1 # SPDX-License-Identifier: GPL-2.0 << 2 # 1 # 3 # Generic algorithms support 2 # Generic algorithms support 4 # 3 # 5 config XOR_BLOCKS 4 config XOR_BLOCKS 6 tristate 5 tristate 7 6 8 # 7 # 9 # async_tx api: hardware offloaded memory tran 8 # async_tx api: hardware offloaded memory transfer/transform support 10 # 9 # 11 source "crypto/async_tx/Kconfig" 10 source "crypto/async_tx/Kconfig" 12 11 13 # 12 # 14 # Cryptographic API Configuration 13 # Cryptographic API Configuration 15 # 14 # 16 menuconfig CRYPTO 15 menuconfig CRYPTO 17 tristate "Cryptographic API" 16 tristate "Cryptographic API" 18 select CRYPTO_LIB_UTILS << 19 help 17 help 20 This option provides the core Crypto 18 This option provides the core Cryptographic API. 21 19 22 if CRYPTO 20 if CRYPTO 23 21 24 menu "Crypto core or helper" !! 22 comment "Crypto core or helper" 25 23 26 config CRYPTO_FIPS 24 config CRYPTO_FIPS 27 bool "FIPS 200 compliance" 25 bool "FIPS 200 compliance" 28 depends on (CRYPTO_ANSI_CPRNG || CRYPT 26 depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS 29 depends on (MODULE_SIG || !MODULES) 27 depends on (MODULE_SIG || !MODULES) 30 help 28 help 31 This option enables the fips boot op !! 29 This options enables the fips boot option which is 32 required if you want the system to o !! 30 required if you want to system to operate in a FIPS 200 33 certification. You should say no un 31 certification. You should say no unless you know what 34 this is. 32 this is. 35 33 36 config CRYPTO_FIPS_NAME << 37 string "FIPS Module Name" << 38 default "Linux Kernel Cryptographic AP << 39 depends on CRYPTO_FIPS << 40 help << 41 This option sets the FIPS Module nam << 42 the /proc/sys/crypto/fips_name file. << 43 << 44 config CRYPTO_FIPS_CUSTOM_VERSION << 45 bool "Use Custom FIPS Module Version" << 46 depends on CRYPTO_FIPS << 47 default n << 48 << 49 config CRYPTO_FIPS_VERSION << 50 string "FIPS Module Version" << 51 default "(none)" << 52 depends on CRYPTO_FIPS_CUSTOM_VERSION << 53 help << 54 This option provides the ability to << 55 By default the KERNELRELEASE value i << 56 << 57 config CRYPTO_ALGAPI 34 config CRYPTO_ALGAPI 58 tristate 35 tristate 59 select CRYPTO_ALGAPI2 36 select CRYPTO_ALGAPI2 60 help 37 help 61 This option provides the API for cry 38 This option provides the API for cryptographic algorithms. 62 39 63 config CRYPTO_ALGAPI2 40 config CRYPTO_ALGAPI2 64 tristate 41 tristate 65 42 66 config CRYPTO_AEAD 43 config CRYPTO_AEAD 67 tristate 44 tristate 68 select CRYPTO_AEAD2 45 select CRYPTO_AEAD2 69 select CRYPTO_ALGAPI 46 select CRYPTO_ALGAPI 70 47 71 config CRYPTO_AEAD2 48 config CRYPTO_AEAD2 72 tristate 49 tristate 73 select CRYPTO_ALGAPI2 50 select CRYPTO_ALGAPI2 >> 51 select CRYPTO_NULL2 >> 52 select CRYPTO_RNG2 74 53 75 config CRYPTO_SIG !! 54 config CRYPTO_BLKCIPHER 76 tristate << 77 select CRYPTO_SIG2 << 78 select CRYPTO_ALGAPI << 79 << 80 config CRYPTO_SIG2 << 81 tristate << 82 select CRYPTO_ALGAPI2 << 83 << 84 config CRYPTO_SKCIPHER << 85 tristate 55 tristate 86 select CRYPTO_SKCIPHER2 !! 56 select CRYPTO_BLKCIPHER2 87 select CRYPTO_ALGAPI 57 select CRYPTO_ALGAPI 88 select CRYPTO_ECB << 89 58 90 config CRYPTO_SKCIPHER2 !! 59 config CRYPTO_BLKCIPHER2 91 tristate 60 tristate 92 select CRYPTO_ALGAPI2 61 select CRYPTO_ALGAPI2 >> 62 select CRYPTO_RNG2 >> 63 select CRYPTO_WORKQUEUE 93 64 94 config CRYPTO_HASH 65 config CRYPTO_HASH 95 tristate 66 tristate 96 select CRYPTO_HASH2 67 select CRYPTO_HASH2 97 select CRYPTO_ALGAPI 68 select CRYPTO_ALGAPI 98 69 99 config CRYPTO_HASH2 70 config CRYPTO_HASH2 100 tristate 71 tristate 101 select CRYPTO_ALGAPI2 72 select CRYPTO_ALGAPI2 102 73 103 config CRYPTO_RNG 74 config CRYPTO_RNG 104 tristate 75 tristate 105 select CRYPTO_RNG2 76 select CRYPTO_RNG2 106 select CRYPTO_ALGAPI 77 select CRYPTO_ALGAPI 107 78 108 config CRYPTO_RNG2 79 config CRYPTO_RNG2 109 tristate 80 tristate 110 select CRYPTO_ALGAPI2 81 select CRYPTO_ALGAPI2 111 82 112 config CRYPTO_RNG_DEFAULT 83 config CRYPTO_RNG_DEFAULT 113 tristate 84 tristate 114 select CRYPTO_DRBG_MENU 85 select CRYPTO_DRBG_MENU 115 86 116 config CRYPTO_AKCIPHER2 87 config CRYPTO_AKCIPHER2 117 tristate 88 tristate 118 select CRYPTO_ALGAPI2 89 select CRYPTO_ALGAPI2 119 90 120 config CRYPTO_AKCIPHER 91 config CRYPTO_AKCIPHER 121 tristate 92 tristate 122 select CRYPTO_AKCIPHER2 93 select CRYPTO_AKCIPHER2 123 select CRYPTO_ALGAPI 94 select CRYPTO_ALGAPI 124 95 125 config CRYPTO_KPP2 96 config CRYPTO_KPP2 126 tristate 97 tristate 127 select CRYPTO_ALGAPI2 98 select CRYPTO_ALGAPI2 128 99 129 config CRYPTO_KPP 100 config CRYPTO_KPP 130 tristate 101 tristate 131 select CRYPTO_ALGAPI 102 select CRYPTO_ALGAPI 132 select CRYPTO_KPP2 103 select CRYPTO_KPP2 133 104 134 config CRYPTO_ACOMP2 105 config CRYPTO_ACOMP2 135 tristate 106 tristate 136 select CRYPTO_ALGAPI2 107 select CRYPTO_ALGAPI2 137 select SGL_ALLOC << 138 108 139 config CRYPTO_ACOMP 109 config CRYPTO_ACOMP 140 tristate 110 tristate 141 select CRYPTO_ALGAPI 111 select CRYPTO_ALGAPI 142 select CRYPTO_ACOMP2 112 select CRYPTO_ACOMP2 143 113 >> 114 config CRYPTO_RSA >> 115 tristate "RSA algorithm" >> 116 select CRYPTO_AKCIPHER >> 117 select CRYPTO_MANAGER >> 118 select MPILIB >> 119 select ASN1 >> 120 help >> 121 Generic implementation of the RSA public key algorithm. >> 122 >> 123 config CRYPTO_DH >> 124 tristate "Diffie-Hellman algorithm" >> 125 select CRYPTO_KPP >> 126 select MPILIB >> 127 help >> 128 Generic implementation of the Diffie-Hellman algorithm. >> 129 >> 130 config CRYPTO_ECDH >> 131 tristate "ECDH algorithm" >> 132 select CRYTPO_KPP >> 133 select CRYPTO_RNG_DEFAULT >> 134 help >> 135 Generic implementation of the ECDH algorithm >> 136 144 config CRYPTO_MANAGER 137 config CRYPTO_MANAGER 145 tristate "Cryptographic algorithm mana 138 tristate "Cryptographic algorithm manager" 146 select CRYPTO_MANAGER2 139 select CRYPTO_MANAGER2 147 help 140 help 148 Create default cryptographic templat 141 Create default cryptographic template instantiations such as 149 cbc(aes). 142 cbc(aes). 150 143 151 config CRYPTO_MANAGER2 144 config CRYPTO_MANAGER2 152 def_tristate CRYPTO_MANAGER || (CRYPTO 145 def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y) 153 select CRYPTO_ACOMP2 << 154 select CRYPTO_AEAD2 146 select CRYPTO_AEAD2 155 select CRYPTO_AKCIPHER2 << 156 select CRYPTO_SIG2 << 157 select CRYPTO_HASH2 147 select CRYPTO_HASH2 >> 148 select CRYPTO_BLKCIPHER2 >> 149 select CRYPTO_AKCIPHER2 158 select CRYPTO_KPP2 150 select CRYPTO_KPP2 159 select CRYPTO_RNG2 !! 151 select CRYPTO_ACOMP2 160 select CRYPTO_SKCIPHER2 << 161 152 162 config CRYPTO_USER 153 config CRYPTO_USER 163 tristate "Userspace cryptographic algo 154 tristate "Userspace cryptographic algorithm configuration" 164 depends on NET 155 depends on NET 165 select CRYPTO_MANAGER 156 select CRYPTO_MANAGER 166 help 157 help 167 Userspace configuration for cryptogr 158 Userspace configuration for cryptographic instantiations such as 168 cbc(aes). 159 cbc(aes). 169 160 170 config CRYPTO_MANAGER_DISABLE_TESTS 161 config CRYPTO_MANAGER_DISABLE_TESTS 171 bool "Disable run-time self tests" 162 bool "Disable run-time self tests" 172 default y 163 default y >> 164 depends on CRYPTO_MANAGER2 173 help 165 help 174 Disable run-time self tests that nor 166 Disable run-time self tests that normally take place at 175 algorithm registration. 167 algorithm registration. 176 168 177 config CRYPTO_MANAGER_EXTRA_TESTS !! 169 config CRYPTO_GF128MUL 178 bool "Enable extra run-time crypto sel !! 170 tristate "GF(2^128) multiplication functions" 179 depends on DEBUG_KERNEL && !CRYPTO_MAN << 180 help 171 help 181 Enable extra run-time self tests of !! 172 Efficient table driven implementation of multiplications in the 182 including randomized fuzz tests. !! 173 field GF(2^128). This is needed by some cypher modes. This 183 !! 174 option will be selected automatically if you select such a 184 This is intended for developer use o !! 175 cipher mode. Only select this option by hand if you expect to load 185 longer to run than the normal self t !! 176 an external module that requires these functions. 186 177 187 config CRYPTO_NULL 178 config CRYPTO_NULL 188 tristate "Null algorithms" 179 tristate "Null algorithms" 189 select CRYPTO_NULL2 180 select CRYPTO_NULL2 190 help 181 help 191 These are 'Null' algorithms, used by 182 These are 'Null' algorithms, used by IPsec, which do nothing. 192 183 193 config CRYPTO_NULL2 184 config CRYPTO_NULL2 194 tristate 185 tristate 195 select CRYPTO_ALGAPI2 186 select CRYPTO_ALGAPI2 196 select CRYPTO_SKCIPHER2 !! 187 select CRYPTO_BLKCIPHER2 197 select CRYPTO_HASH2 188 select CRYPTO_HASH2 198 189 199 config CRYPTO_PCRYPT 190 config CRYPTO_PCRYPT 200 tristate "Parallel crypto engine" 191 tristate "Parallel crypto engine" 201 depends on SMP 192 depends on SMP 202 select PADATA 193 select PADATA 203 select CRYPTO_MANAGER 194 select CRYPTO_MANAGER 204 select CRYPTO_AEAD 195 select CRYPTO_AEAD 205 help 196 help 206 This converts an arbitrary crypto al 197 This converts an arbitrary crypto algorithm into a parallel 207 algorithm that executes in kernel th 198 algorithm that executes in kernel threads. 208 199 >> 200 config CRYPTO_WORKQUEUE >> 201 tristate >> 202 209 config CRYPTO_CRYPTD 203 config CRYPTO_CRYPTD 210 tristate "Software async crypto daemon 204 tristate "Software async crypto daemon" 211 select CRYPTO_SKCIPHER !! 205 select CRYPTO_BLKCIPHER 212 select CRYPTO_HASH 206 select CRYPTO_HASH 213 select CRYPTO_MANAGER 207 select CRYPTO_MANAGER >> 208 select CRYPTO_WORKQUEUE 214 help 209 help 215 This is a generic software asynchron 210 This is a generic software asynchronous crypto daemon that 216 converts an arbitrary synchronous so 211 converts an arbitrary synchronous software crypto algorithm 217 into an asynchronous algorithm that 212 into an asynchronous algorithm that executes in a kernel thread. 218 213 >> 214 config CRYPTO_MCRYPTD >> 215 tristate "Software async multi-buffer crypto daemon" >> 216 select CRYPTO_BLKCIPHER >> 217 select CRYPTO_HASH >> 218 select CRYPTO_MANAGER >> 219 select CRYPTO_WORKQUEUE >> 220 help >> 221 This is a generic software asynchronous crypto daemon that >> 222 provides the kernel thread to assist multi-buffer crypto >> 223 algorithms for submitting jobs and flushing jobs in multi-buffer >> 224 crypto algorithms. Multi-buffer crypto algorithms are executed >> 225 in the context of this kernel thread and drivers can post >> 226 their crypto request asynchronously to be processed by this daemon. >> 227 219 config CRYPTO_AUTHENC 228 config CRYPTO_AUTHENC 220 tristate "Authenc support" 229 tristate "Authenc support" 221 select CRYPTO_AEAD 230 select CRYPTO_AEAD 222 select CRYPTO_SKCIPHER !! 231 select CRYPTO_BLKCIPHER 223 select CRYPTO_MANAGER 232 select CRYPTO_MANAGER 224 select CRYPTO_HASH 233 select CRYPTO_HASH 225 select CRYPTO_NULL 234 select CRYPTO_NULL 226 help 235 help 227 Authenc: Combined mode wrapper for I 236 Authenc: Combined mode wrapper for IPsec. 228 !! 237 This is required for IPSec. 229 This is required for IPSec ESP (XFRM << 230 238 231 config CRYPTO_TEST 239 config CRYPTO_TEST 232 tristate "Testing module" 240 tristate "Testing module" 233 depends on m || EXPERT !! 241 depends on m 234 select CRYPTO_MANAGER 242 select CRYPTO_MANAGER 235 help 243 help 236 Quick & dirty crypto test module. 244 Quick & dirty crypto test module. 237 245 >> 246 config CRYPTO_ABLK_HELPER >> 247 tristate >> 248 select CRYPTO_CRYPTD >> 249 238 config CRYPTO_SIMD 250 config CRYPTO_SIMD 239 tristate 251 tristate 240 select CRYPTO_CRYPTD 252 select CRYPTO_CRYPTD 241 253 >> 254 config CRYPTO_GLUE_HELPER_X86 >> 255 tristate >> 256 depends on X86 >> 257 select CRYPTO_BLKCIPHER >> 258 242 config CRYPTO_ENGINE 259 config CRYPTO_ENGINE 243 tristate 260 tristate 244 261 245 endmenu !! 262 comment "Authenticated Encryption with Associated Data" 246 263 247 menu "Public-key cryptography" !! 264 config CRYPTO_CCM >> 265 tristate "CCM support" >> 266 select CRYPTO_CTR >> 267 select CRYPTO_HASH >> 268 select CRYPTO_AEAD >> 269 help >> 270 Support for Counter with CBC MAC. Required for IPsec. 248 271 249 config CRYPTO_RSA !! 