1 // SPDX-License-Identifier: GPL-2.0-or-later 1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 2 /* 3 * Symmetric key cipher operations. 3 * Symmetric key cipher operations. 4 * 4 * 5 * Generic encrypt/decrypt wrapper for ciphers 5 * Generic encrypt/decrypt wrapper for ciphers, handles operations across 6 * multiple page boundaries by using temporary 6 * multiple page boundaries by using temporary blocks. In user context, 7 * the kernel is given a chance to schedule us 7 * the kernel is given a chance to schedule us once per page. 8 * 8 * 9 * Copyright (c) 2015 Herbert Xu <herbert@gond 9 * Copyright (c) 2015 Herbert Xu <herbert@gondor.apana.org.au> 10 */ 10 */ 11 11 12 #include <crypto/internal/aead.h> 12 #include <crypto/internal/aead.h> 13 #include <crypto/internal/cipher.h> 13 #include <crypto/internal/cipher.h> 14 #include <crypto/internal/skcipher.h> 14 #include <crypto/internal/skcipher.h> 15 #include <crypto/scatterwalk.h> 15 #include <crypto/scatterwalk.h> 16 #include <linux/bug.h> 16 #include <linux/bug.h> 17 #include <linux/cryptouser.h> 17 #include <linux/cryptouser.h> 18 #include <linux/err.h> !! 18 #include <linux/compiler.h> 19 #include <linux/kernel.h> << 20 #include <linux/list.h> 19 #include <linux/list.h> 21 #include <linux/mm.h> << 22 #include <linux/module.h> 20 #include <linux/module.h> >> 21 #include <linux/rtnetlink.h> 23 #include <linux/seq_file.h> 22 #include <linux/seq_file.h> 24 #include <linux/slab.h> << 25 #include <linux/string.h> << 26 #include <net/netlink.h> 23 #include <net/netlink.h> 27 #include "skcipher.h" << 28 24 29 #define CRYPTO_ALG_TYPE_SKCIPHER_MASK 0x0000 !! 25 #include "internal.h" 30 26 31 enum { 27 enum { 32 SKCIPHER_WALK_PHYS = 1 << 0, 28 SKCIPHER_WALK_PHYS = 1 << 0, 33 SKCIPHER_WALK_SLOW = 1 << 1, 29 SKCIPHER_WALK_SLOW = 1 << 1, 34 SKCIPHER_WALK_COPY = 1 << 2, 30 SKCIPHER_WALK_COPY = 1 << 2, 35 SKCIPHER_WALK_DIFF = 1 << 3, 31 SKCIPHER_WALK_DIFF = 1 << 3, 36 SKCIPHER_WALK_SLEEP = 1 << 4, 32 SKCIPHER_WALK_SLEEP = 1 << 4, 37 }; 33 }; 38 34 39 struct skcipher_walk_buffer { 35 struct skcipher_walk_buffer { 40 struct list_head entry; 36 struct list_head entry; 41 struct scatter_walk dst; 37 struct scatter_walk dst; 42 unsigned int len; 38 unsigned int len; 43 u8 *data; 39 u8 *data; 44 u8 buffer[]; 40 u8 buffer[]; 45 }; 41 }; 46 42 47 static const struct crypto_type crypto_skciphe << 48 << 49 static int skcipher_walk_next(struct skcipher_ 43 static int skcipher_walk_next(struct skcipher_walk *walk); 50 44 >> 45 static inline void skcipher_unmap(struct scatter_walk *walk, void *vaddr) >> 46 { >> 47 if (PageHighMem(scatterwalk_page(walk))) >> 48 kunmap_atomic(vaddr); >> 49 } >> 50 >> 51 static inline void *skcipher_map(struct scatter_walk *walk) >> 52 { >> 53 struct page *page = scatterwalk_page(walk); >> 54 >> 55 return (PageHighMem(page) ? kmap_atomic(page) : page_address(page)) + >> 56 offset_in_page(walk->offset); >> 57 } >> 58 51 static inline void skcipher_map_src(struct skc 59 static inline void skcipher_map_src(struct skcipher_walk *walk) 52 { 60 { 53 walk->src.virt.addr = scatterwalk_map( !! 61 walk->src.virt.addr = skcipher_map(&walk->in); 54 } 62 } 55 63 56 static inline void skcipher_map_dst(struct skc 64 static inline void skcipher_map_dst(struct skcipher_walk *walk) 57 { 65 { 58 walk->dst.virt.addr = scatterwalk_map( !! 66 walk->dst.virt.addr = skcipher_map(&walk->out); 59 } 67 } 60 68 61 static inline void skcipher_unmap_src(struct s 69 static inline void skcipher_unmap_src(struct skcipher_walk *walk) 62 { 70 { 63 scatterwalk_unmap(walk->src.virt.addr) !! 71 skcipher_unmap(&walk->in, walk->src.virt.addr); 64 } 72 } 65 73 66 static inline void skcipher_unmap_dst(struct s 74 static inline void skcipher_unmap_dst(struct skcipher_walk *walk) 67 { 75 { 68 scatterwalk_unmap(walk->dst.virt.addr) !! 76 skcipher_unmap(&walk->out, walk->dst.virt.addr); 69 } 77 } 70 78 71 static inline gfp_t skcipher_walk_gfp(struct s 79 static inline gfp_t skcipher_walk_gfp(struct skcipher_walk *walk) 72 { 80 { 73 return walk->flags & SKCIPHER_WALK_SLE 81 return walk->flags & SKCIPHER_WALK_SLEEP ? GFP_KERNEL : GFP_ATOMIC; 74 } 82 } 75 83 76 /* Get a spot of the specified length that doe 84 /* Get a spot of the specified length that does not straddle a page. 77 * The caller needs to ensure that there is en 85 * The caller needs to ensure that there is enough space for this operation. 78 */ 86 */ 79 static inline u8 *skcipher_get_spot(u8 *start, 87 static inline u8 *skcipher_get_spot(u8 *start, unsigned int len) 80 { 88 { 81 u8 *end_page = (u8 *)(((unsigned long) 89 u8 *end_page = (u8 *)(((unsigned long)(start + len - 1)) & PAGE_MASK); 82 90 83 return max(start, end_page); 91 return max(start, end_page); 84 } 92 } 85 93 86 static inline struct skcipher_alg *__crypto_sk << 87 struct crypto_alg *alg) << 88 { << 89 return container_of(alg, struct skciph << 90 } << 91 << 92 static int skcipher_done_slow(struct skcipher_ 94 static int skcipher_done_slow(struct skcipher_walk *walk, unsigned int bsize) 93 { 95 { 94 u8 *addr; 96 u8 *addr; 95 97 96 addr = (u8 *)ALIGN((unsigned long)walk 98 addr = (u8 *)ALIGN((unsigned long)walk->buffer, walk->alignmask + 1); 97 addr = skcipher_get_spot(addr, bsize); 99 addr = skcipher_get_spot(addr, bsize); 98 scatterwalk_copychunks(addr, &walk->ou 100 scatterwalk_copychunks(addr, &walk->out, bsize, 99 (walk->flags & 101 (walk->flags & SKCIPHER_WALK_PHYS) ? 2 : 1); 100 return 0; 102 return 0; 101 } 103 } 102 104 103 int skcipher_walk_done(struct skcipher_walk *w 105 int skcipher_walk_done(struct skcipher_walk *walk, int err) 104 { 106 { 105 unsigned int n = walk->nbytes; 107 unsigned int n = walk->nbytes; 106 unsigned int nbytes = 0; 108 unsigned int nbytes = 0; 107 109 108 if (!n) 110 if (!n) 109 goto finish; 111 goto finish; 110 112 111 if (likely(err >= 0)) { 113 if (likely(err >= 0)) { 112 n -= err; 114 n -= err; 113 nbytes = walk->total - n; 115 nbytes = walk->total - n; 114 } 116 } 115 117 116 if (likely(!