1 // SPDX-License-Identifier: GPL-2.0-or-later 1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* Instantiate a public key crypto key from an 2 /* Instantiate a public key crypto key from an X.509 Certificate 3 * 3 * 4 * Copyright (C) 2012, 2016 Red Hat, Inc. All 4 * Copyright (C) 2012, 2016 Red Hat, Inc. All Rights Reserved. 5 * Written by David Howells (dhowells@redhat.c 5 * Written by David Howells (dhowells@redhat.com) 6 */ 6 */ 7 7 8 #define pr_fmt(fmt) "ASYM: "fmt 8 #define pr_fmt(fmt) "ASYM: "fmt 9 #include <linux/module.h> 9 #include <linux/module.h> 10 #include <linux/kernel.h> 10 #include <linux/kernel.h> 11 #include <linux/err.h> 11 #include <linux/err.h> 12 #include <crypto/public_key.h> 12 #include <crypto/public_key.h> 13 #include "asymmetric_keys.h" 13 #include "asymmetric_keys.h" 14 14 15 static bool use_builtin_keys; 15 static bool use_builtin_keys; 16 static struct asymmetric_key_id *ca_keyid; 16 static struct asymmetric_key_id *ca_keyid; 17 17 18 #ifndef MODULE 18 #ifndef MODULE 19 static struct { 19 static struct { 20 struct asymmetric_key_id id; 20 struct asymmetric_key_id id; 21 unsigned char data[10]; 21 unsigned char data[10]; 22 } cakey; 22 } cakey; 23 23 24 static int __init ca_keys_setup(char *str) 24 static int __init ca_keys_setup(char *str) 25 { 25 { 26 if (!str) /* default sys 26 if (!str) /* default system keyring */ 27 return 1; 27 return 1; 28 28 29 if (strncmp(str, "id:", 3) == 0) { 29 if (strncmp(str, "id:", 3) == 0) { 30 struct asymmetric_key_id *p = 30 struct asymmetric_key_id *p = &cakey.id; 31 size_t hexlen = (strlen(str) - 31 size_t hexlen = (strlen(str) - 3) / 2; 32 int ret; 32 int ret; 33 33 34 if (hexlen == 0 || hexlen > si 34 if (hexlen == 0 || hexlen > sizeof(cakey.data)) { 35 pr_err("Missing or inv 35 pr_err("Missing or invalid ca_keys id\n"); 36 return 1; 36 return 1; 37 } 37 } 38 38 39 ret = __asymmetric_key_hex_to_ 39 ret = __asymmetric_key_hex_to_key_id(str + 3, p, hexlen); 40 if (ret < 0) 40 if (ret < 0) 41 pr_err("Unparsable ca_ 41 pr_err("Unparsable ca_keys id hex string\n"); 42 else 42 else 43 ca_keyid = p; /* own 43 ca_keyid = p; /* owner key 'id:xxxxxx' */ 44 } else if (strcmp(str, "builtin") == 0 44 } else if (strcmp(str, "builtin") == 0) { 45 use_builtin_keys = true; 45 use_builtin_keys = true; 46 } 46 } 47 47 48 return 1; 48 return 1; 49 } 49 } 50 __setup("ca_keys=", ca_keys_setup); 50 __setup("ca_keys=", ca_keys_setup); 51 #endif 51 #endif 52 52 53 /** 53 /** 54 * restrict_link_by_signature - Restrict addit 54 * restrict_link_by_signature - Restrict additions to a ring of public keys 55 * @dest_keyring: Keyring being linked to. 55 * @dest_keyring: Keyring being linked to. 56 * @type: The type of key being added. 56 * @type: The type of key being added. 57 * @payload: The payload of the new key. 57 * @payload: The payload of the new key. 58 * @trust_keyring: A ring of keys that can be 58 * @trust_keyring: A ring of keys that can be used to vouch for the new cert. 59 * 59 * 60 * Check the new certificate against the ones 60 * Check the new certificate against the ones in the trust keyring. If one of 61 * those is the signing key and validates the 61 * those is the signing key and validates the new certificate, then mark the 62 * new certificate as being trusted. 62 * new certificate as being trusted. 