 438 ciphertext produces a flipped bit in the plaintext at the same >> 439 location. This property allows many error correcting codes to function >> 440 normally even when applied before encryption. 717 441 718 This block cipher mode is required f !! 442 config CRYPTO_PCBC 719 !! 443 tristate "PCBC support" 720 config CRYPTO_XCTR << 721 tristate << 722 select CRYPTO_SKCIPHER 444 select CRYPTO_SKCIPHER 723 select CRYPTO_MANAGER 445 select CRYPTO_MANAGER 724 help 446 help 725 XCTR (XOR Counter) mode for HCTR2 !! 447 PCBC: Propagating Cipher Block Chaining mode 726 !! 448 This block cipher algorithm is required for RxRPC. 727 This blockcipher mode is a variant o << 728 addition rather than big-endian arit << 729 << 730 XCTR mode is used to implement HCTR2 << 731 449 732 config CRYPTO_XTS 450 config CRYPTO_XTS 733 tristate "XTS (XOR Encrypt XOR with ci !! 451 tristate "XTS support" 734 select CRYPTO_SKCIPHER 452 select CRYPTO_SKCIPHER 735 select CRYPTO_MANAGER 453 select CRYPTO_MANAGER 736 select CRYPTO_ECB 454 select CRYPTO_ECB 737 help 455 help 738 XTS (XOR Encrypt XOR with ciphertext !! 456 XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain, 739 and IEEE 1619) !! 457 key size 256, 384 or 512 bits. This implementation currently >> 458 can't handle a sectorsize which is not a multiple of 16 bytes. 740 459 741 Use with aes-xts-plain, key size 256 !! 460 config CRYPTO_KEYWRAP 742 implementation currently can't handl !! 461 tristate "Key wrapping support" 743 multiple of 16 bytes. !! 462 select CRYPTO_SKCIPHER >> 463 select CRYPTO_MANAGER >> 464 help >> 465 Support for key wrapping (NIST SP800-38F / RFC3394) without >> 466 padding. 744 467 745 config CRYPTO_NHPOLY1305 468 config CRYPTO_NHPOLY1305 746 tristate 469 tristate 747 select CRYPTO_HASH 470 select CRYPTO_HASH 748 select CRYPTO_LIB_POLY1305_GENERIC 471 select CRYPTO_LIB_POLY1305_GENERIC 749 472 750 endmenu !! 473 config CRYPTO_NHPOLY1305_SSE2 751 !! 474 tristate "NHPoly1305 hash function (x86_64 SSE2 implementation)" 752 menu "AEAD (authenticated encryption with asso !! 475 depends on X86 && 64BIT 753 !! 476 select CRYPTO_NHPOLY1305 754 config CRYPTO_AEGIS128 << 755 tristate "AEGIS-128" << 756 select CRYPTO_AEAD << 757 select CRYPTO_AES # for AES S-box tab << 758 help 477 help 759 AEGIS-128 AEAD algorithm !! 478 SSE2 optimized implementation of the hash function used by the >> 479 Adiantum encryption mode. 760 480 761 config CRYPTO_AEGIS128_SIMD !! 481 config CRYPTO_NHPOLY1305_AVX2 762 bool "AEGIS-128 (arm NEON, arm64 NEON) !! 482 tristate "NHPoly1305 hash function (x86_64 AVX2 implementation)" 763 depends on CRYPTO_AEGIS128 && ((ARM || !! 483 depends on X86 && 64BIT 764 default y !! 484 select CRYPTO_NHPOLY1305 765 help 485 help 766 AEGIS-128 AEAD algorithm !! 486 AVX2 optimized implementation of the hash function used by the >> 487 Adiantum encryption mode. 767 488 768 Architecture: arm or arm64 using: !! 489 config CRYPTO_ADIANTUM 769 - NEON (Advanced SIMD) extension !! 490 tristate "Adiantum support" 770 << 771 config CRYPTO_CHACHA20POLY1305 << 772 tristate "ChaCha20-Poly1305" << 773 select CRYPTO_CHACHA20 491 select CRYPTO_CHACHA20 774 select CRYPTO_POLY1305 !! 492 select CRYPTO_LIB_POLY1305_GENERIC 775 select CRYPTO_AEAD !! 493 select CRYPTO_NHPOLY1305 776 select CRYPTO_MANAGER << 777 help << 778 ChaCha20 stream cipher and Poly1305 << 779 mode (RFC8439) << 780 << 781 config CRYPTO_CCM << 782 tristate "CCM (Counter with Cipher Blo << 783 select CRYPTO_CTR << 784 select CRYPTO_HASH << 785 select CRYPTO_AEAD << 786 select CRYPTO_MANAGER << 787 help << 788 CCM (Counter with Cipher Block Chain << 789 authenticated encryption mode (NIST << 790 << 791 config CRYPTO_GCM << 792 tristate "GCM (Galois/Counter Mode) an << 793 select CRYPTO_CTR << 794 select CRYPTO_AEAD << 795 select CRYPTO_GHASH << 796 select CRYPTO_NULL << 797 select CRYPTO_MANAGER << 798 help << 799 GCM (Galois/Counter Mode) authentica << 800 (GCM Message Authentication Code) (N << 801 << 802 This is required for IPSec ESP (XFRM << 803 << 804 config CRYPTO_GENIV << 805 tristate << 806 select CRYPTO_AEAD << 807 select CRYPTO_NULL << 808 select CRYPTO_MANAGER 494 select CRYPTO_MANAGER 809 select CRYPTO_RNG_DEFAULT << 810 << 811 config CRYPTO_SEQIV << 812 tristate "Sequence Number IV Generator << 813 select CRYPTO_GENIV << 814 help 495 help 815 Sequence Number IV generator !! 496 Adiantum is a tweakable, length-preserving encryption mode 816 !! 497 designed for fast and secure disk encryption, especially on 817 This IV generator generates an IV ba !! 498 CPUs without dedicated crypto instructions. It encrypts 818 xoring it with a salt. This algorit !! 499 each sector using the XChaCha12 stream cipher, two passes of 819 !! 500 an ε-almost-∆-universal hash function, and an invocation of 820 This is required for IPsec ESP (XFRM !! 501 the AES-256 block cipher on a single 16-byte block. On CPUs >> 502 without AES instructions, Adiantum is much faster than >> 503 AES-XTS. 821 504 822 config CRYPTO_ECHAINIV !! 505 Adiantum's security is provably reducible to that of its 823 tristate "Encrypted Chain IV Generator !! 506 underlying stream and block ciphers, subject to a security 824 select CRYPTO_GENIV !! 507 bound. Unlike XTS, Adiantum is a true wide-block encryption 825 help !! 508 mode, so it actually provides an even stronger notion of 826 Encrypted Chain IV generator !! 509 security than XTS, subject to the security bound. 827 510 828 This IV generator generates an IV ba !! 511 If unsure, say N. 829 a sequence number xored with a salt. << 830 algorithm for CBC. << 831 512 832 config CRYPTO_ESSIV 513 config CRYPTO_ESSIV 833 tristate "Encrypted Salt-Sector IV Gen !! 514 tristate "ESSIV support for block encryption" 834 select CRYPTO_AUTHENC 515 select CRYPTO_AUTHENC 835 help 516 help 836 Encrypted Salt-Sector IV generator !! 517 Encrypted salt-sector initialization vector (ESSIV) is an IV 837 !! 518 generation method that is used in some cases by fscrypt and/or 838 This IV generator is used in some ca << 839 dm-crypt. It uses the hash of the bl 519 dm-crypt. It uses the hash of the block encryption key as the 840 symmetric key for a block encryption 520 symmetric key for a block encryption pass applied to the input 841 IV, making low entropy IV sources mo 521 IV, making low entropy IV sources more suitable for block 842 encryption. 522 encryption. 843 523 844 This driver implements a crypto API 524 This driver implements a crypto API template that can be 845 instantiated either as an skcipher o 525 instantiated either as an skcipher or as an AEAD (depending on the 846 type of the first template argument) 526 type of the first template argument), and which defers encryption 847 and decryption requests to the encap 527 and decryption requests to the encapsulated cipher after applying 848 ESSIV to the input IV. Note that in 528 ESSIV to the input IV. Note that in the AEAD case, it is assumed 849 that the keys are presented in the s 529 that the keys are presented in the same format used by the authenc 850 template, and that the IV appears at 530 template, and that the IV appears at the end of the authenticated 851 associated data (AAD) region (which 531 associated data (AAD) region (which is how dm-crypt uses it.) 852 532 853 Note that the use of ESSIV is not re 533 Note that the use of ESSIV is not recommended for new deployments, 854 and so this only needs to be enabled 534 and so this only needs to be enabled when interoperability with 855 existing encrypted volumes of filesy 535 existing encrypted volumes of filesystems is required, or when 856 building for a particular system tha 536 building for a particular system that requires it (e.g., when 857 the SoC in question has accelerated 537 the SoC in question has accelerated CBC but not XTS, making CBC 858 combined with ESSIV the only feasibl 538 combined with ESSIV the only feasible mode for h/w accelerated 859 block encryption) 539 block encryption) 860 540 861 endmenu !! 541 comment "Hash modes" >> 542 >> 543 config CRYPTO_CMAC >> 544 tristate "CMAC support" >> 545 select CRYPTO_HASH >> 546 select CRYPTO_MANAGER >> 547 help >> 548 Cipher-based Message Authentication Code (CMAC) specified by >> 549 The National Institute of Standards and Technology (NIST). >> 550 >> 551 https://tools.ietf.org/html/rfc4493 >> 552 http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf 862 553 863 menu "Hashes, digests, and MACs" !! 554 config CRYPTO_HMAC >> 555 tristate "HMAC support" >> 556 select CRYPTO_HASH >> 557 select CRYPTO_MANAGER >> 558 help >> 559 HMAC: Keyed-Hashing for Message Authentication (RFC2104). >> 560 This is required for IPSec. 864 561 865 config CRYPTO_BLAKE2B !! 562 config CRYPTO_XCBC 866 tristate "BLAKE2b" !! 