1 // SPDX-License-Identifier: GPL-2.0-or-later 1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 2 /* 3 * Symmetric key cipher operations. 3 * Symmetric key cipher operations. 4 * 4 * 5 * Generic encrypt/decrypt wrapper for ciphers 5 * Generic encrypt/decrypt wrapper for ciphers, handles operations across 6 * multiple page boundaries by using temporary 6 * multiple page boundaries by using temporary blocks. In user context, 7 * the kernel is given a chance to schedule us 7 * the kernel is given a chance to schedule us once per page. 8 * 8 * 9 * Copyright (c) 2015 Herbert Xu <herbert@gond 9 * Copyright (c) 2015 Herbert Xu <herbert@gondor.apana.org.au> 10 */ 10 */ 11 11 12 #include <crypto/internal/aead.h> 12 #include <crypto/internal/aead.h> 13 #include <crypto/internal/cipher.h> << 14 #include <crypto/internal/skcipher.h> 13 #include <crypto/internal/skcipher.h> 15 #include <crypto/scatterwalk.h> 14 #include <crypto/scatterwalk.h> 16 #include <linux/bug.h> 15 #include <linux/bug.h> 17 #include <linux/cryptouser.h> 16 #include <linux/cryptouser.h> 18 #include <linux/err.h> !! 17 #include <linux/compiler.h> 19 #include <linux/kernel.h> << 20 #include <linux/list.h> 18 #include <linux/list.h> 21 #include <linux/mm.h> << 22 #include <linux/module.h> 19 #include <linux/module.h> >> 20 #include <linux/rtnetlink.h> 23 #include <linux/seq_file.h> 21 #include <linux/seq_file.h> 24 #include <linux/slab.h> << 25 #include <linux/string.h> << 26 #include <net/netlink.h> 22 #include <net/netlink.h> 27 #include "skcipher.h" << 28 23 29 #define CRYPTO_ALG_TYPE_SKCIPHER_MASK 0x0000 !! 24 #include "internal.h" 30 25 31 enum { 26 enum { 32 SKCIPHER_WALK_PHYS = 1 << 0, 27 SKCIPHER_WALK_PHYS = 1 << 0, 33 SKCIPHER_WALK_SLOW = 1 << 1, 28 SKCIPHER_WALK_SLOW = 1 << 1, 34 SKCIPHER_WALK_COPY = 1 << 2, 29 SKCIPHER_WALK_COPY = 1 << 2, 35 SKCIPHER_WALK_DIFF = 1 << 3, 30 SKCIPHER_WALK_DIFF = 1 << 3, 36 SKCIPHER_WALK_SLEEP = 1 << 4, 31 SKCIPHER_WALK_SLEEP = 1 << 4, 37 }; 32 }; 38 33 39 struct skcipher_walk_buffer { 34 struct skcipher_walk_buffer { 40 struct list_head entry; 35 struct list_head entry; 41 struct scatter_walk dst; 36 struct scatter_walk dst; 42 unsigned int len; 37 unsigned int len; 43 u8 *data; 38 u8 *data; 44 u8 buffer[]; 39 u8 buffer[]; 45 }; 40 }; 46 41 47 static const struct crypto_type crypto_skciphe << 48 << 49 static int skcipher_walk_next(struct skcipher_ 42 static int skcipher_walk_next(struct skcipher_walk *walk); 50 43 >> 44 static inline void skcipher_unmap(struct scatter_walk *walk, void *vaddr) >> 45 { >> 46 if (PageHighMem(scatterwalk_page(walk))) >> 47 kunmap_atomic(vaddr); >> 48 } >> 49 >> 50 static inline void *skcipher_map(struct scatter_walk *walk) >> 51 { >> 52 struct page *page = scatterwalk_page(walk); >> 53 >> 54 return (PageHighMem(page) ? kmap_atomic(page) : page_address(page)) + >> 55 offset_in_page(walk->offset); >> 56 } >> 57 51 static inline void skcipher_map_src(struct skc 58 static inline void skcipher_map_src(struct skcipher_walk *walk) 52 { 59 { 53 walk->src.virt.addr = scatterwalk_map( !! 60 walk->src.virt.addr = skcipher_map(&walk->in); 54 } 61 } 55 62 56 static inline void skcipher_map_dst(struct skc 63 static inline void skcipher_map_dst(struct skcipher_walk *walk) 57 { 64 { 58 walk->dst.virt.addr = scatterwalk_map( !! 65 walk->dst.virt.addr = skcipher_map(&walk->out); 59 } 66 } 60 67 61 static inline void skcipher_unmap_src(struct s 68 static inline void skcipher_unmap_src(struct skcipher_walk *walk) 62 { 69 { 63 scatterwalk_unmap(walk->src.virt.addr) !! 70 skcipher_unmap(&walk->in, walk->src.virt.addr); 64 } 71 } 65 72 66 static inline void skcipher_unmap_dst(struct s 73 static inline void skcipher_unmap_dst(struct skcipher_walk *walk) 67 { 74 { 68 scatterwalk_unmap(walk->dst.virt.addr) !! 75 skcipher_unmap(&walk->out, walk->dst.virt.addr); 69 } 76 } 70 77 71 static inline gfp_t skcipher_walk_gfp(struct s 78 static inline gfp_t skcipher_walk_gfp(struct skcipher_walk *walk) 72 { 79 { 73 return walk->flags & SKCIPHER_WALK_SLE 80 return walk->flags & SKCIPHER_WALK_SLEEP ? GFP_KERNEL : GFP_ATOMIC; 74 } 81 } 75 82 76 /* Get a spot of the specified length that doe 83 /* Get a spot of the specified length that does not straddle a page. 77 * The caller needs to ensure that there is en 84 * The caller needs to ensure that there is enough space for this operation. 78 */ 85 */ 79 static inline u8 *skcipher_get_spot(u8 *start, 86 static inline u8 *skcipher_get_spot(u8 *start, unsigned int len) 80 { 87 { 81 u8 *end_page = (u8 *)(((unsigned long) 88 u8 *end_page = (u8 *)(((unsigned long)(start + len - 1)) & PAGE_MASK); 82 89 83 return max(start, end_page); 90 return max(start, end_page); 84 } 91 } 85 92 86 static inline struct skcipher_alg *__crypto_sk << 87 struct crypto_alg *alg) << 88 { << 89 return container_of(alg, struct skciph << 90 } << 91 << 92 static int skcipher_done_slow(struct skcipher_ 93 static int skcipher_done_slow(struct skcipher_walk *walk, unsigned int bsize) 93 { 94 { 94 u8 *addr; 95 u8 *addr; 95 96 96 addr = (u8 *)ALIGN((unsigned long)walk 97 addr = (u8 *)ALIGN((unsigned long)walk->buffer, walk->alignmask + 1); 97 addr = skcipher_get_spot(addr, bsize); 98 addr = skcipher_get_spot(addr, bsize); 98 scatterwalk_copychunks(addr, &walk->ou 99 scatterwalk_copychunks(addr, &walk->out, bsize, 99 (walk->flags & 100 (walk->flags & SKCIPHER_WALK_PHYS) ? 2 : 1); 100 return 0; 101 return 0; 101 } 102 } 102 103 103 int skcipher_walk_done(struct skcipher_walk *w 104 int skcipher_walk_done(struct skcipher_walk *walk, int err) 104 { 105 { 105 unsigned int n = walk->nbytes; 106 unsigned int n = walk->nbytes; 106 unsigned int nbytes = 0; 107 unsigned int nbytes = 0; 107 108 108 if (!n) 109 if (!n) 109 goto finish; 110 goto finish; 110 111 111 if (likely(err >= 0)) { 112 if (likely(err >= 0)) { 112 n -= err; 113 n -= err; 113 nbytes = walk->total - n; 114 nbytes = walk->total - n; 114 } 115 } 115 116 116 if (likely(!(walk->flags & (SKCIPHER_W 117 if (likely(!