1 // SPDX-License-Identifier: GPL-2.0 1 // SPDX-License-Identifier: GPL-2.0 2 /* 2 /* 3 * HCTR2 length-preserving encryption mode 3 * HCTR2 length-preserving encryption mode 4 * 4 * 5 * Copyright 2021 Google LLC 5 * Copyright 2021 Google LLC 6 */ 6 */ 7 7 8 8 9 /* 9 /* 10 * HCTR2 is a length-preserving encryption mod 10 * HCTR2 is a length-preserving encryption mode that is efficient on 11 * processors with instructions to accelerate 11 * processors with instructions to accelerate AES and carryless 12 * multiplication, e.g. x86 processors with AE 12 * multiplication, e.g. x86 processors with AES-NI and CLMUL, and ARM 13 * processors with the ARMv8 crypto extensions 13 * processors with the ARMv8 crypto extensions. 14 * 14 * 15 * For more details, see the paper: "Length-pr 15 * For more details, see the paper: "Length-preserving encryption with HCTR2" 16 * (https://eprint.iacr.org/2021/1441.pdf) 16 * (https://eprint.iacr.org/2021/1441.pdf) 17 */ 17 */ 18 18 19 #include <crypto/internal/cipher.h> 19 #include <crypto/internal/cipher.h> 20 #include <crypto/internal/hash.h> 20 #include <crypto/internal/hash.h> 21 #include <crypto/internal/skcipher.h> 21 #include <crypto/internal/skcipher.h> 22 #include <crypto/polyval.h> 22 #include <crypto/polyval.h> 23 #include <crypto/scatterwalk.h> 23 #include <crypto/scatterwalk.h> 24 #include <linux/module.h> 24 #include <linux/module.h> 25 25 26 #define BLOCKCIPHER_BLOCK_SIZE 16 26 #define BLOCKCIPHER_BLOCK_SIZE 16 27 27 28 /* 28 /* 29 * The specification allows variable-length tw 29 * The specification allows variable-length tweaks, but Linux's crypto API 30 * currently only allows algorithms to support 30 * currently only allows algorithms to support a single length. The "natural" 31 * tweak length for HCTR2 is 16, since that fi 31 * tweak length for HCTR2 is 16, since that fits into one POLYVAL block for 32 * the best performance. But longer tweaks ar 32 * the best performance. But longer tweaks are useful for fscrypt, to avoid 33 * needing to derive per-file keys. So instea 33 * needing to derive per-file keys. So instead we use two blocks, or 32 bytes. 34 */ 34 */ 35 #define TWEAK_SIZE 32 35 #define TWEAK_SIZE 32 36 36 37 struct hctr2_instance_ctx { 37 struct hctr2_instance_ctx { 38 struct crypto_cipher_spawn blockcipher 38 struct crypto_cipher_spawn blockcipher_spawn; 39 struct crypto_skcipher_spawn xctr_spaw 39 struct crypto_skcipher_spawn xctr_spawn; 40 struct crypto_shash_spawn polyval_spaw 40 struct crypto_shash_spawn polyval_spawn; 41 }; 41 }; 42 42 43 struct hctr2_tfm_ctx { 43 struct hctr2_tfm_ctx { 44 struct crypto_cipher *blockcipher; 44 struct crypto_cipher *blockcipher; 45 struct crypto_skcipher *xctr; 45 struct crypto_skcipher *xctr; 46 struct crypto_shash *polyval; 46 struct crypto_shash *polyval; 47 u8 L[BLOCKCIPHER_BLOCK_SIZE]; 47 u8 L[BLOCKCIPHER_BLOCK_SIZE]; 48 int hashed_tweak_offset; 48 int hashed_tweak_offset; 49 /* 49 /* 50 * This struct is allocated with extra 50 * This struct is allocated with extra space for two exported hash 51 * states. Since the hash state size 51 * states. Since the hash state size is not known at compile-time, we 52 * can't add these to the struct direc 52 * can't add these to the struct directly. 53 * 53 * 54 * hashed_tweaklen_divisible; 54 * hashed_tweaklen_divisible; 55 * hashed_tweaklen_remainder; 55 * hashed_tweaklen_remainder; 56 */ 56 */ 57 }; 57 }; 58 58 59 struct hctr2_request_ctx { 59 struct hctr2_request_ctx { 60 u8 first_block[BLOCKCIPHER_BLOCK_SIZE] 60 u8 first_block[BLOCKCIPHER_BLOCK_SIZE]; 61 u8 xctr_iv[BLOCKCIPHER_BLOCK_SIZE]; 61 u8 xctr_iv[BLOCKCIPHER_BLOCK_SIZE]; 62 struct scatterlist *bulk_part_dst; 62 struct scatterlist *bulk_part_dst; 63 struct scatterlist *bulk_part_src; 63 struct scatterlist *bulk_part_src; 64 struct scatterlist sg_src[2]; 64 struct scatterlist sg_src[2]; 65 struct scatterlist sg_dst[2]; 65 struct scatterlist sg_dst[2]; 66 /* 66 /* 67 * Sub-request sizes are unknown at co 67 * Sub-request sizes are unknown at compile-time, so they need to go 68 * after the members with known sizes. 68 * after the members with known sizes. 