563 tristate "XCBC support" >> 564 select CRYPTO_HASH >> 565 select CRYPTO_MANAGER >> 566 help >> 567 XCBC: Keyed-Hashing with encryption algorithm >> 568 https://www.ietf.org/rfc/rfc3566.txt >> 569 http://csrc.nist.gov/encryption/modes/proposedmodes/ >> 570 xcbc-mac/xcbc-mac-spec.pdf >> 571 >> 572 config CRYPTO_VMAC >> 573 tristate "VMAC support" >> 574 select CRYPTO_HASH >> 575 select CRYPTO_MANAGER >> 576 help >> 577 VMAC is a message authentication algorithm designed for >> 578 very high speed on 64-bit architectures. >> 579 >> 580 See also: >> 581 <https://fastcrypto.org/vmac> >> 582 >> 583 comment "Digest" >> 584 >> 585 config CRYPTO_CRC32C >> 586 tristate "CRC32c CRC algorithm" >> 587 select CRYPTO_HASH >> 588 select CRC32 >> 589 help >> 590 Castagnoli, et al Cyclic Redundancy-Check Algorithm. Used >> 591 by iSCSI for header and data digests and by others. >> 592 See Castagnoli93. Module will be crc32c. >> 593 >> 594 config CRYPTO_CRC32C_INTEL >> 595 tristate "CRC32c INTEL hardware acceleration" >> 596 depends on X86 >> 597 select CRYPTO_HASH >> 598 help >> 599 In Intel processor with SSE4.2 supported, the processor will >> 600 support CRC32C implementation using hardware accelerated CRC32 >> 601 instruction. This option will create 'crc32c-intel' module, >> 602 which will enable any routine to use the CRC32 instruction to >> 603 gain performance compared with software implementation. >> 604 Module will be crc32c-intel. >> 605 >> 606 config CRYPTO_CRC32C_VPMSUM >> 607 tristate "CRC32c CRC algorithm (powerpc64)" >> 608 depends on PPC64 && ALTIVEC >> 609 select CRYPTO_HASH >> 610 select CRC32 >> 611 help >> 612 CRC32c algorithm implemented using vector polynomial multiply-sum >> 613 (vpmsum) instructions, introduced in POWER8. Enable on POWER8 >> 614 and newer processors for improved performance. >> 615 >> 616 >> 617 config CRYPTO_CRC32C_SPARC64 >> 618 tristate "CRC32c CRC algorithm (SPARC64)" >> 619 depends on SPARC64 >> 620 select CRYPTO_HASH >> 621 select CRC32 >> 622 help >> 623 CRC32c CRC algorithm implemented using sparc64 crypto instructions, >> 624 when available. >> 625 >> 626 config CRYPTO_CRC32 >> 627 tristate "CRC32 CRC algorithm" >> 628 select CRYPTO_HASH >> 629 select CRC32 >> 630 help >> 631 CRC-32-IEEE 802.3 cyclic redundancy-check algorithm. >> 632 Shash crypto api wrappers to crc32_le function. >> 633 >> 634 config CRYPTO_CRC32_PCLMUL >> 635 tristate "CRC32 PCLMULQDQ hardware acceleration" >> 636 depends on X86 >> 637 select CRYPTO_HASH >> 638 select CRC32 >> 639 help >> 640 From Intel Westmere and AMD Bulldozer processor with SSE4.2 >> 641 and PCLMULQDQ supported, the processor will support >> 642 CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ >> 643 instruction. This option will create 'crc32-pclmul' module, >> 644 which will enable any routine to use the CRC-32-IEEE 802.3 checksum >> 645 and gain better performance as compared with the table implementation. >> 646 >> 647 config CRYPTO_CRC32_MIPS >> 648 tristate "CRC32c and CRC32 CRC algorithm (MIPS)" >> 649 depends on MIPS_CRC_SUPPORT 867 select CRYPTO_HASH 650 select CRYPTO_HASH 868 help 651 help 869 BLAKE2b cryptographic hash function !! 652 CRC32c and CRC32 CRC algorithms implemented using mips crypto >> 653 instructions, when available. 870 654 871 BLAKE2b is optimized for 64-bit plat !! 655 872 of any size between 1 and 64 bytes. !! 656 config CRYPTO_XXHASH >> 657 tristate "xxHash hash algorithm" >> 658 select CRYPTO_HASH >> 659 select XXHASH >> 660 help >> 661 xxHash non-cryptographic hash algorithm. Extremely fast, working at >> 662 speeds close to RAM limits. >> 663 >> 664 config CRYPTO_BLAKE2B >> 665 tristate "BLAKE2b digest algorithm" >> 666 select CRYPTO_HASH >> 667 help >> 668 Implementation of cryptographic hash function BLAKE2b (or just BLAKE2), >> 669 optimized for 64bit platforms and can produce digests of any size >> 670 between 1 to 64. The keyed hash is also implemented. 873 671 874 This module provides the following a 672 This module provides the following algorithms: >> 673 875 - blake2b-160 674 - blake2b-160 876 - blake2b-256 675 - blake2b-256 877 - blake2b-384 676 - blake2b-384 878 - blake2b-512 677 - blake2b-512 879 678 880 Used by the btrfs filesystem. !! 679 See https://blake2.net for further information. >> 680 >> 681 config CRYPTO_BLAKE2S >> 682 tristate "BLAKE2s digest algorithm" >> 683 select CRYPTO_LIB_BLAKE2S_GENERIC >> 684 select CRYPTO_HASH >> 685 help >> 686 Implementation of cryptographic hash function BLAKE2s >> 687 optimized for 8-32bit platforms and can produce digests of any size >> 688 between 1 to 32. The keyed hash is also implemented. >> 689 >> 690 This module provides the following algorithms: >> 691 >> 692 - blake2s-128 >> 693 - blake2s-160 >> 694 - blake2s-224 >> 695 - blake2s-256 881 696 882 See https://blake2.net for further i 697 See https://blake2.net for further information. 883 698 884 config CRYPTO_CMAC !! 699 config CRYPTO_BLAKE2S_X86 885 tristate "CMAC (Cipher-based MAC)" !! 700 tristate "BLAKE2s digest algorithm (x86 accelerated version)" >> 701 depends on X86 && 64BIT >> 702 select CRYPTO_LIB_BLAKE2S_GENERIC >> 703 select CRYPTO_ARCH_HAVE_LIB_BLAKE2S >> 704 >> 705 config CRYPTO_CRCT10DIF >> 706 tristate "CRCT10DIF algorithm" >> 707 select CRYPTO_HASH >> 708 help >> 709 CRC T10 Data Integrity Field computation is being cast as >> 710 a crypto transform. This allows for faster crc t10 diff >> 711 transforms to be used if they are available. >> 712 >> 713 config CRYPTO_CRCT10DIF_PCLMUL >> 714 tristate "CRCT10DIF PCLMULQDQ hardware acceleration" >> 715 depends on X86 && 64BIT && CRC_T10DIF >> 716 select CRYPTO_HASH >> 717 help >> 718 For x86_64 processors with SSE4.2 and PCLMULQDQ supported, >> 719 CRC T10 DIF PCLMULQDQ computation can be hardware >> 720 accelerated PCLMULQDQ instruction. This option will create >> 721 'crct10dif-pclmul' module, which is faster when computing the >> 722 crct10dif checksum as compared with the generic table implementation. >> 723 >> 724 config CRYPTO_CRCT10DIF_VPMSUM >> 725 tristate "CRC32T10DIF powerpc64 hardware acceleration" >> 726 depends on PPC64 && ALTIVEC && CRC_T10DIF 886 select CRYPTO_HASH 727 select CRYPTO_HASH 887 select CRYPTO_MANAGER << 888 help 728 help 889 CMAC (Cipher-based Message Authentic !! 729 CRC10T10DIF algorithm implemented using vector polynomial 890 mode (NIST SP800-38B and IETF RFC449 !! 730 multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on >> 731 POWER8 and newer processors for improved performance. >> 732 >> 733 config CRYPTO_VPMSUM_TESTER >> 734 tristate "Powerpc64 vpmsum hardware acceleration tester" >> 735 depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM >> 736 help >> 737 Stress test for CRC32c and CRC-T10DIF algorithms implemented with >> 738 POWER8 vpmsum instructions. >> 739 Unless you are testing these algorithms, you don't need this. 891 740 892 config CRYPTO_GHASH 741 config CRYPTO_GHASH 893 tristate "GHASH" !! 742 tristate "GHASH hash function" >> 743 select CRYPTO_GF128MUL 894 select CRYPTO_HASH 744 select CRYPTO_HASH 895 select CRYPTO_LIB_GF128MUL << 896 help 745 help 897 GCM GHASH function (NIST SP800-38D) !! 746 GHASH is the hash function used in GCM (Galois/Counter Mode). >> 747 It is not a general-purpose cryptographic hash function. 898 748 899 config CRYPTO_HMAC !! 749 config CRYPTO_POLY1305 900 tristate "HMAC (Keyed-Hash MAC)" !! 750 tristate "Poly1305 authenticator algorithm" 901 select CRYPTO_HASH 751 select CRYPTO_HASH 902 select CRYPTO_MANAGER !! 752 select CRYPTO_LIB_POLY1305_GENERIC 903 help 753 help 904 HMAC (Keyed-Hash Message Authenticat !! 754 Poly1305 authenticator algorithm, RFC7539. 905 RFC2104) << 906 755 907 This is required for IPsec AH (XFRM_ !! 756 Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. >> 757 It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use >> 758 in IETF protocols. This is the portable C implementation of Poly1305. >> 759 >> 760 config CRYPTO_POLY1305_X86_64 >> 761 tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)" >> 762 depends on X86 && 64BIT >> 763 select CRYPTO_LIB_POLY1305_GENERIC >> 764 select CRYPTO_ARCH_HAVE_LIB_POLY1305 >> 765 help >> 766 Poly1305 authenticator algorithm, RFC7539. >> 767 >> 768 Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. >> 769 It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use >> 770 in IETF protocols. This is the x86_64 assembler implementation using SIMD >> 771 instructions. >> 772 >> 773 config CRYPTO_POLY1305_MIPS >> 774 tristate "Poly1305 authenticator algorithm (MIPS optimized)" >> 775 depends on MIPS >> 776 select CRYPTO_ARCH_HAVE_LIB_POLY1305 908 777 909 config CRYPTO_MD4 778 config CRYPTO_MD4 910 tristate "MD4" !! 779 tristate "MD4 digest algorithm" 911 select CRYPTO_HASH 780 select CRYPTO_HASH 912 help 781 help 913 MD4 message digest algorithm (RFC132 !! 782 MD4 message digest algorithm (RFC1320). 914 783 915 config CRYPTO_MD5 784 config CRYPTO_MD5 916 tristate "MD5" !! 785 tristate "MD5 digest algorithm" 917 select CRYPTO_HASH 786 select CRYPTO_HASH 918 help 787 help 919 MD5 message digest algorithm (RFC132 !! 788 MD5 message digest algorithm (RFC1321). 920 789 921 config CRYPTO_MICHAEL_MIC !! 790 config CRYPTO_MD5_OCTEON 922 tristate "Michael MIC" !! 791 tristate "MD5 digest algorithm (OCTEON)" >> 792 depends on CPU_CAVIUM_OCTEON >> 793 select CRYPTO_MD5 923 select CRYPTO_HASH 794 select CRYPTO_HASH 924 help 795 help 925 Michael MIC (Message Integrity Code) !! 796 MD5 message digest algorithm (RFC1321) implemented 926 !! 797 using OCTEON crypto instructions, when available. 927 Defined by the IEEE 802.11i TKIP (Te << 928 known as WPA (Wif-Fi Protected Acces << 929 798 930 This algorithm is required for TKIP, !! 799 config CRYPTO_MD5_PPC 931 other purposes because of the weakne !! 