1 # SPDX-License-Identifier: GPL-2.0 << 2 # 1 # 3 # Generic algorithms support 2 # Generic algorithms support 4 # 3 # 5 config XOR_BLOCKS 4 config XOR_BLOCKS 6 tristate 5 tristate 7 6 8 # 7 # 9 # async_tx api: hardware offloaded memory tran 8 # async_tx api: hardware offloaded memory transfer/transform support 10 # 9 # 11 source "crypto/async_tx/Kconfig" 10 source "crypto/async_tx/Kconfig" 12 11 13 # 12 # 14 # Cryptographic API Configuration 13 # Cryptographic API Configuration 15 # 14 # 16 menuconfig CRYPTO 15 menuconfig CRYPTO 17 tristate "Cryptographic API" 16 tristate "Cryptographic API" 18 select CRYPTO_LIB_UTILS << 19 help 17 help 20 This option provides the core Crypto 18 This option provides the core Cryptographic API. 21 19 22 if CRYPTO 20 if CRYPTO 23 21 24 menu "Crypto core or helper" !! 22 comment "Crypto core or helper" 25 23 26 config CRYPTO_FIPS 24 config CRYPTO_FIPS 27 bool "FIPS 200 compliance" 25 bool "FIPS 200 compliance" 28 depends on (CRYPTO_ANSI_CPRNG || CRYPT 26 depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS 29 depends on (MODULE_SIG || !MODULES) 27 depends on (MODULE_SIG || !MODULES) 30 help 28 help 31 This option enables the fips boot op !! 29 This options enables the fips boot option which is 32 required if you want the system to o !! 30 required if you want to system to operate in a FIPS 200 33 certification. You should say no un 31 certification. You should say no unless you know what 34 this is. 32 this is. 35 33 36 config CRYPTO_FIPS_NAME << 37 string "FIPS Module Name" << 38 default "Linux Kernel Cryptographic AP << 39 depends on CRYPTO_FIPS << 40 help << 41 This option sets the FIPS Module nam << 42 the /proc/sys/crypto/fips_name file. << 43 << 44 config CRYPTO_FIPS_CUSTOM_VERSION << 45 bool "Use Custom FIPS Module Version" << 46 depends on CRYPTO_FIPS << 47 default n << 48 << 49 config CRYPTO_FIPS_VERSION << 50 string "FIPS Module Version" << 51 default "(none)" << 52 depends on CRYPTO_FIPS_CUSTOM_VERSION << 53 help << 54 This option provides the ability to << 55 By default the KERNELRELEASE value i << 56 << 57 config CRYPTO_ALGAPI 34 config CRYPTO_ALGAPI 58 tristate 35 tristate 59 select CRYPTO_ALGAPI2 36 select CRYPTO_ALGAPI2 60 help 37 help 61 This option provides the API for cry 38 This option provides the API for cryptographic algorithms. 62 39 63 config CRYPTO_ALGAPI2 40 config CRYPTO_ALGAPI2 64 tristate 41 tristate 65 42 66 config CRYPTO_AEAD 43 config CRYPTO_AEAD 67 tristate 44 tristate 68 select CRYPTO_AEAD2 45 select CRYPTO_AEAD2 69 select CRYPTO_ALGAPI 46 select CRYPTO_ALGAPI 70 47 71 config CRYPTO_AEAD2 48 config CRYPTO_AEAD2 72 tristate 49 tristate 73 select CRYPTO_ALGAPI2 50 select CRYPTO_ALGAPI2 >> 51 select CRYPTO_NULL2 >> 52 select CRYPTO_RNG2 74 53 75 config CRYPTO_SIG !! 54 config CRYPTO_BLKCIPHER 76 tristate << 77 select CRYPTO_SIG2 << 78 select CRYPTO_ALGAPI << 79 << 80 config CRYPTO_SIG2 << 81 tristate << 82 select CRYPTO_ALGAPI2 << 83 << 84 config CRYPTO_SKCIPHER << 85 tristate 55 tristate 86 select CRYPTO_SKCIPHER2 !! 56 select CRYPTO_BLKCIPHER2 87 select CRYPTO_ALGAPI 57 select CRYPTO_ALGAPI 88 select CRYPTO_ECB << 89 58 90 config CRYPTO_SKCIPHER2 !! 59 config CRYPTO_BLKCIPHER2 91 tristate 60 tristate 92 select CRYPTO_ALGAPI2 61 select CRYPTO_ALGAPI2 >> 62 select CRYPTO_RNG2 >> 63 select CRYPTO_WORKQUEUE 93 64 94 config CRYPTO_HASH 65 config CRYPTO_HASH 95 tristate 66 tristate 96 select CRYPTO_HASH2 67 select CRYPTO_HASH2 97 select CRYPTO_ALGAPI 68 select CRYPTO_ALGAPI 98 69 99 config CRYPTO_HASH2 70 config CRYPTO_HASH2 100 tristate 71 tristate 101 select CRYPTO_ALGAPI2 72 select CRYPTO_ALGAPI2 102 73 103 config CRYPTO_RNG 74 config CRYPTO_RNG 104 tristate 75 tristate 105 select CRYPTO_RNG2 76 select CRYPTO_RNG2 106 select CRYPTO_ALGAPI 77 select CRYPTO_ALGAPI 107 78 108 config CRYPTO_RNG2 79 config CRYPTO_RNG2 109 tristate 80 tristate 110 select CRYPTO_ALGAPI2 81 select CRYPTO_ALGAPI2 111 82 112 config CRYPTO_RNG_DEFAULT 83 config CRYPTO_RNG_DEFAULT 113 tristate 84 tristate 114 select CRYPTO_DRBG_MENU 85 select CRYPTO_DRBG_MENU 115 86 116 config CRYPTO_AKCIPHER2 87 config CRYPTO_AKCIPHER2 117 tristate 88 tristate 118 select CRYPTO_ALGAPI2 89 select CRYPTO_ALGAPI2 119 90 120 config CRYPTO_AKCIPHER 91 config CRYPTO_AKCIPHER 121 tristate 92 tristate 122 select CRYPTO_AKCIPHER2 93 select CRYPTO_AKCIPHER2 123 select CRYPTO_ALGAPI 94 select CRYPTO_ALGAPI 124 95 125 config CRYPTO_KPP2 96 config CRYPTO_KPP2 126 tristate 97 tristate 127 select CRYPTO_ALGAPI2 98 select CRYPTO_ALGAPI2 128 99 129 config CRYPTO_KPP 100 config CRYPTO_KPP 130 tristate 101 tristate 131 select CRYPTO_ALGAPI 102 select CRYPTO_ALGAPI 132 select CRYPTO_KPP2 103 select CRYPTO_KPP2 133 104 134 config CRYPTO_ACOMP2 105 config CRYPTO_ACOMP2 135 tristate 106 tristate 136 select CRYPTO_ALGAPI2 107 select CRYPTO_ALGAPI2 137 select SGL_ALLOC << 138 108 139 config CRYPTO_ACOMP 109 config CRYPTO_ACOMP 140 tristate 110 tristate 141 select CRYPTO_ALGAPI 111 select CRYPTO_ALGAPI 142 select CRYPTO_ACOMP2 112 select CRYPTO_ACOMP2 143 113 >> 114 config CRYPTO_RSA >> 115 tristate "RSA algorithm" >> 116 select CRYPTO_AKCIPHER >> 117 select CRYPTO_MANAGER >> 118 select MPILIB >> 119 select ASN1 >> 120 help >> 121 Generic implementation of the RSA public key algorithm. >> 122 >> 123 config CRYPTO_DH >> 124 tristate "Diffie-Hellman algorithm" >> 125 select CRYPTO_KPP >> 126 select MPILIB >> 127 help >> 128 Generic implementation of the Diffie-Hellman algorithm. >> 129 >> 130 config CRYPTO_ECDH >> 131 tristate "ECDH algorithm" >> 132 select CRYTPO_KPP >> 133 help >> 134 Generic implementation of the ECDH algorithm >> 135 144 config CRYPTO_MANAGER 136 config CRYPTO_MANAGER 145 tristate "Cryptographic algorithm mana 137 tristate "Cryptographic algorithm manager" 146 select CRYPTO_MANAGER2 138 select CRYPTO_MANAGER2 147 help 139 help 148 Create default cryptographic templat 140 Create default cryptographic template instantiations such as 149 cbc(aes). 141 cbc(aes). 150 142 151 config CRYPTO_MANAGER2 143 config CRYPTO_MANAGER2 152 def_tristate CRYPTO_MANAGER || (CRYPTO 144 def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y) 153 select CRYPTO_ACOMP2 << 154 select CRYPTO_AEAD2 145 select CRYPTO_AEAD2 155 select CRYPTO_AKCIPHER2 << 156 select CRYPTO_SIG2 << 157 select CRYPTO_HASH2 146 select CRYPTO_HASH2 >> 147 select CRYPTO_BLKCIPHER2 >> 148 select CRYPTO_AKCIPHER2 158 select CRYPTO_KPP2 149 select CRYPTO_KPP2 159 select CRYPTO_RNG2 !! 150 select CRYPTO_ACOMP2 160 select CRYPTO_SKCIPHER2 << 161 151 162 config CRYPTO_USER 152 config CRYPTO_USER 163 tristate "Userspace cryptographic algo 153 tristate "Userspace cryptographic algorithm configuration" 164 depends on NET 154 depends on NET 165 select CRYPTO_MANAGER 155 select CRYPTO_MANAGER 166 help 156 help 167 Userspace configuration for cryptogr 157 Userspace configuration for cryptographic instantiations such as 168 cbc(aes). 158 cbc(aes). 169 159 170 config CRYPTO_MANAGER_DISABLE_TESTS 160 config CRYPTO_MANAGER_DISABLE_TESTS 171 bool "Disable run-time self tests" 161 bool "Disable run-time self tests" 172 default y 162 default y >> 163 depends on CRYPTO_MANAGER2 173 help 164 help 174 Disable run-time self tests that nor 165 Disable run-time self tests that normally take place at 175 algorithm registration. 166 algorithm registration. 176 167 177 config CRYPTO_MANAGER_EXTRA_TESTS !! 168 config CRYPTO_GF128MUL 178 bool "Enable extra run-time crypto sel !! 169 tristate "GF(2^128) multiplication functions" 179 depends on DEBUG_KERNEL && !CRYPTO_MAN << 180 help 170 help 181 Enable extra run-time self tests of !! 171 Efficient table driven implementation of multiplications in the 182 including randomized fuzz tests. !! 172 field GF(2^128). This is needed by some cypher modes. This 183 !! 173 option will be selected automatically if you select such a 184 This is intended for developer use o !! 174 cipher mode. Only select this option by hand if you expect to load 185 longer to run than the normal self t !! 175 an external module that requires these functions. 186 176 187 config CRYPTO_NULL 177 config CRYPTO_NULL 188 tristate "Null algorithms" 178 tristate "Null algorithms" 189 select CRYPTO_NULL2 179 select CRYPTO_NULL2 190 help 180 help 191 These are 'Null' algorithms, used by 181 These are 'Null' algorithms, used by IPsec, which do nothing. 192 182 193 config CRYPTO_NULL2 183 config CRYPTO_NULL2 194 tristate 184 tristate 195 select CRYPTO_ALGAPI2 185 select CRYPTO_ALGAPI2 196 select CRYPTO_SKCIPHER2 !! 186 select CRYPTO_BLKCIPHER2 197 select CRYPTO_HASH2 187 select CRYPTO_HASH2 198 188 199 config CRYPTO_PCRYPT 189 config CRYPTO_PCRYPT 200 tristate "Parallel crypto engine" 190 tristate "Parallel crypto engine" 201 depends on SMP 191 depends on SMP 202 select PADATA 192 select PADATA 203 select CRYPTO_MANAGER 193 select CRYPTO_MANAGER 204 select CRYPTO_AEAD 194 select CRYPTO_AEAD 205 help 195 help 206 This converts an arbitrary crypto al 196 This converts an arbitrary crypto algorithm into a parallel 207 algorithm that executes in kernel th 197 algorithm that executes in kernel threads. 208 198 >> 199 config CRYPTO_WORKQUEUE >> 200 tristate >> 201 209 config CRYPTO_CRYPTD 202 config CRYPTO_CRYPTD 210 tristate "Software async crypto daemon 203 tristate "Software async crypto daemon" 211 select CRYPTO_SKCIPHER !! 204 select CRYPTO_BLKCIPHER 212 select CRYPTO_HASH 205 select CRYPTO_HASH 213 select CRYPTO_MANAGER 206 select CRYPTO_MANAGER >> 207 select CRYPTO_WORKQUEUE 214 help 208 help 215 This is a generic software asynchron 209 This is a generic software asynchronous crypto daemon that 216 converts an arbitrary synchronous so 210 converts an arbitrary synchronous software crypto algorithm 217 into an asynchronous algorithm that 211 into an asynchronous algorithm that executes in a kernel thread. 218 212 >> 213 config CRYPTO_MCRYPTD >> 214 tristate "Software async multi-buffer crypto daemon" >> 215 select CRYPTO_BLKCIPHER >> 216 select CRYPTO_HASH >> 217 select CRYPTO_MANAGER >> 218 select CRYPTO_WORKQUEUE >> 219 help >> 220 This is a generic software asynchronous crypto daemon that >> 221 provides the kernel thread to assist multi-buffer crypto >> 222 algorithms for submitting jobs and flushing jobs in multi-buffer >> 223 crypto algorithms. Multi-buffer crypto algorithms are executed >> 224 in the context of this kernel thread and drivers can post >> 225 their crypto request asynchronously to be processed by this daemon. >> 226 219 config CRYPTO_AUTHENC 227 config CRYPTO_AUTHENC 220 tristate "Authenc support" 228 tristate "Authenc support" 221 select CRYPTO_AEAD 229 select CRYPTO_AEAD 222 select CRYPTO_SKCIPHER !! 230 select CRYPTO_BLKCIPHER 223 select CRYPTO_MANAGER 231 select CRYPTO_MANAGER 224 select CRYPTO_HASH 232 select CRYPTO_HASH 225 select CRYPTO_NULL 233 select CRYPTO_NULL 226 help 234 help 227 Authenc: Combined mode wrapper for I 235 Authenc: Combined mode wrapper for IPsec. 228 !! 236 This is required for IPSec. 229 This is required for IPSec ESP (XFRM << 230 237 231 config CRYPTO_TEST 238 config CRYPTO_TEST 232 tristate "Testing module" 239 tristate "Testing module" 233 depends on m || EXPERT !! 240 depends on m 234 select CRYPTO_MANAGER 241 select CRYPTO_MANAGER 235 help 242 help 236 Quick & dirty crypto test module. 243 Quick & dirty crypto test module. 237 244 >> 245 config CRYPTO_ABLK_HELPER >> 246 tristate >> 247 select CRYPTO_CRYPTD >> 248 238 config CRYPTO_SIMD 249 config CRYPTO_SIMD 239 tristate 250 tristate 240 select CRYPTO_CRYPTD 251 select CRYPTO_CRYPTD 241 252 242 config CRYPTO_ENGINE !! 253 config CRYPTO_GLUE_HELPER_X86 243 tristate 254 tristate >> 255 depends on X86 >> 256 select CRYPTO_BLKCIPHER 244 257 245 endmenu !! 258 config CRYPTO_ENGINE >> 259 tristate 246 260 247 menu "Public-key cryptography" !! 261 comment "Authenticated Encryption with Associated Data" 248 262 249 config CRYPTO_RSA !! 263 config CRYPTO_CCM 250 tristate "RSA (Rivest-Shamir-Adleman)" !! 264 tristate "CCM support" 251 select CRYPTO_AKCIPHER !! 265 select CRYPTO_CTR 252 select CRYPTO_MANAGER !! 