1 # SPDX-License-Identifier: GPL-2.0 1 # SPDX-License-Identifier: GPL-2.0 2 # 2 # 3 # Generic algorithms support 3 # Generic algorithms support 4 # 4 # 5 config XOR_BLOCKS 5 config XOR_BLOCKS 6 tristate 6 tristate 7 7 8 # 8 # 9 # async_tx api: hardware offloaded memory tran 9 # async_tx api: hardware offloaded memory transfer/transform support 10 # 10 # 11 source "crypto/async_tx/Kconfig" 11 source "crypto/async_tx/Kconfig" 12 12 13 # 13 # 14 # Cryptographic API Configuration 14 # Cryptographic API Configuration 15 # 15 # 16 menuconfig CRYPTO 16 menuconfig CRYPTO 17 tristate "Cryptographic API" 17 tristate "Cryptographic API" 18 select CRYPTO_LIB_UTILS << 19 help 18 help 20 This option provides the core Crypto 19 This option provides the core Cryptographic API. 21 20 22 if CRYPTO 21 if CRYPTO 23 22 24 menu "Crypto core or helper" !! 23 comment "Crypto core or helper" 25 24 26 config CRYPTO_FIPS 25 config CRYPTO_FIPS 27 bool "FIPS 200 compliance" 26 bool "FIPS 200 compliance" 28 depends on (CRYPTO_ANSI_CPRNG || CRYPT 27 depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS 29 depends on (MODULE_SIG || !MODULES) 28 depends on (MODULE_SIG || !MODULES) 30 help 29 help 31 This option enables the fips boot op 30 This option enables the fips boot option which is 32 required if you want the system to o 31 required if you want the system to operate in a FIPS 200 33 certification. You should say no un 32 certification. You should say no unless you know what 34 this is. 33 this is. 35 34 36 config CRYPTO_FIPS_NAME << 37 string "FIPS Module Name" << 38 default "Linux Kernel Cryptographic AP << 39 depends on CRYPTO_FIPS << 40 help << 41 This option sets the FIPS Module nam << 42 the /proc/sys/crypto/fips_name file. << 43 << 44 config CRYPTO_FIPS_CUSTOM_VERSION << 45 bool "Use Custom FIPS Module Version" << 46 depends on CRYPTO_FIPS << 47 default n << 48 << 49 config CRYPTO_FIPS_VERSION << 50 string "FIPS Module Version" << 51 default "(none)" << 52 depends on CRYPTO_FIPS_CUSTOM_VERSION << 53 help << 54 This option provides the ability to << 55 By default the KERNELRELEASE value i << 56 << 57 config CRYPTO_ALGAPI 35 config CRYPTO_ALGAPI 58 tristate 36 tristate 59 select CRYPTO_ALGAPI2 37 select CRYPTO_ALGAPI2 60 help 38 help 61 This option provides the API for cry 39 This option provides the API for cryptographic algorithms. 62 40 63 config CRYPTO_ALGAPI2 41 config CRYPTO_ALGAPI2 64 tristate 42 tristate 65 43 66 config CRYPTO_AEAD 44 config CRYPTO_AEAD 67 tristate 45 tristate 68 select CRYPTO_AEAD2 46 select CRYPTO_AEAD2 69 select CRYPTO_ALGAPI 47 select CRYPTO_ALGAPI 70 48 71 config CRYPTO_AEAD2 49 config CRYPTO_AEAD2 72 tristate 50 tristate 73 select CRYPTO_ALGAPI2 51 select CRYPTO_ALGAPI2 74 !! 52 select CRYPTO_NULL2 75 config CRYPTO_SIG !! 53 select CRYPTO_RNG2 76 tristate << 77 select CRYPTO_SIG2 << 78 select CRYPTO_ALGAPI << 79 << 80 config CRYPTO_SIG2 << 81 tristate << 82 select CRYPTO_ALGAPI2 << 83 54 84 config CRYPTO_SKCIPHER 55 config CRYPTO_SKCIPHER 85 tristate 56 tristate 86 select CRYPTO_SKCIPHER2 57 select CRYPTO_SKCIPHER2 87 select CRYPTO_ALGAPI 58 select CRYPTO_ALGAPI 88 select CRYPTO_ECB << 89 59 90 config CRYPTO_SKCIPHER2 60 config CRYPTO_SKCIPHER2 91 tristate 61 tristate 92 select CRYPTO_ALGAPI2 62 select CRYPTO_ALGAPI2 >> 63 select CRYPTO_RNG2 93 64 94 config CRYPTO_HASH 65 config CRYPTO_HASH 95 tristate 66 tristate 96 select CRYPTO_HASH2 67 select CRYPTO_HASH2 97 select CRYPTO_ALGAPI 68 select CRYPTO_ALGAPI 98 69 99 config CRYPTO_HASH2 70 config CRYPTO_HASH2 100 tristate 71 tristate 101 select CRYPTO_ALGAPI2 72 select CRYPTO_ALGAPI2 102 73 103 config CRYPTO_RNG 74 config CRYPTO_RNG 104 tristate 75 tristate 105 select CRYPTO_RNG2 76 select CRYPTO_RNG2 106 select CRYPTO_ALGAPI 77 select CRYPTO_ALGAPI 107 78 108 config CRYPTO_RNG2 79 config CRYPTO_RNG2 109 tristate 80 tristate 110 select CRYPTO_ALGAPI2 81 select CRYPTO_ALGAPI2 111 82 112 config CRYPTO_RNG_DEFAULT 83 config CRYPTO_RNG_DEFAULT 113 tristate 84 tristate 114 select CRYPTO_DRBG_MENU 85 select CRYPTO_DRBG_MENU 115 86 116 config CRYPTO_AKCIPHER2 87 config CRYPTO_AKCIPHER2 117 tristate 88 tristate 118 select CRYPTO_ALGAPI2 89 select CRYPTO_ALGAPI2 119 90 120 config CRYPTO_AKCIPHER 91 config CRYPTO_AKCIPHER 121 tristate 92 tristate 122 select CRYPTO_AKCIPHER2 93 select CRYPTO_AKCIPHER2 123 select CRYPTO_ALGAPI 94 select CRYPTO_ALGAPI 124 95 125 config CRYPTO_KPP2 96 config CRYPTO_KPP2 126 tristate 97 tristate 127 select CRYPTO_ALGAPI2 98 select CRYPTO_ALGAPI2 128 99 129 config CRYPTO_KPP 100 config CRYPTO_KPP 130 tristate 101 tristate 131 select CRYPTO_ALGAPI 102 select CRYPTO_ALGAPI 132 select CRYPTO_KPP2 103 select CRYPTO_KPP2 133 104 134 config CRYPTO_ACOMP2 105 config CRYPTO_ACOMP2 135 tristate 106 tristate 136 select CRYPTO_ALGAPI2 107 select CRYPTO_ALGAPI2 137 select SGL_ALLOC 108 select SGL_ALLOC 138 109 139 config CRYPTO_ACOMP 110 config CRYPTO_ACOMP 140 tristate 111 tristate 141 select CRYPTO_ALGAPI 112 select CRYPTO_ALGAPI 142 select CRYPTO_ACOMP2 113 select CRYPTO_ACOMP2 143 114 144 config CRYPTO_MANAGER 115 config CRYPTO_MANAGER 145 tristate "Cryptographic algorithm mana 116 tristate "Cryptographic algorithm manager" 146 select CRYPTO_MANAGER2 117 select CRYPTO_MANAGER2 147 help 118 help 148 Create default cryptographic templat 119 Create default cryptographic template instantiations such as 149 cbc(aes). 120 cbc(aes). 150 121 151 config CRYPTO_MANAGER2 122 config CRYPTO_MANAGER2 152 def_tristate CRYPTO_MANAGER || (CRYPTO 123 def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y) 153 select CRYPTO_ACOMP2 << 154 select CRYPTO_AEAD2 124 select CRYPTO_AEAD2 155 select CRYPTO_AKCIPHER2 << 156 select CRYPTO_SIG2 << 157 select CRYPTO_HASH2 125 select CRYPTO_HASH2 158 select CRYPTO_KPP2 << 159 select CRYPTO_RNG2 << 160 select CRYPTO_SKCIPHER2 126 select CRYPTO_SKCIPHER2 >> 127 select CRYPTO_AKCIPHER2 >> 128 select CRYPTO_KPP2 >> 129 select CRYPTO_ACOMP2 161 130 162 config CRYPTO_USER 131 config CRYPTO_USER 163 tristate "Userspace cryptographic algo 132 tristate "Userspace cryptographic algorithm configuration" 164 depends on NET 133 depends on NET 165 select CRYPTO_MANAGER 134 select CRYPTO_MANAGER 166 help 135 help 167 Userspace configuration for cryptogr 136 Userspace configuration for cryptographic instantiations such as 168 cbc(aes). 137 cbc(aes). 169 138 170 config CRYPTO_MANAGER_DISABLE_TESTS 139 config CRYPTO_MANAGER_DISABLE_TESTS 171 bool "Disable run-time self tests" 140 bool "Disable run-time self tests" 172 default y 141 default y 173 help 142 help 174 Disable run-time self tests that nor 143 Disable run-time self tests that normally take place at 175 algorithm registration. 144 algorithm registration. 176 145 177 config CRYPTO_MANAGER_EXTRA_TESTS 146 config CRYPTO_MANAGER_EXTRA_TESTS 178 bool "Enable extra run-time crypto sel 147 bool "Enable extra run-time crypto self tests" 179 depends on DEBUG_KERNEL && !CRYPTO_MAN 148 depends on DEBUG_KERNEL && !CRYPTO_MANAGER_DISABLE_TESTS && CRYPTO_MANAGER 180 help 149 help 181 Enable extra run-time self tests of 150 Enable extra run-time self tests of registered crypto algorithms, 182 including randomized fuzz tests. 151 including randomized fuzz tests. 183 152 184 This is intended for developer use o 153 This is intended for developer use only, as these tests take much 185 longer to run than the normal self t 154 longer to run than the normal self tests. 186 155 >> 156 config CRYPTO_GF128MUL >> 157 tristate >> 158 187 config CRYPTO_NULL 159 config CRYPTO_NULL 188 tristate "Null algorithms" 160 tristate "Null algorithms" 189 select CRYPTO_NULL2 161 select CRYPTO_NULL2 190 help 162 help 191 These are 'Null' algorithms, used by 163 These are 'Null' algorithms, used by IPsec, which do nothing. 192 164 193 config CRYPTO_NULL2 165 config CRYPTO_NULL2 194 tristate 166 tristate 195 select CRYPTO_ALGAPI2 167 select CRYPTO_ALGAPI2 196 select CRYPTO_SKCIPHER2 168 select CRYPTO_SKCIPHER2 197 select CRYPTO_HASH2 169 select CRYPTO_HASH2 198 170 199 config CRYPTO_PCRYPT 171 config CRYPTO_PCRYPT 200 tristate "Parallel crypto engine" 172 tristate "Parallel crypto engine" 201 depends on SMP 173 depends on SMP 202 select PADATA 174 select PADATA 203 select CRYPTO_MANAGER 175 select CRYPTO_MANAGER 204 select CRYPTO_AEAD 176 select CRYPTO_AEAD 205 help 177 help 206 This converts an arbitrary crypto al 178 This converts an arbitrary crypto algorithm into a parallel 207 algorithm that executes in kernel th 179 algorithm that executes in kernel threads. 208 180 209 config CRYPTO_CRYPTD 181 config CRYPTO_CRYPTD 210 tristate "Software async crypto daemon 182 tristate "Software async crypto daemon" 211 select CRYPTO_SKCIPHER 183 select CRYPTO_SKCIPHER 212 select CRYPTO_HASH 184 select CRYPTO_HASH 213 select CRYPTO_MANAGER 185 select CRYPTO_MANAGER 214 help 186 help 215 This is a generic software asynchron 187 This is a generic software asynchronous crypto daemon that 216 converts an arbitrary synchronous so 188 converts an arbitrary synchronous software crypto algorithm 217 into an asynchronous algorithm that 189 into an asynchronous algorithm that executes in a kernel thread. 218 190 219 config CRYPTO_AUTHENC 191 config CRYPTO_AUTHENC 220 tristate "Authenc support" 192 tristate "Authenc support" 221 select CRYPTO_AEAD 193 select CRYPTO_AEAD 222 select CRYPTO_SKCIPHER 194 select CRYPTO_SKCIPHER 223 select CRYPTO_MANAGER 195 select CRYPTO_MANAGER 224 select CRYPTO_HASH 196 select CRYPTO_HASH 225 select CRYPTO_NULL 197 select CRYPTO_NULL 226 help 198 help 227 Authenc: Combined mode wrapper for I 199 Authenc: Combined mode wrapper for IPsec. 228 !! 200 This is required for IPSec. 229 This is required for IPSec ESP (XFRM << 230 201 231 config CRYPTO_TEST 202 config CRYPTO_TEST 232 tristate "Testing module" 203 tristate "Testing module" 233 depends on m || EXPERT 204 depends on m || EXPERT 234 select CRYPTO_MANAGER 205 select CRYPTO_MANAGER 235 help 206 help 236 Quick & dirty crypto test module. 207 Quick & dirty crypto test module. 237 208 238 config CRYPTO_SIMD 209 config CRYPTO_SIMD 239 tristate 210 tristate 240 select CRYPTO_CRYPTD 211 select CRYPTO_CRYPTD 241 212 242 config CRYPTO_ENGINE 213 config CRYPTO_ENGINE 243 tristate 214 tristate 244 215 245 endmenu !! 216 comment "Public-key cryptography" 246 << 247 menu "Public-key cryptography" << 248 217 249 config CRYPTO_RSA 218 config CRYPTO_RSA 250 tristate "RSA (Rivest-Shamir-Adleman)" !! 219 tristate "RSA algorithm" 251 select CRYPTO_AKCIPHER 220 select CRYPTO_AKCIPHER 252 select CRYPTO_MANAGER 221 select CRYPTO_MANAGER 253 select MPILIB 222 select MPILIB 254 select ASN1 223 select ASN1 255 help 224 help 256 RSA (Rivest-Shamir-Adleman) public k !! 225 Generic implementation of the RSA public key algorithm. 257 226 258 config CRYPTO_DH 227 config CRYPTO_DH 259 tristate "DH (Diffie-Hellman)" !! 228 tristate "Diffie-Hellman algorithm" 260 select CRYPTO_KPP 229 select CRYPTO_KPP 261 select MPILIB 230 select MPILIB 262 help 231 help 263 DH (Diffie-Hellman) key exchange alg !! 232 Generic implementation of the Diffie-Hellman algorithm. 264 << 265 config CRYPTO_DH_RFC7919_GROUPS << 266 bool "RFC 7919 FFDHE groups" << 267 depends on CRYPTO_DH << 268 select CRYPTO_RNG_DEFAULT << 269 help << 270 FFDHE (Finite-Field-based Diffie-Hel << 271 defined in RFC7919. << 272 << 273 Support these finite-field groups in << 274 - ffdhe2048, ffdhe3072, ffdhe4096, f << 275 << 276 If unsure, say N. << 277 233 278 config CRYPTO_ECC 234 config CRYPTO_ECC 279 tristate 235 tristate 280 select CRYPTO_RNG_DEFAULT << 281 236 282 config CRYPTO_ECDH 237 config CRYPTO_ECDH 283 tristate "ECDH (Elliptic Curve Diffie- !! 238 tristate "ECDH algorithm" 284 select CRYPTO_ECC 239 select CRYPTO_ECC 285 select CRYPTO_KPP 240 select CRYPTO_KPP >> 241 select CRYPTO_RNG_DEFAULT 286 help 242 help 287 ECDH (Elliptic Curve Diffie-Hellman) !! 243 Generic implementation of the ECDH algorithm 288 using curves P-192, P-256, and P-384 << 289 << 290 config CRYPTO_ECDSA << 291 tristate "ECDSA (Elliptic Curve Digita << 292 select CRYPTO_ECC << 293 select CRYPTO_AKCIPHER << 294 select ASN1 << 295 help << 296 ECDSA (Elliptic Curve Digital Signat << 297 ISO/IEC 14888-3) << 298 using curves P-192, P-256, and P-384 << 299 << 300 Only signature verification is imple << 301 244 302 config CRYPTO_ECRDSA 245 config CRYPTO_ECRDSA 303 tristate "EC-RDSA (Elliptic Curve Russ !! 246 tristate "EC-RDSA (GOST 34.10) algorithm" 304 select CRYPTO_ECC 247 select CRYPTO_ECC 305 select CRYPTO_AKCIPHER 248 select CRYPTO_AKCIPHER 306 select CRYPTO_STREEBOG 249 select CRYPTO_STREEBOG 307 select OID_REGISTRY 250 select OID_REGISTRY 308 select ASN1 251 select ASN1 309 help 252 help 310 Elliptic Curve Russian Digital Signa 253 Elliptic Curve Russian Digital Signature Algorithm (GOST R 34.10-2012, 311 RFC 7091, ISO/IEC 14888-3) !! 