800 tristate "MD5 digest algorithm (PPC)" >> 801 depends on PPC >> 802 select CRYPTO_HASH >> 803 help >> 804 MD5 message digest algorithm (RFC1321) implemented >> 805 in PPC assembler. 932 806 933 config CRYPTO_POLYVAL !! 807 config CRYPTO_MD5_SPARC64 934 tristate !! 808 tristate "MD5 digest algorithm (SPARC64)" >> 809 depends on SPARC64 >> 810 select CRYPTO_MD5 935 select CRYPTO_HASH 811 select CRYPTO_HASH 936 select CRYPTO_LIB_GF128MUL << 937 help 812 help 938 POLYVAL hash function for HCTR2 !! 813 MD5 message digest algorithm (RFC1321) implemented >> 814 using sparc64 crypto instructions, when available. 939 815 940 This is used in HCTR2. It is not a !! 816 config CRYPTO_MICHAEL_MIC 941 cryptographic hash function. !! 817 tristate "Michael MIC keyed digest algorithm" >> 818 select CRYPTO_HASH >> 819 help >> 820 Michael MIC is used for message integrity protection in TKIP >> 821 (IEEE 802.11i). This algorithm is required for TKIP, but it >> 822 should not be used for other purposes because of the weakness >> 823 of the algorithm. 942 824 943 config CRYPTO_POLY1305 !! 825 config CRYPTO_RMD128 944 tristate "Poly1305" !! 826 tristate "RIPEMD-128 digest algorithm" 945 select CRYPTO_HASH 827 select CRYPTO_HASH 946 select CRYPTO_LIB_POLY1305_GENERIC << 947 help 828 help 948 Poly1305 authenticator algorithm (RF !! 829 RIPEMD-128 (ISO/IEC 10118-3:2004). 949 830 950 Poly1305 is an authenticator algorit !! 831 RIPEMD-128 is a 128-bit cryptographic hash function. It should only 951 It is used for the ChaCha20-Poly1305 !! 832 be used as a secure replacement for RIPEMD. For other use cases, 952 in IETF protocols. This is the porta !! 833 RIPEMD-160 should be used. >> 834 >> 835 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. >> 836 See <https://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 953 837 954 config CRYPTO_RMD160 838 config CRYPTO_RMD160 955 tristate "RIPEMD-160" !! 839 tristate "RIPEMD-160 digest algorithm" 956 select CRYPTO_HASH 840 select CRYPTO_HASH 957 help 841 help 958 RIPEMD-160 hash function (ISO/IEC 10 !! 842 RIPEMD-160 (ISO/IEC 10118-3:2004). 959 843 960 RIPEMD-160 is a 160-bit cryptographi 844 RIPEMD-160 is a 160-bit cryptographic hash function. It is intended 961 to be used as a secure replacement f 845 to be used as a secure replacement for the 128-bit hash functions 962 MD4, MD5 and its predecessor RIPEMD !! 846 MD4, MD5 and it's predecessor RIPEMD 963 (not to be confused with RIPEMD-128) 847 (not to be confused with RIPEMD-128). 964 848 965 Its speed is comparable to SHA-1 and !! 849 It's speed is comparable to SHA1 and there are no known attacks 966 against RIPEMD-160. 850 against RIPEMD-160. 967 851 968 Developed by Hans Dobbertin, Antoon 852 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 969 See https://homes.esat.kuleuven.be/~ !! 853 See <https://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 970 for further information. !! 854 >> 855 config CRYPTO_RMD256 >> 856 tristate "RIPEMD-256 digest algorithm" >> 857 select CRYPTO_HASH >> 858 help >> 859 RIPEMD-256 is an optional extension of RIPEMD-128 with a >> 860 256 bit hash. It is intended for applications that require >> 861 longer hash-results, without needing a larger security level >> 862 (than RIPEMD-128). >> 863 >> 864 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. >> 865 See <https://homes.esat.kuleuven.be/~bosselae/ripemd160.html> >> 866 >> 867 config CRYPTO_RMD320 >> 868 tristate "RIPEMD-320 digest algorithm" >> 869 select CRYPTO_HASH >> 870 help >> 871 RIPEMD-320 is an optional extension of RIPEMD-160 with a >> 872 320 bit hash. It is intended for applications that require >> 873 longer hash-results, without needing a larger security level >> 874 (than RIPEMD-160). >> 875 >> 876 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. >> 877 See <https://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 971 878 972 config CRYPTO_SHA1 879 config CRYPTO_SHA1 973 tristate "SHA-1" !! 880 tristate "SHA1 digest algorithm" >> 881 select CRYPTO_HASH >> 882 help >> 883 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). >> 884 >> 885 config CRYPTO_SHA1_SSSE3 >> 886 tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" >> 887 depends on X86 && 64BIT >> 888 select CRYPTO_SHA1 >> 889 select CRYPTO_HASH >> 890 help >> 891 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented >> 892 using Supplemental SSE3 (SSSE3) instructions or Advanced Vector >> 893 Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions), >> 894 when available. >> 895 >> 896 config CRYPTO_SHA256_SSSE3 >> 897 tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" >> 898 depends on X86 && 64BIT >> 899 select CRYPTO_SHA256 >> 900 select CRYPTO_HASH >> 901 help >> 902 SHA-256 secure hash standard (DFIPS 180-2) implemented >> 903 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector >> 904 Extensions version 1 (AVX1), or Advanced Vector Extensions >> 905 version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New >> 906 Instructions) when available. >> 907 >> 908 config CRYPTO_SHA512_SSSE3 >> 909 tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)" >> 910 depends on X86 && 64BIT >> 911 select CRYPTO_SHA512 >> 912 select CRYPTO_HASH >> 913 help >> 914 SHA-512 secure hash standard (DFIPS 180-2) implemented >> 915 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector >> 916 Extensions version 1 (AVX1), or Advanced Vector Extensions >> 917 version 2 (AVX2) instructions, when available. >> 918 >> 919 config CRYPTO_SHA1_OCTEON >> 920 tristate "SHA1 digest algorithm (OCTEON)" >> 921 depends on CPU_CAVIUM_OCTEON >> 922 select CRYPTO_SHA1 974 select CRYPTO_HASH 923 select CRYPTO_HASH 975 select CRYPTO_LIB_SHA1 << 976 help 924 help 977 SHA-1 secure hash algorithm (FIPS 18 !! 925 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented >> 926 using OCTEON crypto instructions, when available. >> 927 >> 928 config CRYPTO_SHA1_SPARC64 >> 929 tristate "SHA1 digest algorithm (SPARC64)" >> 930 depends on SPARC64 >> 931 select CRYPTO_SHA1 >> 932 select CRYPTO_HASH >> 933 help >> 934 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented >> 935 using sparc64 crypto instructions, when available. >> 936 >> 937 config CRYPTO_SHA1_PPC >> 938 tristate "SHA1 digest algorithm (powerpc)" >> 939 depends on PPC >> 940 help >> 941 This is the powerpc hardware accelerated implementation of the >> 942 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). >> 943 >> 944 config CRYPTO_SHA1_PPC_SPE >> 945 tristate "SHA1 digest algorithm (PPC SPE)" >> 946 depends on PPC && SPE >> 947 help >> 948 SHA-1 secure hash standard (DFIPS 180-4) implemented >> 949 using powerpc SPE SIMD instruction set. 978 950 979 config CRYPTO_SHA256 951 config CRYPTO_SHA256 980 tristate "SHA-224 and SHA-256" !! 952 tristate "SHA224 and SHA256 digest algorithm" 981 select CRYPTO_HASH 953 select CRYPTO_HASH 982 select CRYPTO_LIB_SHA256 954 select CRYPTO_LIB_SHA256 983 help 955 help 984 SHA-224 and SHA-256 secure hash algo !! 956 SHA256 secure hash standard (DFIPS 180-2). >> 957 >> 958 This version of SHA implements a 256 bit hash with 128 bits of >> 959 security against collision attacks. >> 960 >> 961 This code also includes SHA-224, a 224 bit hash with 112 bits >> 962 of security against collision attacks. >> 963 >> 964 config CRYPTO_SHA256_PPC_SPE >> 965 tristate "SHA224 and SHA256 digest algorithm (PPC SPE)" >> 966 depends on PPC && SPE >> 967 select CRYPTO_SHA256 >> 968 select CRYPTO_HASH >> 969 help >> 970 SHA224 and SHA256 secure hash standard (DFIPS 180-2) >> 971 implemented using powerpc SPE SIMD instruction set. 985 972 986 This is required for IPsec AH (XFRM_ !! 973 config CRYPTO_SHA256_OCTEON 987 Used by the btrfs filesystem, Ceph, !! 974 tristate "SHA224 and SHA256 digest algorithm (OCTEON)" >> 975 depends on CPU_CAVIUM_OCTEON >> 976 select CRYPTO_SHA256 >> 977 select CRYPTO_HASH >> 978 help >> 979 SHA-256 secure hash standard (DFIPS 180-2) implemented >> 980 using OCTEON crypto instructions, when available. >> 981 >> 982 config CRYPTO_SHA256_SPARC64 >> 983 tristate "SHA224 and SHA256 digest algorithm (SPARC64)" >> 984 depends on SPARC64 >> 985 select CRYPTO_SHA256 >> 986 select CRYPTO_HASH >> 987 help >> 988 SHA-256 secure hash standard (DFIPS 180-2) implemented >> 989 using sparc64 crypto instructions, when available. 988 990 989 config CRYPTO_SHA512 991 config CRYPTO_SHA512 990 tristate "SHA-384 and SHA-512" !! 992 tristate "SHA384 and SHA512 digest algorithms" 991 select CRYPTO_HASH 993 select CRYPTO_HASH 992 help 994 help 993 SHA-384 and SHA-512 secure hash algo !! 995 SHA512 secure hash standard (DFIPS 180-2). 994 996 995 config CRYPTO_SHA3 !! 997 This version of SHA implements a 512 bit hash with 256 bits of 996 tristate "SHA-3" !! 998 security against collision attacks. >> 999 >> 1000 This code also includes SHA-384, a 384 bit hash with 192 bits >> 1001 of security against collision attacks. >> 1002 >> 1003 config CRYPTO_SHA512_OCTEON >> 1004 tristate "SHA384 and SHA512 digest algorithms (OCTEON)" >> 1005 depends on CPU_CAVIUM_OCTEON >> 1006 select CRYPTO_SHA512 997 select CRYPTO_HASH 1007 select CRYPTO_HASH 998 help 1008 help 999 SHA-3 secure hash algorithms (FIPS 2 !! 1009 SHA-512 secure hash standard (DFIPS 180-2) implemented >> 1010 using OCTEON crypto instructions, when available. 