272 config CRYPTO_GCM 250 tristate "RSA (Rivest-Shamir-Adleman)" !! 273 tristate "GCM/GMAC support" 251 select CRYPTO_AKCIPHER !! 274 select CRYPTO_CTR 252 select CRYPTO_MANAGER !! 275 select CRYPTO_AEAD 253 select MPILIB !! 276 select CRYPTO_GHASH 254 select ASN1 !! 277 select CRYPTO_NULL 255 help 278 help 256 RSA (Rivest-Shamir-Adleman) public k !! 279 Support for Galois/Counter Mode (GCM) and Galois Message >> 280 Authentication Code (GMAC). Required for IPSec. 257 281 258 config CRYPTO_DH !! 282 config CRYPTO_CHACHA20POLY1305 259 tristate "DH (Diffie-Hellman)" !! 283 tristate "ChaCha20-Poly1305 AEAD support" 260 select CRYPTO_KPP !! 284 select CRYPTO_CHACHA20 261 select MPILIB !! 285 select CRYPTO_POLY1305 >> 286 select CRYPTO_AEAD 262 help 287 help 263 DH (Diffie-Hellman) key exchange alg !! 288 ChaCha20-Poly1305 AEAD support, RFC7539. >> 289 >> 290 Support for the AEAD wrapper using the ChaCha20 stream cipher combined >> 291 with the Poly1305 authenticator. It is defined in RFC7539 for use in >> 292 IETF protocols. 264 293 265 config CRYPTO_DH_RFC7919_GROUPS !! 294 config CRYPTO_SEQIV 266 bool "RFC 7919 FFDHE groups" !! 295 tristate "Sequence Number IV Generator" 267 depends on CRYPTO_DH !! 296 select CRYPTO_AEAD >> 297 select CRYPTO_BLKCIPHER >> 298 select CRYPTO_NULL 268 select CRYPTO_RNG_DEFAULT 299 select CRYPTO_RNG_DEFAULT 269 help 300 help 270 FFDHE (Finite-Field-based Diffie-Hel !! 301 This IV generator generates an IV based on a sequence number by 271 defined in RFC7919. !! 302 xoring it with a salt. This algorithm is mainly useful for CTR 272 303 273 Support these finite-field groups in !! 304 config CRYPTO_ECHAINIV 274 - ffdhe2048, ffdhe3072, ffdhe4096, f !! 305 tristate "Encrypted Chain IV Generator" >> 306 select CRYPTO_AEAD >> 307 select CRYPTO_NULL >> 308 select CRYPTO_RNG_DEFAULT >> 309 default m >> 310 help >> 311 This IV generator generates an IV based on the encryption of >> 312 a sequence number xored with a salt. This is the default >> 313 algorithm for CBC. 275 314 276 If unsure, say N. !! 315 comment "Block modes" 277 316 278 config CRYPTO_ECC !! 317 config CRYPTO_CBC 279 tristate !! 318 tristate "CBC support" 280 select CRYPTO_RNG_DEFAULT !! 319 select CRYPTO_BLKCIPHER >> 320 select CRYPTO_MANAGER >> 321 help >> 322 CBC: Cipher Block Chaining mode >> 323 This block cipher algorithm is required for IPSec. 281 324 282 config CRYPTO_ECDH !! 325 config CRYPTO_CTR 283 tristate "ECDH (Elliptic Curve Diffie- !! 326 tristate "CTR support" 284 select CRYPTO_ECC !! 327 select CRYPTO_BLKCIPHER 285 select CRYPTO_KPP !! 328 select CRYPTO_SEQIV >> 329 select CRYPTO_MANAGER 286 help 330 help 287 ECDH (Elliptic Curve Diffie-Hellman) !! 331 CTR: Counter mode 288 using curves P-192, P-256, and P-384 !! 332 This block cipher algorithm is required for IPSec. 289 333 290 config CRYPTO_ECDSA !! 334 config CRYPTO_CTS 291 tristate "ECDSA (Elliptic Curve Digita !! 335 tristate "CTS support" 292 select CRYPTO_ECC !! 336 select CRYPTO_BLKCIPHER 293 select CRYPTO_AKCIPHER << 294 select ASN1 << 295 help 337 help 296 ECDSA (Elliptic Curve Digital Signat !! 338 CTS: Cipher Text Stealing 297 ISO/IEC 14888-3) !! 339 This is the Cipher Text Stealing mode as described by 298 using curves P-192, P-256, and P-384 !! 340 Section 8 of rfc2040 and referenced by rfc3962. 299 !! 341 (rfc3962 includes errata information in its Appendix A) 300 Only signature verification is imple !! 342 This mode is required for Kerberos gss mechanism support 301 !! 343 for AES encryption. 302 config CRYPTO_ECRDSA !! 344 303 tristate "EC-RDSA (Elliptic Curve Russ !! 345 config CRYPTO_ECB 304 select CRYPTO_ECC !! 346 tristate "ECB support" 305 select CRYPTO_AKCIPHER !! 347 select CRYPTO_BLKCIPHER 306 select CRYPTO_STREEBOG !! 348 select CRYPTO_MANAGER 307 select OID_REGISTRY !! 349 help 308 select ASN1 !! 350 ECB: Electronic CodeBook mode >> 351 This is the simplest block cipher algorithm. It simply encrypts >> 352 the input block by block. >> 353 >> 354 config CRYPTO_LRW >> 355 tristate "LRW support" >> 356 select CRYPTO_BLKCIPHER >> 357 select CRYPTO_MANAGER >> 358 select CRYPTO_GF128MUL 309 help 359 help 310 Elliptic Curve Russian Digital Signa !! 360 LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable 311 RFC 7091, ISO/IEC 14888-3) !! 361 narrow block cipher mode for dm-crypt. Use it with cipher >> 362 specification string aes-lrw-benbi, the key must be 256, 320 or 384. >> 363 The first 128, 192 or 256 bits in the key are used for AES and the >> 364 rest is used to tie each cipher block to its logical position. 312 365 313 One of the Russian cryptographic sta !! 366 config CRYPTO_PCBC 314 algorithms). Only signature verifica !! 367 tristate "PCBC support" >> 368 select CRYPTO_BLKCIPHER >> 369 select CRYPTO_MANAGER >> 370 help >> 371 PCBC: Propagating Cipher Block Chaining mode >> 372 This block cipher algorithm is required for RxRPC. 315 373 316 config CRYPTO_CURVE25519 !! 374 config CRYPTO_XTS 317 tristate "Curve25519" !! 375 tristate "XTS support" 318 select CRYPTO_KPP !! 376 select CRYPTO_BLKCIPHER 319 select CRYPTO_LIB_CURVE25519_GENERIC !! 377 select CRYPTO_MANAGER >> 378 select CRYPTO_ECB 320 help 379 help 321 Curve25519 elliptic curve (RFC7748) !! 380 XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain, >> 381 key size 256, 384 or 512 bits. This implementation currently >> 382 can't handle a sectorsize which is not a multiple of 16 bytes. 322 383 323 endmenu !! 384 config CRYPTO_KEYWRAP >> 385 tristate "Key wrapping support" >> 386 select CRYPTO_BLKCIPHER >> 387 help >> 388 Support for key wrapping (NIST SP800-38F / RFC3394) without >> 389 padding. 324 390 325 menu "Block ciphers" !! 391 comment "Hash modes" 326 392 327 config CRYPTO_AES !! 393 config CRYPTO_CMAC 328 tristate "AES (Advanced Encryption Sta !! 394 tristate "CMAC support" 329 select CRYPTO_ALGAPI !! 395 select CRYPTO_HASH 330 select CRYPTO_LIB_AES !! 396 select CRYPTO_MANAGER 331 help 397 help 332 AES cipher algorithms (Rijndael)(FIP !! 398 Cipher-based Message Authentication Code (CMAC) specified by >> 399 The National Institute of Standards and Technology (NIST). 333 400 334 Rijndael appears to be consistently !! 401 https://tools.ietf.org/html/rfc4493 335 both hardware and software across a !! 402 http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf 336 environments regardless of its use i << 337 modes. Its key setup time is excelle << 338 good. Rijndael's very low memory req << 339 suited for restricted-space environm << 340 demonstrates excellent performance. << 341 among the easiest to defend against << 342 403 343 The AES specifies three key sizes: 1 !! 404 config CRYPTO_HMAC >> 405 tristate "HMAC support" >> 406 select CRYPTO_HASH >> 407 select CRYPTO_MANAGER >> 408 help >> 409 HMAC: Keyed-Hashing for Message Authentication (RFC2104). >> 410 This is required for IPSec. 344 411 345 config CRYPTO_AES_TI !! 412 config CRYPTO_XCBC 346 tristate "AES (Advanced Encryption Sta !! 413 tristate "XCBC support" 347 select CRYPTO_ALGAPI !! 414 select CRYPTO_HASH 348 select CRYPTO_LIB_AES !! 415 select CRYPTO_MANAGER 349 help 416 help 350 AES cipher algorithms (Rijndael)(FIP !! 417 XCBC: Keyed-Hashing with encryption algorithm >> 418 http://www.ietf.org/rfc/rfc3566.txt >> 419 http://csrc.nist.gov/encryption/modes/proposedmodes/ >> 420 xcbc-mac/xcbc-mac-spec.pdf 351 421 352 This is a generic implementation of !! 422 config CRYPTO_VMAC 353 data dependent latencies as much as !! 423 tristate "VMAC support" 354 performance too much. It is intended !! 424 select CRYPTO_HASH 355 and GCM drivers, and other CTR or CM !! 425 select CRYPTO_MANAGER 356 solely on encryption (although decry !! 426 help 357 with a more dramatic performance hit !! 427 VMAC is a message authentication algorithm designed for >> 428 very high speed on 64-bit architectures. 358 429 359 Instead of using 16 lookup tables of !! 430 See also: 360 8 for decryption), this implementati !! 431 <http://fastcrypto.org/vmac> 361 256 bytes each, and attempts to elim << 362 prefetching the entire table into th << 363 block. Interrupts are also disabled << 364 are evicted when the CPU is interrup << 365 432 366 config CRYPTO_ANUBIS !! 433 comment "Digest" 367 tristate "Anubis" !! 434 368 depends on CRYPTO_USER_API_ENABLE_OBSO !! 435 config CRYPTO_CRC32C 369 select CRYPTO_ALGAPI !! 436 tristate "CRC32c CRC algorithm" >> 437 select CRYPTO_HASH >> 438 select CRC32 >> 439 help >> 440 Castagnoli, et al Cyclic Redundancy-Check Algorithm. Used >> 441 by iSCSI for header and data digests and by others. >> 442 See Castagnoli93. Module will be crc32c. >> 443 >> 444 config CRYPTO_CRC32C_INTEL >> 445 tristate "CRC32c INTEL hardware acceleration" >> 446 depends on X86 >> 447 select CRYPTO_HASH >> 448 help >> 449 In Intel processor with SSE4.2 supported, the processor will >> 450 support CRC32C implementation using hardware accelerated CRC32 >> 451 instruction. This option will create 'crc32c-intel' module, >> 452 which will enable any routine to use the CRC32 instruction to >> 453 gain performance compared with software implementation. >> 454 Module will be crc32c-intel. >> 455 >> 456 config CRYPTO_CRC32C_VPMSUM >> 457 tristate "CRC32c CRC algorithm (powerpc64)" >> 458 depends on PPC64 && ALTIVEC >> 459 select CRYPTO_HASH >> 460 select CRC32 370 help 461 help 371 Anubis cipher algorithm !! 462 CRC32c algorithm implemented using vector polynomial multiply-sum >> 463 (vpmsum) instructions, introduced in POWER8. Enable on POWER8 >> 464 and newer processors for improved performance. 372 465 373 Anubis is a variable key length ciph << 374 128 bits to 320 bits in length. It << 375 in the NESSIE competition. << 376 466 377 See https://web.archive.org/web/2016 !! 467 config CRYPTO_CRC32C_SPARC64 378 for further information. !! 468 tristate "CRC32c CRC algorithm (SPARC64)" >> 469 depends on SPARC64 >> 470 select CRYPTO_HASH >> 471 select CRC32 >> 472 help >> 473 CRC32c CRC algorithm implemented using sparc64 crypto instructions, >> 474 when available. 379 475 380 config CRYPTO_ARIA !! 476 config CRYPTO_CRC32 381 tristate "ARIA" !! 477 tristate "CRC32 CRC algorithm" 382 select CRYPTO_ALGAPI !! 478 select CRYPTO_HASH >> 479 select CRC32 383 help 480 help 384 ARIA cipher algorithm (RFC5794) !! 481 CRC-32-IEEE 802.3 cyclic redundancy-check algorithm. >> 482 Shash crypto api wrappers to crc32_le function. 385 483 386 ARIA is a standard encryption algori !! 484 config CRYPTO_CRC32_PCLMUL 387 The ARIA specifies three key sizes a !! 485 tristate "CRC32 PCLMULQDQ hardware acceleration" 388 128-bit: 12 rounds. !! 486 depends on X86 389 192-bit: 14 rounds. !! 487 select CRYPTO_HASH 390 256-bit: 16 rounds. !! 488 select CRC32 >> 489 help >> 490 From Intel Westmere and AMD Bulldozer processor with SSE4.2 >> 491 and PCLMULQDQ supported, the processor will support >> 492 CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ >> 493 instruction. This option will create 'crc32-plcmul' module, >> 494 which will enable any routine to use the CRC-32-IEEE 802.3 checksum >> 495 and gain better performance as compared with the table implementation. 391 496 392 See: !! 497 config CRYPTO_CRCT10DIF 393 https://seed.kisa.or.kr/kisa/algorit !! 498 tristate "CRCT10DIF algorithm" >> 499 select CRYPTO_HASH >> 500 help >> 501 CRC T10 Data Integrity Field computation is being cast as >> 502 a crypto transform. This allows for faster crc t10 diff >> 503 transforms to be used if they are available. 394 504 395 config CRYPTO_BLOWFISH !! 505 config CRYPTO_CRCT10DIF_PCLMUL 396 tristate "Blowfish" !! 506 tristate "CRCT10DIF PCLMULQDQ hardware acceleration" 397 select CRYPTO_ALGAPI !! 507 depends on X86 && 64BIT && CRC_T10DIF 398 select CRYPTO_BLOWFISH_COMMON !! 508 select CRYPTO_HASH 399 help 509 help 400 Blowfish cipher algorithm, by Bruce !! 510 For x86_64 processors with SSE4.2 and PCLMULQDQ supported, >> 511 CRC T10 DIF PCLMULQDQ computation can be hardware >> 512 accelerated PCLMULQDQ instruction. This option will create >> 513 'crct10dif-plcmul' module, which is faster when computing the >> 514 crct10dif checksum as compared with the generic table implementation. 