254 RFC 7091, ISO/IEC 14888-3:2018) is one of the Russian cryptographic >> 255 standard algorithms (called GOST algorithms). Only signature verification >> 256 is implemented. 312 257 313 One of the Russian cryptographic sta !! 258 config CRYPTO_SM2 314 algorithms). Only signature verifica !! 259 tristate "SM2 algorithm" >> 260 select CRYPTO_SM3 >> 261 select CRYPTO_AKCIPHER >> 262 select CRYPTO_MANAGER >> 263 select MPILIB >> 264 select ASN1 >> 265 help >> 266 Generic implementation of the SM2 public key algorithm. It was >> 267 published by State Encryption Management Bureau, China. >> 268 as specified by OSCCA GM/T 0003.1-2012 -- 0003.5-2012. >> 269 >> 270 References: >> 271 https://tools.ietf.org/html/draft-shen-sm2-ecdsa-02 >> 272 http://www.oscca.gov.cn/sca/xxgk/2010-12/17/content_1002386.shtml >> 273 http://www.gmbz.org.cn/main/bzlb.html 315 274 316 config CRYPTO_CURVE25519 275 config CRYPTO_CURVE25519 317 tristate "Curve25519" !! 276 tristate "Curve25519 algorithm" 318 select CRYPTO_KPP 277 select CRYPTO_KPP 319 select CRYPTO_LIB_CURVE25519_GENERIC 278 select CRYPTO_LIB_CURVE25519_GENERIC 320 help << 321 Curve25519 elliptic curve (RFC7748) << 322 << 323 endmenu << 324 << 325 menu "Block ciphers" << 326 << 327 config CRYPTO_AES << 328 tristate "AES (Advanced Encryption Sta << 329 select CRYPTO_ALGAPI << 330 select CRYPTO_LIB_AES << 331 help << 332 AES cipher algorithms (Rijndael)(FIP << 333 << 334 Rijndael appears to be consistently << 335 both hardware and software across a << 336 environments regardless of its use i << 337 modes. Its key setup time is excelle << 338 good. Rijndael's very low memory req << 339 suited for restricted-space environm << 340 demonstrates excellent performance. << 341 among the easiest to defend against << 342 << 343 The AES specifies three key sizes: 1 << 344 << 345 config CRYPTO_AES_TI << 346 tristate "AES (Advanced Encryption Sta << 347 select CRYPTO_ALGAPI << 348 select CRYPTO_LIB_AES << 349 help << 350 AES cipher algorithms (Rijndael)(FIP << 351 << 352 This is a generic implementation of << 353 data dependent latencies as much as << 354 performance too much. It is intended << 355 and GCM drivers, and other CTR or CM << 356 solely on encryption (although decry << 357 with a more dramatic performance hit << 358 << 359 Instead of using 16 lookup tables of << 360 8 for decryption), this implementati << 361 256 bytes each, and attempts to elim << 362 prefetching the entire table into th << 363 block. Interrupts are also disabled << 364 are evicted when the CPU is interrup << 365 << 366 config CRYPTO_ANUBIS << 367 tristate "Anubis" << 368 depends on CRYPTO_USER_API_ENABLE_OBSO << 369 select CRYPTO_ALGAPI << 370 help << 371 Anubis cipher algorithm << 372 << 373 Anubis is a variable key length ciph << 374 128 bits to 320 bits in length. It << 375 in the NESSIE competition. << 376 279 377 See https://web.archive.org/web/2016 !! 280 config CRYPTO_CURVE25519_X86 378 for further information. !! 281 tristate "x86_64 accelerated Curve25519 scalar multiplication library" 379 !! 282 depends on X86 && 64BIT 380 config CRYPTO_ARIA !! 283 select CRYPTO_LIB_CURVE25519_GENERIC 381 tristate "ARIA" !! 284 select CRYPTO_ARCH_HAVE_LIB_CURVE25519 382 select CRYPTO_ALGAPI << 383 help << 384 ARIA cipher algorithm (RFC5794) << 385 << 386 ARIA is a standard encryption algori << 387 The ARIA specifies three key sizes a << 388 128-bit: 12 rounds. << 389 192-bit: 14 rounds. << 390 256-bit: 16 rounds. << 391 285 392 See: !! 286 comment "Authenticated Encryption with Associated Data" 393 https://seed.kisa.or.kr/kisa/algorit << 394 287 395 config CRYPTO_BLOWFISH !! 288 config CRYPTO_CCM 396 tristate "Blowfish" !! 289 tristate "CCM support" 397 select CRYPTO_ALGAPI !! 290 select CRYPTO_CTR 398 select CRYPTO_BLOWFISH_COMMON !! 291 select CRYPTO_HASH >> 292 select CRYPTO_AEAD >> 293 select CRYPTO_MANAGER 399 help 294 help 400 Blowfish cipher algorithm, by Bruce !! 295 Support for Counter with CBC MAC. Required for IPsec. 401 << 402 This is a variable key length cipher << 403 bits to 448 bits in length. It's fa << 404 designed for use on "large microproc << 405 296 406 See https://www.schneier.com/blowfis !! 297 config CRYPTO_GCM 407 !! 298 tristate "GCM/GMAC support" 408 config CRYPTO_BLOWFISH_COMMON !! 299 select CRYPTO_CTR 409 tristate !! 300 select CRYPTO_AEAD >> 301 select CRYPTO_GHASH >> 302 select CRYPTO_NULL >> 303 select CRYPTO_MANAGER 410 help 304 help 411 Common parts of the Blowfish cipher !! 305 Support for Galois/Counter Mode (GCM) and Galois Message 412 generic c and the assembler implemen !! 306 Authentication Code (GMAC). Required for IPSec. 413 307 414 config CRYPTO_CAMELLIA !! 308 config CRYPTO_CHACHA20POLY1305 415 tristate "Camellia" !! 309 tristate "ChaCha20-Poly1305 AEAD support" 416 select CRYPTO_ALGAPI !! 310 select CRYPTO_CHACHA20 >> 311 select CRYPTO_POLY1305 >> 312 select CRYPTO_AEAD >> 313 select CRYPTO_MANAGER 417 help 314 help 418 Camellia cipher algorithms (ISO/IEC !! 315 ChaCha20-Poly1305 AEAD support, RFC7539. 419 << 420 Camellia is a symmetric key block ci << 421 at NTT and Mitsubishi Electric Corpo << 422 316 423 The Camellia specifies three key siz !! 317 Support for the AEAD wrapper using the ChaCha20 stream cipher combined 424 !! 318 with the Poly1305 authenticator. It is defined in RFC7539 for use in 425 See https://info.isl.ntt.co.jp/crypt !! 319 IETF protocols. 426 << 427 config CRYPTO_CAST_COMMON << 428 tristate << 429 help << 430 Common parts of the CAST cipher algo << 431 generic c and the assembler implemen << 432 320 433 config CRYPTO_CAST5 !! 321 config CRYPTO_AEGIS128 434 tristate "CAST5 (CAST-128)" !! 322 tristate "AEGIS-128 AEAD algorithm" 435 select CRYPTO_ALGAPI !! 323 select CRYPTO_AEAD 436 select CRYPTO_CAST_COMMON !! 324 select CRYPTO_AES # for AES S-box tables 437 help 325 help 438 CAST5 (CAST-128) cipher algorithm (R !! 326 Support for the AEGIS-128 dedicated AEAD algorithm. 439 327 440 config CRYPTO_CAST6 !! 328 config CRYPTO_AEGIS128_SIMD 441 tristate "CAST6 (CAST-256)" !! 329 bool "Support SIMD acceleration for AEGIS-128" 442 select CRYPTO_ALGAPI !! 330 depends on CRYPTO_AEGIS128 && ((ARM || ARM64) && KERNEL_MODE_NEON) 443 select CRYPTO_CAST_COMMON !! 331 default y 444 help << 445 CAST6 (CAST-256) encryption algorith << 446 332 447 config CRYPTO_DES !! 333 config CRYPTO_AEGIS128_AESNI_SSE2 448 tristate "DES and Triple DES EDE" !! 334 tristate "AEGIS-128 AEAD algorithm (x86_64 AESNI+SSE2 implementation)" 449 select CRYPTO_ALGAPI !! 335 depends on X86 && 64BIT 450 select CRYPTO_LIB_DES !! 336 select CRYPTO_AEAD >> 337 select CRYPTO_SIMD 451 help 338 help 452 DES (Data Encryption Standard)(FIPS !! 339 AESNI+SSE2 implementation of the AEGIS-128 dedicated AEAD algorithm. 453 Triple DES EDE (Encrypt/Decrypt/Encr << 454 cipher algorithms << 455 340 456 config CRYPTO_FCRYPT !! 341 config CRYPTO_SEQIV 457 tristate "FCrypt" !! 342 tristate "Sequence Number IV Generator" 458 select CRYPTO_ALGAPI !! 343 select CRYPTO_AEAD 459 select CRYPTO_SKCIPHER 344 select CRYPTO_SKCIPHER 460 help !! 345 select CRYPTO_NULL 461 FCrypt algorithm used by RxRPC !! 346 select CRYPTO_RNG_DEFAULT 462 << 463 See https://ota.polyonymo.us/fcrypt- << 464 << 465 config CRYPTO_KHAZAD << 466 tristate "Khazad" << 467 depends on CRYPTO_USER_API_ENABLE_OBSO << 468 select CRYPTO_ALGAPI << 469 help << 470 Khazad cipher algorithm << 471 << 472 Khazad was a finalist in the initial << 473 an algorithm optimized for 64-bit pr << 474 on 32-bit processors. Khazad uses a << 475 << 476 See https://web.archive.org/web/2017 << 477 for further information. << 478 << 479 config CRYPTO_SEED << 480 tristate "SEED" << 481 depends on CRYPTO_USER_API_ENABLE_OBSO << 482 select CRYPTO_ALGAPI << 483 help << 484 SEED cipher algorithm (RFC4269, ISO/ << 485 << 486 SEED is a 128-bit symmetric key bloc << 487 developed by KISA (Korea Information << 488 national standard encryption algorit << 489 It is a 16 round block cipher with t << 490 << 491 See https://seed.kisa.or.kr/kisa/alg << 492 for further information. << 493 << 494 config CRYPTO_SERPENT << 495 tristate "Serpent" << 496 select CRYPTO_ALGAPI << 497 help << 498 Serpent cipher algorithm, by Anderso << 499 << 500 Keys are allowed to be from 0 to 256 << 501 of 8 bits. << 502 << 503 See https://www.cl.cam.ac.uk/~rja14/ << 504 << 505 config CRYPTO_SM4 << 506 tristate << 507 << 508 config CRYPTO_SM4_GENERIC << 509 tristate "SM4 (ShangMi 4)" << 510 select CRYPTO_ALGAPI << 511 select CRYPTO_SM4 << 512 help << 513 SM4 cipher algorithms (OSCCA GB/T 32 << 514 ISO/IEC 18033-3:2010/Amd 1:2021) << 515 << 516 SM4 (GBT.32907-2016) is a cryptograp << 517 Organization of State Commercial Adm << 518 as an authorized cryptographic algor << 519 << 520 SMS4 was originally created for use << 521 networks, and is mandated in the Chi << 522 Wireless LAN WAPI (Wired Authenticat << 523 (GB.15629.11-2003). << 524 << 525 The latest SM4 standard (GBT.32907-2 << 526 standardized through TC 260 of the S << 527 of the People's Republic of China (S << 528 << 529 The input, output, and key of SMS4 a << 530 << 531 See https://eprint.iacr.org/2008/329 << 532 << 533 If unsure, say N. << 534 << 535 config CRYPTO_TEA << 536 tristate "TEA, XTEA and XETA" << 537 depends on CRYPTO_USER_API_ENABLE_OBSO << 538 select CRYPTO_ALGAPI << 539 help << 540 TEA (Tiny Encryption Algorithm) ciph << 541 << 542 Tiny Encryption Algorithm is a simpl << 543 many rounds for security. It is ver << 544 little memory. << 545 << 546 Xtendend Tiny Encryption Algorithm i << 547 the TEA algorithm to address a poten << 548 in the TEA algorithm. << 549 << 550 Xtendend Encryption Tiny Algorithm i << 551 of the XTEA algorithm for compatibil << 552 << 553 config CRYPTO_TWOFISH << 554 tristate "Twofish" << 555 select CRYPTO_ALGAPI << 556 select CRYPTO_TWOFISH_COMMON << 557 help << 558 Twofish cipher algorithm << 559 << 560 Twofish was submitted as an AES (Adv << 561 candidate cipher by researchers at C << 562 16 round block cipher supporting key << 563 bits. << 564 << 565 See https://www.schneier.com/twofish << 566 << 567 config CRYPTO_TWOFISH_COMMON << 568 tristate << 569 help << 570 Common parts of the Twofish cipher a << 571 generic c and the assembler implemen << 572 << 573 endmenu << 574 << 575 menu "Length-preserving ciphers and modes" << 576 << 577 config CRYPTO_ADIANTUM << 578 tristate "Adiantum" << 579 select CRYPTO_CHACHA20 << 580 select CRYPTO_LIB_POLY1305_GENERIC << 581 select CRYPTO_NHPOLY1305 << 582 select CRYPTO_MANAGER 347 select CRYPTO_MANAGER 583 help 348 help 584 Adiantum tweakable, length-preservin !! 349 This IV generator generates an IV based on a sequence number by 585 !! 350 xoring it with a salt. This algorithm is mainly useful for CTR 586 Designed for fast and secure disk en << 587 CPUs without dedicated crypto instru << 588 each sector using the XChaCha12 stre << 589 an ε-almost-∆-universal hash func << 590 the AES-256 block cipher on a single << 591 without AES instructions, Adiantum i << 592 AES-XTS. << 593 << 594 Adiantum's security is provably redu << 595 underlying stream and block ciphers, << 596 bound. Unlike XTS, Adiantum is a tr << 597 mode, so it actually provides an eve << 598 security than XTS, subject to the se << 599 << 600 If unsure, say N. << 601 351 602 config CRYPTO_ARC4 !! 352 config CRYPTO_ECHAINIV 603 tristate "ARC4 (Alleged Rivest Cipher !! 353 tristate "Encrypted Chain IV Generator" 604 depends on CRYPTO_USER_API_ENABLE_OBSO !! 354 select CRYPTO_AEAD 605 select CRYPTO_SKCIPHER !! 355 select CRYPTO_NULL 606 select CRYPTO_LIB_ARC4 !! 356 select CRYPTO_RNG_DEFAULT >> 357 select CRYPTO_MANAGER 607 help 358 help 608 ARC4 cipher algorithm !! 359 This IV generator generates an IV based on the encryption of >> 360 a sequence number xored with a salt. This is the default >> 361 algorithm for CBC. 609 362 610 ARC4 is a stream cipher using keys r !! 363 comment "Block modes" 611 bits in length. This algorithm is r << 612 WEP, but it should not be for other << 613 weakness of the algorithm. << 614 364 615 config CRYPTO_CHACHA20 !! 365 config CRYPTO_CBC 616 tristate "ChaCha" !! 366 tristate "CBC support" 617 select CRYPTO_LIB_CHACHA_GENERIC << 618 select CRYPTO_SKCIPHER 367 select CRYPTO_SKCIPHER >> 368 select CRYPTO_MANAGER 619 help 369 help 620 The ChaCha20, XChaCha20, and XChaCha !! 370 CBC: Cipher Block Chaining mode 621 !! 371 This block cipher algorithm is required for IPSec. 