266 select CRYPTO_HASH 253 select MPILIB !! 267 select CRYPTO_AEAD 254 select ASN1 << 255 help 268 help 256 RSA (Rivest-Shamir-Adleman) public k !! 269 Support for Counter with CBC MAC. Required for IPsec. 257 270 258 config CRYPTO_DH !! 271 config CRYPTO_GCM 259 tristate "DH (Diffie-Hellman)" !! 272 tristate "GCM/GMAC support" 260 select CRYPTO_KPP !! 273 select CRYPTO_CTR 261 select MPILIB !! 274 select CRYPTO_AEAD >> 275 select CRYPTO_GHASH >> 276 select CRYPTO_NULL 262 help 277 help 263 DH (Diffie-Hellman) key exchange alg !! 278 Support for Galois/Counter Mode (GCM) and Galois Message >> 279 Authentication Code (GMAC). Required for IPSec. 264 280 265 config CRYPTO_DH_RFC7919_GROUPS !! 281 config CRYPTO_CHACHA20POLY1305 266 bool "RFC 7919 FFDHE groups" !! 282 tristate "ChaCha20-Poly1305 AEAD support" 267 depends on CRYPTO_DH !! 283 select CRYPTO_CHACHA20 268 select CRYPTO_RNG_DEFAULT !! 284 select CRYPTO_POLY1305 >> 285 select CRYPTO_AEAD 269 help 286 help 270 FFDHE (Finite-Field-based Diffie-Hel !! 287 ChaCha20-Poly1305 AEAD support, RFC7539. 271 defined in RFC7919. << 272 << 273 Support these finite-field groups in << 274 - ffdhe2048, ffdhe3072, ffdhe4096, f << 275 288 276 If unsure, say N. !! 289 Support for the AEAD wrapper using the ChaCha20 stream cipher combined >> 290 with the Poly1305 authenticator. It is defined in RFC7539 for use in >> 291 IETF protocols. 277 292 278 config CRYPTO_ECC !! 293 config CRYPTO_SEQIV 279 tristate !! 294 tristate "Sequence Number IV Generator" >> 295 select CRYPTO_AEAD >> 296 select CRYPTO_BLKCIPHER >> 297 select CRYPTO_NULL 280 select CRYPTO_RNG_DEFAULT 298 select CRYPTO_RNG_DEFAULT >> 299 help >> 300 This IV generator generates an IV based on a sequence number by >> 301 xoring it with a salt. This algorithm is mainly useful for CTR 281 302 282 config CRYPTO_ECDH !! 303 config CRYPTO_ECHAINIV 283 tristate "ECDH (Elliptic Curve Diffie- !! 304 tristate "Encrypted Chain IV Generator" 284 select CRYPTO_ECC !! 305 select CRYPTO_AEAD 285 select CRYPTO_KPP !! 306 select CRYPTO_NULL >> 307 select CRYPTO_RNG_DEFAULT >> 308 default m 286 help 309 help 287 ECDH (Elliptic Curve Diffie-Hellman) !! 310 This IV generator generates an IV based on the encryption of 288 using curves P-192, P-256, and P-384 !! 311 a sequence number xored with a salt. This is the default >> 312 algorithm for CBC. 289 313 290 config CRYPTO_ECDSA !! 314 comment "Block modes" 291 tristate "ECDSA (Elliptic Curve Digita !! 315 292 select CRYPTO_ECC !! 316 config CRYPTO_CBC 293 select CRYPTO_AKCIPHER !! 317 tristate "CBC support" 294 select ASN1 !! 318 select CRYPTO_BLKCIPHER >> 319 select CRYPTO_MANAGER 295 help 320 help 296 ECDSA (Elliptic Curve Digital Signat !! 321 CBC: Cipher Block Chaining mode 297 ISO/IEC 14888-3) !! 322 This block cipher algorithm is required for IPSec. 298 using curves P-192, P-256, and P-384 !! 323 299 !! 324 config CRYPTO_CTR 300 Only signature verification is imple !! 325 tristate "CTR support" 301 !! 326 select CRYPTO_BLKCIPHER 302 config CRYPTO_ECRDSA !! 327 select CRYPTO_SEQIV 303 tristate "EC-RDSA (Elliptic Curve Russ !! 328 select CRYPTO_MANAGER 304 select CRYPTO_ECC << 305 select CRYPTO_AKCIPHER << 306 select CRYPTO_STREEBOG << 307 select OID_REGISTRY << 308 select ASN1 << 309 help 329 help 310 Elliptic Curve Russian Digital Signa !! 330 CTR: Counter mode 311 RFC 7091, ISO/IEC 14888-3) !! 331 This block cipher algorithm is required for IPSec. 312 332 313 One of the Russian cryptographic sta !! 333 config CRYPTO_CTS 314 algorithms). Only signature verifica !! 334 tristate "CTS support" >> 335 select CRYPTO_BLKCIPHER >> 336 help >> 337 CTS: Cipher Text Stealing >> 338 This is the Cipher Text Stealing mode as described by >> 339 Section 8 of rfc2040 and referenced by rfc3962. >> 340 (rfc3962 includes errata information in its Appendix A) >> 341 This mode is required for Kerberos gss mechanism support >> 342 for AES encryption. 315 343 316 config CRYPTO_CURVE25519 !! 344 config CRYPTO_ECB 317 tristate "Curve25519" !! 345 tristate "ECB support" 318 select CRYPTO_KPP !! 346 select CRYPTO_BLKCIPHER 319 select CRYPTO_LIB_CURVE25519_GENERIC !! 347 select CRYPTO_MANAGER 320 help 348 help 321 Curve25519 elliptic curve (RFC7748) !! 349 ECB: Electronic CodeBook mode >> 350 This is the simplest block cipher algorithm. It simply encrypts >> 351 the input block by block. 322 352 323 endmenu !! 353 config CRYPTO_LRW >> 354 tristate "LRW support" >> 355 select CRYPTO_BLKCIPHER >> 356 select CRYPTO_MANAGER >> 357 select CRYPTO_GF128MUL >> 358 help >> 359 LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable >> 360 narrow block cipher mode for dm-crypt. Use it with cipher >> 361 specification string aes-lrw-benbi, the key must be 256, 320 or 384. >> 362 The first 128, 192 or 256 bits in the key are used for AES and the >> 363 rest is used to tie each cipher block to its logical position. 324 364 325 menu "Block ciphers" !! 365 config CRYPTO_PCBC >> 366 tristate "PCBC support" >> 367 select CRYPTO_BLKCIPHER >> 368 select CRYPTO_MANAGER >> 369 help >> 370 PCBC: Propagating Cipher Block Chaining mode >> 371 This block cipher algorithm is required for RxRPC. 326 372 327 config CRYPTO_AES !! 373 config CRYPTO_XTS 328 tristate "AES (Advanced Encryption Sta !! 374 tristate "XTS support" 329 select CRYPTO_ALGAPI !! 375 select CRYPTO_BLKCIPHER 330 select CRYPTO_LIB_AES !! 376 select CRYPTO_MANAGER >> 377 select CRYPTO_GF128MUL >> 378 select CRYPTO_ECB 331 help 379 help 332 AES cipher algorithms (Rijndael)(FIP !! 380 XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain, >> 381 key size 256, 384 or 512 bits. This implementation currently >> 382 can't handle a sectorsize which is not a multiple of 16 bytes. 333 383 334 Rijndael appears to be consistently !! 384 config CRYPTO_KEYWRAP 335 both hardware and software across a !! 385 tristate "Key wrapping support" 336 environments regardless of its use i !! 386 select CRYPTO_BLKCIPHER 337 modes. Its key setup time is excelle !! 387 help 338 good. Rijndael's very low memory req !! 388 Support for key wrapping (NIST SP800-38F / RFC3394) without 339 suited for restricted-space environm !! 389 padding. 340 demonstrates excellent performance. << 341 among the easiest to defend against << 342 390 343 The AES specifies three key sizes: 1 !! 391 comment "Hash modes" 344 392 345 config CRYPTO_AES_TI !! 393 config CRYPTO_CMAC 346 tristate "AES (Advanced Encryption Sta !! 394 tristate "CMAC support" 347 select CRYPTO_ALGAPI !! 395 select CRYPTO_HASH 348 select CRYPTO_LIB_AES !! 396 select CRYPTO_MANAGER 349 help 397 help 350 AES cipher algorithms (Rijndael)(FIP !! 398 Cipher-based Message Authentication Code (CMAC) specified by >> 399 The National Institute of Standards and Technology (NIST). 351 400 352 This is a generic implementation of !! 401 https://tools.ietf.org/html/rfc4493 353 data dependent latencies as much as !! 402 http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf 354 performance too much. It is intended << 355 and GCM drivers, and other CTR or CM << 356 solely on encryption (although decry << 357 with a more dramatic performance hit << 358 403 359 Instead of using 16 lookup tables of !! 404 config CRYPTO_HMAC 360 8 for decryption), this implementati !! 405 tristate "HMAC support" 361 256 bytes each, and attempts to elim !! 406 select CRYPTO_HASH 362 prefetching the entire table into th !! 407 select CRYPTO_MANAGER 363 block. Interrupts are also disabled !! 408 help 364 are evicted when the CPU is interrup !! 409 HMAC: Keyed-Hashing for Message Authentication (RFC2104). >> 410 This is required for IPSec. 365 411 366 config CRYPTO_ANUBIS !! 412 config CRYPTO_XCBC 367 tristate "Anubis" !! 413 tristate "XCBC support" 368 depends on CRYPTO_USER_API_ENABLE_OBSO !! 414 select CRYPTO_HASH 369 select CRYPTO_ALGAPI !! 415 select CRYPTO_MANAGER 370 help 416 help 371 Anubis cipher algorithm !! 417 XCBC: Keyed-Hashing with encryption algorithm >> 418 http://www.ietf.org/rfc/rfc3566.txt >> 419 http://csrc.nist.gov/encryption/modes/proposedmodes/ >> 420 xcbc-mac/xcbc-mac-spec.pdf 372 421 373 Anubis is a variable key length ciph !! 422 config CRYPTO_VMAC 374 128 bits to 320 bits in length. It !! 423 tristate "VMAC support" 375 in the NESSIE competition. !! 424 select CRYPTO_HASH >> 425 select CRYPTO_MANAGER >> 426 help >> 427 VMAC is a message authentication algorithm designed for >> 428 very high speed on 64-bit architectures. 376 429 377 See https://web.archive.org/web/2016 !! 430 See also: 378 for further information. !! 431 <http://fastcrypto.org/vmac> 379 432 380 config CRYPTO_ARIA !! 433 comment "Digest" 381 tristate "ARIA" !! 434 382 select CRYPTO_ALGAPI !! 435 config CRYPTO_CRC32C >> 436 tristate "CRC32c CRC algorithm" >> 437 select CRYPTO_HASH >> 438 select CRC32 >> 439 help >> 440 Castagnoli, et al Cyclic Redundancy-Check Algorithm. Used >> 441 by iSCSI for header and data digests and by others. >> 442 See Castagnoli93. Module will be crc32c. >> 443 >> 444 config CRYPTO_CRC32C_INTEL >> 445 tristate "CRC32c INTEL hardware acceleration" >> 446 depends on X86 >> 447 select CRYPTO_HASH >> 448 help >> 449 In Intel processor with SSE4.2 supported, the processor will >> 450 support CRC32C implementation using hardware accelerated CRC32 >> 451 instruction. This option will create 'crc32c-intel' module, >> 452 which will enable any routine to use the CRC32 instruction to >> 453 gain performance compared with software implementation. >> 454 Module will be crc32c-intel. >> 455 >> 456 config CRYPTO_CRC32C_VPMSUM >> 457 tristate "CRC32c CRC algorithm (powerpc64)" >> 458 depends on PPC64 && ALTIVEC >> 459 select CRYPTO_HASH >> 460 select CRC32 383 help 461 help 384 ARIA cipher algorithm (RFC5794) !! 462 CRC32c algorithm implemented using vector polynomial multiply-sum >> 463 (vpmsum) instructions, introduced in POWER8. Enable on POWER8 >> 464 and newer processors for improved performance. 385 465 386 ARIA is a standard encryption algori << 387 The ARIA specifies three key sizes a << 388 128-bit: 12 rounds. << 389 192-bit: 14 rounds. << 390 256-bit: 16 rounds. << 391 466 392 See: !! 467 config CRYPTO_CRC32C_SPARC64 393 https://seed.kisa.or.kr/kisa/algorit !! 468 tristate "CRC32c CRC algorithm (SPARC64)" >> 469 depends on SPARC64 >> 470 select CRYPTO_HASH >> 471 select CRC32 >> 472 help >> 473 CRC32c CRC algorithm implemented using sparc64 crypto instructions, >> 474 when available. 394 475 395 config CRYPTO_BLOWFISH !! 476 config CRYPTO_CRC32 396 tristate "Blowfish" !! 477 tristate "CRC32 CRC algorithm" 397 select CRYPTO_ALGAPI !! 478 select CRYPTO_HASH 398 select CRYPTO_BLOWFISH_COMMON !! 479 select CRC32 399 help 480 help 400 Blowfish cipher algorithm, by Bruce !! 481 CRC-32-IEEE 802.3 cyclic redundancy-check algorithm. >> 482 Shash crypto api wrappers to crc32_le function. 401 483 402 This is a variable key length cipher !! 484 config CRYPTO_CRC32_PCLMUL 403 bits to 448 bits in length. It's fa !! 485 tristate "CRC32 PCLMULQDQ hardware acceleration" 404 designed for use on "large microproc !! 486 depends on X86 >> 487 select CRYPTO_HASH >> 488 select CRC32 >> 489 help >> 490 From Intel Westmere and AMD Bulldozer processor with SSE4.2 >> 491 and PCLMULQDQ supported, the processor will support >> 492 CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ >> 493 instruction. This option will create 'crc32-plcmul' module, >> 494 which will enable any routine to use the CRC-32-IEEE 802.3 checksum >> 495 and gain better performance as compared with the table implementation. 405 496 406 See https://www.schneier.com/blowfis !! 497 config CRYPTO_CRCT10DIF >> 498 tristate "CRCT10DIF algorithm" >> 499 select CRYPTO_HASH >> 500 help >> 501 CRC T10 Data Integrity Field computation is being cast as >> 502 a crypto transform. This allows for faster crc t10 diff >> 503 transforms to be used if they are available. 407 504 408 config CRYPTO_BLOWFISH_COMMON !! 505 config CRYPTO_CRCT10DIF_PCLMUL 409 tristate !! 