1000 1011 1001 config CRYPTO_SM3 !! 1012 config CRYPTO_SHA512_SPARC64 1002 tristate !! 1013 tristate "SHA384 and SHA512 digest algorithm (SPARC64)" >> 1014 depends on SPARC64 >> 1015 select CRYPTO_SHA512 >> 1016 select CRYPTO_HASH >> 1017 help >> 1018 SHA-512 secure hash standard (DFIPS 180-2) implemented >> 1019 using sparc64 crypto instructions, when available. 1003 1020 1004 config CRYPTO_SM3_GENERIC !! 1021 config CRYPTO_SHA3 1005 tristate "SM3 (ShangMi 3)" !! 1022 tristate "SHA3 digest algorithm" 1006 select CRYPTO_HASH 1023 select CRYPTO_HASH 1007 select CRYPTO_SM3 << 1008 help 1024 help 1009 SM3 (ShangMi 3) secure hash functio !! 1025 SHA-3 secure hash standard (DFIPS 202). It's based on >> 1026 cryptographic sponge function family called Keccak. 1010 1027 1011 This is part of the Chinese Commerc !! 1028 References: >> 1029 http://keccak.noekeon.org/ >> 1030 >> 1031 config CRYPTO_SM3 >> 1032 tristate "SM3 digest algorithm" >> 1033 select CRYPTO_HASH >> 1034 help >> 1035 SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3). >> 1036 It is part of the Chinese Commercial Cryptography suite. 1012 1037 1013 References: 1038 References: 1014 http://www.oscca.gov.cn/UpFile/2010 1039 http://www.oscca.gov.cn/UpFile/20101222141857786.pdf 1015 https://datatracker.ietf.org/doc/ht 1040 https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash 1016 1041 1017 config CRYPTO_STREEBOG 1042 config CRYPTO_STREEBOG 1018 tristate "Streebog" !! 1043 tristate "Streebog Hash Function" 1019 select CRYPTO_HASH 1044 select CRYPTO_HASH 1020 help 1045 help 1021 Streebog Hash Function (GOST R 34.1 !! 1046 Streebog Hash Function (GOST R 34.11-2012, RFC 6986) is one of the Russian 1022 !! 1047 cryptographic standard algorithms (called GOST algorithms). 1023 This is one of the Russian cryptogr !! 1048 This setting enables two hash algorithms with 256 and 512 bits output. 1024 GOST algorithms). This setting enab << 1025 256 and 512 bits output. << 1026 1049 1027 References: 1050 References: 1028 https://tc26.ru/upload/iblock/fed/f 1051 https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf 1029 https://tools.ietf.org/html/rfc6986 1052 https://tools.ietf.org/html/rfc6986 1030 1053 1031 config CRYPTO_VMAC !! 1054 config CRYPTO_TGR192 1032 tristate "VMAC" !! 1055 tristate "Tiger digest algorithms" 1033 select CRYPTO_HASH 1056 select CRYPTO_HASH 1034 select CRYPTO_MANAGER << 1035 help 1057 help 1036 VMAC is a message authentication al !! 1058 Tiger hash algorithm 192, 160 and 128-bit hashes 1037 very high speed on 64-bit architect << 1038 1059 1039 See https://fastcrypto.org/vmac for !! 1060 Tiger is a hash function optimized for 64-bit processors while >> 1061 still having decent performance on 32-bit processors. >> 1062 Tiger was developed by Ross Anderson and Eli Biham. >> 1063 >> 1064 See also: >> 1065 <https://www.cs.technion.ac.il/~biham/Reports/Tiger/>. 1040 1066 1041 config CRYPTO_WP512 1067 config CRYPTO_WP512 1042 tristate "Whirlpool" !! 1068 tristate "Whirlpool digest algorithms" 1043 select CRYPTO_HASH 1069 select CRYPTO_HASH 1044 help 1070 help 1045 Whirlpool hash function (ISO/IEC 10 !! 1071 Whirlpool hash algorithm 512, 384 and 256-bit hashes 1046 << 1047 512, 384 and 256-bit hashes. << 1048 1072 1049 Whirlpool-512 is part of the NESSIE 1073 Whirlpool-512 is part of the NESSIE cryptographic primitives. >> 1074 Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard 1050 1075 1051 See https://web.archive.org/web/201 !! 1076 See also: 1052 for further information. !! 1077 <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html> 1053 1078 1054 config CRYPTO_XCBC !! 1079 config CRYPTO_GHASH_CLMUL_NI_INTEL 1055 tristate "XCBC-MAC (Extended Cipher B !! 1080 tristate "GHASH hash function (CLMUL-NI accelerated)" 1056 select CRYPTO_HASH !! 1081 depends on X86 && 64BIT 1057 select CRYPTO_MANAGER !! 1082 select CRYPTO_CRYPTD 1058 help 1083 help 1059 XCBC-MAC (Extended Cipher Block Cha !! 1084 This is the x86_64 CLMUL-NI accelerated implementation of 1060 Code) (RFC3566) !! 1085 GHASH, the hash function used in GCM (Galois/Counter mode). 1061 1086 1062 config CRYPTO_XXHASH !! 1087 comment "Ciphers" 1063 tristate "xxHash" !! 1088 1064 select CRYPTO_HASH !! 1089 config CRYPTO_AES 1065 select XXHASH !! 1090 tristate "AES cipher algorithms" >> 1091 select CRYPTO_ALGAPI >> 1092 select CRYPTO_LIB_AES 1066 help 1093 help 1067 xxHash non-cryptographic hash algor !! 1094 AES cipher algorithms (FIPS-197). AES uses the Rijndael >> 1095 algorithm. >> 1096 >> 1097 Rijndael appears to be consistently a very good performer in >> 1098 both hardware and software across a wide range of computing >> 1099 environments regardless of its use in feedback or non-feedback >> 1100 modes. Its key setup time is excellent, and its key agility is >> 1101 good. Rijndael's very low memory requirements make it very well >> 1102 suited for restricted-space environments, in which it also >> 1103 demonstrates excellent performance. Rijndael's operations are >> 1104 among the easiest to defend against power and timing attacks. 1068 1105 1069 Extremely fast, working at speeds c !! 1106 The AES specifies three key sizes: 128, 192 and 256 bits 1070 1107 1071 Used by the btrfs filesystem. !! 1108 See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information. 1072 1109 1073 endmenu !! 1110 config CRYPTO_AES_TI >> 1111 tristate "Fixed time AES cipher" >> 1112 select CRYPTO_ALGAPI >> 1113 select CRYPTO_LIB_AES >> 1114 help >> 1115 This is a generic implementation of AES that attempts to eliminate >> 1116 data dependent latencies as much as possible without affecting >> 1117 performance too much. It is intended for use by the generic CCM >> 1118 and GCM drivers, and other CTR or CMAC/XCBC based modes that rely >> 1119 solely on encryption (although decryption is supported as well, but >> 1120 with a more dramatic performance hit) 1074 1121 1075 menu "CRCs (cyclic redundancy checks)" !! 1122 Instead of using 16 lookup tables of 1 KB each, (8 for encryption and >> 1123 8 for decryption), this implementation only uses just two S-boxes of >> 1124 256 bytes each, and attempts to eliminate data dependent latencies by >> 1125 prefetching the entire table into the cache at the start of each >> 1126 block. Interrupts are also disabled to avoid races where cachelines >> 1127 are evicted when the CPU is interrupted to do something else. 1076 1128 1077 config CRYPTO_CRC32C !! 1129 config CRYPTO_AES_NI_INTEL 1078 tristate "CRC32c" !! 1130 tristate "AES cipher algorithms (AES-NI)" 1079 select CRYPTO_HASH !! 1131 depends on X86 1080 select CRC32 !! 1132 select CRYPTO_AEAD >> 1133 select CRYPTO_LIB_AES >> 1134 select CRYPTO_ALGAPI >> 1135 select CRYPTO_SKCIPHER >> 1136 select CRYPTO_GLUE_HELPER_X86 if 64BIT >> 1137 select CRYPTO_SIMD >> 1138 help >> 1139 Use Intel AES-NI instructions for AES algorithm. >> 1140 >> 1141 AES cipher algorithms (FIPS-197). AES uses the Rijndael >> 1142 algorithm. >> 1143 >> 1144 Rijndael appears to be consistently a very good performer in >> 1145 both hardware and software across a wide range of computing >> 1146 environments regardless of its use in feedback or non-feedback >> 1147 modes. Its key setup time is excellent, and its key agility is >> 1148 good. Rijndael's very low memory requirements make it very well >> 1149 suited for restricted-space environments, in which it also >> 1150 demonstrates excellent performance. Rijndael's operations are >> 1151 among the easiest to defend against power and timing attacks. >> 1152 >> 1153 The AES specifies three key sizes: 128, 192 and 256 bits >> 1154 >> 1155 See <http://csrc.nist.gov/encryption/aes/> for more information. >> 1156 >> 1157 In addition to AES cipher algorithm support, the acceleration >> 1158 for some popular block cipher mode is supported too, including >> 1159 ECB, CBC, LRW, XTS. The 64 bit version has additional >> 1160 acceleration for CTR. >> 1161 >> 1162 config CRYPTO_AES_SPARC64 >> 1163 tristate "AES cipher algorithms (SPARC64)" >> 1164 depends on SPARC64 >> 1165 select CRYPTO_SKCIPHER 1081 help 1166 help 1082 CRC32c CRC algorithm with the iSCSI !! 1167 Use SPARC64 crypto opcodes for AES algorithm. 1083 1168 1084 A 32-bit CRC (cyclic redundancy che !! 1169 AES cipher algorithms (FIPS-197). AES uses the Rijndael 1085 by G. Castagnoli, S. Braeuer and M. !! 1170 algorithm. 1086 Redundancy-Check Codes with 24 and << 1087 on Communications, Vol. 41, No. 6, << 1088 iSCSI. << 1089 1171 1090 Used by btrfs, ext4, jbd2, NVMeoF/T !! 1172 Rijndael appears to be consistently a very good performer in >> 1173 both hardware and software across a wide range of computing >> 1174 environments regardless of its use in feedback or non-feedback >> 1175 modes. Its key setup time is excellent, and its key agility is >> 1176 good. Rijndael's very low memory requirements make it very well >> 1177 suited for restricted-space environments, in which it also >> 1178 demonstrates excellent performance. Rijndael's operations are >> 1179 among the easiest to defend against power and timing attacks. 1091 1180 1092 config CRYPTO_CRC32 !! 1181 The AES specifies three key sizes: 128, 192 and 256 bits 1093 tristate "CRC32" !! 1182 1094 select CRYPTO_HASH !! 