(walk->flags & (SKCIPHER_W 118 if (likely(!(walk->flags & (SKCIPHER_WALK_PHYS | 117 SKCIPHER_W 119 SKCIPHER_WALK_SLOW | 118 SKCIPHER_W 120 SKCIPHER_WALK_COPY | 119 SKCIPHER_W 121 SKCIPHER_WALK_DIFF)))) { 120 unmap_src: 122 unmap_src: 121 skcipher_unmap_src(walk); 123 skcipher_unmap_src(walk); 122 } else if (walk->flags & SKCIPHER_WALK 124 } else if (walk->flags & SKCIPHER_WALK_DIFF) { 123 skcipher_unmap_dst(walk); 125 skcipher_unmap_dst(walk); 124 goto unmap_src; 126 goto unmap_src; 125 } else if (walk->flags & SKCIPHER_WALK 127 } else if (walk->flags & SKCIPHER_WALK_COPY) { 126 skcipher_map_dst(walk); 128 skcipher_map_dst(walk); 127 memcpy(walk->dst.virt.addr, wa 129 memcpy(walk->dst.virt.addr, walk->page, n); 128 skcipher_unmap_dst(walk); 130 skcipher_unmap_dst(walk); 129 } else if (unlikely(walk->flags & SKCI 131 } else if (unlikely(walk->flags & SKCIPHER_WALK_SLOW)) { 130 if (err > 0) { 132 if (err > 0) { 131 /* 133 /* 132 * Didn't process all 134 * Didn't process all bytes. Either the algorithm is 133 * broken, or this was 135 * broken, or this was the last step and it turned out 134 * the message wasn't 136 * the message wasn't evenly divisible into blocks but 135 * the algorithm requi 137 * the algorithm requires it. 136 */ 138 */ 137 err = -EINVAL; 139 err = -EINVAL; 138 nbytes = 0; 140 nbytes = 0; 139 } else 141 } else 140 n = skcipher_done_slow 142 n = skcipher_done_slow(walk, n); 141 } 143 } 142 144 143 if (err > 0) 145 if (err > 0) 144 err = 0; 146 err = 0; 145 147 146 walk->total = nbytes; 148 walk->total = nbytes; 147 walk->nbytes = 0; 149 walk->nbytes = 0; 148 150 149 scatterwalk_advance(&walk->in, n); 151 scatterwalk_advance(&walk->in, n); 150 scatterwalk_advance(&walk->out, n); 152 scatterwalk_advance(&walk->out, n); 151 scatterwalk_done(&walk->in, 0, nbytes) 153 scatterwalk_done(&walk->in, 0, nbytes); 152 scatterwalk_done(&walk->out, 1, nbytes 154 scatterwalk_done(&walk->out, 1, nbytes); 153 155 154 if (nbytes) { 156 if (nbytes) { 155 crypto_yield(walk->flags & SKC 157 crypto_yield(walk->flags & SKCIPHER_WALK_SLEEP ? 156 CRYPTO_TFM_REQ_MA 158 CRYPTO_TFM_REQ_MAY_SLEEP : 0); 157 return skcipher_walk_next(walk 159 return skcipher_walk_next(walk); 158 } 160 } 159 161 160 finish: 162 finish: 161 /* Short-circuit for the common/fast p 163 /* Short-circuit for the common/fast path. */ 162 if (!((unsigned long)walk->buffer | (u 164 if (!((unsigned long)walk->buffer | (unsigned long)walk->page)) 163 goto out; 165 goto out; 164 166 165 if (walk->flags & SKCIPHER_WALK_PHYS) 167 if (walk->flags & SKCIPHER_WALK_PHYS) 166 goto out; 168 goto out; 167 169 168 if (walk->iv != walk->oiv) 170 if (walk->iv != walk->oiv) 169 memcpy(walk->oiv, walk->iv, wa 171 memcpy(walk->oiv, walk->iv, walk->ivsize); 170 if (walk->buffer != walk->page) 172 if (walk->buffer != walk->page) 171 kfree(walk->buffer); 173 kfree(walk->buffer); 172 if (walk->page) 174 if (walk->page) 173 free_page((unsigned long)walk- 175 free_page((unsigned long)walk->page); 174 176 175 out: 177 out: 176 return err; 178 return err; 177 } 179 } 178 EXPORT_SYMBOL_GPL(skcipher_walk_done); 180 EXPORT_SYMBOL_GPL(skcipher_walk_done); 179 181 180 void skcipher_walk_complete(struct skcipher_wa 182 void skcipher_walk_complete(struct skcipher_walk *walk, int err) 181 { 183 { 182 struct skcipher_walk_buffer *p, *tmp; 184 struct skcipher_walk_buffer *p, *tmp; 183 185 184 list_for_each_entry_safe(p, tmp, &walk 186 list_for_each_entry_safe(p, tmp, &walk->buffers, entry) { 185 u8 *data; 187 u8 *data; 186 188 187 if (err) 189 if (err) 188 goto done; 190 goto done; 189 191 190 data = p->data; 192 data = p->data; 191 if (!data) { 193 if (!data) { 192 data = PTR_ALIGN(&p->b 194 data = PTR_ALIGN(&p->buffer[0], walk->alignmask + 1); 193 data = skcipher_get_sp 195 data = skcipher_get_spot(data, walk->stride); 194 } 196 } 195 197 196 scatterwalk_copychunks(data, & 198 scatterwalk_copychunks(data, &p->dst, p->len, 1); 197 199 198 if (offset_in_page(p->data) + 200 if (offset_in_page(p->data) + p->len + walk->stride > 199 PAGE_SIZE) 201 PAGE_SIZE) 200 free_page((unsigned lo 202 free_page((unsigned long)p->data); 201 203 202 done: 204 done: 203 list_del(&p->entry); 205 list_del(&p->entry); 204 kfree(p); 206 kfree(p); 205 } 207 } 206 208 207 if (!err && walk->iv != walk->oiv) 209 if (!err && walk->iv != walk->oiv) 208 memcpy(walk->oiv, walk->iv, wa 210 memcpy(walk->oiv, walk->iv, walk->ivsize); 209 if (walk->buffer != walk->page) 211 if (walk->buffer != walk->page) 210 kfree(walk->buffer); 212 kfree(walk->buffer); 211 if (walk->page) 213 if (walk->page) 212 free_page((unsigned long)walk- 214 free_page((unsigned long)walk->page); 213 } 215 } 214 EXPORT_SYMBOL_GPL(skcipher_walk_complete); 216 EXPORT_SYMBOL_GPL(skcipher_walk_complete); 215 217 216 static void skcipher_queue_write(struct skciph 218 static void skcipher_queue_write(struct skcipher_walk *walk, 217 struct skciph 219 struct skcipher_walk_buffer *p) 218 { 220 { 219 p->dst = walk->out; 221 p->dst = walk->out; 220 list_add_tail(&p->entry, &walk->buffer 222 list_add_tail(&p->entry, &walk->buffers); 221 } 223 } 222 224 223 static int skcipher_next_slow(struct skcipher_ 225 static int skcipher_next_slow(struct skcipher_walk *walk, unsigned int bsize) 224 { 226 { 225 bool phys = walk->flags & SKCIPHER_WAL 227 bool phys = walk->flags & SKCIPHER_WALK_PHYS; 226 unsigned alignmask = walk->alignmask; 228 unsigned alignmask = walk->alignmask; 227 struct skcipher_walk_buffer *p; 229 struct skcipher_walk_buffer *p; 228 unsigned a; 230 unsigned a; 229 unsigned n; 231 unsigned n; 230 u8 *buffer; 232 u8 *buffer; 231 void *v; 233 void *v; 232 234 233 if (!phys) { 235 if (!phys) { 234 if (!walk->buffer) 236 if (!walk->buffer) 235 walk->buffer = walk->p 237 walk->buffer = walk->page; 236 buffer = walk->buffer; 238 buffer = walk->buffer; 