506 tristate "CRCT10DIF PCLMULQDQ hardware acceleration" >> 507 depends on X86 && 64BIT && CRC_T10DIF >> 508 select CRYPTO_HASH 410 help 509 help 411 Common parts of the Blowfish cipher !! 510 For x86_64 processors with SSE4.2 and PCLMULQDQ supported, 412 generic c and the assembler implemen !! 511 CRC T10 DIF PCLMULQDQ computation can be hardware >> 512 accelerated PCLMULQDQ instruction. This option will create >> 513 'crct10dif-plcmul' module, which is faster when computing the >> 514 crct10dif checksum as compared with the generic table implementation. 413 515 414 config CRYPTO_CAMELLIA !! 516 config CRYPTO_GHASH 415 tristate "Camellia" !! 517 tristate "GHASH digest algorithm" 416 select CRYPTO_ALGAPI !! 518 select CRYPTO_GF128MUL >> 519 select CRYPTO_HASH 417 help 520 help 418 Camellia cipher algorithms (ISO/IEC !! 521 GHASH is message digest algorithm for GCM (Galois/Counter Mode). 419 522 420 Camellia is a symmetric key block ci !! 523 config CRYPTO_POLY1305 421 at NTT and Mitsubishi Electric Corpo !! 524 tristate "Poly1305 authenticator algorithm" >> 525 select CRYPTO_HASH >> 526 help >> 527 Poly1305 authenticator algorithm, RFC7539. 422 528 423 The Camellia specifies three key siz !! 529 Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. >> 530 It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use >> 531 in IETF protocols. This is the portable C implementation of Poly1305. 424 532 425 See https://info.isl.ntt.co.jp/crypt !! 533 config CRYPTO_POLY1305_X86_64 >> 534 tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)" >> 535 depends on X86 && 64BIT >> 536 select CRYPTO_POLY1305 >> 537 help >> 538 Poly1305 authenticator algorithm, RFC7539. 426 539 427 config CRYPTO_CAST_COMMON !! 540 Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. 428 tristate !! 541 It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use >> 542 in IETF protocols. This is the x86_64 assembler implementation using SIMD >> 543 instructions. >> 544 >> 545 config CRYPTO_MD4 >> 546 tristate "MD4 digest algorithm" >> 547 select CRYPTO_HASH 429 help 548 help 430 Common parts of the CAST cipher algo !! 549 MD4 message digest algorithm (RFC1320). 431 generic c and the assembler implemen << 432 550 433 config CRYPTO_CAST5 !! 551 config CRYPTO_MD5 434 tristate "CAST5 (CAST-128)" !! 552 tristate "MD5 digest algorithm" 435 select CRYPTO_ALGAPI !! 553 select CRYPTO_HASH 436 select CRYPTO_CAST_COMMON << 437 help 554 help 438 CAST5 (CAST-128) cipher algorithm (R !! 555 MD5 message digest algorithm (RFC1321). 439 556 440 config CRYPTO_CAST6 !! 557 config CRYPTO_MD5_OCTEON 441 tristate "CAST6 (CAST-256)" !! 558 tristate "MD5 digest algorithm (OCTEON)" 442 select CRYPTO_ALGAPI !! 559 depends on CPU_CAVIUM_OCTEON 443 select CRYPTO_CAST_COMMON !! 560 select CRYPTO_MD5 >> 561 select CRYPTO_HASH 444 help 562 help 445 CAST6 (CAST-256) encryption algorith !! 563 MD5 message digest algorithm (RFC1321) implemented >> 564 using OCTEON crypto instructions, when available. 446 565 447 config CRYPTO_DES !! 566 config CRYPTO_MD5_PPC 448 tristate "DES and Triple DES EDE" !! 567 tristate "MD5 digest algorithm (PPC)" 449 select CRYPTO_ALGAPI !! 568 depends on PPC 450 select CRYPTO_LIB_DES !! 569 select CRYPTO_HASH 451 help 570 help 452 DES (Data Encryption Standard)(FIPS !! 571 MD5 message digest algorithm (RFC1321) implemented 453 Triple DES EDE (Encrypt/Decrypt/Encr !! 572 in PPC assembler. 454 cipher algorithms << 455 573 456 config CRYPTO_FCRYPT !! 574 config CRYPTO_MD5_SPARC64 457 tristate "FCrypt" !! 575 tristate "MD5 digest algorithm (SPARC64)" 458 select CRYPTO_ALGAPI !! 576 depends on SPARC64 459 select CRYPTO_SKCIPHER !! 577 select CRYPTO_MD5 >> 578 select CRYPTO_HASH 460 help 579 help 461 FCrypt algorithm used by RxRPC !! 580 MD5 message digest algorithm (RFC1321) implemented >> 581 using sparc64 crypto instructions, when available. 462 582 463 See https://ota.polyonymo.us/fcrypt- !! 583 config CRYPTO_MICHAEL_MIC >> 584 tristate "Michael MIC keyed digest algorithm" >> 585 select CRYPTO_HASH >> 586 help >> 587 Michael MIC is used for message integrity protection in TKIP >> 588 (IEEE 802.11i). This algorithm is required for TKIP, but it >> 589 should not be used for other purposes because of the weakness >> 590 of the algorithm. 464 591 465 config CRYPTO_KHAZAD !! 592 config CRYPTO_RMD128 466 tristate "Khazad" !! 593 tristate "RIPEMD-128 digest algorithm" 467 depends on CRYPTO_USER_API_ENABLE_OBSO !! 594 select CRYPTO_HASH 468 select CRYPTO_ALGAPI << 469 help 595 help 470 Khazad cipher algorithm !! 596 RIPEMD-128 (ISO/IEC 10118-3:2004). 471 597 472 Khazad was a finalist in the initial !! 598 RIPEMD-128 is a 128-bit cryptographic hash function. It should only 473 an algorithm optimized for 64-bit pr !! 599 be used as a secure replacement for RIPEMD. For other use cases, 474 on 32-bit processors. Khazad uses a !! 600 RIPEMD-160 should be used. 475 601 476 See https://web.archive.org/web/2017 !! 602 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 477 for further information. !! 603 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 478 604 479 config CRYPTO_SEED !! 605 config CRYPTO_RMD160 480 tristate "SEED" !! 606 tristate "RIPEMD-160 digest algorithm" 481 depends on CRYPTO_USER_API_ENABLE_OBSO !! 607 select CRYPTO_HASH 482 select CRYPTO_ALGAPI << 483 help 608 help 484 SEED cipher algorithm (RFC4269, ISO/ !! 609 RIPEMD-160 (ISO/IEC 10118-3:2004). 485 610 486 SEED is a 128-bit symmetric key bloc !! 611 RIPEMD-160 is a 160-bit cryptographic hash function. It is intended 487 developed by KISA (Korea Information !! 612 to be used as a secure replacement for the 128-bit hash functions 488 national standard encryption algorit !! 613 MD4, MD5 and it's predecessor RIPEMD 489 It is a 16 round block cipher with t !! 614 (not to be confused with RIPEMD-128). 490 615 491 See https://seed.kisa.or.kr/kisa/alg !! 616 It's speed is comparable to SHA1 and there are no known attacks 492 for further information. !! 617 against RIPEMD-160. 493 618 494 config CRYPTO_SERPENT !! 619 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 495 tristate "Serpent" !! 620 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 496 select CRYPTO_ALGAPI !! 621 >> 622 config CRYPTO_RMD256 >> 623 tristate "RIPEMD-256 digest algorithm" >> 624 select CRYPTO_HASH 497 help 625 help 498 Serpent cipher algorithm, by Anderso !! 626 RIPEMD-256 is an optional extension of RIPEMD-128 with a >> 627 256 bit hash. It is intended for applications that require >> 628 longer hash-results, without needing a larger security level >> 629 (than RIPEMD-128). 499 630 500 Keys are allowed to be from 0 to 256 !! 631 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 501 of 8 bits. !! 632 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 502 633 503 See https://www.cl.cam.ac.uk/~rja14/ !! 634 config CRYPTO_RMD320 >> 635 tristate "RIPEMD-320 digest algorithm" >> 636 select CRYPTO_HASH >> 637 help >> 638 RIPEMD-320 is an optional extension of RIPEMD-160 with a >> 639 320 bit hash. It is intended for applications that require >> 640 longer hash-results, without needing a larger security level >> 641 (than RIPEMD-160). 504 642 505 config CRYPTO_SM4 !! 643 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 506 tristate !! 644 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 507 645 508 config CRYPTO_SM4_GENERIC !! 646 config CRYPTO_SHA1 509 tristate "SM4 (ShangMi 4)" !! 647 tristate "SHA1 digest algorithm" 510 select CRYPTO_ALGAPI !! 648 select CRYPTO_HASH 511 select CRYPTO_SM4 << 512 help 649 help 513 SM4 cipher algorithms (OSCCA GB/T 32 !! 650 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). 514 ISO/IEC 18033-3:2010/Amd 1:2021) << 515 651 516 SM4 (GBT.32907-2016) is a cryptograp !! 652 config CRYPTO_SHA1_SSSE3 517 Organization of State Commercial Adm !! 653 tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" 518 as an authorized cryptographic algor !! 654 depends on X86 && 64BIT >> 655 select CRYPTO_SHA1 >> 656 select CRYPTO_HASH >> 657 help >> 658 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented >> 659 using Supplemental SSE3 (SSSE3) instructions or Advanced Vector >> 660 Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions), >> 661 when available. 519 662 520 SMS4 was originally created for use !! 663 config CRYPTO_SHA256_SSSE3 521 networks, and is mandated in the Chi !! 664 tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" 522 Wireless LAN WAPI (Wired Authenticat !! 665 depends on X86 && 64BIT 523 (GB.15629.11-2003). !! 666 select CRYPTO_SHA256 >> 667 select CRYPTO_HASH >> 668 help >> 669 SHA-256 secure hash standard (DFIPS 180-2) implemented >> 670 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector >> 671 Extensions version 1 (AVX1), or Advanced Vector Extensions >> 672 version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New >> 673 Instructions) when available. >> 674 >> 675 config CRYPTO_SHA512_SSSE3 >> 676 tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)" >> 677 depends on X86 && 64BIT >> 678 select CRYPTO_SHA512 >> 679 select CRYPTO_HASH >> 680 help >> 681 SHA-512 secure hash standard (DFIPS 180-2) implemented >> 682 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector >> 683 Extensions version 1 (AVX1), or Advanced Vector Extensions >> 684 version 2 (AVX2) instructions, when available. >> 685 >> 686 config CRYPTO_SHA1_OCTEON >> 687 tristate "SHA1 digest algorithm (OCTEON)" >> 688 depends on CPU_CAVIUM_OCTEON >> 689 select CRYPTO_SHA1 >> 690 select CRYPTO_HASH >> 691 help >> 692 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented >> 693 using OCTEON crypto instructions, when available. >> 694 >> 695 config CRYPTO_SHA1_SPARC64 >> 696 tristate "SHA1 digest algorithm (SPARC64)" >> 697 depends on SPARC64 >> 698 select CRYPTO_SHA1 >> 699 select CRYPTO_HASH >> 700 help >> 701 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented >> 702 using sparc64 crypto instructions, when available. >> 703 >> 704 config CRYPTO_SHA1_PPC >> 705 tristate "SHA1 digest algorithm (powerpc)" >> 706 depends on PPC >> 707 help >> 708 This is the powerpc hardware accelerated implementation of the >> 709 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). >> 710 >> 711 config CRYPTO_SHA1_PPC_SPE >> 712 tristate "SHA1 digest algorithm (PPC SPE)" >> 713 depends on PPC && SPE >> 714 help >> 715 SHA-1 secure hash standard (DFIPS 180-4) implemented >> 716 using powerpc SPE SIMD instruction set. >> 717 >> 718 config CRYPTO_SHA1_MB >> 719 tristate "SHA1 digest algorithm (x86_64 Multi-Buffer, Experimental)" >> 720 depends on X86 && 64BIT >> 721 select CRYPTO_SHA1 >> 722 select CRYPTO_HASH >> 723 select CRYPTO_MCRYPTD >> 724 help >> 725 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented >> 726 using multi-buffer technique. This algorithm computes on >> 727 multiple data lanes concurrently with SIMD instructions for >> 728 better throughput. It should not be enabled by default but >> 729 used when there is significant amount of work to keep the keep >> 730 the data lanes filled to get performance benefit. If the data >> 731 lanes remain unfilled, a flush operation will be initiated to >> 732 process the crypto jobs, adding a slight latency. >> 733 >> 734 config CRYPTO_SHA256_MB >> 735 tristate "SHA256 digest algorithm (x86_64 Multi-Buffer, Experimental)" >> 736 depends on X86 && 64BIT >> 737 select CRYPTO_SHA256 >> 738 select CRYPTO_HASH >> 739 select CRYPTO_MCRYPTD >> 740 help >> 741 SHA-256 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented >> 742 using multi-buffer technique. This algorithm computes on >> 743 multiple data lanes concurrently with SIMD instructions for >> 744 better throughput. It should not be enabled by default but >> 745 used when there is significant amount of work to keep the keep >> 746 the data lanes filled to get performance benefit. If the data >> 747 lanes remain unfilled, a flush operation will be initiated to >> 748 process the crypto jobs, adding a slight latency. >> 749 >> 750 config CRYPTO_SHA512_MB >> 751 tristate "SHA512 digest algorithm (x86_64 Multi-Buffer, Experimental)" >> 752 depends on X86 && 64BIT >> 753 select CRYPTO_SHA512 >> 754 select CRYPTO_HASH >> 755 select CRYPTO_MCRYPTD >> 756 help >> 757 SHA-512 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented >> 758 using multi-buffer technique. This algorithm computes on >> 759 multiple data lanes concurrently with SIMD instructions for >> 760 better throughput. It should not be enabled by default but >> 761 used when there is significant amount of work to keep the keep >> 762 the data lanes filled to get performance benefit. If the data >> 763 lanes remain unfilled, a flush operation will be initiated to >> 764 process the crypto jobs, adding a slight latency. 