1 // SPDX-License-Identifier: GPL-2.0 1 // SPDX-License-Identifier: GPL-2.0 2 /* 2 /* 3 * Adiantum length-preserving encryption mode 3 * Adiantum length-preserving encryption mode 4 * 4 * 5 * Copyright 2018 Google LLC 5 * Copyright 2018 Google LLC 6 */ 6 */ 7 7 8 /* 8 /* 9 * Adiantum is a tweakable, length-preserving 9 * Adiantum is a tweakable, length-preserving encryption mode designed for fast 10 * and secure disk encryption, especially on C 10 * and secure disk encryption, especially on CPUs without dedicated crypto 11 * instructions. Adiantum encrypts each secto 11 * instructions. Adiantum encrypts each sector using the XChaCha12 stream 12 * cipher, two passes of an ε-almost-∆-univ 12 * cipher, two passes of an ε-almost-∆-universal (ε-∆U) hash function based on 13 * NH and Poly1305, and an invocation of the A 13 * NH and Poly1305, and an invocation of the AES-256 block cipher on a single 14 * 16-byte block. See the paper for details: 14 * 16-byte block. See the paper for details: 15 * 15 * 16 * Adiantum: length-preserving encryption 16 * Adiantum: length-preserving encryption for entry-level processors 17 * (https://eprint.iacr.org/2018/720.pdf) 17 * (https://eprint.iacr.org/2018/720.pdf) 18 * 18 * 19 * For flexibility, this implementation also a 19 * For flexibility, this implementation also allows other ciphers: 20 * 20 * 21 * - Stream cipher: XChaCha12 or XChaCha2 21 * - Stream cipher: XChaCha12 or XChaCha20 22 * - Block cipher: any with a 128-bit blo 22 * - Block cipher: any with a 128-bit block size and 256-bit key 23 * 23 * 24 * This implementation doesn't currently allow 24 * This implementation doesn't currently allow other ε-∆U hash functions, i.e. 25 * HPolyC is not supported. This is because A 25 * HPolyC is not supported. This is because Adiantum is ~20% faster than HPolyC 26 * but still provably as secure, and also the 26 * but still provably as secure, and also the ε-∆U hash function of HBSH is 27 * formally defined to take two inputs (tweak, 27 * formally defined to take two inputs (tweak, message) which makes it difficult 28 * to wrap with the crypto_shash API. Rather, 28 * to wrap with the crypto_shash API. Rather, some details need to be handled 29 * here. Nevertheless, if needed in the futur 29 * here. Nevertheless, if needed in the future, support for other ε-∆U hash 30 * functions could be added here. 30 * functions could be added here. 31 */ 31 */ 32 32 33 #include <crypto/b128ops.h> 33 #include <crypto/b128ops.h> 34 #include <crypto/chacha.h> 34 #include <crypto/chacha.h> 35 #include <crypto/internal/cipher.h> << 36 #include <crypto/internal/hash.h> 35 #include <crypto/internal/hash.h> 37 #include <crypto/internal/poly1305.h> 36 #include <crypto/internal/poly1305.h> 38 #include <crypto/internal/skcipher.h> 37 #include <crypto/internal/skcipher.h> 39 #include <crypto/nhpoly1305.h> 38 #include <crypto/nhpoly1305.h> 40 #include <crypto/scatterwalk.h> 39 #include <crypto/scatterwalk.h> 41 #include <linux/module.h> 40 #include <linux/module.h> 42 41 43 /* 42 /* 44 * Size of right-hand part of input data, in b 43 * Size of right-hand part of input data, in bytes; also the size of the block 45 * cipher's block size and the hash function's 44 * cipher's block size and the hash function's output. 46 */ 45 */ 47 #define BLOCKCIPHER_BLOCK_SIZE 16 46 #define BLOCKCIPHER_BLOCK_SIZE 16 48 47 49 /* Size of the block cipher key (K_E) in bytes 48 /* Size of the block cipher key (K_E) in bytes */ 50 #define BLOCKCIPHER_KEY_SIZE 32 49 #define BLOCKCIPHER_KEY_SIZE 32 51 50 52 /* Size of the hash key (K_H) in bytes */ 51 /* Size of the hash key (K_H) in bytes */ 53 #define HASH_KEY_SIZE (POLY1305_BLOC 52 #define HASH_KEY_SIZE (POLY1305_BLOCK_SIZE + NHPOLY1305_KEY_SIZE) 54 53 55 /* 54 /* 56 * The specification allows variable-length tw 55 * The specification allows variable-length tweaks, but Linux's crypto API 57 * currently only allows algorithms to support 56 * currently only allows algorithms to support a single length. The "natural" 58 * tweak length for Adiantum is 16, since that 57 * tweak length for Adiantum is 16, since that fits into one Poly1305 block for 59 * the best performance. But longer tweaks ar 58 * the best performance. But longer tweaks are useful for fscrypt, to avoid 60 * needing to derive per-file keys. So instea 59 * needing to derive per-file keys. So instead we use two blocks, or 32 bytes. 