1 // SPDX-License-Identifier: GPL-2.0-or-later 1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 2 /* 3 * Handle async block request by crypto hardwa 3 * Handle async block request by crypto hardware engine. 4 * 4 * 5 * Copyright (C) 2016 Linaro, Inc. 5 * Copyright (C) 2016 Linaro, Inc. 6 * 6 * 7 * Author: Baolin Wang <baolin.wang@linaro.org 7 * Author: Baolin Wang <baolin.wang@linaro.org> 8 */ 8 */ 9 9 10 #include <crypto/internal/aead.h> << 11 #include <crypto/internal/akcipher.h> << 12 #include <crypto/internal/engine.h> << 13 #include <crypto/internal/hash.h> << 14 #include <crypto/internal/kpp.h> << 15 #include <crypto/internal/skcipher.h> << 16 #include <linux/err.h> 10 #include <linux/err.h> 17 #include <linux/delay.h> 11 #include <linux/delay.h> 18 #include <linux/device.h> 12 #include <linux/device.h> 19 #include <linux/kernel.h> !! 13 #include <crypto/engine.h> 20 #include <linux/module.h> << 21 #include <uapi/linux/sched/types.h> 14 #include <uapi/linux/sched/types.h> 22 #include "internal.h" 15 #include "internal.h" 23 16 24 #define CRYPTO_ENGINE_MAX_QLEN 10 17 #define CRYPTO_ENGINE_MAX_QLEN 10 25 18 26 /* Temporary algorithm flag used to indicate a << 27 #define CRYPTO_ALG_ENGINE 0x200 << 28 << 29 struct crypto_engine_alg { << 30 struct crypto_alg base; << 31 struct crypto_engine_op op; << 32 }; << 33 << 34 /** 19 /** 35 * crypto_finalize_request - finalize one requ 20 * crypto_finalize_request - finalize one request if the request is done 36 * @engine: the hardware engine 21 * @engine: the hardware engine 37 * @req: the request need to be finalized 22 * @req: the request need to be finalized 38 * @err: error number 23 * @err: error number 39 */ 24 */ 40 static void crypto_finalize_request(struct cry 25 static void crypto_finalize_request(struct crypto_engine *engine, 41 struct cry 26 struct crypto_async_request *req, int err) 42 { 27 { 43 unsigned long flags; 28 unsigned long flags; >> 29 bool finalize_req = false; >> 30 int ret; >> 31 struct crypto_engine_ctx *enginectx; 44 32 45 /* 33 /* 46 * If hardware cannot enqueue more req 34 * If hardware cannot enqueue more requests 47 * and retry mechanism is not supporte 35 * and retry mechanism is not supported 48 * make sure we are completing the cur 36 * make sure we are completing the current request 49 */ 37 */ 50 if (!engine->retry_support) { 38 if (!engine->retry_support) { 51 spin_lock_irqsave(&engine->que 39 spin_lock_irqsave(&engine->queue_lock, flags); 52 if (engine->cur_req == req) { 40 if (engine->cur_req == req) { >> 41 finalize_req = true; 53 engine->cur_req = NULL 42 engine->cur_req = NULL; 54 } 43 } 55 spin_unlock_irqrestore(&engine 44 spin_unlock_irqrestore(&engine->queue_lock, flags); 56 } 45 } 57 46 58 lockdep_assert_in_softirq(); !! 47 if (finalize_req || engine->retry_support) { 59 crypto_request_complete(req, err); !! 48 enginectx = crypto_tfm_ctx(req->tfm); >> 49 if (enginectx->op.prepare_request && >> 50 enginectx->op.unprepare_request) { >> 51 ret = enginectx->op.unprepare_request(engine, req); >> 52 if (ret) >> 53 dev_err(engine->dev, "failed to unprepare request\n"); >> 54 } >> 55 } >> 56 req->complete(req, err); 60 57 61 kthread_queue_work(engine->kworker, &e 58 kthread_queue_work(engine->kworker, &engine->pump_requests); 62 } 59 } 63 60 64 /** 61 /** 65 * crypto_pump_requests - dequeue one request 62 * crypto_pump_requests - dequeue one request from engine queue to process 66 * @engine: the hardware engine 63 * @engine: the hardware engine 67 * @in_kthread: true if we are in the context 64 * @in_kthread: true if we are in the context of the request pump thread 68 * 65 * 69 * This function checks if there is any reques 66 * This function checks if there is any request in the engine queue that 70 * needs processing and if so call out to the 67 * needs processing and if so call out to the driver to initialize hardware 71 * and handle each request. 68 * and handle each request. 