524 765 525 The latest SM4 standard (GBT.32907-2 !! 766 config CRYPTO_SHA256 526 standardized through TC 260 of the S !! 767 tristate "SHA224 and SHA256 digest algorithm" 527 of the People's Republic of China (S !! 768 select CRYPTO_HASH >> 769 help >> 770 SHA256 secure hash standard (DFIPS 180-2). 528 771 529 The input, output, and key of SMS4 a !! 772 This version of SHA implements a 256 bit hash with 128 bits of >> 773 security against collision attacks. 530 774 531 See https://eprint.iacr.org/2008/329 !! 775 This code also includes SHA-224, a 224 bit hash with 112 bits >> 776 of security against collision attacks. 532 777 533 If unsure, say N. !! 778 config CRYPTO_SHA256_PPC_SPE >> 779 tristate "SHA224 and SHA256 digest algorithm (PPC SPE)" >> 780 depends on PPC && SPE >> 781 select CRYPTO_SHA256 >> 782 select CRYPTO_HASH >> 783 help >> 784 SHA224 and SHA256 secure hash standard (DFIPS 180-2) >> 785 implemented using powerpc SPE SIMD instruction set. 534 786 535 config CRYPTO_TEA !! 787 config CRYPTO_SHA256_OCTEON 536 tristate "TEA, XTEA and XETA" !! 788 tristate "SHA224 and SHA256 digest algorithm (OCTEON)" 537 depends on CRYPTO_USER_API_ENABLE_OBSO !! 789 depends on CPU_CAVIUM_OCTEON 538 select CRYPTO_ALGAPI !! 790 select CRYPTO_SHA256 >> 791 select CRYPTO_HASH 539 help 792 help 540 TEA (Tiny Encryption Algorithm) ciph !! 793 SHA-256 secure hash standard (DFIPS 180-2) implemented >> 794 using OCTEON crypto instructions, when available. 541 795 542 Tiny Encryption Algorithm is a simpl !! 796 config CRYPTO_SHA256_SPARC64 543 many rounds for security. It is ver !! 797 tristate "SHA224 and SHA256 digest algorithm (SPARC64)" 544 little memory. !! 798 depends on SPARC64 >> 799 select CRYPTO_SHA256 >> 800 select CRYPTO_HASH >> 801 help >> 802 SHA-256 secure hash standard (DFIPS 180-2) implemented >> 803 using sparc64 crypto instructions, when available. 545 804 546 Xtendend Tiny Encryption Algorithm i !! 805 config CRYPTO_SHA512 547 the TEA algorithm to address a poten !! 806 tristate "SHA384 and SHA512 digest algorithms" 548 in the TEA algorithm. !! 807 select CRYPTO_HASH >> 808 help >> 809 SHA512 secure hash standard (DFIPS 180-2). 549 810 550 Xtendend Encryption Tiny Algorithm i !! 811 This version of SHA implements a 512 bit hash with 256 bits of 551 of the XTEA algorithm for compatibil !! 812 security against collision attacks. 552 813 553 config CRYPTO_TWOFISH !! 814 This code also includes SHA-384, a 384 bit hash with 192 bits 554 tristate "Twofish" !! 815 of security against collision attacks. 555 select CRYPTO_ALGAPI !! 816 556 select CRYPTO_TWOFISH_COMMON !! 817 config CRYPTO_SHA512_OCTEON >> 818 tristate "SHA384 and SHA512 digest algorithms (OCTEON)" >> 819 depends on CPU_CAVIUM_OCTEON >> 820 select CRYPTO_SHA512 >> 821 select CRYPTO_HASH 557 help 822 help 558 Twofish cipher algorithm !! 823 SHA-512 secure hash standard (DFIPS 180-2) implemented >> 824 using OCTEON crypto instructions, when available. 559 825 560 Twofish was submitted as an AES (Adv !! 826 config CRYPTO_SHA512_SPARC64 561 candidate cipher by researchers at C !! 827 tristate "SHA384 and SHA512 digest algorithm (SPARC64)" 562 16 round block cipher supporting key !! 828 depends on SPARC64 563 bits. !! 829 select CRYPTO_SHA512 >> 830 select CRYPTO_HASH >> 831 help >> 832 SHA-512 secure hash standard (DFIPS 180-2) implemented >> 833 using sparc64 crypto instructions, when available. >> 834 >> 835 config CRYPTO_SHA3 >> 836 tristate "SHA3 digest algorithm" >> 837 select CRYPTO_HASH >> 838 help >> 839 SHA-3 secure hash standard (DFIPS 202). It's based on >> 840 cryptographic sponge function family called Keccak. 564 841 565 See https://www.schneier.com/twofish !! 842 References: >> 843 http://keccak.noekeon.org/ 566 844 567 config CRYPTO_TWOFISH_COMMON !! 845 config CRYPTO_TGR192 568 tristate !! 846 tristate "Tiger digest algorithms" >> 847 select CRYPTO_HASH 569 help 848 help 570 Common parts of the Twofish cipher a !! 849 Tiger hash algorithm 192, 160 and 128-bit hashes 571 generic c and the assembler implemen << 572 850 573 endmenu !! 851 Tiger is a hash function optimized for 64-bit processors while >> 852 still having decent performance on 32-bit processors. >> 853 Tiger was developed by Ross Anderson and Eli Biham. 574 854 575 menu "Length-preserving ciphers and modes" !! 855 See also: >> 856 <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>. 576 857 577 config CRYPTO_ADIANTUM !! 858 config CRYPTO_WP512 578 tristate "Adiantum" !! 859 tristate "Whirlpool digest algorithms" 579 select CRYPTO_CHACHA20 !! 860 select CRYPTO_HASH 580 select CRYPTO_LIB_POLY1305_GENERIC << 581 select CRYPTO_NHPOLY1305 << 582 select CRYPTO_MANAGER << 583 help 861 help 584 Adiantum tweakable, length-preservin !! 862 Whirlpool hash algorithm 512, 384 and 256-bit hashes 585 863 586 Designed for fast and secure disk en !! 864 Whirlpool-512 is part of the NESSIE cryptographic primitives. 587 CPUs without dedicated crypto instru !! 865 Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard 588 each sector using the XChaCha12 stre << 589 an ε-almost-∆-universal hash func << 590 the AES-256 block cipher on a single << 591 without AES instructions, Adiantum i << 592 AES-XTS. << 593 << 594 Adiantum's security is provably redu << 595 underlying stream and block ciphers, << 596 bound. Unlike XTS, Adiantum is a tr << 597 mode, so it actually provides an eve << 598 security than XTS, subject to the se << 599 866 600 If unsure, say N. !! 867 See also: >> 868 <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html> 601 869 602 config CRYPTO_ARC4 !! 870 config CRYPTO_GHASH_CLMUL_NI_INTEL 603 tristate "ARC4 (Alleged Rivest Cipher !! 871 tristate "GHASH digest algorithm (CLMUL-NI accelerated)" 604 depends on CRYPTO_USER_API_ENABLE_OBSO !! 872 depends on X86 && 64BIT 605 select CRYPTO_SKCIPHER !! 873 select CRYPTO_CRYPTD 606 select CRYPTO_LIB_ARC4 << 607 help 874 help 608 ARC4 cipher algorithm !! 875 GHASH is message digest algorithm for GCM (Galois/Counter Mode). >> 876 The implementation is accelerated by CLMUL-NI of Intel. 609 877 610 ARC4 is a stream cipher using keys r !! 878 comment "Ciphers" 611 bits in length. This algorithm is r << 612 WEP, but it should not be for other << 613 weakness of the algorithm. << 614 879 615 config CRYPTO_CHACHA20 !! 880 config CRYPTO_AES 616 tristate "ChaCha" !! 881 tristate "AES cipher algorithms" 617 select CRYPTO_LIB_CHACHA_GENERIC !! 882 select CRYPTO_ALGAPI 618 select CRYPTO_SKCIPHER << 619 help 883 help 620 The ChaCha20, XChaCha20, and XChaCha !! 884 AES cipher algorithms (FIPS-197). AES uses the Rijndael >> 885 algorithm. 621 886 622 ChaCha20 is a 256-bit high-speed str !! 887 Rijndael appears to be consistently a very good performer in 623 Bernstein and further specified in R !! 888 both hardware and software across a wide range of computing 624 This is the portable C implementatio !! 889 environments regardless of its use in feedback or non-feedback 625 https://cr.yp.to/chacha/chacha-20080 !! 890 modes. Its key setup time is excellent, and its key agility is >> 891 good. Rijndael's very low memory requirements make it very well >> 892 suited for restricted-space environments, in which it also >> 893 demonstrates excellent performance. Rijndael's operations are >> 894 among the easiest to defend against power and timing attacks. 626 895 627 XChaCha20 is the application of the !! 896 The AES specifies three key sizes: 128, 192 and 256 bits 628 rather than to Salsa20. XChaCha20 e << 629 from 64 bits (or 96 bits using the R << 630 while provably retaining ChaCha20's << 631 https://cr.yp.to/snuffle/xsalsa-2008 << 632 << 633 XChaCha12 is XChaCha20 reduced to 12 << 634 reduced security margin but increase << 635 in some performance-sensitive scenar << 636 897 637 config CRYPTO_CBC !! 898 See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information. 638 tristate "CBC (Cipher Block Chaining)" !! 899 639 select CRYPTO_SKCIPHER !! 900 config CRYPTO_AES_TI 640 select CRYPTO_MANAGER !! 901 tristate "Fixed time AES cipher" >> 902 select CRYPTO_ALGAPI 641 help 903 help 642 CBC (Cipher Block Chaining) mode (NI !! 904 This is a generic implementation of AES that attempts to eliminate >> 905 data dependent latencies as much as possible without affecting >> 906 performance too much. It is intended for use by the generic CCM >> 907 and GCM drivers, and other CTR or CMAC/XCBC based modes that rely >> 908 solely on encryption (although decryption is supported as well, but >> 909 with a more dramatic performance hit) 643 910 644 This block cipher mode is required f !! 911 Instead of using 16 lookup tables of 1 KB each, (8 for encryption and >> 912 8 for decryption), this implementation only uses just two S-boxes of >> 913 256 bytes each, and attempts to eliminate data dependent latencies by >> 914 prefetching the entire table into the cache at the start of each >> 915 block. 645 916 646 config CRYPTO_CTR !! 917 config CRYPTO_AES_586 647 tristate "CTR (Counter)" !! 918 tristate "AES cipher algorithms (i586)" 648 select CRYPTO_SKCIPHER !! 919 depends on (X86 || UML_X86) && !64BIT 649 select CRYPTO_MANAGER !! 920 select CRYPTO_ALGAPI >> 921 select CRYPTO_AES 650 help 922 help 651 CTR (Counter) mode (NIST SP800-38A) !! 923 AES cipher algorithms (FIPS-197). AES uses the Rijndael >> 924 algorithm. 652 925 653 config CRYPTO_CTS !! 926 Rijndael appears to be consistently a very good performer in 654 tristate "CTS (Cipher Text Stealing)" !! 927 both hardware and software across a wide range of computing 655 select CRYPTO_SKCIPHER !! 928 environments regardless of its use in feedback or non-feedback 656 select CRYPTO_MANAGER !! 929 modes. Its key setup time is excellent, and its key agility is 657 help !! 930 good. Rijndael's very low memory requirements make it very well 658 CBC-CS3 variant of CTS (Cipher Text !! 931 suited for restricted-space environments, in which it also 659 Addendum to SP800-38A (October 2010) !! 932 demonstrates excellent performance. Rijndael's operations are >> 933 among the easiest to defend against power and timing attacks. 660 934 661 This mode is required for Kerberos g !! 935 The AES specifies three key sizes: 128, 192 and 256 bits 662 for AES encryption. << 663 936 664 config CRYPTO_ECB !! 937 See <http://csrc.nist.gov/encryption/aes/> for more information. 665 tristate "ECB (Electronic Codebook)" << 666 select CRYPTO_SKCIPHER2 << 667 select CRYPTO_MANAGER << 668 help << 669 ECB (Electronic Codebook) mode (NIST << 670 938 671 config CRYPTO_HCTR2 !! 939 config CRYPTO_AES_X86_64 672 tristate "HCTR2" !! 940 tristate "AES cipher algorithms (x86_64)" 673 select CRYPTO_XCTR !! 941 depends on (X86 || UML_X86) && 64BIT 674 select CRYPTO_POLYVAL !! 942 select CRYPTO_ALGAPI 675 select CRYPTO_MANAGER !! 943 select CRYPTO_AES 676 help 944 help 677 HCTR2 length-preserving encryption m !! 945 AES cipher algorithms (FIPS-197). AES uses the Rijndael >> 946 algorithm. 678 947 679 A mode for storage encryption that i !! 948 Rijndael appears to be consistently a very good performer in 680 instructions to accelerate AES and c !! 949 both hardware and software across a wide range of computing 681 x86 processors with AES-NI and CLMUL !! 950 environments regardless of its use in feedback or non-feedback 682 ARMv8 crypto extensions. !! 