622 ChaCha20 is a 256-bit high-speed str << 623 Bernstein and further specified in R << 624 This is the portable C implementatio << 625 https://cr.yp.to/chacha/chacha-20080 << 626 << 627 XChaCha20 is the application of the << 628 rather than to Salsa20. XChaCha20 e << 629 from 64 bits (or 96 bits using the R << 630 while provably retaining ChaCha20's << 631 https://cr.yp.to/snuffle/xsalsa-2008 << 632 << 633 XChaCha12 is XChaCha20 reduced to 12 << 634 reduced security margin but increase << 635 in some performance-sensitive scenar << 636 372 637 config CRYPTO_CBC !! 373 config CRYPTO_CFB 638 tristate "CBC (Cipher Block Chaining)" !! 374 tristate "CFB support" 639 select CRYPTO_SKCIPHER 375 select CRYPTO_SKCIPHER 640 select CRYPTO_MANAGER 376 select CRYPTO_MANAGER 641 help 377 help 642 CBC (Cipher Block Chaining) mode (NI !! 378 CFB: Cipher FeedBack mode 643 !! 379 This block cipher algorithm is required for TPM2 Cryptography. 644 This block cipher mode is required f << 645 380 646 config CRYPTO_CTR 381 config CRYPTO_CTR 647 tristate "CTR (Counter)" !! 382 tristate "CTR support" 648 select CRYPTO_SKCIPHER 383 select CRYPTO_SKCIPHER 649 select CRYPTO_MANAGER 384 select CRYPTO_MANAGER 650 help 385 help 651 CTR (Counter) mode (NIST SP800-38A) !! 386 CTR: Counter mode >> 387 This block cipher algorithm is required for IPSec. 652 388 653 config CRYPTO_CTS 389 config CRYPTO_CTS 654 tristate "CTS (Cipher Text Stealing)" !! 390 tristate "CTS support" 655 select CRYPTO_SKCIPHER 391 select CRYPTO_SKCIPHER 656 select CRYPTO_MANAGER 392 select CRYPTO_MANAGER 657 help 393 help 658 CBC-CS3 variant of CTS (Cipher Text !! 394 CTS: Cipher Text Stealing 659 Addendum to SP800-38A (October 2010) !! 395 This is the Cipher Text Stealing mode as described by 660 !! 396 Section 8 of rfc2040 and referenced by rfc3962 >> 397 (rfc3962 includes errata information in its Appendix A) or >> 398 CBC-CS3 as defined by NIST in Sp800-38A addendum from Oct 2010. 661 This mode is required for Kerberos g 399 This mode is required for Kerberos gss mechanism support 662 for AES encryption. 400 for AES encryption. 663 401 664 config CRYPTO_ECB !! 402 See: https://csrc.nist.gov/publications/detail/sp/800-38a/addendum/final 665 tristate "ECB (Electronic Codebook)" << 666 select CRYPTO_SKCIPHER2 << 667 select CRYPTO_MANAGER << 668 help << 669 ECB (Electronic Codebook) mode (NIST << 670 << 671 config CRYPTO_HCTR2 << 672 tristate "HCTR2" << 673 select CRYPTO_XCTR << 674 select CRYPTO_POLYVAL << 675 select CRYPTO_MANAGER << 676 help << 677 HCTR2 length-preserving encryption m << 678 << 679 A mode for storage encryption that i << 680 instructions to accelerate AES and c << 681 x86 processors with AES-NI and CLMUL << 682 ARMv8 crypto extensions. << 683 403 684 See https://eprint.iacr.org/2021/144 !! 404 config CRYPTO_ECB 685 !! 405 tristate "ECB support" 686 config CRYPTO_KEYWRAP << 687 tristate "KW (AES Key Wrap)" << 688 select CRYPTO_SKCIPHER 406 select CRYPTO_SKCIPHER 689 select CRYPTO_MANAGER 407 select CRYPTO_MANAGER 690 help 408 help 691 KW (AES Key Wrap) authenticated encr !! 409 ECB: Electronic CodeBook mode 692 and RFC3394) without padding. !! 410 This is the simplest block cipher algorithm. It simply encrypts >> 411 the input block by block. 693 412 694 config CRYPTO_LRW 413 config CRYPTO_LRW 695 tristate "LRW (Liskov Rivest Wagner)" !! 414 tristate "LRW support" 696 select CRYPTO_LIB_GF128MUL << 697 select CRYPTO_SKCIPHER 415 select CRYPTO_SKCIPHER 698 select CRYPTO_MANAGER 416 select CRYPTO_MANAGER 699 select CRYPTO_ECB !! 417 select CRYPTO_GF128MUL 700 help 418 help 701 LRW (Liskov Rivest Wagner) mode !! 419 LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable 702 << 703 A tweakable, non malleable, non mova << 704 narrow block cipher mode for dm-cryp 420 narrow block cipher mode for dm-crypt. Use it with cipher 705 specification string aes-lrw-benbi, 421 specification string aes-lrw-benbi, the key must be 256, 320 or 384. 706 The first 128, 192 or 256 bits in th 422 The first 128, 192 or 256 bits in the key are used for AES and the 707 rest is used to tie each cipher bloc 423 rest is used to tie each cipher block to its logical position. 708 424 709 See https://people.csail.mit.edu/riv !! 425 config CRYPTO_OFB 710 !! 426 tristate "OFB support" 711 config CRYPTO_PCBC << 712 tristate "PCBC (Propagating Cipher Blo << 713 select CRYPTO_SKCIPHER 427 select CRYPTO_SKCIPHER 714 select CRYPTO_MANAGER 428 select CRYPTO_MANAGER 715 help 429 help 716 PCBC (Propagating Cipher Block Chain !! 430 OFB: the Output Feedback mode makes a block cipher into a synchronous 717 !! 431 stream cipher. It generates keystream blocks, which are then XORed 718 This block cipher mode is required f !! 432 with the plaintext blocks to get the ciphertext. Flipping a bit in the >> 433 ciphertext produces a flipped bit in the plaintext at the same >> 434 location. This property allows many error correcting codes to function >> 435 normally even when applied before encryption. 719 436 720 config CRYPTO_XCTR !! 437 config CRYPTO_PCBC 721 tristate !! 438 tristate "PCBC support" 722 select CRYPTO_SKCIPHER 439 select CRYPTO_SKCIPHER 723 select CRYPTO_MANAGER 440 select CRYPTO_MANAGER 724 help 441 help 725 XCTR (XOR Counter) mode for HCTR2 !! 442 PCBC: Propagating Cipher Block Chaining mode 726 !! 443 This block cipher algorithm is required for RxRPC. 727 This blockcipher mode is a variant o << 728 addition rather than big-endian arit << 729 << 730 XCTR mode is used to implement HCTR2 << 731 444 732 config CRYPTO_XTS 445 config CRYPTO_XTS 733 tristate "XTS (XOR Encrypt XOR with ci !! 446 tristate "XTS support" 734 select CRYPTO_SKCIPHER 447 select CRYPTO_SKCIPHER 735 select CRYPTO_MANAGER 448 select CRYPTO_MANAGER 736 select CRYPTO_ECB 449 select CRYPTO_ECB 737 help 450 help 738 XTS (XOR Encrypt XOR with ciphertext !! 451 XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain, 739 and IEEE 1619) !! 452 key size 256, 384 or 512 bits. This implementation currently >> 453 can't handle a sectorsize which is not a multiple of 16 bytes. 740 454 741 Use with aes-xts-plain, key size 256 !! 455 config CRYPTO_KEYWRAP 742 implementation currently can't handl !! 456 tristate "Key wrapping support" 743 multiple of 16 bytes. !! 457 select CRYPTO_SKCIPHER >> 458 select CRYPTO_MANAGER >> 459 help >> 460 Support for key wrapping (NIST SP800-38F / RFC3394) without >> 461 padding. 744 462 745 config CRYPTO_NHPOLY1305 463 config CRYPTO_NHPOLY1305 746 tristate 464 tristate 747 select CRYPTO_HASH 465 select CRYPTO_HASH 748 select CRYPTO_LIB_POLY1305_GENERIC 466 select CRYPTO_LIB_POLY1305_GENERIC 749 467 750 endmenu !! 468 config CRYPTO_NHPOLY1305_SSE2 751 !! 469 tristate "NHPoly1305 hash function (x86_64 SSE2 implementation)" 752 menu "AEAD (authenticated encryption with asso !! 470 depends on X86 && 64BIT 753 !! 471 select CRYPTO_NHPOLY1305 754 config CRYPTO_AEGIS128 << 755 tristate "AEGIS-128" << 756 select CRYPTO_AEAD << 757 select CRYPTO_AES # for AES S-box tab << 758 help 472 help 759 AEGIS-128 AEAD algorithm !! 473 SSE2 optimized implementation of the hash function used by the >> 474 Adiantum encryption mode. 760 475 761 config CRYPTO_AEGIS128_SIMD !! 476 config CRYPTO_NHPOLY1305_AVX2 762 bool "AEGIS-128 (arm NEON, arm64 NEON) !! 477 tristate "NHPoly1305 hash function (x86_64 AVX2 implementation)" 763 depends on CRYPTO_AEGIS128 && ((ARM || !! 478 depends on X86 && 64BIT 764 default y !! 479 select CRYPTO_NHPOLY1305 765 help 480 help 766 AEGIS-128 AEAD algorithm !! 481 AVX2 optimized implementation of the hash function used by the 767 !! 482 Adiantum encryption mode. 768 Architecture: arm or arm64 using: << 769 - NEON (Advanced SIMD) extension << 770 483 771 config CRYPTO_CHACHA20POLY1305 !! 484 config CRYPTO_ADIANTUM 772 tristate "ChaCha20-Poly1305" !! 485 tristate "Adiantum support" 773 select CRYPTO_CHACHA20 486 select CRYPTO_CHACHA20 774 select CRYPTO_POLY1305 !! 487 select CRYPTO_LIB_POLY1305_GENERIC 775 select CRYPTO_AEAD !! 488 select CRYPTO_NHPOLY1305 776 select CRYPTO_MANAGER << 777 help << 778 ChaCha20 stream cipher and Poly1305 << 779 mode (RFC8439) << 780 << 781 config CRYPTO_CCM << 782 tristate "CCM (Counter with Cipher Blo << 783 select CRYPTO_CTR << 784 select CRYPTO_HASH << 785 select CRYPTO_AEAD << 786 select CRYPTO_MANAGER << 787 help << 788 CCM (Counter with Cipher Block Chain << 789 authenticated encryption mode (NIST << 790 << 791 config CRYPTO_GCM << 792 tristate "GCM (Galois/Counter Mode) an << 793 select CRYPTO_CTR << 794 select CRYPTO_AEAD << 795 select CRYPTO_GHASH << 796 select CRYPTO_NULL << 797 select CRYPTO_MANAGER << 798 help << 799 GCM (Galois/Counter Mode) authentica << 800 (GCM Message Authentication Code) (N << 801 << 802 This is required for IPSec ESP (XFRM << 803 << 804 config CRYPTO_GENIV << 805 tristate << 806 select CRYPTO_AEAD << 807 select CRYPTO_NULL << 808 select CRYPTO_MANAGER 489 select CRYPTO_MANAGER 809 select CRYPTO_RNG_DEFAULT << 810 << 811 config CRYPTO_SEQIV << 812 tristate "Sequence Number IV Generator << 813 select CRYPTO_GENIV << 814 help 490 help 815 Sequence Number IV generator !! 491 Adiantum is a tweakable, length-preserving encryption mode 816 !! 492 designed for fast and secure disk encryption, especially on 817 This IV generator generates an IV ba !! 493 CPUs without dedicated crypto instructions. It encrypts 818 xoring it with a salt. This algorit !! 494 each sector using the XChaCha12 stream cipher, two passes of 819 !! 495 an ε-almost-∆-universal hash function, and an invocation of 820 This is required for IPsec ESP (XFRM !! 496 the AES-256 block cipher on a single 16-byte block. On CPUs >> 497 without AES instructions, Adiantum is much faster than >> 498 AES-XTS. 821 499 822 config CRYPTO_ECHAINIV !! 500 Adiantum's security is provably reducible to that of its 823 tristate "Encrypted Chain IV Generator !! 501 underlying stream and block ciphers, subject to a security 824 select CRYPTO_GENIV !! 502 bound. Unlike XTS, Adiantum is a true wide-block encryption 825 help !! 503 mode, so it actually provides an even stronger notion of 826 Encrypted Chain IV generator !! 504 security than XTS, subject to the security bound. 827 505 828 This IV generator generates an IV ba !! 506 If unsure, say N. 829 a sequence number xored with a salt. << 830 algorithm for CBC. << 831 507 832 config CRYPTO_ESSIV 508 config CRYPTO_ESSIV 833 tristate "Encrypted Salt-Sector IV Gen !! 509 tristate "ESSIV support for block encryption" 834 select CRYPTO_AUTHENC 510 select CRYPTO_AUTHENC 835 help 511 help 836 Encrypted Salt-Sector IV generator !! 512 Encrypted salt-sector initialization vector (ESSIV) is an IV 837 !! 513 generation method that is used in some cases by fscrypt and/or 838 This IV generator is used in some ca << 839 dm-crypt. It uses the hash of the bl 514 dm-crypt. It uses the hash of the block encryption key as the 840 symmetric key for a block encryption 515 symmetric key for a block encryption pass applied to the input 841 IV, making low entropy IV sources mo 516 IV, making low entropy IV sources more suitable for block 842 encryption. 517 encryption. 843 518 844 This driver implements a crypto API 519 This driver implements a crypto API template that can be 845 instantiated either as an skcipher o 520 instantiated either as an skcipher or as an AEAD (depending on the 846 type of the first template argument) 521 type of the first template argument), and which defers encryption 847 and decryption requests to the encap 522 and decryption requests to the encapsulated cipher after applying 848 ESSIV to the input IV. Note that in 523 ESSIV to the input IV. Note that in the AEAD case, it is assumed 849 that the keys are presented in the s 524 that the keys are presented in the same format used by the authenc 850 template, and that the IV appears at 525 template, and that the IV appears at the end of the authenticated 851 associated data (AAD) region (which 526 associated data (AAD) region (which is how dm-crypt uses it.) 852 527 853 Note that the use of ESSIV is not re 528 Note that the use of ESSIV is not recommended for new deployments, 854 and so this only needs to be enabled 529 and so this only needs to be enabled when interoperability with 855 existing encrypted volumes of filesy 530 existing encrypted volumes of filesystems is required, or when 856 building for a particular system tha 531 building for a particular system that requires it (e.g., when 857 the SoC in question has accelerated 532 the SoC in question has accelerated CBC but not XTS, making CBC 858 combined with ESSIV the only feasibl 533 combined with ESSIV the only feasible mode for h/w accelerated 859 block encryption) 534 block encryption) 860 535 861 endmenu !! 