63 * 63 * 64 * Returns 0 if the new certificate was accept 64 * Returns 0 if the new certificate was accepted, -ENOKEY if we couldn't find a 65 * matching parent certificate in the trusted 65 * matching parent certificate in the trusted list, -EKEYREJECTED if the 66 * signature check fails or the key is blackli 66 * signature check fails or the key is blacklisted, -ENOPKG if the signature 67 * uses unsupported crypto, or some other erro 67 * uses unsupported crypto, or some other error if there is a matching 68 * certificate but the signature check cannot 68 * certificate but the signature check cannot be performed. 69 */ 69 */ 70 int restrict_link_by_signature(struct key *des 70 int restrict_link_by_signature(struct key *dest_keyring, 71 const struct ke 71 const struct key_type *type, 72 const union key 72 const union key_payload *payload, 73 struct key *tru 73 struct key *trust_keyring) 74 { 74 { 75 const struct public_key_signature *sig 75 const struct public_key_signature *sig; 76 struct key *key; 76 struct key *key; 77 int ret; 77 int ret; 78 78 79 pr_devel("==>%s()\n", __func__); 79 pr_devel("==>%s()\n", __func__); 80 80 81 if (!trust_keyring) 81 if (!trust_keyring) 82 return -ENOKEY; 82 return -ENOKEY; 83 83 84 if (type != &key_type_asymmetric) 84 if (type != &key_type_asymmetric) 85 return -EOPNOTSUPP; 85 return -EOPNOTSUPP; 86 86 87 sig = payload->data[asym_auth]; 87 sig = payload->data[asym_auth]; 88 if (!sig) 88 if (!sig) 89 return -ENOPKG; 89 return -ENOPKG; 90 if (!sig->auth_ids[0] && !sig->auth_id !! 90 if (!sig->auth_ids[0] && !sig->auth_ids[1]) 91 return -ENOKEY; 91 return -ENOKEY; 92 92 93 if (ca_keyid && !asymmetric_key_id_par 93 if (ca_keyid && !asymmetric_key_id_partial(sig->auth_ids[1], ca_keyid)) 94 return -EPERM; 94 return -EPERM; 95 95 96 /* See if we have a key that signed th 96 /* See if we have a key that signed this one. */ 97 key = find_asymmetric_key(trust_keyrin 97 key = find_asymmetric_key(trust_keyring, 98 sig->auth_id 98 sig->auth_ids[0], sig->auth_ids[1], 99 sig->auth_id !! 99 false); 100 if (IS_ERR(key)) 100 if (IS_ERR(key)) 101 return -ENOKEY; 101 return -ENOKEY; 102 102 103 if (use_builtin_keys && !test_bit(KEY_ 103 if (use_builtin_keys && !test_bit(KEY_FLAG_BUILTIN, &key->flags)) 104 ret = -ENOKEY; 104 ret = -ENOKEY; 105 else if (IS_BUILTIN(CONFIG_SECONDARY_T << 106 !strcmp(dest_keyring->descrip << 107 !test_bit(KEY_FLAG_BUILTIN, & << 108 ret = -ENOKEY; << 109 else 105 else 110 ret = verify_signature(key, si 106 ret = verify_signature(key, sig); 111 key_put(key); 107 key_put(key); 112 return ret; 108 return ret; 113 } 109 } 114 110 115 /** !! 111 static bool match_either_id(const struct asymmetric_key_ids *pair, 116 * restrict_link_by_ca - Restrict additions to << 117 * @dest_keyring: Keyring being linked to. << 118 * @type: The type of key being added. << 119 * @payload: The payload of the new key. << 120 * @trust_keyring: Unused. << 121 * << 122 * Check if the new certificate is a CA. If it << 123 * certificate as being ok to link. << 124 * << 125 * Returns 0 if the new certificate was accept << 126 * certificate is not a CA. -ENOPKG if the sig << 127 * crypto, or some other error if there is a m << 128 * the signature check cannot be performed. << 129 */ << 130 int restrict_link_by_ca(struct key *dest_keyri << 131 const struct key_type << 132 const union key_payloa << 133 struct key *trust_keyr << 134 { << 135 const struct public_key *pkey; << 136 << 137 if (type != &key_type_asymmetric) << 138 return -EOPNOTSUPP; << 139 << 140 pkey = payload->data[asym_crypto]; << 141 if (!pkey) << 142 return -ENOPKG; << 143 if (!test_bit(KEY_EFLAG_CA, &pkey->key << 144 return -ENOKEY; << 145 if (!test_bit(KEY_EFLAG_KEYCERTSIGN, & << 146 return -ENOKEY; << 147 if (!IS_ENABLED(CONFIG_INTEGRITY_CA_MA << 148 