1 // SPDX-License-Identifier: GPL-2.0-or-later 1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 2 /* 3 * Handle async block request by crypto hardwa 3 * Handle async block request by crypto hardware engine. 4 * 4 * 5 * Copyright (C) 2016 Linaro, Inc. 5 * Copyright (C) 2016 Linaro, Inc. 6 * 6 * 7 * Author: Baolin Wang <baolin.wang@linaro.org 7 * Author: Baolin Wang <baolin.wang@linaro.org> 8 */ 8 */ 9 9 10 #include <crypto/internal/aead.h> 10 #include <crypto/internal/aead.h> 11 #include <crypto/internal/akcipher.h> 11 #include <crypto/internal/akcipher.h> 12 #include <crypto/internal/engine.h> 12 #include <crypto/internal/engine.h> 13 #include <crypto/internal/hash.h> 13 #include <crypto/internal/hash.h> 14 #include <crypto/internal/kpp.h> 14 #include <crypto/internal/kpp.h> 15 #include <crypto/internal/skcipher.h> 15 #include <crypto/internal/skcipher.h> 16 #include <linux/err.h> 16 #include <linux/err.h> 17 #include <linux/delay.h> 17 #include <linux/delay.h> 18 #include <linux/device.h> 18 #include <linux/device.h> 19 #include <linux/kernel.h> 19 #include <linux/kernel.h> 20 #include <linux/module.h> 20 #include <linux/module.h> 21 #include <uapi/linux/sched/types.h> 21 #include <uapi/linux/sched/types.h> 22 #include "internal.h" 22 #include "internal.h" 23 23 24 #define CRYPTO_ENGINE_MAX_QLEN 10 24 #define CRYPTO_ENGINE_MAX_QLEN 10 25 25 26 /* Temporary algorithm flag used to indicate a 26 /* Temporary algorithm flag used to indicate an updated driver. */ 27 #define CRYPTO_ALG_ENGINE 0x200 27 #define CRYPTO_ALG_ENGINE 0x200 28 28 29 struct crypto_engine_alg { 29 struct crypto_engine_alg { 30 struct crypto_alg base; 30 struct crypto_alg base; 31 struct crypto_engine_op op; 31 struct crypto_engine_op op; 32 }; 32 }; 33 33 34 /** 34 /** 35 * crypto_finalize_request - finalize one requ 35 * crypto_finalize_request - finalize one request if the request is done 36 * @engine: the hardware engine 36 * @engine: the hardware engine 37 * @req: the request need to be finalized 37 * @req: the request need to be finalized 38 * @err: error number 38 * @err: error number 39 */ 39 */ 40 static void crypto_finalize_request(struct cry 40 static void crypto_finalize_request(struct crypto_engine *engine, 41 struct cry 41 struct crypto_async_request *req, int err) 42 { 42 { 43 unsigned long flags; 43 unsigned long flags; 44 44 45 /* 45 /* 46 * If hardware cannot enqueue more req 46 * If hardware cannot enqueue more requests 47 * and retry mechanism is not supporte 47 * and retry mechanism is not supported 48 * make sure we are completing the cur 48 * make sure we are completing the current request 49 */ 49 */ 50 if (!engine->retry_support) { 50 if (!engine->retry_support) { 51 spin_lock_irqsave(&engine->que 51 spin_lock_irqsave(&engine->queue_lock, flags); 52 if (engine->cur_req == req) { 52 if (engine->cur_req == req) { 53 engine->cur_req = NULL 53 engine->cur_req = NULL; 54 } 54 } 55 spin_unlock_irqrestore(&engine 55 spin_unlock_irqrestore(&engine->queue_lock, flags); 56 } 56 } 57 57 58 lockdep_assert_in_softirq(); 58 lockdep_assert_in_softirq(); 59 crypto_request_complete(req, err); 59 crypto_request_complete(req, err); 60 60 61 kthread_queue_work(engine->kworker, &e 61 kthread_queue_work(engine->kworker, &engine->pump_requests); 62 } 62 } 63 63 64 /** 64 /** 65 * crypto_pump_requests - dequeue one request 65 * crypto_pump_requests - dequeue one request from engine queue to process 66 * @engine: the hardware engine 66 * @engine: the hardware engine 67 * @in_kthread: true if we are in the context 67 * @in_kthread: true if we are in the context of the request pump thread 68 * 68 * 69 * This function checks if there is any reques 69 * This function checks if there is any request in the engine queue that 70 * needs processing and if so call out to the 70 * needs processing and if so call out to the driver to initialize hardware 71 * and handle each request. 71 * and handle each request. 72 */ 72 */ 73 static void crypto_pump_requests(struct crypto 73 static void crypto_pump_requests(struct crypto_engine *engine, 74 bool in_kthre 74 bool in_kthread) 75 { 75 { 76 struct crypto_async_request *async_req 76 struct crypto_async_request *async_req, *backlog; 77 struct crypto_engine_alg *alg; 77 struct crypto_engine_alg *alg; 78 struct crypto_engine_op *op; 78 struct crypto_engine_op *op; 79 unsigned long flags; 79 unsigned long flags; 80 bool was_busy = false; 80 bool was_busy = false; 81 int ret; 81 int ret; 82 82 83 spin_lock_irqsave(&engine->queue_lock, 83 spin_lock_irqsave(&engine->queue_lock, flags); 84 84 85 /* Make sure we are not already runnin 85 /* Make sure we are not already running a request */ 86 if (!engine->retry_support && engine-> 86 if (!engine->retry_support && engine->cur_req) 87 goto out; 87 goto out; 88 88 89 /* If another context is idling then d 89 /* If another context is idling then defer */ 90 if (engine->idling) { 