1 // SPDX-License-Identifier: GPL-2.0-or-later << 2 /* 1 /* 3 * Handle async block request by crypto hardwa 2 * Handle async block request by crypto hardware engine. 4 * 3 * 5 * Copyright (C) 2016 Linaro, Inc. 4 * Copyright (C) 2016 Linaro, Inc. 6 * 5 * 7 * Author: Baolin Wang <baolin.wang@linaro.org 6 * Author: Baolin Wang <baolin.wang@linaro.org> >> 7 * >> 8 * This program is free software; you can redistribute it and/or modify it >> 9 * under the terms of the GNU General Public License as published by the Free >> 10 * Software Foundation; either version 2 of the License, or (at your option) >> 11 * any later version. >> 12 * 8 */ 13 */ 9 14 10 #include <crypto/internal/aead.h> << 11 #include <crypto/internal/akcipher.h> << 12 #include <crypto/internal/engine.h> << 13 #include <crypto/internal/hash.h> << 14 #include <crypto/internal/kpp.h> << 15 #include <crypto/internal/skcipher.h> << 16 #include <linux/err.h> 15 #include <linux/err.h> 17 #include <linux/delay.h> 16 #include <linux/delay.h> 18 #include <linux/device.h> !! 17 #include <crypto/engine.h> 19 #include <linux/kernel.h> !! 18 #include <crypto/internal/hash.h> 20 #include <linux/module.h> << 21 #include <uapi/linux/sched/types.h> 19 #include <uapi/linux/sched/types.h> 22 #include "internal.h" 20 #include "internal.h" 23 21 24 #define CRYPTO_ENGINE_MAX_QLEN 10 22 #define CRYPTO_ENGINE_MAX_QLEN 10 25 23 26 /* Temporary algorithm flag used to indicate a << 27 #define CRYPTO_ALG_ENGINE 0x200 << 28 << 29 struct crypto_engine_alg { << 30 struct crypto_alg base; << 31 struct crypto_engine_op op; << 32 }; << 33 << 34 /** << 35 * crypto_finalize_request - finalize one requ << 36 * @engine: the hardware engine << 37 * @req: the request need to be finalized << 38 * @err: error number << 39 */ << 40 static void crypto_finalize_request(struct cry << 41 struct cry << 42 { << 43 unsigned long flags; << 44 << 45 /* << 46 * If hardware cannot enqueue more req << 47 * and retry mechanism is not supporte << 48 * make sure we are completing the cur << 49 */ << 50 if (!engine->retry_support) { << 51 spin_lock_irqsave(&engine->que << 52 if (engine->cur_req == req) { << 53 engine->cur_req = NULL << 54 } << 55 spin_unlock_irqrestore(&engine << 56 } << 57 << 58 lockdep_assert_in_softirq(); << 59 crypto_request_complete(req, err); << 60 << 61 kthread_queue_work(engine->kworker, &e << 62 } << 63 << 64 /** 24 /** 65 * crypto_pump_requests - dequeue one request 25 * crypto_pump_requests - dequeue one request from engine queue to process 66 * @engine: the hardware engine 26 * @engine: the hardware engine 67 * @in_kthread: true if we are in the context 27 * @in_kthread: true if we are in the context of the request pump thread 68 * 28 * 69 * This function checks if there is any reques 29 * This function checks if there is any request in the engine queue that 70 * needs processing and if so call out to the 30 * needs processing and if so call out to the driver to initialize hardware 71 * and handle each request. 31 * and handle each request. 72 */ 32 */ 73 static void crypto_pump_requests(struct crypto 33 static void crypto_pump_requests(struct crypto_engine *engine, 74 bool in_kthre 34 bool in_kthread) 75 { 35 { 76 struct crypto_async_request *async_req 36 struct crypto_async_request *async_req, *backlog; 77 struct crypto_engine_alg *alg; !! 37 struct ahash_request *hreq; 78 struct crypto_engine_op *op; !! 38 struct ablkcipher_request *breq; 79 unsigned long flags; 39 unsigned long flags; 80 bool was_busy = false; 40 bool was_busy = false; 81 int ret; !! 41 int ret, rtype; 82 42 83 spin_lock_irqsave(&engine->queue_lock, 43 spin_lock_irqsave(&engine->queue_lock, flags); 84 44 85 /* Make sure we are not already runnin 45 /* Make sure we are not already running a request */ 86 if (!engine->retry_support && engine-> !! 