401 515 402 This is a variable key length cipher !! 516 config CRYPTO_CRCT10DIF_VPMSUM 403 bits to 448 bits in length. It's fa !! 517 tristate "CRC32T10DIF powerpc64 hardware acceleration" 404 designed for use on "large microproc !! 518 depends on PPC64 && ALTIVEC && CRC_T10DIF >> 519 select CRYPTO_HASH >> 520 help >> 521 CRC10T10DIF algorithm implemented using vector polynomial >> 522 multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on >> 523 POWER8 and newer processors for improved performance. 405 524 406 See https://www.schneier.com/blowfis !! 525 config CRYPTO_VPMSUM_TESTER >> 526 tristate "Powerpc64 vpmsum hardware acceleration tester" >> 527 depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM >> 528 help >> 529 Stress test for CRC32c and CRC-T10DIF algorithms implemented with >> 530 POWER8 vpmsum instructions. >> 531 Unless you are testing these algorithms, you don't need this. 407 532 408 config CRYPTO_BLOWFISH_COMMON !! 533 config CRYPTO_GHASH 409 tristate !! 534 tristate "GHASH digest algorithm" >> 535 select CRYPTO_GF128MUL >> 536 select CRYPTO_HASH 410 help 537 help 411 Common parts of the Blowfish cipher !! 538 GHASH is message digest algorithm for GCM (Galois/Counter Mode). 412 generic c and the assembler implemen << 413 539 414 config CRYPTO_CAMELLIA !! 540 config CRYPTO_POLY1305 415 tristate "Camellia" !! 541 tristate "Poly1305 authenticator algorithm" 416 select CRYPTO_ALGAPI !! 542 select CRYPTO_HASH 417 help 543 help 418 Camellia cipher algorithms (ISO/IEC !! 544 Poly1305 authenticator algorithm, RFC7539. 419 545 420 Camellia is a symmetric key block ci !! 546 Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. 421 at NTT and Mitsubishi Electric Corpo !! 547 It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use >> 548 in IETF protocols. This is the portable C implementation of Poly1305. 422 549 423 The Camellia specifies three key siz !! 550 config CRYPTO_POLY1305_X86_64 >> 551 tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)" >> 552 depends on X86 && 64BIT >> 553 select CRYPTO_POLY1305 >> 554 help >> 555 Poly1305 authenticator algorithm, RFC7539. 424 556 425 See https://info.isl.ntt.co.jp/crypt !! 557 Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. >> 558 It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use >> 559 in IETF protocols. This is the x86_64 assembler implementation using SIMD >> 560 instructions. 426 561 427 config CRYPTO_CAST_COMMON !! 562 config CRYPTO_MD4 428 tristate !! 563 tristate "MD4 digest algorithm" >> 564 select CRYPTO_HASH 429 help 565 help 430 Common parts of the CAST cipher algo !! 566 MD4 message digest algorithm (RFC1320). 431 generic c and the assembler implemen << 432 567 433 config CRYPTO_CAST5 !! 568 config CRYPTO_MD5 434 tristate "CAST5 (CAST-128)" !! 569 tristate "MD5 digest algorithm" 435 select CRYPTO_ALGAPI !! 570 select CRYPTO_HASH 436 select CRYPTO_CAST_COMMON << 437 help 571 help 438 CAST5 (CAST-128) cipher algorithm (R !! 572 MD5 message digest algorithm (RFC1321). 439 573 440 config CRYPTO_CAST6 !! 574 config CRYPTO_MD5_OCTEON 441 tristate "CAST6 (CAST-256)" !! 575 tristate "MD5 digest algorithm (OCTEON)" 442 select CRYPTO_ALGAPI !! 576 depends on CPU_CAVIUM_OCTEON 443 select CRYPTO_CAST_COMMON !! 577 select CRYPTO_MD5 >> 578 select CRYPTO_HASH 444 help 579 help 445 CAST6 (CAST-256) encryption algorith !! 580 MD5 message digest algorithm (RFC1321) implemented >> 581 using OCTEON crypto instructions, when available. 446 582 447 config CRYPTO_DES !! 583 config CRYPTO_MD5_PPC 448 tristate "DES and Triple DES EDE" !! 584 tristate "MD5 digest algorithm (PPC)" 449 select CRYPTO_ALGAPI !! 585 depends on PPC 450 select CRYPTO_LIB_DES !! 586 select CRYPTO_HASH 451 help 587 help 452 DES (Data Encryption Standard)(FIPS !! 588 MD5 message digest algorithm (RFC1321) implemented 453 Triple DES EDE (Encrypt/Decrypt/Encr !! 589 in PPC assembler. 454 cipher algorithms << 455 590 456 config CRYPTO_FCRYPT !! 591 config CRYPTO_MD5_SPARC64 457 tristate "FCrypt" !! 592 tristate "MD5 digest algorithm (SPARC64)" 458 select CRYPTO_ALGAPI !! 593 depends on SPARC64 459 select CRYPTO_SKCIPHER !! 594 select CRYPTO_MD5 >> 595 select CRYPTO_HASH 460 help 596 help 461 FCrypt algorithm used by RxRPC !! 597 MD5 message digest algorithm (RFC1321) implemented >> 598 using sparc64 crypto instructions, when available. 462 599 463 See https://ota.polyonymo.us/fcrypt- !! 600 config CRYPTO_MICHAEL_MIC >> 601 tristate "Michael MIC keyed digest algorithm" >> 602 select CRYPTO_HASH >> 603 help >> 604 Michael MIC is used for message integrity protection in TKIP >> 605 (IEEE 802.11i). This algorithm is required for TKIP, but it >> 606 should not be used for other purposes because of the weakness >> 607 of the algorithm. 464 608 465 config CRYPTO_KHAZAD !! 609 config CRYPTO_RMD128 466 tristate "Khazad" !! 610 tristate "RIPEMD-128 digest algorithm" 467 depends on CRYPTO_USER_API_ENABLE_OBSO !! 611 select CRYPTO_HASH 468 select CRYPTO_ALGAPI << 469 help 612 help 470 Khazad cipher algorithm !! 613 RIPEMD-128 (ISO/IEC 10118-3:2004). 471 614 472 Khazad was a finalist in the initial !! 615 RIPEMD-128 is a 128-bit cryptographic hash function. It should only 473 an algorithm optimized for 64-bit pr !! 616 be used as a secure replacement for RIPEMD. For other use cases, 474 on 32-bit processors. Khazad uses a !! 617 RIPEMD-160 should be used. 475 618 476 See https://web.archive.org/web/2017 !! 619 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 477 for further information. !! 620 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 478 621 479 config CRYPTO_SEED !! 622 config CRYPTO_RMD160 480 tristate "SEED" !! 623 tristate "RIPEMD-160 digest algorithm" 481 depends on CRYPTO_USER_API_ENABLE_OBSO !! 624 select CRYPTO_HASH 482 select CRYPTO_ALGAPI << 483 help 625 help 484 SEED cipher algorithm (RFC4269, ISO/ !! 626 RIPEMD-160 (ISO/IEC 10118-3:2004). 485 627 486 SEED is a 128-bit symmetric key bloc !! 628 RIPEMD-160 is a 160-bit cryptographic hash function. It is intended 487 developed by KISA (Korea Information !! 629 to be used as a secure replacement for the 128-bit hash functions 488 national standard encryption algorit !! 630 MD4, MD5 and it's predecessor RIPEMD 489 It is a 16 round block cipher with t !! 631 (not to be confused with RIPEMD-128). 490 632 491 See https://seed.kisa.or.kr/kisa/alg !! 633 It's speed is comparable to SHA1 and there are no known attacks 492 for further information. !! 634 against RIPEMD-160. 493 635 494 config CRYPTO_SERPENT !! 636 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 495 tristate "Serpent" !! 637 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 496 select CRYPTO_ALGAPI !! 638 >> 639 config CRYPTO_RMD256 >> 640 tristate "RIPEMD-256 digest algorithm" >> 641 select CRYPTO_HASH 497 help 642 help 498 Serpent cipher algorithm, by Anderso !! 643 RIPEMD-256 is an optional extension of RIPEMD-128 with a >> 644 256 bit hash. It is intended for applications that require >> 645 longer hash-results, without needing a larger security level >> 646 (than RIPEMD-128). 499 647 500 Keys are allowed to be from 0 to 256 !! 648 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 501 of 8 bits. !! 649 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 502 650 503 See https://www.cl.cam.ac.uk/~rja14/ !! 651 config CRYPTO_RMD320 >> 652 tristate "RIPEMD-320 digest algorithm" >> 653 select CRYPTO_HASH >> 654 help >> 655 RIPEMD-320 is an optional extension of RIPEMD-160 with a >> 656 320 bit hash. It is intended for applications that require >> 657 longer hash-results, without needing a larger security level >> 658 (than RIPEMD-160). 504 659 505 config CRYPTO_SM4 !! 660 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 506 tristate !! 661 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 507 662 508 config CRYPTO_SM4_GENERIC !! 663 config CRYPTO_SHA1 509 tristate "SM4 (ShangMi 4)" !! 664 tristate "SHA1 digest algorithm" 510 select CRYPTO_ALGAPI !! 665 select CRYPTO_HASH 511 select CRYPTO_SM4 << 512 help 666 help 513 SM4 cipher algorithms (OSCCA GB/T 32 !! 667 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). 514 ISO/IEC 18033-3:2010/Amd 1:2021) << 515 668 516 SM4 (GBT.32907-2016) is a cryptograp !! 669 config CRYPTO_SHA1_SSSE3 517 Organization of State Commercial Adm !! 670 tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" 518 as an authorized cryptographic algor !! 671 depends on X86 && 64BIT >> 672 select CRYPTO_SHA1 >> 673 select CRYPTO_HASH >> 674 help >> 675 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented >> 676 using Supplemental SSE3 (SSSE3) instructions or Advanced Vector >> 677 Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions), >> 678 when available. 519 679 520 SMS4 was originally created for use !! 680 config CRYPTO_SHA256_SSSE3 521 networks, and is mandated in the Chi !! 681 tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" 522 Wireless LAN WAPI (Wired Authenticat !! 682 depends on X86 && 64BIT 523 (GB.15629.11-2003). !! 683 select CRYPTO_SHA256 >> 684 select CRYPTO_HASH >> 685 help >> 686 SHA-256 secure hash standard (DFIPS 180-2) implemented >> 687 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector >> 688 Extensions version 1 (AVX1), or Advanced Vector Extensions >> 689 version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New >> 690 Instructions) when available. >> 691 >> 692 config CRYPTO_SHA512_SSSE3 >> 693 tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)" >> 694 depends on X86 && 64BIT >> 695 select CRYPTO_SHA512 >> 696 select CRYPTO_HASH >> 697 help >> 698 SHA-512 secure hash standard (DFIPS 180-2) implemented >> 699 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector >> 700 Extensions version 1 (AVX1), or Advanced Vector Extensions >> 701 version 2 (AVX2) instructions, when available. >> 702 >> 703 config CRYPTO_SHA1_OCTEON >> 704 tristate "SHA1 digest algorithm (OCTEON)" >> 705 depends on CPU_CAVIUM_OCTEON >> 706 select CRYPTO_SHA1 >> 707 select CRYPTO_HASH >> 708 help >> 709 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented >> 710 using OCTEON crypto instructions, when available. >> 711 >> 712 config CRYPTO_SHA1_SPARC64 >> 713 tristate "SHA1 digest algorithm (SPARC64)" >> 714 depends on SPARC64 >> 715 select CRYPTO_SHA1 >> 716 select CRYPTO_HASH >> 717 help >> 718 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented >> 719 using sparc64 crypto instructions, when available. >> 720 >> 721 config CRYPTO_SHA1_PPC >> 722 tristate "SHA1 digest algorithm (powerpc)" >> 723 depends on PPC >> 724 help >> 725 This is the powerpc hardware accelerated implementation of the >> 726 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). >> 727 >> 728 config CRYPTO_SHA1_PPC_SPE >> 729 tristate "SHA1 digest algorithm (PPC SPE)" >> 730 depends on PPC && SPE >> 731 help >> 732 SHA-1 secure hash standard (DFIPS 180-4) implemented >> 733 using powerpc SPE SIMD instruction set. >> 734 >> 735 config CRYPTO_SHA1_MB >> 736 tristate "SHA1 digest algorithm (x86_64 Multi-Buffer, Experimental)" >> 737 depends on X86 && 64BIT >> 738 select CRYPTO_SHA1 >> 739 select CRYPTO_HASH >> 740 select CRYPTO_MCRYPTD >> 741 help >> 742 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented >> 743 using multi-buffer technique. This algorithm computes on >> 744 multiple data lanes concurrently with SIMD instructions for >> 745 better throughput. It should not be enabled by default but >> 746 used when there is significant amount of work to keep the keep >> 747 the data lanes filled to get performance benefit. If the data >> 748 lanes remain unfilled, a flush operation will be initiated to >> 749 process the crypto jobs, adding a slight latency. >> 750 >> 751 config CRYPTO_SHA256_MB >> 752 tristate "SHA256 digest algorithm (x86_64 Multi-Buffer, Experimental)" >> 753 depends on X86 && 64BIT >> 754 select CRYPTO_SHA256 >> 755 select CRYPTO_HASH >> 756 select CRYPTO_MCRYPTD >> 757 help >> 758 SHA-256 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented >> 759 using multi-buffer technique. This algorithm computes on >> 760 multiple data lanes concurrently with SIMD instructions for >> 761 better throughput. It should not be enabled by default but >> 762 used when there is significant amount of work to keep the keep >> 763 the data lanes filled to get performance benefit. If the data >> 764 lanes remain unfilled, a flush operation will be initiated to >> 765 process the crypto jobs, adding a slight latency. >> 766 >> 767 config CRYPTO_SHA512_MB >> 768 tristate "SHA512 digest algorithm (x86_64 Multi-Buffer, Experimental)" >> 769 depends on X86 && 64BIT >> 770 select CRYPTO_SHA512 >> 771 select CRYPTO_HASH >> 772 select CRYPTO_MCRYPTD >> 773 help >> 774 SHA-512 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented >> 775 using multi-buffer technique. This algorithm computes on >> 776 multiple data lanes concurrently with SIMD instructions for >> 777 better throughput. It should not be enabled by default but >> 778 used when there is significant amount of work to keep the keep >> 779 the data lanes filled to get performance benefit. If the data >> 780 lanes remain unfilled, a flush operation will be initiated to >> 781 process the crypto jobs, adding a slight latency. 