69 */ 69 */ 70 union { 70 union { 71 struct shash_desc hash_desc; 71 struct shash_desc hash_desc; 72 struct skcipher_request xctr_r 72 struct skcipher_request xctr_req; 73 } u; 73 } u; 74 /* 74 /* 75 * This struct is allocated with extra 75 * This struct is allocated with extra space for one exported hash 76 * state. Since the hash state size i 76 * state. Since the hash state size is not known at compile-time, we 77 * can't add it to the struct directly 77 * can't add it to the struct directly. 78 * 78 * 79 * hashed_tweak; 79 * hashed_tweak; 80 */ 80 */ 81 }; 81 }; 82 82 83 static inline u8 *hctr2_hashed_tweaklen(const 83 static inline u8 *hctr2_hashed_tweaklen(const struct hctr2_tfm_ctx *tctx, 84 bool h 84 bool has_remainder) 85 { 85 { 86 u8 *p = (u8 *)tctx + sizeof(*tctx); 86 u8 *p = (u8 *)tctx + sizeof(*tctx); 87 87 88 if (has_remainder) /* For messages not 88 if (has_remainder) /* For messages not a multiple of block length */ 89 p += crypto_shash_statesize(tc 89 p += crypto_shash_statesize(tctx->polyval); 90 return p; 90 return p; 91 } 91 } 92 92 93 static inline u8 *hctr2_hashed_tweak(const str 93 static inline u8 *hctr2_hashed_tweak(const struct hctr2_tfm_ctx *tctx, 94 struct hc 94 struct hctr2_request_ctx *rctx) 95 { 95 { 96 return (u8 *)rctx + tctx->hashed_tweak 96 return (u8 *)rctx + tctx->hashed_tweak_offset; 97 } 97 } 98 98 99 /* 99 /* 100 * The input data for each HCTR2 hash step beg 100 * The input data for each HCTR2 hash step begins with a 16-byte block that 101 * contains the tweak length and a flag that i 101 * contains the tweak length and a flag that indicates whether the input is evenly 102 * divisible into blocks. Since this implemen 102 * divisible into blocks. Since this implementation only supports one tweak 103 * length, we precompute the two hash states r 103 * length, we precompute the two hash states resulting from hashing the two 104 * possible values of this initial block. Thi 104 * possible values of this initial block. This reduces by one block the amount of 105 * data that needs to be hashed for each encry 105 * data that needs to be hashed for each encryption/decryption 106 * 106 * 107 * These precomputed hashes are stored in hctr 107 * These precomputed hashes are stored in hctr2_tfm_ctx. 108 */ 108 */ 109 static int hctr2_hash_tweaklen(struct hctr2_tf 109 static int hctr2_hash_tweaklen(struct hctr2_tfm_ctx *tctx, bool has_remainder) 110 { 110 { 111 SHASH_DESC_ON_STACK(shash, tfm->polyva 111 SHASH_DESC_ON_STACK(shash, tfm->polyval); 112 __le64 tweak_length_block[2]; 112 __le64 tweak_length_block[2]; 113 int err; 113 int err; 114 114 115 shash->tfm = tctx->polyval; 115 shash->tfm = tctx->polyval; 116 memset(tweak_length_block, 0, sizeof(t 116 memset(tweak_length_block, 0, sizeof(tweak_length_block)); 117 117 118 tweak_length_block[0] = cpu_to_le64(TW 118 tweak_length_block[0] = cpu_to_le64(TWEAK_SIZE * 8 * 2 + 2 + has_remainder); 119 err = crypto_shash_init(shash); 119 err = crypto_shash_init(shash); 120 if (err) 120 if (err) 121 return err; 121 return err; 122 err = crypto_shash_update(shash, (u8 * 122 err = crypto_shash_update(shash, (u8 *)tweak_length_block, 123 POLYVAL_BLOC 123 POLYVAL_BLOCK_SIZE); 124 if (err) 124 if (err) 125 return err; 125 return err; 126 return crypto_shash_export(shash, hctr 126 return crypto_shash_export(shash, hctr2_hashed_tweaklen(tctx, has_remainder)); 127 } 127 } 128 128 129 static int hctr2_setkey(struct crypto_skcipher 129 static int hctr2_setkey(struct crypto_skcipher *tfm, const u8 *key, 130 unsigned int keylen) 130 unsigned int keylen) 131 { 131 { 132 struct hctr2_tfm_ctx *tctx = crypto_sk 132 struct hctr2_tfm_ctx *tctx = crypto_skcipher_ctx(tfm); 133 u8 hbar[BLOCKCIPHER_BLOCK_SIZE]; 133 u8 hbar[BLOCKCIPHER_BLOCK_SIZE]; 134 int err; 134 int err; 135 135 136 crypto_cipher_clear_flags(tctx->blockc 136 crypto_cipher_clear_flags(tctx->blockcipher, CRYPTO_TFM_REQ_MASK); 137 crypto_cipher_set_flags(tctx->blockcip 137 crypto_cipher_set_flags(tctx->blockcipher, 138 crypto_skciphe 138 crypto_skcipher_get_flags(tfm) & 139 CRYPTO_TFM_REQ 139 CRYPTO_TFM_REQ_MASK); 140 