46 if (engine->cur_req) 87 goto out; 47 goto out; 88 48 89 /* If another context is idling then d 49 /* If another context is idling then defer */ 90 if (engine->idling) { 50 if (engine->idling) { 91 kthread_queue_work(engine->kwo 51 kthread_queue_work(engine->kworker, &engine->pump_requests); 92 goto out; 52 goto out; 93 } 53 } 94 54 95 /* Check if the engine queue is idle * 55 /* Check if the engine queue is idle */ 96 if (!crypto_queue_len(&engine->queue) 56 if (!crypto_queue_len(&engine->queue) || !engine->running) { 97 if (!engine->busy) 57 if (!engine->busy) 98 goto out; 58 goto out; 99 59 100 /* Only do teardown in the thr 60 /* Only do teardown in the thread */ 101 if (!in_kthread) { 61 if (!in_kthread) { 102 kthread_queue_work(eng 62 kthread_queue_work(engine->kworker, 103 &en 63 &engine->pump_requests); 104 goto out; 64 goto out; 105 } 65 } 106 66 107 engine->busy = false; 67 engine->busy = false; 108 engine->idling = true; 68 engine->idling = true; 109 spin_unlock_irqrestore(&engine 69 spin_unlock_irqrestore(&engine->queue_lock, flags); 110 70 111 if (engine->unprepare_crypt_ha 71 if (engine->unprepare_crypt_hardware && 112 engine->unprepare_crypt_ha 72 engine->unprepare_crypt_hardware(engine)) 113 dev_err(engine->dev, " !! 73 pr_err("failed to unprepare crypt hardware\n"); 114 74 115 spin_lock_irqsave(&engine->que 75 spin_lock_irqsave(&engine->queue_lock, flags); 116 engine->idling = false; 76 engine->idling = false; 117 goto out; 77 goto out; 118 } 78 } 119 79 120 start_request: << 121 /* Get the fist request from the engin 80 /* Get the fist request from the engine queue to handle */ 122 backlog = crypto_get_backlog(&engine-> 81 backlog = crypto_get_backlog(&engine->queue); 123 async_req = crypto_dequeue_request(&en 82 async_req = crypto_dequeue_request(&engine->queue); 124 if (!async_req) 83 if (!async_req) 125 goto out; 84 goto out; 126 85 127 /* !! 86 engine->cur_req = async_req; 128 * If hardware doesn't support the ret !! 87 if (backlog) 129 * keep track of the request we are pr !! 88 backlog->complete(backlog, -EINPROGRESS); 130 * We'll need it on completion (crypto << 131 */ << 132 if (!engine->retry_support) << 133 engine->cur_req = async_req; << 134 89 135 if (engine->busy) 90 if (engine->busy) 136 was_busy = true; 91 was_busy = true; 137 else 92 else 138 engine->busy = true; 93 engine->busy = true; 139 94 140 spin_unlock_irqrestore(&engine->queue_ 95 spin_unlock_irqrestore(&engine->queue_lock, flags); 141 96 >> 97 rtype = crypto_tfm_alg_type(engine->cur_req->tfm); 142 /* Until here we get the request need 98 /* Until here we get the request need to be encrypted successfully */ 143 if (!was_busy && engine->prepare_crypt 99 if (!was_busy && engine->prepare_crypt_hardware) { 144 ret = engine->prepare_crypt_ha 100 ret = engine->prepare_crypt_hardware(engine); 145 if (ret) { 101 if (ret) { 146 dev_err(engine->dev, " !! 102 pr_err("failed to prepare crypt hardware\n"); 147 goto req_err_1; !! 103 goto req_err; 148 } 104 } 149 } 105 } 150 106 151 if (async_req->tfm->__crt_alg->cra_fla !! 107 switch (rtype) { 152 alg = container_of(async_req-> !! 108 case CRYPTO_ALG_TYPE_AHASH: 153 struct cryp !! 109 hreq = ahash_request_cast(engine->cur_req); 154 op = &alg->op; !! 110 if (engine->prepare_hash_request) { 155 } else { !! 111 ret = engine->prepare_hash_request(engine, hreq); 156 dev_err(engine->dev, "failed t !! 112 if (ret) { 157 ret = -EINVAL; !! 113 pr_err("failed to prepare request: %d\n", ret); 158 goto req_err_1; !! 114 goto req_err; 159 } !! 115 } 160 !! 116 engine->cur_req_prepared = true; 161 ret = op->do_one_request(engine, async << 162 << 163 /* Request unsuccessfully executed by << 164 if (ret < 0) { << 165 /* << 166 * If hardware queue is full ( << 167 * regardless of backlog flag. << 168 * Otherwise, unprepare and co << 169 */ << 170 if (!engine->retry_support || << 171 (ret != -ENOSPC)) { << 172 dev_err(engine->dev, << 173 "Failed to do << 174 ret); << 175 goto req_err_1; << 176 } 117 } 177 spin_lock_irqsave(&engine->que !! 118 ret = engine->hash_one_request(engine, hreq); 178 /* !! 119 if (ret) { 179 * If hardware was unable to e !! 120 pr_err("failed to hash one request from queue\n"); 180 * back in front of crypto-eng !! 121 goto req_err; 181 * of requests. !! 122 } 182 */ !! 123 return; 183 crypto_enqueue_request_head(&e !! 