536 comment "Hash modes" >> 537 >> 538 config CRYPTO_CMAC >> 539 tristate "CMAC support" >> 540 select CRYPTO_HASH >> 541 select CRYPTO_MANAGER >> 542 help >> 543 Cipher-based Message Authentication Code (CMAC) specified by >> 544 The National Institute of Standards and Technology (NIST). 862 545 863 menu "Hashes, digests, and MACs" !! 546 https://tools.ietf.org/html/rfc4493 >> 547 http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf 864 548 865 config CRYPTO_BLAKE2B !! 549 config CRYPTO_HMAC 866 tristate "BLAKE2b" !! 550 tristate "HMAC support" >> 551 select CRYPTO_HASH >> 552 select CRYPTO_MANAGER >> 553 help >> 554 HMAC: Keyed-Hashing for Message Authentication (RFC2104). >> 555 This is required for IPSec. >> 556 >> 557 config CRYPTO_XCBC >> 558 tristate "XCBC support" >> 559 select CRYPTO_HASH >> 560 select CRYPTO_MANAGER >> 561 help >> 562 XCBC: Keyed-Hashing with encryption algorithm >> 563 https://www.ietf.org/rfc/rfc3566.txt >> 564 http://csrc.nist.gov/encryption/modes/proposedmodes/ >> 565 xcbc-mac/xcbc-mac-spec.pdf >> 566 >> 567 config CRYPTO_VMAC >> 568 tristate "VMAC support" 867 select CRYPTO_HASH 569 select CRYPTO_HASH >> 570 select CRYPTO_MANAGER 868 help 571 help 869 BLAKE2b cryptographic hash function !! 572 VMAC is a message authentication algorithm designed for >> 573 very high speed on 64-bit architectures. >> 574 >> 575 See also: >> 576 <https://fastcrypto.org/vmac> >> 577 >> 578 comment "Digest" 870 579 871 BLAKE2b is optimized for 64-bit plat !! 580 config CRYPTO_CRC32C 872 of any size between 1 and 64 bytes. !! 581 tristate "CRC32c CRC algorithm" >> 582 select CRYPTO_HASH >> 583 select CRC32 >> 584 help >> 585 Castagnoli, et al Cyclic Redundancy-Check Algorithm. Used >> 586 by iSCSI for header and data digests and by others. >> 587 See Castagnoli93. Module will be crc32c. >> 588 >> 589 config CRYPTO_CRC32C_INTEL >> 590 tristate "CRC32c INTEL hardware acceleration" >> 591 depends on X86 >> 592 select CRYPTO_HASH >> 593 help >> 594 In Intel processor with SSE4.2 supported, the processor will >> 595 support CRC32C implementation using hardware accelerated CRC32 >> 596 instruction. This option will create 'crc32c-intel' module, >> 597 which will enable any routine to use the CRC32 instruction to >> 598 gain performance compared with software implementation. >> 599 Module will be crc32c-intel. >> 600 >> 601 config CRYPTO_CRC32C_VPMSUM >> 602 tristate "CRC32c CRC algorithm (powerpc64)" >> 603 depends on PPC64 && ALTIVEC >> 604 select CRYPTO_HASH >> 605 select CRC32 >> 606 help >> 607 CRC32c algorithm implemented using vector polynomial multiply-sum >> 608 (vpmsum) instructions, introduced in POWER8. Enable on POWER8 >> 609 and newer processors for improved performance. >> 610 >> 611 >> 612 config CRYPTO_CRC32C_SPARC64 >> 613 tristate "CRC32c CRC algorithm (SPARC64)" >> 614 depends on SPARC64 >> 615 select CRYPTO_HASH >> 616 select CRC32 >> 617 help >> 618 CRC32c CRC algorithm implemented using sparc64 crypto instructions, >> 619 when available. >> 620 >> 621 config CRYPTO_CRC32 >> 622 tristate "CRC32 CRC algorithm" >> 623 select CRYPTO_HASH >> 624 select CRC32 >> 625 help >> 626 CRC-32-IEEE 802.3 cyclic redundancy-check algorithm. >> 627 Shash crypto api wrappers to crc32_le function. >> 628 >> 629 config CRYPTO_CRC32_PCLMUL >> 630 tristate "CRC32 PCLMULQDQ hardware acceleration" >> 631 depends on X86 >> 632 select CRYPTO_HASH >> 633 select CRC32 >> 634 help >> 635 From Intel Westmere and AMD Bulldozer processor with SSE4.2 >> 636 and PCLMULQDQ supported, the processor will support >> 637 CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ >> 638 instruction. This option will create 'crc32-pclmul' module, >> 639 which will enable any routine to use the CRC-32-IEEE 802.3 checksum >> 640 and gain better performance as compared with the table implementation. >> 641 >> 642 config CRYPTO_CRC32_MIPS >> 643 tristate "CRC32c and CRC32 CRC algorithm (MIPS)" >> 644 depends on MIPS_CRC_SUPPORT >> 645 select CRYPTO_HASH >> 646 help >> 647 CRC32c and CRC32 CRC algorithms implemented using mips crypto >> 648 instructions, when available. >> 649 >> 650 >> 651 config CRYPTO_XXHASH >> 652 tristate "xxHash hash algorithm" >> 653 select CRYPTO_HASH >> 654 select XXHASH >> 655 help >> 656 xxHash non-cryptographic hash algorithm. Extremely fast, working at >> 657 speeds close to RAM limits. >> 658 >> 659 config CRYPTO_BLAKE2B >> 660 tristate "BLAKE2b digest algorithm" >> 661 select CRYPTO_HASH >> 662 help >> 663 Implementation of cryptographic hash function BLAKE2b (or just BLAKE2), >> 664 optimized for 64bit platforms and can produce digests of any size >> 665 between 1 to 64. The keyed hash is also implemented. 873 666 874 This module provides the following a 667 This module provides the following algorithms: >> 668 875 - blake2b-160 669 - blake2b-160 876 - blake2b-256 670 - blake2b-256 877 - blake2b-384 671 - blake2b-384 878 - blake2b-512 672 - blake2b-512 879 673 880 Used by the btrfs filesystem. !! 674 See https://blake2.net for further information. >> 675 >> 676 config CRYPTO_BLAKE2S >> 677 tristate "BLAKE2s digest algorithm" >> 678 select CRYPTO_LIB_BLAKE2S_GENERIC >> 679 select CRYPTO_HASH >> 680 help >> 681 Implementation of cryptographic hash function BLAKE2s >> 682 optimized for 8-32bit platforms and can produce digests of any size >> 683 between 1 to 32. The keyed hash is also implemented. >> 684 >> 685 This module provides the following algorithms: >> 686 >> 687 - blake2s-128 >> 688 - blake2s-160 >> 689 - blake2s-224 >> 690 - blake2s-256 881 691 882 See https://blake2.net for further i 692 See https://blake2.net for further information. 883 693 884 config CRYPTO_CMAC !! 694 config CRYPTO_BLAKE2S_X86 885 tristate "CMAC (Cipher-based MAC)" !! 695 tristate "BLAKE2s digest algorithm (x86 accelerated version)" >> 696 depends on X86 && 64BIT >> 697 select CRYPTO_LIB_BLAKE2S_GENERIC >> 698 select CRYPTO_ARCH_HAVE_LIB_BLAKE2S >> 699 >> 700 config CRYPTO_CRCT10DIF >> 701 tristate "CRCT10DIF algorithm" 886 select CRYPTO_HASH 702 select CRYPTO_HASH 887 select CRYPTO_MANAGER << 888 help 703 help 889 CMAC (Cipher-based Message Authentic !! 704 CRC T10 Data Integrity Field computation is being cast as 890 mode (NIST SP800-38B and IETF RFC449 !! 705 a crypto transform. This allows for faster crc t10 diff >> 706 transforms to be used if they are available. >> 707 >> 708 config CRYPTO_CRCT10DIF_PCLMUL >> 709 tristate "CRCT10DIF PCLMULQDQ hardware acceleration" >> 710 depends on X86 && 64BIT && CRC_T10DIF >> 711 select CRYPTO_HASH >> 712 help >> 713 For x86_64 processors with SSE4.2 and PCLMULQDQ supported, >> 714 CRC T10 DIF PCLMULQDQ computation can be hardware >> 715 accelerated PCLMULQDQ instruction. This option will create >> 716 'crct10dif-pclmul' module, which is faster when computing the >> 717 crct10dif checksum as compared with the generic table implementation. >> 718 >> 719 config CRYPTO_CRCT10DIF_VPMSUM >> 720 tristate "CRC32T10DIF powerpc64 hardware acceleration" >> 721 depends on PPC64 && ALTIVEC && CRC_T10DIF >> 722 select CRYPTO_HASH >> 723 help >> 724 CRC10T10DIF algorithm implemented using vector polynomial >> 725 multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on >> 726 POWER8 and newer processors for improved performance. >> 727 >> 728 config CRYPTO_VPMSUM_TESTER >> 729 tristate "Powerpc64 vpmsum hardware acceleration tester" >> 730 depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM >> 731 help >> 732 Stress test for CRC32c and CRC-T10DIF algorithms implemented with >> 733 POWER8 vpmsum instructions. >> 734 Unless you are testing these algorithms, you don't need this. 891 735 892 config CRYPTO_GHASH 736 config CRYPTO_GHASH 893 tristate "GHASH" !! 737 tristate "GHASH hash function" >> 738 select CRYPTO_GF128MUL 894 select CRYPTO_HASH 739 select CRYPTO_HASH 895 select CRYPTO_LIB_GF128MUL << 896 help 740 help 897 GCM GHASH function (NIST SP800-38D) !! 741 GHASH is the hash function used in GCM (Galois/Counter Mode). >> 742 It is not a general-purpose cryptographic hash function. 898 743 899 config CRYPTO_HMAC !! 744 config CRYPTO_POLY1305 900 tristate "HMAC (Keyed-Hash MAC)" !! 745 tristate "Poly1305 authenticator algorithm" 901 select CRYPTO_HASH 746 select CRYPTO_HASH 902 select CRYPTO_MANAGER !! 747 select CRYPTO_LIB_POLY1305_GENERIC 903 help 748 help 904 HMAC (Keyed-Hash Message Authenticat !! 749 Poly1305 authenticator algorithm, RFC7539. 905 RFC2104) !! 750 >> 751 Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. >> 752 It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use >> 753 in IETF protocols. This is the portable C implementation of Poly1305. >> 754 >> 755 config CRYPTO_POLY1305_X86_64 >> 756 tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)" >> 757 depends on X86 && 64BIT >> 758 select CRYPTO_LIB_POLY1305_GENERIC >> 759 select CRYPTO_ARCH_HAVE_LIB_POLY1305 >> 760 help >> 761 Poly1305 authenticator algorithm, RFC7539. >> 762 >> 763 Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. >> 764 It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use >> 765 in IETF protocols. This is the x86_64 assembler implementation using SIMD >> 766 instructions. 906 767 907 This is required for IPsec AH (XFRM_ !! 768 config CRYPTO_POLY1305_MIPS >> 769 tristate "Poly1305 authenticator algorithm (MIPS optimized)" >> 770 depends on MIPS >> 771 select CRYPTO_ARCH_HAVE_LIB_POLY1305 908 772 909 config CRYPTO_MD4 773 config CRYPTO_MD4 910 tristate "MD4" !! 774 tristate "MD4 digest algorithm" 911 select CRYPTO_HASH 775 select CRYPTO_HASH 912 help 776 help 913 MD4 message digest algorithm (RFC132 !! 777 MD4 message digest algorithm (RFC1320). 914 778 915 config CRYPTO_MD5 779 config CRYPTO_MD5 916 tristate "MD5" !! 780 tristate "MD5 digest algorithm" 917 select CRYPTO_HASH 781 select CRYPTO_HASH 918 help 782 help 919 MD5 message digest algorithm (RFC132 !! 783 MD5 message digest algorithm (RFC1321). 920 784 921 config CRYPTO_MICHAEL_MIC !! 785 config CRYPTO_MD5_OCTEON 922 tristate "Michael MIC" !! 786 tristate "MD5 digest algorithm (OCTEON)" >> 787 depends on CPU_CAVIUM_OCTEON >> 788 select CRYPTO_MD5 923 select CRYPTO_HASH 789 select CRYPTO_HASH 924 help 790 help 925 Michael MIC (Message Integrity Code) !! 791 MD5 message digest algorithm (RFC1321) implemented 926 !! 792 using OCTEON crypto instructions, when available. 927 Defined by the IEEE 802.11i TKIP (Te << 928 known as WPA (Wif-Fi Protected Acces << 929 793 930 This algorithm is required for TKIP, !! 794 config CRYPTO_MD5_PPC 931 other purposes because of the weakne !! 795 tristate "MD5 digest algorithm (PPC)" 932 !! 796 depends on PPC 933 config CRYPTO_POLYVAL << 934 tristate << 935 select CRYPTO_HASH 797 select CRYPTO_HASH 936 select CRYPTO_LIB_GF128MUL << 937 help 798 help 938 POLYVAL hash function for HCTR2 !! 799 MD5 message digest algorithm (RFC1321) implemented >> 800 in PPC assembler. 939 801 940 This is used in HCTR2. It is not a !! 802 config CRYPTO_MD5_SPARC64 941 cryptographic hash function. !! 803 tristate "MD5 digest algorithm (SPARC64)" 942 !! 804 depends on SPARC64 943 config CRYPTO_POLY1305 !! 805 select CRYPTO_MD5 944 tristate "Poly1305" << 945 select CRYPTO_HASH 806 select CRYPTO_HASH 946 select CRYPTO_LIB_POLY1305_GENERIC << 947 help 807 help 948 Poly1305 authenticator algorithm (RF !! 808 MD5 message digest algorithm (RFC1321) implemented >> 809 using sparc64 crypto instructions, when available. 949 810 950 Poly1305 is an authenticator algorit !! 811 config CRYPTO_MICHAEL_MIC 951 It is used for the ChaCha20-Poly1305 !! 812 tristate "Michael MIC keyed digest algorithm" 952 in IETF protocols. This is the porta !! 813 select CRYPTO_HASH >> 814 help >> 815 Michael MIC is used for message integrity protection in TKIP >> 816 (IEEE 802.11i). This algorithm is required for TKIP, but it >> 817 should not be used for other purposes because of the weakness >> 818 of the algorithm. 953 819 954 config CRYPTO_RMD160 820 config CRYPTO_RMD160 955 tristate "RIPEMD-160" !! 821 tristate "RIPEMD-160 digest algorithm" 956 select CRYPTO_HASH 822 select CRYPTO_HASH 957 help 823 help 958 RIPEMD-160 hash function (ISO/IEC 10 !! 824 RIPEMD-160 (ISO/IEC 10118-3:2004). 959 825 960 RIPEMD-160 is a 160-bit cryptographi 826 RIPEMD-160 is a 160-bit cryptographic hash function. It is intended 961 to be used as a secure replacement f 827 to be used as a secure replacement for the 128-bit hash functions 962 MD4, MD5 and its predecessor RIPEMD !! 828 MD4, MD5 and it's predecessor RIPEMD 963 (not to be confused with RIPEMD-128) 829 (not to be confused with RIPEMD-128). 964 830 965 Its speed is comparable to SHA-1 and !! 831 It's speed is comparable to SHA1 and there are no known attacks 966 against RIPEMD-160. 832 against RIPEMD-160. 