72 */ 69 */ 73 static void crypto_pump_requests(struct crypto 70 static void crypto_pump_requests(struct crypto_engine *engine, 74 bool in_kthre 71 bool in_kthread) 75 { 72 { 76 struct crypto_async_request *async_req 73 struct crypto_async_request *async_req, *backlog; 77 struct crypto_engine_alg *alg; << 78 struct crypto_engine_op *op; << 79 unsigned long flags; 74 unsigned long flags; 80 bool was_busy = false; 75 bool was_busy = false; 81 int ret; 76 int ret; >> 77 struct crypto_engine_ctx *enginectx; 82 78 83 spin_lock_irqsave(&engine->queue_lock, 79 spin_lock_irqsave(&engine->queue_lock, flags); 84 80 85 /* Make sure we are not already runnin 81 /* Make sure we are not already running a request */ 86 if (!engine->retry_support && engine-> 82 if (!engine->retry_support && engine->cur_req) 87 goto out; 83 goto out; 88 84 89 /* If another context is idling then d 85 /* If another context is idling then defer */ 90 if (engine->idling) { 86 if (engine->idling) { 91 kthread_queue_work(engine->kwo 87 kthread_queue_work(engine->kworker, &engine->pump_requests); 92 goto out; 88 goto out; 93 } 89 } 94 90 95 /* Check if the engine queue is idle * 91 /* Check if the engine queue is idle */ 96 if (!crypto_queue_len(&engine->queue) 92 if (!crypto_queue_len(&engine->queue) || !engine->running) { 97 if (!engine->busy) 93 if (!engine->busy) 98 goto out; 94 goto out; 99 95 100 /* Only do teardown in the thr 96 /* Only do teardown in the thread */ 101 if (!in_kthread) { 97 if (!in_kthread) { 102 kthread_queue_work(eng 98 kthread_queue_work(engine->kworker, 103 &en 99 &engine->pump_requests); 104 goto out; 100 goto out; 105 } 101 } 106 102 107 engine->busy = false; 103 engine->busy = false; 108 engine->idling = true; 104 engine->idling = true; 109 spin_unlock_irqrestore(&engine 105 spin_unlock_irqrestore(&engine->queue_lock, flags); 110 106 111 if (engine->unprepare_crypt_ha 107 if (engine->unprepare_crypt_hardware && 112 engine->unprepare_crypt_ha 108 engine->unprepare_crypt_hardware(engine)) 113 dev_err(engine->dev, " 109 dev_err(engine->dev, "failed to unprepare crypt hardware\n"); 114 110 115 spin_lock_irqsave(&engine->que 111 spin_lock_irqsave(&engine->queue_lock, flags); 116 engine->idling = false; 112 engine->idling = false; 117 goto out; 113 goto out; 118 } 114 } 119 115 120 start_request: 116 start_request: 121 /* Get the fist request from the engin 117 /* Get the fist request from the engine queue to handle */ 122 backlog = crypto_get_backlog(&engine-> 118 backlog = crypto_get_backlog(&engine->queue); 123 async_req = crypto_dequeue_request(&en 119 async_req = crypto_dequeue_request(&engine->queue); 124 if (!async_req) 120 if (!async_req) 125 goto out; 121 goto out; 126 122 127 /* 123 /* 128 * If hardware doesn't support the ret 124 * If hardware doesn't support the retry mechanism, 129 * keep track of the request we are pr 125 * keep track of the request we are processing now. 130 * We'll need it on completion (crypto 126 * We'll need it on completion (crypto_finalize_request). 131 */ 127 */ 132 if (!engine->retry_support) 128 if (!engine->retry_support) 133 engine->cur_req = async_req; 129 engine->cur_req = async_req; 134 130 >> 131 if (backlog) >> 132 backlog->complete(backlog, -EINPROGRESS); >> 133 135 if (engine->busy) 134 if (engine->busy) 136 was_busy = true; 135 was_busy = true; 137 else 136 else 138 engine->busy = true; 137 engine->busy = true; 139 138 140 spin_unlock_irqrestore(&engine->queue_ 139 spin_unlock_irqrestore(&engine->queue_lock, flags); 141 140 142 /* Until here we get the request need 141 /* Until here we get the request need to be encrypted successfully */ 143 if (!was_busy && engine->prepare_crypt 142 if (!was_busy && engine->prepare_crypt_hardware) { 144 ret = engine->prepare_crypt_ha 143 ret = engine->prepare_crypt_hardware(engine); 145 if (ret) { 144 if (ret) { 146 dev_err(engine->dev, " 145 dev_err(engine->dev, "failed to prepare crypt hardware\n"); 147 goto req_err_1; !! 146 goto req_err_2; 148 } 147 } 149 } 148 } 150 149 151 if (async_req->tfm->__crt_alg->cra_fla !! 150 enginectx = crypto_tfm_ctx(async_req->tfm); 152 alg = container_of(async_req-> !! 151 153 struct cryp !! 152 if (enginectx->op.prepare_request) { 154 op = &alg->op; !! 153 ret = enginectx->op.prepare_request(engine, async_req); 155 } else { !! 154 if (ret) { >> 155 dev_err(engine->dev, "failed to prepare request: %d\n", >> 156 ret); >> 157 goto req_err_2; >> 158 } >> 159 } >> 160 if (!enginectx->op.do_one_request) { 156 dev_err(engine->dev, "failed t 161 dev_err(engine->dev, "failed to do request\n"); 157 ret = -EINVAL; 162 ret = -EINVAL; 158 goto req_err_1; 163 goto req_err_1; 159 } 164 } 160 165 161 ret = op->do_one_request(engine, async !! 166 ret = enginectx->op.do_one_request(engine, async_req); 162 167 163 /* Request unsuccessfully executed by 168 /* Request unsuccessfully executed by hardware */ 164 if (ret < 0) { 169 if (ret < 0) { 165 /* 170 /* 166 * If hardware queue is full ( 171 * If hardware queue is full (-ENOSPC), requeue request 167 * regardless of backlog flag. 172 * regardless of backlog flag. 168 * Otherwise, unprepare and co 173 * Otherwise, unprepare and complete the request. 