124 case CRYPTO_ALG_TYPE_ABLKCIPHER: 184 !! 125 breq = ablkcipher_request_cast(engine->cur_req); 185 kthread_queue_work(engine->kwo !! 126 if (engine->prepare_cipher_request) { 186 goto out; !! 127 ret = engine->prepare_cipher_request(engine, breq); >> 128 if (ret) { >> 129 pr_err("failed to prepare request: %d\n", ret); >> 130 goto req_err; >> 131 } >> 132 engine->cur_req_prepared = true; >> 133 } >> 134 ret = engine->cipher_one_request(engine, breq); >> 135 if (ret) { >> 136 pr_err("failed to cipher one request from queue\n"); >> 137 goto req_err; >> 138 } >> 139 return; >> 140 default: >> 141 pr_err("failed to prepare request of unknown type\n"); >> 142 return; 187 } 143 } 188 144 189 goto retry; !! 145 req_err: 190 !! 146 switch (rtype) { 191 req_err_1: !! 147 case CRYPTO_ALG_TYPE_AHASH: 192 crypto_request_complete(async_req, ret !! 148 hreq = ahash_request_cast(engine->cur_req); 193 !! 149 crypto_finalize_hash_request(engine, hreq, ret); 194 retry: !! 150 break; 195 if (backlog) !! 151 case CRYPTO_ALG_TYPE_ABLKCIPHER: 196 crypto_request_complete(backlo !! 152 breq = ablkcipher_request_cast(engine->cur_req); 197 !! 153 crypto_finalize_cipher_request(engine, breq, ret); 198 /* If retry mechanism is supported, se !! 154 break; 199 if (engine->retry_support) { << 200 spin_lock_irqsave(&engine->que << 201 goto start_request; << 202 } 155 } 203 return; 156 return; 204 157 205 out: 158 out: 206 spin_unlock_irqrestore(&engine->queue_ 159 spin_unlock_irqrestore(&engine->queue_lock, flags); 207 << 208 /* << 209 * Batch requests is possible only if << 210 * hardware can enqueue multiple reque << 211 */ << 212 if (engine->do_batch_requests) { << 213 ret = engine->do_batch_request << 214 if (ret) << 215 dev_err(engine->dev, " << 216 ret); << 217 } << 218 << 219 return; << 220 } 160 } 221 161 222 static void crypto_pump_work(struct kthread_wo 162 static void crypto_pump_work(struct kthread_work *work) 223 { 163 { 224 struct crypto_engine *engine = 164 struct crypto_engine *engine = 225 container_of(work, struct cryp 165 container_of(work, struct crypto_engine, pump_requests); 226 166 227 crypto_pump_requests(engine, true); 167 crypto_pump_requests(engine, true); 228 } 168 } 229 169 230 /** 170 /** 231 * crypto_transfer_request - transfer the new !! 171 * crypto_transfer_cipher_request - transfer the new request into the >> 172 * enginequeue 232 * @engine: the hardware engine 173 * @engine: the hardware engine 233 * @req: the request need to be listed into th 174 * @req: the request need to be listed into the engine queue 234 * @need_pump: indicates whether queue the pum << 235 */ 175 */ 236 static int crypto_transfer_request(struct cryp !! 176 int crypto_transfer_cipher_request(struct crypto_engine *engine, 237 struct cryp !! 177 struct ablkcipher_request *req, 238 bool need_p 178 bool need_pump) 239 { 179 { 240 unsigned long flags; 180 unsigned long flags; 241 int ret; 181 int ret; 242 182 243 spin_lock_irqsave(&engine->queue_lock, 183 spin_lock_irqsave(&engine->queue_lock, flags); 244 184 245 if (!engine->running) { 185 if (!engine->running) { 246 spin_unlock_irqrestore(&engine 186 spin_unlock_irqrestore(&engine->queue_lock, flags); 247 return -ESHUTDOWN; 187 return -ESHUTDOWN; 248 } 188 } 249 189 250 ret = crypto_enqueue_request(&engine-> !! 190 ret = ablkcipher_enqueue_request(&engine->queue, req); 251 191 252 if (!engine->busy && need_pump) 192 if (!engine->busy && need_pump) 253 kthread_queue_work(engine->kwo 193 kthread_queue_work(engine->kworker, &engine->pump_requests); 254 194 255 spin_unlock_irqrestore(&engine->queue_ 195 spin_unlock_irqrestore(&engine->queue_lock, flags); 256 return ret; 196 return ret; 257 } 197 } >> 198 EXPORT_SYMBOL_GPL(crypto_transfer_cipher_request); 258 199 259 /** 200 /** 260 * crypto_transfer_request_to_engine - transfe !! 201 * crypto_transfer_cipher_request_to_engine - transfer one request to list 261 * into the engine queue 202 * into the engine queue 262 * @engine: the hardware engine 203 * @engine: the hardware engine 263 * @req: the request need to be listed into th 204 * @req: the request need to be listed into the engine queue 264 */ 205 */ 265 static int crypto_transfer_request_to_engine(s !! 