524 782 525 The latest SM4 standard (GBT.32907-2 !! 783 config CRYPTO_SHA256 526 standardized through TC 260 of the S !! 784 tristate "SHA224 and SHA256 digest algorithm" 527 of the People's Republic of China (S !! 785 select CRYPTO_HASH >> 786 help >> 787 SHA256 secure hash standard (DFIPS 180-2). 528 788 529 The input, output, and key of SMS4 a !! 789 This version of SHA implements a 256 bit hash with 128 bits of >> 790 security against collision attacks. 530 791 531 See https://eprint.iacr.org/2008/329 !! 792 This code also includes SHA-224, a 224 bit hash with 112 bits >> 793 of security against collision attacks. 532 794 533 If unsure, say N. !! 795 config CRYPTO_SHA256_PPC_SPE >> 796 tristate "SHA224 and SHA256 digest algorithm (PPC SPE)" >> 797 depends on PPC && SPE >> 798 select CRYPTO_SHA256 >> 799 select CRYPTO_HASH >> 800 help >> 801 SHA224 and SHA256 secure hash standard (DFIPS 180-2) >> 802 implemented using powerpc SPE SIMD instruction set. 534 803 535 config CRYPTO_TEA !! 804 config CRYPTO_SHA256_OCTEON 536 tristate "TEA, XTEA and XETA" !! 805 tristate "SHA224 and SHA256 digest algorithm (OCTEON)" 537 depends on CRYPTO_USER_API_ENABLE_OBSO !! 806 depends on CPU_CAVIUM_OCTEON 538 select CRYPTO_ALGAPI !! 807 select CRYPTO_SHA256 >> 808 select CRYPTO_HASH 539 help 809 help 540 TEA (Tiny Encryption Algorithm) ciph !! 810 SHA-256 secure hash standard (DFIPS 180-2) implemented >> 811 using OCTEON crypto instructions, when available. 541 812 542 Tiny Encryption Algorithm is a simpl !! 813 config CRYPTO_SHA256_SPARC64 543 many rounds for security. It is ver !! 814 tristate "SHA224 and SHA256 digest algorithm (SPARC64)" 544 little memory. !! 815 depends on SPARC64 >> 816 select CRYPTO_SHA256 >> 817 select CRYPTO_HASH >> 818 help >> 819 SHA-256 secure hash standard (DFIPS 180-2) implemented >> 820 using sparc64 crypto instructions, when available. 545 821 546 Xtendend Tiny Encryption Algorithm i !! 822 config CRYPTO_SHA512 547 the TEA algorithm to address a poten !! 823 tristate "SHA384 and SHA512 digest algorithms" 548 in the TEA algorithm. !! 824 select CRYPTO_HASH >> 825 help >> 826 SHA512 secure hash standard (DFIPS 180-2). 549 827 550 Xtendend Encryption Tiny Algorithm i !! 828 This version of SHA implements a 512 bit hash with 256 bits of 551 of the XTEA algorithm for compatibil !! 829 security against collision attacks. 552 830 553 config CRYPTO_TWOFISH !! 831 This code also includes SHA-384, a 384 bit hash with 192 bits 554 tristate "Twofish" !! 832 of security against collision attacks. 555 select CRYPTO_ALGAPI !! 833 556 select CRYPTO_TWOFISH_COMMON !! 834 config CRYPTO_SHA512_OCTEON >> 835 tristate "SHA384 and SHA512 digest algorithms (OCTEON)" >> 836 depends on CPU_CAVIUM_OCTEON >> 837 select CRYPTO_SHA512 >> 838 select CRYPTO_HASH 557 help 839 help 558 Twofish cipher algorithm !! 840 SHA-512 secure hash standard (DFIPS 180-2) implemented >> 841 using OCTEON crypto instructions, when available. 559 842 560 Twofish was submitted as an AES (Adv !! 843 config CRYPTO_SHA512_SPARC64 561 candidate cipher by researchers at C !! 844 tristate "SHA384 and SHA512 digest algorithm (SPARC64)" 562 16 round block cipher supporting key !! 845 depends on SPARC64 563 bits. !! 846 select CRYPTO_SHA512 >> 847 select CRYPTO_HASH >> 848 help >> 849 SHA-512 secure hash standard (DFIPS 180-2) implemented >> 850 using sparc64 crypto instructions, when available. 564 851 565 See https://www.schneier.com/twofish !! 852 config CRYPTO_SHA3 >> 853 tristate "SHA3 digest algorithm" >> 854 select CRYPTO_HASH >> 855 help >> 856 SHA-3 secure hash standard (DFIPS 202). It's based on >> 857 cryptographic sponge function family called Keccak. 566 858 567 config CRYPTO_TWOFISH_COMMON !! 859 References: 568 tristate !! 860 http://keccak.noekeon.org/ >> 861 >> 862 config CRYPTO_TGR192 >> 863 tristate "Tiger digest algorithms" >> 864 select CRYPTO_HASH 569 help 865 help 570 Common parts of the Twofish cipher a !! 866 Tiger hash algorithm 192, 160 and 128-bit hashes 571 generic c and the assembler implemen << 572 867 573 endmenu !! 868 Tiger is a hash function optimized for 64-bit processors while >> 869 still having decent performance on 32-bit processors. >> 870 Tiger was developed by Ross Anderson and Eli Biham. 574 871 575 menu "Length-preserving ciphers and modes" !! 872 See also: >> 873 <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>. 576 874 577 config CRYPTO_ADIANTUM !! 875 config CRYPTO_WP512 578 tristate "Adiantum" !! 876 tristate "Whirlpool digest algorithms" 579 select CRYPTO_CHACHA20 !! 877 select CRYPTO_HASH 580 select CRYPTO_LIB_POLY1305_GENERIC << 581 select CRYPTO_NHPOLY1305 << 582 select CRYPTO_MANAGER << 583 help 878 help 584 Adiantum tweakable, length-preservin !! 879 Whirlpool hash algorithm 512, 384 and 256-bit hashes 585 880 586 Designed for fast and secure disk en !! 881 Whirlpool-512 is part of the NESSIE cryptographic primitives. 587 CPUs without dedicated crypto instru !! 882 Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard 588 each sector using the XChaCha12 stre << 589 an ε-almost-∆-universal hash func << 590 the AES-256 block cipher on a single << 591 without AES instructions, Adiantum i << 592 AES-XTS. << 593 << 594 Adiantum's security is provably redu << 595 underlying stream and block ciphers, << 596 bound. Unlike XTS, Adiantum is a tr << 597 mode, so it actually provides an eve << 598 security than XTS, subject to the se << 599 883 600 If unsure, say N. !! 884 See also: >> 885 <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html> 601 886 602 config CRYPTO_ARC4 !! 887 config CRYPTO_GHASH_CLMUL_NI_INTEL 603 tristate "ARC4 (Alleged Rivest Cipher !! 888 tristate "GHASH digest algorithm (CLMUL-NI accelerated)" 604 depends on CRYPTO_USER_API_ENABLE_OBSO !! 889 depends on X86 && 64BIT 605 select CRYPTO_SKCIPHER !! 890 select CRYPTO_CRYPTD 606 select CRYPTO_LIB_ARC4 << 607 help 891 help 608 ARC4 cipher algorithm !! 892 GHASH is message digest algorithm for GCM (Galois/Counter Mode). >> 893 The implementation is accelerated by CLMUL-NI of Intel. 609 894 610 ARC4 is a stream cipher using keys r !! 895 comment "Ciphers" 611 bits in length. This algorithm is r << 612 WEP, but it should not be for other << 613 weakness of the algorithm. << 614 896 615 config CRYPTO_CHACHA20 !! 897 config CRYPTO_AES 616 tristate "ChaCha" !! 898 tristate "AES cipher algorithms" 617 select CRYPTO_LIB_CHACHA_GENERIC !! 899 select CRYPTO_ALGAPI 618 select CRYPTO_SKCIPHER << 619 help 900 help 620 The ChaCha20, XChaCha20, and XChaCha !! 901 AES cipher algorithms (FIPS-197). AES uses the Rijndael >> 902 algorithm. 621 903 622 ChaCha20 is a 256-bit high-speed str !! 904 Rijndael appears to be consistently a very good performer in 623 Bernstein and further specified in R !! 905 both hardware and software across a wide range of computing 624 This is the portable C implementatio !! 906 environments regardless of its use in feedback or non-feedback 625 https://cr.yp.to/chacha/chacha-20080 !! 907 modes. Its key setup time is excellent, and its key agility is >> 908 good. Rijndael's very low memory requirements make it very well >> 909 suited for restricted-space environments, in which it also >> 910 demonstrates excellent performance. Rijndael's operations are >> 911 among the easiest to defend against power and timing attacks. 626 912 627 XChaCha20 is the application of the !! 913 The AES specifies three key sizes: 128, 192 and 256 bits 628 rather than to Salsa20. XChaCha20 e << 629 from 64 bits (or 96 bits using the R << 630 while provably retaining ChaCha20's << 631 https://cr.yp.to/snuffle/xsalsa-2008 << 632 << 633 XChaCha12 is XChaCha20 reduced to 12 << 634 reduced security margin but increase << 635 in some performance-sensitive scenar << 636 914 637 config CRYPTO_CBC !! 915 See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information. 638 tristate "CBC (Cipher Block Chaining)" !! 916 639 select CRYPTO_SKCIPHER !! 917 config CRYPTO_AES_TI 640 select CRYPTO_MANAGER !! 918 tristate "Fixed time AES cipher" >> 919 select CRYPTO_ALGAPI 641 help 920 help 642 CBC (Cipher Block Chaining) mode (NI !! 921 This is a generic implementation of AES that attempts to eliminate >> 922 data dependent latencies as much as possible without affecting >> 923 performance too much. It is intended for use by the generic CCM >> 924 and GCM drivers, and other CTR or CMAC/XCBC based modes that rely >> 925 solely on encryption (although decryption is supported as well, but >> 926 with a more dramatic performance hit) 643 927 644 This block cipher mode is required f !! 928 Instead of using 16 lookup tables of 1 KB each, (8 for encryption and >> 929 8 for decryption), this implementation only uses just two S-boxes of >> 930 256 bytes each, and attempts to eliminate data dependent latencies by >> 931 prefetching the entire table into the cache at the start of each >> 932 block. 645 933 646 config CRYPTO_CTR !! 934 config CRYPTO_AES_586 647 tristate "CTR (Counter)" !! 935 tristate "AES cipher algorithms (i586)" 648 select CRYPTO_SKCIPHER !! 936 depends on (X86 || UML_X86) && !64BIT 649 select CRYPTO_MANAGER !! 937 select CRYPTO_ALGAPI >> 938 select CRYPTO_AES 650 help 939 help 651 CTR (Counter) mode (NIST SP800-38A) !! 940 AES cipher algorithms (FIPS-197). AES uses the Rijndael >> 941 algorithm. 652 942 653 config CRYPTO_CTS !! 943 Rijndael appears to be consistently a very good performer in 654 tristate "CTS (Cipher Text Stealing)" !! 944 both hardware and software across a wide range of computing 655 select CRYPTO_SKCIPHER !! 945 environments regardless of its use in feedback or non-feedback 656 select CRYPTO_MANAGER !! 946 modes. Its key setup time is excellent, and its key agility is 657 help !! 947 good. Rijndael's very low memory requirements make it very well 658 CBC-CS3 variant of CTS (Cipher Text !! 948 suited for restricted-space environments, in which it also 659 Addendum to SP800-38A (October 2010) !! 949 demonstrates excellent performance. Rijndael's operations are >> 950 among the easiest to defend against power and timing attacks. 660 951 661 This mode is required for Kerberos g !! 952 The AES specifies three key sizes: 128, 192 and 256 bits 662 for AES encryption. << 663 953 664 config CRYPTO_ECB !! 954 See <http://csrc.nist.gov/encryption/aes/> for more information. 665 tristate "ECB (Electronic Codebook)" << 666 select CRYPTO_SKCIPHER2 << 667 select CRYPTO_MANAGER << 668 help << 669 ECB (Electronic Codebook) mode (NIST << 670 955 671 config CRYPTO_HCTR2 !! 956 config CRYPTO_AES_X86_64 672 tristate "HCTR2" !! 957 tristate "AES cipher algorithms (x86_64)" 673 select CRYPTO_XCTR !! 958 depends on (X86 || UML_X86) && 64BIT 674 select CRYPTO_POLYVAL !! 959 select CRYPTO_ALGAPI 675 select CRYPTO_MANAGER !! 960 select CRYPTO_AES 676 help 961 help 677 HCTR2 length-preserving encryption m !! 962 AES cipher algorithms (FIPS-197). AES uses the Rijndael >> 963 algorithm. 678 964 679 A mode for storage encryption that i !! 