1 // SPDX-License-Identifier: GPL-2.0-only << 2 /* 1 /* 3 * Scalar fixed time AES core transform 2 * Scalar fixed time AES core transform 4 * 3 * 5 * Copyright (C) 2017 Linaro Ltd <ard.biesheuv 4 * Copyright (C) 2017 Linaro Ltd <ard.biesheuvel@linaro.org> >> 5 * >> 6 * This program is free software; you can redistribute it and/or modify >> 7 * it under the terms of the GNU General Public License version 2 as >> 8 * published by the Free Software Foundation. 6 */ 9 */ 7 10 8 #include <crypto/aes.h> 11 #include <crypto/aes.h> 9 #include <crypto/algapi.h> !! 12 #include <linux/crypto.h> 10 #include <linux/module.h> 13 #include <linux/module.h> >> 14 #include <asm/unaligned.h> 11 15 12 static int aesti_set_key(struct crypto_tfm *tf !! 16 /* 13 unsigned int key_len) !! 17 * Emit the sbox as volatile const to prevent the compiler from doing >> 18 * constant folding on sbox references involving fixed indexes. >> 19 */ >> 20 static volatile const u8 __cacheline_aligned __aesti_sbox[] = { >> 21 0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, >> 22 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76, >> 23 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, >> 24 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, >> 25 0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, >> 26 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15, >> 27 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, >> 28 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75, >> 29 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, >> 30 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84, >> 31 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, >> 32 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf, >> 33 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, >> 34 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8, >> 35 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, >> 36 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, >> 37 0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, >> 38 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73, >> 39 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, >> 40 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb, >> 41 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, >> 42 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79, >> 43 0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, >> 44 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08, >> 45 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, >> 46 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a, >> 47 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, >> 48 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e, >> 49 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, >> 50 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf, >> 51 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, >> 52 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16, >> 53 }; >> 54 >> 55 static volatile const u8 __cacheline_aligned __aesti_inv_sbox[] = { >> 56 0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, >> 57 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb, >> 58 0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, >> 59 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb, >> 60 0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, >> 