1183 See <http://csrc.nist.gov/encryption/aes/> for more information. 1095 select CRC32 !! 1184 >> 1185 In addition to AES cipher algorithm support, the acceleration >> 1186 for some popular block cipher mode is supported too, including >> 1187 ECB and CBC. >> 1188 >> 1189 config CRYPTO_AES_PPC_SPE >> 1190 tristate "AES cipher algorithms (PPC SPE)" >> 1191 depends on PPC && SPE >> 1192 select CRYPTO_SKCIPHER 1096 help 1193 help 1097 CRC32 CRC algorithm (IEEE 802.3) !! 1194 AES cipher algorithms (FIPS-197). Additionally the acceleration >> 1195 for popular block cipher modes ECB, CBC, CTR and XTS is supported. >> 1196 This module should only be used for low power (router) devices >> 1197 without hardware AES acceleration (e.g. caam crypto). It reduces the >> 1198 size of the AES tables from 16KB to 8KB + 256 bytes and mitigates >> 1199 timining attacks. Nevertheless it might be not as secure as other >> 1200 architecture specific assembler implementations that work on 1KB >> 1201 tables or 256 bytes S-boxes. 1098 1202 1099 Used by RoCEv2 and f2fs. !! 1203 config CRYPTO_ANUBIS >> 1204 tristate "Anubis cipher algorithm" >> 1205 depends on CRYPTO_USER_API_ENABLE_OBSOLETE >> 1206 select CRYPTO_ALGAPI >> 1207 help >> 1208 Anubis cipher algorithm. 1100 1209 1101 config CRYPTO_CRCT10DIF !! 1210 Anubis is a variable key length cipher which can use keys from 1102 tristate "CRCT10DIF" !! 1211 128 bits to 320 bits in length. It was evaluated as a entrant 1103 select CRYPTO_HASH !! 1212 in the NESSIE competition. >> 1213 >> 1214 See also: >> 1215 <https://www.cosic.esat.kuleuven.be/nessie/reports/> >> 1216 <http://www.larc.usp.br/~pbarreto/AnubisPage.html> >> 1217 >> 1218 config CRYPTO_ARC4 >> 1219 tristate "ARC4 cipher algorithm" >> 1220 depends on CRYPTO_USER_API_ENABLE_OBSOLETE >> 1221 select CRYPTO_SKCIPHER >> 1222 select CRYPTO_LIB_ARC4 1104 help 1223 help 1105 CRC16 CRC algorithm used for the T1 !! 1224 ARC4 cipher algorithm. 1106 1225 1107 CRC algorithm used by the SCSI Bloc !! 1226 ARC4 is a stream cipher using keys ranging from 8 bits to 2048 >> 1227 bits in length. This algorithm is required for driver-based >> 1228 WEP, but it should not be for other purposes because of the >> 1229 weakness of the algorithm. 1108 1230 1109 config CRYPTO_CRC64_ROCKSOFT !! 1231 config CRYPTO_BLOWFISH 1110 tristate "CRC64 based on Rocksoft Mod !! 1232 tristate "Blowfish cipher algorithm" 1111 depends on CRC64 !! 1233 select CRYPTO_ALGAPI 1112 select CRYPTO_HASH !! 1234 select CRYPTO_BLOWFISH_COMMON >> 1235 help >> 1236 Blowfish cipher algorithm, by Bruce Schneier. >> 1237 >> 1238 This is a variable key length cipher which can use keys from 32 >> 1239 bits to 448 bits in length. It's fast, simple and specifically >> 1240 designed for use on "large microprocessors". >> 1241 >> 1242 See also: >> 1243 <https://www.schneier.com/blowfish.html> >> 1244 >> 1245 config CRYPTO_BLOWFISH_COMMON >> 1246 tristate >> 1247 help >> 1248 Common parts of the Blowfish cipher algorithm shared by the >> 1249 generic c and the assembler implementations. >> 1250 >> 1251 See also: >> 1252 <https://www.schneier.com/blowfish.html> >> 1253 >> 1254 config CRYPTO_BLOWFISH_X86_64 >> 1255 tristate "Blowfish cipher algorithm (x86_64)" >> 1256 depends on X86 && 64BIT >> 1257 select CRYPTO_SKCIPHER >> 1258 select CRYPTO_BLOWFISH_COMMON >> 1259 help >> 1260 Blowfish cipher algorithm (x86_64), by Bruce Schneier. >> 1261 >> 1262 This is a variable key length cipher which can use keys from 32 >> 1263 bits to 448 bits in length. It's fast, simple and specifically >> 1264 designed for use on "large microprocessors". >> 1265 >> 1266 See also: >> 1267 <https://www.schneier.com/blowfish.html> >> 1268 >> 1269 config CRYPTO_CAMELLIA >> 1270 tristate "Camellia cipher algorithms" >> 1271 depends on CRYPTO >> 1272 select CRYPTO_ALGAPI >> 1273 help >> 1274 Camellia cipher algorithms module. >> 1275 >> 1276 Camellia is a symmetric key block cipher developed jointly >> 1277 at NTT and Mitsubishi Electric Corporation. >> 1278 >> 1279 The Camellia specifies three key sizes: 128, 192 and 256 bits. >> 1280 >> 1281 See also: >> 1282 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> >> 1283 >> 1284 config CRYPTO_CAMELLIA_X86_64 >> 1285 tristate "Camellia cipher algorithm (x86_64)" >> 1286 depends on X86 && 64BIT >> 1287 depends on CRYPTO >> 1288 select CRYPTO_SKCIPHER >> 1289 select CRYPTO_GLUE_HELPER_X86 >> 1290 help >> 1291 Camellia cipher algorithm module (x86_64). >> 1292 >> 1293 Camellia is a symmetric key block cipher developed jointly >> 1294 at NTT and Mitsubishi Electric Corporation. >> 1295 >> 1296 The Camellia specifies three key sizes: 128, 192 and 256 bits. >> 1297 >> 1298 See also: >> 1299 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> >> 1300 >> 1301 config CRYPTO_CAMELLIA_AESNI_AVX_X86_64 >> 1302 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)" >> 1303 depends on X86 && 64BIT >> 1304 depends on CRYPTO >> 1305 select CRYPTO_SKCIPHER >> 1306 select CRYPTO_CAMELLIA_X86_64 >> 1307 select CRYPTO_GLUE_HELPER_X86 >> 1308 select CRYPTO_SIMD >> 1309 select CRYPTO_XTS >> 1310 help >> 1311 Camellia cipher algorithm module (x86_64/AES-NI/AVX). >> 1312 >> 1313 Camellia is a symmetric key block cipher developed jointly >> 1314 at NTT and Mitsubishi Electric Corporation. >> 1315 >> 1316 The Camellia specifies three key sizes: 128, 192 and 256 bits. >> 1317 >> 1318 See also: >> 1319 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> >> 1320 >> 1321 config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64 >> 1322 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)" >> 1323 depends on X86 && 64BIT >> 1324 depends on CRYPTO >> 1325 select CRYPTO_CAMELLIA_AESNI_AVX_X86_64 1113 help 1326 help 1114 CRC64 CRC algorithm based on the Ro !! 1327 Camellia cipher algorithm module (x86_64/AES-NI/AVX2). >> 1328 >> 1329 Camellia is a symmetric key block cipher developed jointly >> 1330 at NTT and Mitsubishi Electric Corporation. 1115 1331 1116 Used by the NVMe implementation of !! 1332 The Camellia specifies three key sizes: 128, 192 and 256 bits. 1117 1333 1118 See https://zlib.net/crc_v3.txt !! 1334 See also: >> 1335 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1119 1336 1120 endmenu !! 1337 config CRYPTO_CAMELLIA_SPARC64 >> 1338 tristate "Camellia cipher algorithm (SPARC64)" >> 1339 depends on SPARC64 >> 1340 depends on CRYPTO >> 1341 select CRYPTO_ALGAPI >> 1342 select CRYPTO_SKCIPHER >> 1343 help >> 1344 Camellia cipher algorithm module (SPARC64). 1121 1345 1122 menu "Compression" !! 1346 Camellia is a symmetric key block cipher developed jointly >> 1347 at NTT and Mitsubishi Electric Corporation. >> 1348 >> 1349 The Camellia specifies three key sizes: 128, 192 and 256 bits. >> 1350 >> 1351 See also: >> 1352 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> >> 1353 >> 1354 config CRYPTO_CAST_COMMON >> 1355 tristate >> 1356 help >> 1357 Common parts of the CAST cipher algorithms shared by the >> 1358 generic c and the assembler implementations. >> 1359 >> 1360 config CRYPTO_CAST5 >> 1361 tristate "CAST5 (CAST-128) cipher algorithm" >> 1362 select CRYPTO_ALGAPI >> 1363 select CRYPTO_CAST_COMMON >> 1364 help >> 1365 The CAST5 encryption algorithm (synonymous with CAST-128) is >> 1366 described in RFC2144. >> 1367 >> 1368 config CRYPTO_CAST5_AVX_X86_64 >> 1369 tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)" >> 1370 depends on X86 && 64BIT >> 1371 select CRYPTO_SKCIPHER >> 1372 select CRYPTO_CAST5 >> 1373 select CRYPTO_CAST_COMMON >> 1374 select CRYPTO_SIMD >> 1375 help >> 1376 The CAST5 encryption algorithm (synonymous with CAST-128) is >> 1377 described in RFC2144. >> 1378 >> 1379 This module provides the Cast5 cipher algorithm that processes >> 1380 sixteen blocks parallel using the AVX instruction set. >> 1381 >> 1382 config CRYPTO_CAST6 >> 1383 tristate "CAST6 (CAST-256) cipher algorithm" >> 1384 select CRYPTO_ALGAPI >> 1385 select CRYPTO_CAST_COMMON >> 1386 help >> 1387 The CAST6 encryption algorithm (synonymous with CAST-256) is >> 1388 described in RFC2612. >> 1389 >> 1390 config CRYPTO_CAST6_AVX_X86_64 >> 1391 tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)" >> 1392 depends on X86 && 64BIT >> 1393 select CRYPTO_SKCIPHER >> 1394 select CRYPTO_CAST6 >> 1395 select CRYPTO_CAST_COMMON >> 1396 select CRYPTO_GLUE_HELPER_X86 >> 1397 select CRYPTO_SIMD >> 1398 select CRYPTO_XTS >> 1399 help >> 1400 The CAST6 encryption algorithm (synonymous with CAST-256) is >> 1401 described in RFC2612. >> 1402 >> 1403 This module provides the Cast6 cipher algorithm that processes >> 1404 eight blocks parallel using the AVX instruction set. >> 1405 >> 1406 config CRYPTO_DES >> 1407 tristate "DES and Triple DES EDE cipher algorithms" >> 1408 select CRYPTO_ALGAPI >> 1409 select CRYPTO_LIB_DES >> 1410 help >> 1411 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3). >> 1412 >> 1413 config CRYPTO_DES_SPARC64 >> 1414 tristate "DES and Triple DES EDE cipher algorithms (SPARC64)" >> 1415 depends on SPARC64 >> 1416 select CRYPTO_ALGAPI >> 1417 select CRYPTO_LIB_DES >> 1418 select CRYPTO_SKCIPHER >> 1419 help >> 1420 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3), >> 1421 optimized using SPARC64 crypto opcodes. >> 1422 >> 1423 config CRYPTO_DES3_EDE_X86_64 >> 1424 tristate "Triple DES EDE cipher algorithm (x86-64)" >> 1425 depends on X86 && 64BIT >> 1426 select CRYPTO_SKCIPHER >> 1427 select CRYPTO_LIB_DES >> 1428 help >> 1429 Triple DES EDE (FIPS 46-3) algorithm. >> 1430 >> 1431 This module provides implementation of the Triple DES EDE cipher >> 1432 algorithm that is optimized for x86-64 processors. Two versions of >> 1433 algorithm are provided; regular processing one input block and >> 1434 one that processes three blocks parallel. >> 1435 >> 1436 config CRYPTO_FCRYPT >> 1437 tristate "FCrypt cipher algorithm" >> 1438 select CRYPTO_ALGAPI >> 1439 select CRYPTO_SKCIPHER >> 1440 help >> 1441 FCrypt algorithm used by RxRPC. >> 1442 >> 1443 config CRYPTO_KHAZAD >> 1444 tristate "Khazad cipher algorithm" >> 1445 depends on CRYPTO_USER_API_ENABLE_OBSOLETE >> 1446 select CRYPTO_ALGAPI >> 1447 help >> 1448 Khazad cipher algorithm. >> 1449 >> 1450 Khazad was a finalist in the initial NESSIE competition. It is >> 1451 an algorithm optimized for 64-bit processors with good performance >> 1452 on 32-bit processors. Khazad uses an 128 bit key size. >> 1453 >> 1454 See also: >> 1455 <http://www.larc.usp.br/~pbarreto/KhazadPage.html> >> 1456 >> 1457 config CRYPTO_SALSA20 >> 1458 tristate "Salsa20 stream cipher algorithm" >> 1459 select CRYPTO_SKCIPHER >> 1460 help >> 1461 Salsa20 stream cipher algorithm. >> 1462 >> 1463 Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT >> 1464 Stream Cipher Project. See <https://www.ecrypt.eu.org/stream/> >> 1465 >> 1466 The Salsa20 stream cipher algorithm is designed by Daniel J. >> 1467 Bernstein <https://cr.yp.to/snuffle.html">djb@cr.yp.to>. See <https://cr.yp.to/snuffle.html> >> 1468 >> 1469 config CRYPTO_CHACHA20 >> 1470 tristate "ChaCha stream cipher algorithms" >> 1471 select CRYPTO_LIB_CHACHA_GENERIC >> 1472 select CRYPTO_SKCIPHER >> 1473 help >> 1474 The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms. >> 1475 >> 1476 ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J. >> 1477 Bernstein and further specified in RFC7539 for use in IETF protocols. >> 1478 This is the portable C implementation of ChaCha20. See also: >> 1479 <https://cr.yp.to/chacha/chacha-20080128.pdf> >> 1480 >> 1481 XChaCha20 is the application of the XSalsa20 construction to ChaCha20 >> 1482 rather than to Salsa20. XChaCha20 extends ChaCha20's nonce length >> 1483 from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits, >> 1484 while provably retaining ChaCha20's security. See also: >> 1485 <https://cr.yp.to/snuffle/xsalsa-20081128.pdf> >> 1486 >> 1487 XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly >> 1488 reduced security margin but increased performance. It can be needed >> 1489 in some performance-sensitive scenarios. >> 1490 >> 1491 config CRYPTO_CHACHA20_X86_64 >> 1492 tristate "ChaCha stream cipher algorithms (x86_64/SSSE3/AVX2/AVX-512VL)" >> 1493 depends on X86 && 64BIT >> 1494 select CRYPTO_SKCIPHER >> 1495 select CRYPTO_LIB_CHACHA_GENERIC >> 1496 select CRYPTO_ARCH_HAVE_LIB_CHACHA >> 1497 help >> 1498 SSSE3, AVX2, and AVX-512VL optimized implementations of the ChaCha20, >> 1499 XChaCha20, and XChaCha12 stream ciphers. >> 1500 >> 1501 config CRYPTO_CHACHA_MIPS >> 1502 tristate "ChaCha stream cipher algorithms (MIPS 32r2 optimized)" >> 1503 depends on CPU_MIPS32_R2 >> 1504 select CRYPTO_SKCIPHER >> 1505 select CRYPTO_ARCH_HAVE_LIB_CHACHA >> 1506 >> 1507 config CRYPTO_SEED >> 1508 tristate "SEED cipher algorithm" >> 1509 depends on CRYPTO_USER_API_ENABLE_OBSOLETE >> 1510 select CRYPTO_ALGAPI >> 1511 help >> 1512 SEED cipher algorithm (RFC4269). >> 1513 >> 1514 SEED is a 128-bit symmetric key block cipher that has been >> 1515 developed by KISA (Korea Information Security Agency) as a >> 1516 national standard encryption algorithm of the Republic of Korea. >> 1517 It is a 16 round block cipher with the key size of 128 bit. >> 1518 >> 1519 See also: >> 1520 <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp> >> 1521 >> 1522 config CRYPTO_SERPENT >> 1523 tristate "Serpent cipher algorithm" >> 1524 select CRYPTO_ALGAPI >> 1525 help >> 1526 Serpent cipher algorithm, by Anderson, Biham & Knudsen. >> 1527 >> 1528 Keys are allowed to be from 0 to 256 bits in length, in steps >> 1529 of 8 bits. Also includes the 'Tnepres' algorithm, a reversed >> 1530 variant of Serpent for compatibility with old kerneli.org code. >> 1531 >> 1532 See also: >> 1533 <https://www.cl.cam.ac.uk/~rja14/serpent.html> >> 1534 >> 1535 config CRYPTO_SERPENT_SSE2_X86_64 >> 1536 tristate "Serpent cipher algorithm (x86_64/SSE2)" >> 1537 depends on X86 && 64BIT >> 1538 select CRYPTO_SKCIPHER >> 1539 select CRYPTO_GLUE_HELPER_X86 >> 1540 select CRYPTO_SERPENT >> 1541 select CRYPTO_SIMD >> 1542 help >> 1543 Serpent cipher algorithm, by Anderson, Biham & Knudsen. >> 1544 >> 1545 Keys are allowed to be from 0 to 256 bits in length, in steps >> 1546 of 8 bits. >> 1547 >> 1548 This module provides Serpent cipher algorithm that processes eight >> 1549 blocks parallel using SSE2 instruction set. >> 1550 >> 1551 See also: >> 1552 <https://www.cl.cam.ac.uk/~rja14/serpent.html> >> 1553 >> 1554 config CRYPTO_SERPENT_SSE2_586 >> 1555 tristate "Serpent cipher algorithm (i586/SSE2)" >> 1556 depends on X86 && !64BIT >> 1557 select CRYPTO_SKCIPHER >> 1558 select CRYPTO_GLUE_HELPER_X86 >> 1559 select CRYPTO_SERPENT >> 1560 select CRYPTO_SIMD >> 1561 help >> 1562 Serpent cipher algorithm, by Anderson, Biham & Knudsen. >> 1563 >> 1564 Keys are allowed to be from 0 to 256 bits in length, in steps >> 1565 of 8 bits. >> 1566 >> 1567 This module provides Serpent cipher algorithm that processes four >> 1568 blocks parallel using SSE2 instruction set. >> 1569 >> 1570 See also: >> 1571 <https://www.cl.cam.ac.uk/~rja14/serpent.html> >> 1572 >> 1573 config CRYPTO_SERPENT_AVX_X86_64 >> 1574 tristate "Serpent cipher algorithm (x86_64/AVX)" >> 1575 depends on X86 && 64BIT >> 1576 select CRYPTO_SKCIPHER >> 1577 select CRYPTO_GLUE_HELPER_X86 >> 1578 select CRYPTO_SERPENT >> 1579 select CRYPTO_SIMD >> 1580 select CRYPTO_XTS >> 1581 help >> 1582 Serpent cipher algorithm, by Anderson, Biham & Knudsen. >> 1583 >> 1584 Keys are allowed to be from 0 to 256 bits in length, in steps >> 1585 of 8 bits. >> 1586 >> 1587 This module provides the Serpent cipher algorithm that processes >> 1588 eight blocks parallel using the AVX instruction set. >> 1589 >> 1590 See also: >> 1591 <https://www.cl.cam.ac.uk/~rja14/serpent.html> >> 1592 >> 1593 config CRYPTO_SERPENT_AVX2_X86_64 >> 1594 tristate "Serpent cipher algorithm (x86_64/AVX2)" >> 1595 depends on X86 && 64BIT >> 1596 select CRYPTO_SERPENT_AVX_X86_64 >> 1597 help >> 1598 Serpent cipher algorithm, by Anderson, Biham & Knudsen. >> 1599 >> 1600 Keys are allowed to be from 0 to 256 bits in length, in steps >> 1601 of 8 bits. >> 1602 >> 1603 This module provides Serpent cipher algorithm that processes 16 >> 1604 blocks parallel using AVX2 instruction set. >> 1605 >> 1606 See also: >> 1607 <https://www.cl.cam.ac.uk/~rja14/serpent.html> >> 1608 >> 1609 config CRYPTO_SM4 >> 1610 tristate "SM4 cipher algorithm" >> 1611 select CRYPTO_ALGAPI >> 1612 help >> 1613 SM4 cipher algorithms (OSCCA GB/T 32907-2016). >> 1614 >> 1615 SM4 (GBT.32907-2016) is a cryptographic standard issued by the >> 1616 Organization of State Commercial Administration of China (OSCCA) >> 1617 as an authorized cryptographic algorithms for the use within China. >> 1618 >> 1619 SMS4 was originally created for use in protecting wireless >> 1620 networks, and is mandated in the Chinese National Standard for >> 1621 Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure) >> 1622 (GB.15629.11-2003). >> 1623 >> 1624 The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and >> 1625 standardized through TC 260 of the Standardization Administration >> 1626 of the People's Republic of China (SAC). >> 1627 >> 1628 The input, output, and key of SMS4 are each 128 bits. >> 1629 >> 1630 See also: <https://eprint.iacr.org/2008/329.pdf> >> 1631 >> 1632 If unsure, say N. >> 1633 >> 1634 config CRYPTO_TEA >> 1635 tristate "TEA, XTEA and XETA cipher algorithms" >> 1636 depends on CRYPTO_USER_API_ENABLE_OBSOLETE >> 1637 select CRYPTO_ALGAPI >> 1638 help >> 1639 TEA cipher algorithm. >> 1640 >> 1641 Tiny Encryption Algorithm is a simple cipher that uses >> 1642 many rounds for security. It is very fast and uses >> 1643 little memory. >> 1644 >> 1645 Xtendend Tiny Encryption Algorithm is a modification to >> 1646 the TEA algorithm to address a potential key weakness >> 1647 in the TEA algorithm. >> 1648 >> 1649 Xtendend Encryption Tiny Algorithm is a mis-implementation >> 1650 of the XTEA algorithm for compatibility purposes. >> 1651 >> 1652 config CRYPTO_TWOFISH >> 1653 tristate "Twofish cipher algorithm" >> 1654 select CRYPTO_ALGAPI >> 1655 select CRYPTO_TWOFISH_COMMON >> 1656 help >> 1657 Twofish cipher algorithm. >> 1658 >> 1659 Twofish was submitted as an AES (Advanced Encryption Standard) >> 1660 candidate cipher by researchers at CounterPane Systems. It is a >> 1661 16 round block cipher supporting key sizes of 128, 192, and 256 >> 1662 bits. >> 1663 >> 1664 See also: >> 1665 <https://www.schneier.com/twofish.html> >> 1666 >> 1667 config CRYPTO_TWOFISH_COMMON >> 1668 tristate >> 1669 help >> 