err = crypto_cipher_setkey(tctx->block 140 err = crypto_cipher_setkey(tctx->blockcipher, key, keylen); 141 if (err) 141 if (err) 142 return err; 142 return err; 143 143 144 crypto_skcipher_clear_flags(tctx->xctr 144 crypto_skcipher_clear_flags(tctx->xctr, CRYPTO_TFM_REQ_MASK); 145 crypto_skcipher_set_flags(tctx->xctr, 145 crypto_skcipher_set_flags(tctx->xctr, 146 crypto_skcip 146 crypto_skcipher_get_flags(tfm) & 147 CRYPTO_TFM_R 147 CRYPTO_TFM_REQ_MASK); 148 err = crypto_skcipher_setkey(tctx->xct 148 err = crypto_skcipher_setkey(tctx->xctr, key, keylen); 149 if (err) 149 if (err) 150 return err; 150 return err; 151 151 152 memset(hbar, 0, sizeof(hbar)); 152 memset(hbar, 0, sizeof(hbar)); 153 crypto_cipher_encrypt_one(tctx->blockc 153 crypto_cipher_encrypt_one(tctx->blockcipher, hbar, hbar); 154 154 155 memset(tctx->L, 0, sizeof(tctx->L)); 155 memset(tctx->L, 0, sizeof(tctx->L)); 156 tctx->L[0] = 0x01; 156 tctx->L[0] = 0x01; 157 crypto_cipher_encrypt_one(tctx->blockc 157 crypto_cipher_encrypt_one(tctx->blockcipher, tctx->L, tctx->L); 158 158 159 crypto_shash_clear_flags(tctx->polyval 159 crypto_shash_clear_flags(tctx->polyval, CRYPTO_TFM_REQ_MASK); 160 crypto_shash_set_flags(tctx->polyval, 160 crypto_shash_set_flags(tctx->polyval, crypto_skcipher_get_flags(tfm) & 161 CRYPTO_TFM_REQ_ 161 CRYPTO_TFM_REQ_MASK); 162 err = crypto_shash_setkey(tctx->polyva 162 err = crypto_shash_setkey(tctx->polyval, hbar, BLOCKCIPHER_BLOCK_SIZE); 163 if (err) 163 if (err) 164 return err; 164 return err; 165 memzero_explicit(hbar, sizeof(hbar)); 165 memzero_explicit(hbar, sizeof(hbar)); 166 166 167 return hctr2_hash_tweaklen(tctx, true) 167 return hctr2_hash_tweaklen(tctx, true) ?: hctr2_hash_tweaklen(tctx, false); 168 } 168 } 169 169 170 static int hctr2_hash_tweak(struct skcipher_re 170 static int hctr2_hash_tweak(struct skcipher_request *req) 171 { 171 { 172 struct crypto_skcipher *tfm = crypto_s 172 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); 173 const struct hctr2_tfm_ctx *tctx = cry 173 const struct hctr2_tfm_ctx *tctx = crypto_skcipher_ctx(tfm); 174 struct hctr2_request_ctx *rctx = skcip 174 struct hctr2_request_ctx *rctx = skcipher_request_ctx(req); 175 struct shash_desc *hash_desc = &rctx-> 175 struct shash_desc *hash_desc = &rctx->u.hash_desc; 176 int err; 176 int err; 177 bool has_remainder = req->cryptlen % P 177 bool has_remainder = req->cryptlen % POLYVAL_BLOCK_SIZE; 178 178 179 hash_desc->tfm = tctx->polyval; 179 hash_desc->tfm = tctx->polyval; 180 err = crypto_shash_import(hash_desc, h 180 err = crypto_shash_import(hash_desc, hctr2_hashed_tweaklen(tctx, has_remainder)); 181 if (err) 181 if (err) 182 return err; 182 return err; 183 err = crypto_shash_update(hash_desc, r 183 err = crypto_shash_update(hash_desc, req->iv, TWEAK_SIZE); 184 if (err) 184 if (err) 185 return err; 185 return err; 186 186 187 // Store the hashed tweak, since we ne 187 // Store the hashed tweak, since we need it when computing both 188 // H(T || N) and H(T || V). 188 // H(T || N) and H(T || V). 189 return crypto_shash_export(hash_desc, 189 return crypto_shash_export(hash_desc, hctr2_hashed_tweak(tctx, rctx)); 190 } 190 } 191 191 192 static int hctr2_hash_message(struct skcipher_ 192 static int hctr2_hash_message(struct skcipher_request *req, 193 struct scatterli 193 struct scatterlist *sgl, 194 u8 digest[POLYVA 194 u8 digest[POLYVAL_DIGEST_SIZE]) 195 { 195 { 196 static const u8 padding[BLOCKCIPHER_BL 196 static const u8 padding[BLOCKCIPHER_BLOCK_SIZE] = { 0x1 }; 197 struct hctr2_request_ctx *rctx = skcip 197 struct hctr2_request_ctx *rctx = skcipher_request_ctx(req); 198 struct shash_desc *hash_desc = &rctx-> 198 struct shash_desc *hash_desc = &rctx->u.hash_desc; 199 const unsigned int bulk_len = req->cry 199 const unsigned int bulk_len = req->cryptlen - BLOCKCIPHER_BLOCK_SIZE; 200 struct sg_mapping_iter miter; 200 struct sg_mapping_iter miter; 201 unsigned int remainder = bulk_len % BL 201 unsigned int remainder = bulk_len % BLOCKCIPHER_BLOCK_SIZE; 202 int i; 202 int i; 203 int err = 0; 203 int err = 0; 204 int n = 0; 204 int n = 0; 205 205 206 sg_miter_start(&miter, sgl, sg_nents(s 206 sg_miter_start(&miter, sgl, sg_nents(sgl), 207 SG_MITER_FROM_SG | SG_M 207 SG_MITER_FROM_SG | SG_MITER_ATOMIC); 208 for (i = 0; i < bulk_len; i += n) { 208 for (i = 0; i < bulk_len; i += n) { 209 sg_miter_next(&miter); 209 sg_miter_next(&miter); 210 n = min_t(unsigned int, miter. 