965 Rijndael appears to be consistently a very good performer in 680 instructions to accelerate AES and c !! 966 both hardware and software across a wide range of computing 681 x86 processors with AES-NI and CLMUL !! 967 environments regardless of its use in feedback or non-feedback 682 ARMv8 crypto extensions. !! 968 modes. Its key setup time is excellent, and its key agility is >> 969 good. Rijndael's very low memory requirements make it very well >> 970 suited for restricted-space environments, in which it also >> 971 demonstrates excellent performance. Rijndael's operations are >> 972 among the easiest to defend against power and timing attacks. 683 973 684 See https://eprint.iacr.org/2021/144 !! 974 The AES specifies three key sizes: 128, 192 and 256 bits 685 975 686 config CRYPTO_KEYWRAP !! 976 See <http://csrc.nist.gov/encryption/aes/> for more information. 687 tristate "KW (AES Key Wrap)" << 688 select CRYPTO_SKCIPHER << 689 select CRYPTO_MANAGER << 690 help << 691 KW (AES Key Wrap) authenticated encr << 692 and RFC3394) without padding. << 693 977 694 config CRYPTO_LRW !! 978 config CRYPTO_AES_NI_INTEL 695 tristate "LRW (Liskov Rivest Wagner)" !! 979 tristate "AES cipher algorithms (AES-NI)" 696 select CRYPTO_LIB_GF128MUL !! 980 depends on X86 697 select CRYPTO_SKCIPHER !! 981 select CRYPTO_AEAD 698 select CRYPTO_MANAGER !! 982 select CRYPTO_AES_X86_64 if 64BIT 699 select CRYPTO_ECB !! 983 select CRYPTO_AES_586 if !64BIT >> 984 select CRYPTO_ALGAPI >> 985 select CRYPTO_BLKCIPHER >> 986 select CRYPTO_GLUE_HELPER_X86 if 64BIT >> 987 select CRYPTO_SIMD 700 help 988 help 701 LRW (Liskov Rivest Wagner) mode !! 989 Use Intel AES-NI instructions for AES algorithm. 702 990 703 A tweakable, non malleable, non mova !! 991 AES cipher algorithms (FIPS-197). AES uses the Rijndael 704 narrow block cipher mode for dm-cryp !! 992 algorithm. 705 specification string aes-lrw-benbi, << 706 The first 128, 192 or 256 bits in th << 707 rest is used to tie each cipher bloc << 708 993 709 See https://people.csail.mit.edu/riv !! 994 Rijndael appears to be consistently a very good performer in >> 995 both hardware and software across a wide range of computing >> 996 environments regardless of its use in feedback or non-feedback >> 997 modes. Its key setup time is excellent, and its key agility is >> 998 good. Rijndael's very low memory requirements make it very well >> 999 suited for restricted-space environments, in which it also >> 1000 demonstrates excellent performance. Rijndael's operations are >> 1001 among the easiest to defend against power and timing attacks. 710 1002 711 config CRYPTO_PCBC !! 1003 The AES specifies three key sizes: 128, 192 and 256 bits 712 tristate "PCBC (Propagating Cipher Blo << 713 select CRYPTO_SKCIPHER << 714 select CRYPTO_MANAGER << 715 help << 716 PCBC (Propagating Cipher Block Chain << 717 1004 718 This block cipher mode is required f !! 1005 See <http://csrc.nist.gov/encryption/aes/> for more information. 719 1006 720 config CRYPTO_XCTR !! 1007 In addition to AES cipher algorithm support, the acceleration 721 tristate !! 1008 for some popular block cipher mode is supported too, including 722 select CRYPTO_SKCIPHER !! 1009 ECB, CBC, LRW, PCBC, XTS. The 64 bit version has additional 723 select CRYPTO_MANAGER !! 1010 acceleration for CTR. >> 1011 >> 1012 config CRYPTO_AES_SPARC64 >> 1013 tristate "AES cipher algorithms (SPARC64)" >> 1014 depends on SPARC64 >> 1015 select CRYPTO_CRYPTD >> 1016 select CRYPTO_ALGAPI 724 help 1017 help 725 XCTR (XOR Counter) mode for HCTR2 !! 1018 Use SPARC64 crypto opcodes for AES algorithm. 726 1019 727 This blockcipher mode is a variant o !! 1020 AES cipher algorithms (FIPS-197). AES uses the Rijndael 728 addition rather than big-endian arit !! 1021 algorithm. 729 1022 730 XCTR mode is used to implement HCTR2 !! 1023 Rijndael appears to be consistently a very good performer in >> 1024 both hardware and software across a wide range of computing >> 1025 environments regardless of its use in feedback or non-feedback >> 1026 modes. Its key setup time is excellent, and its key agility is >> 1027 good. Rijndael's very low memory requirements make it very well >> 1028 suited for restricted-space environments, in which it also >> 1029 demonstrates excellent performance. Rijndael's operations are >> 1030 among the easiest to defend against power and timing attacks. 731 1031 732 config CRYPTO_XTS !! 1032 The AES specifies three key sizes: 128, 192 and 256 bits 733 tristate "XTS (XOR Encrypt XOR with ci << 734 select CRYPTO_SKCIPHER << 735 select CRYPTO_MANAGER << 736 select CRYPTO_ECB << 737 help << 738 XTS (XOR Encrypt XOR with ciphertext << 739 and IEEE 1619) << 740 1033 741 Use with aes-xts-plain, key size 256 !! 1034 See <http://csrc.nist.gov/encryption/aes/> for more information. 742 implementation currently can't handl << 743 multiple of 16 bytes. << 744 1035 745 config CRYPTO_NHPOLY1305 !! 1036 In addition to AES cipher algorithm support, the acceleration 746 tristate !! 1037 for some popular block cipher mode is supported too, including 747 select CRYPTO_HASH !! 1038 ECB and CBC. 748 select CRYPTO_LIB_POLY1305_GENERIC !! 1039 >> 1040 config CRYPTO_AES_PPC_SPE >> 1041 tristate "AES cipher algorithms (PPC SPE)" >> 1042 depends on PPC && SPE >> 1043 help >> 1044 AES cipher algorithms (FIPS-197). Additionally the acceleration >> 1045 for popular block cipher modes ECB, CBC, CTR and XTS is supported. >> 1046 This module should only be used for low power (router) devices >> 1047 without hardware AES acceleration (e.g. caam crypto). It reduces the >> 1048 size of the AES tables from 16KB to 8KB + 256 bytes and mitigates >> 1049 timining attacks. Nevertheless it might be not as secure as other >> 1050 architecture specific assembler implementations that work on 1KB >> 1051 tables or 256 bytes S-boxes. 749 1052 750 endmenu !! 1053 config CRYPTO_ANUBIS >> 1054 tristate "Anubis cipher algorithm" >> 1055 select CRYPTO_ALGAPI >> 1056 help >> 1057 Anubis cipher algorithm. 751 1058 752 menu "AEAD (authenticated encryption with asso !! 1059 Anubis is a variable key length cipher which can use keys from >> 1060 128 bits to 320 bits in length. It was evaluated as a entrant >> 1061 in the NESSIE competition. 753 1062 754 config CRYPTO_AEGIS128 !! 1063 See also: 755 tristate "AEGIS-128" !! 1064 <https://www.cosic.esat.kuleuven.be/nessie/reports/> 756 select CRYPTO_AEAD !! 1065 <http://www.larc.usp.br/~pbarreto/AnubisPage.html> 757 select CRYPTO_AES # for AES S-box tab << 758 help << 759 AEGIS-128 AEAD algorithm << 760 1066 761 config CRYPTO_AEGIS128_SIMD !! 1067 config CRYPTO_ARC4 762 bool "AEGIS-128 (arm NEON, arm64 NEON) !! 1068 tristate "ARC4 cipher algorithm" 763 depends on CRYPTO_AEGIS128 && ((ARM || !! 1069 select CRYPTO_BLKCIPHER 764 default y << 765 help 1070 help 766 AEGIS-128 AEAD algorithm !! 1071 ARC4 cipher algorithm. 767 1072 768 Architecture: arm or arm64 using: !! 1073 ARC4 is a stream cipher using keys ranging from 8 bits to 2048 769 - NEON (Advanced SIMD) extension !! 1074 bits in length. This algorithm is required for driver-based >> 1075 WEP, but it should not be for other purposes because of the >> 1076 weakness of the algorithm. 770 1077 771 config CRYPTO_CHACHA20POLY1305 !! 1078 config CRYPTO_BLOWFISH 772 tristate "ChaCha20-Poly1305" !! 1079 tristate "Blowfish cipher algorithm" 773 select CRYPTO_CHACHA20 !! 1080 select CRYPTO_ALGAPI 774 select CRYPTO_POLY1305 !! 1081 select CRYPTO_BLOWFISH_COMMON 775 select CRYPTO_AEAD << 776 select CRYPTO_MANAGER << 777 help 1082 help 778 ChaCha20 stream cipher and Poly1305 !! 1083 Blowfish cipher algorithm, by Bruce Schneier. 779 mode (RFC8439) << 780 1084 781 config CRYPTO_CCM !! 1085 This is a variable key length cipher which can use keys from 32 782 tristate "CCM (Counter with Cipher Blo !! 1086 bits to 448 bits in length. It's fast, simple and specifically 783 select CRYPTO_CTR !! 1087 designed for use on "large microprocessors". 784 select CRYPTO_HASH !! 1088 785 select CRYPTO_AEAD !! 1089 See also: 786 select CRYPTO_MANAGER !! 1090 <http://www.schneier.com/blowfish.html> >> 1091 >> 1092 config CRYPTO_BLOWFISH_COMMON >> 1093 tristate 787 help 1094 help 788 CCM (Counter with Cipher Block Chain !! 1095 Common parts of the Blowfish cipher algorithm shared by the 789 authenticated encryption mode (NIST !! 1096 generic c and the assembler implementations. 790 1097 791 config CRYPTO_GCM !! 1098 See also: 792 tristate "GCM (Galois/Counter Mode) an !! 1099 <http://www.schneier.com/blowfish.html> 793 select CRYPTO_CTR !! 1100 794 select CRYPTO_AEAD !! 1101 config CRYPTO_BLOWFISH_X86_64 795 select CRYPTO_GHASH !! 1102 tristate "Blowfish cipher algorithm (x86_64)" 796 select CRYPTO_NULL !! 1103 depends on X86 && 64BIT 797 select CRYPTO_MANAGER !! 1104 select CRYPTO_ALGAPI >> 1105 select CRYPTO_BLOWFISH_COMMON 798 help 1106 help 799 GCM (Galois/Counter Mode) authentica !! 1107 Blowfish cipher algorithm (x86_64), by Bruce Schneier. 800 (GCM Message Authentication Code) (N << 801 1108 802 This is required for IPSec ESP (XFRM !! 1109 This is a variable key length cipher which can use keys from 32 >> 1110 bits to 448 bits in length. It's fast, simple and specifically >> 1111 designed for use on "large microprocessors". 803 1112 804 config CRYPTO_GENIV !! 1113 See also: 805 tristate !! 1114 <http://www.schneier.com/blowfish.html> 806 select CRYPTO_AEAD << 807 select CRYPTO_NULL << 808 select CRYPTO_MANAGER << 809 select CRYPTO_RNG_DEFAULT << 810 1115 811 config CRYPTO_SEQIV !! 1116 config CRYPTO_CAMELLIA 812 tristate "Sequence Number IV Generator !! 1117 tristate "Camellia cipher algorithms" 813 select CRYPTO_GENIV !! 1118 depends on CRYPTO >> 1119 select CRYPTO_ALGAPI 814 help 1120 help 815 Sequence Number IV generator !! 1121 Camellia cipher algorithms module. 816 1122 817 This IV generator generates an IV ba !! 1123 Camellia is a symmetric key block cipher developed jointly 818 xoring it with a salt. This algorit !! 1124 at NTT and Mitsubishi Electric Corporation. >> 1125 >> 1126 The Camellia specifies three key sizes: 128, 192 and 256 bits. 819 1127 820 This is required for IPsec ESP (XFRM !! 1128 See also: >> 1129 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 821 1130 822 config CRYPTO_ECHAINIV !! 1131 config CRYPTO_CAMELLIA_X86_64 823 tristate "Encrypted Chain IV Generator !! 1132 tristate "Camellia cipher algorithm (x86_64)" 824 select CRYPTO_GENIV !! 1133 depends on X86 && 64BIT >> 1134 depends on CRYPTO >> 1135 select CRYPTO_ALGAPI >> 1136 select CRYPTO_GLUE_HELPER_X86 >> 1137 select CRYPTO_LRW >> 1138 select CRYPTO_XTS 825 help 1139 help 826 Encrypted Chain IV generator !! 1140 Camellia cipher algorithm module (x86_64). 827 1141 828 This IV generator generates an IV ba !! 1142 Camellia is a symmetric key block cipher developed jointly 829 a sequence number xored with a salt. !! 1143 at NTT and Mitsubishi Electric Corporation. 830 algorithm for CBC. !! 1144 >> 1145 The Camellia specifies three key sizes: 128, 192 and 256 bits. >> 1146 >> 1147 See also: >> 1148 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 831 1149 832 config CRYPTO_ESSIV !! 1150 config CRYPTO_CAMELLIA_AESNI_AVX_X86_64 833 tristate "Encrypted Salt-Sector IV Gen !! 1151 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)" 834 select CRYPTO_AUTHENC !! 1152 depends on X86 && 64BIT >> 1153 depends on CRYPTO >> 1154 select CRYPTO_ALGAPI >> 1155 select CRYPTO_CRYPTD >> 1156 select CRYPTO_ABLK_HELPER >> 1157 select CRYPTO_GLUE_HELPER_X86 >> 1158 select CRYPTO_CAMELLIA_X86_64 >> 1159 select CRYPTO_LRW >> 1160 select CRYPTO_XTS 835 help 1161 help 836 Encrypted Salt-Sector IV generator !! 1162 Camellia cipher algorithm module (x86_64/AES-NI/AVX). >> 1163 >> 1164 Camellia is a symmetric key block cipher developed jointly >> 1165 at NTT and Mitsubishi Electric Corporation. 837 1166 838 This IV generator is used in some ca !! 1167 The Camellia specifies three key sizes: 128, 192 and 256 bits. 839 dm-crypt. It uses the hash of the bl << 840 symmetric key for a block encryption << 841 IV, making low entropy IV sources mo << 842 encryption. << 843 1168 844 This driver implements a crypto API !! 