169 */ 174 */ 170 if (!engine->retry_support || 175 if (!engine->retry_support || 171 (ret != -ENOSPC)) { 176 (ret != -ENOSPC)) { 172 dev_err(engine->dev, 177 dev_err(engine->dev, 173 "Failed to do 178 "Failed to do one request from queue: %d\n", 174 ret); 179 ret); 175 goto req_err_1; 180 goto req_err_1; 176 } 181 } >> 182 /* >> 183 * If retry mechanism is supported, >> 184 * unprepare current request and >> 185 * enqueue it back into crypto-engine queue. >> 186 */ >> 187 if (enginectx->op.unprepare_request) { >> 188 ret = enginectx->op.unprepare_request(engine, >> 189 async_req); >> 190 if (ret) >> 191 dev_err(engine->dev, >> 192 "failed to unprepare request\n"); >> 193 } 177 spin_lock_irqsave(&engine->que 194 spin_lock_irqsave(&engine->queue_lock, flags); 178 /* 195 /* 179 * If hardware was unable to e 196 * If hardware was unable to execute request, enqueue it 180 * back in front of crypto-eng 197 * back in front of crypto-engine queue, to keep the order 181 * of requests. 198 * of requests. 182 */ 199 */ 183 crypto_enqueue_request_head(&e 200 crypto_enqueue_request_head(&engine->queue, async_req); 184 201 185 kthread_queue_work(engine->kwo 202 kthread_queue_work(engine->kworker, &engine->pump_requests); 186 goto out; 203 goto out; 187 } 204 } 188 205 189 goto retry; 206 goto retry; 190 207 191 req_err_1: 208 req_err_1: 192 crypto_request_complete(async_req, ret !! 209 if (enginectx->op.unprepare_request) { >> 210 ret = enginectx->op.unprepare_request(engine, async_req); >> 211 if (ret) >> 212 dev_err(engine->dev, "failed to unprepare request\n"); >> 213 } 193 214 194 retry: !! 215 req_err_2: 195 if (backlog) !! 216 async_req->complete(async_req, ret); 196 crypto_request_complete(backlo << 197 217 >> 218 retry: 198 /* If retry mechanism is supported, se 219 /* If retry mechanism is supported, send new requests to engine */ 199 if (engine->retry_support) { 220 if (engine->retry_support) { 200 spin_lock_irqsave(&engine->que 221 spin_lock_irqsave(&engine->queue_lock, flags); 201 goto start_request; 222 goto start_request; 202 } 223 } 203 return; 224 return; 204 225 205 out: 226 out: 206 spin_unlock_irqrestore(&engine->queue_ 227 spin_unlock_irqrestore(&engine->queue_lock, flags); 207 228 208 /* 229 /* 209 * Batch requests is possible only if 230 * Batch requests is possible only if 210 * hardware can enqueue multiple reque 231 * hardware can enqueue multiple requests 211 */ 232 */ 212 if (engine->do_batch_requests) { 233 if (engine->do_batch_requests) { 213 ret = engine->do_batch_request 234 ret = engine->do_batch_requests(engine); 214 if (ret) 235 if (ret) 215 dev_err(engine->dev, " 236 dev_err(engine->dev, "failed to do batch requests: %d\n", 216 ret); 237 ret); 217 } 238 } 218 239 219 return; 240 return; 220 } 241 } 221 242 222 static void crypto_pump_work(struct kthread_wo 243 static void crypto_pump_work(struct kthread_work *work) 223 { 244 { 224 struct crypto_engine *engine = 245 struct crypto_engine *engine = 225 container_of(work, struct cryp 246 container_of(work, struct crypto_engine, pump_requests); 226 247 227 crypto_pump_requests(engine, true); 248 crypto_pump_requests(engine, true); 228 } 249 } 229 250 230 /** 251 /** 231 * crypto_transfer_request - transfer the new 252 * crypto_transfer_request - transfer the new request into the engine queue 232 * @engine: the hardware engine 253 * @engine: the hardware engine 233 * @req: the request need to be listed into th 254 * @req: the request need to be listed into the engine queue 234 * @need_pump: indicates whether queue the pum << 235 */ 255 */ 236 static int crypto_transfer_request(struct cryp 256 static int crypto_transfer_request(struct crypto_engine *engine, 237 struct cryp 257 struct crypto_async_request *req, 238 bool need_p 258 bool need_pump) 239 { 259 { 240 unsigned long flags; 260 unsigned long flags; 241 int ret; 261 int ret; 242 262 243 spin_lock_irqsave(&engine->queue_lock, 263 spin_lock_irqsave(&engine->queue_lock, flags); 244 264 245 if (!engine->running) { 265 if (!engine->running) { 246 spin_unlock_irqrestore(&engine 266 spin_unlock_irqrestore(&engine->queue_lock, flags); 247 return -ESHUTDOWN; 267 return -ESHUTDOWN; 248 } 268 } 249 269 250 ret = crypto_enqueue_request(&engine-> 270 ret = crypto_enqueue_request(&engine->queue, req); 251 271 252 if (!engine->busy && need_pump) 272 if (!engine->busy && need_pump) 253 kthread_queue_work(engine->kwo 273 kthread_queue_work(engine->kworker, &engine->pump_requests); 