90 if (engine->idling) { 91 kthread_queue_work(engine->kwo 91 kthread_queue_work(engine->kworker, &engine->pump_requests); 92 goto out; 92 goto out; 93 } 93 } 94 94 95 /* Check if the engine queue is idle * 95 /* Check if the engine queue is idle */ 96 if (!crypto_queue_len(&engine->queue) 96 if (!crypto_queue_len(&engine->queue) || !engine->running) { 97 if (!engine->busy) 97 if (!engine->busy) 98 goto out; 98 goto out; 99 99 100 /* Only do teardown in the thr 100 /* Only do teardown in the thread */ 101 if (!in_kthread) { 101 if (!in_kthread) { 102 kthread_queue_work(eng 102 kthread_queue_work(engine->kworker, 103 &en 103 &engine->pump_requests); 104 goto out; 104 goto out; 105 } 105 } 106 106 107 engine->busy = false; 107 engine->busy = false; 108 engine->idling = true; 108 engine->idling = true; 109 spin_unlock_irqrestore(&engine 109 spin_unlock_irqrestore(&engine->queue_lock, flags); 110 110 111 if (engine->unprepare_crypt_ha 111 if (engine->unprepare_crypt_hardware && 112 engine->unprepare_crypt_ha 112 engine->unprepare_crypt_hardware(engine)) 113 dev_err(engine->dev, " 113 dev_err(engine->dev, "failed to unprepare crypt hardware\n"); 114 114 115 spin_lock_irqsave(&engine->que 115 spin_lock_irqsave(&engine->queue_lock, flags); 116 engine->idling = false; 116 engine->idling = false; 117 goto out; 117 goto out; 118 } 118 } 119 119 120 start_request: 120 start_request: 121 /* Get the fist request from the engin 121 /* Get the fist request from the engine queue to handle */ 122 backlog = crypto_get_backlog(&engine-> 122 backlog = crypto_get_backlog(&engine->queue); 123 async_req = crypto_dequeue_request(&en 123 async_req = crypto_dequeue_request(&engine->queue); 124 if (!async_req) 124 if (!async_req) 125 goto out; 125 goto out; 126 126 127 /* 127 /* 128 * If hardware doesn't support the ret 128 * If hardware doesn't support the retry mechanism, 129 * keep track of the request we are pr 129 * keep track of the request we are processing now. 130 * We'll need it on completion (crypto 130 * We'll need it on completion (crypto_finalize_request). 131 */ 131 */ 132 if (!engine->retry_support) 132 if (!engine->retry_support) 133 engine->cur_req = async_req; 133 engine->cur_req = async_req; 134 134 135 if (engine->busy) 135 if (engine->busy) 136 was_busy = true; 136 was_busy = true; 137 else 137 else 138 engine->busy = true; 138 engine->busy = true; 139 139 140 spin_unlock_irqrestore(&engine->queue_ 140 spin_unlock_irqrestore(&engine->queue_lock, flags); 141 141 142 /* Until here we get the request need 142 /* Until here we get the request need to be encrypted successfully */ 143 if (!was_busy && engine->prepare_crypt 143 if (!was_busy && engine->prepare_crypt_hardware) { 144 ret = engine->prepare_crypt_ha 144 ret = engine->prepare_crypt_hardware(engine); 145 if (ret) { 145 if (ret) { 146 dev_err(engine->dev, " 146 dev_err(engine->dev, "failed to prepare crypt hardware\n"); 147 goto req_err_1; 147 goto req_err_1; 148 } 148 } 149 } 149 } 150 150 151 if (async_req->tfm->__crt_alg->cra_fla 151 if (async_req->tfm->__crt_alg->cra_flags & CRYPTO_ALG_ENGINE) { 152 alg = container_of(async_req-> 152 alg = container_of(async_req->tfm->__crt_alg, 153 struct cryp 153 struct crypto_engine_alg, base); 154 op = &alg->op; 154 op = &alg->op; 155 } else { 155 } else { 156 dev_err(engine->dev, "failed t 156 dev_err(engine->dev, "failed to do request\n"); 157 ret = -EINVAL; 157 ret = -EINVAL; 158 goto req_err_1; 158 goto req_err_1; 159 } 159 } 160 160 161 ret = op->do_one_request(engine, async 161 ret = op->do_one_request(engine, async_req); 162 162 163 /* Request unsuccessfully executed by 163 /* Request unsuccessfully executed by hardware */ 164 if (ret < 0) { 164 if (ret < 0) { 165 /* 165 /* 166 * If hardware queue is full ( 166 * If hardware queue is full (-ENOSPC), requeue request 167 * regardless of backlog flag. 167 * regardless of backlog flag. 168 * Otherwise, unprepare and co 168 * Otherwise, unprepare and complete the request. 169 */ 169 */ 170 if (!engine->retry_support || 170 if (!engine->retry_support || 171 (ret != -ENOSPC)) { 171 (ret != -ENOSPC)) { 172 dev_err(engine->dev, 172 dev_err(engine->dev, 173 "Failed to do 173 "Failed to do one request from queue: %d\n", 174 ret); 174 ret); 175 goto req_err_1; 175 goto req_err_1; 176 } 176 } 177 spin_lock_irqsave(&engine->que 177 spin_lock_irqsave(&engine->queue_lock, flags); 178 /* 178 /* 179 * If hardware was unable to e 179 * If hardware was unable to execute request, enqueue it 180 * back in front of crypto-eng 180 * back in front of crypto-engine queue, to keep the order 181 * of requests. 181 * of requests. 