206 int crypto_transfer_cipher_request_to_engine(struct crypto_engine *engine, 266 s !! 207 struct ablkcipher_request *req) 267 { 208 { 268 return crypto_transfer_request(engine, !! 209 return crypto_transfer_cipher_request(engine, req, true); 269 } 210 } >> 211 EXPORT_SYMBOL_GPL(crypto_transfer_cipher_request_to_engine); 270 212 271 /** 213 /** 272 * crypto_transfer_aead_request_to_engine - tr !! 214 * crypto_transfer_hash_request - transfer the new request into the 273 * to list into the engine queue !! 215 * enginequeue 274 * @engine: the hardware engine 216 * @engine: the hardware engine 275 * @req: the request need to be listed into th 217 * @req: the request need to be listed into the engine queue 276 */ 218 */ 277 int crypto_transfer_aead_request_to_engine(str !! 219 int crypto_transfer_hash_request(struct crypto_engine *engine, 278 str !! 220 struct ahash_request *req, bool need_pump) 279 { 221 { 280 return crypto_transfer_request_to_engi !! 222 unsigned long flags; 281 } !! 223 int ret; 282 EXPORT_SYMBOL_GPL(crypto_transfer_aead_request << 283 224 284 /** !! 225 spin_lock_irqsave(&engine->queue_lock, flags); 285 * crypto_transfer_akcipher_request_to_engine !! 226 286 * to list into the engine queue !! 227 if (!engine->running) { 287 * @engine: the hardware engine !! 228 spin_unlock_irqrestore(&engine->queue_lock, flags); 288 * @req: the request need to be listed into th !! 229 return -ESHUTDOWN; 289 */ !! 230 } 290 int crypto_transfer_akcipher_request_to_engine !! 231 291 !! 232 ret = ahash_enqueue_request(&engine->queue, req); 292 { !! 233 293 return crypto_transfer_request_to_engi !! 234 if (!engine->busy && need_pump) >> 235 kthread_queue_work(engine->kworker, &engine->pump_requests); >> 236 >> 237 spin_unlock_irqrestore(&engine->queue_lock, flags); >> 238 return ret; 294 } 239 } 295 EXPORT_SYMBOL_GPL(crypto_transfer_akcipher_req !! 240 EXPORT_SYMBOL_GPL(crypto_transfer_hash_request); 296 241 297 /** 242 /** 298 * crypto_transfer_hash_request_to_engine - tr !! 243 * crypto_transfer_hash_request_to_engine - transfer one request to list 299 * to list into the engine queue !! 244 * into the engine queue 300 * @engine: the hardware engine 245 * @engine: the hardware engine 301 * @req: the request need to be listed into th 246 * @req: the request need to be listed into the engine queue 302 */ 247 */ 303 int crypto_transfer_hash_request_to_engine(str 248 int crypto_transfer_hash_request_to_engine(struct crypto_engine *engine, 304 str 249 struct ahash_request *req) 305 { 250 { 306 return crypto_transfer_request_to_engi !! 251 return crypto_transfer_hash_request(engine, req, true); 307 } 252 } 308 EXPORT_SYMBOL_GPL(crypto_transfer_hash_request 253 EXPORT_SYMBOL_GPL(crypto_transfer_hash_request_to_engine); 309 254 310 /** 255 /** 311 * crypto_transfer_kpp_request_to_engine - tra !! 256 * crypto_finalize_cipher_request - finalize one request if the request is done 312 * into the engine queue << 313 * @engine: the hardware engine << 314 * @req: the request need to be listed into th << 315 */ << 316 int crypto_transfer_kpp_request_to_engine(stru << 317 stru << 318 { << 319 return crypto_transfer_request_to_engi << 320 } << 321 EXPORT_SYMBOL_GPL(crypto_transfer_kpp_request_ << 322 << 323 /** << 324 * crypto_transfer_skcipher_request_to_engine << 325 * to list into the engine queue << 326 * @engine: the hardware engine << 327 * @req: the request need to be listed into th << 328 */ << 329 int crypto_transfer_skcipher_request_to_engine << 330 << 331 { << 332 return crypto_transfer_request_to_engi << 333 } << 334 EXPORT_SYMBOL_GPL(crypto_transfer_skcipher_req << 335 << 336 /** << 337 * crypto_finalize_aead_request - finalize one << 338 * the request is done << 339 * @engine: the hardware engine 257 * @engine: the hardware engine 340 * @req: the request need to be finalized 258 * @req: the request need to be finalized 341 * @err: error number 259 * @err: error number 342 */ 260 */ 343 void crypto_finalize_aead_request(struct crypt !! 