967 833 968 Developed by Hans Dobbertin, Antoon 834 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 969 See https://homes.esat.kuleuven.be/~ !! 835 See <https://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 970 for further information. << 971 836 972 config CRYPTO_SHA1 837 config CRYPTO_SHA1 973 tristate "SHA-1" !! 838 tristate "SHA1 digest algorithm" >> 839 select CRYPTO_HASH >> 840 help >> 841 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). >> 842 >> 843 config CRYPTO_SHA1_SSSE3 >> 844 tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" >> 845 depends on X86 && 64BIT >> 846 select CRYPTO_SHA1 974 select CRYPTO_HASH 847 select CRYPTO_HASH 975 select CRYPTO_LIB_SHA1 << 976 help 848 help 977 SHA-1 secure hash algorithm (FIPS 18 !! 849 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented >> 850 using Supplemental SSE3 (SSSE3) instructions or Advanced Vector >> 851 Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions), >> 852 when available. >> 853 >> 854 config CRYPTO_SHA256_SSSE3 >> 855 tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" >> 856 depends on X86 && 64BIT >> 857 select CRYPTO_SHA256 >> 858 select CRYPTO_HASH >> 859 help >> 860 SHA-256 secure hash standard (DFIPS 180-2) implemented >> 861 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector >> 862 Extensions version 1 (AVX1), or Advanced Vector Extensions >> 863 version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New >> 864 Instructions) when available. >> 865 >> 866 config CRYPTO_SHA512_SSSE3 >> 867 tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)" >> 868 depends on X86 && 64BIT >> 869 select CRYPTO_SHA512 >> 870 select CRYPTO_HASH >> 871 help >> 872 SHA-512 secure hash standard (DFIPS 180-2) implemented >> 873 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector >> 874 Extensions version 1 (AVX1), or Advanced Vector Extensions >> 875 version 2 (AVX2) instructions, when available. >> 876 >> 877 config CRYPTO_SHA1_OCTEON >> 878 tristate "SHA1 digest algorithm (OCTEON)" >> 879 depends on CPU_CAVIUM_OCTEON >> 880 select CRYPTO_SHA1 >> 881 select CRYPTO_HASH >> 882 help >> 883 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented >> 884 using OCTEON crypto instructions, when available. >> 885 >> 886 config CRYPTO_SHA1_SPARC64 >> 887 tristate "SHA1 digest algorithm (SPARC64)" >> 888 depends on SPARC64 >> 889 select CRYPTO_SHA1 >> 890 select CRYPTO_HASH >> 891 help >> 892 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented >> 893 using sparc64 crypto instructions, when available. >> 894 >> 895 config CRYPTO_SHA1_PPC >> 896 tristate "SHA1 digest algorithm (powerpc)" >> 897 depends on PPC >> 898 help >> 899 This is the powerpc hardware accelerated implementation of the >> 900 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). >> 901 >> 902 config CRYPTO_SHA1_PPC_SPE >> 903 tristate "SHA1 digest algorithm (PPC SPE)" >> 904 depends on PPC && SPE >> 905 help >> 906 SHA-1 secure hash standard (DFIPS 180-4) implemented >> 907 using powerpc SPE SIMD instruction set. 978 908 979 config CRYPTO_SHA256 909 config CRYPTO_SHA256 980 tristate "SHA-224 and SHA-256" !! 910 tristate "SHA224 and SHA256 digest algorithm" 981 select CRYPTO_HASH 911 select CRYPTO_HASH 982 select CRYPTO_LIB_SHA256 912 select CRYPTO_LIB_SHA256 983 help 913 help 984 SHA-224 and SHA-256 secure hash algo !! 914 SHA256 secure hash standard (DFIPS 180-2). >> 915 >> 916 This version of SHA implements a 256 bit hash with 128 bits of >> 917 security against collision attacks. >> 918 >> 919 This code also includes SHA-224, a 224 bit hash with 112 bits >> 920 of security against collision attacks. >> 921 >> 922 config CRYPTO_SHA256_PPC_SPE >> 923 tristate "SHA224 and SHA256 digest algorithm (PPC SPE)" >> 924 depends on PPC && SPE >> 925 select CRYPTO_SHA256 >> 926 select CRYPTO_HASH >> 927 help >> 928 SHA224 and SHA256 secure hash standard (DFIPS 180-2) >> 929 implemented using powerpc SPE SIMD instruction set. 985 930 986 This is required for IPsec AH (XFRM_ !! 931 config CRYPTO_SHA256_OCTEON 987 Used by the btrfs filesystem, Ceph, !! 932 tristate "SHA224 and SHA256 digest algorithm (OCTEON)" >> 933 depends on CPU_CAVIUM_OCTEON >> 934 select CRYPTO_SHA256 >> 935 select CRYPTO_HASH >> 936 help >> 937 SHA-256 secure hash standard (DFIPS 180-2) implemented >> 938 using OCTEON crypto instructions, when available. >> 939 >> 940 config CRYPTO_SHA256_SPARC64 >> 941 tristate "SHA224 and SHA256 digest algorithm (SPARC64)" >> 942 depends on SPARC64 >> 943 select CRYPTO_SHA256 >> 944 select CRYPTO_HASH >> 945 help >> 946 SHA-256 secure hash standard (DFIPS 180-2) implemented >> 947 using sparc64 crypto instructions, when available. 988 948 989 config CRYPTO_SHA512 949 config CRYPTO_SHA512 990 tristate "SHA-384 and SHA-512" !! 950 tristate "SHA384 and SHA512 digest algorithms" 991 select CRYPTO_HASH 951 select CRYPTO_HASH 992 help 952 help 993 SHA-384 and SHA-512 secure hash algo !! 953 SHA512 secure hash standard (DFIPS 180-2). 994 954 995 config CRYPTO_SHA3 !! 955 This version of SHA implements a 512 bit hash with 256 bits of 996 tristate "SHA-3" !! 956 security against collision attacks. >> 957 >> 958 This code also includes SHA-384, a 384 bit hash with 192 bits >> 959 of security against collision attacks. >> 960 >> 961 config CRYPTO_SHA512_OCTEON >> 962 tristate "SHA384 and SHA512 digest algorithms (OCTEON)" >> 963 depends on CPU_CAVIUM_OCTEON >> 964 select CRYPTO_SHA512 997 select CRYPTO_HASH 965 select CRYPTO_HASH 998 help 966 help 999 SHA-3 secure hash algorithms (FIPS 2 !! 967 SHA-512 secure hash standard (DFIPS 180-2) implemented >> 968 using OCTEON crypto instructions, when available. 1000 969 1001 config CRYPTO_SM3 !! 970 config CRYPTO_SHA512_SPARC64 1002 tristate !! 971 tristate "SHA384 and SHA512 digest algorithm (SPARC64)" >> 972 depends on SPARC64 >> 973 select CRYPTO_SHA512 >> 974 select CRYPTO_HASH >> 975 help >> 976 SHA-512 secure hash standard (DFIPS 180-2) implemented >> 977 using sparc64 crypto instructions, when available. 1003 978 1004 config CRYPTO_SM3_GENERIC !! 979 config CRYPTO_SHA3 1005 tristate "SM3 (ShangMi 3)" !! 980 tristate "SHA3 digest algorithm" 1006 select CRYPTO_HASH 981 select CRYPTO_HASH 1007 select CRYPTO_SM3 << 1008 help 982 help 1009 SM3 (ShangMi 3) secure hash functio !! 983 SHA-3 secure hash standard (DFIPS 202). It's based on >> 984 cryptographic sponge function family called Keccak. 1010 985 1011 This is part of the Chinese Commerc !! 986 References: >> 987 http://keccak.noekeon.org/ >> 988 >> 989 config CRYPTO_SM3 >> 990 tristate "SM3 digest algorithm" >> 991 select CRYPTO_HASH >> 992 help >> 993 SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3). >> 994 It is part of the Chinese Commercial Cryptography suite. 1012 995 1013 References: 996 References: 1014 http://www.oscca.gov.cn/UpFile/2010 997 http://www.oscca.gov.cn/UpFile/20101222141857786.pdf 1015 https://datatracker.ietf.org/doc/ht 998 https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash 1016 999 1017 config CRYPTO_STREEBOG 1000 config CRYPTO_STREEBOG 1018 tristate "Streebog" !! 1001 tristate "Streebog Hash Function" 1019 select CRYPTO_HASH 1002 select CRYPTO_HASH 1020 help 1003 help 1021 Streebog Hash Function (GOST R 34.1 !! 1004 Streebog Hash Function (GOST R 34.11-2012, RFC 6986) is one of the Russian 1022 !! 1005 cryptographic standard algorithms (called GOST algorithms). 1023 This is one of the Russian cryptogr !! 1006 This setting enables two hash algorithms with 256 and 512 bits output. 1024 GOST algorithms). This setting enab << 1025 256 and 512 bits output. << 1026 1007 1027 References: 1008 References: 1028 https://tc26.ru/upload/iblock/fed/f 1009 https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf 1029 https://tools.ietf.org/html/rfc6986 1010 https://tools.ietf.org/html/rfc6986 1030 1011 1031 config CRYPTO_VMAC !! 1012 config CRYPTO_WP512 1032 tristate "VMAC" !! 1013 tristate "Whirlpool digest algorithms" 1033 select CRYPTO_HASH 1014 select CRYPTO_HASH 1034 select CRYPTO_MANAGER << 1035 help 1015 help 1036 VMAC is a message authentication al !! 1016 Whirlpool hash algorithm 512, 384 and 256-bit hashes 1037 very high speed on 64-bit architect !! 1017 >> 1018 Whirlpool-512 is part of the NESSIE cryptographic primitives. >> 1019 Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard 1038 1020 1039 See https://fastcrypto.org/vmac for !! 1021 See also: >> 1022 <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html> 1040 1023 1041 config CRYPTO_WP512 !! 1024 config CRYPTO_GHASH_CLMUL_NI_INTEL 1042 tristate "Whirlpool" !! 1025 tristate "GHASH hash function (CLMUL-NI accelerated)" 1043 select CRYPTO_HASH !! 1026 depends on X86 && 64BIT >> 1027 select CRYPTO_CRYPTD 1044 help 1028 help 1045 Whirlpool hash function (ISO/IEC 10 !! 1029 This is the x86_64 CLMUL-NI accelerated implementation of >> 1030 GHASH, the hash function used in GCM (Galois/Counter mode). 1046 1031 1047 512, 384 and 256-bit hashes. !! 1032 comment "Ciphers" 1048 1033 1049 Whirlpool-512 is part of the NESSIE !! 1034 config CRYPTO_AES >> 1035 tristate "AES cipher algorithms" >> 1036 select CRYPTO_ALGAPI >> 1037 select CRYPTO_LIB_AES >> 1038 help >> 1039 AES cipher algorithms (FIPS-197). AES uses the Rijndael >> 1040 algorithm. 1050 1041 1051 See https://web.archive.org/web/201 !! 1042 Rijndael appears to be consistently a very good performer in 1052 for further information. !! 1043 both hardware and software across a wide range of computing >> 1044 environments regardless of its use in feedback or non-feedback >> 1045 modes. Its key setup time is excellent, and its key agility is >> 1046 good. Rijndael's very low memory requirements make it very well >> 1047 suited for restricted-space environments, in which it also >> 1048 demonstrates excellent performance. Rijndael's operations are >> 1049 among the easiest to defend against power and timing attacks. 1053 1050 1054 config CRYPTO_XCBC !! 1051 The AES specifies three key sizes: 128, 192 and 256 bits 1055 tristate "XCBC-MAC (Extended Cipher B !! 1052 1056 select CRYPTO_HASH !! 1053 See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information. 1057 select CRYPTO_MANAGER !! 1054 >> 1055 config CRYPTO_AES_TI >> 1056 tristate "Fixed time AES cipher" >> 1057 select CRYPTO_ALGAPI >> 1058 select CRYPTO_LIB_AES 1058 help 1059 help 1059 XCBC-MAC (Extended Cipher Block Cha !! 1060 This is a generic implementation of AES that attempts to eliminate 1060 Code) (RFC3566) !! 1061 data dependent latencies as much as possible without affecting >> 1062 performance too much. It is intended for use by the generic CCM >> 1063 and GCM drivers, and other CTR or CMAC/XCBC based modes that rely >> 1064 solely on encryption (although decryption is supported as well, but >> 1065 with a more dramatic performance hit) 1061 1066 1062 config CRYPTO_XXHASH !! 1067 Instead of using 16 lookup tables of 1 KB each, (8 for encryption and 1063 tristate "xxHash" !! 1068 8 for decryption), this implementation only uses just two S-boxes of 1064 select CRYPTO_HASH !! 1069 256 bytes each, and attempts to eliminate data dependent latencies by 1065 select XXHASH !! 1070 prefetching the entire table into the cache at the start of each >> 1071 block. Interrupts are also disabled to avoid races where cachelines >> 1072 are evicted when the CPU is interrupted to do something else. >> 1073 >> 1074 config CRYPTO_AES_NI_INTEL >> 1075 tristate "AES cipher algorithms (AES-NI)" >> 1076 depends on X86 >> 1077 select CRYPTO_AEAD >> 1078 select CRYPTO_LIB_AES >> 1079 select CRYPTO_ALGAPI >> 1080 select CRYPTO_SKCIPHER >> 1081 select CRYPTO_SIMD 1066 help 1082 help 1067 xxHash non-cryptographic hash algor !! 1083 Use Intel AES-NI instructions for AES algorithm. 1068 1084 1069 Extremely fast, working at speeds c !! 1085 AES cipher algorithms (FIPS-197). AES uses the Rijndael >> 1086 algorithm. 1070 1087 1071 Used by the btrfs filesystem. !! 1088 Rijndael appears to be consistently a very good performer in >> 1089 both hardware and software across a wide range of computing >> 1090 environments regardless of its use in feedback or non-feedback >> 1091 modes. Its key setup time is excellent, and its key agility is >> 1092 good. Rijndael's very low memory requirements make it very well >> 1093 suited for restricted-space environments, in which it also >> 1094 demonstrates excellent performance. Rijndael's operations are >> 1095 among the easiest to defend against power and timing attacks. 1072 1096 1073 endmenu !! 1097 The AES specifies three key sizes: 128, 192 and 256 bits 1074 1098 1075 menu "CRCs (cyclic redundancy checks)" !! 1099 See <http://csrc.nist.gov/encryption/aes/> for more information. 