(walk->flags & (SKCIPHER_WALK_PHYS | 117 SKCIPHER_W 118 SKCIPHER_WALK_SLOW | 118 SKCIPHER_W 119 SKCIPHER_WALK_COPY | 119 SKCIPHER_W 120 SKCIPHER_WALK_DIFF)))) { 120 unmap_src: 121 unmap_src: 121 skcipher_unmap_src(walk); 122 skcipher_unmap_src(walk); 122 } else if (walk->flags & SKCIPHER_WALK 123 } else if (walk->flags & SKCIPHER_WALK_DIFF) { 123 skcipher_unmap_dst(walk); 124 skcipher_unmap_dst(walk); 124 goto unmap_src; 125 goto unmap_src; 125 } else if (walk->flags & SKCIPHER_WALK 126 } else if (walk->flags & SKCIPHER_WALK_COPY) { 126 skcipher_map_dst(walk); 127 skcipher_map_dst(walk); 127 memcpy(walk->dst.virt.addr, wa 128 memcpy(walk->dst.virt.addr, walk->page, n); 128 skcipher_unmap_dst(walk); 129 skcipher_unmap_dst(walk); 129 } else if (unlikely(walk->flags & SKCI 130 } else if (unlikely(walk->flags & SKCIPHER_WALK_SLOW)) { 130 if (err > 0) { 131 if (err > 0) { 131 /* 132 /* 132 * Didn't process all 133 * Didn't process all bytes. Either the algorithm is 133 * broken, or this was 134 * broken, or this was the last step and it turned out 134 * the message wasn't 135 * the message wasn't evenly divisible into blocks but 135 * the algorithm requi 136 * the algorithm requires it. 136 */ 137 */ 137 err = -EINVAL; 138 err = -EINVAL; 138 nbytes = 0; 139 nbytes = 0; 139 } else 140 } else 140 n = skcipher_done_slow 141 n = skcipher_done_slow(walk, n); 141 } 142 } 142 143 143 if (err > 0) 144 if (err > 0) 144 err = 0; 145 err = 0; 145 146 146 walk->total = nbytes; 147 walk->total = nbytes; 147 walk->nbytes = 0; 148 walk->nbytes = 0; 148 149 149 scatterwalk_advance(&walk->in, n); 150 scatterwalk_advance(&walk->in, n); 150 scatterwalk_advance(&walk->out, n); 151 scatterwalk_advance(&walk->out, n); 151 scatterwalk_done(&walk->in, 0, nbytes) 152 scatterwalk_done(&walk->in, 0, nbytes); 152 scatterwalk_done(&walk->out, 1, nbytes 153 scatterwalk_done(&walk->out, 1, nbytes); 153 154 154 if (nbytes) { 155 if (nbytes) { 155 crypto_yield(walk->flags & SKC 156 crypto_yield(walk->flags & SKCIPHER_WALK_SLEEP ? 156 CRYPTO_TFM_REQ_MA 157 CRYPTO_TFM_REQ_MAY_SLEEP : 0); 157 return skcipher_walk_next(walk 158 return skcipher_walk_next(walk); 158 } 159 } 159 160 160 finish: 161 finish: 161 /* Short-circuit for the common/fast p 162 /* Short-circuit for the common/fast path. */ 162 if (!((unsigned long)walk->buffer | (u 163 if (!((unsigned long)walk->buffer | (unsigned long)walk->page)) 163 goto out; 164 goto out; 164 165 165 if (walk->flags & SKCIPHER_WALK_PHYS) 166 if (walk->flags & SKCIPHER_WALK_PHYS) 166 goto out; 167 goto out; 167 168 168 if (walk->iv != walk->oiv) 169 if (walk->iv != walk->oiv) 169 memcpy(walk->oiv, walk->iv, wa 170 memcpy(walk->oiv, walk->iv, walk->ivsize); 170 if (walk->buffer != walk->page) 171 if (walk->buffer != walk->page) 171 kfree(walk->buffer); 172 kfree(walk->buffer); 172 if (walk->page) 173 if (walk->page) 173 free_page((unsigned long)walk- 174 free_page((unsigned long)walk->page); 174 175 175 out: 176 out: 176 return err; 177 return err; 177 } 178 } 178 EXPORT_SYMBOL_GPL(skcipher_walk_done); 179 EXPORT_SYMBOL_GPL(skcipher_walk_done); 179 180 180 void skcipher_walk_complete(struct skcipher_wa 181 void skcipher_walk_complete(struct skcipher_walk *walk, int err) 181 { 182 { 182 struct skcipher_walk_buffer *p, *tmp; 183 struct skcipher_walk_buffer *p, *tmp; 183 184 184 list_for_each_entry_safe(p, tmp, &walk 185 list_for_each_entry_safe(p, tmp, &walk->buffers, entry) { 185 u8 *data; 186 u8 *data; 186 187 187 if (err) 188 if (err) 188 goto done; 189 goto done; 189 190 190 data = p->data; 191 data = p->data; 191 if (!data) { 192 if (!data) { 192 data = PTR_ALIGN(&p->b 193 data = PTR_ALIGN(&p->buffer[0], walk->alignmask + 1); 193 data = skcipher_get_sp 194 data = skcipher_get_spot(data, walk->stride); 194 } 195 } 195 196 196 scatterwalk_copychunks(data, & 197 scatterwalk_copychunks(data, &p->dst, p->len, 1); 197 198 198 if (offset_in_page(p->data) + 199 if (offset_in_page(p->data) + p->len + walk->stride > 199 PAGE_SIZE) 200 PAGE_SIZE) 200 free_page((unsigned lo 201 free_page((unsigned long)p->data); 201 202 202 done: 203 done: 203 list_del(&p->entry); 204 list_del(&p->entry); 204 kfree(p); 205 kfree(p); 205 } 206 } 206 207 207 if (!err && walk->iv != walk->oiv) 208 if (!err && walk->iv != walk->oiv) 208 memcpy(walk->oiv, walk->iv, wa 209 memcpy(walk->oiv, walk->iv, walk->ivsize); 209 if (walk->buffer != walk->page) 210 if (walk->buffer != walk->page) 210 kfree(walk->buffer); 211 kfree(walk->buffer); 211 if (walk->page) 212 if (walk->page) 212 free_page((unsigned long)walk- 213 free_page((unsigned long)walk->page); 213 } 214 } 214 EXPORT_SYMBOL_GPL(skcipher_walk_complete); 215 EXPORT_SYMBOL_GPL(skcipher_walk_complete); 215 216 216 static void skcipher_queue_write(struct skciph 217 static void skcipher_queue_write(struct skcipher_walk *walk, 217 struct skciph 218 struct skcipher_walk_buffer *p) 218 { 219 { 219 p->dst = walk->out; 220 p->dst = walk->out; 220 list_add_tail(&p->entry, &walk->buffer 221 list_add_tail(&p->entry, &walk->buffers); 221 } 222 } 222 223 223 static int skcipher_next_slow(struct skcipher_ 224 static int skcipher_next_slow(struct skcipher_walk *walk, unsigned int bsize) 224 { 225 { 225 bool phys = walk->flags & SKCIPHER_WAL 226 bool phys = walk->flags & SKCIPHER_WALK_PHYS; 226 unsigned alignmask = walk->alignmask; 227 unsigned alignmask = walk->alignmask; 227 struct skcipher_walk_buffer *p; 228 struct skcipher_walk_buffer *p; 228 unsigned a; 229 unsigned a; 229 unsigned n; 230 unsigned n; 230 u8 *buffer; 231 u8 *buffer; 231 void *v; 232 void *v; 232 233 233 if (!phys) { 234 if (!phys) { 234 if (!walk->buffer) 235 if (!walk->buffer) 235 walk->buffer = walk->p 236 walk->buffer = walk->page; 236 buffer = walk->buffer; 237 buffer = walk->buffer; 237 if (buffer) 238 if (buffer) 238 goto ok; 239 goto ok; 239 } 240 } 240 241 241 /* Start with the minimum alignment of 242 /* Start with the minimum alignment of kmalloc. */ 242 a = crypto_tfm_ctx_alignment() - 1; 243 a = crypto_tfm_ctx_alignment() - 1; 243 n = bsize; 244 n = bsize; 244 245 245 if (phys) { 246 if (phys) { 246 /* Calculate the minimum align 247 /* Calculate the minimum alignment of p->buffer. */ 247 a &= (sizeof(*p) ^ (sizeof(*p) 248 a &= (sizeof(*p) ^ (sizeof(*p) - 1)) >> 1; 248 n += sizeof(*p); 249 n += sizeof(*p); 249 } 250 } 250 251 251 /* Minimum size to align p->buffer by 252 /* Minimum size to align p->buffer by alignmask. */ 252 n += alignmask & ~a; 253 n += alignmask & ~a; 253 254 254 /* Minimum size to ensure p->buffer do 255 /* Minimum size to ensure p->buffer does not straddle a page. */ 255 n += (bsize - 1) & ~(alignmask | a); 256 n += (bsize - 1) & ~(alignmask | a); 256 257 257 v = kzalloc(n, skcipher_walk_gfp(walk) 258 v = kzalloc(n, skcipher_walk_gfp(walk)); 258 if (!v) 259 if (!v) 259 return skcipher_walk_done(walk 260 return skcipher_walk_done(walk, -ENOMEM); 260 261 261 if (phys) { 262 if (phys) { 262 p = v; 263 p = v; 263 p->len = bsize; 264 p->len = bsize; 264 skcipher_queue_write(walk, p); 265 skcipher_queue_write(walk, p); 265 buffer = p->buffer; 266 buffer = p->buffer; 266 } else { 267 } else { 267 walk->buffer = v; 268 walk->buffer = v; 268 buffer = v; 269 buffer = v; 269 } 270 } 270 271 271 ok: 272 ok: 272 walk->dst.virt.addr = PTR_ALIGN(buffer 273 walk->dst.virt.addr = PTR_ALIGN(buffer, alignmask + 1); 273 walk->dst.virt.addr = skcipher_get_spo 274 walk->dst.virt.addr = skcipher_get_spot(walk->dst.virt.addr, bsize); 274 walk->src.virt.addr = walk->dst.virt.a 275 walk->src.virt.addr = walk->dst.virt.addr; 275 276 276 scatterwalk_copychunks(walk->src.virt. 277 scatterwalk_copychunks(walk->src.virt.addr, &walk->in, bsize, 0); 277 278 278 walk->nbytes = bsize; 279 walk->nbytes = bsize; 279 walk->flags |= SKCIPHER_WALK_SLOW; 280 walk->flags |= SKCIPHER_WALK_SLOW; 280 281 281 return 0; 282 return 0; 282 } 283 } 283 284 284 static int skcipher_next_copy(struct skcipher_ 285 static int skcipher_next_copy(struct skcipher_walk *walk) 285 { 286 { 286 struct skcipher_walk_buffer *p; 287 struct skcipher_walk_buffer *p; 287 u8 *tmp = walk->page; 288 u8 *tmp = walk->page; 288 289 289 skcipher_map_src(walk); 290 skcipher_map_src(walk); 290 memcpy(tmp, walk->src.virt.addr, walk- 291 memcpy(tmp, walk->src.virt.addr, walk->nbytes); 291 skcipher_unmap_src(walk); 292 skcipher_unmap_src(walk); 292 293 293 walk->src.virt.addr = tmp; 294 walk->src.virt.addr = tmp; 294 walk->dst.virt.addr = tmp; 295 walk->dst.virt.addr = tmp; 295 296 296 if (!