237 if (buffer) 239 if (buffer) 238 goto ok; 240 goto ok; 239 } 241 } 240 242 241 /* Start with the minimum alignment of 243 /* Start with the minimum alignment of kmalloc. */ 242 a = crypto_tfm_ctx_alignment() - 1; 244 a = crypto_tfm_ctx_alignment() - 1; 243 n = bsize; 245 n = bsize; 244 246 245 if (phys) { 247 if (phys) { 246 /* Calculate the minimum align 248 /* Calculate the minimum alignment of p->buffer. */ 247 a &= (sizeof(*p) ^ (sizeof(*p) 249 a &= (sizeof(*p) ^ (sizeof(*p) - 1)) >> 1; 248 n += sizeof(*p); 250 n += sizeof(*p); 249 } 251 } 250 252 251 /* Minimum size to align p->buffer by 253 /* Minimum size to align p->buffer by alignmask. */ 252 n += alignmask & ~a; 254 n += alignmask & ~a; 253 255 254 /* Minimum size to ensure p->buffer do 256 /* Minimum size to ensure p->buffer does not straddle a page. */ 255 n += (bsize - 1) & ~(alignmask | a); 257 n += (bsize - 1) & ~(alignmask | a); 256 258 257 v = kzalloc(n, skcipher_walk_gfp(walk) 259 v = kzalloc(n, skcipher_walk_gfp(walk)); 258 if (!v) 260 if (!v) 259 return skcipher_walk_done(walk 261 return skcipher_walk_done(walk, -ENOMEM); 260 262 261 if (phys) { 263 if (phys) { 262 p = v; 264 p = v; 263 p->len = bsize; 265 p->len = bsize; 264 skcipher_queue_write(walk, p); 266 skcipher_queue_write(walk, p); 265 buffer = p->buffer; 267 buffer = p->buffer; 266 } else { 268 } else { 267 walk->buffer = v; 269 walk->buffer = v; 268 buffer = v; 270 buffer = v; 269 } 271 } 270 272 271 ok: 273 ok: 272 walk->dst.virt.addr = PTR_ALIGN(buffer 274 walk->dst.virt.addr = PTR_ALIGN(buffer, alignmask + 1); 273 walk->dst.virt.addr = skcipher_get_spo 275 walk->dst.virt.addr = skcipher_get_spot(walk->dst.virt.addr, bsize); 274 walk->src.virt.addr = walk->dst.virt.a 276 walk->src.virt.addr = walk->dst.virt.addr; 275 277 276 scatterwalk_copychunks(walk->src.virt. 278 scatterwalk_copychunks(walk->src.virt.addr, &walk->in, bsize, 0); 277 279 278 walk->nbytes = bsize; 280 walk->nbytes = bsize; 279 walk->flags |= SKCIPHER_WALK_SLOW; 281 walk->flags |= SKCIPHER_WALK_SLOW; 280 282 281 return 0; 283 return 0; 282 } 284 } 283 285 284 static int skcipher_next_copy(struct skcipher_ 286 static int skcipher_next_copy(struct skcipher_walk *walk) 285 { 287 { 286 struct skcipher_walk_buffer *p; 288 struct skcipher_walk_buffer *p; 287 u8 *tmp = walk->page; 289 u8 *tmp = walk->page; 288 290 289 skcipher_map_src(walk); 291 skcipher_map_src(walk); 290 memcpy(tmp, walk->src.virt.addr, walk- 292 memcpy(tmp, walk->src.virt.addr, walk->nbytes); 291 skcipher_unmap_src(walk); 293 skcipher_unmap_src(walk); 292 294 293 walk->src.virt.addr = tmp; 295 walk->src.virt.addr = tmp; 294 walk->dst.virt.addr = tmp; 296 walk->dst.virt.addr = tmp; 295 297 296 if (!(walk->flags & SKCIPHER_WALK_PHYS 298 if (!(walk->flags & SKCIPHER_WALK_PHYS)) 297 return 0; 299 return 0; 298 300 299 p = kmalloc(sizeof(*p), skcipher_walk_ 301 p = kmalloc(sizeof(*p), skcipher_walk_gfp(walk)); 300 if (!p) 302 if (!p) 301 return -ENOMEM; 303 return -ENOMEM; 302 304 303 p->data = walk->page; 305 p->data = walk->page; 304 p->len = walk->nbytes; 306 p->len = walk->nbytes; 305 skcipher_queue_write(walk, p); 307 skcipher_queue_write(walk, p); 306 308 307 if (offset_in_page(walk->page) + walk- 309 if (offset_in_page(walk->page) + walk->nbytes + walk->stride > 308 PAGE_SIZE) 310 PAGE_SIZE) 309 walk->page = NULL; 311 walk->page = NULL; 310 else 312 else 311 walk->page += walk->nbytes; 313 walk->page += walk->nbytes; 312 314 313 return 0; 315 return 0; 314 } 316 } 315 317 316 static int skcipher_next_fast(struct skcipher_ 318 static int skcipher_next_fast(struct skcipher_walk *walk) 317 { 319 { 318 unsigned long diff; 320 unsigned long diff; 319 321 320 walk->src.phys.page = scatterwalk_page 322 walk->src.phys.page = scatterwalk_page(&walk->in); 321 walk->src.phys.offset = offset_in_page 323 walk->src.phys.offset = offset_in_page(walk->in.offset); 322 walk->dst.phys.page = scatterwalk_page 324 walk->dst.phys.page = scatterwalk_page(&walk->out); 323 walk->dst.phys.offset = offset_in_page 325 walk->dst.phys.offset = offset_in_page(walk->out.offset); 324 326 325 if (walk->flags & SKCIPHER_WALK_PHYS) 327 if (walk->flags & SKCIPHER_WALK_PHYS) 326 return 0; 328 return 0; 327 329 328 diff = walk->src.phys.offset - walk->d 330 diff = walk->src.phys.offset - walk->dst.phys.offset; 329 diff |= walk->src.virt.page - walk->ds 331 diff |= walk->src.virt.page - walk->dst.virt.page; 330 332 331 skcipher_map_src(walk); 333 skcipher_map_src(walk); 332 walk->dst.virt.addr = walk->src.virt.a 334 walk->dst.virt.addr = walk->src.virt.addr; 333 335 334 if (diff) { 336 if (diff) { 335 walk->flags |= SKCIPHER_WALK_D 337 walk->flags |= SKCIPHER_WALK_DIFF; 336 skcipher_map_dst(walk); 338 skcipher_map_dst(walk); 337 } 339 } 338 340 339 return 0; 341 return 0; 340 } 342 } 341 343 342 static int skcipher_walk_next(struct skcipher_ 344 static int skcipher_walk_next(struct skcipher_walk *walk) 343 { 345 { 344 unsigned int bsize; 346 unsigned int bsize; 345 unsigned int n; 347 unsigned int n; 346 int err; 348 int err; 347 349 348 walk->flags &= ~(SKCIPHER_WALK_SLOW | 350 walk->flags &= ~(SKCIPHER_WALK_SLOW | SKCIPHER_WALK_COPY | 349 SKCIPHER_WALK_DIFF); 351 SKCIPHER_WALK_DIFF); 350 352 351 n = walk->total; 353 n = walk->total; 352 bsize = min(walk->stride, max(n, walk- 354 bsize = min(walk->stride, max(n, walk->blocksize)); 353 n = scatterwalk_clamp(&walk->in, n); 355 n = scatterwalk_clamp(&walk->in, n); 354 n = scatterwalk_clamp(&walk->out, n); 356 n = scatterwalk_clamp(&walk->out, n); 355 357 356 if (unlikely(n < bsize)) { 358 if (unlikely(n < bsize)) { 357 if (unlikely(walk->total < wal 359 if (unlikely(walk->total < walk->blocksize)) 358 return skcipher_walk_d 360 return skcipher_walk_done(walk, -EINVAL); 359 361 360 slow_path: 362 slow_path: 361 err = skcipher_next_slow(walk, 363 err = skcipher_next_slow(walk, bsize); 362 goto set_phys_lowmem; 