254 274 255 spin_unlock_irqrestore(&engine->queue_ 275 spin_unlock_irqrestore(&engine->queue_lock, flags); 256 return ret; 276 return ret; 257 } 277 } 258 278 259 /** 279 /** 260 * crypto_transfer_request_to_engine - transfe 280 * crypto_transfer_request_to_engine - transfer one request to list 261 * into the engine queue 281 * into the engine queue 262 * @engine: the hardware engine 282 * @engine: the hardware engine 263 * @req: the request need to be listed into th 283 * @req: the request need to be listed into the engine queue 264 */ 284 */ 265 static int crypto_transfer_request_to_engine(s 285 static int crypto_transfer_request_to_engine(struct crypto_engine *engine, 266 s 286 struct crypto_async_request *req) 267 { 287 { 268 return crypto_transfer_request(engine, 288 return crypto_transfer_request(engine, req, true); 269 } 289 } 270 290 271 /** 291 /** 272 * crypto_transfer_aead_request_to_engine - tr 292 * crypto_transfer_aead_request_to_engine - transfer one aead_request 273 * to list into the engine queue 293 * to list into the engine queue 274 * @engine: the hardware engine 294 * @engine: the hardware engine 275 * @req: the request need to be listed into th 295 * @req: the request need to be listed into the engine queue 276 */ 296 */ 277 int crypto_transfer_aead_request_to_engine(str 297 int crypto_transfer_aead_request_to_engine(struct crypto_engine *engine, 278 str 298 struct aead_request *req) 279 { 299 { 280 return crypto_transfer_request_to_engi 300 return crypto_transfer_request_to_engine(engine, &req->base); 281 } 301 } 282 EXPORT_SYMBOL_GPL(crypto_transfer_aead_request 302 EXPORT_SYMBOL_GPL(crypto_transfer_aead_request_to_engine); 283 303 284 /** 304 /** 285 * crypto_transfer_akcipher_request_to_engine 305 * crypto_transfer_akcipher_request_to_engine - transfer one akcipher_request 286 * to list into the engine queue 306 * to list into the engine queue 287 * @engine: the hardware engine 307 * @engine: the hardware engine 288 * @req: the request need to be listed into th 308 * @req: the request need to be listed into the engine queue 289 */ 309 */ 290 int crypto_transfer_akcipher_request_to_engine 310 int crypto_transfer_akcipher_request_to_engine(struct crypto_engine *engine, 291 311 struct akcipher_request *req) 292 { 312 { 293 return crypto_transfer_request_to_engi 313 return crypto_transfer_request_to_engine(engine, &req->base); 294 } 314 } 295 EXPORT_SYMBOL_GPL(crypto_transfer_akcipher_req 315 EXPORT_SYMBOL_GPL(crypto_transfer_akcipher_request_to_engine); 296 316 297 /** 317 /** 298 * crypto_transfer_hash_request_to_engine - tr 318 * crypto_transfer_hash_request_to_engine - transfer one ahash_request 299 * to list into the engine queue 319 * to list into the engine queue 300 * @engine: the hardware engine 320 * @engine: the hardware engine 301 * @req: the request need to be listed into th 321 * @req: the request need to be listed into the engine queue 302 */ 322 */ 303 int crypto_transfer_hash_request_to_engine(str 323 int crypto_transfer_hash_request_to_engine(struct crypto_engine *engine, 304 str 324 struct ahash_request *req) 305 { 325 { 306 return crypto_transfer_request_to_engi 326 return crypto_transfer_request_to_engine(engine, &req->base); 307 } 327 } 308 EXPORT_SYMBOL_GPL(crypto_transfer_hash_request 328 EXPORT_SYMBOL_GPL(crypto_transfer_hash_request_to_engine); 309 329 310 /** 330 /** 311 * crypto_transfer_kpp_request_to_engine - tra 331 * crypto_transfer_kpp_request_to_engine - transfer one kpp_request to list 312 * into the engine queue 332 * into the engine queue 313 * @engine: the hardware engine 333 * @engine: the hardware engine 314 * @req: the request need to be listed into th 334 * @req: the request need to be listed into the engine queue 315 */ 335 */ 316 int crypto_transfer_kpp_request_to_engine(stru 336 int crypto_transfer_kpp_request_to_engine(struct crypto_engine *engine, 317 stru 337 struct kpp_request *req) 318 { 338 { 319 return crypto_transfer_request_to_engi 339 return crypto_transfer_request_to_engine(engine, &req->base); 320 } 340 } 321 EXPORT_SYMBOL_GPL(crypto_transfer_kpp_request_ 341 EXPORT_SYMBOL_GPL(crypto_transfer_kpp_request_to_engine); 322 342 323 /** 343 /** 324 * crypto_transfer_skcipher_request_to_engine 344 * crypto_transfer_skcipher_request_to_engine - transfer one skcipher_request 325 * to list into the engine queue 345 * to list into the engine queue 326 * @engine: the hardware engine 346 * @engine: the hardware engine 327 * @req: the request need to be listed into