(walk->flags & SKCIPHER_WALK_PHYS 297 if (!(walk->flags & SKCIPHER_WALK_PHYS)) 297 return 0; 298 return 0; 298 299 299 p = kmalloc(sizeof(*p), skcipher_walk_ 300 p = kmalloc(sizeof(*p), skcipher_walk_gfp(walk)); 300 if (!p) 301 if (!p) 301 return -ENOMEM; 302 return -ENOMEM; 302 303 303 p->data = walk->page; 304 p->data = walk->page; 304 p->len = walk->nbytes; 305 p->len = walk->nbytes; 305 skcipher_queue_write(walk, p); 306 skcipher_queue_write(walk, p); 306 307 307 if (offset_in_page(walk->page) + walk- 308 if (offset_in_page(walk->page) + walk->nbytes + walk->stride > 308 PAGE_SIZE) 309 PAGE_SIZE) 309 walk->page = NULL; 310 walk->page = NULL; 310 else 311 else 311 walk->page += walk->nbytes; 312 walk->page += walk->nbytes; 312 313 313 return 0; 314 return 0; 314 } 315 } 315 316 316 static int skcipher_next_fast(struct skcipher_ 317 static int skcipher_next_fast(struct skcipher_walk *walk) 317 { 318 { 318 unsigned long diff; 319 unsigned long diff; 319 320 320 walk->src.phys.page = scatterwalk_page 321 walk->src.phys.page = scatterwalk_page(&walk->in); 321 walk->src.phys.offset = offset_in_page 322 walk->src.phys.offset = offset_in_page(walk->in.offset); 322 walk->dst.phys.page = scatterwalk_page 323 walk->dst.phys.page = scatterwalk_page(&walk->out); 323 walk->dst.phys.offset = offset_in_page 324 walk->dst.phys.offset = offset_in_page(walk->out.offset); 324 325 325 if (walk->flags & SKCIPHER_WALK_PHYS) 326 if (walk->flags & SKCIPHER_WALK_PHYS) 326 return 0; 327 return 0; 327 328 328 diff = walk->src.phys.offset - walk->d 329 diff = walk->src.phys.offset - walk->dst.phys.offset; 329 diff |= walk->src.virt.page - walk->ds 330 diff |= walk->src.virt.page - walk->dst.virt.page; 330 331 331 skcipher_map_src(walk); 332 skcipher_map_src(walk); 332 walk->dst.virt.addr = walk->src.virt.a 333 walk->dst.virt.addr = walk->src.virt.addr; 333 334 334 if (diff) { 335 if (diff) { 335 walk->flags |= SKCIPHER_WALK_D 336 walk->flags |= SKCIPHER_WALK_DIFF; 336 skcipher_map_dst(walk); 337 skcipher_map_dst(walk); 337 } 338 } 338 339 339 return 0; 340 return 0; 340 } 341 } 341 342 342 static int skcipher_walk_next(struct skcipher_ 343 static int skcipher_walk_next(struct skcipher_walk *walk) 343 { 344 { 344 unsigned int bsize; 345 unsigned int bsize; 345 unsigned int n; 346 unsigned int n; 346 int err; 347 int err; 347 348 348 walk->flags &= ~(SKCIPHER_WALK_SLOW | 349 walk->flags &= ~(SKCIPHER_WALK_SLOW | SKCIPHER_WALK_COPY | 349 SKCIPHER_WALK_DIFF); 350 SKCIPHER_WALK_DIFF); 350 351 351 n = walk->total; 352 n = walk->total; 352 bsize = min(walk->stride, max(n, walk- 353 bsize = min(walk->stride, max(n, walk->blocksize)); 353 n = scatterwalk_clamp(&walk->in, n); 354 n = scatterwalk_clamp(&walk->in, n); 354 n = scatterwalk_clamp(&walk->out, n); 355 n = scatterwalk_clamp(&walk->out, n); 355 356 356 if (unlikely(n < bsize)) { 357 if (unlikely(n < bsize)) { 357 if (unlikely(walk->total < wal 358 if (unlikely(walk->total < walk->blocksize)) 358 return skcipher_walk_d 359 return skcipher_walk_done(walk, -EINVAL); 359 360 360 slow_path: 361 slow_path: 361 err = skcipher_next_slow(walk, 362 err = skcipher_next_slow(walk, bsize); 362 goto set_phys_lowmem; 363 goto set_phys_lowmem; 363 } 364 } 364 365 365 if (unlikely((walk->in.offset | walk-> 366 if (unlikely((walk->in.offset | walk->out.offset) & walk->alignmask)) { 366 if (!walk->page) { 367 if (!walk->page) { 367 gfp_t gfp = skcipher_w 368 gfp_t gfp = skcipher_walk_gfp(walk); 368 369 369 walk->page = (void *)_ 370 walk->page = (void *)__get_free_page(gfp); 370 if (!walk->page) 371 if (!walk->page) 371 goto slow_path 372 goto slow_path; 372 } 373 } 373 374 374 walk->nbytes = min_t(unsigned, 375 walk->nbytes = min_t(unsigned, n, 375 PAGE_SIZE 376 PAGE_SIZE - offset_in_page(walk->page)); 376 walk->flags |= SKCIPHER_WALK_C 377 walk->flags |= SKCIPHER_WALK_COPY; 377 err = skcipher_next_copy(walk) 378 err = skcipher_next_copy(walk); 378 goto set_phys_lowmem; 379 goto set_phys_lowmem; 379 } 380 } 380 381 381 walk->nbytes = n; 382 walk->nbytes = n; 382 383 383 return skcipher_next_fast(walk); 384 return skcipher_next_fast(walk); 384 385 385 set_phys_lowmem: 386 set_phys_lowmem: 386 if (!err && (walk->flags & SKCIPHER_WA 387 if (!err && (walk->flags & SKCIPHER_WALK_PHYS)) { 387 walk->src.phys.page = virt_to_ 388 walk->src.phys.page = virt_to_page(walk->src.virt.addr); 388 walk->dst.phys.page = virt_to_ 389 walk->dst.phys.page = virt_to_page(walk->dst.virt.addr); 389 walk->src.phys.offset &= PAGE_ 390 walk->src.phys.offset &= PAGE_SIZE - 1; 390 walk->dst.phys.offset &= PAGE_ 391 walk->dst.phys.offset &= PAGE_SIZE - 1; 391 } 392 } 392 return err; 393 return err; 393 } 394 } 394 395 395 static int skcipher_copy_iv(struct skcipher_wa 396 static int skcipher_copy_iv(struct skcipher_walk *walk) 396 { 397 { 397 unsigned a = crypto_tfm_ctx_alignment( 398 unsigned a = crypto_tfm_ctx_alignment() - 1; 398 unsigned alignmask = walk->alignmask; 399 unsigned alignmask = walk->alignmask; 399 unsigned ivsize = walk->ivsize; 400 unsigned ivsize = walk->ivsize; 400 unsigned bs = walk->stride; 401 unsigned bs = walk->stride; 401 unsigned aligned_bs; 402 unsigned aligned_bs; 402 unsigned size; 403 unsigned size; 403 u8 *iv; 404 u8 *iv; 404 405 405 aligned_bs = ALIGN(bs, alignmask + 1); 406 aligned_bs = ALIGN(bs, alignmask + 1); 406 407 407 /* Minimum size to align buffer by ali 408 /* Minimum size to align buffer by alignmask. */ 408 size = alignmask & ~a; 409 size = alignmask & ~a; 409 410 410 if (walk->flags & SKCIPHER_WALK_PHYS) 411 if (walk->flags & SKCIPHER_WALK_PHYS) 411 size += ivsize; 412 size += ivsize; 412 else { 413 else { 413 size += aligned_bs + ivsize; 414 size += aligned_bs + ivsize; 414 415 415 /* Minimum size to ensure buff 416 /* Minimum size to ensure buffer does not straddle a page. */ 416 size += (bs - 1) & ~(alignmask 417 size += (bs - 1) & ~(alignmask | a); 417 } 418 } 418 419 419 walk->buffer = kmalloc(size, skcipher_ 420 walk->buffer = kmalloc(size, skcipher_walk_gfp(walk)); 420 if (!walk->buffer) 421 if (!walk->buffer) 421 return -ENOMEM; 422 return -ENOMEM; 422 423 423 iv = PTR_ALIGN(walk->buffer, alignmask 424 iv = PTR_ALIGN(walk->buffer, alignmask + 1); 424 iv = skcipher_get_spot(iv, bs) + align 425 iv = skcipher_get_spot(iv, bs) + aligned_bs; 425 426 426 walk->iv = memcpy(iv, walk->iv, walk-> 427 walk->iv = memcpy(iv, walk->iv, walk->ivsize); 427 return 0; 428 return 0; 428 } 429 } 429 430 430 static int skcipher_walk_first(struct skcipher 431 static int skcipher_walk_first(struct skcipher_walk *walk) 431 { 432 { 432 if (WARN_ON_ONCE(in_hardirq())) !! 