364 goto set_phys_lowmem; 363 } 365 } 364 366 365 if (unlikely((walk->in.offset | walk-> 367 if (unlikely((walk->in.offset | walk->out.offset) & walk->alignmask)) { 366 if (!walk->page) { 368 if (!walk->page) { 367 gfp_t gfp = skcipher_w 369 gfp_t gfp = skcipher_walk_gfp(walk); 368 370 369 walk->page = (void *)_ 371 walk->page = (void *)__get_free_page(gfp); 370 if (!walk->page) 372 if (!walk->page) 371 goto slow_path 373 goto slow_path; 372 } 374 } 373 375 374 walk->nbytes = min_t(unsigned, 376 walk->nbytes = min_t(unsigned, n, 375 PAGE_SIZE 377 PAGE_SIZE - offset_in_page(walk->page)); 376 walk->flags |= SKCIPHER_WALK_C 378 walk->flags |= SKCIPHER_WALK_COPY; 377 err = skcipher_next_copy(walk) 379 err = skcipher_next_copy(walk); 378 goto set_phys_lowmem; 380 goto set_phys_lowmem; 379 } 381 } 380 382 381 walk->nbytes = n; 383 walk->nbytes = n; 382 384 383 return skcipher_next_fast(walk); 385 return skcipher_next_fast(walk); 384 386 385 set_phys_lowmem: 387 set_phys_lowmem: 386 if (!err && (walk->flags & SKCIPHER_WA 388 if (!err && (walk->flags & SKCIPHER_WALK_PHYS)) { 387 walk->src.phys.page = virt_to_ 389 walk->src.phys.page = virt_to_page(walk->src.virt.addr); 388 walk->dst.phys.page = virt_to_ 390 walk->dst.phys.page = virt_to_page(walk->dst.virt.addr); 389 walk->src.phys.offset &= PAGE_ 391 walk->src.phys.offset &= PAGE_SIZE - 1; 390 walk->dst.phys.offset &= PAGE_ 392 walk->dst.phys.offset &= PAGE_SIZE - 1; 391 } 393 } 392 return err; 394 return err; 393 } 395 } 394 396 395 static int skcipher_copy_iv(struct skcipher_wa 397 static int skcipher_copy_iv(struct skcipher_walk *walk) 396 { 398 { 397 unsigned a = crypto_tfm_ctx_alignment( 399 unsigned a = crypto_tfm_ctx_alignment() - 1; 398 unsigned alignmask = walk->alignmask; 400 unsigned alignmask = walk->alignmask; 399 unsigned ivsize = walk->ivsize; 401 unsigned ivsize = walk->ivsize; 400 unsigned bs = walk->stride; 402 unsigned bs = walk->stride; 401 unsigned aligned_bs; 403 unsigned aligned_bs; 402 unsigned size; 404 unsigned size; 403 u8 *iv; 405 u8 *iv; 404 406 405 aligned_bs = ALIGN(bs, alignmask + 1); 407 aligned_bs = ALIGN(bs, alignmask + 1); 406 408 407 /* Minimum size to align buffer by ali 409 /* Minimum size to align buffer by alignmask. */ 408 size = alignmask & ~a; 410 size = alignmask & ~a; 409 411 410 if (walk->flags & SKCIPHER_WALK_PHYS) 412 if (walk->flags & SKCIPHER_WALK_PHYS) 411 size += ivsize; 413 size += ivsize; 412 else { 414 else { 413 size += aligned_bs + ivsize; 415 size += aligned_bs + ivsize; 414 416 415 /* Minimum size to ensure buff 417 /* Minimum size to ensure buffer does not straddle a page. */ 416 size += (bs - 1) & ~(alignmask 418 size += (bs - 1) & ~(alignmask | a); 417 } 419 } 418 420 419 walk->buffer = kmalloc(size, skcipher_ 421 walk->buffer = kmalloc(size, skcipher_walk_gfp(walk)); 420 if (!walk->buffer) 422 if (!walk->buffer) 421 return -ENOMEM; 423 return -ENOMEM; 422 424 423 iv = PTR_ALIGN(walk->buffer, alignmask 425 iv = PTR_ALIGN(walk->buffer, alignmask + 1); 424 iv = skcipher_get_spot(iv, bs) + align 426 iv = skcipher_get_spot(iv, bs) + aligned_bs; 425 427 426 walk->iv = memcpy(iv, walk->iv, walk-> 428 walk->iv = memcpy(iv, walk->iv, walk->ivsize); 427 return 0; 429 return 0; 428 } 430 } 429 431 430 static int skcipher_walk_first(struct skcipher 432 static int skcipher_walk_first(struct skcipher_walk *walk) 431 { 433 { 432 if (WARN_ON_ONCE(in_hardirq())) 434 if (WARN_ON_ONCE(in_hardirq())) 433 return -EDEADLK; 435 return -EDEADLK; 434 436 435 walk->buffer = NULL; 437 walk->buffer = NULL; 436 if (unlikely(((unsigned long)walk->iv 438 if (unlikely(((unsigned long)walk->iv & walk->alignmask))) { 437 int err = skcipher_copy_iv(wal 439 int err = skcipher_copy_iv(walk); 438 if (err) 440 if (err) 439 return err; 441 return err; 440 } 442 } 441 443 442 walk->page = NULL; 444 walk->page = NULL; 443 445 444 return skcipher_walk_next(walk); 446 return skcipher_walk_next(walk); 445 } 447 } 446 448 447 static int skcipher_walk_skcipher(struct skcip 449 static int skcipher_walk_skcipher(struct skcipher_walk *walk, 448 struct skcip 450 struct skcipher_request *req) 449 { 451 { 450 struct crypto_skcipher *tfm = crypto_s 452 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); 451 struct skcipher_alg *alg = crypto_skci << 452 453 453 walk->total = req->cryptlen; 454 walk->total = req->cryptlen; 454 walk->nbytes = 0; 455 walk->nbytes = 0; 455 walk->iv = req->iv; 456 walk->iv = req->iv; 456 walk->oiv = req->iv; 457 walk->oiv = req->iv; 457 458 458 if (unlikely(!walk->total)) 459 if (unlikely(!walk->total)) 459 return 0; 460 return 0; 460 461 461 scatterwalk_start(&walk->in, req->src) 462 scatterwalk_start(&walk->in, req->src); 462 scatterwalk_start(&walk->out, req->dst 463 scatterwalk_start(&walk->out, req->dst); 463 464 464 walk->flags &= ~SKCIPHER_WALK_SLEEP; 465 walk->flags &= ~SKCIPHER_WALK_SLEEP; 465 walk->flags |= req->base.flags & CRYPT 466 walk->flags |= req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ? 466 SKCIPHER_WALK_SLEEP : 0 467 SKCIPHER_WALK_SLEEP : 0; 467 468 468 walk->blocksize = crypto_skcipher_bloc 469 walk->blocksize = crypto_skcipher_blocksize(tfm); >> 470 walk->stride = crypto_skcipher_walksize(tfm); 469 walk->ivsize = crypto_skcipher_ivsize( 471 walk->ivsize = crypto_skcipher_ivsize(tfm); 470 walk->alignmask = crypto_skcipher_alig 472 walk->alignmask = crypto_skcipher_alignmask(tfm); 471 473 472 if (alg->co.base.cra_type != &crypto_s << 473 walk->stride = alg->co.chunksi << 474 else << 475 walk->stride = alg->walksize; << 476 << 477 return skcipher_walk_first(walk); 474 return skcipher_walk_first(walk); 478 } 475 } 479 476 480 int skcipher_walk_virt(struct skcipher_walk *w 477 int skcipher_walk_virt(struct skcipher_walk *walk, 481 struct skcipher_request 478 struct skcipher_request *req, bool atomic) 482 { 479 { 483 int err; 480 int err; 484 481 485 