61 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e, >> 62 0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, >> 63 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25, >> 64 0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, >> 65 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92, >> 66 0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, >> 67 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84, >> 68 0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, >> 69 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06, >> 70 0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, >> 71 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b, >> 72 0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, >> 73 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73, >> 74 0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, >> 75 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e, >> 76 0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, >> 77 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b, >> 78 0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, >> 79 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4, >> 80 0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, >> 81 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f, >> 82 0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, >> 83 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef, >> 84 0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, >> 85 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61, >> 86 0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, >> 87 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d, >> 88 }; >> 89 >> 90 static u32 mul_by_x(u32 w) 14 { 91 { 15 struct crypto_aes_ctx *ctx = crypto_tf !! 92 u32 x = w & 0x7f7f7f7f; >> 93 u32 y = w & 0x80808080; 16 94 17 return aes_expandkey(ctx, in_key, key_ !! 95 /* multiply by polynomial 'x' (0b10) in GF(2^8) */ >> 96 return (x << 1) ^ (y >> 7) * 0x1b; 18 } 97 } 19 98 20 static void aesti_encrypt(struct crypto_tfm *t !! 99 static u32 mul_by_x2(u32 w) 21 { 100 { 22 const struct crypto_aes_ctx *ctx = cry !! 101 u32 x = w & 0x3f3f3f3f; 23 unsigned long flags; !! 102 u32 y = w & 0x80808080; >> 103 u32 z = w & 0x40404040; >> 104 >> 105 /* multiply by polynomial 'x^2' (0b100) in GF(2^8) */ >> 106 return (x << 2) ^ (y >> 7) * 0x36 ^ (z >> 6) * 0x1b; >> 107 } 24 108 >> 109 static u32 mix_columns(u32 x) >> 110 { 25 /* 111 /* 26 * Temporarily disable interrupts to a !! 112 * Perform the following matrix multiplication in GF(2^8) 27 * evicted when the CPU is interrupted !! 113 * >> 114 * | 0x2 0x3 0x1 0x1 | | x[0] | >> 115 * | 0x1 0x2 0x3 0x1 | | x[1] | >> 116 * | 0x1 0x1 0x2 0x3 | x | x[2] | >> 117 * | 0x3 0x1 0x1 0x3 | | x[3] | 28 */ 118 */ 29 local_irq_save(flags); !! 119 u32 y = mul_by_x(x) ^ ror32(x, 16); 30 120 31 aes_encrypt(ctx, out, in); !! 121 return y ^ ror32(x ^ y, 8); >> 122 } 32 123 33 local_irq_restore(flags); !! 