return 0; << 149 if (test_bit(KEY_EFLAG_DIGITALSIG, &pk << 150 return -ENOKEY; << 151 << 152 return 0; << 153 } << 154 << 155 /** << 156 * restrict_link_by_digsig - Restrict addition << 157 * @dest_keyring: Keyring being linked to. << 158 * @type: The type of key being added. << 159 * @payload: The payload of the new key. << 160 * @trust_keyring: A ring of keys that can be << 161 * << 162 * Check if the new certificate has digitalSig << 163 * then mark the new certificate as being ok t << 164 * the new certificate against the ones in the << 165 * << 166 * Returns 0 if the new certificate was accept << 167 * certificate is not a digsig. -ENOPKG if the << 168 * crypto, or some other error if there is a m << 169 * the signature check cannot be performed. << 170 */ << 171 int restrict_link_by_digsig(struct key *dest_k << 172 const struct key_t << 173 const union key_pa << 174 struct key *trust_ << 175 { << 176 const struct public_key *pkey; << 177 << 178 if (type != &key_type_asymmetric) << 179 return -EOPNOTSUPP; << 180 << 181 pkey = payload->data[asym_crypto]; << 182 << 183 if (!pkey) << 184 return -ENOPKG; << 185 << 186 if (!test_bit(KEY_EFLAG_DIGITALSIG, &p << 187 return -ENOKEY; << 188 << 189 if (test_bit(KEY_EFLAG_CA, &pkey->key_ << 190 return -ENOKEY; << 191 << 192 if (test_bit(KEY_EFLAG_KEYCERTSIGN, &p << 193 return -ENOKEY; << 194 << 195 return restrict_link_by_signature(dest << 196 trus << 197 } << 198 << 199 static bool match_either_id(const struct asymm << 200 const struct asymm 112 const struct asymmetric_key_id *single) 201 { 113 { 202 return (asymmetric_key_id_same(pair[0] !! 114 return (asymmetric_key_id_same(pair->id[0], single) || 203 asymmetric_key_id_same(pair[1] !! 115 asymmetric_key_id_same(pair->id[1], single)); 204 } 116 } 205 117 206 static int key_or_keyring_common(struct key *d 118 static int key_or_keyring_common(struct key *dest_keyring, 207 const struct 119 const struct key_type *type, 208 const union k 120 const union key_payload *payload, 209 struct key *t 121 struct key *trusted, bool check_dest) 210 { 122 { 211 const struct public_key_signature *sig 123 const struct public_key_signature *sig; 212 struct key *key = NULL; 124 struct key *key = NULL; 213 int ret; 125 int ret; 214 126 215 pr_devel("==>%s()\n", __func__); 127 pr_devel("==>%s()\n", __func__); 216 128 217 if (!dest_keyring) 129 if (!dest_keyring) 218 return -ENOKEY; 130 return -ENOKEY; 219 else if (dest_keyring->type != &key_ty 131 else if (dest_keyring->type != &key_type_keyring) 220 return -EOPNOTSUPP; 132 return -EOPNOTSUPP; 221 133 222 if (!trusted && !check_dest) 134 if (!trusted && !check_dest) 223 return -ENOKEY; 135 return -ENOKEY; 224 136 225 if (type != &key_type_asymmetric) 137 if (type != &key_type_asymmetric) 226 return -EOPNOTSUPP; 138 return -EOPNOTSUPP; 227 139 228 sig = payload->data[asym_auth]; 140 sig = payload->data[asym_auth]; 229 if (!sig) 141 if (!sig) 230 return -ENOPKG; 142 return -ENOPKG; 231 if (!sig->auth_ids[0] && !sig->auth_id !! 143 if (!sig->auth_ids[0] && !sig->auth_ids[1]) 232 return -ENOKEY; 144 return -ENOKEY; 233 145 234 if (trusted) { 146 if (trusted) { 235 if (trusted->type == &key_type 147 if (trusted->type == &key_type_keyring) { 236 /* See if we have a ke 148 /* See if we have a key that signed this one. */ 237 key = find_asymmetric_ 149 key = find_asymmetric_key(trusted, sig->auth_ids[0], 238 !! 150 sig->auth_ids[1], false); 239 << 240 if (IS_ERR(key)) 151 if (IS_ERR(key)) 241 key = NULL; 152 key = NULL; 242 } else if (trusted->type == &k 153 } else if (trusted->type == &key_type_asymmetric) { 243 const struct asymmetri !! 