might_sleep_if(req->base.flags & CRYPT 482 might_sleep_if(req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP); 486 483 487 walk->flags &= ~SKCIPHER_WALK_PHYS; 484 walk->flags &= ~SKCIPHER_WALK_PHYS; 488 485 489 err = skcipher_walk_skcipher(walk, req 486 err = skcipher_walk_skcipher(walk, req); 490 487 491 walk->flags &= atomic ? ~SKCIPHER_WALK 488 walk->flags &= atomic ? ~SKCIPHER_WALK_SLEEP : ~0; 492 489 493 return err; 490 return err; 494 } 491 } 495 EXPORT_SYMBOL_GPL(skcipher_walk_virt); 492 EXPORT_SYMBOL_GPL(skcipher_walk_virt); 496 493 497 int skcipher_walk_async(struct skcipher_walk * 494 int skcipher_walk_async(struct skcipher_walk *walk, 498 struct skcipher_reques 495 struct skcipher_request *req) 499 { 496 { 500 walk->flags |= SKCIPHER_WALK_PHYS; 497 walk->flags |= SKCIPHER_WALK_PHYS; 501 498 502 INIT_LIST_HEAD(&walk->buffers); 499 INIT_LIST_HEAD(&walk->buffers); 503 500 504 return skcipher_walk_skcipher(walk, re 501 return skcipher_walk_skcipher(walk, req); 505 } 502 } 506 EXPORT_SYMBOL_GPL(skcipher_walk_async); 503 EXPORT_SYMBOL_GPL(skcipher_walk_async); 507 504 508 static int skcipher_walk_aead_common(struct sk 505 static int skcipher_walk_aead_common(struct skcipher_walk *walk, 509 struct ae 506 struct aead_request *req, bool atomic) 510 { 507 { 511 struct crypto_aead *tfm = crypto_aead_ 508 struct crypto_aead *tfm = crypto_aead_reqtfm(req); 512 int err; 509 int err; 513 510 514 walk->nbytes = 0; 511 walk->nbytes = 0; 515 walk->iv = req->iv; 512 walk->iv = req->iv; 516 walk->oiv = req->iv; 513 walk->oiv = req->iv; 517 514 518 if (unlikely(!walk->total)) 515 if (unlikely(!walk->total)) 519 return 0; 516 return 0; 520 517 521 walk->flags &= ~SKCIPHER_WALK_PHYS; 518 walk->flags &= ~SKCIPHER_WALK_PHYS; 522 519 523 scatterwalk_start(&walk->in, req->src) 520 scatterwalk_start(&walk->in, req->src); 524 scatterwalk_start(&walk->out, req->dst 521 scatterwalk_start(&walk->out, req->dst); 525 522 526 scatterwalk_copychunks(NULL, &walk->in 523 scatterwalk_copychunks(NULL, &walk->in, req->assoclen, 2); 527 scatterwalk_copychunks(NULL, &walk->ou 524 scatterwalk_copychunks(NULL, &walk->out, req->assoclen, 2); 528 525 529 scatterwalk_done(&walk->in, 0, walk->t 526 scatterwalk_done(&walk->in, 0, walk->total); 530 scatterwalk_done(&walk->out, 0, walk-> 527 scatterwalk_done(&walk->out, 0, walk->total); 531 528 532 if (req->base.flags & CRYPTO_TFM_REQ_M 529 if (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) 533 walk->flags |= SKCIPHER_WALK_S 530 walk->flags |= SKCIPHER_WALK_SLEEP; 534 else 531 else 535 walk->flags &= ~SKCIPHER_WALK_ 532 walk->flags &= ~SKCIPHER_WALK_SLEEP; 536 533 537 walk->blocksize = crypto_aead_blocksiz 534 walk->blocksize = crypto_aead_blocksize(tfm); 538 walk->stride = crypto_aead_chunksize(t 535 walk->stride = crypto_aead_chunksize(tfm); 539 walk->ivsize = crypto_aead_ivsize(tfm) 536 walk->ivsize = crypto_aead_ivsize(tfm); 540 walk->alignmask = crypto_aead_alignmas 537 walk->alignmask = crypto_aead_alignmask(tfm); 541 538 542 err = skcipher_walk_first(walk); 539 err = skcipher_walk_first(walk); 543 540 544 if (atomic) 541 if (atomic) 545 walk->flags &= ~SKCIPHER_WALK_ 542 walk->flags &= ~SKCIPHER_WALK_SLEEP; 546 543 547 return err; 544 return err; 548 } 545 } 549 546 550 int skcipher_walk_aead_encrypt(struct skcipher 547 int skcipher_walk_aead_encrypt(struct skcipher_walk *walk, 551 struct aead_req 548 struct aead_request *req, bool atomic) 552 { 549 { 553 walk->total = req->cryptlen; 550 walk->total = req->cryptlen; 554 551 555 return skcipher_walk_aead_common(walk, 552 return skcipher_walk_aead_common(walk, req, atomic); 556 } 553 } 557 EXPORT_SYMBOL_GPL(skcipher_walk_aead_encrypt); 554 EXPORT_SYMBOL_GPL(skcipher_walk_aead_encrypt); 558 555 559 int skcipher_walk_aead_decrypt(struct skcipher 556 int skcipher_walk_aead_decrypt(struct skcipher_walk *walk, 560 struct aead_req 557 struct aead_request *req, bool atomic) 561 { 558 { 562 struct crypto_aead *tfm = crypto_aead_ 559 struct crypto_aead *tfm = crypto_aead_reqtfm(req); 563 560 564 walk->total = req->cryptlen - crypto_a 561 walk->total = req->cryptlen - crypto_aead_authsize(tfm); 565 562 566 return skcipher_walk_aead_common(walk, 563 return skcipher_walk_aead_common(walk, req, atomic); 567 } 564 } 568 EXPORT_SYMBOL_GPL(skcipher_walk_aead_decrypt); 565 EXPORT_SYMBOL_GPL(skcipher_walk_aead_decrypt); 569 566 570 static void skcipher_set_needkey(struct crypto 567 static void skcipher_set_needkey(struct crypto_skcipher *tfm) 571 { 568 { 572 if (crypto_skcipher_max_keysize(tfm) ! 569 if (crypto_skcipher_max_keysize(tfm) != 0) 573 crypto_skcipher_set_flags(tfm, 570 crypto_skcipher_set_flags(tfm, CRYPTO_TFM_NEED_KEY); 574 } 571 } 575 572 576 static int skcipher_setkey_unaligned(struct cr 573 static int skcipher_setkey_unaligned(struct crypto_skcipher *tfm, 577 const u8 574 const u8 *key, unsigned int keylen) 578 { 575 { 579 unsigned long alignmask = crypto_skcip 576 unsigned long alignmask = crypto_skcipher_alignmask(tfm); 580 struct skcipher_alg *cipher = crypto_s 577 struct skcipher_alg *cipher = crypto_skcipher_alg(tfm); 581 u8 *buffer, *alignbuffer; 578 u8 *buffer, *alignbuffer; 582 unsigned long absize; 579 unsigned long absize; 583 int ret; 580 int ret; 584 581 585 absize = keylen + alignmask; 582 absize = keylen + alignmask; 586 buffer = kmalloc(absize, GFP_ATOMIC); 583 buffer = kmalloc(absize, GFP_ATOMIC); 587 if (!buffer) 584 if (!buffer) 588 return -ENOMEM; 585 return -ENOMEM; 589 586 590 alignbuffer = (u8 *)ALIGN((unsigned lo 587 alignbuffer = (u8 *)ALIGN((unsigned long)buffer, alignmask + 1); 591 memcpy(alignbuffer, key, keylen); 588 memcpy(alignbuffer, key, keylen); 592 ret = cipher->setkey(tfm, alignbuffer, 589 ret = cipher->setkey(tfm, alignbuffer, keylen); 593 kfree_sensitive(buffer); 590 kfree_sensitive(buffer); 594 return ret; 591 return ret; 595 } 592 } 596 593 597 int crypto_skcipher_setkey(struct