61 */ 60 */ 62 #define TWEAK_SIZE 32 61 #define TWEAK_SIZE 32 63 62 64 struct adiantum_instance_ctx { 63 struct adiantum_instance_ctx { 65 struct crypto_skcipher_spawn streamcip 64 struct crypto_skcipher_spawn streamcipher_spawn; 66 struct crypto_cipher_spawn blockcipher 65 struct crypto_cipher_spawn blockcipher_spawn; 67 struct crypto_shash_spawn hash_spawn; 66 struct crypto_shash_spawn hash_spawn; 68 }; 67 }; 69 68 70 struct adiantum_tfm_ctx { 69 struct adiantum_tfm_ctx { 71 struct crypto_skcipher *streamcipher; 70 struct crypto_skcipher *streamcipher; 72 struct crypto_cipher *blockcipher; 71 struct crypto_cipher *blockcipher; 73 struct crypto_shash *hash; 72 struct crypto_shash *hash; 74 struct poly1305_core_key header_hash_k 73 struct poly1305_core_key header_hash_key; 75 }; 74 }; 76 75 77 struct adiantum_request_ctx { 76 struct adiantum_request_ctx { 78 77 79 /* 78 /* 80 * Buffer for right-hand part of data, 79 * Buffer for right-hand part of data, i.e. 81 * 80 * 82 * P_L => P_M => C_M => C_R when en 81 * P_L => P_M => C_M => C_R when encrypting, or 83 * C_R => C_M => P_M => P_L when de 82 * C_R => C_M => P_M => P_L when decrypting. 84 * 83 * 85 * Also used to build the IV for the s 84 * Also used to build the IV for the stream cipher. 86 */ 85 */ 87 union { 86 union { 88 u8 bytes[XCHACHA_IV_SIZE]; 87 u8 bytes[XCHACHA_IV_SIZE]; 89 __le32 words[XCHACHA_IV_SIZE / 88 __le32 words[XCHACHA_IV_SIZE / sizeof(__le32)]; 90 le128 bignum; /* interpret a 89 le128 bignum; /* interpret as element of Z/(2^{128}Z) */ 91 } rbuf; 90 } rbuf; 92 91 93 bool enc; /* true if encrypting, false 92 bool enc; /* true if encrypting, false if decrypting */ 94 93 95 /* 94 /* 96 * The result of the Poly1305 ε-∆U 95 * The result of the Poly1305 ε-∆U hash function applied to 97 * (bulk length, tweak) 96 * (bulk length, tweak) 98 */ 97 */ 99 le128 header_hash; 98 le128 header_hash; 100 99 101 /* Sub-requests, must be last */ 100 /* Sub-requests, must be last */ 102 union { 101 union { 103 struct shash_desc hash_desc; 102 struct shash_desc hash_desc; 104 struct skcipher_request stream 103 struct skcipher_request streamcipher_req; 105 } u; 104 } u; 106 }; 105 }; 107 106 108 /* 107 /* 109 * Given the XChaCha stream key K_S, derive th 108 * Given the XChaCha stream key K_S, derive the block cipher key K_E and the 110 * hash key K_H as follows: 109 * hash key K_H as follows: 111 * 110 * 112 * K_E || K_H || ... = XChaCha(key=K_S, no 111 * K_E || K_H || ... = XChaCha(key=K_S, nonce=1||0^191) 113 * 112 * 114 * Note that this denotes using bits from the 113 * Note that this denotes using bits from the XChaCha keystream, which here we 115 * get indirectly by encrypting a buffer conta 114 * get indirectly by encrypting a buffer containing all 0's. 116 */ 115 */ 117 static int adiantum_setkey(struct crypto_skcip 116 static int adiantum_setkey(struct crypto_skcipher *tfm, const u8 *key, 118 unsigned int keylen 117 unsigned int keylen) 119 { 118 { 120 struct adiantum_tfm_ctx *tctx = crypto 119 struct adiantum_tfm_ctx *tctx = crypto_skcipher_ctx(tfm); 121 struct { 120 struct { 122 u8 iv[XCHACHA_IV_SIZE]; 121 u8 iv[XCHACHA_IV_SIZE]; 123 u8 derived_keys[BLOCKCIPHER_KE 122 u8 derived_keys[BLOCKCIPHER_KEY_SIZE + HASH_KEY_SIZE]; 124 struct scatterlist sg; 123 struct scatterlist sg; 125 struct crypto_wait wait; 124 struct crypto_wait wait; 126 struct skcipher_request req; / 125 struct skcipher_request req; /* must be last */ 127 } *data; 126 } *data; 128 u8 *keyp; 127 u8 *keyp; 129 int err; 128 int err; 130 129 131 /* Set the stream cipher key (K_S) */ 130 /* Set the stream cipher key (K_S) */ 132 crypto_skcipher_clear_flags(tctx->stre 131 crypto_skcipher_clear_flags(tctx->streamcipher, CRYPTO_TFM_REQ_MASK); 133 crypto_skcipher_set_flags(tctx->stream 132 crypto_skcipher_set_flags(tctx->streamcipher, 134 crypto_skcip 133 crypto_skcipher_get_flags(tfm) & 135 CRYPTO_TFM_R 134 CRYPTO_TFM_REQ_MASK); 136 err = crypto_skcipher_setkey(tctx->str 135 err = crypto_skcipher_setkey(tctx->streamcipher, key, keylen); 137 if (err) 136 if (err) 138 return err; 137 return err; 139 138 140 /* Derive the subkeys */ 139 /* Derive the subkeys */ 141 data = kzalloc(sizeof(*data) + 140 data = kzalloc(sizeof(*data) + 142 crypto_skcipher_reqsize 141 crypto_skcipher_reqsize(tctx->streamcipher), GFP_KERNEL); 143 if (!data) 142 if (!data) 144 return -ENOMEM; 143 return -ENOMEM; 145 data->iv[0] = 1; 144 data->iv[0] = 1; 146 sg_init_one(&data->sg, data->derived_k 145 sg_init_one(&data->sg, data->derived_keys, sizeof(data->derived_keys)); 147 crypto_init_wait(&data->wait); 146 crypto_init_wait(&data->wait); 148 skcipher_request_set_tfm(&data->req, t 147 skcipher_request_set_tfm(&data->req, tctx->streamcipher); 149 skcipher_request_set_callback(&data->r 148 skcipher_request_set_callback(&data->req, CRYPTO_TFM_REQ_MAY_SLEEP | 150 149 CRYPTO_TFM_REQ_MAY_BACKLOG, 151 crypto_r 150 crypto_req_done, &data->wait); 152 skcipher_request_set_crypt(&data->req, 151 skcipher_request_set_crypt(&data->req, &data->sg, &data->sg, 153 sizeof(data 152 sizeof(data->derived_keys), data->iv); 154 err = crypto_wait_req(crypto_skcipher_ 153 err = crypto_wait_req(crypto_skcipher_encrypt(&data->req), &data->wait); 