1169 See also: 845 instantiated either as an skcipher o !! 1170 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 846 type of the first template argument) << 847 and decryption requests to the encap << 848 ESSIV to the input IV. Note that in << 849 that the keys are presented in the s << 850 template, and that the IV appears at << 851 associated data (AAD) region (which << 852 1171 853 Note that the use of ESSIV is not re !! 1172 config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64 854 and so this only needs to be enabled !! 1173 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)" 855 existing encrypted volumes of filesy !! 1174 depends on X86 && 64BIT 856 building for a particular system tha !! 1175 depends on CRYPTO 857 the SoC in question has accelerated !! 1176 select CRYPTO_ALGAPI 858 combined with ESSIV the only feasibl !! 1177 select CRYPTO_CRYPTD 859 block encryption) !! 1178 select CRYPTO_ABLK_HELPER >> 1179 select CRYPTO_GLUE_HELPER_X86 >> 1180 select CRYPTO_CAMELLIA_X86_64 >> 1181 select CRYPTO_CAMELLIA_AESNI_AVX_X86_64 >> 1182 select CRYPTO_LRW >> 1183 select CRYPTO_XTS >> 1184 help >> 1185 Camellia cipher algorithm module (x86_64/AES-NI/AVX2). 860 1186 861 endmenu !! 1187 Camellia is a symmetric key block cipher developed jointly >> 1188 at NTT and Mitsubishi Electric Corporation. 862 1189 863 menu "Hashes, digests, and MACs" !! 1190 The Camellia specifies three key sizes: 128, 192 and 256 bits. 864 1191 865 config CRYPTO_BLAKE2B !! 1192 See also: 866 tristate "BLAKE2b" !! 1193 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 867 select CRYPTO_HASH !! 1194 >> 1195 config CRYPTO_CAMELLIA_SPARC64 >> 1196 tristate "Camellia cipher algorithm (SPARC64)" >> 1197 depends on SPARC64 >> 1198 depends on CRYPTO >> 1199 select CRYPTO_ALGAPI 868 help 1200 help 869 BLAKE2b cryptographic hash function !! 1201 Camellia cipher algorithm module (SPARC64). 870 1202 871 BLAKE2b is optimized for 64-bit plat !! 1203 Camellia is a symmetric key block cipher developed jointly 872 of any size between 1 and 64 bytes. !! 1204 at NTT and Mitsubishi Electric Corporation. 873 1205 874 This module provides the following a !! 1206 The Camellia specifies three key sizes: 128, 192 and 256 bits. 875 - blake2b-160 << 876 - blake2b-256 << 877 - blake2b-384 << 878 - blake2b-512 << 879 1207 880 Used by the btrfs filesystem. !! 1208 See also: >> 1209 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 881 1210 882 See https://blake2.net for further i !! 1211 config CRYPTO_CAST_COMMON >> 1212 tristate >> 1213 help >> 1214 Common parts of the CAST cipher algorithms shared by the >> 1215 generic c and the assembler implementations. 883 1216 884 config CRYPTO_CMAC !! 1217 config CRYPTO_CAST5 885 tristate "CMAC (Cipher-based MAC)" !! 1218 tristate "CAST5 (CAST-128) cipher algorithm" 886 select CRYPTO_HASH !! 1219 select CRYPTO_ALGAPI 887 select CRYPTO_MANAGER !! 1220 select CRYPTO_CAST_COMMON 888 help 1221 help 889 CMAC (Cipher-based Message Authentic !! 1222 The CAST5 encryption algorithm (synonymous with CAST-128) is 890 mode (NIST SP800-38B and IETF RFC449 !! 1223 described in RFC2144. 891 1224 892 config CRYPTO_GHASH !! 1225 config CRYPTO_CAST5_AVX_X86_64 893 tristate "GHASH" !! 1226 tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)" 894 select CRYPTO_HASH !! 1227 depends on X86 && 64BIT 895 select CRYPTO_LIB_GF128MUL !! 1228 select CRYPTO_ALGAPI >> 1229 select CRYPTO_CRYPTD >> 1230 select CRYPTO_ABLK_HELPER >> 1231 select CRYPTO_CAST_COMMON >> 1232 select CRYPTO_CAST5 896 help 1233 help 897 GCM GHASH function (NIST SP800-38D) !! 1234 The CAST5 encryption algorithm (synonymous with CAST-128) is >> 1235 described in RFC2144. 898 1236 899 config CRYPTO_HMAC !! 1237 This module provides the Cast5 cipher algorithm that processes 900 tristate "HMAC (Keyed-Hash MAC)" !! 1238 sixteen blocks parallel using the AVX instruction set. 901 select CRYPTO_HASH !! 1239 902 select CRYPTO_MANAGER !! 1240 config CRYPTO_CAST6 >> 1241 tristate "CAST6 (CAST-256) cipher algorithm" >> 1242 select CRYPTO_ALGAPI >> 1243 select CRYPTO_CAST_COMMON >> 1244 help >> 1245 The CAST6 encryption algorithm (synonymous with CAST-256) is >> 1246 described in RFC2612. >> 1247 >> 1248 config CRYPTO_CAST6_AVX_X86_64 >> 1249 tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)" >> 1250 depends on X86 && 64BIT >> 1251 select CRYPTO_ALGAPI >> 1252 select CRYPTO_CRYPTD >> 1253 select CRYPTO_ABLK_HELPER >> 1254 select CRYPTO_GLUE_HELPER_X86 >> 1255 select CRYPTO_CAST_COMMON >> 1256 select CRYPTO_CAST6 >> 1257 select CRYPTO_LRW >> 1258 select CRYPTO_XTS 903 help 1259 help 904 HMAC (Keyed-Hash Message Authenticat !! 1260 The CAST6 encryption algorithm (synonymous with CAST-256) is 905 RFC2104) !! 1261 described in RFC2612. 906 1262 907 This is required for IPsec AH (XFRM_ !! 1263 This module provides the Cast6 cipher algorithm that processes >> 1264 eight blocks parallel using the AVX instruction set. 908 1265 909 config CRYPTO_MD4 !! 1266 config CRYPTO_DES 910 tristate "MD4" !! 1267 tristate "DES and Triple DES EDE cipher algorithms" 911 select CRYPTO_HASH !! 1268 select CRYPTO_ALGAPI 912 help 1269 help 913 MD4 message digest algorithm (RFC132 !! 1270 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3). 914 1271 915 config CRYPTO_MD5 !! 1272 config CRYPTO_DES_SPARC64 916 tristate "MD5" !! 1273 tristate "DES and Triple DES EDE cipher algorithms (SPARC64)" 917 select CRYPTO_HASH !! 1274 depends on SPARC64 >> 1275 select CRYPTO_ALGAPI >> 1276 select CRYPTO_DES 918 help 1277 help 919 MD5 message digest algorithm (RFC132 !! 1278 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3), >> 1279 optimized using SPARC64 crypto opcodes. 920 1280 921 config CRYPTO_MICHAEL_MIC !! 1281 config CRYPTO_DES3_EDE_X86_64 922 tristate "Michael MIC" !! 1282 tristate "Triple DES EDE cipher algorithm (x86-64)" 923 select CRYPTO_HASH !! 1283 depends on X86 && 64BIT >> 1284 select CRYPTO_ALGAPI >> 1285 select CRYPTO_DES 924 help 1286 help 925 Michael MIC (Message Integrity Code) !! 1287 Triple DES EDE (FIPS 46-3) algorithm. 926 1288 927 Defined by the IEEE 802.11i TKIP (Te !! 1289 This module provides implementation of the Triple DES EDE cipher 928 known as WPA (Wif-Fi Protected Acces !! 1290 algorithm that is optimized for x86-64 processors. Two versions of >> 1291 algorithm are provided; regular processing one input block and >> 1292 one that processes three blocks parallel. 929 1293 930 This algorithm is required for TKIP, !! 1294 config CRYPTO_FCRYPT 931 other purposes because of the weakne !! 1295 tristate "FCrypt cipher algorithm" >> 1296 select CRYPTO_ALGAPI >> 1297 select CRYPTO_BLKCIPHER >> 1298 help >> 1299 FCrypt algorithm used by RxRPC. 932 1300 933 config CRYPTO_POLYVAL !! 1301 config CRYPTO_KHAZAD 934 tristate !! 1302 tristate "Khazad cipher algorithm" 935 select CRYPTO_HASH !! 1303 select CRYPTO_ALGAPI 936 select CRYPTO_LIB_GF128MUL << 937 help 1304 help 938 POLYVAL hash function for HCTR2 !! 1305 Khazad cipher algorithm. 939 1306 940 This is used in HCTR2. It is not a !! 1307 Khazad was a finalist in the initial NESSIE competition. It is 941 cryptographic hash function. !! 1308 an algorithm optimized for 64-bit processors with good performance >> 1309 on 32-bit processors. Khazad uses an 128 bit key size. 942 1310 943 config CRYPTO_POLY1305 !! 1311 See also: 944 tristate "Poly1305" !! 1312 <http://www.larc.usp.br/~pbarreto/KhazadPage.html> 945 select CRYPTO_HASH !! 1313 946 select CRYPTO_LIB_POLY1305_GENERIC !! 1314 config CRYPTO_SALSA20 >> 1315 tristate "Salsa20 stream cipher algorithm" >> 1316 select CRYPTO_BLKCIPHER 947 help 1317 help 948 Poly1305 authenticator algorithm (RF !! 1318 Salsa20 stream cipher algorithm. 949 1319 950 Poly1305 is an authenticator algorit !! 1320 Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT 951 It is used for the ChaCha20-Poly1305 !! 1321 Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/> 952 in IETF protocols. This is the porta << 953 1322 954 config CRYPTO_RMD160 !! 1323 The Salsa20 stream cipher algorithm is designed by Daniel J. 955 tristate "RIPEMD-160" !! 1324 Bernstein <http://cr.yp.to/snuffle.html">djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html> 956 select CRYPTO_HASH << 957 help << 958 RIPEMD-160 hash function (ISO/IEC 10 << 959 1325 960 RIPEMD-160 is a 160-bit cryptographi !! 1326 config CRYPTO_SALSA20_586 961 to be used as a secure replacement f !! 1327 tristate "Salsa20 stream cipher algorithm (i586)" 962 MD4, MD5 and its predecessor RIPEMD !! 1328 depends on (X86 || UML_X86) && !64BIT 963 (not to be confused with RIPEMD-128) !! 1329 select CRYPTO_BLKCIPHER >> 1330 help >> 1331 Salsa20 stream cipher algorithm. 964 1332 965 Its speed is comparable to SHA-1 and !! 1333 Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT 966 against RIPEMD-160. !! 1334 Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/> 967 1335 968 Developed by Hans Dobbertin, Antoon !! 1336 The Salsa20 stream cipher algorithm is designed by Daniel J. 969 See https://homes.esat.kuleuven.be/~ !! 1337 Bernstein <http://cr.yp.to/snuffle.html">djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html> 970 for further information. << 971 1338 972 config CRYPTO_SHA1 !! 1339 config CRYPTO_SALSA20_X86_64 973 tristate "SHA-1" !! 1340 tristate "Salsa20 stream cipher algorithm (x86_64)" 974 select CRYPTO_HASH !! 1341 depends on (X86 || UML_X86) && 64BIT 975 select CRYPTO_LIB_SHA1 !! 1342 select CRYPTO_BLKCIPHER 976 help 1343 help 977 SHA-1 secure hash algorithm (FIPS 18 !! 1344 Salsa20 stream cipher algorithm. 978 1345 979 config CRYPTO_SHA256 !! 1346 Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT 980 tristate "SHA-224 and SHA-256" !! 1347 Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/> 981 select CRYPTO_HASH !! 1348 982 select CRYPTO_LIB_SHA256 !! 1349 The Salsa20 stream cipher algorithm is designed by Daniel J. >> 1350 Bernstein <http://cr.yp.to/snuffle.html">djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html> >> 1351 >> 1352 config CRYPTO_CHACHA20 >> 1353 tristate "ChaCha20 cipher algorithm" >> 1354 select CRYPTO_BLKCIPHER 983 help 1355 help 984 SHA-224 and SHA-256 secure hash algo !! 1356 ChaCha20 cipher algorithm, RFC7539. 985 1357 986 This is required for IPsec AH (XFRM_ !! 1358 ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J. 987 Used by the btrfs filesystem, Ceph, !! 1359 Bernstein and further specified in RFC7539 for use in IETF protocols. >> 1360 This is the portable C implementation of ChaCha20. 988 1361 989 config CRYPTO_SHA512 !! 1362 See also: 990 tristate "SHA-384 and SHA-512" !! 1363 <http://cr.yp.to/chacha/chacha-20080128.pdf> 991 select CRYPTO_HASH !! 1364 >> 1365 config CRYPTO_CHACHA20_X86_64 >> 1366 tristate "ChaCha20 cipher algorithm (x86_64/SSSE3/AVX2)" >> 1367 depends on X86 && 64BIT >> 1368 select CRYPTO_BLKCIPHER >> 1369 select CRYPTO_CHACHA20 992 help 1370 help 993 SHA-384 and SHA-512 secure hash algo !! 1371 ChaCha20 cipher algorithm, RFC7539. 994 1372 995 config CRYPTO_SHA3 !! 1373 ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J. 996 tristate "SHA-3" !! 1374 Bernstein and further specified in RFC7539 for use in IETF protocols. 997 select CRYPTO_HASH !! 1375 This is the x86_64 assembler implementation using SIMD instructions. >> 1376 >> 1377 See also: >> 1378 <http://cr.yp.to/chacha/chacha-20080128.pdf> >> 1379 >> 1380 config CRYPTO_SEED >> 1381 tristate "SEED cipher algorithm" >> 1382 select CRYPTO_ALGAPI 998 help 1383 help 999 SHA-3 secure hash algorithms (FIPS 2 !! 1384 SEED cipher algorithm (RFC4269). 1000 1385 1001 config CRYPTO_SM3 !! 1386 SEED is a 128-bit symmetric key block cipher that has been 1002 tristate !! 1387 developed by KISA (Korea Information Security Agency) as a >> 1388 national standard encryption algorithm of the Republic of Korea. >> 1389 It is a 16 round block cipher with the key size of 128 bit. 1003 1390 1004 config CRYPTO_SM3_GENERIC !! 1391 See also: 1005 tristate "SM3 (ShangMi 3)" !! 1392 <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp> 1006 select CRYPTO_HASH !! 1393 1007 select CRYPTO_SM3 !! 