154 const struct asymmetric_key_ids *signer_ids; 244 155 245 signer_ids = (const st !! 156 signer_ids = asymmetric_key_ids(trusted); 246 asymmetric_key << 247 157 248 /* 158 /* 249 * The auth_ids come f 159 * The auth_ids come from the candidate key (the 250 * one that is being c 160 * one that is being considered for addition to 251 * dest_keyring) and i 161 * dest_keyring) and identify the key that was 252 * used to sign. 162 * used to sign. 253 * 163 * 254 * The signer_ids are 164 * The signer_ids are identifiers for the 255 * signing key specifi 165 * signing key specified for dest_keyring. 256 * 166 * 257 * The first auth_id i !! 167 * The first auth_id is the preferred id, and 258 * 3rd are the fallbac !! 168 * the second is the fallback. If only one 259 * auth_ids[0] and aut !! 169 * auth_id is present, it may match against 260 * match either signer !! 170 * either signer_id. If two auth_ids are 261 * If both are present !! 171 * present, the first auth_id must match one 262 * either signed_id bu !! 172 * signer_id and the second auth_id must match 263 * the second signer_i !! 173 * the second signer_id. 264 * available, auth_ids << 265 * signer_ids[2] as a << 266 */ 174 */ 267 if (!sig->auth_ids[0] !! 175 if (!sig->auth_ids[0] || !sig->auth_ids[1]) { 268 if (asymmetric << 269 << 270 key = << 271 << 272 } else if (!sig->auth_ << 273 const struct a 176 const struct asymmetric_key_id *auth_id; 274 177 275 auth_id = sig- 178 auth_id = sig->auth_ids[0] ?: sig->auth_ids[1]; 276 if (match_eith 179 if (match_either_id(signer_ids, auth_id)) 277 key = 180 key = __key_get(trusted); 278 181 279 } else if (asymmetric_ !! 182 } else if (asymmetric_key_id_same(signer_ids->id[1], 280 183 sig->auth_ids[1]) && 281 match_eithe 184 match_either_id(signer_ids, 282 185 sig->auth_ids[0])) { 283 key = __key_ge 186 key = __key_get(trusted); 284 } 187 } 285 } else { 188 } else { 286 return -EOPNOTSUPP; 189 return -EOPNOTSUPP; 287 } 190 } 288 } 191 } 289 192 290 if (check_dest && !key) { 193 if (check_dest && !key) { 291 /* See if the destination has 194 /* See if the destination has a key that signed this one. */ 292 key = find_asymmetric_key(dest 195 key = find_asymmetric_key(dest_keyring, sig->auth_ids[0], 293 sig- !! 196 sig->auth_ids[1], false); 294 fals << 295 if (IS_ERR(key)) 197 if (IS_ERR(key)) 296 key = NULL; 198 key = NULL; 297 } 199 } 298 200 299 if (!key) 201 if (!key) 300 return -ENOKEY; 202 return -ENOKEY; 301 203 302 ret = key_validate(key); 204 ret = key_validate(key); 303 if (ret == 0) 205 if (ret == 0) 304 ret = verify_signature(key, si 206 ret = verify_signature(key, sig); 305 207 306 key_put(key); 208 key_put(key); 307 return ret; 209 return ret; 308 } 210 } 309 211 310 /** 212 /** 311 * restrict_link_by_key_or_keyring - Restrict 213 * restrict_link_by_key_or_keyring - Restrict additions to a ring of public 312 * keys using the restrict_key information sto 214 * keys using the restrict_key information stored in the ring. 313 * @dest_keyring: Keyring being linked to. 215 * @dest_keyring: Keyring being linked to. 314 * @type: The type of key being added. 216 * @type: The type of key being added. 