crypto_skcip 594 int crypto_skcipher_setkey(struct crypto_skcipher *tfm, const u8 *key, 598 unsigned int keylen 595 unsigned int keylen) 599 { 596 { 600 struct skcipher_alg *cipher = crypto_s 597 struct skcipher_alg *cipher = crypto_skcipher_alg(tfm); 601 unsigned long alignmask = crypto_skcip 598 unsigned long alignmask = crypto_skcipher_alignmask(tfm); 602 int err; 599 int err; 603 600 604 if (cipher->co.base.cra_type != &crypt << 605 struct crypto_lskcipher **ctx << 606 << 607 crypto_lskcipher_clear_flags(* << 608 crypto_lskcipher_set_flags(*ct << 609 cry << 610 CRY << 611 err = crypto_lskcipher_setkey( << 612 goto out; << 613 } << 614 << 615 if (keylen < cipher->min_keysize || ke 601 if (keylen < cipher->min_keysize || keylen > cipher->max_keysize) 616 return -EINVAL; 602 return -EINVAL; 617 603 618 if ((unsigned long)key & alignmask) 604 if ((unsigned long)key & alignmask) 619 err = skcipher_setkey_unaligne 605 err = skcipher_setkey_unaligned(tfm, key, keylen); 620 else 606 else 621 err = cipher->setkey(tfm, key, 607 err = cipher->setkey(tfm, key, keylen); 622 608 623 out: << 624 if (unlikely(err)) { 609 if (unlikely(err)) { 625 skcipher_set_needkey(tfm); 610 skcipher_set_needkey(tfm); 626 return err; 611 return err; 627 } 612 } 628 613 629 crypto_skcipher_clear_flags(tfm, CRYPT 614 crypto_skcipher_clear_flags(tfm, CRYPTO_TFM_NEED_KEY); 630 return 0; 615 return 0; 631 } 616 } 632 EXPORT_SYMBOL_GPL(crypto_skcipher_setkey); 617 EXPORT_SYMBOL_GPL(crypto_skcipher_setkey); 633 618 634 int crypto_skcipher_encrypt(struct skcipher_re 619 int crypto_skcipher_encrypt(struct skcipher_request *req) 635 { 620 { 636 struct crypto_skcipher *tfm = crypto_s 621 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); 637 struct skcipher_alg *alg = crypto_skci !! 622 struct crypto_alg *alg = tfm->base.__crt_alg; >> 623 unsigned int cryptlen = req->cryptlen; >> 624 int ret; 638 625 >> 626 crypto_stats_get(alg); 639 if (crypto_skcipher_get_flags(tfm) & C 627 if (crypto_skcipher_get_flags(tfm) & CRYPTO_TFM_NEED_KEY) 640 return -ENOKEY; !! 628 ret = -ENOKEY; 641 if (alg->co.base.cra_type != &crypto_s !! 629 else 642 return crypto_lskcipher_encryp !! 630 ret = crypto_skcipher_alg(tfm)->encrypt(req); 643 return alg->encrypt(req); !! 631 crypto_stats_skcipher_encrypt(cryptlen, ret, alg); >> 632 return ret; 644 } 633 } 645 EXPORT_SYMBOL_GPL(crypto_skcipher_encrypt); 634 EXPORT_SYMBOL_GPL(crypto_skcipher_encrypt); 646 635 647 int crypto_skcipher_decrypt(struct skcipher_re 636 int crypto_skcipher_decrypt(struct skcipher_request *req) 648 { 637 { 649 struct crypto_skcipher *tfm = crypto_s 638 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); 650 struct skcipher_alg *alg = crypto_skci !! 639 struct crypto_alg *alg = tfm->base.__crt_alg; >> 640 unsigned int cryptlen = req->cryptlen; >> 641 int ret; 651 642 >> 643 crypto_stats_get(alg); 652 if (crypto_skcipher_get_flags(tfm) & C 644 if (crypto_skcipher_get_flags(tfm) & CRYPTO_TFM_NEED_KEY) 653 return -ENOKEY; !! 645 ret = -ENOKEY; 654 if (alg->co.base.cra_type != &crypto_s !! 646 else 655 return crypto_lskcipher_decryp !! 647 ret = crypto_skcipher_alg(tfm)->decrypt(req); 656 return alg->decrypt(req); !! 648 crypto_stats_skcipher_decrypt(cryptlen, ret, alg); >> 649 return ret; 657 } 650 } 658 EXPORT_SYMBOL_GPL(crypto_skcipher_decrypt); 651 EXPORT_SYMBOL_GPL(crypto_skcipher_decrypt); 659 652 660 static int crypto_lskcipher_export(struct skci << 661 { << 662 struct crypto_skcipher *tfm = crypto_s << 663 u8 *ivs = skcipher_request_ctx(req); << 664 << 665 ivs = PTR_ALIGN(ivs, crypto_skcipher_a << 666 << 667 memcpy(out, ivs + crypto_skcipher_ivsi << 668 crypto_skcipher_statesize(tfm)) << 669 << 670 return 0; << 671 } << 672 << 673 static int crypto_lskcipher_import(struct skci << 674 { << 675 struct crypto_skcipher *tfm = crypto_s << 676 u8 *ivs = skcipher_request_ctx(req); << 677 << 678 ivs = PTR_ALIGN(ivs, crypto_skcipher_a << 679 << 680 memcpy(ivs + crypto_skcipher_ivsize(tf << 681 crypto_skcipher_statesize(tfm)) << 682 << 683 return 0; << 684 } << 685 << 686 static int skcipher_noexport(struct skcipher_r << 687 { << 688 return 0; << 689 } << 690 << 691 static int skcipher_noimport(struct skcipher_r << 692 { << 693 return 0; << 694 } << 695 << 696 int crypto_skcipher_export(struct skcipher_req << 697 { << 698 struct crypto_skcipher *tfm = crypto_s << 699 struct skcipher_alg *alg = crypto_skci << 700 << 701 if (alg->co.base.cra_type != &crypto_s << 702 return crypto_lskcipher_export << 703 return alg->export(req, out); << 704 } << 705 EXPORT_SYMBOL_GPL(crypto_skcipher_export); << 706 << 707 int crypto_skcipher_import(struct skcipher_req << 708 { << 709 struct crypto_skcipher *tfm = crypto_s << 710 struct skcipher_alg *alg = crypto_skci << 711 << 712 if (alg->co.base.cra_type != &crypto_s << 713 return crypto_lskcipher_import << 714 return alg->import(req, in); << 715 } << 716 EXPORT_SYMBOL_GPL(crypto_skcipher_import); << 717 << 718 static void crypto_skcipher_exit_tfm(struct cr 653 static void crypto_skcipher_exit_tfm(struct crypto_tfm *tfm) 719 { 654 { 720 struct crypto_skcipher *skcipher = __c 655 struct crypto_skcipher *skcipher = __crypto_skcipher_cast(tfm); 721 struct skcipher_alg *alg = crypto_skci 656 struct skcipher_alg *alg = crypto_skcipher_alg(skcipher); 722 657 723 alg->exit(skcipher); 658 alg->exit(skcipher); 724 } 659 } 725 660 726 static int crypto_skcipher_init_tfm(struct cry 661 static int crypto_skcipher_init_tfm(struct crypto_tfm *tfm) 727 { 662 { 728 struct crypto_skcipher *skcipher = __c 663 struct crypto_skcipher *skcipher = __crypto_skcipher_cast(tfm); 729 struct skcipher_alg *alg = crypto_skci 664 struct skcipher_alg *alg = crypto_skcipher_alg(skcipher); 730 665 731 skcipher_set_needkey(skcipher); 666 skcipher_set_needkey(skcipher); 732 667 733 if (tfm->__crt_alg->cra_type != &crypt << 734 unsigned am = crypto_skcipher_ << 735 unsigned