433 if (WARN_ON_ONCE(in_irq())) 433 return -EDEADLK; 434 return -EDEADLK; 434 435 435 walk->buffer = NULL; 436 walk->buffer = NULL; 436 if (unlikely(((unsigned long)walk->iv 437 if (unlikely(((unsigned long)walk->iv & walk->alignmask))) { 437 int err = skcipher_copy_iv(wal 438 int err = skcipher_copy_iv(walk); 438 if (err) 439 if (err) 439 return err; 440 return err; 440 } 441 } 441 442 442 walk->page = NULL; 443 walk->page = NULL; 443 444 444 return skcipher_walk_next(walk); 445 return skcipher_walk_next(walk); 445 } 446 } 446 447 447 static int skcipher_walk_skcipher(struct skcip 448 static int skcipher_walk_skcipher(struct skcipher_walk *walk, 448 struct skcip 449 struct skcipher_request *req) 449 { 450 { 450 struct crypto_skcipher *tfm = crypto_s 451 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); 451 struct skcipher_alg *alg = crypto_skci << 452 452 453 walk->total = req->cryptlen; 453 walk->total = req->cryptlen; 454 walk->nbytes = 0; 454 walk->nbytes = 0; 455 walk->iv = req->iv; 455 walk->iv = req->iv; 456 walk->oiv = req->iv; 456 walk->oiv = req->iv; 457 457 458 if (unlikely(!walk->total)) 458 if (unlikely(!walk->total)) 459 return 0; 459 return 0; 460 460 461 scatterwalk_start(&walk->in, req->src) 461 scatterwalk_start(&walk->in, req->src); 462 scatterwalk_start(&walk->out, req->dst 462 scatterwalk_start(&walk->out, req->dst); 463 463 464 walk->flags &= ~SKCIPHER_WALK_SLEEP; 464 walk->flags &= ~SKCIPHER_WALK_SLEEP; 465 walk->flags |= req->base.flags & CRYPT 465 walk->flags |= req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ? 466 SKCIPHER_WALK_SLEEP : 0 466 SKCIPHER_WALK_SLEEP : 0; 467 467 468 walk->blocksize = crypto_skcipher_bloc 468 walk->blocksize = crypto_skcipher_blocksize(tfm); >> 469 walk->stride = crypto_skcipher_walksize(tfm); 469 walk->ivsize = crypto_skcipher_ivsize( 470 walk->ivsize = crypto_skcipher_ivsize(tfm); 470 walk->alignmask = crypto_skcipher_alig 471 walk->alignmask = crypto_skcipher_alignmask(tfm); 471 472 472 if (alg->co.base.cra_type != &crypto_s << 473 walk->stride = alg->co.chunksi << 474 else << 475 walk->stride = alg->walksize; << 476 << 477 return skcipher_walk_first(walk); 473 return skcipher_walk_first(walk); 478 } 474 } 479 475 480 int skcipher_walk_virt(struct skcipher_walk *w 476 int skcipher_walk_virt(struct skcipher_walk *walk, 481 struct skcipher_request 477 struct skcipher_request *req, bool atomic) 482 { 478 { 483 int err; 479 int err; 484 480 485 might_sleep_if(req->base.flags & CRYPT 481 might_sleep_if(req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP); 486 482 487 walk->flags &= ~SKCIPHER_WALK_PHYS; 483 walk->flags &= ~SKCIPHER_WALK_PHYS; 488 484 489 err = skcipher_walk_skcipher(walk, req 485 err = skcipher_walk_skcipher(walk, req); 490 486 491 walk->flags &= atomic ? ~SKCIPHER_WALK 487 walk->flags &= atomic ? ~SKCIPHER_WALK_SLEEP : ~0; 492 488 493 return err; 489 return err; 494 } 490 } 495 EXPORT_SYMBOL_GPL(skcipher_walk_virt); 491 EXPORT_SYMBOL_GPL(skcipher_walk_virt); 496 492 >> 493 void skcipher_walk_atomise(struct skcipher_walk *walk) >> 494 { >> 495 walk->flags &= ~SKCIPHER_WALK_SLEEP; >> 496 } >> 497 EXPORT_SYMBOL_GPL(skcipher_walk_atomise); >> 498 497 int skcipher_walk_async(struct skcipher_walk * 499 int skcipher_walk_async(struct skcipher_walk *walk, 498 struct skcipher_reques 500 struct skcipher_request *req) 499 { 501 { 500 walk->flags |= SKCIPHER_WALK_PHYS; 502 walk->flags |= SKCIPHER_WALK_PHYS; 501 503 502 INIT_LIST_HEAD(&walk->buffers); 504 INIT_LIST_HEAD(&walk->buffers); 503 505 504 return skcipher_walk_skcipher(walk, re 506 return skcipher_walk_skcipher(walk, req); 505 } 507 } 506 EXPORT_SYMBOL_GPL(skcipher_walk_async); 508 EXPORT_SYMBOL_GPL(skcipher_walk_async); 507 509 508 static int skcipher_walk_aead_common(struct sk 510 static int skcipher_walk_aead_common(struct skcipher_walk *walk, 509 struct ae 511 struct aead_request *req, bool atomic) 510 { 512 { 511 struct crypto_aead *tfm = crypto_aead_ 513 struct crypto_aead *tfm = crypto_aead_reqtfm(req); 512 int err; 514 int err; 513 515 514 walk->nbytes = 0; 516 walk->nbytes = 0; 515 walk->iv = req->iv; 517 walk->iv = req->iv; 516 walk->oiv = req->iv; 518 walk->oiv = req->iv; 517 519 518 if (unlikely(!walk->total)) 520 if (unlikely(!walk->total)) 519 return 0; 521 return 0; 520 522 521 walk->flags &= ~SKCIPHER_WALK_PHYS; 523 walk->flags &= ~SKCIPHER_WALK_PHYS; 522 524 523 scatterwalk_start(&walk->in, req->src) 525 scatterwalk_start(&walk->in, req->src); 524 scatterwalk_start(&walk->out, req->dst 526 scatterwalk_start(&walk->out, req->dst); 525 527 526 scatterwalk_copychunks(NULL, &walk->in 528 scatterwalk_copychunks(NULL, &walk->in, req->assoclen, 2); 527 scatterwalk_copychunks(NULL, &walk->ou 529 scatterwalk_copychunks(NULL, &walk->out, req->assoclen, 2); 528 530 529 scatterwalk_done(&walk->in, 0, walk->t 531 scatterwalk_done(&walk->in, 0, walk->total); 530 scatterwalk_done(&walk->out, 0, walk-> 532 scatterwalk_done(&walk->out, 0, walk->total); 531 533 532 if (req->base.flags & CRYPTO_TFM_REQ_M 534 if (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) 533 walk->flags |= SKCIPHER_WALK_S 535 walk->flags |= SKCIPHER_WALK_SLEEP; 534 else 536 else 535 walk->flags &= ~SKCIPHER_WALK_ 537 walk->flags &= ~SKCIPHER_WALK_SLEEP; 536 538 537 walk->blocksize = crypto_aead_blocksiz 539 walk->blocksize = crypto_aead_blocksize(tfm); 538 walk->stride = crypto_aead_chunksize(t 540 walk->stride = crypto_aead_chunksize(tfm); 539 walk->ivsize = crypto_aead_ivsize(tfm) 541 walk->ivsize = crypto_aead_ivsize(tfm); 540 walk->alignmask = crypto_aead_alignmas 542 walk->alignmask = crypto_aead_alignmask(tfm); 541 543 542 err = skcipher_walk_first(walk); 544 err = skcipher_walk_first(walk); 543 545 544 if (atomic) 546 if (atomic) 545 walk->flags &= ~SKCIPHER_WALK_ 547 walk->flags &= ~SKCIPHER_WALK_SLEEP; 546 548 547 return err; 549 return err; 548 } 550 } 549 551 550 int skcipher_walk_aead_encrypt(struct skcipher 552 int skcipher_walk_aead_encrypt(struct skcipher_walk *walk, 551 struct aead_req 553 struct aead_request *req, bool atomic) 552 { 554 { 553 walk->total = req->cryptlen; 555 walk->total = req->cryptlen; 554 556 555 return skcipher_walk_aead_common(walk, 557 return skcipher_walk_aead_common(walk, req, atomic); 556 } 558 } 557 EXPORT_SYMBOL_GPL(skcipher_walk_aead_encrypt); 559 EXPORT_SYMBOL_GPL(skcipher_walk_aead_encrypt); 558 560 559 int skcipher_walk_aead_decrypt(struct skcipher 561 int skcipher_walk_aead_decrypt(struct skcipher_walk *walk, 560 struct aead_req 562 struct aead_request *req, bool atomic) 561 { 563 { 562 struct crypto_aead *tfm = crypto_aead_ 564 struct crypto_aead *tfm = crypto_aead_reqtfm(req); 563 565 564 walk->total = req->cryptlen - crypto_a 566 walk->total = req->cryptlen - crypto_aead_authsize(tfm); 565 567 566 return skcipher_walk_aead_common(walk, 568 return skcipher_walk_aead_common(walk, req, atomic); 567 } 569 } 568 EXPORT_SYMBOL_GPL(skcipher_walk_aead_decrypt); 570 EXPORT_SYMBOL_GPL(skcipher_walk_aead_decrypt); 569 571 570 static void skcipher_set_needkey(struct crypto 572 static void skcipher_set_needkey(struct crypto_skcipher *tfm) 571 { 573 { 572 if (crypto_skcipher_max_keysize(tfm) ! 