261 void crypto_finalize_cipher_request(struct crypto_engine *engine, 344 struct aead_ !! 262 struct ablkcipher_request *req, int err) 345 { 263 { 346 return crypto_finalize_request(engine, !! 264 unsigned long flags; 347 } !! 265 bool finalize_cur_req = false; 348 EXPORT_SYMBOL_GPL(crypto_finalize_aead_request !! 266 int ret; 349 267 350 /** !! 268 spin_lock_irqsave(&engine->queue_lock, flags); 351 * crypto_finalize_akcipher_request - finalize !! 269 if (engine->cur_req == &req->base) 352 * the request is done !! 270 finalize_cur_req = true; 353 * @engine: the hardware engine !! 271 spin_unlock_irqrestore(&engine->queue_lock, flags); 354 * @req: the request need to be finalized !! 272 355 * @err: error number !! 273 if (finalize_cur_req) { 356 */ !! 274 if (engine->cur_req_prepared && 357 void crypto_finalize_akcipher_request(struct c !! 275 engine->unprepare_cipher_request) { 358 struct a !! 276 ret = engine->unprepare_cipher_request(engine, req); 359 { !! 277 if (ret) 360 return crypto_finalize_request(engine, !! 278 pr_err("failed to unprepare request\n"); >> 279 } >> 280 spin_lock_irqsave(&engine->queue_lock, flags); >> 281 engine->cur_req = NULL; >> 282 engine->cur_req_prepared = false; >> 283 spin_unlock_irqrestore(&engine->queue_lock, flags); >> 284 } >> 285 >> 286 req->base.complete(&req->base, err); >> 287 >> 288 kthread_queue_work(engine->kworker, &engine->pump_requests); 361 } 289 } 362 EXPORT_SYMBOL_GPL(crypto_finalize_akcipher_req !! 290 EXPORT_SYMBOL_GPL(crypto_finalize_cipher_request); 363 291 364 /** 292 /** 365 * crypto_finalize_hash_request - finalize one !! 293 * crypto_finalize_hash_request - finalize one request if the request is done 366 * the request is done << 367 * @engine: the hardware engine 294 * @engine: the hardware engine 368 * @req: the request need to be finalized 295 * @req: the request need to be finalized 369 * @err: error number 296 * @err: error number 370 */ 297 */ 371 void crypto_finalize_hash_request(struct crypt 298 void crypto_finalize_hash_request(struct crypto_engine *engine, 372 struct ahash 299 struct ahash_request *req, int err) 373 { 300 { 374 return crypto_finalize_request(engine, !! 301 unsigned long flags; 375 } !! 302 bool finalize_cur_req = false; 376 EXPORT_SYMBOL_GPL(crypto_finalize_hash_request !! 303 int ret; 377 304 378 /** !! 305 spin_lock_irqsave(&engine->queue_lock, flags); 379 * crypto_finalize_kpp_request - finalize one !! 306 if (engine->cur_req == &req->base) 380 * @engine: the hardware engine !! 307 finalize_cur_req = true; 381 * @req: the request need to be finalized !! 308 spin_unlock_irqrestore(&engine->queue_lock, flags); 382 * @err: error number << 383 */ << 384 void crypto_finalize_kpp_request(struct crypto << 385 struct kpp_re << 386 { << 387 return crypto_finalize_request(engine, << 388 } << 389 EXPORT_SYMBOL_GPL(crypto_finalize_kpp_request) << 390 309 391 /** !! 310 if (finalize_cur_req) { 392 * crypto_finalize_skcipher_request - finalize !! 311 if (engine->cur_req_prepared && 393 * the request is done !! 312 engine->unprepare_hash_request) { 394 * @engine: the hardware engine !! 313 ret = engine->unprepare_hash_request(engine, req); 395 * @req: the request need to be finalized !! 314 if (ret) 396 * @err: error number !! 315 pr_err("failed to unprepare request\n"); 397 */ !! 316 } 398 void crypto_finalize_skcipher_request(struct c !! 317 spin_lock_irqsave(&engine->queue_lock, flags); 399 struct s !! 318 engine->cur_req = NULL; 400 { !! 319 engine->cur_req_prepared = false; 401 return crypto_finalize_request(engine, !! 320 spin_unlock_irqrestore(&engine->queue_lock, flags); >> 321 } >> 322 >> 323 req->base.complete(&req->base, err); >> 324 >> 325 kthread_queue_work(engine->kworker, &engine->pump_requests); 402 } 326 } 403 EXPORT_SYMBOL_GPL(crypto_finalize_skcipher_req !! 