reqsize; << 736 << 737 reqsize = am & ~(crypto_tfm_ct << 738 reqsize += crypto_skcipher_ivs << 739 reqsize += crypto_skcipher_sta << 740 crypto_skcipher_set_reqsize(sk << 741 << 742 return crypto_init_lskcipher_o << 743 } << 744 << 745 if (alg->exit) 668 if (alg->exit) 746 skcipher->base.exit = crypto_s 669 skcipher->base.exit = crypto_skcipher_exit_tfm; 747 670 748 if (alg->init) 671 if (alg->init) 749 return alg->init(skcipher); 672 return alg->init(skcipher); 750 673 751 return 0; 674 return 0; 752 } 675 } 753 676 754 static unsigned int crypto_skcipher_extsize(st << 755 { << 756 if (alg->cra_type != &crypto_skcipher_ << 757 return sizeof(struct crypto_ls << 758 << 759 return crypto_alg_extsize(alg); << 760 } << 761 << 762 static void crypto_skcipher_free_instance(stru 677 static void crypto_skcipher_free_instance(struct crypto_instance *inst) 763 { 678 { 764 struct skcipher_instance *skcipher = 679 struct skcipher_instance *skcipher = 765 container_of(inst, struct skci 680 container_of(inst, struct skcipher_instance, s.base); 766 681 767 skcipher->free(skcipher); 682 skcipher->free(skcipher); 768 } 683 } 769 684 770 static void crypto_skcipher_show(struct seq_fi 685 static void crypto_skcipher_show(struct seq_file *m, struct crypto_alg *alg) 771 __maybe_unused; 686 __maybe_unused; 772 static void crypto_skcipher_show(struct seq_fi 687 static void crypto_skcipher_show(struct seq_file *m, struct crypto_alg *alg) 773 { 688 { 774 struct skcipher_alg *skcipher = __cryp !! 689 struct skcipher_alg *skcipher = container_of(alg, struct skcipher_alg, >> 690 base); 775 691 776 seq_printf(m, "type : skcipher 692 seq_printf(m, "type : skcipher\n"); 777 seq_printf(m, "async : %s\n", 693 seq_printf(m, "async : %s\n", 778 alg->cra_flags & CRYPTO_ALG 694 alg->cra_flags & CRYPTO_ALG_ASYNC ? "yes" : "no"); 779 seq_printf(m, "blocksize : %u\n", a 695 seq_printf(m, "blocksize : %u\n", alg->cra_blocksize); 780 seq_printf(m, "min keysize : %u\n", s 696 seq_printf(m, "min keysize : %u\n", skcipher->min_keysize); 781 seq_printf(m, "max keysize : %u\n", s 697 seq_printf(m, "max keysize : %u\n", skcipher->max_keysize); 782 seq_printf(m, "ivsize : %u\n", s 698 seq_printf(m, "ivsize : %u\n", skcipher->ivsize); 783 seq_printf(m, "chunksize : %u\n", s 699 seq_printf(m, "chunksize : %u\n", skcipher->chunksize); 784 seq_printf(m, "walksize : %u\n", s 700 seq_printf(m, "walksize : %u\n", skcipher->walksize); 785 seq_printf(m, "statesize : %u\n", s << 786 } 701 } 787 702 788 static int __maybe_unused crypto_skcipher_repo !! 703 #ifdef CONFIG_NET 789 struct sk_buff *skb, struct crypto_alg !! 704 static int crypto_skcipher_report(struct sk_buff *skb, struct crypto_alg *alg) 790 { 705 { 791 struct skcipher_alg *skcipher = __cryp << 792 struct crypto_report_blkcipher rblkcip 706 struct crypto_report_blkcipher rblkcipher; >> 707 struct skcipher_alg *skcipher = container_of(alg, struct skcipher_alg, >> 708 base); 793 709 794 memset(&rblkcipher, 0, sizeof(rblkciph 710 memset(&rblkcipher, 0, sizeof(rblkcipher)); 795 711 796 strscpy(rblkcipher.type, "skcipher", s 712 strscpy(rblkcipher.type, "skcipher", sizeof(rblkcipher.type)); 797 strscpy(rblkcipher.geniv, "<none>", si 713 strscpy(rblkcipher.geniv, "<none>", sizeof(rblkcipher.geniv)); 798 714 799 rblkcipher.blocksize = alg->cra_blocks 715 rblkcipher.blocksize = alg->cra_blocksize; 800 rblkcipher.min_keysize = skcipher->min 716 rblkcipher.min_keysize = skcipher->min_keysize; 801 rblkcipher.max_keysize = skcipher->max 717 rblkcipher.max_keysize = skcipher->max_keysize; 802 rblkcipher.ivsize = skcipher->ivsize; 718 rblkcipher.ivsize = skcipher->ivsize; 803 719 804 return nla_put(skb, CRYPTOCFGA_REPORT_ 720 return nla_put(skb, CRYPTOCFGA_REPORT_BLKCIPHER, 805 sizeof(rblkcipher), &rb 721 sizeof(rblkcipher), &rblkcipher); 806 } 722 } >> 723 #else >> 724 static int crypto_skcipher_report(struct sk_buff *skb, struct crypto_alg *alg) >> 725 { >> 726 return -ENOSYS; >> 727 } >> 728 #endif 807 729 808 static const struct crypto_type crypto_skciphe 730 static const struct crypto_type crypto_skcipher_type = { 809 .extsize = crypto_skcipher_extsize, !! 731 .extsize = crypto_alg_extsize, 810 .init_tfm = crypto_skcipher_init_tfm, 732 .init_tfm = crypto_skcipher_init_tfm, 811 .free = crypto_skcipher_free_instance, 733 .free = crypto_skcipher_free_instance, 812 #ifdef CONFIG_PROC_FS 734 #ifdef CONFIG_PROC_FS 813 .show = crypto_skcipher_show, 735 .show = crypto_skcipher_show, 814 #endif 736 #endif 815 #if IS_ENABLED(CONFIG_CRYPTO_USER) << 816 .report = crypto_skcipher_report, 737 .report = crypto_skcipher_report, 817 #endif << 818 .maskclear = ~CRYPTO_ALG_TYPE_MASK, 738 .maskclear = ~CRYPTO_ALG_TYPE_MASK, 819 .maskset = CRYPTO_ALG_TYPE_SKCIPHER_MA !! 739 .maskset = CRYPTO_ALG_TYPE_MASK, 820 .type = CRYPTO_ALG_TYPE_SKCIPHER, 740 .type = CRYPTO_ALG_TYPE_SKCIPHER, 821 .tfmsize = offsetof(struct crypto_skci 741 .tfmsize = offsetof(struct crypto_skcipher, base), 822 }; 742 }; 823 743 824 int crypto_grab_skcipher(struct crypto_skciphe 744 int crypto_grab_skcipher(struct crypto_skcipher_spawn *spawn, 825 struct crypto_instanc 745 struct crypto_instance *inst, 826 const char *name, u32 746 const char *name, u32 type, u32 mask) 827 { 747 { 828 spawn->base.frontend = &crypto_skciphe 748 spawn->base.frontend = &crypto_skcipher_type; 829 return crypto_grab_spawn(&spawn->base, 749 return crypto_grab_spawn(&spawn->base, inst, name, type, mask); 830 } 750 } 831 EXPORT_SYMBOL_GPL(crypto_grab_skcipher); 751 EXPORT_SYMBOL_GPL(crypto_grab_skcipher); 832 752 833 struct crypto_skcipher *crypto_alloc_skcipher( 753 struct crypto_skcipher *crypto_alloc_skcipher(const char *alg_name, 834 754 u32 type, u32 mask) 835 { 755 { 836 return crypto_alloc_tfm(alg_name, &cry 756 return crypto_alloc_tfm(alg_name, &crypto_skcipher_type, type, mask); 837 } 757 } 838 EXPORT_SYMBOL_GPL(crypto_alloc_skcipher); 758 EXPORT_SYMBOL_GPL(crypto_alloc_skcipher); 839 759 840 struct crypto_sync_skcipher *crypto_alloc_sync 760 struct crypto_sync_skcipher *crypto_alloc_sync_skcipher( 841 const char *al 761 const char *alg_name, u32 type, u32 mask) 842 { 762 { 843 struct crypto_skcipher *tfm; 763 struct crypto_skcipher *tfm; 844 764 845 /* Only sync algorithms allowed. */ 765 /* Only sync algorithms allowed. */ 846 mask |= CRYPTO_ALG_ASYNC | CRYPTO_ALG_ !! 