155 if (err) 154 if (err) 156 goto out; 155 goto out; 157 keyp = data->derived_keys; 156 keyp = data->derived_keys; 158 157 159 /* Set the block cipher key (K_E) */ 158 /* Set the block cipher key (K_E) */ 160 crypto_cipher_clear_flags(tctx->blockc 159 crypto_cipher_clear_flags(tctx->blockcipher, CRYPTO_TFM_REQ_MASK); 161 crypto_cipher_set_flags(tctx->blockcip 160 crypto_cipher_set_flags(tctx->blockcipher, 162 crypto_skciphe 161 crypto_skcipher_get_flags(tfm) & 163 CRYPTO_TFM_REQ 162 CRYPTO_TFM_REQ_MASK); 164 err = crypto_cipher_setkey(tctx->block 163 err = crypto_cipher_setkey(tctx->blockcipher, keyp, 165 BLOCKCIPHER 164 BLOCKCIPHER_KEY_SIZE); 166 if (err) 165 if (err) 167 goto out; 166 goto out; 168 keyp += BLOCKCIPHER_KEY_SIZE; 167 keyp += BLOCKCIPHER_KEY_SIZE; 169 168 170 /* Set the hash key (K_H) */ 169 /* Set the hash key (K_H) */ 171 poly1305_core_setkey(&tctx->header_has 170 poly1305_core_setkey(&tctx->header_hash_key, keyp); 172 keyp += POLY1305_BLOCK_SIZE; 171 keyp += POLY1305_BLOCK_SIZE; 173 172 174 crypto_shash_clear_flags(tctx->hash, C 173 crypto_shash_clear_flags(tctx->hash, CRYPTO_TFM_REQ_MASK); 175 crypto_shash_set_flags(tctx->hash, cry 174 crypto_shash_set_flags(tctx->hash, crypto_skcipher_get_flags(tfm) & 176 CRY 175 CRYPTO_TFM_REQ_MASK); 177 err = crypto_shash_setkey(tctx->hash, 176 err = crypto_shash_setkey(tctx->hash, keyp, NHPOLY1305_KEY_SIZE); 178 keyp += NHPOLY1305_KEY_SIZE; 177 keyp += NHPOLY1305_KEY_SIZE; 179 WARN_ON(keyp != &data->derived_keys[AR 178 WARN_ON(keyp != &data->derived_keys[ARRAY_SIZE(data->derived_keys)]); 180 out: 179 out: 181 kfree_sensitive(data); 180 kfree_sensitive(data); 182 return err; 181 return err; 183 } 182 } 184 183 185 /* Addition in Z/(2^{128}Z) */ 184 /* Addition in Z/(2^{128}Z) */ 186 static inline void le128_add(le128 *r, const l 185 static inline void le128_add(le128 *r, const le128 *v1, const le128 *v2) 187 { 186 { 188 u64 x = le64_to_cpu(v1->b); 187 u64 x = le64_to_cpu(v1->b); 189 u64 y = le64_to_cpu(v2->b); 188 u64 y = le64_to_cpu(v2->b); 190 189 191 r->b = cpu_to_le64(x + y); 190 r->b = cpu_to_le64(x + y); 192 r->a = cpu_to_le64(le64_to_cpu(v1->a) 191 r->a = cpu_to_le64(le64_to_cpu(v1->a) + le64_to_cpu(v2->a) + 193 (x + y < x)); 192 (x + y < x)); 194 } 193 } 195 194 196 /* Subtraction in Z/(2^{128}Z) */ 195 /* Subtraction in Z/(2^{128}Z) */ 197 static inline void le128_sub(le128 *r, const l 196 static inline void le128_sub(le128 *r, const le128 *v1, const le128 *v2) 198 { 197 { 199 u64 x = le64_to_cpu(v1->b); 198 u64 x = le64_to_cpu(v1->b); 200 u64 y = le64_to_cpu(v2->b); 199 u64 y = le64_to_cpu(v2->b); 201 200 202 r->b = cpu_to_le64(x - y); 201 r->b = cpu_to_le64(x - y); 203 r->a = cpu_to_le64(le64_to_cpu(v1->a) 202 r->a = cpu_to_le64(le64_to_cpu(v1->a) - le64_to_cpu(v2->a) - 204 (x - y > x)); 203 (x - y > x)); 205 } 204 } 206 205 207 /* 206 /* 208 * Apply the Poly1305 ε-∆U hash function to 207 * Apply the Poly1305 ε-∆U hash function to (bulk length, tweak) and save the 209 * result to rctx->header_hash. This is the c 208 * result to rctx->header_hash. This is the calculation 210 * 209 * 211 * H_T ← Poly1305_{K_T}(bin_{128}(|L|) 210 * H_T ← Poly1305_{K_T}(bin_{128}(|L|) || T) 212 * 211 * 213 * from the procedure in section 6.4 of the Ad 212 * from the procedure in section 6.4 of the Adiantum paper. The resulting value 214 * is reused in both the first and second hash 213 * is reused in both the first and second hash steps. Specifically, it's added 215 * to the result of an independently keyed ε- 214 * to the result of an independently keyed ε-∆U hash function (for equal length 216 * inputs only) taken over the left-hand part 215 * inputs only) taken over the left-hand part (the "bulk") of the message, to 217 * give the overall Adiantum hash of the (twea 216 * give the overall Adiantum hash of the (tweak, left-hand part) pair. 218 */ 217 */ 219 static void adiantum_hash_header(struct skciph 218 static void adiantum_hash_header(struct skcipher_request *req) 220 { 219 { 221 struct crypto_skcipher *tfm = crypto_s 220 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); 222 const struct adiantum_tfm_ctx *tctx = 221 const struct adiantum_tfm_ctx *tctx = crypto_skcipher_ctx(tfm); 223 struct adiantum_request_ctx *rctx = sk 222 struct adiantum_request_ctx *rctx = skcipher_request_ctx(req); 224 const unsigned int bulk_len = req->cry 223 const unsigned int bulk_len = req->cryptlen - BLOCKCIPHER_BLOCK_SIZE; 225 struct { 224 struct { 226 __le64 message_bits; 225 __le64 message_bits; 227 __le64 padding; 226 __le64 padding; 228 } header = { 227 } header = { 229 .message_bits = cpu_to_le64((u 228 .message_bits = cpu_to_le64((u64)bulk_len * 8) 230 }; 229 }; 231 struct poly1305_state state; 230 struct poly1305_state state; 232 231 233 poly1305_core_init(&state); 