1670 Common parts of the Twofish cipher algorithm shared by the >> 1671 generic c and the assembler implementations. >> 1672 >> 1673 config CRYPTO_TWOFISH_586 >> 1674 tristate "Twofish cipher algorithms (i586)" >> 1675 depends on (X86 || UML_X86) && !64BIT >> 1676 select CRYPTO_ALGAPI >> 1677 select CRYPTO_TWOFISH_COMMON >> 1678 help >> 1679 Twofish cipher algorithm. >> 1680 >> 1681 Twofish was submitted as an AES (Advanced Encryption Standard) >> 1682 candidate cipher by researchers at CounterPane Systems. It is a >> 1683 16 round block cipher supporting key sizes of 128, 192, and 256 >> 1684 bits. >> 1685 >> 1686 See also: >> 1687 <https://www.schneier.com/twofish.html> >> 1688 >> 1689 config CRYPTO_TWOFISH_X86_64 >> 1690 tristate "Twofish cipher algorithm (x86_64)" >> 1691 depends on (X86 || UML_X86) && 64BIT >> 1692 select CRYPTO_ALGAPI >> 1693 select CRYPTO_TWOFISH_COMMON >> 1694 help >> 1695 Twofish cipher algorithm (x86_64). >> 1696 >> 1697 Twofish was submitted as an AES (Advanced Encryption Standard) >> 1698 candidate cipher by researchers at CounterPane Systems. It is a >> 1699 16 round block cipher supporting key sizes of 128, 192, and 256 >> 1700 bits. >> 1701 >> 1702 See also: >> 1703 <https://www.schneier.com/twofish.html> >> 1704 >> 1705 config CRYPTO_TWOFISH_X86_64_3WAY >> 1706 tristate "Twofish cipher algorithm (x86_64, 3-way parallel)" >> 1707 depends on X86 && 64BIT >> 1708 select CRYPTO_SKCIPHER >> 1709 select CRYPTO_TWOFISH_COMMON >> 1710 select CRYPTO_TWOFISH_X86_64 >> 1711 select CRYPTO_GLUE_HELPER_X86 >> 1712 help >> 1713 Twofish cipher algorithm (x86_64, 3-way parallel). >> 1714 >> 1715 Twofish was submitted as an AES (Advanced Encryption Standard) >> 1716 candidate cipher by researchers at CounterPane Systems. It is a >> 1717 16 round block cipher supporting key sizes of 128, 192, and 256 >> 1718 bits. >> 1719 >> 1720 This module provides Twofish cipher algorithm that processes three >> 1721 blocks parallel, utilizing resources of out-of-order CPUs better. >> 1722 >> 1723 See also: >> 1724 <https://www.schneier.com/twofish.html> >> 1725 >> 1726 config CRYPTO_TWOFISH_AVX_X86_64 >> 1727 tristate "Twofish cipher algorithm (x86_64/AVX)" >> 1728 depends on X86 && 64BIT >> 1729 select CRYPTO_SKCIPHER >> 1730 select CRYPTO_GLUE_HELPER_X86 >> 1731 select CRYPTO_SIMD >> 1732 select CRYPTO_TWOFISH_COMMON >> 1733 select CRYPTO_TWOFISH_X86_64 >> 1734 select CRYPTO_TWOFISH_X86_64_3WAY >> 1735 help >> 1736 Twofish cipher algorithm (x86_64/AVX). >> 1737 >> 1738 Twofish was submitted as an AES (Advanced Encryption Standard) >> 1739 candidate cipher by researchers at CounterPane Systems. It is a >> 1740 16 round block cipher supporting key sizes of 128, 192, and 256 >> 1741 bits. >> 1742 >> 1743 This module provides the Twofish cipher algorithm that processes >> 1744 eight blocks parallel using the AVX Instruction Set. >> 1745 >> 1746 See also: >> 1747 <https://www.schneier.com/twofish.html> >> 1748 >> 1749 comment "Compression" 1123 1750 1124 config CRYPTO_DEFLATE 1751 config CRYPTO_DEFLATE 1125 tristate "Deflate" !! 1752 tristate "Deflate compression algorithm" 1126 select CRYPTO_ALGAPI 1753 select CRYPTO_ALGAPI 1127 select CRYPTO_ACOMP2 1754 select CRYPTO_ACOMP2 1128 select ZLIB_INFLATE 1755 select ZLIB_INFLATE 1129 select ZLIB_DEFLATE 1756 select ZLIB_DEFLATE 1130 help 1757 help 1131 Deflate compression algorithm (RFC1 !! 1758 This is the Deflate algorithm (RFC1951), specified for use in >> 1759 IPSec with the IPCOMP protocol (RFC3173, RFC2394). 1132 1760 1133 Used by IPSec with the IPCOMP proto !! 1761 You will most probably want this if using IPSec. 1134 1762 1135 config CRYPTO_LZO 1763 config CRYPTO_LZO 1136 tristate "LZO" !! 1764 tristate "LZO compression algorithm" 1137 select CRYPTO_ALGAPI 1765 select CRYPTO_ALGAPI 1138 select CRYPTO_ACOMP2 1766 select CRYPTO_ACOMP2 1139 select LZO_COMPRESS 1767 select LZO_COMPRESS 1140 select LZO_DECOMPRESS 1768 select LZO_DECOMPRESS 1141 help 1769 help 1142 LZO compression algorithm !! 1770 This is the LZO algorithm. 1143 << 1144 See https://www.oberhumer.com/opens << 1145 1771 1146 config CRYPTO_842 1772 config CRYPTO_842 1147 tristate "842" !! 1773 tristate "842 compression algorithm" 1148 select CRYPTO_ALGAPI 1774 select CRYPTO_ALGAPI 1149 select CRYPTO_ACOMP2 1775 select CRYPTO_ACOMP2 1150 select 842_COMPRESS 1776 select 842_COMPRESS 1151 select 842_DECOMPRESS 1777 select 842_DECOMPRESS 1152 help 1778 help 1153 842 compression algorithm by IBM !! 1779 This is the 842 algorithm. 1154 << 1155 See https://github.com/plauth/lib84 << 1156 1780 1157 config CRYPTO_LZ4 1781 config CRYPTO_LZ4 1158 tristate "LZ4" !! 1782 tristate "LZ4 compression algorithm" 1159 select CRYPTO_ALGAPI 1783 select CRYPTO_ALGAPI 1160 select CRYPTO_ACOMP2 1784 select CRYPTO_ACOMP2 1161 select LZ4_COMPRESS 1785 select LZ4_COMPRESS 1162 select LZ4_DECOMPRESS 1786 select LZ4_DECOMPRESS 1163 help 1787 help 1164 LZ4 compression algorithm !! 1788 This is the LZ4 algorithm. 1165 << 1166 See https://github.com/lz4/lz4 for << 1167 1789 1168 config CRYPTO_LZ4HC 1790 config CRYPTO_LZ4HC 1169 tristate "LZ4HC" !! 1791 tristate "LZ4HC compression algorithm" 1170 select CRYPTO_ALGAPI 1792 select CRYPTO_ALGAPI 1171 select CRYPTO_ACOMP2 1793 select CRYPTO_ACOMP2 1172 select LZ4HC_COMPRESS 1794 select LZ4HC_COMPRESS 1173 select LZ4_DECOMPRESS 1795 select LZ4_DECOMPRESS 1174 help 1796 help 1175 LZ4 high compression mode algorithm !! 1797 This is the LZ4 high compression mode algorithm. 1176 << 1177 See https://github.com/lz4/lz4 for << 1178 1798 1179 config CRYPTO_ZSTD 1799 config CRYPTO_ZSTD 1180 tristate "Zstd" !! 1800 tristate "Zstd compression algorithm" 1181 select CRYPTO_ALGAPI 1801 select CRYPTO_ALGAPI 1182 select CRYPTO_ACOMP2 1802 select CRYPTO_ACOMP2 1183 select ZSTD_COMPRESS 1803 select ZSTD_COMPRESS 1184 select ZSTD_DECOMPRESS 1804 select ZSTD_DECOMPRESS 1185 help 1805 help 1186 zstd compression algorithm !! 1806 This is the zstd algorithm. 1187 1807 1188 See https://github.com/facebook/zst !! 1808 comment "Random Number Generation" 1189 << 1190 endmenu << 1191 << 1192 menu "Random number generation" << 1193 1809 1194 config CRYPTO_ANSI_CPRNG 1810 config CRYPTO_ANSI_CPRNG 1195 tristate "ANSI PRNG (Pseudo Random Nu !! 1811 tristate "Pseudo Random Number Generation for Cryptographic modules" 1196 select CRYPTO_AES 1812 select CRYPTO_AES 1197 select CRYPTO_RNG 1813 select CRYPTO_RNG 1198 help 1814 help 1199 Pseudo RNG (random number generator !! 1815 This option enables the generic pseudo random number generator 1200 !! 1816 for cryptographic modules. Uses the Algorithm specified in 1201 This uses the AES cipher algorithm. !! 1817 ANSI X9.31 A.2.4. Note that this option must be enabled if 1202 !! 1818 CRYPTO_FIPS is selected 1203 Note that this option must be enabl << 1204 1819 1205 menuconfig CRYPTO_DRBG_MENU 1820 menuconfig CRYPTO_DRBG_MENU 1206 tristate "NIST SP800-90A DRBG (Determ !! 1821 tristate "NIST SP800-90A DRBG" 1207 help 1822 help 1208 DRBG (Deterministic Random Bit Gene !! 1823 NIST SP800-90A compliant DRBG. In the following submenu, one or 1209 !! 1824 more of the DRBG types must be selected. 1210 In the following submenu, one or mo << 1211 1825 1212 if CRYPTO_DRBG_MENU 1826 if CRYPTO_DRBG_MENU 1213 1827 1214 config CRYPTO_DRBG_HMAC 1828 config CRYPTO_DRBG_HMAC 1215 bool 1829 bool 1216 default y 1830 default y 1217 select CRYPTO_HMAC 1831 select CRYPTO_HMAC 1218 select CRYPTO_SHA512 !! 1832 select CRYPTO_SHA256 1219 1833 1220 config CRYPTO_DRBG_HASH 1834 config CRYPTO_DRBG_HASH 1221 bool "Hash_DRBG" !! 1835 bool "Enable Hash DRBG" 1222 select CRYPTO_SHA256 1836 select CRYPTO_SHA256 1223 help 1837 help 1224 Hash_DRBG variant as defined in NIS !! 1838 Enable the Hash DRBG variant as defined in NIST SP800-90A. 1225 << 1226 This uses the SHA-1, SHA-256, SHA-3 << 1227 1839 1228 config CRYPTO_DRBG_CTR 1840 config CRYPTO_DRBG_CTR 1229 bool "CTR_DRBG" !! 1841 bool "Enable CTR DRBG" 1230 select CRYPTO_AES 1842 select CRYPTO_AES 1231 select CRYPTO_CTR 1843 select CRYPTO_CTR 1232 help 1844 help 1233 CTR_DRBG variant as defined in NIST !! 1845 Enable the CTR DRBG variant as defined in NIST SP800-90A. 1234 << 1235 This uses the AES cipher algorithm << 1236 1846 1237 config CRYPTO_DRBG 1847 config CRYPTO_DRBG 1238 tristate 1848 tristate 1239 default CRYPTO_DRBG_MENU 1849 default CRYPTO_DRBG_MENU 1240 select CRYPTO_RNG 1850 select CRYPTO_RNG 1241 select CRYPTO_JITTERENTROPY 1851 select CRYPTO_JITTERENTROPY 1242 1852 1243 endif # if CRYPTO_DRBG_MENU 1853 endif # if CRYPTO_DRBG_MENU 1244 1854 1245 config CRYPTO_JITTERENTROPY 1855 config CRYPTO_JITTERENTROPY 1246 tristate "CPU Jitter Non-Deterministi !! 1856 tristate "Jitterentropy Non-Deterministic Random Number Generator" 1247 select CRYPTO_RNG 1857 select CRYPTO_RNG 1248 select CRYPTO_SHA3 << 1249 help 1858 help 1250 CPU Jitter RNG (Random Number Gener !! 1859 The Jitterentropy RNG is a noise that is intended 1251 !! 1860 to provide seed to another RNG. The RNG does not 1252 A non-physical non-deterministic (" !! 1861 perform any cryptographic whitening of the generated 1253 compliant with NIST SP800-90B) inte !! 1862 random numbers. This Jitterentropy RNG registers with 1254 deterministic RNG (e.g., per NIST S !! 