951 modes. Its key setup time is excellent, and its key agility is >> 952 good. Rijndael's very low memory requirements make it very well >> 953 suited for restricted-space environments, in which it also >> 954 demonstrates excellent performance. Rijndael's operations are >> 955 among the easiest to defend against power and timing attacks. 683 956 684 See https://eprint.iacr.org/2021/144 !! 957 The AES specifies three key sizes: 128, 192 and 256 bits 685 958 686 config CRYPTO_KEYWRAP !! 959 See <http://csrc.nist.gov/encryption/aes/> for more information. 687 tristate "KW (AES Key Wrap)" << 688 select CRYPTO_SKCIPHER << 689 select CRYPTO_MANAGER << 690 help << 691 KW (AES Key Wrap) authenticated encr << 692 and RFC3394) without padding. << 693 960 694 config CRYPTO_LRW !! 961 config CRYPTO_AES_NI_INTEL 695 tristate "LRW (Liskov Rivest Wagner)" !! 962 tristate "AES cipher algorithms (AES-NI)" 696 select CRYPTO_LIB_GF128MUL !! 963 depends on X86 697 select CRYPTO_SKCIPHER !! 964 select CRYPTO_AEAD 698 select CRYPTO_MANAGER !! 965 select CRYPTO_AES_X86_64 if 64BIT 699 select CRYPTO_ECB !! 966 select CRYPTO_AES_586 if !64BIT >> 967 select CRYPTO_ALGAPI >> 968 select CRYPTO_BLKCIPHER >> 969 select CRYPTO_GLUE_HELPER_X86 if 64BIT >> 970 select CRYPTO_SIMD 700 help 971 help 701 LRW (Liskov Rivest Wagner) mode !! 972 Use Intel AES-NI instructions for AES algorithm. 702 973 703 A tweakable, non malleable, non mova !! 974 AES cipher algorithms (FIPS-197). AES uses the Rijndael 704 narrow block cipher mode for dm-cryp !! 975 algorithm. 705 specification string aes-lrw-benbi, << 706 The first 128, 192 or 256 bits in th << 707 rest is used to tie each cipher bloc << 708 976 709 See https://people.csail.mit.edu/riv !! 977 Rijndael appears to be consistently a very good performer in >> 978 both hardware and software across a wide range of computing >> 979 environments regardless of its use in feedback or non-feedback >> 980 modes. Its key setup time is excellent, and its key agility is >> 981 good. Rijndael's very low memory requirements make it very well >> 982 suited for restricted-space environments, in which it also >> 983 demonstrates excellent performance. Rijndael's operations are >> 984 among the easiest to defend against power and timing attacks. 710 985 711 config CRYPTO_PCBC !! 986 The AES specifies three key sizes: 128, 192 and 256 bits 712 tristate "PCBC (Propagating Cipher Blo << 713 select CRYPTO_SKCIPHER << 714 select CRYPTO_MANAGER << 715 help << 716 PCBC (Propagating Cipher Block Chain << 717 987 718 This block cipher mode is required f !! 988 See <http://csrc.nist.gov/encryption/aes/> for more information. 719 989 720 config CRYPTO_XCTR !! 990 In addition to AES cipher algorithm support, the acceleration 721 tristate !! 991 for some popular block cipher mode is supported too, including 722 select CRYPTO_SKCIPHER !! 992 ECB, CBC, LRW, PCBC, XTS. The 64 bit version has additional 723 select CRYPTO_MANAGER !! 993 acceleration for CTR. >> 994 >> 995 config CRYPTO_AES_SPARC64 >> 996 tristate "AES cipher algorithms (SPARC64)" >> 997 depends on SPARC64 >> 998 select CRYPTO_CRYPTD >> 999 select CRYPTO_ALGAPI 724 help 1000 help 725 XCTR (XOR Counter) mode for HCTR2 !! 1001 Use SPARC64 crypto opcodes for AES algorithm. >> 1002 >> 1003 AES cipher algorithms (FIPS-197). AES uses the Rijndael >> 1004 algorithm. 726 1005 727 This blockcipher mode is a variant o !! 1006 Rijndael appears to be consistently a very good performer in 728 addition rather than big-endian arit !! 1007 both hardware and software across a wide range of computing >> 1008 environments regardless of its use in feedback or non-feedback >> 1009 modes. Its key setup time is excellent, and its key agility is >> 1010 good. Rijndael's very low memory requirements make it very well >> 1011 suited for restricted-space environments, in which it also >> 1012 demonstrates excellent performance. Rijndael's operations are >> 1013 among the easiest to defend against power and timing attacks. 729 1014 730 XCTR mode is used to implement HCTR2 !! 1015 The AES specifies three key sizes: 128, 192 and 256 bits 731 1016 732 config CRYPTO_XTS !! 1017 See <http://csrc.nist.gov/encryption/aes/> for more information. 733 tristate "XTS (XOR Encrypt XOR with ci << 734 select CRYPTO_SKCIPHER << 735 select CRYPTO_MANAGER << 736 select CRYPTO_ECB << 737 help << 738 XTS (XOR Encrypt XOR with ciphertext << 739 and IEEE 1619) << 740 1018 741 Use with aes-xts-plain, key size 256 !! 1019 In addition to AES cipher algorithm support, the acceleration 742 implementation currently can't handl !! 1020 for some popular block cipher mode is supported too, including 743 multiple of 16 bytes. !! 1021 ECB and CBC. >> 1022 >> 1023 config CRYPTO_AES_PPC_SPE >> 1024 tristate "AES cipher algorithms (PPC SPE)" >> 1025 depends on PPC && SPE >> 1026 help >> 1027 AES cipher algorithms (FIPS-197). Additionally the acceleration >> 1028 for popular block cipher modes ECB, CBC, CTR and XTS is supported. >> 1029 This module should only be used for low power (router) devices >> 1030 without hardware AES acceleration (e.g. caam crypto). It reduces the >> 1031 size of the AES tables from 16KB to 8KB + 256 bytes and mitigates >> 1032 timining attacks. Nevertheless it might be not as secure as other >> 1033 architecture specific assembler implementations that work on 1KB >> 1034 tables or 256 bytes S-boxes. 744 1035 745 config CRYPTO_NHPOLY1305 !! 1036 config CRYPTO_ANUBIS 746 tristate !! 1037 tristate "Anubis cipher algorithm" 747 select CRYPTO_HASH !! 1038 select CRYPTO_ALGAPI 748 select CRYPTO_LIB_POLY1305_GENERIC !! 1039 help >> 1040 Anubis cipher algorithm. 749 1041 750 endmenu !! 1042 Anubis is a variable key length cipher which can use keys from >> 1043 128 bits to 320 bits in length. It was evaluated as a entrant >> 1044 in the NESSIE competition. 751 1045 752 menu "AEAD (authenticated encryption with asso !! 1046 See also: >> 1047 <https://www.cosic.esat.kuleuven.be/nessie/reports/> >> 1048 <http://www.larc.usp.br/~pbarreto/AnubisPage.html> 753 1049 754 config CRYPTO_AEGIS128 !! 1050 config CRYPTO_ARC4 755 tristate "AEGIS-128" !! 1051 tristate "ARC4 cipher algorithm" 756 select CRYPTO_AEAD !! 1052 select CRYPTO_BLKCIPHER 757 select CRYPTO_AES # for AES S-box tab << 758 help 1053 help 759 AEGIS-128 AEAD algorithm !! 1054 ARC4 cipher algorithm. 760 1055 761 config CRYPTO_AEGIS128_SIMD !! 1056 ARC4 is a stream cipher using keys ranging from 8 bits to 2048 762 bool "AEGIS-128 (arm NEON, arm64 NEON) !! 1057 bits in length. This algorithm is required for driver-based 763 depends on CRYPTO_AEGIS128 && ((ARM || !! 1058 WEP, but it should not be for other purposes because of the 764 default y !! 1059 weakness of the algorithm. >> 1060 >> 1061 config CRYPTO_BLOWFISH >> 1062 tristate "Blowfish cipher algorithm" >> 1063 select CRYPTO_ALGAPI >> 1064 select CRYPTO_BLOWFISH_COMMON 765 help 1065 help 766 AEGIS-128 AEAD algorithm !! 1066 Blowfish cipher algorithm, by Bruce Schneier. 767 1067 768 Architecture: arm or arm64 using: !! 1068 This is a variable key length cipher which can use keys from 32 769 - NEON (Advanced SIMD) extension !! 1069 bits to 448 bits in length. It's fast, simple and specifically >> 1070 designed for use on "large microprocessors". 770 1071 771 config CRYPTO_CHACHA20POLY1305 !! 1072 See also: 772 tristate "ChaCha20-Poly1305" !! 1073 <http://www.schneier.com/blowfish.html> 773 select CRYPTO_CHACHA20 << 774 select CRYPTO_POLY1305 << 775 select CRYPTO_AEAD << 776 select CRYPTO_MANAGER << 777 help << 778 ChaCha20 stream cipher and Poly1305 << 779 mode (RFC8439) << 780 1074 781 config CRYPTO_CCM !! 1075 config CRYPTO_BLOWFISH_COMMON 782 tristate "CCM (Counter with Cipher Blo !! 1076 tristate 783 select CRYPTO_CTR << 784 select CRYPTO_HASH << 785 select CRYPTO_AEAD << 786 select CRYPTO_MANAGER << 787 help 1077 help 788 CCM (Counter with Cipher Block Chain !! 1078 Common parts of the Blowfish cipher algorithm shared by the 789 authenticated encryption mode (NIST !! 1079 generic c and the assembler implementations. 790 1080 791 config CRYPTO_GCM !! 1081 See also: 792 tristate "GCM (Galois/Counter Mode) an !! 1082 <http://www.schneier.com/blowfish.html> 793 select CRYPTO_CTR !! 1083 794 select CRYPTO_AEAD !! 1084 config CRYPTO_BLOWFISH_X86_64 795 select CRYPTO_GHASH !! 1085 tristate "Blowfish cipher algorithm (x86_64)" 796 select CRYPTO_NULL !! 1086 depends on X86 && 64BIT 797 select CRYPTO_MANAGER !! 1087 select CRYPTO_ALGAPI >> 1088 select CRYPTO_BLOWFISH_COMMON 798 help 1089 help 799 GCM (Galois/Counter Mode) authentica !! 1090 Blowfish cipher algorithm (x86_64), by Bruce Schneier. 800 (GCM Message Authentication Code) (N << 801 1091 802 This is required for IPSec ESP (XFRM !! 1092 This is a variable key length cipher which can use keys from 32 >> 1093 bits to 448 bits in length. It's fast, simple and specifically >> 1094 designed for use on "large microprocessors". 803 1095 804 config CRYPTO_GENIV !! 1096 See also: 805 tristate !! 1097 <http://www.schneier.com/blowfish.html> 806 select CRYPTO_AEAD << 807 select CRYPTO_NULL << 808 select CRYPTO_MANAGER << 809 select CRYPTO_RNG_DEFAULT << 810 1098 811 config CRYPTO_SEQIV !! 1099 config CRYPTO_CAMELLIA 812 tristate "Sequence Number IV Generator !! 1100 tristate "Camellia cipher algorithms" 813 select CRYPTO_GENIV !! 1101 depends on CRYPTO >> 1102 select CRYPTO_ALGAPI 814 help 1103 help 815 Sequence Number IV generator !! 1104 Camellia cipher algorithms module. 816 1105 817 This IV generator generates an IV ba !! 1106 Camellia is a symmetric key block cipher developed jointly 818 xoring it with a salt. This algorit !! 1107 at NTT and Mitsubishi Electric Corporation. >> 1108 >> 1109 The Camellia specifies three key sizes: 128, 192 and 256 bits. 819 1110 820 This is required for IPsec ESP (XFRM !! 1111 See also: >> 1112 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 821 1113 822 config CRYPTO_ECHAINIV !! 1114 config CRYPTO_CAMELLIA_X86_64 823 tristate "Encrypted Chain IV Generator !! 1115 tristate "Camellia cipher algorithm (x86_64)" 824 select CRYPTO_GENIV !! 1116 depends on X86 && 64BIT >> 1117 depends on CRYPTO >> 1118 select CRYPTO_ALGAPI >> 1119 select CRYPTO_GLUE_HELPER_X86 >> 1120 select CRYPTO_LRW >> 1121 select CRYPTO_XTS 825 help 1122 help 826 Encrypted Chain IV generator !! 1123 Camellia cipher algorithm module (x86_64). 827 1124 828 This IV generator generates an IV ba !! 1125 Camellia is a symmetric key block cipher developed jointly 829 a sequence number xored with a salt. !! 1126 at NTT and Mitsubishi Electric Corporation. 830 algorithm for CBC. !! 1127 >> 1128 The Camellia specifies three key sizes: 128, 192 and 256 bits. >> 1129 >> 1130 See also: >> 1131 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 831 1132 832 config CRYPTO_ESSIV !! 1133 config CRYPTO_CAMELLIA_AESNI_AVX_X86_64 833 tristate "Encrypted Salt-Sector IV Gen !! 1134 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)" 834 select CRYPTO_AUTHENC !! 1135 depends on X86 && 64BIT >> 1136 depends on CRYPTO >> 1137 select CRYPTO_ALGAPI >> 1138 select CRYPTO_CRYPTD >> 1139 select CRYPTO_ABLK_HELPER >> 1140 select CRYPTO_GLUE_HELPER_X86 >> 1141 select CRYPTO_CAMELLIA_X86_64 >> 1142 select CRYPTO_LRW >> 1143 select CRYPTO_XTS 835 help 1144 help 836 Encrypted Salt-Sector IV generator !! 1145 Camellia cipher algorithm module (x86_64/AES-NI/AVX). >> 1146 >> 1147 Camellia is a symmetric key block cipher developed jointly >> 1148 at NTT and Mitsubishi Electric Corporation. 837 1149 838 This IV generator is used in some ca !! 1150 The Camellia specifies three key sizes: 128, 192 and 256 bits. 839 dm-crypt. It uses the hash of the bl << 840 symmetric key for a block encryption << 841 IV, making low entropy IV sources mo << 842 encryption. << 843 1151 844 This driver implements a crypto API !! 1152 See also: 845 instantiated either as an skcipher o !! 1153 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 846 type of the first template argument) << 847 and decryption requests to the encap << 848 ESSIV to the input IV. Note that in << 849 that the keys are presented in the s << 850 template, and that the IV appears at << 851 associated data (AAD) region (which << 852 1154 853 Note that the use of ESSIV is not re !! 