232 poly1305_core_init(&state); 234 233 235 BUILD_BUG_ON(sizeof(header) % POLY1305 234 BUILD_BUG_ON(sizeof(header) % POLY1305_BLOCK_SIZE != 0); 236 poly1305_core_blocks(&state, &tctx->he 235 poly1305_core_blocks(&state, &tctx->header_hash_key, 237 &header, sizeof(h 236 &header, sizeof(header) / POLY1305_BLOCK_SIZE, 1); 238 237 239 BUILD_BUG_ON(TWEAK_SIZE % POLY1305_BLO 238 BUILD_BUG_ON(TWEAK_SIZE % POLY1305_BLOCK_SIZE != 0); 240 poly1305_core_blocks(&state, &tctx->he 239 poly1305_core_blocks(&state, &tctx->header_hash_key, req->iv, 241 TWEAK_SIZE / POLY 240 TWEAK_SIZE / POLY1305_BLOCK_SIZE, 1); 242 241 243 poly1305_core_emit(&state, NULL, &rctx 242 poly1305_core_emit(&state, NULL, &rctx->header_hash); 244 } 243 } 245 244 246 /* Hash the left-hand part (the "bulk") of the 245 /* Hash the left-hand part (the "bulk") of the message using NHPoly1305 */ 247 static int adiantum_hash_message(struct skciph 246 static int adiantum_hash_message(struct skcipher_request *req, 248 struct scatte !! 247 struct scatterlist *sgl, le128 *digest) 249 le128 *digest << 250 { 248 { >> 249 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); >> 250 const struct adiantum_tfm_ctx *tctx = crypto_skcipher_ctx(tfm); 251 struct adiantum_request_ctx *rctx = sk 251 struct adiantum_request_ctx *rctx = skcipher_request_ctx(req); 252 const unsigned int bulk_len = req->cry 252 const unsigned int bulk_len = req->cryptlen - BLOCKCIPHER_BLOCK_SIZE; 253 struct shash_desc *hash_desc = &rctx-> 253 struct shash_desc *hash_desc = &rctx->u.hash_desc; 254 struct sg_mapping_iter miter; 254 struct sg_mapping_iter miter; 255 unsigned int i, n; 255 unsigned int i, n; 256 int err; 256 int err; 257 257 >> 258 hash_desc->tfm = tctx->hash; >> 259 258 err = crypto_shash_init(hash_desc); 260 err = crypto_shash_init(hash_desc); 259 if (err) 261 if (err) 260 return err; 262 return err; 261 263 262 sg_miter_start(&miter, sgl, nents, SG_ !! 264 sg_miter_start(&miter, sgl, sg_nents(sgl), >> 265 SG_MITER_FROM_SG | SG_MITER_ATOMIC); 263 for (i = 0; i < bulk_len; i += n) { 266 for (i = 0; i < bulk_len; i += n) { 264 sg_miter_next(&miter); 267 sg_miter_next(&miter); 265 n = min_t(unsigned int, miter. 268 n = min_t(unsigned int, miter.length, bulk_len - i); 266 err = crypto_shash_update(hash 269 err = crypto_shash_update(hash_desc, miter.addr, n); 267 if (err) 270 if (err) 268 break; 271 break; 269 } 272 } 270 sg_miter_stop(&miter); 273 sg_miter_stop(&miter); 271 if (err) 274 if (err) 272 return err; 275 return err; 273 276 274 return crypto_shash_final(hash_desc, ( 277 return crypto_shash_final(hash_desc, (u8 *)digest); 275 } 278 } 276 279 277 /* Continue Adiantum encryption/decryption aft 280 /* Continue Adiantum encryption/decryption after the stream cipher step */ 278 static int adiantum_finish(struct skcipher_req 281 static int adiantum_finish(struct skcipher_request *req) 279 { 282 { 280 struct crypto_skcipher *tfm = crypto_s 283 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); 281 const struct adiantum_tfm_ctx *tctx = 284 const struct adiantum_tfm_ctx *tctx = crypto_skcipher_ctx(tfm); 282 struct adiantum_request_ctx *rctx = sk 285 struct adiantum_request_ctx *rctx = skcipher_request_ctx(req); 283 const unsigned int bulk_len = req->cry 286 const unsigned int bulk_len = req->cryptlen - BLOCKCIPHER_BLOCK_SIZE; 284 struct scatterlist *dst = req->dst; << 285 const unsigned int dst_nents = sg_nent << 286 le128 digest; 287 le128 digest; 287 int err; 288 int err; 288 289 289 /* If decrypting, decrypt C_M with the 290 /* If decrypting, decrypt C_M with the block cipher to get P_M */ 290 if (!rctx->enc) 291 if (!rctx->enc) 291 crypto_cipher_decrypt_one(tctx 292 crypto_cipher_decrypt_one(tctx->blockcipher, rctx->rbuf.bytes, 292 rctx 293 rctx->rbuf.bytes); 293 294 294 /* 295 /* 295 * Second hash step 296 * Second hash step 296 * enc: C_R = C_M - H_{K_H}(T, C_ 297 * enc: C_R = C_M - H_{K_H}(T, C_L) 297 * dec: P_R = P_M - H_{K_H}(T, P_ 298 * dec: P_R = P_M - H_{K_H}(T, P_L) 298 */ 299 */ 299 rctx->u.hash_desc.tfm = tctx->hash; !! 300 err = adiantum_hash_message(req, req->dst, &digest); 300 le128_sub(&rctx->rbuf.bignum, &rctx->r !! 301 if (err) 301 if (dst_nents == 1 && dst->offset + re !! 302 return err; 302 /* Fast path for single-page d !! 303 le128_add(&digest, &digest, &rctx->header_hash); 303 struct page *page = sg_page(ds !! 304 le128_sub(&rctx->rbuf.bignum, &rctx->rbuf.bignum, &digest); 304 void *virt = kmap_local_page(p !! 305 scatterwalk_map_and_copy(&rctx->rbuf.bignum, req->dst, 305 !! 