182 */ 182 */ 183 crypto_enqueue_request_head(&e 183 crypto_enqueue_request_head(&engine->queue, async_req); 184 184 185 kthread_queue_work(engine->kwo 185 kthread_queue_work(engine->kworker, &engine->pump_requests); 186 goto out; 186 goto out; 187 } 187 } 188 188 189 goto retry; 189 goto retry; 190 190 191 req_err_1: 191 req_err_1: 192 crypto_request_complete(async_req, ret 192 crypto_request_complete(async_req, ret); 193 193 194 retry: 194 retry: 195 if (backlog) 195 if (backlog) 196 crypto_request_complete(backlo 196 crypto_request_complete(backlog, -EINPROGRESS); 197 197 198 /* If retry mechanism is supported, se 198 /* If retry mechanism is supported, send new requests to engine */ 199 if (engine->retry_support) { 199 if (engine->retry_support) { 200 spin_lock_irqsave(&engine->que 200 spin_lock_irqsave(&engine->queue_lock, flags); 201 goto start_request; 201 goto start_request; 202 } 202 } 203 return; 203 return; 204 204 205 out: 205 out: 206 spin_unlock_irqrestore(&engine->queue_ 206 spin_unlock_irqrestore(&engine->queue_lock, flags); 207 207 208 /* 208 /* 209 * Batch requests is possible only if 209 * Batch requests is possible only if 210 * hardware can enqueue multiple reque 210 * hardware can enqueue multiple requests 211 */ 211 */ 212 if (engine->do_batch_requests) { 212 if (engine->do_batch_requests) { 213 ret = engine->do_batch_request 213 ret = engine->do_batch_requests(engine); 214 if (ret) 214 if (ret) 215 dev_err(engine->dev, " 215 dev_err(engine->dev, "failed to do batch requests: %d\n", 216 ret); 216 ret); 217 } 217 } 218 218 219 return; 219 return; 220 } 220 } 221 221 222 static void crypto_pump_work(struct kthread_wo 222 static void crypto_pump_work(struct kthread_work *work) 223 { 223 { 224 struct crypto_engine *engine = 224 struct crypto_engine *engine = 225 container_of(work, struct cryp 225 container_of(work, struct crypto_engine, pump_requests); 226 226 227 crypto_pump_requests(engine, true); 227 crypto_pump_requests(engine, true); 228 } 228 } 229 229 230 /** 230 /** 231 * crypto_transfer_request - transfer the new 231 * crypto_transfer_request - transfer the new request into the engine queue 232 * @engine: the hardware engine 232 * @engine: the hardware engine 233 * @req: the request need to be listed into th 233 * @req: the request need to be listed into the engine queue 234 * @need_pump: indicates whether queue the pum 234 * @need_pump: indicates whether queue the pump of request to kthread_work 235 */ 235 */ 236 static int crypto_transfer_request(struct cryp 236 static int crypto_transfer_request(struct crypto_engine *engine, 237 struct cryp 237 struct crypto_async_request *req, 238 bool need_p 238 bool need_pump) 239 { 239 { 240 unsigned long flags; 240 unsigned long flags; 241 int ret; 241 int ret; 242 242 243 spin_lock_irqsave(&engine->queue_lock, 243 spin_lock_irqsave(&engine->queue_lock, flags); 244 244 245 if (!engine->running) { 245 if (!engine->running) { 246 spin_unlock_irqrestore(&engine 246 spin_unlock_irqrestore(&engine->queue_lock, flags); 247 return -ESHUTDOWN; 247 return -ESHUTDOWN; 248 } 248 } 249 249 250 ret = crypto_enqueue_request(&engine-> 250 ret = crypto_enqueue_request(&engine->queue, req); 251 251 252 if (!engine->busy && need_pump) 252 if (!engine->busy && need_pump) 253 kthread_queue_work(engine->kwo 253 kthread_queue_work(engine->kworker, &engine->pump_requests); 254 254 255 spin_unlock_irqrestore(&engine->queue_ 255 spin_unlock_irqrestore(&engine->queue_lock, flags); 256 return ret; 256 return ret; 257 } 257 } 258 258 259 /** 259 /** 260 * crypto_transfer_request_to_engine - transfe 260 * crypto_transfer_request_to_engine - transfer one request to list 261 * into the engine queue 261 * into the engine queue 262 * @engine: the hardware engine 262 * @engine: the hardware engine 263 * @req: the request need to be listed into th 263 * @req: the request need to be listed into the engine queue 264 */ 264 */ 265 static int crypto_transfer_request_to_engine(s 265 static int crypto_transfer_request_to_engine(struct crypto_engine *engine, 266 s 266 struct crypto_async_request *req) 267 { 267 { 268 return crypto_transfer_request(engine, 268 return crypto_transfer_request(engine, req, true); 269 } 269 } 270 270 271 /** 271 /** 272 * crypto_transfer_aead_request_to_engine - tr 272 * crypto_transfer_aead_request_to_engine - transfer one aead_request 273 * to list into the engine queue 273 * to list into the engine queue 274 * @engine: the hardware engine 274 * @engine: the hardware engine 275 * @req: the request need to be listed into th 275 * @req: the request need to be listed into the engine queue 276 */ 276 */ 277 int crypto_transfer_aead_request_to_engine(str 277 int crypto_transfer_aead_request_to_engine(struct crypto_engine *engine, 278 str 278 struct aead_request *req) 279 { 279 { 280 return crypto_transfer_request_to_engi 280 return crypto_transfer_request_to_engine(engine, &req->base); 281 } 281 } 282 EXPORT_SYMBOL_GPL(crypto_transfer_aead_request 282 EXPORT_SYMBOL_GPL(crypto_transfer_aead_request_to_engine); 283 283 284 /** 284 /** 285 * crypto_transfer_akcipher_request_to_engine 285 * crypto_transfer_akcipher_request_to_engine - transfer one