1155 config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64 854 and so this only needs to be enabled !! 1156 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)" 855 existing encrypted volumes of filesy !! 1157 depends on X86 && 64BIT 856 building for a particular system tha !! 1158 depends on CRYPTO 857 the SoC in question has accelerated !! 1159 select CRYPTO_ALGAPI 858 combined with ESSIV the only feasibl !! 1160 select CRYPTO_CRYPTD 859 block encryption) !! 1161 select CRYPTO_ABLK_HELPER >> 1162 select CRYPTO_GLUE_HELPER_X86 >> 1163 select CRYPTO_CAMELLIA_X86_64 >> 1164 select CRYPTO_CAMELLIA_AESNI_AVX_X86_64 >> 1165 select CRYPTO_LRW >> 1166 select CRYPTO_XTS >> 1167 help >> 1168 Camellia cipher algorithm module (x86_64/AES-NI/AVX2). 860 1169 861 endmenu !! 1170 Camellia is a symmetric key block cipher developed jointly >> 1171 at NTT and Mitsubishi Electric Corporation. 862 1172 863 menu "Hashes, digests, and MACs" !! 1173 The Camellia specifies three key sizes: 128, 192 and 256 bits. 864 1174 865 config CRYPTO_BLAKE2B !! 1175 See also: 866 tristate "BLAKE2b" !! 1176 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 867 select CRYPTO_HASH !! 1177 >> 1178 config CRYPTO_CAMELLIA_SPARC64 >> 1179 tristate "Camellia cipher algorithm (SPARC64)" >> 1180 depends on SPARC64 >> 1181 depends on CRYPTO >> 1182 select CRYPTO_ALGAPI 868 help 1183 help 869 BLAKE2b cryptographic hash function !! 1184 Camellia cipher algorithm module (SPARC64). 870 1185 871 BLAKE2b is optimized for 64-bit plat !! 1186 Camellia is a symmetric key block cipher developed jointly 872 of any size between 1 and 64 bytes. !! 1187 at NTT and Mitsubishi Electric Corporation. 873 1188 874 This module provides the following a !! 1189 The Camellia specifies three key sizes: 128, 192 and 256 bits. 875 - blake2b-160 << 876 - blake2b-256 << 877 - blake2b-384 << 878 - blake2b-512 << 879 1190 880 Used by the btrfs filesystem. !! 1191 See also: >> 1192 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 881 1193 882 See https://blake2.net for further i !! 1194 config CRYPTO_CAST_COMMON >> 1195 tristate >> 1196 help >> 1197 Common parts of the CAST cipher algorithms shared by the >> 1198 generic c and the assembler implementations. 883 1199 884 config CRYPTO_CMAC !! 1200 config CRYPTO_CAST5 885 tristate "CMAC (Cipher-based MAC)" !! 1201 tristate "CAST5 (CAST-128) cipher algorithm" 886 select CRYPTO_HASH !! 1202 select CRYPTO_ALGAPI 887 select CRYPTO_MANAGER !! 1203 select CRYPTO_CAST_COMMON 888 help 1204 help 889 CMAC (Cipher-based Message Authentic !! 1205 The CAST5 encryption algorithm (synonymous with CAST-128) is 890 mode (NIST SP800-38B and IETF RFC449 !! 1206 described in RFC2144. 891 1207 892 config CRYPTO_GHASH !! 1208 config CRYPTO_CAST5_AVX_X86_64 893 tristate "GHASH" !! 1209 tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)" 894 select CRYPTO_HASH !! 1210 depends on X86 && 64BIT 895 select CRYPTO_LIB_GF128MUL !! 1211 select CRYPTO_ALGAPI >> 1212 select CRYPTO_CRYPTD >> 1213 select CRYPTO_ABLK_HELPER >> 1214 select CRYPTO_CAST_COMMON >> 1215 select CRYPTO_CAST5 896 help 1216 help 897 GCM GHASH function (NIST SP800-38D) !! 1217 The CAST5 encryption algorithm (synonymous with CAST-128) is >> 1218 described in RFC2144. 898 1219 899 config CRYPTO_HMAC !! 1220 This module provides the Cast5 cipher algorithm that processes 900 tristate "HMAC (Keyed-Hash MAC)" !! 1221 sixteen blocks parallel using the AVX instruction set. 901 select CRYPTO_HASH !! 1222 902 select CRYPTO_MANAGER !! 1223 config CRYPTO_CAST6 >> 1224 tristate "CAST6 (CAST-256) cipher algorithm" >> 1225 select CRYPTO_ALGAPI >> 1226 select CRYPTO_CAST_COMMON >> 1227 help >> 1228 The CAST6 encryption algorithm (synonymous with CAST-256) is >> 1229 described in RFC2612. >> 1230 >> 1231 config CRYPTO_CAST6_AVX_X86_64 >> 1232 tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)" >> 1233 depends on X86 && 64BIT >> 1234 select CRYPTO_ALGAPI >> 1235 select CRYPTO_CRYPTD >> 1236 select CRYPTO_ABLK_HELPER >> 1237 select CRYPTO_GLUE_HELPER_X86 >> 1238 select CRYPTO_CAST_COMMON >> 1239 select CRYPTO_CAST6 >> 1240 select CRYPTO_LRW >> 1241 select CRYPTO_XTS 903 help 1242 help 904 HMAC (Keyed-Hash Message Authenticat !! 1243 The CAST6 encryption algorithm (synonymous with CAST-256) is 905 RFC2104) !! 1244 described in RFC2612. 906 1245 907 This is required for IPsec AH (XFRM_ !! 1246 This module provides the Cast6 cipher algorithm that processes >> 1247 eight blocks parallel using the AVX instruction set. 908 1248 909 config CRYPTO_MD4 !! 1249 config CRYPTO_DES 910 tristate "MD4" !! 1250 tristate "DES and Triple DES EDE cipher algorithms" 911 select CRYPTO_HASH !! 1251 select CRYPTO_ALGAPI 912 help 1252 help 913 MD4 message digest algorithm (RFC132 !! 1253 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3). 914 1254 915 config CRYPTO_MD5 !! 1255 config CRYPTO_DES_SPARC64 916 tristate "MD5" !! 1256 tristate "DES and Triple DES EDE cipher algorithms (SPARC64)" 917 select CRYPTO_HASH !! 1257 depends on SPARC64 >> 1258 select CRYPTO_ALGAPI >> 1259 select CRYPTO_DES 918 help 1260 help 919 MD5 message digest algorithm (RFC132 !! 1261 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3), >> 1262 optimized using SPARC64 crypto opcodes. 920 1263 921 config CRYPTO_MICHAEL_MIC !! 1264 config CRYPTO_DES3_EDE_X86_64 922 tristate "Michael MIC" !! 1265 tristate "Triple DES EDE cipher algorithm (x86-64)" 923 select CRYPTO_HASH !! 1266 depends on X86 && 64BIT >> 1267 select CRYPTO_ALGAPI >> 1268 select CRYPTO_DES 924 help 1269 help 925 Michael MIC (Message Integrity Code) !! 1270 Triple DES EDE (FIPS 46-3) algorithm. 926 1271 927 Defined by the IEEE 802.11i TKIP (Te !! 1272 This module provides implementation of the Triple DES EDE cipher 928 known as WPA (Wif-Fi Protected Acces !! 1273 algorithm that is optimized for x86-64 processors. Two versions of >> 1274 algorithm are provided; regular processing one input block and >> 1275 one that processes three blocks parallel. 929 1276 930 This algorithm is required for TKIP, !! 1277 config CRYPTO_FCRYPT 931 other purposes because of the weakne !! 1278 tristate "FCrypt cipher algorithm" >> 1279 select CRYPTO_ALGAPI >> 1280 select CRYPTO_BLKCIPHER >> 1281 help >> 1282 FCrypt algorithm used by RxRPC. 932 1283 933 config CRYPTO_POLYVAL !! 1284 config CRYPTO_KHAZAD 934 tristate !! 1285 tristate "Khazad cipher algorithm" 935 select CRYPTO_HASH !! 1286 select CRYPTO_ALGAPI 936 select CRYPTO_LIB_GF128MUL << 937 help 1287 help 938 POLYVAL hash function for HCTR2 !! 1288 Khazad cipher algorithm. 939 1289 940 This is used in HCTR2. It is not a !! 1290 Khazad was a finalist in the initial NESSIE competition. It is 941 cryptographic hash function. !! 1291 an algorithm optimized for 64-bit processors with good performance >> 1292 on 32-bit processors. Khazad uses an 128 bit key size. 942 1293 943 config CRYPTO_POLY1305 !! 1294 See also: 944 tristate "Poly1305" !! 1295 <http://www.larc.usp.br/~pbarreto/KhazadPage.html> 945 select CRYPTO_HASH !! 1296 946 select CRYPTO_LIB_POLY1305_GENERIC !! 1297 config CRYPTO_SALSA20 >> 1298 tristate "Salsa20 stream cipher algorithm" >> 1299 select CRYPTO_BLKCIPHER 947 help 1300 help 948 Poly1305 authenticator algorithm (RF !! 1301 Salsa20 stream cipher algorithm. 949 1302 950 Poly1305 is an authenticator algorit !! 1303 Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT 951 It is used for the ChaCha20-Poly1305 !! 1304 Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/> 952 in IETF protocols. This is the porta << 953 1305 954 config CRYPTO_RMD160 !! 1306 The Salsa20 stream cipher algorithm is designed by Daniel J. 955 tristate "RIPEMD-160" !! 1307 Bernstein <http://cr.yp.to/snuffle.html">djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html> 956 select CRYPTO_HASH << 957 help << 958 RIPEMD-160 hash function (ISO/IEC 10 << 959 1308 960 RIPEMD-160 is a 160-bit cryptographi !! 1309 config CRYPTO_SALSA20_586 961 to be used as a secure replacement f !! 1310 tristate "Salsa20 stream cipher algorithm (i586)" 962 MD4, MD5 and its predecessor RIPEMD !! 1311 depends on (X86 || UML_X86) && !64BIT 963 (not to be confused with RIPEMD-128) !! 1312 select CRYPTO_BLKCIPHER >> 1313 help >> 1314 Salsa20 stream cipher algorithm. 964 1315 965 Its speed is comparable to SHA-1 and !! 1316 Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT 966 against RIPEMD-160. !! 1317 Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/> 967 1318 968 Developed by Hans Dobbertin, Antoon !! 1319 The Salsa20 stream cipher algorithm is designed by Daniel J. 969 See https://homes.esat.kuleuven.be/~ !! 1320 Bernstein <http://cr.yp.to/snuffle.html">djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html> 970 for further information. << 971 1321 972 config CRYPTO_SHA1 !! 1322 config CRYPTO_SALSA20_X86_64 973 tristate "SHA-1" !! 1323 tristate "Salsa20 stream cipher algorithm (x86_64)" 974 select CRYPTO_HASH !! 1324 depends on (X86 || UML_X86) && 64BIT 975 select CRYPTO_LIB_SHA1 !! 1325 select CRYPTO_BLKCIPHER 976 help 1326 help 977 SHA-1 secure hash algorithm (FIPS 18 !! 1327 Salsa20 stream cipher algorithm. 978 1328 979 config CRYPTO_SHA256 !! 1329 Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT 980 tristate "SHA-224 and SHA-256" !! 1330 Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/> 981 select CRYPTO_HASH !! 1331 982 select CRYPTO_LIB_SHA256 !! 1332 The Salsa20 stream cipher algorithm is designed by Daniel J. >> 1333 Bernstein <http://cr.yp.to/snuffle.html">djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html> >> 1334 >> 1335 config CRYPTO_CHACHA20 >> 1336 tristate "ChaCha20 cipher algorithm" >> 1337 select CRYPTO_BLKCIPHER 983 help 1338 help 984 SHA-224 and SHA-256 secure hash algo !! 1339 ChaCha20 cipher algorithm, RFC7539. 985 1340 986 This is required for IPsec AH (XFRM_ !! 1341 ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J. 987 Used by the btrfs filesystem, Ceph, !! 1342 Bernstein and further specified in RFC7539 for use in IETF protocols. >> 1343 This is the portable C implementation of ChaCha20. 988 1344 989 config CRYPTO_SHA512 !! 1345 See also: 990 tristate "SHA-384 and SHA-512" !! 1346 <http://cr.yp.to/chacha/chacha-20080128.pdf> 991 select CRYPTO_HASH !! 1347 >> 1348 config CRYPTO_CHACHA20_X86_64 >> 1349 tristate "ChaCha20 cipher algorithm (x86_64/SSSE3/AVX2)" >> 1350 depends on X86 && 64BIT >> 1351 select CRYPTO_BLKCIPHER >> 1352 select CRYPTO_CHACHA20 992 help 1353 help 993 SHA-384 and SHA-512 secure hash algo !! 1354 ChaCha20 cipher algorithm, RFC7539. 994 1355 995 config CRYPTO_SHA3 !! 1356 ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J. 996 tristate "SHA-3" !! 1357 Bernstein and further specified in RFC7539 for use in IETF protocols. 997 select CRYPTO_HASH !! 1358 This is the x86_64 assembler implementation using SIMD instructions. >> 1359 >> 1360 See also: >> 1361 <http://cr.yp.to/chacha/chacha-20080128.pdf> >> 1362 >> 1363 config CRYPTO_SEED >> 1364 tristate "SEED cipher algorithm" >> 1365 select CRYPTO_ALGAPI 998 help 1366 help 999 SHA-3 secure hash algorithms (FIPS 2 !! 1367 SEED cipher algorithm (RFC4269). 1000 1368 1001 config CRYPTO_SM3 !! 1369 SEED is a 128-bit symmetric key block cipher that has been 1002 tristate !! 1370 developed by KISA (Korea Information Security Agency) as a >> 1371 national standard encryption algorithm of the Republic of Korea. >> 1372 It is a 16 round block cipher with the key size of 128 bit. 1003 1373 1004 config CRYPTO_SM3_GENERIC !! 1374 See also: 1005 tristate "SM3 (ShangMi 3)" !! 1375 <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp> 1006 select CRYPTO_HASH !! 1376 1007 select CRYPTO_SM3 !! 1377 config CRYPTO_SERPENT >> 1378 tristate "Serpent cipher algorithm" >> 1379 select CRYPTO_ALGAPI 1008 help 1380 help 1009 SM3 (ShangMi 3) secure hash functio !! 1381 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1010 1382 1011 This is part of the Chinese Commerc !! 