1076 1100 1077 config CRYPTO_CRC32C !! 1101 In addition to AES cipher algorithm support, the acceleration 1078 tristate "CRC32c" !! 1102 for some popular block cipher mode is supported too, including 1079 select CRYPTO_HASH !! 1103 ECB, CBC, LRW, XTS. The 64 bit version has additional 1080 select CRC32 !! 1104 acceleration for CTR. >> 1105 >> 1106 config CRYPTO_AES_SPARC64 >> 1107 tristate "AES cipher algorithms (SPARC64)" >> 1108 depends on SPARC64 >> 1109 select CRYPTO_SKCIPHER 1081 help 1110 help 1082 CRC32c CRC algorithm with the iSCSI !! 1111 Use SPARC64 crypto opcodes for AES algorithm. 1083 1112 1084 A 32-bit CRC (cyclic redundancy che !! 1113 AES cipher algorithms (FIPS-197). AES uses the Rijndael 1085 by G. Castagnoli, S. Braeuer and M. !! 1114 algorithm. 1086 Redundancy-Check Codes with 24 and << 1087 on Communications, Vol. 41, No. 6, << 1088 iSCSI. << 1089 1115 1090 Used by btrfs, ext4, jbd2, NVMeoF/T !! 1116 Rijndael appears to be consistently a very good performer in >> 1117 both hardware and software across a wide range of computing >> 1118 environments regardless of its use in feedback or non-feedback >> 1119 modes. Its key setup time is excellent, and its key agility is >> 1120 good. Rijndael's very low memory requirements make it very well >> 1121 suited for restricted-space environments, in which it also >> 1122 demonstrates excellent performance. Rijndael's operations are >> 1123 among the easiest to defend against power and timing attacks. 1091 1124 1092 config CRYPTO_CRC32 !! 1125 The AES specifies three key sizes: 128, 192 and 256 bits 1093 tristate "CRC32" !! 1126 1094 select CRYPTO_HASH !! 1127 See <http://csrc.nist.gov/encryption/aes/> for more information. 1095 select CRC32 !! 1128 >> 1129 In addition to AES cipher algorithm support, the acceleration >> 1130 for some popular block cipher mode is supported too, including >> 1131 ECB and CBC. >> 1132 >> 1133 config CRYPTO_AES_PPC_SPE >> 1134 tristate "AES cipher algorithms (PPC SPE)" >> 1135 depends on PPC && SPE >> 1136 select CRYPTO_SKCIPHER 1096 help 1137 help 1097 CRC32 CRC algorithm (IEEE 802.3) !! 1138 AES cipher algorithms (FIPS-197). Additionally the acceleration >> 1139 for popular block cipher modes ECB, CBC, CTR and XTS is supported. >> 1140 This module should only be used for low power (router) devices >> 1141 without hardware AES acceleration (e.g. caam crypto). It reduces the >> 1142 size of the AES tables from 16KB to 8KB + 256 bytes and mitigates >> 1143 timining attacks. Nevertheless it might be not as secure as other >> 1144 architecture specific assembler implementations that work on 1KB >> 1145 tables or 256 bytes S-boxes. 1098 1146 1099 Used by RoCEv2 and f2fs. !! 1147 config CRYPTO_ANUBIS >> 1148 tristate "Anubis cipher algorithm" >> 1149 depends on CRYPTO_USER_API_ENABLE_OBSOLETE >> 1150 select CRYPTO_ALGAPI >> 1151 help >> 1152 Anubis cipher algorithm. 1100 1153 1101 config CRYPTO_CRCT10DIF !! 1154 Anubis is a variable key length cipher which can use keys from 1102 tristate "CRCT10DIF" !! 1155 128 bits to 320 bits in length. It was evaluated as a entrant 1103 select CRYPTO_HASH !! 1156 in the NESSIE competition. >> 1157 >> 1158 See also: >> 1159 <https://www.cosic.esat.kuleuven.be/nessie/reports/> >> 1160 <http://www.larc.usp.br/~pbarreto/AnubisPage.html> >> 1161 >> 1162 config CRYPTO_ARC4 >> 1163 tristate "ARC4 cipher algorithm" >> 1164 depends on CRYPTO_USER_API_ENABLE_OBSOLETE >> 1165 select CRYPTO_SKCIPHER >> 1166 select CRYPTO_LIB_ARC4 1104 help 1167 help 1105 CRC16 CRC algorithm used for the T1 !! 1168 ARC4 cipher algorithm. 1106 1169 1107 CRC algorithm used by the SCSI Bloc !! 1170 ARC4 is a stream cipher using keys ranging from 8 bits to 2048 >> 1171 bits in length. This algorithm is required for driver-based >> 1172 WEP, but it should not be for other purposes because of the >> 1173 weakness of the algorithm. 1108 1174 1109 config CRYPTO_CRC64_ROCKSOFT !! 1175 config CRYPTO_BLOWFISH 1110 tristate "CRC64 based on Rocksoft Mod !! 1176 tristate "Blowfish cipher algorithm" 1111 depends on CRC64 !! 1177 select CRYPTO_ALGAPI 1112 select CRYPTO_HASH !! 1178 select CRYPTO_BLOWFISH_COMMON >> 1179 help >> 1180 Blowfish cipher algorithm, by Bruce Schneier. >> 1181 >> 1182 This is a variable key length cipher which can use keys from 32 >> 1183 bits to 448 bits in length. It's fast, simple and specifically >> 1184 designed for use on "large microprocessors". >> 1185 >> 1186 See also: >> 1187 <https://www.schneier.com/blowfish.html> >> 1188 >> 1189 config CRYPTO_BLOWFISH_COMMON >> 1190 tristate 1113 help 1191 help 1114 CRC64 CRC algorithm based on the Ro !! 1192 Common parts of the Blowfish cipher algorithm shared by the >> 1193 generic c and the assembler implementations. 1115 1194 1116 Used by the NVMe implementation of !! 1195 See also: >> 1196 <https://www.schneier.com/blowfish.html> 1117 1197 1118 See https://zlib.net/crc_v3.txt !! 1198 config CRYPTO_BLOWFISH_X86_64 >> 1199 tristate "Blowfish cipher algorithm (x86_64)" >> 1200 depends on X86 && 64BIT >> 1201 select CRYPTO_SKCIPHER >> 1202 select CRYPTO_BLOWFISH_COMMON >> 1203 imply CRYPTO_CTR >> 1204 help >> 1205 Blowfish cipher algorithm (x86_64), by Bruce Schneier. 1119 1206 1120 endmenu !! 1207 This is a variable key length cipher which can use keys from 32 >> 1208 bits to 448 bits in length. It's fast, simple and specifically >> 1209 designed for use on "large microprocessors". 1121 1210 1122 menu "Compression" !! 1211 See also: >> 1212 <https://www.schneier.com/blowfish.html> >> 1213 >> 1214 config CRYPTO_CAMELLIA >> 1215 tristate "Camellia cipher algorithms" >> 1216 depends on CRYPTO >> 1217 select CRYPTO_ALGAPI >> 1218 help >> 1219 Camellia cipher algorithms module. >> 1220 >> 1221 Camellia is a symmetric key block cipher developed jointly >> 1222 at NTT and Mitsubishi Electric Corporation. >> 1223 >> 1224 The Camellia specifies three key sizes: 128, 192 and 256 bits. >> 1225 >> 1226 See also: >> 1227 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> >> 1228 >> 1229 config CRYPTO_CAMELLIA_X86_64 >> 1230 tristate "Camellia cipher algorithm (x86_64)" >> 1231 depends on X86 && 64BIT >> 1232 depends on CRYPTO >> 1233 select CRYPTO_SKCIPHER >> 1234 imply CRYPTO_CTR >> 1235 help >> 1236 Camellia cipher algorithm module (x86_64). >> 1237 >> 1238 Camellia is a symmetric key block cipher developed jointly >> 1239 at NTT and Mitsubishi Electric Corporation. >> 1240 >> 1241 The Camellia specifies three key sizes: 128, 192 and 256 bits. >> 1242 >> 1243 See also: >> 1244 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> >> 1245 >> 1246 config CRYPTO_CAMELLIA_AESNI_AVX_X86_64 >> 1247 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)" >> 1248 depends on X86 && 64BIT >> 1249 depends on CRYPTO >> 1250 select CRYPTO_SKCIPHER >> 1251 select CRYPTO_CAMELLIA_X86_64 >> 1252 select CRYPTO_SIMD >> 1253 imply CRYPTO_XTS >> 1254 help >> 1255 Camellia cipher algorithm module (x86_64/AES-NI/AVX). >> 1256 >> 1257 Camellia is a symmetric key block cipher developed jointly >> 1258 at NTT and Mitsubishi Electric Corporation. >> 1259 >> 1260 The Camellia specifies three key sizes: 128, 192 and 256 bits. >> 1261 >> 1262 See also: >> 1263 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> >> 1264 >> 1265 config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64 >> 1266 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)" >> 1267 depends on X86 && 64BIT >> 1268 depends on CRYPTO >> 1269 select CRYPTO_CAMELLIA_AESNI_AVX_X86_64 >> 1270 help >> 1271 Camellia cipher algorithm module (x86_64/AES-NI/AVX2). >> 1272 >> 1273 Camellia is a symmetric key block cipher developed jointly >> 1274 at NTT and Mitsubishi Electric Corporation. >> 1275 >> 1276 The Camellia specifies three key sizes: 128, 192 and 256 bits. >> 1277 >> 1278 See also: >> 1279 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> >> 1280 >> 1281 config CRYPTO_CAMELLIA_SPARC64 >> 1282 tristate "Camellia cipher algorithm (SPARC64)" >> 1283 depends on SPARC64 >> 1284 depends on CRYPTO >> 1285 select CRYPTO_ALGAPI >> 1286 select CRYPTO_SKCIPHER >> 1287 help >> 1288 Camellia cipher algorithm module (SPARC64). >> 1289 >> 1290 Camellia is a symmetric key block cipher developed jointly >> 1291 at NTT and Mitsubishi Electric Corporation. >> 1292 >> 1293 The Camellia specifies three key sizes: 128, 192 and 256 bits. >> 1294 >> 1295 See also: >> 1296 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> >> 1297 >> 1298 config CRYPTO_CAST_COMMON >> 1299 tristate >> 1300 help >> 1301 Common parts of the CAST cipher algorithms shared by the >> 1302 generic c and the assembler implementations. >> 1303 >> 1304 config CRYPTO_CAST5 >> 1305 tristate "CAST5 (CAST-128) cipher algorithm" >> 1306 select CRYPTO_ALGAPI >> 1307 select CRYPTO_CAST_COMMON >> 1308 help >> 1309 The CAST5 encryption algorithm (synonymous with CAST-128) is >> 1310 described in RFC2144. >> 1311 >> 1312 config CRYPTO_CAST5_AVX_X86_64 >> 1313 tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)" >> 1314 depends on X86 && 64BIT >> 1315 select CRYPTO_SKCIPHER >> 1316 select CRYPTO_CAST5 >> 1317 select CRYPTO_CAST_COMMON >> 1318 select CRYPTO_SIMD >> 1319 imply CRYPTO_CTR >> 1320 help >> 1321 The CAST5 encryption algorithm (synonymous with CAST-128) is >> 1322 described in RFC2144. >> 1323 >> 1324 This module provides the Cast5 cipher algorithm that processes >> 1325 sixteen blocks parallel using the AVX instruction set. >> 1326 >> 1327 config CRYPTO_CAST6 >> 1328 tristate "CAST6 (CAST-256) cipher algorithm" >> 1329 select CRYPTO_ALGAPI >> 1330 select CRYPTO_CAST_COMMON >> 1331 help >> 1332 The CAST6 encryption algorithm (synonymous with CAST-256) is >> 1333 described in RFC2612. >> 1334 >> 1335 config CRYPTO_CAST6_AVX_X86_64 >> 1336 tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)" >> 1337 depends on X86 && 64BIT >> 1338 select CRYPTO_SKCIPHER >> 1339 select CRYPTO_CAST6 >> 1340 select CRYPTO_CAST_COMMON >> 1341 select CRYPTO_SIMD >> 1342 imply CRYPTO_XTS >> 1343 imply CRYPTO_CTR >> 1344 help >> 1345 The CAST6 encryption algorithm (synonymous with CAST-256) is >> 1346 described in RFC2612. >> 1347 >> 1348 This module provides the Cast6 cipher algorithm that processes >> 1349 eight blocks parallel using the AVX instruction set. >> 1350 >> 1351 config CRYPTO_DES >> 1352 tristate "DES and Triple DES EDE cipher algorithms" >> 1353 select CRYPTO_ALGAPI >> 1354 select CRYPTO_LIB_DES >> 1355 help >> 1356 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3). >> 1357 >> 1358 config CRYPTO_DES_SPARC64 >> 1359 tristate "DES and Triple DES EDE cipher algorithms (SPARC64)" >> 1360 depends on SPARC64 >> 1361 select CRYPTO_ALGAPI >> 1362 select CRYPTO_LIB_DES >> 1363 select CRYPTO_SKCIPHER >> 1364 help >> 1365 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3), >> 1366 optimized using SPARC64 crypto opcodes. >> 1367 >> 1368 config CRYPTO_DES3_EDE_X86_64 >> 1369 tristate "Triple DES EDE cipher algorithm (x86-64)" >> 1370 depends on X86 && 64BIT >> 1371 select CRYPTO_SKCIPHER >> 1372 select CRYPTO_LIB_DES >> 1373 imply CRYPTO_CTR >> 1374 help >> 1375 Triple DES EDE (FIPS 46-3) algorithm. >> 1376 >> 1377 This module provides implementation of the Triple DES EDE cipher >> 1378 algorithm that is optimized for x86-64 processors. Two versions of >> 1379 algorithm are provided; regular processing one input block and >> 1380 one that processes three blocks parallel. >> 1381 >> 1382 config CRYPTO_FCRYPT >> 1383 tristate "FCrypt cipher algorithm" >> 1384 select CRYPTO_ALGAPI >> 1385 select CRYPTO_SKCIPHER >> 1386 help >> 1387 FCrypt algorithm used by RxRPC. >> 1388 >> 1389 config CRYPTO_KHAZAD >> 1390 tristate "Khazad cipher algorithm" >> 1391 depends on CRYPTO_USER_API_ENABLE_OBSOLETE >> 1392 select CRYPTO_ALGAPI >> 1393 help >> 1394 Khazad cipher algorithm. >> 1395 >> 1396 Khazad was a finalist in the initial NESSIE competition. It is >> 1397 an algorithm optimized for 64-bit processors with good performance >> 1398 on 32-bit processors. Khazad uses an 128 bit key size. >> 1399 >> 1400 See also: >> 1401 <http://www.larc.usp.br/~pbarreto/KhazadPage.html> >> 1402 >> 1403 config CRYPTO_CHACHA20 >> 1404 tristate "ChaCha stream cipher algorithms" >> 1405 select CRYPTO_LIB_CHACHA_GENERIC >> 1406 select CRYPTO_SKCIPHER >> 1407 help >> 1408 The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms. >> 1409 >> 1410 ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J. >> 1411 Bernstein and further specified in RFC7539 for use in IETF protocols. >> 1412 This is the portable C implementation of ChaCha20. See also: >> 1413 <https://cr.yp.to/chacha/chacha-20080128.pdf> >> 1414 >> 1415 XChaCha20 is the application of the XSalsa20 