306 bulk_len, BLOCKCIPHER_BLOCK_SIZE, 1); 306 err = crypto_shash_digest(&rct << 307 (u8 << 308 if (err) { << 309 kunmap_local(virt); << 310 return err; << 311 } << 312 le128_sub(&rctx->rbuf.bignum, << 313 memcpy(virt + bulk_len, &rctx- << 314 flush_dcache_page(page); << 315 kunmap_local(virt); << 316 } else { << 317 /* Slow path that works for an << 318 err = adiantum_hash_message(re << 319 if (err) << 320 return err; << 321 le128_sub(&rctx->rbuf.bignum, << 322 scatterwalk_map_and_copy(&rctx << 323 bulk_ << 324 } << 325 return 0; 307 return 0; 326 } 308 } 327 309 328 static void adiantum_streamcipher_done(void *d !! 310 static void adiantum_streamcipher_done(struct crypto_async_request *areq, >> 311 int err) 329 { 312 { 330 struct skcipher_request *req = data; !! 313 struct skcipher_request *req = areq->data; 331 314 332 if (!err) 315 if (!err) 333 err = adiantum_finish(req); 316 err = adiantum_finish(req); 334 317 335 skcipher_request_complete(req, err); 318 skcipher_request_complete(req, err); 336 } 319 } 337 320 338 static int adiantum_crypt(struct skcipher_requ 321 static int adiantum_crypt(struct skcipher_request *req, bool enc) 339 { 322 { 340 struct crypto_skcipher *tfm = crypto_s 323 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); 341 const struct adiantum_tfm_ctx *tctx = 324 const struct adiantum_tfm_ctx *tctx = crypto_skcipher_ctx(tfm); 342 struct adiantum_request_ctx *rctx = sk 325 struct adiantum_request_ctx *rctx = skcipher_request_ctx(req); 343 const unsigned int bulk_len = req->cry 326 const unsigned int bulk_len = req->cryptlen - BLOCKCIPHER_BLOCK_SIZE; 344 struct scatterlist *src = req->src; << 345 const unsigned int src_nents = sg_nent << 346 unsigned int stream_len; 327 unsigned int stream_len; 347 le128 digest; 328 le128 digest; 348 int err; 329 int err; 349 330 350 if (req->cryptlen < BLOCKCIPHER_BLOCK_ 331 if (req->cryptlen < BLOCKCIPHER_BLOCK_SIZE) 351 return -EINVAL; 332 return -EINVAL; 352 333 353 rctx->enc = enc; 334 rctx->enc = enc; 354 335 355 /* 336 /* 356 * First hash step 337 * First hash step 357 * enc: P_M = P_R + H_{K_H}(T, P_ 338 * enc: P_M = P_R + H_{K_H}(T, P_L) 358 * dec: C_M = C_R + H_{K_H}(T, C_ 339 * dec: C_M = C_R + H_{K_H}(T, C_L) 359 */ 340 */ 360 adiantum_hash_header(req); 341 adiantum_hash_header(req); 361 rctx->u.hash_desc.tfm = tctx->hash; !! 342 err = adiantum_hash_message(req, req->src, &digest); 362 if (src_nents == 1 && src->offset + re << 363 /* Fast path for single-page s << 364 void *virt = kmap_local_page(s << 365 << 366 err = crypto_shash_digest(&rct << 367 (u8 << 368 memcpy(&rctx->rbuf.bignum, vir << 369 kunmap_local(virt); << 370 } else { << 371 /* Slow path that works for an << 372 err = adiantum_hash_message(re << 373 scatterwalk_map_and_copy(&rctx << 374 bulk_ << 375 } << 376 if (err) 343 if (err) 377 return err; 344 return err; 378 le128_add(&rctx->rbuf.bignum, &rctx->r !! 345 le128_add(&digest, &digest, &rctx->header_hash); >> 346 scatterwalk_map_and_copy(&rctx->rbuf.bignum, req->src, >> 347 bulk_len, BLOCKCIPHER_BLOCK_SIZE, 0); 379 le128_add(&rctx->rbuf.bignum, &rctx->r 348 le128_add(&rctx->rbuf.bignum, &rctx->rbuf.bignum, &digest); 380 349 381 /* If encrypting, encrypt P_M with the 350 /* If encrypting, encrypt P_M with the block cipher to get C_M */ 382 if (enc) 351 if (enc) 383 crypto_cipher_encrypt_one(tctx 352 crypto_cipher_encrypt_one(tctx->blockcipher, rctx->rbuf.bytes, 384 rctx 353 rctx->rbuf.bytes); 385 354 386 /* Initialize the rest of the XChaCha 355 /* Initialize the rest of the XChaCha IV (first part is C_M) */ 387 BUILD_BUG_ON(BLOCKCIPHER_BLOCK_SIZE != 356 BUILD_BUG_ON(BLOCKCIPHER_BLOCK_SIZE != 16); 388 BUILD_BUG_ON(XCHACHA_IV_SIZE != 32); 357 BUILD_BUG_ON(XCHACHA_IV_SIZE != 32); /* nonce || stream position */ 389 rctx->rbuf.words[4] = cpu_to_le32(1); 358 rctx->rbuf.words[4] = cpu_to_le32(1); 390 rctx->rbuf.words[5] = 0; 359 rctx->rbuf.words[5] = 0; 391 rctx->rbuf.words[6] = 0; 360 rctx->rbuf.words[6] = 0; 392 rctx->rbuf.words[7] = 0; 361 rctx->rbuf.words[7] = 0; 393 362 394 /* 363 /* 395 * XChaCha needs to be done on all the 364 * XChaCha needs to be done on all the data except the last 16 bytes; 396 * for disk encryption that usually me 365 * for disk encryption that usually means 4080 or 496 bytes. But ChaCha 397 * implementations tend to be most eff 366 * implementations tend to be most efficient when passed a whole number 398 * of 64-byte ChaCha blocks, or someti 367 * of 64-byte ChaCha blocks, or sometimes even a multiple of 256 bytes. 399 * And here it doesn't matter whether 368 * And here it doesn't matter whether the last 16 bytes are written to, 400 * as the second hash step will overwr 369 * as the second hash step will overwrite them. Thus, round the XChaCha 401 * length up to the next 64-byte bound 370 * length up to the next 64-byte boundary if possible. 