327 EXPORT_SYMBOL_GPL(crypto_finalize_hash_request); 404 328 405 /** 329 /** 406 * crypto_engine_start - start the hardware en 330 * crypto_engine_start - start the hardware engine 407 * @engine: the hardware engine need to be sta 331 * @engine: the hardware engine need to be started 408 * 332 * 409 * Return 0 on success, else on fail. 333 * Return 0 on success, else on fail. 410 */ 334 */ 411 int crypto_engine_start(struct crypto_engine * 335 int crypto_engine_start(struct crypto_engine *engine) 412 { 336 { 413 unsigned long flags; 337 unsigned long flags; 414 338 415 spin_lock_irqsave(&engine->queue_lock, 339 spin_lock_irqsave(&engine->queue_lock, flags); 416 340 417 if (engine->running || engine->busy) { 341 if (engine->running || engine->busy) { 418 spin_unlock_irqrestore(&engine 342 spin_unlock_irqrestore(&engine->queue_lock, flags); 419 return -EBUSY; 343 return -EBUSY; 420 } 344 } 421 345 422 engine->running = true; 346 engine->running = true; 423 spin_unlock_irqrestore(&engine->queue_ 347 spin_unlock_irqrestore(&engine->queue_lock, flags); 424 348 425 kthread_queue_work(engine->kworker, &e 349 kthread_queue_work(engine->kworker, &engine->pump_requests); 426 350 427 return 0; 351 return 0; 428 } 352 } 429 EXPORT_SYMBOL_GPL(crypto_engine_start); 353 EXPORT_SYMBOL_GPL(crypto_engine_start); 430 354 431 /** 355 /** 432 * crypto_engine_stop - stop the hardware engi 356 * crypto_engine_stop - stop the hardware engine 433 * @engine: the hardware engine need to be sto 357 * @engine: the hardware engine need to be stopped 434 * 358 * 435 * Return 0 on success, else on fail. 359 * Return 0 on success, else on fail. 436 */ 360 */ 437 int crypto_engine_stop(struct crypto_engine *e 361 int crypto_engine_stop(struct crypto_engine *engine) 438 { 362 { 439 unsigned long flags; 363 unsigned long flags; 440 unsigned int limit = 500; 364 unsigned int limit = 500; 441 int ret = 0; 365 int ret = 0; 442 366 443 spin_lock_irqsave(&engine->queue_lock, 367 spin_lock_irqsave(&engine->queue_lock, flags); 444 368 445 /* 369 /* 446 * If the engine queue is not empty or 370 * If the engine queue is not empty or the engine is on busy state, 447 * we need to wait for a while to pump 371 * we need to wait for a while to pump the requests of engine queue. 448 */ 372 */ 449 while ((crypto_queue_len(&engine->queu 373 while ((crypto_queue_len(&engine->queue) || engine->busy) && limit--) { 450 spin_unlock_irqrestore(&engine 374 spin_unlock_irqrestore(&engine->queue_lock, flags); 451 msleep(20); 375 msleep(20); 452 spin_lock_irqsave(&engine->que 376 spin_lock_irqsave(&engine->queue_lock, flags); 453 } 377 } 454 378 455 if (crypto_queue_len(&engine->queue) | 379 if (crypto_queue_len(&engine->queue) || engine->busy) 456 ret = -EBUSY; 380 ret = -EBUSY; 457 else 381 else 458 engine->running = false; 382 engine->running = false; 459 383 460 spin_unlock_irqrestore(&engine->queue_ 384 spin_unlock_irqrestore(&engine->queue_lock, flags); 461 385 462 if (ret) 386 if (ret) 463 dev_warn(engine->dev, "could n !! 387 pr_warn("could not stop engine\n"); 464 388 465 return ret; 389 return ret; 466 } 390 } 467 EXPORT_SYMBOL_GPL(crypto_engine_stop); 391 EXPORT_SYMBOL_GPL(crypto_engine_stop); 468 392 469 /** 393 /** 470 * crypto_engine_alloc_init_and_set - allocate !! 394 * crypto_engine_alloc_init - allocate crypto hardware engine structure and 471 * and initialize it by setting the maximum nu !! 395 * initialize it. 472 * crypto-engine queue. << 473 * @dev: the device attached with one hardware 396 * @dev: the device attached with one hardware engine 474 * @retry_support: whether hardware has suppor << 475 * @cbk_do_batch: pointer to a callback functi << 476 * a batch of requests. << 477 * This has the form: << 478 * callback(struct crypto_engin << 479 * where: << 480 * engine: the crypto engine st << 481 * @rt: whether this queue is set to run as a 397 * @rt: whether this queue is set to run as a realtime task 482 * @qlen: maximum size of the crypto-engine qu << 483 * 398 * 484 * This must be called from context that can s 399 * This must be called from context that can sleep. 485 * Return: the crypto engine structure on succ 400 * Return: the crypto engine structure on success, else NULL. 486 */ 401 */ 487 struct crypto_engine *crypto_engine_alloc_init !! 