th 347 * @req: the request need to be listed into the engine queue 328 */ 348 */ 329 int crypto_transfer_skcipher_request_to_engine 349 int crypto_transfer_skcipher_request_to_engine(struct crypto_engine *engine, 330 350 struct skcipher_request *req) 331 { 351 { 332 return crypto_transfer_request_to_engi 352 return crypto_transfer_request_to_engine(engine, &req->base); 333 } 353 } 334 EXPORT_SYMBOL_GPL(crypto_transfer_skcipher_req 354 EXPORT_SYMBOL_GPL(crypto_transfer_skcipher_request_to_engine); 335 355 336 /** 356 /** 337 * crypto_finalize_aead_request - finalize one 357 * crypto_finalize_aead_request - finalize one aead_request if 338 * the request is done 358 * the request is done 339 * @engine: the hardware engine 359 * @engine: the hardware engine 340 * @req: the request need to be finalized 360 * @req: the request need to be finalized 341 * @err: error number 361 * @err: error number 342 */ 362 */ 343 void crypto_finalize_aead_request(struct crypt 363 void crypto_finalize_aead_request(struct crypto_engine *engine, 344 struct aead_ 364 struct aead_request *req, int err) 345 { 365 { 346 return crypto_finalize_request(engine, 366 return crypto_finalize_request(engine, &req->base, err); 347 } 367 } 348 EXPORT_SYMBOL_GPL(crypto_finalize_aead_request 368 EXPORT_SYMBOL_GPL(crypto_finalize_aead_request); 349 369 350 /** 370 /** 351 * crypto_finalize_akcipher_request - finalize 371 * crypto_finalize_akcipher_request - finalize one akcipher_request if 352 * the request is done 372 * the request is done 353 * @engine: the hardware engine 373 * @engine: the hardware engine 354 * @req: the request need to be finalized 374 * @req: the request need to be finalized 355 * @err: error number 375 * @err: error number 356 */ 376 */ 357 void crypto_finalize_akcipher_request(struct c 377 void crypto_finalize_akcipher_request(struct crypto_engine *engine, 358 struct a 378 struct akcipher_request *req, int err) 359 { 379 { 360 return crypto_finalize_request(engine, 380 return crypto_finalize_request(engine, &req->base, err); 361 } 381 } 362 EXPORT_SYMBOL_GPL(crypto_finalize_akcipher_req 382 EXPORT_SYMBOL_GPL(crypto_finalize_akcipher_request); 363 383 364 /** 384 /** 365 * crypto_finalize_hash_request - finalize one 385 * crypto_finalize_hash_request - finalize one ahash_request if 366 * the request is done 386 * the request is done 367 * @engine: the hardware engine 387 * @engine: the hardware engine 368 * @req: the request need to be finalized 388 * @req: the request need to be finalized 369 * @err: error number 389 * @err: error number 370 */ 390 */ 371 void crypto_finalize_hash_request(struct crypt 391 void crypto_finalize_hash_request(struct crypto_engine *engine, 372 struct ahash 392 struct ahash_request *req, int err) 373 { 393 { 374 return crypto_finalize_request(engine, 394 return crypto_finalize_request(engine, &req->base, err); 375 } 395 } 376 EXPORT_SYMBOL_GPL(crypto_finalize_hash_request 396 EXPORT_SYMBOL_GPL(crypto_finalize_hash_request); 377 397 378 /** 398 /** 379 * crypto_finalize_kpp_request - finalize one 399 * crypto_finalize_kpp_request - finalize one kpp_request if the request is done 380 * @engine: the hardware engine 400 * @engine: the hardware engine 381 * @req: the request need to be finalized 401 * @req: the request need to be finalized 382 * @err: error number 402 * @err: error number 383 */ 403 */ 384 void crypto_finalize_kpp_request(struct crypto 404 void crypto_finalize_kpp_request(struct crypto_engine *engine, 385 struct kpp_re 405 struct kpp_request *req, int err) 386 { 406 { 387 return crypto_finalize_request(engine, 407 return crypto_finalize_request(engine, &req->base, err); 388 } 408 } 389 EXPORT_SYMBOL_GPL(crypto_finalize_kpp_request) 409 EXPORT_SYMBOL_GPL(crypto_finalize_kpp_request); 390 410 391 /** 411 /** 392 * crypto_finalize_skcipher_request - finalize 412 * crypto_finalize_skcipher_request - finalize one skcipher_request if 393 * the request is done 413 * the request is done 394 * @engine: the hardware engine 414 * @engine: the hardware engine 395 * @req: the request need to be finalized 415 * @req: the request need to be finalized 396 * @err: error number 416 * @err: error number 397 */ 417 */ 398 void crypto_finalize_skcipher_request(struct c 418 void crypto_finalize_skcipher_request(struct crypto_engine *engine, 399 struct s 419 struct skcipher_request *req, int err) 400 { 420 { 401 return crypto_finalize_request(engine, 421 return crypto_finalize_request(engine, &req->base, err); 402 } 422 } 403 