210 n = min_t(unsigned int, miter.length, bulk_len - i); 211 err = crypto_shash_update(hash 211 err = crypto_shash_update(hash_desc, miter.addr, n); 212 if (err) 212 if (err) 213 break; 213 break; 214 } 214 } 215 sg_miter_stop(&miter); 215 sg_miter_stop(&miter); 216 216 217 if (err) 217 if (err) 218 return err; 218 return err; 219 219 220 if (remainder) { 220 if (remainder) { 221 err = crypto_shash_update(hash 221 err = crypto_shash_update(hash_desc, padding, 222 BLOC 222 BLOCKCIPHER_BLOCK_SIZE - remainder); 223 if (err) 223 if (err) 224 return err; 224 return err; 225 } 225 } 226 return crypto_shash_final(hash_desc, d 226 return crypto_shash_final(hash_desc, digest); 227 } 227 } 228 228 229 static int hctr2_finish(struct skcipher_reques 229 static int hctr2_finish(struct skcipher_request *req) 230 { 230 { 231 struct crypto_skcipher *tfm = crypto_s 231 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); 232 const struct hctr2_tfm_ctx *tctx = cry 232 const struct hctr2_tfm_ctx *tctx = crypto_skcipher_ctx(tfm); 233 struct hctr2_request_ctx *rctx = skcip 233 struct hctr2_request_ctx *rctx = skcipher_request_ctx(req); 234 u8 digest[POLYVAL_DIGEST_SIZE]; 234 u8 digest[POLYVAL_DIGEST_SIZE]; 235 struct shash_desc *hash_desc = &rctx-> 235 struct shash_desc *hash_desc = &rctx->u.hash_desc; 236 int err; 236 int err; 237 237 238 // U = UU ^ H(T || V) 238 // U = UU ^ H(T || V) 239 // or M = MM ^ H(T || N) 239 // or M = MM ^ H(T || N) 240 hash_desc->tfm = tctx->polyval; 240 hash_desc->tfm = tctx->polyval; 241 err = crypto_shash_import(hash_desc, h 241 err = crypto_shash_import(hash_desc, hctr2_hashed_tweak(tctx, rctx)); 242 if (err) 242 if (err) 243 return err; 243 return err; 244 err = hctr2_hash_message(req, rctx->bu 244 err = hctr2_hash_message(req, rctx->bulk_part_dst, digest); 245 if (err) 245 if (err) 246 return err; 246 return err; 247 crypto_xor(rctx->first_block, digest, 247 crypto_xor(rctx->first_block, digest, BLOCKCIPHER_BLOCK_SIZE); 248 248 249 // Copy U (or M) into dst scatterlist 249 // Copy U (or M) into dst scatterlist 250 scatterwalk_map_and_copy(rctx->first_b 250 scatterwalk_map_and_copy(rctx->first_block, req->dst, 251 0, BLOCKCIPHE 251 0, BLOCKCIPHER_BLOCK_SIZE, 1); 252 return 0; 252 return 0; 253 } 253 } 254 254 255 static void hctr2_xctr_done(void *data, int er 255 static void hctr2_xctr_done(void *data, int err) 256 { 256 { 257 struct skcipher_request *req = data; 257 struct skcipher_request *req = data; 258 258 259 if (!err) 259 if (!err) 260 err = hctr2_finish(req); 260 err = hctr2_finish(req); 261 261 262 skcipher_request_complete(req, err); 262 skcipher_request_complete(req, err); 263 } 263 } 264 264 265 static int hctr2_crypt(struct skcipher_request 265 static int hctr2_crypt(struct skcipher_request *req, bool enc) 266 { 266 { 267 struct crypto_skcipher *tfm = crypto_s 267 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); 268 const struct hctr2_tfm_ctx *tctx = cry 268 const struct hctr2_tfm_ctx *tctx = crypto_skcipher_ctx(tfm); 269 struct hctr2_request_ctx *rctx = skcip 269 struct hctr2_request_ctx *rctx = skcipher_request_ctx(req); 270 u8 digest[POLYVAL_DIGEST_SIZE]; 270 u8 digest[POLYVAL_DIGEST_SIZE]; 271 int bulk_len = req->cryptlen - BLOCKCI 271 int bulk_len = req->cryptlen - BLOCKCIPHER_BLOCK_SIZE; 272 int err; 272 int err; 273 273 274 // Requests must be at least one block 274 // Requests must be at least one block 275 if (req->cryptlen < BLOCKCIPHER_BLOCK_ 275 if (req->cryptlen < BLOCKCIPHER_BLOCK_SIZE) 276 return -EINVAL; 276 return -EINVAL; 277 277 278 // Copy M (or U) into a temporary buff 278 // Copy M (or U) into a temporary buffer 279 scatterwalk_map_and_copy(rctx->first_b 279 scatterwalk_map_and_copy(rctx->first_block, req->src, 280 0, BLOCKCIPHE 280 0, BLOCKCIPHER_BLOCK_SIZE, 0); 281 281 282 // Create scatterlists for N and V 282 // Create scatterlists for N and V 283 rctx->bulk_part_src = scatterwalk_ffwd 283 rctx->bulk_part_src = scatterwalk_ffwd(rctx->sg_src, req->src, 284 284 BLOCKCIPHER_BLOCK_SIZE); 285 rctx->bulk_part_dst = scatterwalk_ffwd 285 rctx->bulk_part_dst = scatterwalk_ffwd(rctx->sg_dst, req->dst, 286 286 BLOCKCIPHER_BLOCK_SIZE); 287 287 288 // MM = M ^ H(T || N) 288 // MM = M ^ H(T || N) 289 // or UU = U ^ H(T || V) 289 // or UU = U ^ H(T || V) 290 err = hctr2_hash_tweak(req); 290 err = hctr2_hash_tweak(req); 291 if (err) 291 if (err) 292 return err; 292 return err; 293 err = hctr2_hash_message(req, rctx->bu 293 err = hctr2_hash_message(req, rctx->bulk_part_src, digest); 294 if (err) 294 if (err) 295 return err; 295 return err; 296 crypto_xor(digest, rctx->first_block, 296 crypto_xor(digest, rctx->first_block, BLOCKCIPHER_BLOCK_SIZE); 297 297 298 // UU = E(MM) 298 // UU = E(MM) 299 // or MM = D(UU) 299 // or MM = D(UU) 300 if (enc) 300 if (enc) 301 crypto_cipher_encrypt_one(tctx 301 crypto_cipher_encrypt_one(tctx->blockcipher, rctx->first_block, 302 dige 302 digest); 303 else 303 else 304 crypto_cipher_decrypt_one(tctx 304 crypto_cipher_decrypt_one(tctx->blockcipher, rctx->first_block, 305 dige 305 digest); 306 306 307 // S = MM ^ UU ^ L 307 // S = MM ^ UU ^ L 308 crypto_xor(digest, rctx->first_block, 308 crypto_xor(digest, rctx->first_block, BLOCKCIPHER_BLOCK_SIZE); 309 crypto_xor_cpy(rctx->xctr_iv, digest, 309 crypto_xor_cpy(rctx->xctr_iv, digest, tctx->L, BLOCKCIPHER_BLOCK_SIZE); 310 310 311 // V = XCTR(S, N) 311 // V = XCTR(S, N) 312 // or N = XCTR(S, V) 312 // or N = XCTR(S, V) 313 skcipher_request_set_tfm(&rctx->u.xctr 313 skcipher_request_set_tfm(&rctx->u.xctr_req, tctx->xctr); 314 skcipher_request_set_crypt(&rctx->u.xc 314 skcipher_request_set_crypt(&rctx->u.xctr_req, rctx->bulk_part_src, 315 rctx->bulk_ 315 rctx->bulk_part_dst, bulk_len, 316 rctx->xctr_ 316 rctx->xctr_iv); 317 skcipher_request_set_callback(&rctx->u 317 skcipher_request_set_callback(&rctx->u.xctr_req, 318 req->bas 318 req->base.flags, 319 hctr2_xc 319 hctr2_xctr_done, req); 320 return crypto_skcipher_encrypt(&rctx-> 320 return crypto_skcipher_encrypt(&rctx->u.xctr_req) ?: 321 hctr2_finish(req); 321 hctr2_finish(req); 322 } 322 } 323 323 324 static int hctr2_encrypt(struct skcipher_reque 324 static int hctr2_encrypt(struct skcipher_request *req) 325 { 325 { 326 return hctr2_crypt(req, true); 326 return hctr2_crypt(req, true); 327 } 327 } 328 328 329 static int hctr2_decrypt(struct skcipher_reque 329 static int hctr2_decrypt(struct skcipher_request *req) 330 { 330 { 331 return hctr2_crypt(req, false); 331 return hctr2_crypt(req, false); 332 } 332 } 333 333 334 static int hctr2_init_tfm(struct crypto_skciph 334 static int hctr2_init_tfm(struct crypto_skcipher *tfm) 335 { 335 { 336 struct skcipher_instance *inst = skcip 336 struct skcipher_instance *inst = skcipher_alg_instance(tfm); 337 struct hctr2_instance_ctx *ictx = skci 337 struct hctr2_instance_ctx *ictx = skcipher_instance_ctx(inst); 338 struct hctr2_tfm_ctx *tctx = crypto_sk 338 struct hctr2_tfm_ctx *tctx = crypto_skcipher_ctx(tfm); 339 struct crypto_skcipher *xctr; 339 struct crypto_skcipher *xctr; 340 struct crypto_cipher *blockcipher; 340 struct crypto_cipher *blockcipher; 341 struct crypto_shash *polyval; 341 struct crypto_shash *polyval; 342 unsigned int subreq_size; 342 unsigned int subreq_size; 343 int err; 343 int err; 344 344 345 xctr = crypto_spawn_skcipher(&ictx->xc 345 xctr = crypto_spawn_skcipher(&ictx->xctr_spawn); 346 if (IS_ERR(xctr)) 346 if (IS_ERR(xctr)) 347 return PTR_ERR(xctr); 347 return PTR_ERR(xctr); 348 348 349 blockcipher = crypto_spawn_cipher(&ict 349 blockcipher = crypto_spawn_cipher(&ictx->blockcipher_spawn); 350 if (IS_ERR(blockcipher)) { 350 if (IS_ERR(blockcipher)) { 351 err = PTR_ERR(blockcipher); 351 err = PTR_ERR(blockcipher); 352 goto err_free_xctr; 352 goto err_free_xctr; 353 } 353 } 354 354 355 polyval = crypto_spawn_shash(&ictx->po 355 polyval = crypto_spawn_shash(&ictx->polyval_spawn); 356 if (IS_ERR(polyval)) { 356 if (IS_ERR(polyval)) { 357 err = PTR_ERR(polyval); 357 err = PTR_ERR(polyval); 358 goto err_free_blockcipher; 358 goto err_free_blockcipher; 359 } 359 } 360 360 361 tctx->xctr = xctr; 361 tctx->xctr = xctr; 362 tctx->blockcipher = blockcipher; 362 tctx->blockcipher = blockcipher; 363 tctx->polyval = polyval; 363 tctx->polyval = polyval; 364 364 365 BUILD_BUG_ON(offsetofend(struct hctr2_ 365 BUILD_BUG_ON(offsetofend(struct hctr2_request_ctx, u) != 366 sizeof(struct 366 sizeof(struct hctr2_request_ctx)); 367 subreq_size = max(sizeof_field(struct 367 subreq_size = max(sizeof_field(struct hctr2_request_ctx, u.hash_desc) + 368 crypto_shash_descsiz 368 crypto_shash_descsize(polyval), 369 sizeof_field(struct 369 sizeof_field(struct hctr2_request_ctx, u.xctr_req) + 370 crypto_skcipher_reqs 370 crypto_skcipher_reqsize(xctr)); 371 371 372 tctx->hashed_tweak_offset = offsetof(s 372 tctx->hashed_tweak_offset = offsetof(struct hctr2_request_ctx, u) + 373 subreq_siz 373 subreq_size; 374 crypto_skcipher_set_reqsize(tfm, tctx- 374 crypto_skcipher_set_reqsize(tfm, tctx->hashed_tweak_offset + 375 crypto_sha 375 crypto_shash_statesize(polyval)); 376 return 0; 376 return 0; 377 377 378 err_free_blockcipher: 378 err_free_blockcipher: 379 crypto_free_cipher(blockcipher); 379 crypto_free_cipher(blockcipher); 380 err_free_xctr: 380 err_free_xctr: 381 crypto_free_skcipher(xctr); 381 crypto_free_skcipher(xctr); 382 return err; 382 return err; 383 } 383 } 384 384 385 static void hctr2_exit_tfm(struct crypto_skcip 385 static void hctr2_exit_tfm(struct crypto_skcipher *tfm) 386 { 386 { 387 struct hctr2_tfm_ctx *tctx = crypto_sk 387 struct hctr2_tfm_ctx *tctx = crypto_skcipher_ctx(tfm); 388 388 389 crypto_free_cipher(tctx->blockcipher); 389 crypto_free_cipher(tctx->blockcipher); 390 crypto_free_skcipher(tctx->xctr); 390 crypto_free_skcipher(tctx->xctr); 391 crypto_free_shash(tctx->polyval); 391 crypto_free_shash(tctx->polyval); 392 } 392 } 393 393 394 static void hctr2_free_instance(struct skciphe 394 static void hctr2_free_instance(struct skcipher_instance *inst) 395 { 395 { 396 struct hctr2_instance_ctx *ictx = skci 396 struct hctr2_instance_ctx *ictx = skcipher_instance_ctx(inst); 397 397 398 crypto_drop_cipher(&ictx->blockcipher_ 398 crypto_drop_cipher(&ictx->blockcipher_spawn); 399 crypto_drop_skcipher(&ictx->xctr_spawn 399 crypto_drop_skcipher(&ictx->xctr_spawn); 400 crypto_drop_shash(&ictx->polyval_spawn 400 crypto_drop_shash(&ictx->polyval_spawn); 401 kfree(inst); 401 kfree(inst); 402 } 402 } 403 403 404 static int hctr2_create_common(struct crypto_t 404 static int hctr2_create_common(struct crypto_template *tmpl, 405 struct rtattr * 405 struct rtattr **tb, 406 const char *xct 406 const char *xctr_name, 407 const char *pol 407 const char *polyval_name) 408 { 408 { 409 struct skcipher_alg_common *xctr_alg; 409 struct skcipher_alg_common *xctr_alg; 410 u32 mask; 410 u32 mask; 411 struct skcipher_instance *inst; 411 struct skcipher_instance *inst; 412 struct hctr2_instance_ctx *ictx; 412 struct hctr2_instance_ctx *ictx; 413 struct crypto_alg *blockcipher_alg; 413 struct crypto_alg *blockcipher_alg; 414 struct shash_alg *polyval_alg; 414 struct shash_alg *polyval_alg; 415 char blockcipher_name[CRYPTO_MAX_ALG_N 415 char blockcipher_name[CRYPTO_MAX_ALG_NAME]; 416 int len; 416 int len; 417 int err; 417 int err; 418 418 419 err = crypto_check_attr_type(tb, CRYPT 419 err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_SKCIPHER, &mask); 420 if (err) 420 if (err) 421 return err; 421 return err; 422 422 423 inst = kzalloc(sizeof(*inst) + sizeof( 423 inst = kzalloc(sizeof(*inst) + sizeof(*ictx), GFP_KERNEL); 424 if (!inst) 424 if (!inst) 425 return -ENOMEM; 425 return -ENOMEM; 426 ictx = skcipher_instance_ctx(inst); 426 ictx = skcipher_instance_ctx(inst); 427 427 428 /* Stream cipher, xctr(block_cipher) * 428 /* Stream cipher, xctr(block_cipher) */ 429 err = crypto_grab_skcipher(&ictx->xctr 429 err = crypto_grab_skcipher(&ictx->xctr_spawn, 430 skcipher_cr 430 skcipher_crypto_instance(inst), 431 xctr_name, 431 xctr_name, 0, mask); 432 if (err) 432 if (err) 433 goto err_free_inst; 433 goto err_free_inst; 