1863 the kernel crypto API and can be used by any caller. 1255 This RNG does not perform any crypt << 1256 random numbers. << 1257 << 1258 See https://www.chronox.de/jent/ << 1259 << 1260 if CRYPTO_JITTERENTROPY << 1261 if CRYPTO_FIPS && EXPERT << 1262 << 1263 choice << 1264 prompt "CPU Jitter RNG Memory Size" << 1265 default CRYPTO_JITTERENTROPY_MEMSIZE_ << 1266 help << 1267 The Jitter RNG measures the executi << 1268 Multiple consecutive memory accesse << 1269 size fits into a cache (e.g. L1), o << 1270 to that cache is measured. The clos << 1271 the less variations are measured an << 1272 obtained. Thus, if the memory size << 1273 obtained entropy is less than if th << 1274 L1 + L2, which in turn is less if t << 1275 L1 + L2 + L3. Thus, by selecting a << 1276 the entropy rate produced by the Ji << 1277 << 1278 config CRYPTO_JITTERENTROPY_MEMSIZE_2 << 1279 bool "2048 Bytes (default)" << 1280 << 1281 config CRYPTO_JITTERENTROPY_MEMSIZE_1 << 1282 bool "128 kBytes" << 1283 << 1284 config CRYPTO_JITTERENTROPY_MEMSIZE_1 << 1285 bool "1024 kBytes" << 1286 << 1287 config CRYPTO_JITTERENTROPY_MEMSIZE_8 << 1288 bool "8192 kBytes" << 1289 endchoice << 1290 << 1291 config CRYPTO_JITTERENTROPY_MEMORY_BLOCKS << 1292 int << 1293 default 64 if CRYPTO_JITTERENTROPY_ME << 1294 default 512 if CRYPTO_JITTERENTROPY_M << 1295 default 1024 if CRYPTO_JITTERENTROPY_ << 1296 default 4096 if CRYPTO_JITTERENTROPY_ << 1297 << 1298 config CRYPTO_JITTERENTROPY_MEMORY_BLOCKSIZE << 1299 int << 1300 default 32 if CRYPTO_JITTERENTROPY_ME << 1301 default 256 if CRYPTO_JITTERENTROPY_M << 1302 default 1024 if CRYPTO_JITTERENTROPY_ << 1303 default 2048 if CRYPTO_JITTERENTROPY_ << 1304 << 1305 config CRYPTO_JITTERENTROPY_OSR << 1306 int "CPU Jitter RNG Oversampling Rate << 1307 range 1 15 << 1308 default 3 << 1309 help << 1310 The Jitter RNG allows the specifica << 1311 The Jitter RNG operation requires a << 1312 measurements to produce one output << 1313 OSR value is multiplied with the am << 1314 generate one output block. Thus, th << 1315 by the OSR factor. The oversampling << 1316 on hardware whose timers deliver li << 1317 the timer is coarse) by setting the << 1318 trade-off, however, is that the Jit << 1319 to generate random numbers. << 1320 << 1321 config CRYPTO_JITTERENTROPY_TESTINTERFACE << 1322 bool "CPU Jitter RNG Test Interface" << 1323 help << 1324 The test interface allows a privile << 1325 the raw unconditioned high resoluti << 1326 is collected by the Jitter RNG for << 1327 this data is used at the same time << 1328 the Jitter RNG operates in an insec << 1329 recording is enabled. This interfac << 1330 intended for testing purposes and i << 1331 production systems. << 1332 << 1333 The raw noise data can be obtained << 1334 debugfs file. Using the option << 1335 jitterentropy_testing.boot_raw_hire << 1336 the first 1000 entropy events since << 1337 << 1338 If unsure, select N. << 1339 << 1340 endif # if CRYPTO_FIPS && EXPERT << 1341 << 1342 if !(CRYPTO_FIPS && EXPERT) << 1343 << 1344 config CRYPTO_JITTERENTROPY_MEMORY_BLOCKS << 1345 int << 1346 default 64 << 1347 << 1348 config CRYPTO_JITTERENTROPY_MEMORY_BLOCKSIZE << 1349 int << 1350 default 32 << 1351 << 1352 config CRYPTO_JITTERENTROPY_OSR << 1353 int << 1354 default 1 << 1355 << 1356 config CRYPTO_JITTERENTROPY_TESTINTERFACE << 1357 bool << 1358 << 1359 endif # if !(CRYPTO_FIPS && EXPERT) << 1360 endif # if CRYPTO_JITTERENTROPY << 1361 << 1362 config CRYPTO_KDF800108_CTR << 1363 tristate << 1364 select CRYPTO_HMAC << 1365 select CRYPTO_SHA256 << 1366 << 1367 endmenu << 1368 menu "Userspace interface" << 1369 1864 1370 config CRYPTO_USER_API 1865 config CRYPTO_USER_API 1371 tristate 1866 tristate 1372 1867 1373 config CRYPTO_USER_API_HASH 1868 config CRYPTO_USER_API_HASH 1374 tristate "Hash algorithms" !! 1869 tristate "User-space interface for hash algorithms" 1375 depends on NET 1870 depends on NET 1376 select CRYPTO_HASH 1871 select CRYPTO_HASH 1377 select CRYPTO_USER_API 1872 select CRYPTO_USER_API 1378 help 1873 help 1379 Enable the userspace interface for !! 1874 This option enables the user-spaces interface for hash 1380 !! 1875 algorithms. 1381 See Documentation/crypto/userspace- << 1382 https://www.chronox.de/libkcapi/htm << 1383 1876 1384 config CRYPTO_USER_API_SKCIPHER 1877 config CRYPTO_USER_API_SKCIPHER 1385 tristate "Symmetric key cipher algori !! 1878 tristate "User-space interface for symmetric key cipher algorithms" 1386 depends on NET 1879 depends on NET 1387 select CRYPTO_SKCIPHER 1880 select CRYPTO_SKCIPHER 1388 select CRYPTO_USER_API 1881 select CRYPTO_USER_API 1389 help 1882 help 1390 Enable the userspace interface for !! 1883 This option enables the user-spaces interface for symmetric 1391 !! 1884 key cipher algorithms. 1392 See Documentation/crypto/userspace- << 1393 https://www.chronox.de/libkcapi/htm << 1394 1885 1395 config CRYPTO_USER_API_RNG 1886 config CRYPTO_USER_API_RNG 1396 tristate "RNG (random number generato !! 1887 tristate "User-space interface for random number generator algorithms" 1397 depends on NET 1888 depends on NET 1398 select CRYPTO_RNG 1889 select CRYPTO_RNG 1399 select CRYPTO_USER_API 1890 select CRYPTO_USER_API 1400 help 1891 help 1401 Enable the userspace interface for !! 1892 This option enables the user-spaces interface for random 1402 algorithms. !! 1893 number generator algorithms. 1403 << 1404 See Documentation/crypto/userspace- << 1405 https://www.chronox.de/libkcapi/htm << 1406 1894 1407 config CRYPTO_USER_API_RNG_CAVP 1895 config CRYPTO_USER_API_RNG_CAVP 1408 bool "Enable CAVP testing of DRBG" 1896 bool "Enable CAVP testing of DRBG" 1409 depends on CRYPTO_USER_API_RNG && CRY 1897 depends on CRYPTO_USER_API_RNG && CRYPTO_DRBG 1410 help 1898 help 1411 Enable extra APIs in the userspace !! 1899 This option enables extra API for CAVP testing via the user-space 1412 (Cryptographic Algorithm Validation !! 1900 interface: resetting of DRBG entropy, and providing Additional Data. 1413 - resetting DRBG entropy << 1414 - providing Additional Data << 1415 << 1416 This should only be enabled for CAV 1901 This should only be enabled for CAVP testing. You should say 1417 no unless you know what this is. 1902 no unless you know what this is. 1418 1903 1419 config CRYPTO_USER_API_AEAD 1904 config CRYPTO_USER_API_AEAD 1420 tristate "AEAD cipher algorithms" !! 1905 tristate "User-space interface for AEAD cipher algorithms" 1421 depends on NET 1906 depends on NET 1422 select CRYPTO_AEAD 1907 select CRYPTO_AEAD 1423 select CRYPTO_SKCIPHER 1908 select CRYPTO_SKCIPHER 1424 select CRYPTO_NULL 1909 select CRYPTO_NULL 1425 select CRYPTO_USER_API 1910 select CRYPTO_USER_API 1426 help 1911 help 1427 Enable the userspace interface for !! 1912 This option enables the user-spaces interface for AEAD 1428 !! 1913 cipher algorithms. 1429 See Documentation/crypto/userspace- << 1430 https://www.chronox.de/libkcapi/htm << 1431 1914 1432 config CRYPTO_USER_API_ENABLE_OBSOLETE 1915 config CRYPTO_USER_API_ENABLE_OBSOLETE 1433 bool "Obsolete cryptographic algorith !! 1916 bool "Enable obsolete cryptographic algorithms for userspace" 1434 depends on CRYPTO_USER_API 1917 depends on CRYPTO_USER_API 1435 default y 1918 default y 1436 help 1919 help 1437 Allow obsolete cryptographic algori 1920 Allow obsolete cryptographic algorithms to be selected that have 1438 already been phased out from intern 1921 already been phased out from internal use by the kernel, and are 1439 only useful for userspace clients t 1922 only useful for userspace clients that still rely on them. 1440 1923 1441 endmenu !! 1924 config CRYPTO_STATS >> 1925 bool "Crypto usage statistics for User-space" >> 1926 depends on CRYPTO_USER >> 1927 help >> 1928 This option enables the gathering of crypto stats. >> 1929 This will collect: >> 1930 - encrypt/decrypt size and numbers of symmeric operations >> 1931 - compress/decompress size and numbers of compress operations >> 1932 - size and numbers of hash operations >> 1933 - encrypt/decrypt/sign/verify numbers for asymmetric operations >> 1934 - generate/seed numbers for rng operations 1442 1935 1443 config CRYPTO_HASH_INFO 1936 config CRYPTO_HASH_INFO 1444 bool 1937 bool 1445 1938 1446 if !KMSAN # avoid false positives from assemb !! 1939 source "lib/crypto/Kconfig" 1447 if ARM << 1448 source "arch/arm/crypto/Kconfig" << 1449 endif << 1450 if ARM64 << 1451 source "arch/arm64/crypto/Kconfig" << 1452 endif << 1453 if LOONGARCH << 1454 source "arch/loongarch/crypto/Kconfig" << 1455 endif << 1456 if MIPS << 1457 source "arch/mips/crypto/Kconfig" << 1458 endif << 1459 if PPC << 1460 source "arch/powerpc/crypto/Kconfig" << 1461 endif << 1462 if RISCV << 1463 source "arch/riscv/crypto/Kconfig" << 1464 endif << 1465 if S390 << 1466 source "arch/s390/crypto/Kconfig" << 1467 endif << 1468 if SPARC << 1469 source "arch/sparc/crypto/Kconfig" << 1470 endif << 1471 if X86 << 1472 source "arch/x86/crypto/Kconfig" << 1473 endif << 1474 endif << 1475 << 1476 source "drivers/crypto/Kconfig" 1940 source "drivers/crypto/Kconfig" 1477 source "crypto/asymmetric_keys/Kconfig" 1941 source "crypto/asymmetric_keys/Kconfig" 1478 source "certs/Kconfig" 1942 source "certs/Kconfig" 1479 1943 1480 endif # if CRYPTO 1944 endif # if CRYPTO
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.