EXPORT_SYMBOL_GPL(crypto_finalize_skcipher_req 423 EXPORT_SYMBOL_GPL(crypto_finalize_skcipher_request); 404 424 405 /** 425 /** 406 * crypto_engine_start - start the hardware en 426 * crypto_engine_start - start the hardware engine 407 * @engine: the hardware engine need to be sta 427 * @engine: the hardware engine need to be started 408 * 428 * 409 * Return 0 on success, else on fail. 429 * Return 0 on success, else on fail. 410 */ 430 */ 411 int crypto_engine_start(struct crypto_engine * 431 int crypto_engine_start(struct crypto_engine *engine) 412 { 432 { 413 unsigned long flags; 433 unsigned long flags; 414 434 415 spin_lock_irqsave(&engine->queue_lock, 435 spin_lock_irqsave(&engine->queue_lock, flags); 416 436 417 if (engine->running || engine->busy) { 437 if (engine->running || engine->busy) { 418 spin_unlock_irqrestore(&engine 438 spin_unlock_irqrestore(&engine->queue_lock, flags); 419 return -EBUSY; 439 return -EBUSY; 420 } 440 } 421 441 422 engine->running = true; 442 engine->running = true; 423 spin_unlock_irqrestore(&engine->queue_ 443 spin_unlock_irqrestore(&engine->queue_lock, flags); 424 444 425 kthread_queue_work(engine->kworker, &e 445 kthread_queue_work(engine->kworker, &engine->pump_requests); 426 446 427 return 0; 447 return 0; 428 } 448 } 429 EXPORT_SYMBOL_GPL(crypto_engine_start); 449 EXPORT_SYMBOL_GPL(crypto_engine_start); 430 450 431 /** 451 /** 432 * crypto_engine_stop - stop the hardware engi 452 * crypto_engine_stop - stop the hardware engine 433 * @engine: the hardware engine need to be sto 453 * @engine: the hardware engine need to be stopped 434 * 454 * 435 * Return 0 on success, else on fail. 455 * Return 0 on success, else on fail. 436 */ 456 */ 437 int crypto_engine_stop(struct crypto_engine *e 457 int crypto_engine_stop(struct crypto_engine *engine) 438 { 458 { 439 unsigned long flags; 459 unsigned long flags; 440 unsigned int limit = 500; 460 unsigned int limit = 500; 441 int ret = 0; 461 int ret = 0; 442 462 443 spin_lock_irqsave(&engine->queue_lock, 463 spin_lock_irqsave(&engine->queue_lock, flags); 444 464 445 /* 465 /* 446 * If the engine queue is not empty or 466 * If the engine queue is not empty or the engine is on busy state, 447 * we need to wait for a while to pump 467 * we need to wait for a while to pump the requests of engine queue. 448 */ 468 */ 449 while ((crypto_queue_len(&engine->queu 469 while ((crypto_queue_len(&engine->queue) || engine->busy) && limit--) { 450 spin_unlock_irqrestore(&engine 470 spin_unlock_irqrestore(&engine->queue_lock, flags); 451 msleep(20); 471 msleep(20); 452 spin_lock_irqsave(&engine->que 472 spin_lock_irqsave(&engine->queue_lock, flags); 453 } 473 } 454 474 455 if (crypto_queue_len(&engine->queue) | 475 if (crypto_queue_len(&engine->queue) || engine->busy) 456 ret = -EBUSY; 476 ret = -EBUSY; 457 else 477 else 458 engine->running = false; 478 engine->running = false; 459 479 460 spin_unlock_irqrestore(&engine->queue_ 480 spin_unlock_irqrestore(&engine->queue_lock, flags); 461 481 462 if (ret) 482 if (ret) 463 dev_warn(engine->dev, "could n 483 dev_warn(engine->dev, "could not stop engine\n"); 464 484 465 return ret; 485 return ret; 466 } 486 } 467 EXPORT_SYMBOL_GPL(crypto_engine_stop); 487 EXPORT_SYMBOL_GPL(crypto_engine_stop); 468 488 469 /** 489 /** 470 * crypto_engine_alloc_init_and_set - allocate 490 * crypto_engine_alloc_init_and_set - allocate crypto hardware engine structure 471 * and initialize it by setting the maximum nu 491 * and initialize it by setting the maximum number of entries in the software 472 * crypto-engine queue. 492 * crypto-engine queue. 473 * @dev: the device attached with one hardware 493 * @dev: the device attached with one hardware engine 474 * @retry_support: whether hardware has suppor 494 * @retry_support: whether hardware has support for retry mechanism 475 * @cbk_do_batch: pointer to a callback functi 495 * @cbk_do_batch: pointer to a callback function to be invoked when executing 476 * a batch of requests. 496 * a batch of requests. 477 * This has the form: 497 * This has the form: 478 * callback(struct crypto_engin 498 * callback(struct crypto_engine *engine) 479 * where: 499 * where: 480 * engine: the crypto engine st !! 500 * @engine: the crypto engine structure. 481 * @rt: whether this queue is set to run as a 501 * @rt: whether this queue is set to run as a realtime task 482 * @qlen: maximum size of the crypto-engine qu 502 * @qlen: maximum size of the crypto-engine queue 483 * 503 * 484 * This must be called from context that can s 504 * This must be called from context that can sleep. 