1394 config CRYPTO_SERPENT >> 1395 tristate "Serpent cipher algorithm" >> 1396 select CRYPTO_ALGAPI 1008 help 1397 help 1009 SM3 (ShangMi 3) secure hash functio !! 1398 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1010 1399 1011 This is part of the Chinese Commerc !! 1400 Keys are allowed to be from 0 to 256 bits in length, in steps >> 1401 of 8 bits. Also includes the 'Tnepres' algorithm, a reversed >> 1402 variant of Serpent for compatibility with old kerneli.org code. 1012 1403 1013 References: !! 1404 See also: 1014 http://www.oscca.gov.cn/UpFile/2010 !! 1405 <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1015 https://datatracker.ietf.org/doc/ht << 1016 1406 1017 config CRYPTO_STREEBOG !! 1407 config CRYPTO_SERPENT_SSE2_X86_64 1018 tristate "Streebog" !! 1408 tristate "Serpent cipher algorithm (x86_64/SSE2)" 1019 select CRYPTO_HASH !! 1409 depends on X86 && 64BIT >> 1410 select CRYPTO_ALGAPI >> 1411 select CRYPTO_CRYPTD >> 1412 select CRYPTO_ABLK_HELPER >> 1413 select CRYPTO_GLUE_HELPER_X86 >> 1414 select CRYPTO_SERPENT >> 1415 select CRYPTO_LRW >> 1416 select CRYPTO_XTS 1020 help 1417 help 1021 Streebog Hash Function (GOST R 34.1 !! 1418 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1022 1419 1023 This is one of the Russian cryptogr !! 1420 Keys are allowed to be from 0 to 256 bits in length, in steps 1024 GOST algorithms). This setting enab !! 1421 of 8 bits. 1025 256 and 512 bits output. << 1026 1422 1027 References: !! 1423 This module provides Serpent cipher algorithm that processes eight 1028 https://tc26.ru/upload/iblock/fed/f !! 1424 blocks parallel using SSE2 instruction set. 1029 https://tools.ietf.org/html/rfc6986 << 1030 1425 1031 config CRYPTO_VMAC !! 1426 See also: 1032 tristate "VMAC" !! 1427 <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1033 select CRYPTO_HASH !! 1428 1034 select CRYPTO_MANAGER !! 1429 config CRYPTO_SERPENT_SSE2_586 >> 1430 tristate "Serpent cipher algorithm (i586/SSE2)" >> 1431 depends on X86 && !64BIT >> 1432 select CRYPTO_ALGAPI >> 1433 select CRYPTO_CRYPTD >> 1434 select CRYPTO_ABLK_HELPER >> 1435 select CRYPTO_GLUE_HELPER_X86 >> 1436 select CRYPTO_SERPENT >> 1437 select CRYPTO_LRW >> 1438 select CRYPTO_XTS 1035 help 1439 help 1036 VMAC is a message authentication al !! 1440 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1037 very high speed on 64-bit architect << 1038 1441 1039 See https://fastcrypto.org/vmac for !! 1442 Keys are allowed to be from 0 to 256 bits in length, in steps >> 1443 of 8 bits. 1040 1444 1041 config CRYPTO_WP512 !! 1445 This module provides Serpent cipher algorithm that processes four 1042 tristate "Whirlpool" !! 1446 blocks parallel using SSE2 instruction set. 1043 select CRYPTO_HASH !! 1447 >> 1448 See also: >> 1449 <http://www.cl.cam.ac.uk/~rja14/serpent.html> >> 1450 >> 1451 config CRYPTO_SERPENT_AVX_X86_64 >> 1452 tristate "Serpent cipher algorithm (x86_64/AVX)" >> 1453 depends on X86 && 64BIT >> 1454 select CRYPTO_ALGAPI >> 1455 select CRYPTO_CRYPTD >> 1456 select CRYPTO_ABLK_HELPER >> 1457 select CRYPTO_GLUE_HELPER_X86 >> 1458 select CRYPTO_SERPENT >> 1459 select CRYPTO_LRW >> 1460 select CRYPTO_XTS 1044 help 1461 help 1045 Whirlpool hash function (ISO/IEC 10 !! 1462 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1046 1463 1047 512, 384 and 256-bit hashes. !! 1464 Keys are allowed to be from 0 to 256 bits in length, in steps >> 1465 of 8 bits. 1048 1466 1049 Whirlpool-512 is part of the NESSIE !! 1467 This module provides the Serpent cipher algorithm that processes >> 1468 eight blocks parallel using the AVX instruction set. 1050 1469 1051 See https://web.archive.org/web/201 !! 1470 See also: 1052 for further information. !! 1471 <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1053 1472 1054 config CRYPTO_XCBC !! 1473 config CRYPTO_SERPENT_AVX2_X86_64 1055 tristate "XCBC-MAC (Extended Cipher B !! 1474 tristate "Serpent cipher algorithm (x86_64/AVX2)" 1056 select CRYPTO_HASH !! 1475 depends on X86 && 64BIT 1057 select CRYPTO_MANAGER !! 1476 select CRYPTO_ALGAPI >> 1477 select CRYPTO_CRYPTD >> 1478 select CRYPTO_ABLK_HELPER >> 1479 select CRYPTO_GLUE_HELPER_X86 >> 1480 select CRYPTO_SERPENT >> 1481 select CRYPTO_SERPENT_AVX_X86_64 >> 1482 select CRYPTO_LRW >> 1483 select CRYPTO_XTS 1058 help 1484 help 1059 XCBC-MAC (Extended Cipher Block Cha !! 1485 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1060 Code) (RFC3566) << 1061 1486 1062 config CRYPTO_XXHASH !! 1487 Keys are allowed to be from 0 to 256 bits in length, in steps 1063 tristate "xxHash" !! 1488 of 8 bits. 1064 select CRYPTO_HASH !! 1489 1065 select XXHASH !! 1490 This module provides Serpent cipher algorithm that processes 16 >> 1491 blocks parallel using AVX2 instruction set. >> 1492 >> 1493 See also: >> 1494 <http://www.cl.cam.ac.uk/~rja14/serpent.html> >> 1495 >> 1496 config CRYPTO_TEA >> 1497 tristate "TEA, XTEA and XETA cipher algorithms" >> 1498 select CRYPTO_ALGAPI 1066 help 1499 help 1067 xxHash non-cryptographic hash algor !! 1500 TEA cipher algorithm. >> 1501 >> 1502 Tiny Encryption Algorithm is a simple cipher that uses >> 1503 many rounds for security. It is very fast and uses >> 1504 little memory. >> 1505 >> 1506 Xtendend Tiny Encryption Algorithm is a modification to >> 1507 the TEA algorithm to address a potential key weakness >> 1508 in the TEA algorithm. >> 1509 >> 1510 Xtendend Encryption Tiny Algorithm is a mis-implementation >> 1511 of the XTEA algorithm for compatibility purposes. 1068 1512 1069 Extremely fast, working at speeds c !! 1513 config CRYPTO_TWOFISH >> 1514 tristate "Twofish cipher algorithm" >> 1515 select CRYPTO_ALGAPI >> 1516 select CRYPTO_TWOFISH_COMMON >> 1517 help >> 1518 Twofish cipher algorithm. 1070 1519 1071 Used by the btrfs filesystem. !! 1520 Twofish was submitted as an AES (Advanced Encryption Standard) >> 1521 candidate cipher by researchers at CounterPane Systems. It is a >> 1522 16 round block cipher supporting key sizes of 128, 192, and 256 >> 1523 bits. 1072 1524 1073 endmenu !! 1525 See also: >> 1526 <http://www.schneier.com/twofish.html> 1074 1527 1075 menu "CRCs (cyclic redundancy checks)" !! 1528 config CRYPTO_TWOFISH_COMMON >> 1529 tristate >> 1530 help >> 1531 Common parts of the Twofish cipher algorithm shared by the >> 1532 generic c and the assembler implementations. 1076 1533 1077 config CRYPTO_CRC32C !! 1534 config CRYPTO_TWOFISH_586 1078 tristate "CRC32c" !! 1535 tristate "Twofish cipher algorithms (i586)" 1079 select CRYPTO_HASH !! 1536 depends on (X86 || UML_X86) && !64BIT 1080 select CRC32 !! 1537 select CRYPTO_ALGAPI >> 1538 select CRYPTO_TWOFISH_COMMON 1081 help 1539 help 1082 CRC32c CRC algorithm with the iSCSI !! 1540 Twofish cipher algorithm. 1083 1541 1084 A 32-bit CRC (cyclic redundancy che !! 1542 Twofish was submitted as an AES (Advanced Encryption Standard) 1085 by G. Castagnoli, S. Braeuer and M. !! 1543 candidate cipher by researchers at CounterPane Systems. It is a 1086 Redundancy-Check Codes with 24 and !! 1544 16 round block cipher supporting key sizes of 128, 192, and 256 1087 on Communications, Vol. 41, No. 6, !! 1545 bits. 1088 iSCSI. << 1089 1546 1090 Used by btrfs, ext4, jbd2, NVMeoF/T !! 1547 See also: >> 1548 <http://www.schneier.com/twofish.html> 1091 1549 1092 config CRYPTO_CRC32 !! 1550 config CRYPTO_TWOFISH_X86_64 1093 tristate "CRC32" !! 1551 tristate "Twofish cipher algorithm (x86_64)" 1094 select CRYPTO_HASH !! 1552 depends on (X86 || UML_X86) && 64BIT 1095 select CRC32 !! 1553 select CRYPTO_ALGAPI >> 1554 select CRYPTO_TWOFISH_COMMON 1096 help 1555 help 1097 CRC32 CRC algorithm (IEEE 802.3) !! 1556 Twofish cipher algorithm (x86_64). >> 1557 >> 1558 Twofish was submitted as an AES (Advanced Encryption Standard) >> 1559 candidate cipher by researchers at CounterPane Systems. It is a >> 1560 16 round block cipher supporting key sizes of 128, 192, and 256 >> 1561 bits. 1098 1562 1099 Used by RoCEv2 and f2fs. !! 1563 See also: >> 1564 <http://www.schneier.com/twofish.html> 1100 1565 1101 config CRYPTO_CRCT10DIF !! 1566 config CRYPTO_TWOFISH_X86_64_3WAY 1102 tristate "CRCT10DIF" !! 1567 tristate "Twofish cipher algorithm (x86_64, 3-way parallel)" 1103 select CRYPTO_HASH !! 1568 depends on X86 && 64BIT >> 1569 select CRYPTO_ALGAPI >> 1570 select CRYPTO_TWOFISH_COMMON >> 1571 select CRYPTO_TWOFISH_X86_64 >> 1572 select CRYPTO_GLUE_HELPER_X86 >> 1573 select CRYPTO_LRW >> 1574 select CRYPTO_XTS 1104 help 1575 help 1105 CRC16 CRC algorithm used for the T1 !! 1576 Twofish cipher algorithm (x86_64, 3-way parallel). >> 1577 >> 1578 Twofish was submitted as an AES (Advanced Encryption Standard) >> 1579 candidate cipher by researchers at CounterPane Systems. It is a >> 1580 16 round block cipher supporting key sizes of 128, 192, and 256 >> 1581 bits. 1106 1582 1107 CRC algorithm used by the SCSI Bloc !! 1583 This module provides Twofish cipher algorithm that processes three >> 1584 blocks parallel, utilizing resources of out-of-order CPUs better. 1108 1585 1109 config CRYPTO_CRC64_ROCKSOFT !! 1586 See also: 1110 tristate "CRC64 based on Rocksoft Mod !! 1587 <http://www.schneier.com/twofish.html> 1111 depends on CRC64 !! 1588 1112 select CRYPTO_HASH !! 1589 config CRYPTO_TWOFISH_AVX_X86_64 >> 1590 tristate "Twofish cipher algorithm (x86_64/AVX)" >> 1591 depends on X86 && 64BIT >> 1592 select CRYPTO_ALGAPI >> 1593 select CRYPTO_CRYPTD >> 1594 select CRYPTO_ABLK_HELPER >> 1595 select CRYPTO_GLUE_HELPER_X86 >> 1596 select CRYPTO_TWOFISH_COMMON >> 1597 select CRYPTO_TWOFISH_X86_64 >> 1598 select CRYPTO_TWOFISH_X86_64_3WAY >> 1599 select CRYPTO_LRW >> 1600 select CRYPTO_XTS 1113 help 1601 help 1114 CRC64 CRC algorithm based on the Ro !! 1602 Twofish cipher algorithm (x86_64/AVX). 1115 1603 1116 Used by the NVMe implementation of !! 1604 Twofish was submitted as an AES (Advanced Encryption Standard) >> 1605 candidate cipher by researchers at CounterPane Systems. It is a >> 1606 16 round block cipher supporting key sizes of 128, 192, and 256 >> 1607 bits. 1117 1608 1118 See https://zlib.net/crc_v3.txt !! 1609 This module provides the Twofish cipher algorithm that processes >> 1610 eight blocks parallel using the AVX Instruction Set. 1119 1611 1120 endmenu !! 1612 See also: >> 1613 <http://www.schneier.com/twofish.html> 1121 1614 1122 menu "Compression" !! 1615 comment "Compression" 1123 1616 1124 config CRYPTO_DEFLATE 1617 config CRYPTO_DEFLATE 1125 tristate "Deflate" !! 1618 tristate "Deflate compression algorithm" 1126 select CRYPTO_ALGAPI 1619 select CRYPTO_ALGAPI 1127 select CRYPTO_ACOMP2 1620 select CRYPTO_ACOMP2 1128 select ZLIB_INFLATE 1621 select ZLIB_INFLATE 1129 select ZLIB_DEFLATE 1622 select ZLIB_DEFLATE 1130 help 1623 help 1131 Deflate compression algorithm (RFC1 !! 1624 This is the Deflate algorithm (RFC1951), specified for use in >> 1625 IPSec with the IPCOMP protocol (RFC3173, RFC2394). 1132 1626 1133 Used by IPSec with the IPCOMP proto !! 1627 You will most probably want this if using IPSec. 1134 1628 1135 config CRYPTO_LZO 1629 config CRYPTO_LZO 1136 tristate "LZO" !! 1630 tristate "LZO compression algorithm" 1137 select CRYPTO_ALGAPI 1631 select CRYPTO_ALGAPI 1138 select CRYPTO_ACOMP2 1632 select CRYPTO_ACOMP2 1139 select LZO_COMPRESS 1633 select LZO_COMPRESS 1140 select LZO_DECOMPRESS 1634 select LZO_DECOMPRESS 1141 help 1635 help 1142 LZO compression algorithm !! 1636 This is the LZO algorithm. 1143 << 1144 See https://www.oberhumer.com/opens << 1145 1637 1146 config CRYPTO_842 1638 config CRYPTO_842 1147 tristate "842" !! 1639 tristate "842 compression algorithm" 1148 select CRYPTO_ALGAPI 1640 select CRYPTO_ALGAPI 1149 select CRYPTO_ACOMP2 1641 select CRYPTO_ACOMP2 1150 select 842_COMPRESS 1642 select 842_COMPRESS 1151 select 842_DECOMPRESS 1643 select 842_DECOMPRESS 1152 help 1644 help 1153 842 compression algorithm by IBM !! 1645 This is the 842 algorithm. 1154 << 1155 See https://github.com/plauth/lib84 << 1156 1646 1157 config CRYPTO_LZ4 1647 config CRYPTO_LZ4 1158 tristate "LZ4" !! 1648 tristate "LZ4 compression algorithm" 1159 select CRYPTO_ALGAPI 1649 select CRYPTO_ALGAPI 1160 select CRYPTO_ACOMP2 1650 select CRYPTO_ACOMP2 1161 select LZ4_COMPRESS 1651 select LZ4_COMPRESS 1162 select LZ4_DECOMPRESS 1652 select LZ4_DECOMPRESS 1163 help 1653 help 1164 LZ4 compression algorithm !! 