akcipher_request 286 * to list into the engine queue 286 * to list into the engine queue 287 * @engine: the hardware engine 287 * @engine: the hardware engine 288 * @req: the request need to be listed into th 288 * @req: the request need to be listed into the engine queue 289 */ 289 */ 290 int crypto_transfer_akcipher_request_to_engine 290 int crypto_transfer_akcipher_request_to_engine(struct crypto_engine *engine, 291 291 struct akcipher_request *req) 292 { 292 { 293 return crypto_transfer_request_to_engi 293 return crypto_transfer_request_to_engine(engine, &req->base); 294 } 294 } 295 EXPORT_SYMBOL_GPL(crypto_transfer_akcipher_req 295 EXPORT_SYMBOL_GPL(crypto_transfer_akcipher_request_to_engine); 296 296 297 /** 297 /** 298 * crypto_transfer_hash_request_to_engine - tr 298 * crypto_transfer_hash_request_to_engine - transfer one ahash_request 299 * to list into the engine queue 299 * to list into the engine queue 300 * @engine: the hardware engine 300 * @engine: the hardware engine 301 * @req: the request need to be listed into th 301 * @req: the request need to be listed into the engine queue 302 */ 302 */ 303 int crypto_transfer_hash_request_to_engine(str 303 int crypto_transfer_hash_request_to_engine(struct crypto_engine *engine, 304 str 304 struct ahash_request *req) 305 { 305 { 306 return crypto_transfer_request_to_engi 306 return crypto_transfer_request_to_engine(engine, &req->base); 307 } 307 } 308 EXPORT_SYMBOL_GPL(crypto_transfer_hash_request 308 EXPORT_SYMBOL_GPL(crypto_transfer_hash_request_to_engine); 309 309 310 /** 310 /** 311 * crypto_transfer_kpp_request_to_engine - tra 311 * crypto_transfer_kpp_request_to_engine - transfer one kpp_request to list 312 * into the engine queue 312 * into the engine queue 313 * @engine: the hardware engine 313 * @engine: the hardware engine 314 * @req: the request need to be listed into th 314 * @req: the request need to be listed into the engine queue 315 */ 315 */ 316 int crypto_transfer_kpp_request_to_engine(stru 316 int crypto_transfer_kpp_request_to_engine(struct crypto_engine *engine, 317 stru 317 struct kpp_request *req) 318 { 318 { 319 return crypto_transfer_request_to_engi 319 return crypto_transfer_request_to_engine(engine, &req->base); 320 } 320 } 321 EXPORT_SYMBOL_GPL(crypto_transfer_kpp_request_ 321 EXPORT_SYMBOL_GPL(crypto_transfer_kpp_request_to_engine); 322 322 323 /** 323 /** 324 * crypto_transfer_skcipher_request_to_engine 324 * crypto_transfer_skcipher_request_to_engine - transfer one skcipher_request 325 * to list into the engine queue 325 * to list into the engine queue 326 * @engine: the hardware engine 326 * @engine: the hardware engine 327 * @req: the request need to be listed into th 327 * @req: the request need to be listed into the engine queue 328 */ 328 */ 329 int crypto_transfer_skcipher_request_to_engine 329 int crypto_transfer_skcipher_request_to_engine(struct crypto_engine *engine, 330 330 struct skcipher_request *req) 331 { 331 { 332 return crypto_transfer_request_to_engi 332 return crypto_transfer_request_to_engine(engine, &req->base); 333 } 333 } 334 EXPORT_SYMBOL_GPL(crypto_transfer_skcipher_req 334 EXPORT_SYMBOL_GPL(crypto_transfer_skcipher_request_to_engine); 335 335 336 /** 336 /** 337 * crypto_finalize_aead_request - finalize one 337 * crypto_finalize_aead_request - finalize one aead_request if 338 * the request is done 338 * the request is done 339 * @engine: the hardware engine 339 * @engine: the hardware engine 340 * @req: the request need to be finalized 340 * @req: the request need to be finalized 341 * @err: error number 341 * @err: error number 342 */ 342 */ 343 void crypto_finalize_aead_request(struct crypt 343 void crypto_finalize_aead_request(struct crypto_engine *engine, 344 struct aead_ 344 struct aead_request *req, int err) 345 { 345 { 346 return crypto_finalize_request(engine, 346 return crypto_finalize_request(engine, &req->base, err); 347 } 347 } 348 EXPORT_SYMBOL_GPL(crypto_finalize_aead_request 348 EXPORT_SYMBOL_GPL(crypto_finalize_aead_request); 349 349 350 /** 350 /** 351 * crypto_finalize_akcipher_request - finalize 351 * crypto_finalize_akcipher_request - finalize one akcipher_request if 352 * the request is done 352 * the request is done 353 * @engine: the hardware engine 353 * @engine: the hardware engine 354 * @req: the request need to be finalized 354 * @req: the request need to be finalized 355 * @err: error number 355 * @err: error number 356 */ 356 */ 357 void crypto_finalize_akcipher_request(struct c 357 void crypto_finalize_akcipher_request(struct crypto_engine *engine, 358 struct a 358 struct akcipher_request *req, int err) 359 { 359 { 360 return crypto_finalize_request(engine, 360 return crypto_finalize_request(engine, &req->base, err); 361 } 361 } 362 EXPORT_SYMBOL_GPL(crypto_finalize_akcipher_req 362 EXPORT_SYMBOL_GPL(crypto_finalize_akcipher_request); 363 363 364 /** 364 /** 365 * crypto_finalize_hash_request - finalize one 365 * crypto_finalize_hash_request - finalize one ahash_request if 366 * the request is done 366 * the request is done 367 * @engine: the hardware engine 367 * @engine: the hardware engine 368 * @req: the request need to be finalized 368 * @req: the request need to be finalized 369 * @err: error number 369 * @err: error number 370 */ 370 */ 371 void crypto_finalize_hash_request(struct crypt 371 void crypto_finalize_hash_request(struct crypto_engine *engine, 372 struct ahash 372 struct ahash_request *req, int err) 373 { 373 { 374 return crypto_finalize_request(engine, 374 return crypto_finalize_request(engine, &req->base, err); 375 } 375 } 376 EXPORT_SYMBOL_GPL(crypto_finalize_hash_request 376 EXPORT_SYMBOL_GPL(crypto_finalize_hash_request); 377 377 378 /** 378 /** 379 * crypto_finalize_kpp_request - finalize one 379 * crypto_finalize_kpp_request - finalize one kpp_request if the request is done 380 * @engine: the hardware engine 380 * @engine: the hardware engine 381 * @req: the request need to be finalized 381 * @req: the request need to be finalized 382 * @err: error number 382 * @err: error number 383 */ 383 */ 384 void crypto_finalize_kpp_request(struct crypto 384 void crypto_finalize_kpp_request(struct crypto_engine *engine, 385 struct kpp_re 385 struct kpp_request *req, int err) 386 { 386 { 387 return crypto_finalize_request(engine, 387 return crypto_finalize_request(engine, &req->base, err); 388 } 388 } 389 EXPORT_SYMBOL_GPL(crypto_finalize_kpp_request) 389 EXPORT_SYMBOL_GPL(crypto_finalize_kpp_request); 390 390 391 /** 391 /** 392 * crypto_finalize_skcipher_request - finalize 392 * crypto_finalize_skcipher_request - finalize one skcipher_request if 393 * the request is done 393 * the request is done 394 * @engine: the hardware engine 394 * @engine: the hardware engine 395 * @req: the request need to be finalized 395 * @req: the request need to be finalized 396 * @err: error number 396 * @err: error number 397 */ 397 */ 398 void crypto_finalize_skcipher_request(struct c 398 void crypto_finalize_skcipher_request(struct crypto_engine *engine, 399 struct s 399 struct skcipher_request *req, int err) 400 { 400 { 401 return crypto_finalize_request(engine, 401 return crypto_finalize_request(engine, &req->base, err); 402 } 402 } 403 EXPORT_SYMBOL_GPL(crypto_finalize_skcipher_req 403 EXPORT_SYMBOL_GPL(crypto_finalize_skcipher_request); 404 404 405 /** 405 /** 406 * crypto_engine_start - start the hardware en 406 * crypto_engine_start - start the hardware engine 407 * @engine: the hardware engine need to be sta 407 * @engine: the hardware engine need to be started 408 * 408 * 409 * Return 0 on success, else on fail. 409 * Return 0 on success, else on fail. 410 */ 410 */ 411 int crypto_engine_start(struct crypto_engine * 411 int crypto_engine_start(struct crypto_engine *engine) 412 { 412 { 413 unsigned long flags; 413 unsigned long flags; 414 414 415 spin_lock_irqsave(&engine->queue_lock, 415 spin_lock_irqsave(&engine->queue_lock, flags); 416 416 417 if (engine->running || engine->busy) { 417 if (engine->running || engine->busy) { 418 spin_unlock_irqrestore(&engine 418 spin_unlock_irqrestore(&engine->queue_lock, flags); 419 return -EBUSY; 419 return -EBUSY; 420 } 420 } 421 421 422 engine->running = true; 422 engine->running = true; 423 spin_unlock_irqrestore(&engine->queue_ 423 spin_unlock_irqrestore(&engine->queue_lock, flags); 424 424 425 kthread_queue_work(engine->kworker, &e 425 kthread_queue_work(engine->kworker, &engine->pump_requests); 426 426 427 return 0; 427 return 0; 428 } 428 } 429 EXPORT_SYMBOL_GPL(crypto_engine_start); 429 EXPORT_SYMBOL_GPL(crypto_engine_start); 430 430 431 /** 431 /** 432 * crypto_engine_stop - stop the hardware engi 432 * crypto_engine_stop - stop the hardware engine 433 * @engine: the hardware engine need to be sto 433 * @engine: the hardware engine need to be stopped 434 * 434 * 435 * Return 0 on success, else on fail. 435 * Return 0 on success, else on fail. 436 */ 436 */ 437 int crypto_engine_stop(struct crypto_engine *e 437 int crypto_engine_stop(struct crypto_engine *engine) 438 { 438 { 439 unsigned long flags; 439 unsigned long flags; 440 unsigned int limit = 500; 440 unsigned int limit = 500; 441 int ret = 0; 441 int ret = 0; 442 442 443 spin_lock_irqsave(&engine->queue_lock, 443 spin_lock_irqsave(&engine->queue_lock, flags); 444 444 445 /* 445 /* 446 * If the engine queue is not empty or 446 * If the engine queue is not empty or the engine is on busy state, 447 * we need to wait for a while to pump 447 * we need to wait for a while to pump the requests of engine queue. 