485 * Return: the crypto engine structure on succ 505 * Return: the crypto engine structure on success, else NULL. 486 */ 506 */ 487 struct crypto_engine *crypto_engine_alloc_init 507 struct crypto_engine *crypto_engine_alloc_init_and_set(struct device *dev, 488 508 bool retry_support, 489 509 int (*cbk_do_batch)(struct crypto_engine *engine), 490 510 bool rt, int qlen) 491 { 511 { 492 struct crypto_engine *engine; 512 struct crypto_engine *engine; 493 513 494 if (!dev) 514 if (!dev) 495 return NULL; 515 return NULL; 496 516 497 engine = devm_kzalloc(dev, sizeof(*eng 517 engine = devm_kzalloc(dev, sizeof(*engine), GFP_KERNEL); 498 if (!engine) 518 if (!engine) 499 return NULL; 519 return NULL; 500 520 501 engine->dev = dev; 521 engine->dev = dev; 502 engine->rt = rt; 522 engine->rt = rt; 503 engine->running = false; 523 engine->running = false; 504 engine->busy = false; 524 engine->busy = false; 505 engine->idling = false; 525 engine->idling = false; 506 engine->retry_support = retry_support; 526 engine->retry_support = retry_support; 507 engine->priv_data = dev; 527 engine->priv_data = dev; 508 /* 528 /* 509 * Batch requests is possible only if 529 * Batch requests is possible only if 510 * hardware has support for retry mech 530 * hardware has support for retry mechanism. 511 */ 531 */ 512 engine->do_batch_requests = retry_supp 532 engine->do_batch_requests = retry_support ? cbk_do_batch : NULL; 513 533 514 snprintf(engine->name, sizeof(engine-> 534 snprintf(engine->name, sizeof(engine->name), 515 "%s-engine", dev_name(dev)); 535 "%s-engine", dev_name(dev)); 516 536 517 crypto_init_queue(&engine->queue, qlen 537 crypto_init_queue(&engine->queue, qlen); 518 spin_lock_init(&engine->queue_lock); 538 spin_lock_init(&engine->queue_lock); 519 539 520 engine->kworker = kthread_create_worke 540 engine->kworker = kthread_create_worker(0, "%s", engine->name); 521 if (IS_ERR(engine->kworker)) { 541 if (IS_ERR(engine->kworker)) { 522 dev_err(dev, "failed to create 542 dev_err(dev, "failed to create crypto request pump task\n"); 523 return NULL; 543 return NULL; 524 } 544 } 525 kthread_init_work(&engine->pump_reques 545 kthread_init_work(&engine->pump_requests, crypto_pump_work); 526 546 527 if (engine->rt) { 547 if (engine->rt) { 528 dev_info(dev, "will run reques 548 dev_info(dev, "will run requests pump with realtime priority\n"); 529 sched_set_fifo(engine->kworker 549 sched_set_fifo(engine->kworker->task); 530 } 550 } 531 551 532 return engine; 552 return engine; 533 } 553 } 534 EXPORT_SYMBOL_GPL(crypto_engine_alloc_init_and 554 EXPORT_SYMBOL_GPL(crypto_engine_alloc_init_and_set); 535 555 536 /** 556 /** 537 * crypto_engine_alloc_init - allocate crypto 557 * crypto_engine_alloc_init - allocate crypto hardware engine structure and 538 * initialize it. 558 * initialize it. 539 * @dev: the device attached with one hardware 559 * @dev: the device attached with one hardware engine 540 * @rt: whether this queue is set to run as a 560 * @rt: whether this queue is set to run as a realtime task 541 * 561 * 542 * This must be called from context that can s 562 * This must be called from context that can sleep. 543 * Return: the crypto engine structure on succ 563 * Return: the crypto engine structure on success, else NULL. 544 */ 564 */ 545 struct crypto_engine *crypto_engine_alloc_init 565 struct crypto_engine *crypto_engine_alloc_init(struct device *dev, bool rt) 546 { 566 { 547 return crypto_engine_alloc_init_and_se 567 return crypto_engine_alloc_init_and_set(dev, false, NULL, rt, 548 568 CRYPTO_ENGINE_MAX_QLEN); 549 } 569 } 550 EXPORT_SYMBOL_GPL(crypto_engine_alloc_init); 570 EXPORT_SYMBOL_GPL(crypto_engine_alloc_init); 551 571 552 /** 572 /** 553 * crypto_engine_exit - free the resources of 573 * crypto_engine_exit - free the resources of hardware engine when exit 554 * @engine: the hardware engine need to be fre 574 * @engine: the hardware engine need to be freed >> 575 * >> 576 * Return 0 for success. 555 */ 577 */ 556 void crypto_engine_exit(struct crypto_engine * !! 578 int crypto_engine_exit(struct crypto_engine *engine) 557 { 579 { 558 int ret; 580 int ret; 559 581 560 ret = crypto_engine_stop(engine); 582 ret = crypto_engine_stop(engine); 561 if (ret) 583 if (ret) 562 return; !! 