402 struct crypto_engine *crypto_engine_alloc_init(struct device *dev, bool rt) 488 << 489 << 490 << 491 { 403 { >> 404 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 492 struct crypto_engine *engine; 405 struct crypto_engine *engine; 493 406 494 if (!dev) 407 if (!dev) 495 return NULL; 408 return NULL; 496 409 497 engine = devm_kzalloc(dev, sizeof(*eng 410 engine = devm_kzalloc(dev, sizeof(*engine), GFP_KERNEL); 498 if (!engine) 411 if (!engine) 499 return NULL; 412 return NULL; 500 413 501 engine->dev = dev; << 502 engine->rt = rt; 414 engine->rt = rt; 503 engine->running = false; 415 engine->running = false; 504 engine->busy = false; 416 engine->busy = false; 505 engine->idling = false; 417 engine->idling = false; 506 engine->retry_support = retry_support; !! 418 engine->cur_req_prepared = false; 507 engine->priv_data = dev; 419 engine->priv_data = dev; 508 /* << 509 * Batch requests is possible only if << 510 * hardware has support for retry mech << 511 */ << 512 engine->do_batch_requests = retry_supp << 513 << 514 snprintf(engine->name, sizeof(engine-> 420 snprintf(engine->name, sizeof(engine->name), 515 "%s-engine", dev_name(dev)); 421 "%s-engine", dev_name(dev)); 516 422 517 crypto_init_queue(&engine->queue, qlen !! 423 crypto_init_queue(&engine->queue, CRYPTO_ENGINE_MAX_QLEN); 518 spin_lock_init(&engine->queue_lock); 424 spin_lock_init(&engine->queue_lock); 519 425 520 engine->kworker = kthread_create_worke 426 engine->kworker = kthread_create_worker(0, "%s", engine->name); 521 if (IS_ERR(engine->kworker)) { 427 if (IS_ERR(engine->kworker)) { 522 dev_err(dev, "failed to create 428 dev_err(dev, "failed to create crypto request pump task\n"); 523 return NULL; 429 return NULL; 524 } 430 } 525 kthread_init_work(&engine->pump_reques 431 kthread_init_work(&engine->pump_requests, crypto_pump_work); 526 432 527 if (engine->rt) { 433 if (engine->rt) { 528 dev_info(dev, "will run reques 434 dev_info(dev, "will run requests pump with realtime priority\n"); 529 sched_set_fifo(engine->kworker !! 435 sched_setscheduler(engine->kworker->task, SCHED_FIFO, ¶m); 530 } 436 } 531 437 532 return engine; 438 return engine; 533 } 439 } 534 EXPORT_SYMBOL_GPL(crypto_engine_alloc_init_and << 535 << 536 /** << 537 * crypto_engine_alloc_init - allocate crypto << 538 * initialize it. << 539 * @dev: the device attached with one hardware << 540 * @rt: whether this queue is set to run as a << 541 * << 542 * This must be called from context that can s << 543 * Return: the crypto engine structure on succ << 544 */ << 545 struct crypto_engine *crypto_engine_alloc_init << 546 { << 547 return crypto_engine_alloc_init_and_se << 548 << 549 } << 550 EXPORT_SYMBOL_GPL(crypto_engine_alloc_init); 440 EXPORT_SYMBOL_GPL(crypto_engine_alloc_init); 551 441 552 /** 442 /** 553 * crypto_engine_exit - free the resources of 443 * crypto_engine_exit - free the resources of hardware engine when exit 554 * @engine: the hardware engine need to be fre 444 * @engine: the hardware engine need to be freed >> 445 * >> 446 * Return 0 for success. 555 */ 447 */ 556 void crypto_engine_exit(struct crypto_engine * !! 448 int crypto_engine_exit(struct crypto_engine *engine) 557 { 449 { 558 int ret; 450 int ret; 559 451 560 ret = crypto_engine_stop(engine); 452 ret = crypto_engine_stop(engine); 561 if (ret) 453 if (ret) 562 return; !! 454 return ret; 563 455 564 kthread_destroy_worker(engine->kworker 456 kthread_destroy_worker(engine->kworker); 565 } << 566 EXPORT_SYMBOL_GPL(crypto_engine_exit); << 567 << 568 int crypto_engine_register_aead(struct aead_en << 569 { << 570 if (!alg->op.do_one_request) << 571 return -EINVAL; << 572 << 573 alg->base.base.cra_flags |= CRYPTO_ALG << 574 << 575 return crypto_register_aead(&alg->base << 576 } << 577 EXPORT_SYMBOL_GPL(crypto_engine_register_aead) << 578 << 579 void crypto_engine_unregister_aead(struct aead << 580 { << 581 crypto_unregister_aead(&alg->base); << 582 } << 583 EXPORT_SYMBOL_GPL(crypto_engine_unregister_aea << 584 << 585 int crypto_engine_register_aeads(struct aead_e << 586 { << 587 int i, ret; << 588 << 589 for (i = 0; i < count; i++) { << 590 ret = crypto_engine_register_a << 591 if (ret) << 592 goto err; << 593 } << 594 457 595 return 0; 458 return 0; 596 << 597 err: << 598 crypto_engine_unregister_aeads(algs, i << 599 << 600 return ret; << 601 } 459 } 602 EXPORT_SYMBOL_GPL(crypto_engine_register_aeads !! 