402 */ 371 */ 403 stream_len = bulk_len; 372 stream_len = bulk_len; 404 if (round_up(stream_len, CHACHA_BLOCK_ 373 if (round_up(stream_len, CHACHA_BLOCK_SIZE) <= req->cryptlen) 405 stream_len = round_up(stream_l 374 stream_len = round_up(stream_len, CHACHA_BLOCK_SIZE); 406 375 407 skcipher_request_set_tfm(&rctx->u.stre 376 skcipher_request_set_tfm(&rctx->u.streamcipher_req, tctx->streamcipher); 408 skcipher_request_set_crypt(&rctx->u.st 377 skcipher_request_set_crypt(&rctx->u.streamcipher_req, req->src, 409 req->dst, s 378 req->dst, stream_len, &rctx->rbuf); 410 skcipher_request_set_callback(&rctx->u 379 skcipher_request_set_callback(&rctx->u.streamcipher_req, 411 req->bas 380 req->base.flags, 412 adiantum 381 adiantum_streamcipher_done, req); 413 return crypto_skcipher_encrypt(&rctx-> 382 return crypto_skcipher_encrypt(&rctx->u.streamcipher_req) ?: 414 adiantum_finish(req); 383 adiantum_finish(req); 415 } 384 } 416 385 417 static int adiantum_encrypt(struct skcipher_re 386 static int adiantum_encrypt(struct skcipher_request *req) 418 { 387 { 419 return adiantum_crypt(req, true); 388 return adiantum_crypt(req, true); 420 } 389 } 421 390 422 static int adiantum_decrypt(struct skcipher_re 391 static int adiantum_decrypt(struct skcipher_request *req) 423 { 392 { 424 return adiantum_crypt(req, false); 393 return adiantum_crypt(req, false); 425 } 394 } 426 395 427 static int adiantum_init_tfm(struct crypto_skc 396 static int adiantum_init_tfm(struct crypto_skcipher *tfm) 428 { 397 { 429 struct skcipher_instance *inst = skcip 398 struct skcipher_instance *inst = skcipher_alg_instance(tfm); 430 struct adiantum_instance_ctx *ictx = s 399 struct adiantum_instance_ctx *ictx = skcipher_instance_ctx(inst); 431 struct adiantum_tfm_ctx *tctx = crypto 400 struct adiantum_tfm_ctx *tctx = crypto_skcipher_ctx(tfm); 432 struct crypto_skcipher *streamcipher; 401 struct crypto_skcipher *streamcipher; 433 struct crypto_cipher *blockcipher; 402 struct crypto_cipher *blockcipher; 434 struct crypto_shash *hash; 403 struct crypto_shash *hash; 435 unsigned int subreq_size; 404 unsigned int subreq_size; 436 int err; 405 int err; 437 406 438 streamcipher = crypto_spawn_skcipher(& 407 streamcipher = crypto_spawn_skcipher(&ictx->streamcipher_spawn); 439 if (IS_ERR(streamcipher)) 408 if (IS_ERR(streamcipher)) 440 return PTR_ERR(streamcipher); 409 return PTR_ERR(streamcipher); 441 410 442 blockcipher = crypto_spawn_cipher(&ict 411 blockcipher = crypto_spawn_cipher(&ictx->blockcipher_spawn); 443 if (IS_ERR(blockcipher)) { 412 if (IS_ERR(blockcipher)) { 444 err = PTR_ERR(blockcipher); 413 err = PTR_ERR(blockcipher); 445 goto err_free_streamcipher; 414 goto err_free_streamcipher; 446 } 415 } 447 416 448 hash = crypto_spawn_shash(&ictx->hash_ 417 hash = crypto_spawn_shash(&ictx->hash_spawn); 449 if (IS_ERR(hash)) { 418 if (IS_ERR(hash)) { 450 err = PTR_ERR(hash); 419 err = PTR_ERR(hash); 451 goto err_free_blockcipher; 420 goto err_free_blockcipher; 452 } 421 } 453 422 454 tctx->streamcipher = streamcipher; 423 tctx->streamcipher = streamcipher; 455 tctx->blockcipher = blockcipher; 424 tctx->blockcipher = blockcipher; 456 tctx->hash = hash; 425 tctx->hash = hash; 457 426 458 BUILD_BUG_ON(offsetofend(struct adiant 427 BUILD_BUG_ON(offsetofend(struct adiantum_request_ctx, u) != 459 sizeof(struct adiantum_re 428 sizeof(struct adiantum_request_ctx)); 460 subreq_size = max(sizeof_field(struct 429 subreq_size = max(sizeof_field(struct adiantum_request_ctx, 461 u.hash_ 430 u.hash_desc) + 462 crypto_shash_descsiz 431 crypto_shash_descsize(hash), 463 sizeof_field(struct 432 sizeof_field(struct adiantum_request_ctx, 464 u.strea 433 u.streamcipher_req) + 465 crypto_skcipher_reqs 434 crypto_skcipher_reqsize(streamcipher)); 466 435 467 crypto_skcipher_set_reqsize(tfm, 436 crypto_skcipher_set_reqsize(tfm, 468 offsetof(s 437 offsetof(struct adiantum_request_ctx, u) + 469 subreq_siz 438 subreq_size); 470 return 0; 439 return 0; 471 440 472 err_free_blockcipher: 441 err_free_blockcipher: 473 crypto_free_cipher(blockcipher); 442 crypto_free_cipher(blockcipher); 474 err_free_streamcipher: 443 err_free_streamcipher: 475 crypto_free_skcipher(streamcipher); 444 crypto_free_skcipher(streamcipher); 476 return err; 445 return err; 477 } 446 } 478 447 479 static void adiantum_exit_tfm(struct crypto_sk 448 static void adiantum_exit_tfm(struct crypto_skcipher *tfm) 480 { 449 { 481 struct adiantum_tfm_ctx *tctx = crypto 450 struct adiantum_tfm_ctx *tctx = crypto_skcipher_ctx(tfm); 482 451 483 crypto_free_skcipher(tctx->streamciphe 452 crypto_free_skcipher(tctx->streamcipher); 484 crypto_free_cipher(tctx->blockcipher); 453 crypto_free_cipher(tctx->blockcipher); 485 crypto_free_shash(tctx->hash); 454 crypto_free_shash(tctx->hash); 486 } 455 } 487 456 488 static void adiantum_free_instance(struct skci 457 static void adiantum_free_instance(struct skcipher_instance *inst) 489 { 458 { 490 struct adiantum_instance_ctx *ictx = s 459 struct adiantum_instance_ctx *ictx = skcipher_instance_ctx(inst); 491 460 492 crypto_drop_skcipher(&ictx->streamciph 461 crypto_drop_skcipher(&ictx->streamcipher_spawn); 493 crypto_drop_cipher(&ictx->blockcipher_ 462 crypto_drop_cipher(&ictx->blockcipher_spawn); 494 crypto_drop_shash(&ictx->hash_spawn); 463 crypto_drop_shash(&ictx->hash_spawn); 495 kfree(inst); 464 kfree(inst); 496 } 465 } 497 466 498 /* 467 /* 499 * Check for a supported set of inner algorith 468 * Check for a supported set of inner algorithms. 