584 return ret; 563 585 564 kthread_destroy_worker(engine->kworker 586 kthread_destroy_worker(engine->kworker); 565 } << 566 EXPORT_SYMBOL_GPL(crypto_engine_exit); << 567 << 568 int crypto_engine_register_aead(struct aead_en << 569 { << 570 if (!alg->op.do_one_request) << 571 return -EINVAL; << 572 << 573 alg->base.base.cra_flags |= CRYPTO_ALG << 574 << 575 return crypto_register_aead(&alg->base << 576 } << 577 EXPORT_SYMBOL_GPL(crypto_engine_register_aead) << 578 << 579 void crypto_engine_unregister_aead(struct aead << 580 { << 581 crypto_unregister_aead(&alg->base); << 582 } << 583 EXPORT_SYMBOL_GPL(crypto_engine_unregister_aea << 584 << 585 int crypto_engine_register_aeads(struct aead_e << 586 { << 587 int i, ret; << 588 << 589 for (i = 0; i < count; i++) { << 590 ret = crypto_engine_register_a << 591 if (ret) << 592 goto err; << 593 } << 594 587 595 return 0; 588 return 0; 596 << 597 err: << 598 crypto_engine_unregister_aeads(algs, i << 599 << 600 return ret; << 601 } 589 } 602 EXPORT_SYMBOL_GPL(crypto_engine_register_aeads !! 590 EXPORT_SYMBOL_GPL(crypto_engine_exit); 603 << 604 void crypto_engine_unregister_aeads(struct aea << 605 { << 606 int i; << 607 << 608 for (i = count - 1; i >= 0; --i) << 609 crypto_engine_unregister_aead( << 610 } << 611 EXPORT_SYMBOL_GPL(crypto_engine_unregister_aea << 612 << 613 int crypto_engine_register_ahash(struct ahash_ << 614 { << 615 if (!alg->op.do_one_request) << 616 return -EINVAL; << 617 << 618 alg->base.halg.base.cra_flags |= CRYPT << 619 << 620 return crypto_register_ahash(&alg->bas << 621 } << 622 EXPORT_SYMBOL_GPL(crypto_engine_register_ahash << 623 << 624 void crypto_engine_unregister_ahash(struct aha << 625 { << 626 crypto_unregister_ahash(&alg->base); << 627 } << 628 EXPORT_SYMBOL_GPL(crypto_engine_unregister_aha << 629 << 630 int crypto_engine_register_ahashes(struct ahas << 631 { << 632 int i, ret; << 633 << 634 for (i = 0; i < count; i++) { << 635 ret = crypto_engine_register_a << 636 if (ret) << 637 goto err; << 638 } << 639 << 640 return 0; << 641 << 642 err: << 643 crypto_engine_unregister_ahashes(algs, << 644 << 645 return ret; << 646 } << 647 EXPORT_SYMBOL_GPL(crypto_engine_register_ahash << 648 << 649 void crypto_engine_unregister_ahashes(struct a << 650 int coun << 651 { << 652 int i; << 653 << 654 for (i = count - 1; i >= 0; --i) << 655 crypto_engine_unregister_ahash << 656 } << 657 EXPORT_SYMBOL_GPL(crypto_engine_unregister_aha << 658 << 659 int crypto_engine_register_akcipher(struct akc << 660 { << 661 if (!alg->op.do_one_request) << 662 return -EINVAL; << 663 << 664 alg->base.base.cra_flags |= CRYPTO_ALG << 665 << 666 return crypto_register_akcipher(&alg-> << 667 } << 668 EXPORT_SYMBOL_GPL(crypto_engine_register_akcip << 669 << 670 void crypto_engine_unregister_akcipher(struct << 671 { << 672 crypto_unregister_akcipher(&alg->base) << 673 } << 674 EXPORT_SYMBOL_GPL(crypto_engine_unregister_akc << 675 << 676 int crypto_engine_register_kpp(struct kpp_engi << 677 { << 678 if (!alg->op.do_one_request) << 679 return -EINVAL; << 680 << 681 alg->base.base.cra_flags |= CRYPTO_ALG << 682 << 683 return crypto_register_kpp(&alg->base) << 684 } << 685 EXPORT_SYMBOL_GPL(crypto_engine_register_kpp); << 686 << 687 void crypto_engine_unregister_kpp(struct kpp_e << 688 { << 689 crypto_unregister_kpp(&alg->base); << 690 } << 691 EXPORT_SYMBOL_GPL(crypto_engine_unregister_kpp << 692 << 693 int crypto_engine_register_skcipher(struct skc << 694 { << 695 if (!alg->op.do_one_request) << 696 return -EINVAL; << 697 << 698 alg->base.base.cra_flags |= CRYPTO_ALG << 699 << 700 return crypto_register_skcipher(&alg-> << 701 } << 702 EXPORT_SYMBOL_GPL(crypto_engine_register_skcip << 703 << 704 void crypto_engine_unregister_skcipher(struct << 705 { << 706 return crypto_unregister_skcipher(&alg << 707 } << 708 EXPORT_SYMBOL_GPL(crypto_engine_unregister_skc << 709 << 710 int crypto_engine_register_skciphers(struct sk << 711 int count << 712 { << 713 int i, ret; << 714 << 715 for (i = 0; i < count; i++) { << 716 ret = crypto_engine_register_s << 717 if (ret) << 718 goto err; << 719 } << 720 << 721 return 0; << 722 << 723 err: << 724 crypto_engine_unregister_skciphers(alg << 725 << 726 return ret; << 727 } << 728 EXPORT_SYMBOL_GPL(crypto_engine_register_skcip << 729 << 730 void crypto_engine_unregister_skciphers(struct << 731 int co << 732 { << 733 int i; << 734 << 735 for (i = count - 1; i >= 0; --i) << 736 crypto_engine_unregister_skcip << 737 } << 738 EXPORT_SYMBOL_GPL(crypto_engine_unregister_skc << 739 591 740 MODULE_LICENSE("GPL"); 592 MODULE_LICENSE("GPL"); 741 MODULE_DESCRIPTION("Crypto hardware engine fra 593 MODULE_DESCRIPTION("Crypto hardware engine framework"); 742 594
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.