construction to ChaCha20 >> 1416 rather than to Salsa20. XChaCha20 extends ChaCha20's nonce length >> 1417 from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits, >> 1418 while provably retaining ChaCha20's security. See also: >> 1419 <https://cr.yp.to/snuffle/xsalsa-20081128.pdf> >> 1420 >> 1421 XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly >> 1422 reduced security margin but increased performance. It can be needed >> 1423 in some performance-sensitive scenarios. >> 1424 >> 1425 config CRYPTO_CHACHA20_X86_64 >> 1426 tristate "ChaCha stream cipher algorithms (x86_64/SSSE3/AVX2/AVX-512VL)" >> 1427 depends on X86 && 64BIT >> 1428 select CRYPTO_SKCIPHER >> 1429 select CRYPTO_LIB_CHACHA_GENERIC >> 1430 select CRYPTO_ARCH_HAVE_LIB_CHACHA >> 1431 help >> 1432 SSSE3, AVX2, and AVX-512VL optimized implementations of the ChaCha20, >> 1433 XChaCha20, and XChaCha12 stream ciphers. >> 1434 >> 1435 config CRYPTO_CHACHA_MIPS >> 1436 tristate "ChaCha stream cipher algorithms (MIPS 32r2 optimized)" >> 1437 depends on CPU_MIPS32_R2 >> 1438 select CRYPTO_SKCIPHER >> 1439 select CRYPTO_ARCH_HAVE_LIB_CHACHA >> 1440 >> 1441 config CRYPTO_SEED >> 1442 tristate "SEED cipher algorithm" >> 1443 depends on CRYPTO_USER_API_ENABLE_OBSOLETE >> 1444 select CRYPTO_ALGAPI >> 1445 help >> 1446 SEED cipher algorithm (RFC4269). >> 1447 >> 1448 SEED is a 128-bit symmetric key block cipher that has been >> 1449 developed by KISA (Korea Information Security Agency) as a >> 1450 national standard encryption algorithm of the Republic of Korea. >> 1451 It is a 16 round block cipher with the key size of 128 bit. >> 1452 >> 1453 See also: >> 1454 <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp> >> 1455 >> 1456 config CRYPTO_SERPENT >> 1457 tristate "Serpent cipher algorithm" >> 1458 select CRYPTO_ALGAPI >> 1459 help >> 1460 Serpent cipher algorithm, by Anderson, Biham & Knudsen. >> 1461 >> 1462 Keys are allowed to be from 0 to 256 bits in length, in steps >> 1463 of 8 bits. >> 1464 >> 1465 See also: >> 1466 <https://www.cl.cam.ac.uk/~rja14/serpent.html> >> 1467 >> 1468 config CRYPTO_SERPENT_SSE2_X86_64 >> 1469 tristate "Serpent cipher algorithm (x86_64/SSE2)" >> 1470 depends on X86 && 64BIT >> 1471 select CRYPTO_SKCIPHER >> 1472 select CRYPTO_SERPENT >> 1473 select CRYPTO_SIMD >> 1474 imply CRYPTO_CTR >> 1475 help >> 1476 Serpent cipher algorithm, by Anderson, Biham & Knudsen. >> 1477 >> 1478 Keys are allowed to be from 0 to 256 bits in length, in steps >> 1479 of 8 bits. >> 1480 >> 1481 This module provides Serpent cipher algorithm that processes eight >> 1482 blocks parallel using SSE2 instruction set. >> 1483 >> 1484 See also: >> 1485 <https://www.cl.cam.ac.uk/~rja14/serpent.html> >> 1486 >> 1487 config CRYPTO_SERPENT_SSE2_586 >> 1488 tristate "Serpent cipher algorithm (i586/SSE2)" >> 1489 depends on X86 && !64BIT >> 1490 select CRYPTO_SKCIPHER >> 1491 select CRYPTO_SERPENT >> 1492 select CRYPTO_SIMD >> 1493 imply CRYPTO_CTR >> 1494 help >> 1495 Serpent cipher algorithm, by Anderson, Biham & Knudsen. >> 1496 >> 1497 Keys are allowed to be from 0 to 256 bits in length, in steps >> 1498 of 8 bits. >> 1499 >> 1500 This module provides Serpent cipher algorithm that processes four >> 1501 blocks parallel using SSE2 instruction set. >> 1502 >> 1503 See also: >> 1504 <https://www.cl.cam.ac.uk/~rja14/serpent.html> >> 1505 >> 1506 config CRYPTO_SERPENT_AVX_X86_64 >> 1507 tristate "Serpent cipher algorithm (x86_64/AVX)" >> 1508 depends on X86 && 64BIT >> 1509 select CRYPTO_SKCIPHER >> 1510 select CRYPTO_SERPENT >> 1511 select CRYPTO_SIMD >> 1512 imply CRYPTO_XTS >> 1513 imply CRYPTO_CTR >> 1514 help >> 1515 Serpent cipher algorithm, by Anderson, Biham & Knudsen. >> 1516 >> 1517 Keys are allowed to be from 0 to 256 bits in length, in steps >> 1518 of 8 bits. >> 1519 >> 1520 This module provides the Serpent cipher algorithm that processes >> 1521 eight blocks parallel using the AVX instruction set. >> 1522 >> 1523 See also: >> 1524 <https://www.cl.cam.ac.uk/~rja14/serpent.html> >> 1525 >> 1526 config CRYPTO_SERPENT_AVX2_X86_64 >> 1527 tristate "Serpent cipher algorithm (x86_64/AVX2)" >> 1528 depends on X86 && 64BIT >> 1529 select CRYPTO_SERPENT_AVX_X86_64 >> 1530 help >> 1531 Serpent cipher algorithm, by Anderson, Biham & Knudsen. >> 1532 >> 1533 Keys are allowed to be from 0 to 256 bits in length, in steps >> 1534 of 8 bits. >> 1535 >> 1536 This module provides Serpent cipher algorithm that processes 16 >> 1537 blocks parallel using AVX2 instruction set. >> 1538 >> 1539 See also: >> 1540 <https://www.cl.cam.ac.uk/~rja14/serpent.html> >> 1541 >> 1542 config CRYPTO_SM4 >> 1543 tristate "SM4 cipher algorithm" >> 1544 select CRYPTO_ALGAPI >> 1545 help >> 1546 SM4 cipher algorithms (OSCCA GB/T 32907-2016). >> 1547 >> 1548 SM4 (GBT.32907-2016) is a cryptographic standard issued by the >> 1549 Organization of State Commercial Administration of China (OSCCA) >> 1550 as an authorized cryptographic algorithms for the use within China. >> 1551 >> 1552 SMS4 was originally created for use in protecting wireless >> 1553 networks, and is mandated in the Chinese National Standard for >> 1554 Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure) >> 1555 (GB.15629.11-2003). >> 1556 >> 1557 The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and >> 1558 standardized through TC 260 of the Standardization Administration >> 1559 of the People's Republic of China (SAC). >> 1560 >> 1561 The input, output, and key of SMS4 are each 128 bits. >> 1562 >> 1563 See also: <https://eprint.iacr.org/2008/329.pdf> >> 1564 >> 1565 If unsure, say N. >> 1566 >> 1567 config CRYPTO_TEA >> 1568 tristate "TEA, XTEA and XETA cipher algorithms" >> 1569 depends on CRYPTO_USER_API_ENABLE_OBSOLETE >> 1570 select CRYPTO_ALGAPI >> 1571 help >> 1572 TEA cipher algorithm. >> 1573 >> 1574 Tiny Encryption Algorithm is a simple cipher that uses >> 1575 many rounds for security. It is very fast and uses >> 1576 little memory. >> 1577 >> 1578 Xtendend Tiny Encryption Algorithm is a modification to >> 1579 the TEA algorithm to address a potential key weakness >> 1580 in the TEA algorithm. >> 1581 >> 1582 Xtendend Encryption Tiny Algorithm is a mis-implementation >> 1583 of the XTEA algorithm for compatibility purposes. >> 1584 >> 1585 config CRYPTO_TWOFISH >> 1586 tristate "Twofish cipher algorithm" >> 1587 select CRYPTO_ALGAPI >> 1588 select CRYPTO_TWOFISH_COMMON >> 1589 help >> 1590 Twofish cipher algorithm. >> 1591 >> 1592 Twofish was submitted as an AES (Advanced Encryption Standard) >> 1593 candidate cipher by researchers at CounterPane Systems. It is a >> 1594 16 round block cipher supporting key sizes of 128, 192, and 256 >> 1595 bits. >> 1596 >> 1597 See also: >> 1598 <https://www.schneier.com/twofish.html> >> 1599 >> 1600 config CRYPTO_TWOFISH_COMMON >> 1601 tristate >> 1602 help >> 1603 Common parts of the Twofish cipher algorithm shared by the >> 1604 generic c and the assembler implementations. >> 1605 >> 1606 config CRYPTO_TWOFISH_586 >> 1607 tristate "Twofish cipher algorithms (i586)" >> 1608 depends on (X86 || UML_X86) && !64BIT >> 1609 select CRYPTO_ALGAPI >> 1610 select CRYPTO_TWOFISH_COMMON >> 1611 imply CRYPTO_CTR >> 1612 help >> 1613 Twofish cipher algorithm. >> 1614 >> 1615 Twofish was submitted as an AES (Advanced Encryption Standard) >> 1616 candidate cipher by researchers at CounterPane Systems. It is a >> 1617 16 round block cipher supporting key sizes of 128, 192, and 256 >> 1618 bits. >> 1619 >> 1620 See also: >> 1621 <https://www.schneier.com/twofish.html> >> 1622 >> 1623 config CRYPTO_TWOFISH_X86_64 >> 1624 tristate "Twofish cipher algorithm (x86_64)" >> 1625 depends on (X86 || UML_X86) && 64BIT >> 1626 select CRYPTO_ALGAPI >> 1627 select CRYPTO_TWOFISH_COMMON >> 1628 imply CRYPTO_CTR >> 1629 help >> 1630 Twofish cipher algorithm (x86_64). >> 1631 >> 1632 Twofish was submitted as an AES (Advanced Encryption Standard) >> 1633 candidate cipher by researchers at CounterPane Systems. It is a >> 1634 16 round block cipher supporting key sizes of 128, 192, and 256 >> 1635 bits. >> 1636 >> 1637 See also: >> 1638 <https://www.schneier.com/twofish.html> >> 1639 >> 1640 config CRYPTO_TWOFISH_X86_64_3WAY >> 1641 tristate "Twofish cipher algorithm (x86_64, 3-way parallel)" >> 1642 depends on X86 && 64BIT >> 1643 select CRYPTO_SKCIPHER >> 1644 select CRYPTO_TWOFISH_COMMON >> 1645 select CRYPTO_TWOFISH_X86_64 >> 1646 help >> 1647 Twofish cipher algorithm (x86_64, 3-way parallel). >> 1648 >> 1649 Twofish was submitted as an AES (Advanced Encryption Standard) >> 1650 candidate cipher by researchers at CounterPane Systems. It is a >> 1651 16 round block cipher supporting key sizes of 128, 192, and 256 >> 1652 bits. >> 1653 >> 1654 This module provides Twofish cipher algorithm that processes three >> 1655 blocks parallel, utilizing resources of out-of-order CPUs better. >> 1656 >> 1657 See also: >> 1658 <https://www.schneier.com/twofish.html> >> 1659 >> 1660 config CRYPTO_TWOFISH_AVX_X86_64 >> 1661 tristate "Twofish cipher algorithm (x86_64/AVX)" >> 1662 depends on X86 && 64BIT >> 1663 select CRYPTO_SKCIPHER >> 1664 select CRYPTO_SIMD >> 1665 select CRYPTO_TWOFISH_COMMON >> 1666 select CRYPTO_TWOFISH_X86_64 >> 1667 select CRYPTO_TWOFISH_X86_64_3WAY >> 1668 imply CRYPTO_XTS >> 1669 help >> 1670 Twofish cipher algorithm (x86_64/AVX). >> 1671 >> 1672 Twofish was submitted as an AES (Advanced Encryption Standard) >> 1673 candidate cipher by researchers at CounterPane Systems. It is a >> 1674 16 round block cipher supporting key sizes of 128, 192, and 256 >> 1675 bits. >> 1676 >> 1677 This module provides the Twofish cipher algorithm that processes >> 1678 eight blocks parallel using the AVX Instruction Set. >> 1679 >> 1680 See also: >> 1681 <https://www.schneier.com/twofish.html> >> 1682 >> 1683 comment "Compression" 1123 1684 1124 config CRYPTO_DEFLATE 1685 config CRYPTO_DEFLATE 1125 tristate "Deflate" !! 1686 tristate "Deflate compression algorithm" 1126 select CRYPTO_ALGAPI 1687 select CRYPTO_ALGAPI 1127 select CRYPTO_ACOMP2 1688 select CRYPTO_ACOMP2 1128 select ZLIB_INFLATE 1689 select ZLIB_INFLATE 1129 select ZLIB_DEFLATE 1690 select ZLIB_DEFLATE 1130 help 1691 help 1131 Deflate compression algorithm (RFC1 !! 1692 This is the Deflate algorithm (RFC1951), specified for use in >> 1693 IPSec with the IPCOMP protocol (RFC3173, RFC2394). 1132 1694 1133 Used by IPSec with the IPCOMP proto !! 1695 You will most probably want this if using IPSec. 1134 1696 1135 config CRYPTO_LZO 1697 config CRYPTO_LZO 1136 tristate "LZO" !! 1698 tristate "LZO compression algorithm" 1137 select CRYPTO_ALGAPI 1699 select CRYPTO_ALGAPI 1138 select CRYPTO_ACOMP2 1700 select CRYPTO_ACOMP2 1139 select LZO_COMPRESS 1701 select LZO_COMPRESS 1140 select LZO_DECOMPRESS 1702 select LZO_DECOMPRESS 1141 help 1703 help 1142 LZO compression algorithm !! 1704 This is the LZO algorithm. 1143 << 1144 See https://www.oberhumer.com/opens << 1145 1705 1146 config CRYPTO_842 1706 config CRYPTO_842 1147 tristate "842" !! 1707 tristate "842 compression algorithm" 1148 select CRYPTO_ALGAPI 1708 select CRYPTO_ALGAPI 1149 select CRYPTO_ACOMP2 1709 select CRYPTO_ACOMP2 1150 select 842_COMPRESS 1710 select 842_COMPRESS 1151 select 842_DECOMPRESS 1711 select 842_DECOMPRESS 1152 help 1712 help 1153 842 compression algorithm by IBM !! 1713 This is the 842 algorithm. 1154 << 1155 See https://github.com/plauth/lib84 << 1156 1714 1157 config CRYPTO_LZ4 1715 config CRYPTO_LZ4 1158 tristate "LZ4" !! 1716 tristate "LZ4 compression algorithm" 1159 select CRYPTO_ALGAPI 1717 select CRYPTO_ALGAPI 1160 select CRYPTO_ACOMP2 1718 select CRYPTO_ACOMP2 1161 select LZ4_COMPRESS 1719 select LZ4_COMPRESS 1162 select LZ4_DECOMPRESS 1720 select LZ4_DECOMPRESS 1163 help 1721 help 1164 LZ4 compression algorithm !! 1722 This is the LZ4 algorithm. 1165 << 1166 See https://github.com/lz4/lz4 for << 1167 1723 1168 config CRYPTO_LZ4HC 1724 config CRYPTO_LZ4HC 1169 tristate "LZ4HC" !! 1725 tristate "LZ4HC compression algorithm" 1170 select CRYPTO_ALGAPI 1726 select CRYPTO_ALGAPI 1171 select CRYPTO_ACOMP2 1727 select CRYPTO_ACOMP2 1172 select LZ4HC_COMPRESS 1728 select LZ4HC_COMPRESS 1173 select LZ4_DECOMPRESS 1729 select LZ4_DECOMPRESS 1174 help 1730 help 1175 LZ4 high compression mode algorithm !! 1731 This is the LZ4 high compression mode algorithm. 1176 << 1177 See https://github.com/lz4/lz4 for << 1178 1732 1179 config CRYPTO_ZSTD 1733 config CRYPTO_ZSTD 1180 tristate "Zstd" !! 1734 tristate "Zstd compression algorithm" 1181 select CRYPTO_ALGAPI 1735 select CRYPTO_ALGAPI 1182 select CRYPTO_ACOMP2 1736 select CRYPTO_ACOMP2 1183 select ZSTD_COMPRESS 1737 select ZSTD_COMPRESS 1184 select ZSTD_DECOMPRESS 1738 select ZSTD_DECOMPRESS 1185 help 1739 help 1186 zstd compression algorithm !! 