1383 Keys are allowed to be from 0 to 256 bits in length, in steps >> 1384 of 8 bits. Also includes the 'Tnepres' algorithm, a reversed >> 1385 variant of Serpent for compatibility with old kerneli.org code. 1012 1386 1013 References: !! 1387 See also: 1014 http://www.oscca.gov.cn/UpFile/2010 !! 1388 <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1015 https://datatracker.ietf.org/doc/ht << 1016 1389 1017 config CRYPTO_STREEBOG !! 1390 config CRYPTO_SERPENT_SSE2_X86_64 1018 tristate "Streebog" !! 1391 tristate "Serpent cipher algorithm (x86_64/SSE2)" 1019 select CRYPTO_HASH !! 1392 depends on X86 && 64BIT >> 1393 select CRYPTO_ALGAPI >> 1394 select CRYPTO_CRYPTD >> 1395 select CRYPTO_ABLK_HELPER >> 1396 select CRYPTO_GLUE_HELPER_X86 >> 1397 select CRYPTO_SERPENT >> 1398 select CRYPTO_LRW >> 1399 select CRYPTO_XTS 1020 help 1400 help 1021 Streebog Hash Function (GOST R 34.1 !! 1401 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1022 1402 1023 This is one of the Russian cryptogr !! 1403 Keys are allowed to be from 0 to 256 bits in length, in steps 1024 GOST algorithms). This setting enab !! 1404 of 8 bits. 1025 256 and 512 bits output. << 1026 1405 1027 References: !! 1406 This module provides Serpent cipher algorithm that processes eight 1028 https://tc26.ru/upload/iblock/fed/f !! 1407 blocks parallel using SSE2 instruction set. 1029 https://tools.ietf.org/html/rfc6986 << 1030 1408 1031 config CRYPTO_VMAC !! 1409 See also: 1032 tristate "VMAC" !! 1410 <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1033 select CRYPTO_HASH !! 1411 1034 select CRYPTO_MANAGER !! 1412 config CRYPTO_SERPENT_SSE2_586 >> 1413 tristate "Serpent cipher algorithm (i586/SSE2)" >> 1414 depends on X86 && !64BIT >> 1415 select CRYPTO_ALGAPI >> 1416 select CRYPTO_CRYPTD >> 1417 select CRYPTO_ABLK_HELPER >> 1418 select CRYPTO_GLUE_HELPER_X86 >> 1419 select CRYPTO_SERPENT >> 1420 select CRYPTO_LRW >> 1421 select CRYPTO_XTS 1035 help 1422 help 1036 VMAC is a message authentication al !! 1423 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1037 very high speed on 64-bit architect << 1038 1424 1039 See https://fastcrypto.org/vmac for !! 1425 Keys are allowed to be from 0 to 256 bits in length, in steps >> 1426 of 8 bits. 1040 1427 1041 config CRYPTO_WP512 !! 1428 This module provides Serpent cipher algorithm that processes four 1042 tristate "Whirlpool" !! 1429 blocks parallel using SSE2 instruction set. 1043 select CRYPTO_HASH !! 1430 >> 1431 See also: >> 1432 <http://www.cl.cam.ac.uk/~rja14/serpent.html> >> 1433 >> 1434 config CRYPTO_SERPENT_AVX_X86_64 >> 1435 tristate "Serpent cipher algorithm (x86_64/AVX)" >> 1436 depends on X86 && 64BIT >> 1437 select CRYPTO_ALGAPI >> 1438 select CRYPTO_CRYPTD >> 1439 select CRYPTO_ABLK_HELPER >> 1440 select CRYPTO_GLUE_HELPER_X86 >> 1441 select CRYPTO_SERPENT >> 1442 select CRYPTO_LRW >> 1443 select CRYPTO_XTS 1044 help 1444 help 1045 Whirlpool hash function (ISO/IEC 10 !! 1445 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1046 1446 1047 512, 384 and 256-bit hashes. !! 1447 Keys are allowed to be from 0 to 256 bits in length, in steps >> 1448 of 8 bits. 1048 1449 1049 Whirlpool-512 is part of the NESSIE !! 1450 This module provides the Serpent cipher algorithm that processes >> 1451 eight blocks parallel using the AVX instruction set. 1050 1452 1051 See https://web.archive.org/web/201 !! 1453 See also: 1052 for further information. !! 1454 <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1053 1455 1054 config CRYPTO_XCBC !! 1456 config CRYPTO_SERPENT_AVX2_X86_64 1055 tristate "XCBC-MAC (Extended Cipher B !! 1457 tristate "Serpent cipher algorithm (x86_64/AVX2)" 1056 select CRYPTO_HASH !! 1458 depends on X86 && 64BIT 1057 select CRYPTO_MANAGER !! 1459 select CRYPTO_ALGAPI >> 1460 select CRYPTO_CRYPTD >> 1461 select CRYPTO_ABLK_HELPER >> 1462 select CRYPTO_GLUE_HELPER_X86 >> 1463 select CRYPTO_SERPENT >> 1464 select CRYPTO_SERPENT_AVX_X86_64 >> 1465 select CRYPTO_LRW >> 1466 select CRYPTO_XTS 1058 help 1467 help 1059 XCBC-MAC (Extended Cipher Block Cha !! 1468 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1060 Code) (RFC3566) << 1061 1469 1062 config CRYPTO_XXHASH !! 1470 Keys are allowed to be from 0 to 256 bits in length, in steps 1063 tristate "xxHash" !! 1471 of 8 bits. 1064 select CRYPTO_HASH !! 1472 1065 select XXHASH !! 1473 This module provides Serpent cipher algorithm that processes 16 >> 1474 blocks parallel using AVX2 instruction set. >> 1475 >> 1476 See also: >> 1477 <http://www.cl.cam.ac.uk/~rja14/serpent.html> >> 1478 >> 1479 config CRYPTO_TEA >> 1480 tristate "TEA, XTEA and XETA cipher algorithms" >> 1481 select CRYPTO_ALGAPI 1066 help 1482 help 1067 xxHash non-cryptographic hash algor !! 1483 TEA cipher algorithm. >> 1484 >> 1485 Tiny Encryption Algorithm is a simple cipher that uses >> 1486 many rounds for security. It is very fast and uses >> 1487 little memory. >> 1488 >> 1489 Xtendend Tiny Encryption Algorithm is a modification to >> 1490 the TEA algorithm to address a potential key weakness >> 1491 in the TEA algorithm. >> 1492 >> 1493 Xtendend Encryption Tiny Algorithm is a mis-implementation >> 1494 of the XTEA algorithm for compatibility purposes. 1068 1495 1069 Extremely fast, working at speeds c !! 1496 config CRYPTO_TWOFISH >> 1497 tristate "Twofish cipher algorithm" >> 1498 select CRYPTO_ALGAPI >> 1499 select CRYPTO_TWOFISH_COMMON >> 1500 help >> 1501 Twofish cipher algorithm. 1070 1502 1071 Used by the btrfs filesystem. !! 1503 Twofish was submitted as an AES (Advanced Encryption Standard) >> 1504 candidate cipher by researchers at CounterPane Systems. It is a >> 1505 16 round block cipher supporting key sizes of 128, 192, and 256 >> 1506 bits. 1072 1507 1073 endmenu !! 1508 See also: >> 1509 <http://www.schneier.com/twofish.html> 1074 1510 1075 menu "CRCs (cyclic redundancy checks)" !! 1511 config CRYPTO_TWOFISH_COMMON >> 1512 tristate >> 1513 help >> 1514 Common parts of the Twofish cipher algorithm shared by the >> 1515 generic c and the assembler implementations. 1076 1516 1077 config CRYPTO_CRC32C !! 1517 config CRYPTO_TWOFISH_586 1078 tristate "CRC32c" !! 1518 tristate "Twofish cipher algorithms (i586)" 1079 select CRYPTO_HASH !! 1519 depends on (X86 || UML_X86) && !64BIT 1080 select CRC32 !! 1520 select CRYPTO_ALGAPI >> 1521 select CRYPTO_TWOFISH_COMMON 1081 help 1522 help 1082 CRC32c CRC algorithm with the iSCSI !! 1523 Twofish cipher algorithm. 1083 1524 1084 A 32-bit CRC (cyclic redundancy che !! 1525 Twofish was submitted as an AES (Advanced Encryption Standard) 1085 by G. Castagnoli, S. Braeuer and M. !! 1526 candidate cipher by researchers at CounterPane Systems. It is a 1086 Redundancy-Check Codes with 24 and !! 1527 16 round block cipher supporting key sizes of 128, 192, and 256 1087 on Communications, Vol. 41, No. 6, !! 1528 bits. 1088 iSCSI. << 1089 1529 1090 Used by btrfs, ext4, jbd2, NVMeoF/T !! 1530 See also: >> 1531 <http://www.schneier.com/twofish.html> 1091 1532 1092 config CRYPTO_CRC32 !! 1533 config CRYPTO_TWOFISH_X86_64 1093 tristate "CRC32" !! 1534 tristate "Twofish cipher algorithm (x86_64)" 1094 select CRYPTO_HASH !! 1535 depends on (X86 || UML_X86) && 64BIT 1095 select CRC32 !! 1536 select CRYPTO_ALGAPI >> 1537 select CRYPTO_TWOFISH_COMMON 1096 help 1538 help 1097 CRC32 CRC algorithm (IEEE 802.3) !! 1539 Twofish cipher algorithm (x86_64). >> 1540 >> 1541 Twofish was submitted as an AES (Advanced Encryption Standard) >> 1542 candidate cipher by researchers at CounterPane Systems. It is a >> 1543 16 round block cipher supporting key sizes of 128, 192, and 256 >> 1544 bits. 1098 1545 1099 Used by RoCEv2 and f2fs. !! 1546 See also: >> 1547 <http://www.schneier.com/twofish.html> 1100 1548 1101 config CRYPTO_CRCT10DIF !! 1549 config CRYPTO_TWOFISH_X86_64_3WAY 1102 tristate "CRCT10DIF" !! 1550 tristate "Twofish cipher algorithm (x86_64, 3-way parallel)" 1103 select CRYPTO_HASH !! 1551 depends on X86 && 64BIT >> 1552 select CRYPTO_ALGAPI >> 1553 select CRYPTO_TWOFISH_COMMON >> 1554 select CRYPTO_TWOFISH_X86_64 >> 1555 select CRYPTO_GLUE_HELPER_X86 >> 1556 select CRYPTO_LRW >> 1557 select CRYPTO_XTS 1104 help 1558 help 1105 CRC16 CRC algorithm used for the T1 !! 1559 Twofish cipher algorithm (x86_64, 3-way parallel). >> 1560 >> 1561 Twofish was submitted as an AES (Advanced Encryption Standard) >> 1562 candidate cipher by researchers at CounterPane Systems. It is a >> 1563 16 round block cipher supporting key sizes of 128, 192, and 256 >> 1564 bits. 1106 1565 1107 CRC algorithm used by the SCSI Bloc !! 1566 This module provides Twofish cipher algorithm that processes three >> 1567 blocks parallel, utilizing resources of out-of-order CPUs better. 1108 1568 1109 config CRYPTO_CRC64_ROCKSOFT !! 1569 See also: 1110 tristate "CRC64 based on Rocksoft Mod !! 1570 <http://www.schneier.com/twofish.html> 1111 depends on CRC64 !! 1571 1112 select CRYPTO_HASH !! 1572 config CRYPTO_TWOFISH_AVX_X86_64 >> 1573 tristate "Twofish cipher algorithm (x86_64/AVX)" >> 1574 depends on X86 && 64BIT >> 1575 select CRYPTO_ALGAPI >> 1576 select CRYPTO_CRYPTD >> 1577 select CRYPTO_ABLK_HELPER >> 1578 select CRYPTO_GLUE_HELPER_X86 >> 1579 select CRYPTO_TWOFISH_COMMON >> 1580 select CRYPTO_TWOFISH_X86_64 >> 1581 select CRYPTO_TWOFISH_X86_64_3WAY >> 1582 select CRYPTO_LRW >> 1583 select CRYPTO_XTS 1113 help 1584 help 1114 CRC64 CRC algorithm based on the Ro !! 1585 Twofish cipher algorithm (x86_64/AVX). 1115 1586 1116 Used by the NVMe implementation of !! 1587 Twofish was submitted as an AES (Advanced Encryption Standard) >> 1588 candidate cipher by researchers at CounterPane Systems. It is a >> 1589 16 round block cipher supporting key sizes of 128, 192, and 256 >> 1590 bits. 1117 1591 1118 See https://zlib.net/crc_v3.txt !! 1592 This module provides the Twofish cipher algorithm that processes >> 1593 eight blocks parallel using the AVX Instruction Set. 1119 1594 1120 endmenu !! 1595 See also: >> 1596 <http://www.schneier.com/twofish.html> 1121 1597 1122 menu "Compression" !! 1598 comment "Compression" 1123 1599 1124 config CRYPTO_DEFLATE 1600 config CRYPTO_DEFLATE 1125 tristate "Deflate" !! 1601 tristate "Deflate compression algorithm" 1126 select CRYPTO_ALGAPI 1602 select CRYPTO_ALGAPI 1127 select CRYPTO_ACOMP2 1603 select CRYPTO_ACOMP2 1128 select ZLIB_INFLATE 1604 select ZLIB_INFLATE 1129 select ZLIB_DEFLATE 1605 select ZLIB_DEFLATE 1130 help 1606 help 1131 Deflate compression algorithm (RFC1 !! 1607 This is the Deflate algorithm (RFC1951), specified for use in >> 1608 IPSec with the IPCOMP protocol (RFC3173, RFC2394). 1132 1609 1133 Used by IPSec with the IPCOMP proto !! 1610 You will most probably want this if using IPSec. 1134 1611 1135 config CRYPTO_LZO 1612 config CRYPTO_LZO 1136 tristate "LZO" !! 1613 tristate "LZO compression algorithm" 1137 select CRYPTO_ALGAPI 1614 select CRYPTO_ALGAPI 1138 select CRYPTO_ACOMP2 1615 select CRYPTO_ACOMP2 1139 select LZO_COMPRESS 1616 select LZO_COMPRESS 1140 select LZO_DECOMPRESS 1617 select LZO_DECOMPRESS 1141 help 1618 help 1142 LZO compression algorithm !! 1619 This is the LZO algorithm. 1143 << 1144 See https://www.oberhumer.com/opens << 1145 1620 1146 config CRYPTO_842 1621 config CRYPTO_842 1147 tristate "842" !! 1622 tristate "842 compression algorithm" 1148 select CRYPTO_ALGAPI 1623 select CRYPTO_ALGAPI 1149 select CRYPTO_ACOMP2 1624 select CRYPTO_ACOMP2 1150 select 842_COMPRESS 1625 select 842_COMPRESS 1151 select 842_DECOMPRESS 1626 select 842_DECOMPRESS 1152 help 1627 help 1153 842 compression algorithm by IBM !! 1628 This is the 842 algorithm. 1154 << 1155 See https://github.com/plauth/lib84 << 1156 1629 1157 config CRYPTO_LZ4 1630 config CRYPTO_LZ4 1158 tristate "LZ4" !! 1631 tristate "LZ4 compression algorithm" 1159 select CRYPTO_ALGAPI 1632 select CRYPTO_ALGAPI 1160 select CRYPTO_ACOMP2 1633 select CRYPTO_ACOMP2 1161 select LZ4_COMPRESS 1634 select LZ4_COMPRESS 1162 select LZ4_DECOMPRESS 1635 select LZ4_DECOMPRESS 1163 help 1636 help 1164 LZ4 compression algorithm !! 1637 This is the LZ4 algorithm. 