460 EXPORT_SYMBOL_GPL(crypto_engine_exit); 603 << 604 void crypto_engine_unregister_aeads(struct aea << 605 { << 606 int i; << 607 << 608 for (i = count - 1; i >= 0; --i) << 609 crypto_engine_unregister_aead( << 610 } << 611 EXPORT_SYMBOL_GPL(crypto_engine_unregister_aea << 612 << 613 int crypto_engine_register_ahash(struct ahash_ << 614 { << 615 if (!alg->op.do_one_request) << 616 return -EINVAL; << 617 << 618 alg->base.halg.base.cra_flags |= CRYPT << 619 << 620 return crypto_register_ahash(&alg->bas << 621 } << 622 EXPORT_SYMBOL_GPL(crypto_engine_register_ahash << 623 << 624 void crypto_engine_unregister_ahash(struct aha << 625 { << 626 crypto_unregister_ahash(&alg->base); << 627 } << 628 EXPORT_SYMBOL_GPL(crypto_engine_unregister_aha << 629 << 630 int crypto_engine_register_ahashes(struct ahas << 631 { << 632 int i, ret; << 633 << 634 for (i = 0; i < count; i++) { << 635 ret = crypto_engine_register_a << 636 if (ret) << 637 goto err; << 638 } << 639 << 640 return 0; << 641 << 642 err: << 643 crypto_engine_unregister_ahashes(algs, << 644 << 645 return ret; << 646 } << 647 EXPORT_SYMBOL_GPL(crypto_engine_register_ahash << 648 << 649 void crypto_engine_unregister_ahashes(struct a << 650 int coun << 651 { << 652 int i; << 653 << 654 for (i = count - 1; i >= 0; --i) << 655 crypto_engine_unregister_ahash << 656 } << 657 EXPORT_SYMBOL_GPL(crypto_engine_unregister_aha << 658 << 659 int crypto_engine_register_akcipher(struct akc << 660 { << 661 if (!alg->op.do_one_request) << 662 return -EINVAL; << 663 << 664 alg->base.base.cra_flags |= CRYPTO_ALG << 665 << 666 return crypto_register_akcipher(&alg-> << 667 } << 668 EXPORT_SYMBOL_GPL(crypto_engine_register_akcip << 669 << 670 void crypto_engine_unregister_akcipher(struct << 671 { << 672 crypto_unregister_akcipher(&alg->base) << 673 } << 674 EXPORT_SYMBOL_GPL(crypto_engine_unregister_akc << 675 << 676 int crypto_engine_register_kpp(struct kpp_engi << 677 { << 678 if (!alg->op.do_one_request) << 679 return -EINVAL; << 680 << 681 alg->base.base.cra_flags |= CRYPTO_ALG << 682 << 683 return crypto_register_kpp(&alg->base) << 684 } << 685 EXPORT_SYMBOL_GPL(crypto_engine_register_kpp); << 686 << 687 void crypto_engine_unregister_kpp(struct kpp_e << 688 { << 689 crypto_unregister_kpp(&alg->base); << 690 } << 691 EXPORT_SYMBOL_GPL(crypto_engine_unregister_kpp << 692 << 693 int crypto_engine_register_skcipher(struct skc << 694 { << 695 if (!alg->op.do_one_request) << 696 return -EINVAL; << 697 << 698 alg->base.base.cra_flags |= CRYPTO_ALG << 699 << 700 return crypto_register_skcipher(&alg-> << 701 } << 702 EXPORT_SYMBOL_GPL(crypto_engine_register_skcip << 703 << 704 void crypto_engine_unregister_skcipher(struct << 705 { << 706 return crypto_unregister_skcipher(&alg << 707 } << 708 EXPORT_SYMBOL_GPL(crypto_engine_unregister_skc << 709 << 710 int crypto_engine_register_skciphers(struct sk << 711 int count << 712 { << 713 int i, ret; << 714 << 715 for (i = 0; i < count; i++) { << 716 ret = crypto_engine_register_s << 717 if (ret) << 718 goto err; << 719 } << 720 << 721 return 0; << 722 << 723 err: << 724 crypto_engine_unregister_skciphers(alg << 725 << 726 return ret; << 727 } << 728 EXPORT_SYMBOL_GPL(crypto_engine_register_skcip << 729 << 730 void crypto_engine_unregister_skciphers(struct << 731 int co << 732 { << 733 int i; << 734 << 735 for (i = count - 1; i >= 0; --i) << 736 crypto_engine_unregister_skcip << 737 } << 738 EXPORT_SYMBOL_GPL(crypto_engine_unregister_skc << 739 461 740 MODULE_LICENSE("GPL"); 462 MODULE_LICENSE("GPL"); 741 MODULE_DESCRIPTION("Crypto hardware engine fra 463 MODULE_DESCRIPTION("Crypto hardware engine framework"); 742 464
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.