1740 This is the zstd algorithm. 1187 1741 1188 See https://github.com/facebook/zst !! 1742 comment "Random Number Generation" 1189 << 1190 endmenu << 1191 << 1192 menu "Random number generation" << 1193 1743 1194 config CRYPTO_ANSI_CPRNG 1744 config CRYPTO_ANSI_CPRNG 1195 tristate "ANSI PRNG (Pseudo Random Nu !! 1745 tristate "Pseudo Random Number Generation for Cryptographic modules" 1196 select CRYPTO_AES 1746 select CRYPTO_AES 1197 select CRYPTO_RNG 1747 select CRYPTO_RNG 1198 help 1748 help 1199 Pseudo RNG (random number generator !! 1749 This option enables the generic pseudo random number generator 1200 !! 1750 for cryptographic modules. Uses the Algorithm specified in 1201 This uses the AES cipher algorithm. !! 1751 ANSI X9.31 A.2.4. Note that this option must be enabled if 1202 !! 1752 CRYPTO_FIPS is selected 1203 Note that this option must be enabl << 1204 1753 1205 menuconfig CRYPTO_DRBG_MENU 1754 menuconfig CRYPTO_DRBG_MENU 1206 tristate "NIST SP800-90A DRBG (Determ !! 1755 tristate "NIST SP800-90A DRBG" 1207 help 1756 help 1208 DRBG (Deterministic Random Bit Gene !! 1757 NIST SP800-90A compliant DRBG. In the following submenu, one or 1209 !! 1758 more of the DRBG types must be selected. 1210 In the following submenu, one or mo << 1211 1759 1212 if CRYPTO_DRBG_MENU 1760 if CRYPTO_DRBG_MENU 1213 1761 1214 config CRYPTO_DRBG_HMAC 1762 config CRYPTO_DRBG_HMAC 1215 bool 1763 bool 1216 default y 1764 default y 1217 select CRYPTO_HMAC 1765 select CRYPTO_HMAC 1218 select CRYPTO_SHA512 !! 1766 select CRYPTO_SHA256 1219 1767 1220 config CRYPTO_DRBG_HASH 1768 config CRYPTO_DRBG_HASH 1221 bool "Hash_DRBG" !! 1769 bool "Enable Hash DRBG" 1222 select CRYPTO_SHA256 1770 select CRYPTO_SHA256 1223 help 1771 help 1224 Hash_DRBG variant as defined in NIS !! 1772 Enable the Hash DRBG variant as defined in NIST SP800-90A. 1225 << 1226 This uses the SHA-1, SHA-256, SHA-3 << 1227 1773 1228 config CRYPTO_DRBG_CTR 1774 config CRYPTO_DRBG_CTR 1229 bool "CTR_DRBG" !! 1775 bool "Enable CTR DRBG" 1230 select CRYPTO_AES 1776 select CRYPTO_AES 1231 select CRYPTO_CTR 1777 select CRYPTO_CTR 1232 help 1778 help 1233 CTR_DRBG variant as defined in NIST !! 1779 Enable the CTR DRBG variant as defined in NIST SP800-90A. 1234 << 1235 This uses the AES cipher algorithm << 1236 1780 1237 config CRYPTO_DRBG 1781 config CRYPTO_DRBG 1238 tristate 1782 tristate 1239 default CRYPTO_DRBG_MENU 1783 default CRYPTO_DRBG_MENU 1240 select CRYPTO_RNG 1784 select CRYPTO_RNG 1241 select CRYPTO_JITTERENTROPY 1785 select CRYPTO_JITTERENTROPY 1242 1786 1243 endif # if CRYPTO_DRBG_MENU 1787 endif # if CRYPTO_DRBG_MENU 1244 1788 1245 config CRYPTO_JITTERENTROPY 1789 config CRYPTO_JITTERENTROPY 1246 tristate "CPU Jitter Non-Deterministi !! 1790 tristate "Jitterentropy Non-Deterministic Random Number Generator" 1247 select CRYPTO_RNG 1791 select CRYPTO_RNG 1248 select CRYPTO_SHA3 << 1249 help 1792 help 1250 CPU Jitter RNG (Random Number Gener !! 1793 The Jitterentropy RNG is a noise that is intended 1251 !! 1794 to provide seed to another RNG. The RNG does not 1252 A non-physical non-deterministic (" !! 1795 perform any cryptographic whitening of the generated 1253 compliant with NIST SP800-90B) inte !! 1796 random numbers. This Jitterentropy RNG registers with 1254 deterministic RNG (e.g., per NIST S !! 1797 the kernel crypto API and can be used by any caller. 1255 This RNG does not perform any crypt << 1256 random numbers. << 1257 << 1258 See https://www.chronox.de/jent/ << 1259 << 1260 if CRYPTO_JITTERENTROPY << 1261 if CRYPTO_FIPS && EXPERT << 1262 << 1263 choice << 1264 prompt "CPU Jitter RNG Memory Size" << 1265 default CRYPTO_JITTERENTROPY_MEMSIZE_ << 1266 help << 1267 The Jitter RNG measures the executi << 1268 Multiple consecutive memory accesse << 1269 size fits into a cache (e.g. L1), o << 1270 to that cache is measured. The clos << 1271 the less variations are measured an << 1272 obtained. Thus, if the memory size << 1273 obtained entropy is less than if th << 1274 L1 + L2, which in turn is less if t << 1275 L1 + L2 + L3. Thus, by selecting a << 1276 the entropy rate produced by the Ji << 1277 << 1278 config CRYPTO_JITTERENTROPY_MEMSIZE_2 << 1279 bool "2048 Bytes (default)" << 1280 << 1281 config CRYPTO_JITTERENTROPY_MEMSIZE_1 << 1282 bool "128 kBytes" << 1283 << 1284 config CRYPTO_JITTERENTROPY_MEMSIZE_1 << 1285 bool "1024 kBytes" << 1286 << 1287 config CRYPTO_JITTERENTROPY_MEMSIZE_8 << 1288 bool "8192 kBytes" << 1289 endchoice << 1290 << 1291 config CRYPTO_JITTERENTROPY_MEMORY_BLOCKS << 1292 int << 1293 default 64 if CRYPTO_JITTERENTROPY_ME << 1294 default 512 if CRYPTO_JITTERENTROPY_M << 1295 default 1024 if CRYPTO_JITTERENTROPY_ << 1296 default 4096 if CRYPTO_JITTERENTROPY_ << 1297 << 1298 config CRYPTO_JITTERENTROPY_MEMORY_BLOCKSIZE << 1299 int << 1300 default 32 if CRYPTO_JITTERENTROPY_ME << 1301 default 256 if CRYPTO_JITTERENTROPY_M << 1302 default 1024 if CRYPTO_JITTERENTROPY_ << 1303 default 2048 if CRYPTO_JITTERENTROPY_ << 1304 << 1305 config CRYPTO_JITTERENTROPY_OSR << 1306 int "CPU Jitter RNG Oversampling Rate << 1307 range 1 15 << 1308 default 3 << 1309 help << 1310 The Jitter RNG allows the specifica << 1311 The Jitter RNG operation requires a << 1312 measurements to produce one output << 1313 OSR value is multiplied with the am << 1314 generate one output block. Thus, th << 1315 by the OSR factor. The oversampling << 1316 on hardware whose timers deliver li << 1317 the timer is coarse) by setting the << 1318 trade-off, however, is that the Jit << 1319 to generate random numbers. << 1320 << 1321 config CRYPTO_JITTERENTROPY_TESTINTERFACE << 1322 bool "CPU Jitter RNG Test Interface" << 1323 help << 1324 The test interface allows a privile << 1325 the raw unconditioned high resoluti << 1326 is collected by the Jitter RNG for << 1327 this data is used at the same time << 1328 the Jitter RNG operates in an insec << 1329 recording is enabled. This interfac << 1330 intended for testing purposes and i << 1331 production systems. << 1332 << 1333 The raw noise data can be obtained << 1334 debugfs file. Using the option << 1335 jitterentropy_testing.boot_raw_hire << 1336 the first 1000 entropy events since << 1337 << 1338 If unsure, select N. << 1339 << 1340 endif # if CRYPTO_FIPS && EXPERT << 1341 << 1342 if !(CRYPTO_FIPS && EXPERT) << 1343 << 1344 config CRYPTO_JITTERENTROPY_MEMORY_BLOCKS << 1345 int << 1346 default 64 << 1347 << 1348 config CRYPTO_JITTERENTROPY_MEMORY_BLOCKSIZE << 1349 int << 1350 default 32 << 1351 << 1352 config CRYPTO_JITTERENTROPY_OSR << 1353 int << 1354 default 1 << 1355 << 1356 config CRYPTO_JITTERENTROPY_TESTINTERFACE << 1357 bool << 1358 << 1359 endif # if !(CRYPTO_FIPS && EXPERT) << 1360 endif # if CRYPTO_JITTERENTROPY << 1361 << 1362 config CRYPTO_KDF800108_CTR << 1363 tristate << 1364 select CRYPTO_HMAC << 1365 select CRYPTO_SHA256 << 1366 << 1367 endmenu << 1368 menu "Userspace interface" << 1369 1798 1370 config CRYPTO_USER_API 1799 config CRYPTO_USER_API 1371 tristate 1800 tristate 1372 1801 1373 config CRYPTO_USER_API_HASH 1802 config CRYPTO_USER_API_HASH 1374 tristate "Hash algorithms" !! 1803 tristate "User-space interface for hash algorithms" 1375 depends on NET 1804 depends on NET 1376 select CRYPTO_HASH 1805 select CRYPTO_HASH 1377 select CRYPTO_USER_API 1806 select CRYPTO_USER_API 1378 help 1807 help 1379 Enable the userspace interface for !! 1808 This option enables the user-spaces interface for hash 1380 !! 1809 algorithms. 1381 See Documentation/crypto/userspace- << 1382 https://www.chronox.de/libkcapi/htm << 1383 1810 1384 config CRYPTO_USER_API_SKCIPHER 1811 config CRYPTO_USER_API_SKCIPHER 1385 tristate "Symmetric key cipher algori !! 1812 tristate "User-space interface for symmetric key cipher algorithms" 1386 depends on NET 1813 depends on NET 1387 select CRYPTO_SKCIPHER 1814 select CRYPTO_SKCIPHER 1388 select CRYPTO_USER_API 1815 select CRYPTO_USER_API 1389 help 1816 help 1390 Enable the userspace interface for !! 1817 This option enables the user-spaces interface for symmetric 1391 !! 1818 key cipher algorithms. 1392 See Documentation/crypto/userspace- << 1393 https://www.chronox.de/libkcapi/htm << 1394 1819 1395 config CRYPTO_USER_API_RNG 1820 config CRYPTO_USER_API_RNG 1396 tristate "RNG (random number generato !! 1821 tristate "User-space interface for random number generator algorithms" 1397 depends on NET 1822 depends on NET 1398 select CRYPTO_RNG 1823 select CRYPTO_RNG 1399 select CRYPTO_USER_API 1824 select CRYPTO_USER_API 1400 help 1825 help 1401 Enable the userspace interface for !! 1826 This option enables the user-spaces interface for random 1402 algorithms. !! 1827 number generator algorithms. 1403 << 1404 See Documentation/crypto/userspace- << 1405 https://www.chronox.de/libkcapi/htm << 1406 1828 1407 config CRYPTO_USER_API_RNG_CAVP 1829 config CRYPTO_USER_API_RNG_CAVP 1408 bool "Enable CAVP testing of DRBG" 1830 bool "Enable CAVP testing of DRBG" 1409 depends on CRYPTO_USER_API_RNG && CRY 1831 depends on CRYPTO_USER_API_RNG && CRYPTO_DRBG 1410 help 1832 help 1411 Enable extra APIs in the userspace !! 1833 This option enables extra API for CAVP testing via the user-space 1412 (Cryptographic Algorithm Validation !! 1834 interface: resetting of DRBG entropy, and providing Additional Data. 1413 - resetting DRBG entropy << 1414 - providing Additional Data << 1415 << 1416 This should only be enabled for CAV 1835 This should only be enabled for CAVP testing. You should say 1417 no unless you know what this is. 1836 no unless you know what this is. 1418 1837 1419 config CRYPTO_USER_API_AEAD 1838 config CRYPTO_USER_API_AEAD 1420 tristate "AEAD cipher algorithms" !! 1839 tristate "User-space interface for AEAD cipher algorithms" 1421 depends on NET 1840 depends on NET 1422 select CRYPTO_AEAD 1841 select CRYPTO_AEAD 1423 select CRYPTO_SKCIPHER 1842 select CRYPTO_SKCIPHER 1424 select CRYPTO_NULL 1843 select CRYPTO_NULL 1425 select CRYPTO_USER_API 1844 select CRYPTO_USER_API 1426 help 1845 help 1427 Enable the userspace interface for !! 1846 This option enables the user-spaces interface for AEAD 1428 !! 1847 cipher algorithms. 1429 See Documentation/crypto/userspace- << 1430 https://www.chronox.de/libkcapi/htm << 1431 1848 1432 config CRYPTO_USER_API_ENABLE_OBSOLETE 1849 config CRYPTO_USER_API_ENABLE_OBSOLETE 1433 bool "Obsolete cryptographic algorith !! 1850 bool "Enable obsolete cryptographic algorithms for userspace" 1434 depends on CRYPTO_USER_API 1851 depends on CRYPTO_USER_API 1435 default y 1852 default y 1436 help 1853 help 1437 Allow obsolete cryptographic algori 1854 Allow obsolete cryptographic algorithms to be selected that have 1438 already been phased out from intern 1855 already been phased out from internal use by the kernel, and are 1439 only useful for userspace clients t 1856 only useful for userspace clients that still rely on them. 1440 1857 1441 endmenu !! 1858 config CRYPTO_STATS >> 1859 bool "Crypto usage statistics for User-space" >> 1860 depends on CRYPTO_USER >> 1861 help >> 1862 This option enables the gathering of crypto stats. >> 1863 This will collect: >> 1864 - encrypt/decrypt size and numbers of symmeric operations >> 1865 - compress/decompress size and numbers of compress operations >> 1866 - size and numbers of hash operations >> 1867 - encrypt/decrypt/sign/verify numbers for asymmetric operations >> 1868 - generate/seed numbers for rng operations 1442 1869 1443 config CRYPTO_HASH_INFO 1870 config CRYPTO_HASH_INFO 1444 bool 1871 bool 1445 1872 1446 if !KMSAN # avoid false positives from assemb !! 1873 source "lib/crypto/Kconfig" 1447 if ARM << 1448 source "arch/arm/crypto/Kconfig" << 1449 endif << 1450 if ARM64 << 1451 source "arch/arm64/crypto/Kconfig" << 1452 endif << 1453 if LOONGARCH << 1454 source "arch/loongarch/crypto/Kconfig" << 1455 endif << 1456 if MIPS << 1457 source "arch/mips/crypto/Kconfig" << 1458 endif << 1459 if PPC << 1460 source "arch/powerpc/crypto/Kconfig" << 1461 endif << 1462 if RISCV << 1463 source "arch/riscv/crypto/Kconfig" << 1464 endif << 1465 if S390 << 1466 source "arch/s390/crypto/Kconfig" << 1467 endif << 1468 if SPARC << 1469 source "arch/sparc/crypto/Kconfig" << 1470 endif << 1471 if X86 << 1472 source "arch/x86/crypto/Kconfig" << 1473 endif << 1474 endif << 1475 << 1476 source "drivers/crypto/Kconfig" 1874 source "drivers/crypto/Kconfig" 1477 source "crypto/asymmetric_keys/Kconfig" 1875 source "crypto/asymmetric_keys/Kconfig" 1478 source "certs/Kconfig" 1876 source "certs/Kconfig" 1479 1877 1480 endif # if CRYPTO 1878 endif # if CRYPTO
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.