574 if (crypto_skcipher_max_keysize(tfm) != 0) 573 crypto_skcipher_set_flags(tfm, 575 crypto_skcipher_set_flags(tfm, CRYPTO_TFM_NEED_KEY); 574 } 576 } 575 577 576 static int skcipher_setkey_unaligned(struct cr 578 static int skcipher_setkey_unaligned(struct crypto_skcipher *tfm, 577 const u8 579 const u8 *key, unsigned int keylen) 578 { 580 { 579 unsigned long alignmask = crypto_skcip 581 unsigned long alignmask = crypto_skcipher_alignmask(tfm); 580 struct skcipher_alg *cipher = crypto_s 582 struct skcipher_alg *cipher = crypto_skcipher_alg(tfm); 581 u8 *buffer, *alignbuffer; 583 u8 *buffer, *alignbuffer; 582 unsigned long absize; 584 unsigned long absize; 583 int ret; 585 int ret; 584 586 585 absize = keylen + alignmask; 587 absize = keylen + alignmask; 586 buffer = kmalloc(absize, GFP_ATOMIC); 588 buffer = kmalloc(absize, GFP_ATOMIC); 587 if (!buffer) 589 if (!buffer) 588 return -ENOMEM; 590 return -ENOMEM; 589 591 590 alignbuffer = (u8 *)ALIGN((unsigned lo 592 alignbuffer = (u8 *)ALIGN((unsigned long)buffer, alignmask + 1); 591 memcpy(alignbuffer, key, keylen); 593 memcpy(alignbuffer, key, keylen); 592 ret = cipher->setkey(tfm, alignbuffer, 594 ret = cipher->setkey(tfm, alignbuffer, keylen); 593 kfree_sensitive(buffer); 595 kfree_sensitive(buffer); 594 return ret; 596 return ret; 595 } 597 } 596 598 597 int crypto_skcipher_setkey(struct crypto_skcip 599 int crypto_skcipher_setkey(struct crypto_skcipher *tfm, const u8 *key, 598 unsigned int keylen 600 unsigned int keylen) 599 { 601 { 600 struct skcipher_alg *cipher = crypto_s 602 struct skcipher_alg *cipher = crypto_skcipher_alg(tfm); 601 unsigned long alignmask = crypto_skcip 603 unsigned long alignmask = crypto_skcipher_alignmask(tfm); 602 int err; 604 int err; 603 605 604 if (cipher->co.base.cra_type != &crypt << 605 struct crypto_lskcipher **ctx << 606 << 607 crypto_lskcipher_clear_flags(* << 608 crypto_lskcipher_set_flags(*ct << 609 cry << 610 CRY << 611 err = crypto_lskcipher_setkey( << 612 goto out; << 613 } << 614 << 615 if (keylen < cipher->min_keysize || ke 606 if (keylen < cipher->min_keysize || keylen > cipher->max_keysize) 616 return -EINVAL; 607 return -EINVAL; 617 608 618 if ((unsigned long)key & alignmask) 609 if ((unsigned long)key & alignmask) 619 err = skcipher_setkey_unaligne 610 err = skcipher_setkey_unaligned(tfm, key, keylen); 620 else 611 else 621 err = cipher->setkey(tfm, key, 612 err = cipher->setkey(tfm, key, keylen); 622 613 623 out: << 624 if (unlikely(err)) { 614 if (unlikely(err)) { 625 skcipher_set_needkey(tfm); 615 skcipher_set_needkey(tfm); 626 return err; 616 return err; 627 } 617 } 628 618 629 crypto_skcipher_clear_flags(tfm, CRYPT 619 crypto_skcipher_clear_flags(tfm, CRYPTO_TFM_NEED_KEY); 630 return 0; 620 return 0; 631 } 621 } 632 EXPORT_SYMBOL_GPL(crypto_skcipher_setkey); 622 EXPORT_SYMBOL_GPL(crypto_skcipher_setkey); 633 623 634 int crypto_skcipher_encrypt(struct skcipher_re 624 int crypto_skcipher_encrypt(struct skcipher_request *req) 635 { 625 { 636 struct crypto_skcipher *tfm = crypto_s 626 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); 637 struct skcipher_alg *alg = crypto_skci !! 627 struct crypto_alg *alg = tfm->base.__crt_alg; >> 628 unsigned int cryptlen = req->cryptlen; >> 629 int ret; 638 630 >> 631 crypto_stats_get(alg); 639 if (crypto_skcipher_get_flags(tfm) & C 632 if (crypto_skcipher_get_flags(tfm) & CRYPTO_TFM_NEED_KEY) 640 return -ENOKEY; !! 633 ret = -ENOKEY; 641 if (alg->co.base.cra_type != &crypto_s !! 634 else 642 return crypto_lskcipher_encryp !! 635 ret = crypto_skcipher_alg(tfm)->encrypt(req); 643 return alg->encrypt(req); !! 636 crypto_stats_skcipher_encrypt(cryptlen, ret, alg); >> 637 return ret; 644 } 638 } 645 EXPORT_SYMBOL_GPL(crypto_skcipher_encrypt); 639 EXPORT_SYMBOL_GPL(crypto_skcipher_encrypt); 646 640 647 int crypto_skcipher_decrypt(struct skcipher_re 641 int crypto_skcipher_decrypt(struct skcipher_request *req) 648 { 642 { 649 struct crypto_skcipher *tfm = crypto_s 643 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); 650 struct skcipher_alg *alg = crypto_skci !! 644 struct crypto_alg *alg = tfm->base.__crt_alg; >> 645 unsigned int cryptlen = req->cryptlen; >> 646 int ret; 651 647 >> 648 crypto_stats_get(alg); 652 if (crypto_skcipher_get_flags(tfm) & C 649 if (crypto_skcipher_get_flags(tfm) & CRYPTO_TFM_NEED_KEY) 653 return -ENOKEY; !! 650 ret = -ENOKEY; 654 if (alg->co.base.cra_type != &crypto_s !! 651 else 655 return crypto_lskcipher_decryp !! 652 ret = crypto_skcipher_alg(tfm)->decrypt(req); 656 return alg->decrypt(req); !! 653 crypto_stats_skcipher_decrypt(cryptlen, ret, alg); >> 654 return ret; 657 } 655 } 658 EXPORT_SYMBOL_GPL(crypto_skcipher_decrypt); 656 EXPORT_SYMBOL_GPL(crypto_skcipher_decrypt); 659 657 660 static int crypto_lskcipher_export(struct skci << 661 { << 662 struct crypto_skcipher *tfm = crypto_s << 663 u8 *ivs = skcipher_request_ctx(req); << 664 << 665 ivs = PTR_ALIGN(ivs, crypto_skcipher_a << 666 << 667 memcpy(out, ivs + crypto_skcipher_ivsi << 668 crypto_skcipher_statesize(tfm)) << 669 << 670 return 0; << 671 } << 672 << 673 static int crypto_lskcipher_import(struct skci << 674 { << 675 struct crypto_skcipher *tfm = crypto_s << 676 u8 *ivs = skcipher_request_ctx(req); << 677 << 678 ivs = PTR_ALIGN(ivs, crypto_skcipher_a << 679 << 680 memcpy(ivs + crypto_skcipher_ivsize(tf << 681 crypto_skcipher_statesize(tfm)) << 682 << 683 return 0; << 684 } << 685 << 686 static int skcipher_noexport(struct skcipher_r << 687 { << 688 return 0; << 689 } << 690 << 691 static int skcipher_noimport(struct skcipher_r << 692 { << 693 return 0; << 694 } << 695 << 696 int crypto_skcipher_export(struct skcipher_req << 697 { << 698 struct crypto_skcipher *tfm = crypto_s << 699 struct skcipher_alg *alg = crypto_skci << 700 << 701 if (alg->co.base.cra_type != &crypto_s << 702 return