500 * See the comment at the beginning of this fi 469 * See the comment at the beginning of this file. 501 */ 470 */ 502 static bool adiantum_supported_algorithms(stru !! 471 static bool adiantum_supported_algorithms(struct skcipher_alg *streamcipher_alg, 503 stru 472 struct crypto_alg *blockcipher_alg, 504 stru 473 struct shash_alg *hash_alg) 505 { 474 { 506 if (strcmp(streamcipher_alg->base.cra_ 475 if (strcmp(streamcipher_alg->base.cra_name, "xchacha12") != 0 && 507 strcmp(streamcipher_alg->base.cra_ 476 strcmp(streamcipher_alg->base.cra_name, "xchacha20") != 0) 508 return false; 477 return false; 509 478 510 if (blockcipher_alg->cra_cipher.cia_mi 479 if (blockcipher_alg->cra_cipher.cia_min_keysize > BLOCKCIPHER_KEY_SIZE || 511 blockcipher_alg->cra_cipher.cia_ma 480 blockcipher_alg->cra_cipher.cia_max_keysize < BLOCKCIPHER_KEY_SIZE) 512 return false; 481 return false; 513 if (blockcipher_alg->cra_blocksize != 482 if (blockcipher_alg->cra_blocksize != BLOCKCIPHER_BLOCK_SIZE) 514 return false; 483 return false; 515 484 516 if (strcmp(hash_alg->base.cra_name, "n 485 if (strcmp(hash_alg->base.cra_name, "nhpoly1305") != 0) 517 return false; 486 return false; 518 487 519 return true; 488 return true; 520 } 489 } 521 490 522 static int adiantum_create(struct crypto_templ 491 static int adiantum_create(struct crypto_template *tmpl, struct rtattr **tb) 523 { 492 { 524 u32 mask; 493 u32 mask; 525 const char *nhpoly1305_name; 494 const char *nhpoly1305_name; 526 struct skcipher_instance *inst; 495 struct skcipher_instance *inst; 527 struct adiantum_instance_ctx *ictx; 496 struct adiantum_instance_ctx *ictx; 528 struct skcipher_alg_common *streamciph !! 497 struct skcipher_alg *streamcipher_alg; 529 struct crypto_alg *blockcipher_alg; 498 struct crypto_alg *blockcipher_alg; 530 struct shash_alg *hash_alg; 499 struct shash_alg *hash_alg; 531 int err; 500 int err; 532 501 533 err = crypto_check_attr_type(tb, CRYPT 502 err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_SKCIPHER, &mask); 534 if (err) 503 if (err) 535 return err; 504 return err; 536 505 537 inst = kzalloc(sizeof(*inst) + sizeof( 506 inst = kzalloc(sizeof(*inst) + sizeof(*ictx), GFP_KERNEL); 538 if (!inst) 507 if (!inst) 539 return -ENOMEM; 508 return -ENOMEM; 540 ictx = skcipher_instance_ctx(inst); 509 ictx = skcipher_instance_ctx(inst); 541 510 542 /* Stream cipher, e.g. "xchacha12" */ 511 /* Stream cipher, e.g. "xchacha12" */ 543 err = crypto_grab_skcipher(&ictx->stre 512 err = crypto_grab_skcipher(&ictx->streamcipher_spawn, 544 skcipher_cr 513 skcipher_crypto_instance(inst), 545 crypto_attr 514 crypto_attr_alg_name(tb[1]), 0, mask); 546 if (err) 515 if (err) 547 goto err_free_inst; 516 goto err_free_inst; 548 streamcipher_alg = crypto_spawn_skciph !! 517 streamcipher_alg = crypto_spawn_skcipher_alg(&ictx->streamcipher_spawn); 549 518 550 /* Block cipher, e.g. "aes" */ 519 /* Block cipher, e.g. "aes" */ 551 err = crypto_grab_cipher(&ictx->blockc 520 err = crypto_grab_cipher(&ictx->blockcipher_spawn, 552 skcipher_cryp 521 skcipher_crypto_instance(inst), 553 crypto_attr_a 522 crypto_attr_alg_name(tb[2]), 0, mask); 554 if (err) 523 if (err) 555 goto err_free_inst; 524 goto err_free_inst; 556 blockcipher_alg = crypto_spawn_cipher_ 525 blockcipher_alg = crypto_spawn_cipher_alg(&ictx->blockcipher_spawn); 557 526 558 /* NHPoly1305 ε-∆U hash function */ 527 /* NHPoly1305 ε-∆U hash function */ 559 nhpoly1305_name = crypto_attr_alg_name 528 nhpoly1305_name = crypto_attr_alg_name(tb[3]); 560 if (nhpoly1305_name == ERR_PTR(-ENOENT 529 if (nhpoly1305_name == ERR_PTR(-ENOENT)) 561 nhpoly1305_name = "nhpoly1305" 530 nhpoly1305_name = "nhpoly1305"; 562 err = crypto_grab_shash(&ictx->hash_sp 531 err = crypto_grab_shash(&ictx->hash_spawn, 563 skcipher_crypt 532 skcipher_crypto_instance(inst), 564 nhpoly1305_nam 533 nhpoly1305_name, 0, mask); 565 if (err) 534 if (err) 566 goto err_free_inst; 535 goto err_free_inst; 567 hash_alg = crypto_spawn_shash_alg(&ict 536 hash_alg = crypto_spawn_shash_alg(&ictx->hash_spawn); 568 537 569 /* Check the set of algorithms */ 538 /* Check the set of algorithms */ 570 if (!adiantum_supported_algorithms(str 539 if (!adiantum_supported_algorithms(streamcipher_alg, blockcipher_alg, 571 has 540 hash_alg)) { 572 pr_warn("Unsupported Adiantum 541 pr_warn("Unsupported Adiantum instantiation: (%s,%s,%s)\n", 573 streamcipher_alg->base 