448 */ 448 */ 449 while ((crypto_queue_len(&engine->queu 449 while ((crypto_queue_len(&engine->queue) || engine->busy) && limit--) { 450 spin_unlock_irqrestore(&engine 450 spin_unlock_irqrestore(&engine->queue_lock, flags); 451 msleep(20); 451 msleep(20); 452 spin_lock_irqsave(&engine->que 452 spin_lock_irqsave(&engine->queue_lock, flags); 453 } 453 } 454 454 455 if (crypto_queue_len(&engine->queue) | 455 if (crypto_queue_len(&engine->queue) || engine->busy) 456 ret = -EBUSY; 456 ret = -EBUSY; 457 else 457 else 458 engine->running = false; 458 engine->running = false; 459 459 460 spin_unlock_irqrestore(&engine->queue_ 460 spin_unlock_irqrestore(&engine->queue_lock, flags); 461 461 462 if (ret) 462 if (ret) 463 dev_warn(engine->dev, "could n 463 dev_warn(engine->dev, "could not stop engine\n"); 464 464 465 return ret; 465 return ret; 466 } 466 } 467 EXPORT_SYMBOL_GPL(crypto_engine_stop); 467 EXPORT_SYMBOL_GPL(crypto_engine_stop); 468 468 469 /** 469 /** 470 * crypto_engine_alloc_init_and_set - allocate 470 * crypto_engine_alloc_init_and_set - allocate crypto hardware engine structure 471 * and initialize it by setting the maximum nu 471 * and initialize it by setting the maximum number of entries in the software 472 * crypto-engine queue. 472 * crypto-engine queue. 473 * @dev: the device attached with one hardware 473 * @dev: the device attached with one hardware engine 474 * @retry_support: whether hardware has suppor 474 * @retry_support: whether hardware has support for retry mechanism 475 * @cbk_do_batch: pointer to a callback functi 475 * @cbk_do_batch: pointer to a callback function to be invoked when executing 476 * a batch of requests. 476 * a batch of requests. 477 * This has the form: 477 * This has the form: 478 * callback(struct crypto_engin 478 * callback(struct crypto_engine *engine) 479 * where: 479 * where: 480 * engine: the crypto engine st 480 * engine: the crypto engine structure. 481 * @rt: whether this queue is set to run as a 481 * @rt: whether this queue is set to run as a realtime task 482 * @qlen: maximum size of the crypto-engine qu 482 * @qlen: maximum size of the crypto-engine queue 483 * 483 * 484 * This must be called from context that can s 484 * This must be called from context that can sleep. 485 * Return: the crypto engine structure on succ 485 * Return: the crypto engine structure on success, else NULL. 486 */ 486 */ 487 struct crypto_engine *crypto_engine_alloc_init 487 struct crypto_engine *crypto_engine_alloc_init_and_set(struct device *dev, 488 488 bool retry_support, 489 489 int (*cbk_do_batch)(struct crypto_engine *engine), 490 490 bool rt, int qlen) 491 { 491 { 492 struct crypto_engine *engine; 492 struct crypto_engine *engine; 493 493 494 if (!dev) 494 if (!dev) 495 return NULL; 495 return NULL; 496 496 497 engine = devm_kzalloc(dev, sizeof(*eng 497 engine = devm_kzalloc(dev, sizeof(*engine), GFP_KERNEL); 498 if (!engine) 498 if (!engine) 499 return NULL; 499 return NULL; 500 500 501 engine->dev = dev; 501 engine->dev = dev; 502 engine->rt = rt; 502 engine->rt = rt; 503 engine->running = false; 503 engine->running = false; 504 engine->busy = false; 504 engine->busy = false; 505 engine->idling = false; 505 engine->idling = false; 506 engine->retry_support = retry_support; 506 engine->retry_support = retry_support; 507 engine->priv_data = dev; 507 engine->priv_data = dev; 508 /* 508 /* 509 * Batch requests is possible only if 509 * Batch requests is possible only if 510 * hardware has support for retry mech 510 * hardware has support for retry mechanism. 511 */ 511 */ 512 engine->do_batch_requests = retry_supp 512 engine->do_batch_requests = retry_support ? cbk_do_batch : NULL; 513 513 514 snprintf(engine->name, sizeof(engine-> 514 snprintf(engine->name, sizeof(engine->name), 515 "%s-engine", dev_name(dev)); 515 "%s-engine", dev_name(dev)); 516 516 517 crypto_init_queue(&engine->queue, qlen 517 crypto_init_queue(&engine->queue, qlen); 518 spin_lock_init(&engine->queue_lock); 518 spin_lock_init(&engine->queue_lock); 519 519 520 engine->kworker = kthread_create_worke 520 engine->kworker = kthread_create_worker(0, "%s", engine->name); 521 if (IS_ERR(engine->kworker)) { 521 if (IS_ERR(engine->kworker)) { 522 dev_err(dev, "failed to create 522 dev_err(dev, "failed to create crypto request pump task\n"); 523 return NULL; 523 return NULL; 524 } 524 } 525 kthread_init_work(&engine->pump_reques 525 kthread_init_work(&engine->pump_requests, crypto_pump_work); 526 526 527 if (engine->rt) { 527 if (engine->rt) { 528 dev_info(dev, "will run reques 528 dev_info(dev, "will run requests pump with realtime priority\n"); 529 sched_set_fifo(engine->kworker 529 sched_set_fifo(engine->kworker->task); 530 } 530 } 531 531 532 return engine; 532 return engine; 533 } 533 } 534 EXPORT_SYMBOL_GPL(crypto_engine_alloc_init_and 534 EXPORT_SYMBOL_GPL(crypto_engine_alloc_init_and_set); 535 535 536 /** 536 /** 537 * crypto_engine_alloc_init - allocate crypto 537 * crypto_engine_alloc_init - allocate crypto hardware engine structure and 538 * initialize it. 538 * initialize it. 539 * @dev: the device attached with one hardware 539 * @dev: the device attached with one hardware engine 540 * @rt: whether this queue is set to run as a 540 * @rt: whether this queue is set to run as a realtime task 541 * 541 * 542 * This must be called from context that can s 542 * This must be called from context that can sleep. 