crypto_lskcipher_export << 703 return alg->export(req, out); << 704 } << 705 EXPORT_SYMBOL_GPL(crypto_skcipher_export); << 706 << 707 int crypto_skcipher_import(struct skcipher_req << 708 { << 709 struct crypto_skcipher *tfm = crypto_s << 710 struct skcipher_alg *alg = crypto_skci << 711 << 712 if (alg->co.base.cra_type != &crypto_s << 713 return crypto_lskcipher_import << 714 return alg->import(req, in); << 715 } << 716 EXPORT_SYMBOL_GPL(crypto_skcipher_import); << 717 << 718 static void crypto_skcipher_exit_tfm(struct cr 658 static void crypto_skcipher_exit_tfm(struct crypto_tfm *tfm) 719 { 659 { 720 struct crypto_skcipher *skcipher = __c 660 struct crypto_skcipher *skcipher = __crypto_skcipher_cast(tfm); 721 struct skcipher_alg *alg = crypto_skci 661 struct skcipher_alg *alg = crypto_skcipher_alg(skcipher); 722 662 723 alg->exit(skcipher); 663 alg->exit(skcipher); 724 } 664 } 725 665 726 static int crypto_skcipher_init_tfm(struct cry 666 static int crypto_skcipher_init_tfm(struct crypto_tfm *tfm) 727 { 667 { 728 struct crypto_skcipher *skcipher = __c 668 struct crypto_skcipher *skcipher = __crypto_skcipher_cast(tfm); 729 struct skcipher_alg *alg = crypto_skci 669 struct skcipher_alg *alg = crypto_skcipher_alg(skcipher); 730 670 731 skcipher_set_needkey(skcipher); 671 skcipher_set_needkey(skcipher); 732 672 733 if (tfm->__crt_alg->cra_type != &crypt << 734 unsigned am = crypto_skcipher_ << 735 unsigned reqsize; << 736 << 737 reqsize = am & ~(crypto_tfm_ct << 738 reqsize += crypto_skcipher_ivs << 739 reqsize += crypto_skcipher_sta << 740 crypto_skcipher_set_reqsize(sk << 741 << 742 return crypto_init_lskcipher_o << 743 } << 744 << 745 if (alg->exit) 673 if (alg->exit) 746 skcipher->base.exit = crypto_s 674 skcipher->base.exit = crypto_skcipher_exit_tfm; 747 675 748 if (alg->init) 676 if (alg->init) 749 return alg->init(skcipher); 677 return alg->init(skcipher); 750 678 751 return 0; 679 return 0; 752 } 680 } 753 681 754 static unsigned int crypto_skcipher_extsize(st << 755 { << 756 if (alg->cra_type != &crypto_skcipher_ << 757 return sizeof(struct crypto_ls << 758 << 759 return crypto_alg_extsize(alg); << 760 } << 761 << 762 static void crypto_skcipher_free_instance(stru 682 static void crypto_skcipher_free_instance(struct crypto_instance *inst) 763 { 683 { 764 struct skcipher_instance *skcipher = 684 struct skcipher_instance *skcipher = 765 container_of(inst, struct skci 685 container_of(inst, struct skcipher_instance, s.base); 766 686 767 skcipher->free(skcipher); 687 skcipher->free(skcipher); 768 } 688 } 769 689 770 static void crypto_skcipher_show(struct seq_fi 690 static void crypto_skcipher_show(struct seq_file *m, struct crypto_alg *alg) 771 __maybe_unused; 691 __maybe_unused; 772 static void crypto_skcipher_show(struct seq_fi 692 static void crypto_skcipher_show(struct seq_file *m, struct crypto_alg *alg) 773 { 693 { 774 struct skcipher_alg *skcipher = __cryp !! 694 struct skcipher_alg *skcipher = container_of(alg, struct skcipher_alg, >> 695 base); 775 696 776 seq_printf(m, "type : skcipher 697 seq_printf(m, "type : skcipher\n"); 777 seq_printf(m, "async : %s\n", 698 seq_printf(m, "async : %s\n", 778 alg->cra_flags & CRYPTO_ALG 699 alg->cra_flags & CRYPTO_ALG_ASYNC ? "yes" : "no"); 779 seq_printf(m, "blocksize : %u\n", a 700 seq_printf(m, "blocksize : %u\n", alg->cra_blocksize); 780 seq_printf(m, "min keysize : %u\n", s 701 seq_printf(m, "min keysize : %u\n", skcipher->min_keysize); 781 seq_printf(m, "max keysize : %u\n", s 702 seq_printf(m, "max keysize : %u\n", skcipher->max_keysize); 782 seq_printf(m, "ivsize : %u\n", s 703 seq_printf(m, "ivsize : %u\n", skcipher->ivsize); 783 seq_printf(m, "chunksize : %u\n", s 704 seq_printf(m, "chunksize : %u\n", skcipher->chunksize); 784 seq_printf(m, "walksize : %u\n", s 705 seq_printf(m, "walksize : %u\n", skcipher->walksize); 785 seq_printf(m, "statesize : %u\n", s << 786 } 706 } 787 707 788 static int __maybe_unused crypto_skcipher_repo !! 708 #ifdef CONFIG_NET 789 struct sk_buff *skb, struct crypto_alg !! 709 static int crypto_skcipher_report(struct sk_buff *skb, struct crypto_alg *alg) 790 { 710 { 791 struct skcipher_alg *skcipher = __cryp << 792 struct crypto_report_blkcipher rblkcip 711 struct crypto_report_blkcipher rblkcipher; >> 712 struct skcipher_alg *skcipher = container_of(alg, struct skcipher_alg, >> 713 base); 793 714 794 memset(&rblkcipher, 0, sizeof(rblkciph 715 memset(&rblkcipher, 0, sizeof(rblkcipher)); 795 716 796 strscpy(rblkcipher.type, "skcipher", s 717 strscpy(rblkcipher.type, "skcipher", sizeof(rblkcipher.type)); 797 strscpy(rblkcipher.geniv, "<none>", si 718 strscpy(rblkcipher.geniv, "<none>", sizeof(rblkcipher.geniv)); 798 719 799 rblkcipher.blocksize = alg->cra_blocks 720 rblkcipher.blocksize = alg->cra_blocksize; 800 rblkcipher.min_keysize = skcipher->min 721 rblkcipher.min_keysize = skcipher->min_keysize; 801 rblkcipher.max_keysize = skcipher->max 722 rblkcipher.max_keysize = skcipher->max_keysize; 802 rblkcipher.ivsize = skcipher->ivsize; 723 rblkcipher.ivsize = skcipher->ivsize; 803 724 804 return nla_put(skb, CRYPTOCFGA_REPORT_ 725 return nla_put(skb, CRYPTOCFGA_REPORT_BLKCIPHER, 805 sizeof(rblkcipher), &rb 726 sizeof(rblkcipher), &rblkcipher); 806 } 727 } >> 728 #else >> 729 static int crypto_skcipher_report(struct sk_buff *skb, struct crypto_alg *alg) >> 730 { >> 731 return -ENOSYS; >> 732 } >> 733 #endif 807 734 808 static const struct crypto_type crypto_skciphe 735 static const struct crypto_type crypto_skcipher_type = { 809 .extsize = crypto_skcipher_extsize, !! 736 .extsize = crypto_alg_extsize, 810 .init_tfm = crypto_skcipher_init_tfm, 737 .init_tfm = crypto_skcipher_init_tfm, 811 .free = crypto_skcipher_free_instance, 738 .free = crypto_skcipher_free_instance, 812 #ifdef CONFIG_PROC_FS 739 #ifdef CONFIG_PROC_FS 813 .show = crypto_skcipher_show, 740 .show = crypto_skcipher_show, 814 #endif 741 #endif 815 #if IS_ENABLED(CONFIG_CRYPTO_USER) << 816 .report = crypto_skcipher_report, 742 .report = crypto_skcipher_report, 817 #endif << 818 .maskclear = ~CRYPTO_ALG_TYPE_MASK, 743 .maskclear = ~CRYPTO_ALG_TYPE_MASK, 819 .maskset = CRYPTO_ALG_TYPE_SKCIPHER_MA !! 