434 xctr_alg = crypto_spawn_skcipher_alg_c 434 xctr_alg = crypto_spawn_skcipher_alg_common(&ictx->xctr_spawn); 435 435 436 err = -EINVAL; 436 err = -EINVAL; 437 if (strncmp(xctr_alg->base.cra_name, " 437 if (strncmp(xctr_alg->base.cra_name, "xctr(", 5)) 438 goto err_free_inst; 438 goto err_free_inst; 439 len = strscpy(blockcipher_name, xctr_a 439 len = strscpy(blockcipher_name, xctr_alg->base.cra_name + 5, 440 sizeof(blockcipher_name) 440 sizeof(blockcipher_name)); 441 if (len < 1) 441 if (len < 1) 442 goto err_free_inst; 442 goto err_free_inst; 443 if (blockcipher_name[len - 1] != ')') 443 if (blockcipher_name[len - 1] != ')') 444 goto err_free_inst; 444 goto err_free_inst; 445 blockcipher_name[len - 1] = 0; 445 blockcipher_name[len - 1] = 0; 446 446 447 /* Block cipher, e.g. "aes" */ 447 /* Block cipher, e.g. "aes" */ 448 err = crypto_grab_cipher(&ictx->blockc 448 err = crypto_grab_cipher(&ictx->blockcipher_spawn, 449 skcipher_cryp 449 skcipher_crypto_instance(inst), 450 blockcipher_n 450 blockcipher_name, 0, mask); 451 if (err) 451 if (err) 452 goto err_free_inst; 452 goto err_free_inst; 453 blockcipher_alg = crypto_spawn_cipher_ 453 blockcipher_alg = crypto_spawn_cipher_alg(&ictx->blockcipher_spawn); 454 454 455 /* Require blocksize of 16 bytes */ 455 /* Require blocksize of 16 bytes */ 456 err = -EINVAL; 456 err = -EINVAL; 457 if (blockcipher_alg->cra_blocksize != 457 if (blockcipher_alg->cra_blocksize != BLOCKCIPHER_BLOCK_SIZE) 458 goto err_free_inst; 458 goto err_free_inst; 459 459 460 /* Polyval ε-∆U hash function */ 460 /* Polyval ε-∆U hash function */ 461 err = crypto_grab_shash(&ictx->polyval 461 err = crypto_grab_shash(&ictx->polyval_spawn, 462 skcipher_crypt 462 skcipher_crypto_instance(inst), 463 polyval_name, 463 polyval_name, 0, mask); 464 if (err) 464 if (err) 465 goto err_free_inst; 465 goto err_free_inst; 466 polyval_alg = crypto_spawn_shash_alg(& 466 polyval_alg = crypto_spawn_shash_alg(&ictx->polyval_spawn); 467 467 468 /* Ensure Polyval is being used */ 468 /* Ensure Polyval is being used */ 469 err = -EINVAL; 469 err = -EINVAL; 470 if (strcmp(polyval_alg->base.cra_name, 470 if (strcmp(polyval_alg->base.cra_name, "polyval") != 0) 471 goto err_free_inst; 471 goto err_free_inst; 472 472 473 /* Instance fields */ 473 /* Instance fields */ 474 474 475 err = -ENAMETOOLONG; 475 err = -ENAMETOOLONG; 476 if (snprintf(inst->alg.base.cra_name, 476 if (snprintf(inst->alg.base.cra_name, CRYPTO_MAX_ALG_NAME, "hctr2(%s)", 477 blockcipher_alg->cra_name 477 blockcipher_alg->cra_name) >= CRYPTO_MAX_ALG_NAME) 478 goto err_free_inst; 478 goto err_free_inst; 479 if (snprintf(inst->alg.base.cra_driver 479 if (snprintf(inst->alg.base.cra_driver_name, CRYPTO_MAX_ALG_NAME, 480 "hctr2_base(%s,%s)", 480 "hctr2_base(%s,%s)", 481 xctr_alg->base.cra_driver 481 xctr_alg->base.cra_driver_name, 482 polyval_alg->base.cra_dri 482 polyval_alg->base.cra_driver_name) >= CRYPTO_MAX_ALG_NAME) 483 goto err_free_inst; 483 goto err_free_inst; 484 484 485 inst->alg.base.cra_blocksize = BLOCKCI 485 inst->alg.base.cra_blocksize = BLOCKCIPHER_BLOCK_SIZE; 486 inst->alg.base.cra_ctxsize = sizeof(st 486 inst->alg.base.cra_ctxsize = sizeof(struct hctr2_tfm_ctx) + 487 polyval_a 487 polyval_alg->statesize * 2; 488 inst->alg.base.cra_alignmask = xctr_al 488 inst->alg.base.cra_alignmask = xctr_alg->base.cra_alignmask; 489 /* 489 /* 490 * The hash function is called twice, 490 * The hash function is called twice, so it is weighted higher than the 491 * xctr and blockcipher. 491 * xctr and blockcipher. 