1654 This is the LZ4 algorithm. 1165 << 1166 See https://github.com/lz4/lz4 for << 1167 1655 1168 config CRYPTO_LZ4HC 1656 config CRYPTO_LZ4HC 1169 tristate "LZ4HC" !! 1657 tristate "LZ4HC compression algorithm" 1170 select CRYPTO_ALGAPI 1658 select CRYPTO_ALGAPI 1171 select CRYPTO_ACOMP2 1659 select CRYPTO_ACOMP2 1172 select LZ4HC_COMPRESS 1660 select LZ4HC_COMPRESS 1173 select LZ4_DECOMPRESS 1661 select LZ4_DECOMPRESS 1174 help 1662 help 1175 LZ4 high compression mode algorithm !! 1663 This is the LZ4 high compression mode algorithm. 1176 << 1177 See https://github.com/lz4/lz4 for << 1178 << 1179 config CRYPTO_ZSTD << 1180 tristate "Zstd" << 1181 select CRYPTO_ALGAPI << 1182 select CRYPTO_ACOMP2 << 1183 select ZSTD_COMPRESS << 1184 select ZSTD_DECOMPRESS << 1185 help << 1186 zstd compression algorithm << 1187 1664 1188 See https://github.com/facebook/zst !! 1665 comment "Random Number Generation" 1189 << 1190 endmenu << 1191 << 1192 menu "Random number generation" << 1193 1666 1194 config CRYPTO_ANSI_CPRNG 1667 config CRYPTO_ANSI_CPRNG 1195 tristate "ANSI PRNG (Pseudo Random Nu !! 1668 tristate "Pseudo Random Number Generation for Cryptographic modules" 1196 select CRYPTO_AES 1669 select CRYPTO_AES 1197 select CRYPTO_RNG 1670 select CRYPTO_RNG 1198 help 1671 help 1199 Pseudo RNG (random number generator !! 1672 This option enables the generic pseudo random number generator 1200 !! 1673 for cryptographic modules. Uses the Algorithm specified in 1201 This uses the AES cipher algorithm. !! 1674 ANSI X9.31 A.2.4. Note that this option must be enabled if 1202 !! 1675 CRYPTO_FIPS is selected 1203 Note that this option must be enabl << 1204 1676 1205 menuconfig CRYPTO_DRBG_MENU 1677 menuconfig CRYPTO_DRBG_MENU 1206 tristate "NIST SP800-90A DRBG (Determ !! 1678 tristate "NIST SP800-90A DRBG" 1207 help 1679 help 1208 DRBG (Deterministic Random Bit Gene !! 1680 NIST SP800-90A compliant DRBG. In the following submenu, one or 1209 !! 1681 more of the DRBG types must be selected. 1210 In the following submenu, one or mo << 1211 1682 1212 if CRYPTO_DRBG_MENU 1683 if CRYPTO_DRBG_MENU 1213 1684 1214 config CRYPTO_DRBG_HMAC 1685 config CRYPTO_DRBG_HMAC 1215 bool 1686 bool 1216 default y 1687 default y 1217 select CRYPTO_HMAC 1688 select CRYPTO_HMAC 1218 select CRYPTO_SHA512 !! 1689 select CRYPTO_SHA256 1219 1690 1220 config CRYPTO_DRBG_HASH 1691 config CRYPTO_DRBG_HASH 1221 bool "Hash_DRBG" !! 1692 bool "Enable Hash DRBG" 1222 select CRYPTO_SHA256 1693 select CRYPTO_SHA256 1223 help 1694 help 1224 Hash_DRBG variant as defined in NIS !! 1695 Enable the Hash DRBG variant as defined in NIST SP800-90A. 1225 << 1226 This uses the SHA-1, SHA-256, SHA-3 << 1227 1696 1228 config CRYPTO_DRBG_CTR 1697 config CRYPTO_DRBG_CTR 1229 bool "CTR_DRBG" !! 1698 bool "Enable CTR DRBG" 1230 select CRYPTO_AES 1699 select CRYPTO_AES 1231 select CRYPTO_CTR !! 1700 depends on CRYPTO_CTR 1232 help 1701 help 1233 CTR_DRBG variant as defined in NIST !! 1702 Enable the CTR DRBG variant as defined in NIST SP800-90A. 1234 << 1235 This uses the AES cipher algorithm << 1236 1703 1237 config CRYPTO_DRBG 1704 config CRYPTO_DRBG 1238 tristate 1705 tristate 1239 default CRYPTO_DRBG_MENU 1706 default CRYPTO_DRBG_MENU 1240 select CRYPTO_RNG 1707 select CRYPTO_RNG 1241 select CRYPTO_JITTERENTROPY 1708 select CRYPTO_JITTERENTROPY 1242 1709 1243 endif # if CRYPTO_DRBG_MENU 1710 endif # if CRYPTO_DRBG_MENU 1244 1711 1245 config CRYPTO_JITTERENTROPY 1712 config CRYPTO_JITTERENTROPY 1246 tristate "CPU Jitter Non-Deterministi !! 1713 tristate "Jitterentropy Non-Deterministic Random Number Generator" 1247 select CRYPTO_RNG 1714 select CRYPTO_RNG 1248 select CRYPTO_SHA3 << 1249 help 1715 help 1250 CPU Jitter RNG (Random Number Gener !! 1716 The Jitterentropy RNG is a noise that is intended 1251 !! 1717 to provide seed to another RNG. The RNG does not 1252 A non-physical non-deterministic (" !! 1718 perform any cryptographic whitening of the generated 1253 compliant with NIST SP800-90B) inte !! 1719 random numbers. This Jitterentropy RNG registers with 1254 deterministic RNG (e.g., per NIST S !! 1720 the kernel crypto API and can be used by any caller. 1255 This RNG does not perform any crypt << 1256 random numbers. << 1257 << 1258 See https://www.chronox.de/jent/ << 1259 << 1260 if CRYPTO_JITTERENTROPY << 1261 if CRYPTO_FIPS && EXPERT << 1262 << 1263 choice << 1264 prompt "CPU Jitter RNG Memory Size" << 1265 default CRYPTO_JITTERENTROPY_MEMSIZE_ << 1266 help << 1267 The Jitter RNG measures the executi << 1268 Multiple consecutive memory accesse << 1269 size fits into a cache (e.g. L1), o << 1270 to that cache is measured. The clos << 1271 the less variations are measured an << 1272 obtained. Thus, if the memory size << 1273 obtained entropy is less than if th << 1274 L1 + L2, which in turn is less if t << 1275 L1 + L2 + L3. Thus, by selecting a << 1276 the entropy rate produced by the Ji << 1277 << 1278 config CRYPTO_JITTERENTROPY_MEMSIZE_2 << 1279 bool "2048 Bytes (default)" << 1280 << 1281 config CRYPTO_JITTERENTROPY_MEMSIZE_1 << 1282 bool "128 kBytes" << 1283 << 1284 config CRYPTO_JITTERENTROPY_MEMSIZE_1 << 1285 bool "1024 kBytes" << 1286 << 1287 config CRYPTO_JITTERENTROPY_MEMSIZE_8 << 1288 bool "8192 kBytes" << 1289 endchoice << 1290 << 1291 config CRYPTO_JITTERENTROPY_MEMORY_BLOCKS << 1292 int << 1293 default 64 if CRYPTO_JITTERENTROPY_ME << 1294 default 512 if CRYPTO_JITTERENTROPY_M << 1295 default 1024 if CRYPTO_JITTERENTROPY_ << 1296 default 4096 if CRYPTO_JITTERENTROPY_ << 1297 << 1298 config CRYPTO_JITTERENTROPY_MEMORY_BLOCKSIZE << 1299 int << 1300 default 32 if CRYPTO_JITTERENTROPY_ME << 1301 default 256 if CRYPTO_JITTERENTROPY_M << 1302 default 1024 if CRYPTO_JITTERENTROPY_ << 1303 default 2048 if CRYPTO_JITTERENTROPY_ << 1304 << 1305 config CRYPTO_JITTERENTROPY_OSR << 1306 int "CPU Jitter RNG Oversampling Rate << 1307 range 1 15 << 1308 default 3 << 1309 help << 1310 The Jitter RNG allows the specifica << 1311 The Jitter RNG operation requires a << 1312 measurements to produce one output << 1313 OSR value is multiplied with the am << 1314 generate one output block. Thus, th << 1315 by the OSR factor. The oversampling << 1316 on hardware whose timers deliver li << 1317 the timer is coarse) by setting the << 1318 trade-off, however, is that the Jit << 1319 to generate random numbers. << 1320 << 1321 config CRYPTO_JITTERENTROPY_TESTINTERFACE << 1322 bool "CPU Jitter RNG Test Interface" << 1323 help << 1324 The test interface allows a privile << 1325 the raw unconditioned high resoluti << 1326 is collected by the Jitter RNG for << 1327 this data is used at the same time << 1328 the Jitter RNG operates in an insec << 1329 recording is enabled. This interfac << 1330 intended for testing purposes and i << 1331 production systems. << 1332 << 1333 The raw noise data can be obtained << 1334 debugfs file. Using the option << 1335 jitterentropy_testing.boot_raw_hire << 1336 the first 1000 entropy events since << 1337 << 1338 If unsure, select N. << 1339 << 1340 endif # if CRYPTO_FIPS && EXPERT << 1341 << 1342 if !(CRYPTO_FIPS && EXPERT) << 1343 << 1344 config CRYPTO_JITTERENTROPY_MEMORY_BLOCKS << 1345 int << 1346 default 64 << 1347 << 1348 config CRYPTO_JITTERENTROPY_MEMORY_BLOCKSIZE << 1349 int << 1350 default 32 << 1351 << 1352 config CRYPTO_JITTERENTROPY_OSR << 1353 int << 1354 default 1 << 1355 << 1356 config CRYPTO_JITTERENTROPY_TESTINTERFACE << 1357 bool << 1358 << 1359 endif # if !(CRYPTO_FIPS && EXPERT) << 1360 endif # if CRYPTO_JITTERENTROPY << 1361 << 1362 config CRYPTO_KDF800108_CTR << 1363 tristate << 1364 select CRYPTO_HMAC << 1365 select CRYPTO_SHA256 << 1366 << 1367 endmenu << 1368 menu "Userspace interface" << 1369 1721 1370 config CRYPTO_USER_API 1722 config CRYPTO_USER_API 1371 tristate 1723 tristate 1372 1724 1373 config CRYPTO_USER_API_HASH 1725 config CRYPTO_USER_API_HASH 1374 tristate "Hash algorithms" !! 1726 tristate "User-space interface for hash algorithms" 1375 depends on NET 1727 depends on NET 1376 select CRYPTO_HASH 1728 select CRYPTO_HASH 1377 select CRYPTO_USER_API 1729 select CRYPTO_USER_API 1378 help 1730 help 1379 Enable the userspace interface for !! 1731 This option enables the user-spaces interface for hash 1380 !! 1732 algorithms. 1381 See Documentation/crypto/userspace- << 1382 https://www.chronox.de/libkcapi/htm << 1383 1733 1384 config CRYPTO_USER_API_SKCIPHER 1734 config CRYPTO_USER_API_SKCIPHER 1385 tristate "Symmetric key cipher algori !! 1735 tristate "User-space interface for symmetric key cipher algorithms" 1386 depends on NET 1736 depends on NET 1387 select CRYPTO_SKCIPHER !! 1737 select CRYPTO_BLKCIPHER 1388 select CRYPTO_USER_API 1738 select CRYPTO_USER_API 1389 help 1739 help 1390 Enable the userspace interface for !! 1740 This option enables the user-spaces interface for symmetric 1391 !! 1741 key cipher algorithms. 1392 See Documentation/crypto/userspace- << 1393 https://www.chronox.de/libkcapi/htm << 1394 1742 1395 config CRYPTO_USER_API_RNG 1743 config CRYPTO_USER_API_RNG 1396 tristate "RNG (random number generato !! 1744 tristate "User-space interface for random number generator algorithms" 1397 depends on NET 1745 depends on NET 1398 select CRYPTO_RNG 1746 select CRYPTO_RNG 1399 select CRYPTO_USER_API 1747 select CRYPTO_USER_API 1400 help 1748 help 1401 Enable the userspace interface for !! 1749 This option enables the user-spaces interface for random 1402 algorithms. !! 1750 number generator algorithms. 1403 << 1404 See Documentation/crypto/userspace- << 1405 https://www.chronox.de/libkcapi/htm << 1406 << 1407 config CRYPTO_USER_API_RNG_CAVP << 1408 bool "Enable CAVP testing of DRBG" << 1409 depends on CRYPTO_USER_API_RNG && CRY << 1410 help << 1411 Enable extra APIs in the userspace << 1412 (Cryptographic Algorithm Validation << 1413 - resetting DRBG entropy << 1414 - providing Additional Data << 1415 << 1416 This should only be enabled for CAV << 1417 no unless you know what this is. << 1418 1751 1419 config CRYPTO_USER_API_AEAD 1752 config CRYPTO_USER_API_AEAD 1420 tristate "AEAD cipher algorithms" !! 1753 tristate "User-space interface for AEAD cipher algorithms" 1421 depends on NET 1754 depends on NET 1422 select CRYPTO_AEAD 1755 select CRYPTO_AEAD 1423 select CRYPTO_SKCIPHER << 1424 select CRYPTO_NULL << 1425 select CRYPTO_USER_API 1756 select CRYPTO_USER_API 1426 help 1757 help 1427 Enable the userspace interface for !! 1758 This option enables the user-spaces interface for AEAD 1428 !! 1759 cipher algorithms. 1429 See Documentation/crypto/userspace- << 1430 https://www.chronox.de/libkcapi/htm << 1431 << 1432 config CRYPTO_USER_API_ENABLE_OBSOLETE << 1433 bool "Obsolete cryptographic algorith << 1434 depends on CRYPTO_USER_API << 1435 default y << 1436 help << 1437 Allow obsolete cryptographic algori << 1438 already been phased out from intern << 1439 only useful for userspace clients t << 1440 << 1441 endmenu << 1442 1760 1443 config CRYPTO_HASH_INFO 1761 config CRYPTO_HASH_INFO 1444 bool 1762 bool 1445 1763 1446 if !KMSAN # avoid false positives from assemb << 1447 if ARM << 1448 source "arch/arm/crypto/Kconfig" << 1449 endif << 1450 if ARM64 << 1451 source "arch/arm64/crypto/Kconfig" << 1452 endif << 1453 if LOONGARCH << 1454 source "arch/loongarch/crypto/Kconfig" << 1455 endif << 1456 if MIPS << 1457 source "arch/mips/crypto/Kconfig" << 1458 endif << 1459 if PPC << 1460 source "arch/powerpc/crypto/Kconfig" << 1461 endif << 1462 if RISCV << 1463 source "arch/riscv/crypto/Kconfig" << 1464 endif << 1465 if S390 << 1466 source "arch/s390/crypto/Kconfig" << 1467 endif << 1468 if SPARC << 1469 source "arch/sparc/crypto/Kconfig" << 1470 endif << 1471 if X86 << 1472 source "arch/x86/crypto/Kconfig" << 1473 endif << 1474 endif << 1475 << 1476 source "drivers/crypto/Kconfig" 1764 source "drivers/crypto/Kconfig" 1477 source "crypto/asymmetric_keys/Kconfig" !! 1765 source crypto/asymmetric_keys/Kconfig 1478 source "certs/Kconfig" !! 1766 source certs/Kconfig 1479 1767 1480 endif # if CRYPTO 1768 endif # if CRYPTO
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.