542 streamcipher_alg->base.cra_name, 574 blockcipher_alg->cra_n 543 blockcipher_alg->cra_name, hash_alg->base.cra_name); 575 err = -EINVAL; 544 err = -EINVAL; 576 goto err_free_inst; 545 goto err_free_inst; 577 } 546 } 578 547 579 /* Instance fields */ 548 /* Instance fields */ 580 549 581 err = -ENAMETOOLONG; 550 err = -ENAMETOOLONG; 582 if (snprintf(inst->alg.base.cra_name, 551 if (snprintf(inst->alg.base.cra_name, CRYPTO_MAX_ALG_NAME, 583 "adiantum(%s,%s)", stream 552 "adiantum(%s,%s)", streamcipher_alg->base.cra_name, 584 blockcipher_alg->cra_name 553 blockcipher_alg->cra_name) >= CRYPTO_MAX_ALG_NAME) 585 goto err_free_inst; 554 goto err_free_inst; 586 if (snprintf(inst->alg.base.cra_driver 555 if (snprintf(inst->alg.base.cra_driver_name, CRYPTO_MAX_ALG_NAME, 587 "adiantum(%s,%s,%s)", 556 "adiantum(%s,%s,%s)", 588 streamcipher_alg->base.cr 557 streamcipher_alg->base.cra_driver_name, 589 blockcipher_alg->cra_driv 558 blockcipher_alg->cra_driver_name, 590 hash_alg->base.cra_driver 559 hash_alg->base.cra_driver_name) >= CRYPTO_MAX_ALG_NAME) 591 goto err_free_inst; 560 goto err_free_inst; 592 561 593 inst->alg.base.cra_blocksize = BLOCKCI 562 inst->alg.base.cra_blocksize = BLOCKCIPHER_BLOCK_SIZE; 594 inst->alg.base.cra_ctxsize = sizeof(st 563 inst->alg.base.cra_ctxsize = sizeof(struct adiantum_tfm_ctx); 595 inst->alg.base.cra_alignmask = streamc !! 564 inst->alg.base.cra_alignmask = streamcipher_alg->base.cra_alignmask | >> 565 hash_alg->base.cra_alignmask; 596 /* 566 /* 597 * The block cipher is only invoked on 567 * The block cipher is only invoked once per message, so for long 598 * messages (e.g. sectors for disk enc 568 * messages (e.g. sectors for disk encryption) its performance doesn't 599 * matter as much as that of the strea 569 * matter as much as that of the stream cipher and hash function. Thus, 600 * weigh the block cipher's ->cra_prio 570 * weigh the block cipher's ->cra_priority less. 601 */ 571 */ 602 inst->alg.base.cra_priority = (4 * str 572 inst->alg.base.cra_priority = (4 * streamcipher_alg->base.cra_priority + 603 2 * has 573 2 * hash_alg->base.cra_priority + 604 blockci 574 blockcipher_alg->cra_priority) / 7; 605 575 606 inst->alg.setkey = adiantum_setkey; 576 inst->alg.setkey = adiantum_setkey; 607 inst->alg.encrypt = adiantum_encrypt; 577 inst->alg.encrypt = adiantum_encrypt; 608 inst->alg.decrypt = adiantum_decrypt; 578 inst->alg.decrypt = adiantum_decrypt; 609 inst->alg.init = adiantum_init_tfm; 579 inst->alg.init = adiantum_init_tfm; 610 inst->alg.exit = adiantum_exit_tfm; 580 inst->alg.exit = adiantum_exit_tfm; 611 inst->alg.min_keysize = streamcipher_a !! 581 inst->alg.min_keysize = crypto_skcipher_alg_min_keysize(streamcipher_alg); 612 inst->alg.max_keysize = streamcipher_a !! 582 inst->alg.max_keysize = crypto_skcipher_alg_max_keysize(streamcipher_alg); 613 inst->alg.ivsize = TWEAK_SIZE; 583 inst->alg.ivsize = TWEAK_SIZE; 614 584 615 inst->free = adiantum_free_instance; 585 inst->free = adiantum_free_instance; 616 586 617 err = skcipher_register_instance(tmpl, 587 err = skcipher_register_instance(tmpl, inst); 618 if (err) { 588 if (err) { 619 err_free_inst: 589 err_free_inst: 620 adiantum_free_instance(inst); 590 adiantum_free_instance(inst); 621 } 591 } 622 return err; 592 return err; 623 } 593 } 624 594 625 /* adiantum(streamcipher_name, blockcipher_nam 595 /* adiantum(streamcipher_name, blockcipher_name [, nhpoly1305_name]) */ 626 static struct crypto_template adiantum_tmpl = 596 static struct crypto_template adiantum_tmpl = { 627 .name = "adiantum", 597 .name = "adiantum", 628 .create = adiantum_create, 598 .create = adiantum_create, 629 .module = THIS_MODULE, 599 .module = THIS_MODULE, 630 }; 600 }; 631 601 632 static int __init adiantum_module_init(void) 602 static int __init adiantum_module_init(void) 633 { 603 { 634 return crypto_register_template(&adian 604 return crypto_register_template(&adiantum_tmpl); 635 } 605 } 636 606 637 static void __exit adiantum_module_exit(void) 607 static void __exit adiantum_module_exit(void) 638 { 608 { 639 crypto_unregister_template(&adiantum_t 609 crypto_unregister_template(&adiantum_tmpl); 640 } 610 } 641 611 642 subsys_initcall(adiantum_module_init); 612 subsys_initcall(adiantum_module_init); 643 module_exit(adiantum_module_exit); 613 module_exit(adiantum_module_exit); 644 614 645 MODULE_DESCRIPTION("Adiantum length-preserving 615 MODULE_DESCRIPTION("Adiantum length-preserving encryption mode"); 646 MODULE_LICENSE("GPL v2"); 616 MODULE_LICENSE("GPL v2"); 647 MODULE_AUTHOR("Eric Biggers <ebiggers@google.c 617 MODULE_AUTHOR("Eric Biggers <ebiggers@google.com>"); 648 MODULE_ALIAS_CRYPTO("adiantum"); 618 MODULE_ALIAS_CRYPTO("adiantum"); 649 MODULE_IMPORT_NS(CRYPTO_INTERNAL); << 650 619
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.