492 */ 492 */ 493 inst->alg.base.cra_priority = (2 * xct 493 inst->alg.base.cra_priority = (2 * xctr_alg->base.cra_priority + 494 4 * pol 494 4 * polyval_alg->base.cra_priority + 495 blockci 495 blockcipher_alg->cra_priority) / 7; 496 496 497 inst->alg.setkey = hctr2_setkey; 497 inst->alg.setkey = hctr2_setkey; 498 inst->alg.encrypt = hctr2_encrypt; 498 inst->alg.encrypt = hctr2_encrypt; 499 inst->alg.decrypt = hctr2_decrypt; 499 inst->alg.decrypt = hctr2_decrypt; 500 inst->alg.init = hctr2_init_tfm; 500 inst->alg.init = hctr2_init_tfm; 501 inst->alg.exit = hctr2_exit_tfm; 501 inst->alg.exit = hctr2_exit_tfm; 502 inst->alg.min_keysize = xctr_alg->min_ 502 inst->alg.min_keysize = xctr_alg->min_keysize; 503 inst->alg.max_keysize = xctr_alg->max_ 503 inst->alg.max_keysize = xctr_alg->max_keysize; 504 inst->alg.ivsize = TWEAK_SIZE; 504 inst->alg.ivsize = TWEAK_SIZE; 505 505 506 inst->free = hctr2_free_instance; 506 inst->free = hctr2_free_instance; 507 507 508 err = skcipher_register_instance(tmpl, 508 err = skcipher_register_instance(tmpl, inst); 509 if (err) { 509 if (err) { 510 err_free_inst: 510 err_free_inst: 511 hctr2_free_instance(inst); 511 hctr2_free_instance(inst); 512 } 512 } 513 return err; 513 return err; 514 } 514 } 515 515 516 static int hctr2_create_base(struct crypto_tem 516 static int hctr2_create_base(struct crypto_template *tmpl, struct rtattr **tb) 517 { 517 { 518 const char *xctr_name; 518 const char *xctr_name; 519 const char *polyval_name; 519 const char *polyval_name; 520 520 521 xctr_name = crypto_attr_alg_name(tb[1] 521 xctr_name = crypto_attr_alg_name(tb[1]); 522 if (IS_ERR(xctr_name)) 522 if (IS_ERR(xctr_name)) 523 return PTR_ERR(xctr_name); 523 return PTR_ERR(xctr_name); 524 524 525 polyval_name = crypto_attr_alg_name(tb 525 polyval_name = crypto_attr_alg_name(tb[2]); 526 if (IS_ERR(polyval_name)) 526 if (IS_ERR(polyval_name)) 527 return PTR_ERR(polyval_name); 527 return PTR_ERR(polyval_name); 528 528 529 return hctr2_create_common(tmpl, tb, x 529 return hctr2_create_common(tmpl, tb, xctr_name, polyval_name); 530 } 530 } 531 531 532 static int hctr2_create(struct crypto_template 532 static int hctr2_create(struct crypto_template *tmpl, struct rtattr **tb) 533 { 533 { 534 const char *blockcipher_name; 534 const char *blockcipher_name; 535 char xctr_name[CRYPTO_MAX_ALG_NAME]; 535 char xctr_name[CRYPTO_MAX_ALG_NAME]; 536 536 537 blockcipher_name = crypto_attr_alg_nam 537 blockcipher_name = crypto_attr_alg_name(tb[1]); 538 if (IS_ERR(blockcipher_name)) 538 if (IS_ERR(blockcipher_name)) 539 return PTR_ERR(blockcipher_nam 539 return PTR_ERR(blockcipher_name); 540 540 541 if (snprintf(xctr_name, CRYPTO_MAX_ALG 541 if (snprintf(xctr_name, CRYPTO_MAX_ALG_NAME, "xctr(%s)", 542 blockcipher_name) >= CRYPT 542 blockcipher_name) >= CRYPTO_MAX_ALG_NAME) 543 return -ENAMETOOLONG; 543 return -ENAMETOOLONG; 544 544 545 return hctr2_create_common(tmpl, tb, x 545 return hctr2_create_common(tmpl, tb, xctr_name, "polyval"); 546 } 546 } 547 547 548 static struct crypto_template hctr2_tmpls[] = 548 static struct crypto_template hctr2_tmpls[] = { 549 { 549 { 550 /* hctr2_base(xctr_name, polyv 550 /* hctr2_base(xctr_name, polyval_name) */ 551 .name = "hctr2_base", 551 .name = "hctr2_base", 552 .create = hctr2_create_base, 552 .create = hctr2_create_base, 553 .module = THIS_MODULE, 553 .module = THIS_MODULE, 554 }, { 554 }, { 555 /* hctr2(blockcipher_name) */ 555 /* hctr2(blockcipher_name) */ 556 .name = "hctr2", 556 .name = "hctr2", 557 .create = hctr2_create, 557 .create = hctr2_create, 558 .module = THIS_MODULE, 558 .module = THIS_MODULE, 559 } 559 } 560 }; 560 }; 561 561 562 static int __init hctr2_module_init(void) 562 static int __init hctr2_module_init(void) 563 { 563 { 564 return crypto_register_templates(hctr2 564 return crypto_register_templates(hctr2_tmpls, ARRAY_SIZE(hctr2_tmpls)); 565 } 565 } 566 566 567 static void __exit hctr2_module_exit(void) 567 static void __exit hctr2_module_exit(void) 568 { 568 { 569 return crypto_unregister_templates(hct 569 return crypto_unregister_templates(hctr2_tmpls, 570 ARR 570 ARRAY_SIZE(hctr2_tmpls)); 571 } 571 } 572 572 573 subsys_initcall(hctr2_module_init); 573 subsys_initcall(hctr2_module_init); 574 module_exit(hctr2_module_exit); 574 module_exit(hctr2_module_exit); 575 575 576 MODULE_DESCRIPTION("HCTR2 length-preserving en 576 MODULE_DESCRIPTION("HCTR2 length-preserving encryption mode"); 577 MODULE_LICENSE("GPL v2"); 577 MODULE_LICENSE("GPL v2"); 578 MODULE_ALIAS_CRYPTO("hctr2"); 578 MODULE_ALIAS_CRYPTO("hctr2"); 579 MODULE_IMPORT_NS(CRYPTO_INTERNAL); 579 MODULE_IMPORT_NS(CRYPTO_INTERNAL); 580 580
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.