744 .maskset = CRYPTO_ALG_TYPE_MASK, 820 .type = CRYPTO_ALG_TYPE_SKCIPHER, 745 .type = CRYPTO_ALG_TYPE_SKCIPHER, 821 .tfmsize = offsetof(struct crypto_skci 746 .tfmsize = offsetof(struct crypto_skcipher, base), 822 }; 747 }; 823 748 824 int crypto_grab_skcipher(struct crypto_skciphe 749 int crypto_grab_skcipher(struct crypto_skcipher_spawn *spawn, 825 struct crypto_instanc 750 struct crypto_instance *inst, 826 const char *name, u32 751 const char *name, u32 type, u32 mask) 827 { 752 { 828 spawn->base.frontend = &crypto_skciphe 753 spawn->base.frontend = &crypto_skcipher_type; 829 return crypto_grab_spawn(&spawn->base, 754 return crypto_grab_spawn(&spawn->base, inst, name, type, mask); 830 } 755 } 831 EXPORT_SYMBOL_GPL(crypto_grab_skcipher); 756 EXPORT_SYMBOL_GPL(crypto_grab_skcipher); 832 757 833 struct crypto_skcipher *crypto_alloc_skcipher( 758 struct crypto_skcipher *crypto_alloc_skcipher(const char *alg_name, 834 759 u32 type, u32 mask) 835 { 760 { 836 return crypto_alloc_tfm(alg_name, &cry 761 return crypto_alloc_tfm(alg_name, &crypto_skcipher_type, type, mask); 837 } 762 } 838 EXPORT_SYMBOL_GPL(crypto_alloc_skcipher); 763 EXPORT_SYMBOL_GPL(crypto_alloc_skcipher); 839 764 840 struct crypto_sync_skcipher *crypto_alloc_sync 765 struct crypto_sync_skcipher *crypto_alloc_sync_skcipher( 841 const char *al 766 const char *alg_name, u32 type, u32 mask) 842 { 767 { 843 struct crypto_skcipher *tfm; 768 struct crypto_skcipher *tfm; 844 769 845 /* Only sync algorithms allowed. */ 770 /* Only sync algorithms allowed. */ 846 mask |= CRYPTO_ALG_ASYNC | CRYPTO_ALG_ !! 771 mask |= CRYPTO_ALG_ASYNC; 847 772 848 tfm = crypto_alloc_tfm(alg_name, &cryp 773 tfm = crypto_alloc_tfm(alg_name, &crypto_skcipher_type, type, mask); 849 774 850 /* 775 /* 851 * Make sure we do not allocate someth 776 * Make sure we do not allocate something that might get used with 852 * an on-stack request: check the requ 777 * an on-stack request: check the request size. 853 */ 778 */ 854 if (!IS_ERR(tfm) && WARN_ON(crypto_skc 779 if (!IS_ERR(tfm) && WARN_ON(crypto_skcipher_reqsize(tfm) > 855 MAX_SYNC_S 780 MAX_SYNC_SKCIPHER_REQSIZE)) { 856 crypto_free_skcipher(tfm); 781 crypto_free_skcipher(tfm); 857 return ERR_PTR(-EINVAL); 782 return ERR_PTR(-EINVAL); 858 } 783 } 859 784 860 return (struct crypto_sync_skcipher *) 785 return (struct crypto_sync_skcipher *)tfm; 861 } 786 } 862 EXPORT_SYMBOL_GPL(crypto_alloc_sync_skcipher); 787 EXPORT_SYMBOL_GPL(crypto_alloc_sync_skcipher); 863 788 864 int crypto_has_skcipher(const char *alg_name, 789 int crypto_has_skcipher(const char *alg_name, u32 type, u32 mask) 865 { 790 { 866 return crypto_type_has_alg(alg_name, & 791 return crypto_type_has_alg(alg_name, &crypto_skcipher_type, type, mask); 867 } 792 } 868 EXPORT_SYMBOL_GPL(crypto_has_skcipher); 793 EXPORT_SYMBOL_GPL(crypto_has_skcipher); 869 794 870 int skcipher_prepare_alg_common(struct skciphe !! 795 static int skcipher_prepare_alg(struct skcipher_alg *alg) 871 { 796 { 872 struct crypto_alg *base = &alg->base; 797 struct crypto_alg *base = &alg->base; 873 798 874 if (alg->ivsize > PAGE_SIZE / 8 || alg 799 if (alg->ivsize > PAGE_SIZE / 8 || alg->chunksize > PAGE_SIZE / 8 || 875 alg->statesize > PAGE_SIZE / 2 || !! 800 alg->walksize > PAGE_SIZE / 8) 876 (alg->ivsize + alg->statesize) > P << 877 return -EINVAL; 801 return -EINVAL; 878 802 879 if (!alg->chunksize) 803 if (!alg->chunksize) 880 alg->chunksize = base->cra_blo 804 alg->chunksize = base->cra_blocksize; 881 << 882 base->cra_flags &= ~CRYPTO_ALG_TYPE_MA << 883 << 884 return 0; << 885 } << 886 << 887 static int skcipher_prepare_alg(struct skciphe << 888 { << 889 struct crypto_alg *base = &alg->base; << 890 int err; << 891 << 892 err = skcipher_prepare_alg_common(&alg << 893 if (err) << 894 return err; << 895 << 896 if (alg->walksize > PAGE_SIZE / 8) << 897 return -EINVAL; << 898 << 899 if (!alg->walksize) 805 if (!alg->walksize) 900 alg->walksize = alg->chunksize 806 alg->walksize = alg->chunksize; 901 807 902 if (!alg->statesize) { << 903 alg->import = skcipher_noimpor << 904 alg->export = skcipher_noexpor << 905 } else if (!(alg->import && alg->expor << 906 return -EINVAL; << 907 << 908 base->cra_type = &crypto_skcipher_type 808 base->cra_type = &crypto_skcipher_type; >> 809 base->cra_flags &= ~CRYPTO_ALG_TYPE_MASK; 909 base->cra_flags |= CRYPTO_ALG_TYPE_SKC 810 base->cra_flags |= CRYPTO_ALG_TYPE_SKCIPHER; 910 811 911 return 0; 812 return 0; 912 } 813 } 913 814 914 int crypto_register_skcipher(struct skcipher_a 815 int crypto_register_skcipher(struct skcipher_alg *alg) 915 { 816 { 916 struct crypto_alg *base = &alg->base; 817 struct crypto_alg *base = &alg->base; 917 int err; 818 int err; 918 819 919 err = skcipher_prepare_alg(alg); 820 err = skcipher_prepare_alg(alg); 920 if (err) 821 if (err) 921 return err; 822 return err; 922 823 923 return crypto_register_alg(base); 824 return crypto_register_alg(base); 924 } 825 } 925 EXPORT_SYMBOL_GPL(crypto_register_skcipher); 826 EXPORT_SYMBOL_GPL(crypto_register_skcipher); 926 827 927 void crypto_unregister_skcipher(struct skciphe 828 void crypto_unregister_skcipher(struct skcipher_alg *alg) 928 { 829 { 929 crypto_unregister_alg(&alg->base); 830 crypto_unregister_alg(&alg->base); 930 } 831 } 931 EXPORT_SYMBOL_GPL(crypto_unregister_skcipher); 832 EXPORT_SYMBOL_GPL(crypto_unregister_skcipher); 932 833 933 int crypto_register_skciphers(struct skcipher_ 834 int crypto_register_skciphers(struct skcipher_alg *algs, int count) 934 { 835 { 935 int i, ret; 836 int i, ret; 936 837 937 for (i = 0; i < count; i++) { 838 for (i = 0; i < count; i++) { 938 ret = crypto_register_skcipher 839 ret = crypto_register_skcipher(&algs[i]); 939 if (ret) 840 if (ret) 940 goto err; 841 goto err; 941 } 842 } 942 843 943 return 0; 844 return 0; 944 845 945 err: 846 err: 946 for (--i; i >= 0; --i) 847 for (--i; i >= 0; --i) 947 crypto_unregister_skcipher(&al 848 crypto_unregister_skcipher(&algs[i]); 948 849 949 return ret; 850 return ret; 950 } 851 } 951 EXPORT_SYMBOL_GPL(crypto_register_skciphers); 852 EXPORT_SYMBOL_GPL(crypto_register_skciphers); 952 853 953 void crypto_unregister_skciphers(struct skciph 854 void crypto_unregister_skciphers(struct skcipher_alg *algs, int count) 954 { 855 { 955 int i; 856 int i; 956 857 957 for (i = count - 1; i >= 0; --i) 858 for (i = count - 1; i >= 0; --i) 958 crypto_unregister_skcipher(&al 859 crypto_unregister_skcipher(&algs[i]); 959 } 860 } 960 EXPORT_SYMBOL_GPL(crypto_unregister_skciphers) 861 EXPORT_SYMBOL_GPL(crypto_unregister_skciphers); 961 862 962 int skcipher_register_instance(struct crypto_t 863 int skcipher_register_instance(struct crypto_template *tmpl, 963 struct skcipher_ins 864 struct skcipher_instance *inst) 964 { 865 { 965 int err; 866 int err; 966 867 967 if (WARN_ON(!inst->free)) 868 if (WARN_ON(!inst->free)) 968 return -EINVAL; 869 return -EINVAL; 969 870 970 err = skcipher_prepare_alg(&inst->alg) 871 err = skcipher_prepare_alg(&inst->alg); 971 if (err) 872 if (err) 972 return err; 873 return err; 973 874 974 return crypto_register_instance(tmpl, 875 return crypto_register_instance(tmpl, skcipher_crypto_instance(inst)); 975 } 876 } 976 EXPORT_SYMBOL_GPL(skcipher_register_instance); 877 EXPORT_SYMBOL_GPL(skcipher_register_instance); 977 878 978 static int skcipher_setkey_simple(struct crypt 879 static int skcipher_setkey_simple(struct crypto_skcipher *tfm, const u8 *key, 979 unsigned int 880 unsigned int keylen) 980 { 881 { 981 struct crypto_cipher *cipher = skciphe 882 struct crypto_cipher *cipher = skcipher_cipher_simple(tfm); 982 883 983 crypto_cipher_clear_flags(cipher, CRYP 884 crypto_cipher_clear_flags(cipher, CRYPTO_TFM_REQ_MASK); 984 crypto_cipher_set_flags(cipher, crypto 885 crypto_cipher_set_flags(cipher, crypto_skcipher_get_flags(tfm) & 985 CRYPTO_TFM_REQ 886 CRYPTO_TFM_REQ_MASK); 986 return crypto_cipher_setkey(cipher, ke 887 return crypto_cipher_setkey(cipher, key, keylen); 987 } 888 } 988 889 989 static int skcipher_init_tfm_simple(struct cry 890 static int skcipher_init_tfm_simple(struct crypto_skcipher *tfm) 990 { 891 { 991 struct skcipher_instance *inst = skcip 892 struct skcipher_instance *inst = skcipher_alg_instance(tfm); 992 struct crypto_cipher_spawn *spawn = sk 893 struct crypto_cipher_spawn *spawn = skcipher_instance_ctx(inst); 993 struct skcipher_ctx_simple *ctx = cryp 894 struct skcipher_ctx_simple *ctx = crypto_skcipher_ctx(tfm); 994 struct crypto_cipher *cipher; 895 struct crypto_cipher *cipher; 995 896 996 cipher = crypto_spawn_cipher(spawn); 897 cipher = crypto_spawn_cipher(spawn); 997 if (IS_ERR(cipher)) 898 if (IS_ERR(cipher)) 998 return PTR_ERR(cipher); 899 return PTR_ERR(cipher); 999 900 1000 ctx->cipher = cipher; 901 ctx->cipher = cipher; 1001 return 0; 902 return 0; 1002 } 903 } 1003 904 1004 static void skcipher_exit_tfm_simple(struct c 905 static void skcipher_exit_tfm_simple(struct crypto_skcipher *tfm) 1005 { 906 { 1006 struct skcipher_ctx_simple *ctx = cry 907 struct skcipher_ctx_simple *ctx = crypto_skcipher_ctx(tfm); 1007 908 1008 crypto_free_cipher(ctx->cipher); 909 crypto_free_cipher(ctx->cipher); 1009 } 910 } 1010 911 1011 static void skcipher_free_instance_simple(str 912 static void skcipher_free_instance_simple(struct skcipher_instance *inst) 1012 { 913 { 1013 crypto_drop_cipher(skcipher_instance_ 914 crypto_drop_cipher(skcipher_instance_ctx(inst)); 1014 kfree(inst); 915 kfree(inst); 1015 } 916 } 1016 917 1017 /** 918 /** 1018 * skcipher_alloc_instance_simple - allocate 919 * skcipher_alloc_instance_simple - allocate instance of simple block cipher mode 1019 * 920 * 1020 * Allocate an skcipher_instance for a simple 921 * Allocate an skcipher_instance for a simple block cipher mode of operation, 1021 * e.g. cbc or ecb. The instance context wil 922 * e.g. cbc or ecb. The instance context will have just a single crypto_spawn, 1022 * that for the underlying cipher. The {min, 923 * that for the underlying cipher. The {min,max}_keysize, ivsize, blocksize, 1023 * alignmask, and priority are set from the u 924 * alignmask, and priority are set from the underlying cipher but can be 1024 * overridden if needed. The tfm context def 925 * overridden if needed. The tfm context defaults to skcipher_ctx_simple, and 1025 * default ->setkey(), ->init(), and ->exit() 926 * default ->setkey(), ->init(), and ->exit() methods are installed. 1026 * 927 * 1027 * @tmpl: the template being instantiated 928 * @tmpl: the template being instantiated 1028 * @tb: the template parameters 929 * @tb: the template parameters 1029 * 930 * 1030 * Return: a pointer to the new instance, or 931 * Return: a pointer to the new instance, or an ERR_PTR(). The caller still 1031 * needs to register the instance. 932 * needs to register the instance. 1032 */ 933 */ 1033 struct skcipher_instance *skcipher_alloc_inst 934 struct skcipher_instance *skcipher_alloc_instance_simple( 1034 struct crypto_template *tmpl, struct 935 struct crypto_template *tmpl, struct rtattr **tb) 1035 { 936 { 1036 u32 mask; 937 u32 mask; 1037 struct skcipher_instance *inst; 938 struct skcipher_instance *inst; 1038 struct crypto_cipher_spawn *spawn; 939 struct crypto_cipher_spawn *spawn; 1039 struct crypto_alg *cipher_alg; 940 struct crypto_alg *cipher_alg; 1040 int err; 941 int err; 1041 942 1042 err = crypto_check_attr_type(tb, CRYP 943 err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_SKCIPHER, &mask); 1043 if (err) 944 if (err) 1044 return ERR_PTR(err); 945 return ERR_PTR(err); 1045 946 1046 inst = kzalloc(sizeof(*inst) + sizeof 947 inst = kzalloc(sizeof(*inst) + sizeof(*spawn), GFP_KERNEL); 1047 if (!inst) 948 if (!inst) 1048 return ERR_PTR(-ENOMEM); 949 return ERR_PTR(-ENOMEM); 1049 spawn = skcipher_instance_ctx(inst); 950 spawn = skcipher_instance_ctx(inst); 1050 951 1051 err = crypto_grab_cipher(spawn, skcip 952 err = crypto_grab_cipher(spawn, skcipher_crypto_instance(inst), 1052 crypto_attr_ 953 crypto_attr_alg_name(tb[1]), 0, mask); 1053 if (err) 954 if (err) 1054 goto err_free_inst; 955 goto err_free_inst; 1055 cipher_alg = crypto_spawn_cipher_alg( 956 cipher_alg = crypto_spawn_cipher_alg(spawn); 1056 957 1057 err = crypto_inst_setname(skcipher_cr 958 err = crypto_inst_setname(skcipher_crypto_instance(inst), tmpl->name, 1058 cipher_alg) 959 cipher_alg); 1059 if (err) 960 if (err) 1060 goto err_free_inst; 961 goto err_free_inst; 1061 962 1062 inst->free = skcipher_free_instance_s 963 inst->free = skcipher_free_instance_simple; 1063 964 1064 /* Default algorithm properties, can 965 /* Default algorithm properties, can be overridden */ 1065 inst->alg.base.cra_blocksize = cipher 966 inst->alg.base.cra_blocksize = cipher_alg->cra_blocksize; 1066 inst->alg.base.cra_alignmask = cipher 967 inst->alg.base.cra_alignmask = cipher_alg->cra_alignmask; 1067 inst->alg.base.cra_priority = cipher_ 968 inst->alg.base.cra_priority = cipher_alg->cra_priority; 1068 inst->alg.min_keysize = cipher_alg->c 969 inst->alg.min_keysize = cipher_alg->cra_cipher.cia_min_keysize; 1069 inst->alg.max_keysize = cipher_alg->c 970 inst->alg.max_keysize = cipher_alg->cra_cipher.cia_max_keysize; 1070 inst->alg.ivsize = cipher_alg->cra_bl 971 inst->alg.ivsize = cipher_alg->cra_blocksize; 1071 972 1072 /* Use skcipher_ctx_simple by default 973 /* Use skcipher_ctx_simple by default, can be overridden */ 1073 inst->alg.base.cra_ctxsize = sizeof(s 974 inst->alg.base.cra_ctxsize = sizeof(struct skcipher_ctx_simple); 1074 inst->alg.setkey = skcipher_setkey_si 975 inst->alg.setkey = skcipher_setkey_simple; 1075 inst->alg.init = skcipher_init_tfm_si 976 inst->alg.init = skcipher_init_tfm_simple; 1076 inst->alg.exit = skcipher_exit_tfm_si 977 inst->alg.exit = skcipher_exit_tfm_simple; 1077 978 1078 return inst; 979 return inst; 1079 980 1080 err_free_inst: 981 err_free_inst: 1081 skcipher_free_instance_simple(inst); 982 skcipher_free_instance_simple(inst); 1082 return ERR_PTR(err); 983 return ERR_PTR(err); 1083 } 984 } 1084 EXPORT_SYMBOL_GPL(skcipher_alloc_instance_sim 985 EXPORT_SYMBOL_GPL(skcipher_alloc_instance_simple); 1085 986 1086 MODULE_LICENSE("GPL"); 987 MODULE_LICENSE("GPL"); 1087 MODULE_DESCRIPTION("Symmetric key cipher type 988 MODULE_DESCRIPTION("Symmetric key cipher type"); 1088 MODULE_IMPORT_NS(CRYPTO_INTERNAL); << 1089 989
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.