124 static u32 inv_mix_columns(u32 x) >> 125 { >> 126 /* >> 127 * Perform the following matrix multiplication in GF(2^8) >> 128 * >> 129 * | 0xe 0xb 0xd 0x9 | | x[0] | >> 130 * | 0x9 0xe 0xb 0xd | | x[1] | >> 131 * | 0xd 0x9 0xe 0xb | x | x[2] | >> 132 * | 0xb 0xd 0x9 0xe | | x[3] | >> 133 * >> 134 * which can conveniently be reduced to >> 135 * >> 136 * | 0x2 0x3 0x1 0x1 | | 0x5 0x0 0x4 0x0 | | x[0] | >> 137 * | 0x1 0x2 0x3 0x1 | | 0x0 0x5 0x0 0x4 | | x[1] | >> 138 * | 0x1 0x1 0x2 0x3 | x | 0x4 0x0 0x5 0x0 | x | x[2] | >> 139 * | 0x3 0x1 0x1 0x2 | | 0x0 0x4 0x0 0x5 | | x[3] | >> 140 */ >> 141 u32 y = mul_by_x2(x); >> 142 >> 143 return mix_columns(x ^ y ^ ror32(y, 16)); 34 } 144 } 35 145 36 static void aesti_decrypt(struct crypto_tfm *t !! 146 static __always_inline u32 subshift(u32 in[], int pos) 37 { 147 { 38 const struct crypto_aes_ctx *ctx = cry !! 148 return (__aesti_sbox[in[pos] & 0xff]) ^ 39 unsigned long flags; !! 149 (__aesti_sbox[(in[(pos + 1) % 4] >> 8) & 0xff] << 8) ^ >> 150 (__aesti_sbox[(in[(pos + 2) % 4] >> 16) & 0xff] << 16) ^ >> 151 (__aesti_sbox[(in[(pos + 3) % 4] >> 24) & 0xff] << 24); >> 152 } >> 153 >> 154 static __always_inline u32 inv_subshift(u32 in[], int pos) >> 155 { >> 156 return (__aesti_inv_sbox[in[pos] & 0xff]) ^ >> 157 (__aesti_inv_sbox[(in[(pos + 3) % 4] >> 8) & 0xff] << 8) ^ >> 158 (__aesti_inv_sbox[(in[(pos + 2) % 4] >> 16) & 0xff] << 16) ^ >> 159 (__aesti_inv_sbox[(in[(pos + 1) % 4] >> 24) & 0xff] << 24); >> 160 } >> 161 >> 162 static u32 subw(u32 in) >> 163 { >> 164 return (__aesti_sbox[in & 0xff]) ^ >> 165 (__aesti_sbox[(in >> 8) & 0xff] << 8) ^ >> 166 (__aesti_sbox[(in >> 16) & 0xff] << 16) ^ >> 167 (__aesti_sbox[(in >> 24) & 0xff] << 24); >> 168 } >> 169 >> 170 static int aesti_expand_key(struct crypto_aes_ctx *ctx, const u8 *in_key, >> 171 unsigned int key_len) >> 172 { >> 173 u32 kwords = key_len / sizeof(u32); >> 174 u32 rc, i, j; >> 175 >> 176 if (key_len != AES_KEYSIZE_128 && >> 177 key_len != AES_KEYSIZE_192 && >> 178 key_len != AES_KEYSIZE_256) >> 179 return -EINVAL; >> 180 >> 181 ctx->key_length = key_len; >> 182 >> 183 for (i = 0; i < kwords; i++) >> 184 ctx->key_enc[i] = get_unaligned_le32(in_key + i * sizeof(u32)); >> 185 >> 186 for (i = 0, rc = 1; i < 10; i++, rc = mul_by_x(rc)) { >> 187 u32 *rki = ctx->key_enc + (i * kwords); >> 188 u32 *rko = rki + kwords; >> 189 >> 190 rko[0] = ror32(subw(rki[kwords - 1]), 8) ^ rc ^ rki[0]; >> 191 rko[1] = rko[0] ^ rki[1]; >> 192 rko[2] = rko[1] ^ rki[2]; >> 193 rko[3] = rko[2] ^ rki[3]; >> 194 >> 195 if (key_len == 24) { >> 196 if (i >= 7) >> 197 break; >> 198 rko[4] = rko[3] ^ rki[4]; >> 199 rko[5] = rko[4] ^ rki[5]; >> 200 } else if (key_len == 32) { >> 201 if (i >= 6) >> 202 break; >> 203 rko[4] = subw(rko[3]) ^ rki[4]; >> 204 rko[5] = rko[4] ^ rki[5]; >> 205 rko[6] = rko[5] ^ rki[6]; >> 206 rko[7] = rko[6] ^ rki[7]; >> 207 } >> 208 } >> 209 >> 210 /* >> 211 * Generate the decryption keys for the Equivalent Inverse Cipher. >> 212 * This involves reversing the order of the round keys, and applying >> 213 * the Inverse Mix Columns transformation to all but the first and >> 214 * the last one. >> 215 */ >> 216 ctx->key_dec[0] = ctx->key_enc[key_len + 24]; >> 217 ctx->key_dec[1] = ctx->key_enc[key_len + 25]; >> 218 ctx->key_dec[2] = ctx->key_enc[key_len + 26]; >> 219 ctx->key_dec[3] = ctx->key_enc[key_len + 27]; >> 220 >> 221 for (i = 4, j = key_len + 20; j > 0; i += 4, j -= 4) { >> 222 ctx->key_dec[i] = inv_mix_columns(ctx->key_enc[j]); >> 223 ctx->key_dec[i + 1] = inv_mix_columns(ctx->key_enc[j + 1]); >> 224 ctx->key_dec[i + 2] = inv_mix_columns(ctx->key_enc[j + 2]); >> 225 ctx->key_dec[i + 3] = inv_mix_columns(ctx->key_enc[j + 3]); >> 226 } >> 227 >> 228 