315 * @payload: The payload of the new key. 217 * @payload: The payload of the new key. 316 * @trusted: A key or ring of keys that can be 218 * @trusted: A key or ring of keys that can be used to vouch for the new cert. 317 * 219 * 318 * Check the new certificate only against the 220 * Check the new certificate only against the key or keys passed in the data 319 * parameter. If one of those is the signing k 221 * parameter. If one of those is the signing key and validates the new 320 * certificate, then mark the new certificate 222 * certificate, then mark the new certificate as being ok to link. 321 * 223 * 322 * Returns 0 if the new certificate was accept 224 * Returns 0 if the new certificate was accepted, -ENOKEY if we 323 * couldn't find a matching parent certificate 225 * couldn't find a matching parent certificate in the trusted list, 324 * -EKEYREJECTED if the signature check fails, 226 * -EKEYREJECTED if the signature check fails, -ENOPKG if the signature uses 325 * unsupported crypto, or some other error if 227 * unsupported crypto, or some other error if there is a matching certificate 326 * but the signature check cannot be performed 228 * but the signature check cannot be performed. 327 */ 229 */ 328 int restrict_link_by_key_or_keyring(struct key 230 int restrict_link_by_key_or_keyring(struct key *dest_keyring, 329 const stru 231 const struct key_type *type, 330 const unio 232 const union key_payload *payload, 331 struct key 233 struct key *trusted) 332 { 234 { 333 return key_or_keyring_common(dest_keyr 235 return key_or_keyring_common(dest_keyring, type, payload, trusted, 334 false); 236 false); 335 } 237 } 336 238 337 /** 239 /** 338 * restrict_link_by_key_or_keyring_chain - Res 240 * restrict_link_by_key_or_keyring_chain - Restrict additions to a ring of 339 * public keys using the restrict_key informat 241 * public keys using the restrict_key information stored in the ring. 340 * @dest_keyring: Keyring being linked to. 242 * @dest_keyring: Keyring being linked to. 341 * @type: The type of key being added. 243 * @type: The type of key being added. 342 * @payload: The payload of the new key. 244 * @payload: The payload of the new key. 343 * @trusted: A key or ring of keys that can be 245 * @trusted: A key or ring of keys that can be used to vouch for the new cert. 344 * 246 * 345 * Check the new certificate against the key o 247 * Check the new certificate against the key or keys passed in the data 346 * parameter and against the keys already link 248 * parameter and against the keys already linked to the destination keyring. If 347 * one of those is the signing key and validat 249 * one of those is the signing key and validates the new certificate, then mark 348 * the new certificate as being ok to link. 250 * the new certificate as being ok to link. 349 * 251 * 350 * Returns 0 if the new certificate was accept 252 * Returns 0 if the new certificate was accepted, -ENOKEY if we 351 * couldn't find a matching parent certificate 253 * couldn't find a matching parent certificate in the trusted list, 352 * -EKEYREJECTED if the signature check fails, 254 * -EKEYREJECTED if the signature check fails, -ENOPKG if the signature uses 353 * unsupported crypto, or some other error if 255 * unsupported crypto, or some other error if there is a matching certificate 354 * but the signature check cannot be performed 256 * but the signature check cannot be performed. 355 */ 257 */ 356 int restrict_link_by_key_or_keyring_chain(stru 258 int restrict_link_by_key_or_keyring_chain(struct key *dest_keyring, 357 cons 259 const struct key_type *type, 358 cons 260 const union key_payload *payload, 359 stru 261 struct key *trusted) 360 { 262 { 361 return key_or_keyring_common(dest_keyr 263 return key_or_keyring_common(dest_keyring, type, payload, trusted, 362 true); 264 true); 363 } 265 } 364 266
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.