1165 << 1166 See https://github.com/lz4/lz4 for << 1167 1638 1168 config CRYPTO_LZ4HC 1639 config CRYPTO_LZ4HC 1169 tristate "LZ4HC" !! 1640 tristate "LZ4HC compression algorithm" 1170 select CRYPTO_ALGAPI 1641 select CRYPTO_ALGAPI 1171 select CRYPTO_ACOMP2 1642 select CRYPTO_ACOMP2 1172 select LZ4HC_COMPRESS 1643 select LZ4HC_COMPRESS 1173 select LZ4_DECOMPRESS 1644 select LZ4_DECOMPRESS 1174 help 1645 help 1175 LZ4 high compression mode algorithm !! 1646 This is the LZ4 high compression mode algorithm. 1176 << 1177 See https://github.com/lz4/lz4 for << 1178 << 1179 config CRYPTO_ZSTD << 1180 tristate "Zstd" << 1181 select CRYPTO_ALGAPI << 1182 select CRYPTO_ACOMP2 << 1183 select ZSTD_COMPRESS << 1184 select ZSTD_DECOMPRESS << 1185 help << 1186 zstd compression algorithm << 1187 1647 1188 See https://github.com/facebook/zst !! 1648 comment "Random Number Generation" 1189 << 1190 endmenu << 1191 << 1192 menu "Random number generation" << 1193 1649 1194 config CRYPTO_ANSI_CPRNG 1650 config CRYPTO_ANSI_CPRNG 1195 tristate "ANSI PRNG (Pseudo Random Nu !! 1651 tristate "Pseudo Random Number Generation for Cryptographic modules" 1196 select CRYPTO_AES 1652 select CRYPTO_AES 1197 select CRYPTO_RNG 1653 select CRYPTO_RNG 1198 help 1654 help 1199 Pseudo RNG (random number generator !! 1655 This option enables the generic pseudo random number generator 1200 !! 1656 for cryptographic modules. Uses the Algorithm specified in 1201 This uses the AES cipher algorithm. !! 1657 ANSI X9.31 A.2.4. Note that this option must be enabled if 1202 !! 1658 CRYPTO_FIPS is selected 1203 Note that this option must be enabl << 1204 1659 1205 menuconfig CRYPTO_DRBG_MENU 1660 menuconfig CRYPTO_DRBG_MENU 1206 tristate "NIST SP800-90A DRBG (Determ !! 1661 tristate "NIST SP800-90A DRBG" 1207 help 1662 help 1208 DRBG (Deterministic Random Bit Gene !! 1663 NIST SP800-90A compliant DRBG. In the following submenu, one or 1209 !! 1664 more of the DRBG types must be selected. 1210 In the following submenu, one or mo << 1211 1665 1212 if CRYPTO_DRBG_MENU 1666 if CRYPTO_DRBG_MENU 1213 1667 1214 config CRYPTO_DRBG_HMAC 1668 config CRYPTO_DRBG_HMAC 1215 bool 1669 bool 1216 default y 1670 default y 1217 select CRYPTO_HMAC 1671 select CRYPTO_HMAC 1218 select CRYPTO_SHA512 !! 1672 select CRYPTO_SHA256 1219 1673 1220 config CRYPTO_DRBG_HASH 1674 config CRYPTO_DRBG_HASH 1221 bool "Hash_DRBG" !! 1675 bool "Enable Hash DRBG" 1222 select CRYPTO_SHA256 1676 select CRYPTO_SHA256 1223 help 1677 help 1224 Hash_DRBG variant as defined in NIS !! 1678 Enable the Hash DRBG variant as defined in NIST SP800-90A. 1225 << 1226 This uses the SHA-1, SHA-256, SHA-3 << 1227 1679 1228 config CRYPTO_DRBG_CTR 1680 config CRYPTO_DRBG_CTR 1229 bool "CTR_DRBG" !! 1681 bool "Enable CTR DRBG" 1230 select CRYPTO_AES 1682 select CRYPTO_AES 1231 select CRYPTO_CTR !! 1683 depends on CRYPTO_CTR 1232 help 1684 help 1233 CTR_DRBG variant as defined in NIST !! 1685 Enable the CTR DRBG variant as defined in NIST SP800-90A. 1234 << 1235 This uses the AES cipher algorithm << 1236 1686 1237 config CRYPTO_DRBG 1687 config CRYPTO_DRBG 1238 tristate 1688 tristate 1239 default CRYPTO_DRBG_MENU 1689 default CRYPTO_DRBG_MENU 1240 select CRYPTO_RNG 1690 select CRYPTO_RNG 1241 select CRYPTO_JITTERENTROPY 1691 select CRYPTO_JITTERENTROPY 1242 1692 1243 endif # if CRYPTO_DRBG_MENU 1693 endif # if CRYPTO_DRBG_MENU 1244 1694 1245 config CRYPTO_JITTERENTROPY 1695 config CRYPTO_JITTERENTROPY 1246 tristate "CPU Jitter Non-Deterministi !! 1696 tristate "Jitterentropy Non-Deterministic Random Number Generator" 1247 select CRYPTO_RNG 1697 select CRYPTO_RNG 1248 select CRYPTO_SHA3 << 1249 help 1698 help 1250 CPU Jitter RNG (Random Number Gener !! 1699 The Jitterentropy RNG is a noise that is intended 1251 !! 1700 to provide seed to another RNG. The RNG does not 1252 A non-physical non-deterministic (" !! 1701 perform any cryptographic whitening of the generated 1253 compliant with NIST SP800-90B) inte !! 1702 random numbers. This Jitterentropy RNG registers with 1254 deterministic RNG (e.g., per NIST S !! 1703 the kernel crypto API and can be used by any caller. 1255 This RNG does not perform any crypt << 1256 random numbers. << 1257 << 1258 See https://www.chronox.de/jent/ << 1259 << 1260 if CRYPTO_JITTERENTROPY << 1261 if CRYPTO_FIPS && EXPERT << 1262 << 1263 choice << 1264 prompt "CPU Jitter RNG Memory Size" << 1265 default CRYPTO_JITTERENTROPY_MEMSIZE_ << 1266 help << 1267 The Jitter RNG measures the executi << 1268 Multiple consecutive memory accesse << 1269 size fits into a cache (e.g. L1), o << 1270 to that cache is measured. The clos << 1271 the less variations are measured an << 1272 obtained. Thus, if the memory size << 1273 obtained entropy is less than if th << 1274 L1 + L2, which in turn is less if t << 1275 L1 + L2 + L3. Thus, by selecting a << 1276 the entropy rate produced by the Ji << 1277 << 1278 config CRYPTO_JITTERENTROPY_MEMSIZE_2 << 1279 bool "2048 Bytes (default)" << 1280 << 1281 config CRYPTO_JITTERENTROPY_MEMSIZE_1 << 1282 bool "128 kBytes" << 1283 << 1284 config CRYPTO_JITTERENTROPY_MEMSIZE_1 << 1285 bool "1024 kBytes" << 1286 << 1287 config CRYPTO_JITTERENTROPY_MEMSIZE_8 << 1288 bool "8192 kBytes" << 1289 endchoice << 1290 << 1291 config CRYPTO_JITTERENTROPY_MEMORY_BLOCKS << 1292 int << 1293 default 64 if CRYPTO_JITTERENTROPY_ME << 1294 default 512 if CRYPTO_JITTERENTROPY_M << 1295 default 1024 if CRYPTO_JITTERENTROPY_ << 1296 default 4096 if CRYPTO_JITTERENTROPY_ << 1297 << 1298 config CRYPTO_JITTERENTROPY_MEMORY_BLOCKSIZE << 1299 int << 1300 default 32 if CRYPTO_JITTERENTROPY_ME << 1301 default 256 if CRYPTO_JITTERENTROPY_M << 1302 default 1024 if CRYPTO_JITTERENTROPY_ << 1303 default 2048 if CRYPTO_JITTERENTROPY_ << 1304 << 1305 config CRYPTO_JITTERENTROPY_OSR << 1306 int "CPU Jitter RNG Oversampling Rate << 1307 range 1 15 << 1308 default 3 << 1309 help << 1310 The Jitter RNG allows the specifica << 1311 The Jitter RNG operation requires a << 1312 measurements to produce one output << 1313 OSR value is multiplied with the am << 1314 generate one output block. Thus, th << 1315 by the OSR factor. The oversampling << 1316 on hardware whose timers deliver li << 1317 the timer is coarse) by setting the << 1318 trade-off, however, is that the Jit << 1319 to generate random numbers. << 1320 << 1321 config CRYPTO_JITTERENTROPY_TESTINTERFACE << 1322 bool "CPU Jitter RNG Test Interface" << 1323 help << 1324 The test interface allows a privile << 1325 the raw unconditioned high resoluti << 1326 is collected by the Jitter RNG for << 1327 this data is used at the same time << 1328 the Jitter RNG operates in an insec << 1329 recording is enabled. This interfac << 1330 intended for testing purposes and i << 1331 production systems. << 1332 << 1333 The raw noise data can be obtained << 1334 debugfs file. Using the option << 1335 jitterentropy_testing.boot_raw_hire << 1336 the first 1000 entropy events since << 1337 << 1338 If unsure, select N. << 1339 << 1340 endif # if CRYPTO_FIPS && EXPERT << 1341 << 1342 if !(CRYPTO_FIPS && EXPERT) << 1343 << 1344 config CRYPTO_JITTERENTROPY_MEMORY_BLOCKS << 1345 int << 1346 default 64 << 1347 << 1348 config CRYPTO_JITTERENTROPY_MEMORY_BLOCKSIZE << 1349 int << 1350 default 32 << 1351 << 1352 config CRYPTO_JITTERENTROPY_OSR << 1353 int << 1354 default 1 << 1355 << 1356 config CRYPTO_JITTERENTROPY_TESTINTERFACE << 1357 bool << 1358 << 1359 endif # if !(CRYPTO_FIPS && EXPERT) << 1360 endif # if CRYPTO_JITTERENTROPY << 1361 << 1362 config CRYPTO_KDF800108_CTR << 1363 tristate << 1364 select CRYPTO_HMAC << 1365 select CRYPTO_SHA256 << 1366 << 1367 endmenu << 1368 menu "Userspace interface" << 1369 1704 1370 config CRYPTO_USER_API 1705 config CRYPTO_USER_API 1371 tristate 1706 tristate 1372 1707 1373 config CRYPTO_USER_API_HASH 1708 config CRYPTO_USER_API_HASH 1374 tristate "Hash algorithms" !! 1709 tristate "User-space interface for hash algorithms" 1375 depends on NET 1710 depends on NET 1376 select CRYPTO_HASH 1711 select CRYPTO_HASH 1377 select CRYPTO_USER_API 1712 select CRYPTO_USER_API 1378 help 1713 help 1379 Enable the userspace interface for !! 1714 This option enables the user-spaces interface for hash 1380 !! 1715 algorithms. 1381 See Documentation/crypto/userspace- << 1382 https://www.chronox.de/libkcapi/htm << 1383 1716 1384 config CRYPTO_USER_API_SKCIPHER 1717 config CRYPTO_USER_API_SKCIPHER 1385 tristate "Symmetric key cipher algori !! 1718 tristate "User-space interface for symmetric key cipher algorithms" 1386 depends on NET 1719 depends on NET 1387 select CRYPTO_SKCIPHER !! 1720 select CRYPTO_BLKCIPHER 1388 select CRYPTO_USER_API 1721 select CRYPTO_USER_API 1389 help 1722 help 1390 Enable the userspace interface for !! 1723 This option enables the user-spaces interface for symmetric 1391 !! 1724 key cipher algorithms. 1392 See Documentation/crypto/userspace- << 1393 https://www.chronox.de/libkcapi/htm << 1394 1725 1395 config CRYPTO_USER_API_RNG 1726 config CRYPTO_USER_API_RNG 1396 tristate "RNG (random number generato !! 1727 tristate "User-space interface for random number generator algorithms" 1397 depends on NET 1728 depends on NET 1398 select CRYPTO_RNG 1729 select CRYPTO_RNG 1399 select CRYPTO_USER_API 1730 select CRYPTO_USER_API 1400 help 1731 help 1401 Enable the userspace interface for !! 1732 This option enables the user-spaces interface for random 1402 algorithms. !! 1733 number generator algorithms. 1403 << 1404 See Documentation/crypto/userspace- << 1405 https://www.chronox.de/libkcapi/htm << 1406 << 1407 config CRYPTO_USER_API_RNG_CAVP << 1408 bool "Enable CAVP testing of DRBG" << 1409 depends on CRYPTO_USER_API_RNG && CRY << 1410 help << 1411 Enable extra APIs in the userspace << 1412 (Cryptographic Algorithm Validation << 1413 - resetting DRBG entropy << 1414 - providing Additional Data << 1415 << 1416 This should only be enabled for CAV << 1417 no unless you know what this is. << 1418 1734 1419 config CRYPTO_USER_API_AEAD 1735 config CRYPTO_USER_API_AEAD 1420 tristate "AEAD cipher algorithms" !! 1736 tristate "User-space interface for AEAD cipher algorithms" 1421 depends on NET 1737 depends on NET 1422 select CRYPTO_AEAD 1738 select CRYPTO_AEAD 1423 select CRYPTO_SKCIPHER << 1424 select CRYPTO_NULL << 1425 select CRYPTO_USER_API 1739 select CRYPTO_USER_API 1426 help 1740 help 1427 Enable the userspace interface for !! 1741 This option enables the user-spaces interface for AEAD 1428 !! 1742 cipher algorithms. 1429 See Documentation/crypto/userspace- << 1430 https://www.chronox.de/libkcapi/htm << 1431 << 1432 config CRYPTO_USER_API_ENABLE_OBSOLETE << 1433 bool "Obsolete cryptographic algorith << 1434 depends on CRYPTO_USER_API << 1435 default y << 1436 help << 1437 Allow obsolete cryptographic algori << 1438 already been phased out from intern << 1439 only useful for userspace clients t << 1440 << 1441 endmenu << 1442 1743 1443 config CRYPTO_HASH_INFO 1744 config CRYPTO_HASH_INFO 1444 bool 1745 bool 1445 1746 1446 if !KMSAN # avoid false positives from assemb << 1447 if ARM << 1448 source "arch/arm/crypto/Kconfig" << 1449 endif << 1450 if ARM64 << 1451 source "arch/arm64/crypto/Kconfig" << 1452 endif << 1453 if LOONGARCH << 1454 source "arch/loongarch/crypto/Kconfig" << 1455 endif << 1456 if MIPS << 1457 source "arch/mips/crypto/Kconfig" << 1458 endif << 1459 if PPC << 1460 source "arch/powerpc/crypto/Kconfig" << 1461 endif << 1462 if RISCV << 1463 source "arch/riscv/crypto/Kconfig" << 1464 endif << 1465 if S390 << 1466 source "arch/s390/crypto/Kconfig" << 1467 endif << 1468 if SPARC << 1469 source "arch/sparc/crypto/Kconfig" << 1470 endif << 1471 if X86 << 1472 source "arch/x86/crypto/Kconfig" << 1473 endif << 1474 endif << 1475 << 1476 source "drivers/crypto/Kconfig" 1747 source "drivers/crypto/Kconfig" 1477 source "crypto/asymmetric_keys/Kconfig" !! 1748 source crypto/asymmetric_keys/Kconfig 1478 source "certs/Kconfig" !! 1749 source certs/Kconfig 1479 1750 1480 endif # if CRYPTO 1751 endif # if CRYPTO
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.