ctx->key_dec[i] = ctx->key_enc[0]; >> 229 ctx->key_dec[i + 1] = ctx->key_enc[1]; >> 230 ctx->key_dec[i + 2] = ctx->key_enc[2]; >> 231 ctx->key_dec[i + 3] = ctx->key_enc[3]; >> 232 >> 233 return 0; >> 234 } >> 235 >> 236 static int aesti_set_key(struct crypto_tfm *tfm, const u8 *in_key, >> 237 unsigned int key_len) >> 238 { >> 239 struct crypto_aes_ctx *ctx = crypto_tfm_ctx(tfm); >> 240 int err; >> 241 >> 242 err = aesti_expand_key(ctx, in_key, key_len); >> 243 if (err) >> 244 return err; 40 245 41 /* 246 /* 42 * Temporarily disable interrupts to a !! 247 * In order to force the compiler to emit data independent Sbox lookups 43 * evicted when the CPU is interrupted !! 248 * at the start of each block, xor the first round key with values at >> 249 * fixed indexes in the Sbox. This will need to be repeated each time >> 250 * the key is used, which will pull the entire Sbox into the D-cache >> 251 * before any data dependent Sbox lookups are performed. 44 */ 252 */ 45 local_irq_save(flags); !! 253 ctx->key_enc[0] ^= __aesti_sbox[ 0] ^ __aesti_sbox[128]; >> 254 ctx->key_enc[1] ^= __aesti_sbox[32] ^ __aesti_sbox[160]; >> 255 ctx->key_enc[2] ^= __aesti_sbox[64] ^ __aesti_sbox[192]; >> 256 ctx->key_enc[3] ^= __aesti_sbox[96] ^ __aesti_sbox[224]; >> 257 >> 258 ctx->key_dec[0] ^= __aesti_inv_sbox[ 0] ^ __aesti_inv_sbox[128]; >> 259 ctx->key_dec[1] ^= __aesti_inv_sbox[32] ^ __aesti_inv_sbox[160]; >> 260 ctx->key_dec[2] ^= __aesti_inv_sbox[64] ^ __aesti_inv_sbox[192]; >> 261 ctx->key_dec[3] ^= __aesti_inv_sbox[96] ^ __aesti_inv_sbox[224]; 46 262 47 aes_decrypt(ctx, out, in); !! 263 return 0; >> 264 } >> 265 >> 266 static void aesti_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in) >> 267 { >> 268 const struct crypto_aes_ctx *ctx = crypto_tfm_ctx(tfm); >> 269 const u32 *rkp = ctx->key_enc + 4; >> 270 int rounds = 6 + ctx->key_length / 4; >> 271 u32 st0[4], st1[4]; >> 272 int round; >> 273 >> 274 st0[0] = ctx->key_enc[0] ^ get_unaligned_le32(in); >> 275 st0[1] = ctx->key_enc[1] ^ get_unaligned_le32(in + 4); >> 276 st0[2] = ctx->key_enc[2] ^ get_unaligned_le32(in + 8); >> 277 st0[3] = ctx->key_enc[3] ^ get_unaligned_le32(in + 12); >> 278 >> 279 st0[0] ^= __aesti_sbox[ 0] ^ __aesti_sbox[128]; >> 280 st0[1] ^= __aesti_sbox[32] ^ __aesti_sbox[160]; >> 281 st0[2] ^= __aesti_sbox[64] ^ __aesti_sbox[192]; >> 282 st0[3] ^= __aesti_sbox[96] ^ __aesti_sbox[224]; >> 283 >> 284 for (round = 0;; round += 2, rkp += 8) { >> 285 st1[0] = mix_columns(subshift(st0, 0)) ^ rkp[0]; >> 286 st1[1] = mix_columns(subshift(st0, 1)) ^ rkp[1]; >> 287 st1[2] = mix_columns(subshift(st0, 2)) ^ rkp[2]; >> 288 st1[3] = mix_columns(subshift(st0, 3)) ^ rkp[3]; >> 289 >> 290 if (round == rounds - 2) >> 291 break; >> 292 >> 293 st0[0] = mix_columns(subshift(st1, 0)) ^ rkp[4]; >> 294 st0[1] = mix_columns(subshift(st1, 1)) ^ rkp[5]; >> 295 st0[2] = mix_columns(subshift(st1, 2)) ^ rkp[6]; >> 296 st0[3] = mix_columns(subshift(st1, 3)) ^ rkp[7]; >> 297 } >> 298 >> 299 put_unaligned_le32(subshift(st1, 0) ^ rkp[4], out); >> 300 put_unaligned_le32(subshift(st1, 1) ^ rkp[5], out + 4); >> 301 put_unaligned_le32(subshift(st1, 2) ^ rkp[6], out + 8); >> 302 put_unaligned_le32(subshift(st1, 3) ^ rkp[7], out + 12); >> 303 } 48 304 49 local_irq_restore(flags); !! 