543 * Return: the crypto engine structure on succ 543 * Return: the crypto engine structure on success, else NULL. 544 */ 544 */ 545 struct crypto_engine *crypto_engine_alloc_init 545 struct crypto_engine *crypto_engine_alloc_init(struct device *dev, bool rt) 546 { 546 { 547 return crypto_engine_alloc_init_and_se 547 return crypto_engine_alloc_init_and_set(dev, false, NULL, rt, 548 548 CRYPTO_ENGINE_MAX_QLEN); 549 } 549 } 550 EXPORT_SYMBOL_GPL(crypto_engine_alloc_init); 550 EXPORT_SYMBOL_GPL(crypto_engine_alloc_init); 551 551 552 /** 552 /** 553 * crypto_engine_exit - free the resources of 553 * crypto_engine_exit - free the resources of hardware engine when exit 554 * @engine: the hardware engine need to be fre 554 * @engine: the hardware engine need to be freed 555 */ 555 */ 556 void crypto_engine_exit(struct crypto_engine * 556 void crypto_engine_exit(struct crypto_engine *engine) 557 { 557 { 558 int ret; 558 int ret; 559 559 560 ret = crypto_engine_stop(engine); 560 ret = crypto_engine_stop(engine); 561 if (ret) 561 if (ret) 562 return; 562 return; 563 563 564 kthread_destroy_worker(engine->kworker 564 kthread_destroy_worker(engine->kworker); 565 } 565 } 566 EXPORT_SYMBOL_GPL(crypto_engine_exit); 566 EXPORT_SYMBOL_GPL(crypto_engine_exit); 567 567 568 int crypto_engine_register_aead(struct aead_en 568 int crypto_engine_register_aead(struct aead_engine_alg *alg) 569 { 569 { 570 if (!alg->op.do_one_request) 570 if (!alg->op.do_one_request) 571 return -EINVAL; 571 return -EINVAL; 572 572 573 alg->base.base.cra_flags |= CRYPTO_ALG 573 alg->base.base.cra_flags |= CRYPTO_ALG_ENGINE; 574 574 575 return crypto_register_aead(&alg->base 575 return crypto_register_aead(&alg->base); 576 } 576 } 577 EXPORT_SYMBOL_GPL(crypto_engine_register_aead) 577 EXPORT_SYMBOL_GPL(crypto_engine_register_aead); 578 578 579 void crypto_engine_unregister_aead(struct aead 579 void crypto_engine_unregister_aead(struct aead_engine_alg *alg) 580 { 580 { 581 crypto_unregister_aead(&alg->base); 581 crypto_unregister_aead(&alg->base); 582 } 582 } 583 EXPORT_SYMBOL_GPL(crypto_engine_unregister_aea 583 EXPORT_SYMBOL_GPL(crypto_engine_unregister_aead); 584 584 585 int crypto_engine_register_aeads(struct aead_e 585 int crypto_engine_register_aeads(struct aead_engine_alg *algs, int count) 586 { 586 { 587 int i, ret; 587 int i, ret; 588 588 589 for (i = 0; i < count; i++) { 589 for (i = 0; i < count; i++) { 590 ret = crypto_engine_register_a 590 ret = crypto_engine_register_aead(&algs[i]); 591 if (ret) 591 if (ret) 592 goto err; 592 goto err; 593 } 593 } 594 594 595 return 0; 595 return 0; 596 596 597 err: 597 err: 598 crypto_engine_unregister_aeads(algs, i 598 crypto_engine_unregister_aeads(algs, i); 599 599 600 return ret; 600 return ret; 601 } 601 } 602 EXPORT_SYMBOL_GPL(crypto_engine_register_aeads 602 EXPORT_SYMBOL_GPL(crypto_engine_register_aeads); 603 603 604 void crypto_engine_unregister_aeads(struct aea 604 void crypto_engine_unregister_aeads(struct aead_engine_alg *algs, int count) 605 { 605 { 606 int i; 606 int i; 607 607 608 for (i = count - 1; i >= 0; --i) 608 for (i = count - 1; i >= 0; --i) 609 crypto_engine_unregister_aead( 609 crypto_engine_unregister_aead(&algs[i]); 610 } 610 } 611 EXPORT_SYMBOL_GPL(crypto_engine_unregister_aea 611 EXPORT_SYMBOL_GPL(crypto_engine_unregister_aeads); 612 612 613 int crypto_engine_register_ahash(struct ahash_ 613 int crypto_engine_register_ahash(struct ahash_engine_alg *alg) 614 { 614 { 615 if (!alg->op.do_one_request) 615 if (!alg->op.do_one_request) 616 return -EINVAL; 616 return -EINVAL; 617 617 618 alg->base.halg.base.cra_flags |= CRYPT 618 alg->base.halg.base.cra_flags |= CRYPTO_ALG_ENGINE; 619 619 620 return crypto_register_ahash(&alg->bas 620 return crypto_register_ahash(&alg->base); 621 } 621 } 622 EXPORT_SYMBOL_GPL(crypto_engine_register_ahash 622 EXPORT_SYMBOL_GPL(crypto_engine_register_ahash); 623 623 624 void crypto_engine_unregister_ahash(struct aha 624 void crypto_engine_unregister_ahash(struct ahash_engine_alg *alg) 625 { 625 { 626 crypto_unregister_ahash(&alg->base); 626 crypto_unregister_ahash(&alg->base); 627 } 627 } 628 EXPORT_SYMBOL_GPL(crypto_engine_unregister_aha 628 EXPORT_SYMBOL_GPL(crypto_engine_unregister_ahash); 629 629 630 int crypto_engine_register_ahashes(struct ahas 630 int crypto_engine_register_ahashes(struct ahash_engine_alg *algs, int count) 631 { 631 { 632 int i, ret; 632 int i, ret; 633 633 634 for (i = 0; i < count; i++) { 634 for (i = 0; i < count; i++) { 635 ret = crypto_engine_register_a 635 ret = crypto_engine_register_ahash(&algs[i]); 636 if (ret) 636 if (ret) 637 goto err; 637 goto err; 638 } 638 } 639 639 640 return 0; 640 return 0; 641 641 642 err: 642 err: 643 