305 static void aesti_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in) >> 306 { >> 307 const struct crypto_aes_ctx *ctx = crypto_tfm_ctx(tfm); >> 308 const u32 *rkp = ctx->key_dec + 4; >> 309 int rounds = 6 + ctx->key_length / 4; >> 310 u32 st0[4], st1[4]; >> 311 int round; >> 312 >> 313 st0[0] = ctx->key_dec[0] ^ get_unaligned_le32(in); >> 314 st0[1] = ctx->key_dec[1] ^ get_unaligned_le32(in + 4); >> 315 st0[2] = ctx->key_dec[2] ^ get_unaligned_le32(in + 8); >> 316 st0[3] = ctx->key_dec[3] ^ get_unaligned_le32(in + 12); >> 317 >> 318 st0[0] ^= __aesti_inv_sbox[ 0] ^ __aesti_inv_sbox[128]; >> 319 st0[1] ^= __aesti_inv_sbox[32] ^ __aesti_inv_sbox[160]; >> 320 st0[2] ^= __aesti_inv_sbox[64] ^ __aesti_inv_sbox[192]; >> 321 st0[3] ^= __aesti_inv_sbox[96] ^ __aesti_inv_sbox[224]; >> 322 >> 323 for (round = 0;; round += 2, rkp += 8) { >> 324 st1[0] = inv_mix_columns(inv_subshift(st0, 0)) ^ rkp[0]; >> 325 st1[1] = inv_mix_columns(inv_subshift(st0, 1)) ^ rkp[1]; >> 326 st1[2] = inv_mix_columns(inv_subshift(st0, 2)) ^ rkp[2]; >> 327 st1[3] = inv_mix_columns(inv_subshift(st0, 3)) ^ rkp[3]; >> 328 >> 329 if (round == rounds - 2) >> 330 break; >> 331 >> 332 st0[0] = inv_mix_columns(inv_subshift(st1, 0)) ^ rkp[4]; >> 333 st0[1] = inv_mix_columns(inv_subshift(st1, 1)) ^ rkp[5]; >> 334 st0[2] = inv_mix_columns(inv_subshift(st1, 2)) ^ rkp[6]; >> 335 st0[3] = inv_mix_columns(inv_subshift(st1, 3)) ^ rkp[7]; >> 336 } >> 337 >> 338 put_unaligned_le32(inv_subshift(st1, 0) ^ rkp[4], out); >> 339 put_unaligned_le32(inv_subshift(st1, 1) ^ rkp[5], out + 4); >> 340 put_unaligned_le32(inv_subshift(st1, 2) ^ rkp[6], out + 8); >> 341 put_unaligned_le32(inv_subshift(st1, 3) ^ rkp[7], out + 12); 50 } 342 } 51 343 52 static struct crypto_alg aes_alg = { 344 static struct crypto_alg aes_alg = { 53 .cra_name = "aes 345 .cra_name = "aes", 54 .cra_driver_name = "aes 346 .cra_driver_name = "aes-fixed-time", 55 .cra_priority = 100 347 .cra_priority = 100 + 1, 56 .cra_flags = CRYP 348 .cra_flags = CRYPTO_ALG_TYPE_CIPHER, 57 .cra_blocksize = AES_ 349 .cra_blocksize = AES_BLOCK_SIZE, 58 .cra_ctxsize = size 350 .cra_ctxsize = sizeof(struct crypto_aes_ctx), 59 .cra_module = THIS 351 .cra_module = THIS_MODULE, 60 352 61 .cra_cipher.cia_min_keysize = AES_ 353 .cra_cipher.cia_min_keysize = AES_MIN_KEY_SIZE, 62 .cra_cipher.cia_max_keysize = AES_ 354 .cra_cipher.cia_max_keysize = AES_MAX_KEY_SIZE, 63 .cra_cipher.cia_setkey = aest 355 .cra_cipher.cia_setkey = aesti_set_key, 64 .cra_cipher.cia_encrypt = aest 356 .cra_cipher.cia_encrypt = aesti_encrypt, 65 .cra_cipher.cia_decrypt = aest 357 .cra_cipher.cia_decrypt = aesti_decrypt 66 }; 358 }; 67 359 68 static int __init aes_init(void) 360 static int __init aes_init(void) 69 { 361 { 70 return crypto_register_alg(&aes_alg); 362 return crypto_register_alg(&aes_alg); 71 } 363 } 72 364 73 static void __exit aes_fini(void) 365 static void __exit aes_fini(void) 74 { 366 { 75 crypto_unregister_alg(&aes_alg); 367 crypto_unregister_alg(&aes_alg); 76 } 368 } 77 369 78 module_init(aes_init); 370 module_init(aes_init); 79 module_exit(aes_fini); 371 module_exit(aes_fini); 80 372 81 MODULE_DESCRIPTION("Generic fixed time AES"); 373 MODULE_DESCRIPTION("Generic fixed time AES"); 82 MODULE_AUTHOR("Ard Biesheuvel <ard.biesheuvel@ 374 MODULE_AUTHOR("Ard Biesheuvel <ard.biesheuvel@linaro.org>"); 83 MODULE_LICENSE("GPL v2"); 375 MODULE_LICENSE("GPL v2"); 84 376
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.