crypto_engine_unregister_ahashes(algs, 643 crypto_engine_unregister_ahashes(algs, i); 644 644 645 return ret; 645 return ret; 646 } 646 } 647 EXPORT_SYMBOL_GPL(crypto_engine_register_ahash 647 EXPORT_SYMBOL_GPL(crypto_engine_register_ahashes); 648 648 649 void crypto_engine_unregister_ahashes(struct a 649 void crypto_engine_unregister_ahashes(struct ahash_engine_alg *algs, 650 int coun 650 int count) 651 { 651 { 652 int i; 652 int i; 653 653 654 for (i = count - 1; i >= 0; --i) 654 for (i = count - 1; i >= 0; --i) 655 crypto_engine_unregister_ahash 655 crypto_engine_unregister_ahash(&algs[i]); 656 } 656 } 657 EXPORT_SYMBOL_GPL(crypto_engine_unregister_aha 657 EXPORT_SYMBOL_GPL(crypto_engine_unregister_ahashes); 658 658 659 int crypto_engine_register_akcipher(struct akc 659 int crypto_engine_register_akcipher(struct akcipher_engine_alg *alg) 660 { 660 { 661 if (!alg->op.do_one_request) 661 if (!alg->op.do_one_request) 662 return -EINVAL; 662 return -EINVAL; 663 663 664 alg->base.base.cra_flags |= CRYPTO_ALG 664 alg->base.base.cra_flags |= CRYPTO_ALG_ENGINE; 665 665 666 return crypto_register_akcipher(&alg-> 666 return crypto_register_akcipher(&alg->base); 667 } 667 } 668 EXPORT_SYMBOL_GPL(crypto_engine_register_akcip 668 EXPORT_SYMBOL_GPL(crypto_engine_register_akcipher); 669 669 670 void crypto_engine_unregister_akcipher(struct 670 void crypto_engine_unregister_akcipher(struct akcipher_engine_alg *alg) 671 { 671 { 672 crypto_unregister_akcipher(&alg->base) 672 crypto_unregister_akcipher(&alg->base); 673 } 673 } 674 EXPORT_SYMBOL_GPL(crypto_engine_unregister_akc 674 EXPORT_SYMBOL_GPL(crypto_engine_unregister_akcipher); 675 675 676 int crypto_engine_register_kpp(struct kpp_engi 676 int crypto_engine_register_kpp(struct kpp_engine_alg *alg) 677 { 677 { 678 if (!alg->op.do_one_request) 678 if (!alg->op.do_one_request) 679 return -EINVAL; 679 return -EINVAL; 680 680 681 alg->base.base.cra_flags |= CRYPTO_ALG 681 alg->base.base.cra_flags |= CRYPTO_ALG_ENGINE; 682 682 683 return crypto_register_kpp(&alg->base) 683 return crypto_register_kpp(&alg->base); 684 } 684 } 685 EXPORT_SYMBOL_GPL(crypto_engine_register_kpp); 685 EXPORT_SYMBOL_GPL(crypto_engine_register_kpp); 686 686 687 void crypto_engine_unregister_kpp(struct kpp_e 687 void crypto_engine_unregister_kpp(struct kpp_engine_alg *alg) 688 { 688 { 689 crypto_unregister_kpp(&alg->base); 689 crypto_unregister_kpp(&alg->base); 690 } 690 } 691 EXPORT_SYMBOL_GPL(crypto_engine_unregister_kpp 691 EXPORT_SYMBOL_GPL(crypto_engine_unregister_kpp); 692 692 693 int crypto_engine_register_skcipher(struct skc 693 int crypto_engine_register_skcipher(struct skcipher_engine_alg *alg) 694 { 694 { 695 if (!alg->op.do_one_request) 695 if (!alg->op.do_one_request) 696 return -EINVAL; 696 return -EINVAL; 697 697 698 alg->base.base.cra_flags |= CRYPTO_ALG 698 alg->base.base.cra_flags |= CRYPTO_ALG_ENGINE; 699 699 700 return crypto_register_skcipher(&alg-> 700 return crypto_register_skcipher(&alg->base); 701 } 701 } 702 EXPORT_SYMBOL_GPL(crypto_engine_register_skcip 702 EXPORT_SYMBOL_GPL(crypto_engine_register_skcipher); 703 703 704 void crypto_engine_unregister_skcipher(struct 704 void crypto_engine_unregister_skcipher(struct skcipher_engine_alg *alg) 705 { 705 { 706 return crypto_unregister_skcipher(&alg 706 return crypto_unregister_skcipher(&alg->base); 707 } 707 } 708 EXPORT_SYMBOL_GPL(crypto_engine_unregister_skc 708 EXPORT_SYMBOL_GPL(crypto_engine_unregister_skcipher); 709 709 710 int crypto_engine_register_skciphers(struct sk 710 int crypto_engine_register_skciphers(struct skcipher_engine_alg *algs, 711 int count 711 int count) 712 { 712 { 713 int i, ret; 713 int i, ret; 714 714 715 for (i = 0; i < count; i++) { 715 for (i = 0; i < count; i++) { 716 ret = crypto_engine_register_s 716 ret = crypto_engine_register_skcipher(&algs[i]); 717 if (ret) 717 if (ret) 718 goto err; 718 goto err; 719 } 719 } 720 720 721 return 0; 721 return 0; 722 722 723 err: 723 err: 724 crypto_engine_unregister_skciphers(alg 724 crypto_engine_unregister_skciphers(algs, i); 725 725 726 return ret; 726 return ret; 727 } 727 } 728 EXPORT_SYMBOL_GPL(crypto_engine_register_skcip 728 EXPORT_SYMBOL_GPL(crypto_engine_register_skciphers); 729 729 730 void crypto_engine_unregister_skciphers(struct 730 void crypto_engine_unregister_skciphers(struct skcipher_engine_alg *algs, 731 int co 731 int count) 732 { 732 { 733 int i; 733 int i; 734 734 735 for (i = count - 1; i >= 0; --i) 735 for (i = count - 1; i >= 0; --i) 736 crypto_engine_unregister_skcip 736 crypto_engine_unregister_skcipher(&algs[i]); 737 } 737 } 738 EXPORT_SYMBOL_GPL(crypto_engine_unregister_skc 738 EXPORT_SYMBOL_GPL(crypto_engine_unregister_skciphers); 739 739 740 MODULE_LICENSE("GPL"); 740 MODULE_LICENSE("GPL"); 741 MODULE_DESCRIPTION("Crypto hardware engine fra 741 MODULE_DESCRIPTION("Crypto hardware engine framework"); 742 742
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.