766 mask |= CRYPTO_ALG_ASYNC; 847 767 848 tfm = crypto_alloc_tfm(alg_name, &cryp 768 tfm = crypto_alloc_tfm(alg_name, &crypto_skcipher_type, type, mask); 849 769 850 /* 770 /* 851 * Make sure we do not allocate someth 771 * Make sure we do not allocate something that might get used with 852 * an on-stack request: check the requ 772 * an on-stack request: check the request size. 853 */ 773 */ 854 if (!IS_ERR(tfm) && WARN_ON(crypto_skc 774 if (!IS_ERR(tfm) && WARN_ON(crypto_skcipher_reqsize(tfm) > 855 MAX_SYNC_S 775 MAX_SYNC_SKCIPHER_REQSIZE)) { 856 crypto_free_skcipher(tfm); 776 crypto_free_skcipher(tfm); 857 return ERR_PTR(-EINVAL); 777 return ERR_PTR(-EINVAL); 858 } 778 } 859 779 860 return (struct crypto_sync_skcipher *) 780 return (struct crypto_sync_skcipher *)tfm; 861 } 781 } 862 EXPORT_SYMBOL_GPL(crypto_alloc_sync_skcipher); 782 EXPORT_SYMBOL_GPL(crypto_alloc_sync_skcipher); 863 783 864 int crypto_has_skcipher(const char *alg_name, 784 int crypto_has_skcipher(const char *alg_name, u32 type, u32 mask) 865 { 785 { 866 return crypto_type_has_alg(alg_name, & 786 return crypto_type_has_alg(alg_name, &crypto_skcipher_type, type, mask); 867 } 787 } 868 EXPORT_SYMBOL_GPL(crypto_has_skcipher); 788 EXPORT_SYMBOL_GPL(crypto_has_skcipher); 869 789 870 int skcipher_prepare_alg_common(struct skciphe !! 790 static int skcipher_prepare_alg(struct skcipher_alg *alg) 871 { 791 { 872 struct crypto_alg *base = &alg->base; 792 struct crypto_alg *base = &alg->base; 873 793 874 if (alg->ivsize > PAGE_SIZE / 8 || alg 794 if (alg->ivsize > PAGE_SIZE / 8 || alg->chunksize > PAGE_SIZE / 8 || 875 alg->statesize > PAGE_SIZE / 2 || !! 795 alg->walksize > PAGE_SIZE / 8) 876 (alg->ivsize + alg->statesize) > P << 877 return -EINVAL; 796 return -EINVAL; 878 797 879 if (!alg->chunksize) 798 if (!alg->chunksize) 880 alg->chunksize = base->cra_blo 799 alg->chunksize = base->cra_blocksize; 881 << 882 base->cra_flags &= ~CRYPTO_ALG_TYPE_MA << 883 << 884 return 0; << 885 } << 886 << 887 static int skcipher_prepare_alg(struct skciphe << 888 { << 889 struct crypto_alg *base = &alg->base; << 890 int err; << 891 << 892 err = skcipher_prepare_alg_common(&alg << 893 if (err) << 894 return err; << 895 << 896 if (alg->walksize > PAGE_SIZE / 8) << 897 return -EINVAL; << 898 << 899 if (!alg->walksize) 800 if (!alg->walksize) 900 alg->walksize = alg->chunksize 801 alg->walksize = alg->chunksize; 901 802 902 if (!alg->statesize) { << 903 alg->import = skcipher_noimpor << 904 alg->export = skcipher_noexpor << 905 } else if (!(alg->import && alg->expor << 906 return -EINVAL; << 907 << 908 base->cra_type = &crypto_skcipher_type 803 base->cra_type = &crypto_skcipher_type; >> 804 base->cra_flags &= ~CRYPTO_ALG_TYPE_MASK; 909 base->cra_flags |= CRYPTO_ALG_TYPE_SKC 805 base->cra_flags |= CRYPTO_ALG_TYPE_SKCIPHER; 910 806 911 return 0; 807 return 0; 912 } 808 } 913 809 914 int crypto_register_skcipher(struct skcipher_a 810 int crypto_register_skcipher(struct skcipher_alg *alg) 915 { 811 { 916 struct crypto_alg *base = &alg->base; 812 struct crypto_alg *base = &alg->base; 917 int err; 813 int err; 918 814 919 err = skcipher_prepare_alg(alg); 815 err = skcipher_prepare_alg(alg); 920 if (err) 816 if (err) 921 return err; 817 return err; 922 818 923 return crypto_register_alg(base); 819 return crypto_register_alg(base); 924 } 820 } 925 EXPORT_SYMBOL_GPL(crypto_register_skcipher); 821 EXPORT_SYMBOL_GPL(crypto_register_skcipher); 926 822 927 void crypto_unregister_skcipher(struct skciphe 823 void crypto_unregister_skcipher(struct skcipher_alg *alg) 928 { 824 { 929 crypto_unregister_alg(&alg->base); 825 crypto_unregister_alg(&alg->base); 930 } 826 } 931 EXPORT_SYMBOL_GPL(crypto_unregister_skcipher); 827 EXPORT_SYMBOL_GPL(crypto_unregister_skcipher); 932 828 933 int crypto_register_skciphers(struct skcipher_ 829 int crypto_register_skciphers(struct skcipher_alg *algs, int count) 934 { 830 { 935 int i, ret; 831 int i, ret; 936 832 937 for (i = 0; i < count; i++) { 833 for (i = 0; i < count; i++) { 938 ret = crypto_register_skcipher 834 ret = crypto_register_skcipher(&algs[i]); 939 if (ret) 835 if (ret) 940 goto err; 836 goto err; 941 } 837 } 942 838 943 return 0; 839 return 0; 944 840 945 err: 841 err: 946 for (--i; i >= 0; --i) 842 for (--i; i >= 0; --i) 947 crypto_unregister_skcipher(&al 843 crypto_unregister_skcipher(&algs[i]); 948 844 949 return ret; 845 return ret; 950 } 846 } 951 EXPORT_SYMBOL_GPL(crypto_register_skciphers); 847 EXPORT_SYMBOL_GPL(crypto_register_skciphers); 952 848 953 void crypto_unregister_skciphers(struct skciph 849 void crypto_unregister_skciphers(struct skcipher_alg *algs, int count) 954 { 850 { 955 int i; 851 int i; 956 852 957 for (i = count - 1; i >= 0; --i) 853 for (i = count - 1; i >= 0; --i) 958 crypto_unregister_skcipher(&al 854 crypto_unregister_skcipher(&algs[i]); 959 } 855 } 960 EXPORT_SYMBOL_GPL(crypto_unregister_skciphers) 856 EXPORT_SYMBOL_GPL(crypto_unregister_skciphers); 961 857 962 int skcipher_register_instance(struct crypto_t 858 int skcipher_register_instance(struct crypto_template *tmpl, 963 struct skcipher_ins 859 struct skcipher_instance *inst) 964 { 860 { 965 int err; 861 int err; 966 862 967 if (WARN_ON(!inst->free)) 863 if (WARN_ON(!inst->free)) 968 return -EINVAL; 864 return -EINVAL; 969 865 970 err = skcipher_prepare_alg(&inst->alg) 866 err = skcipher_prepare_alg(&inst->alg); 971 if (err) 867 if (err) 972 return err; 868 return err; 973 869 974 return crypto_register_instance(tmpl, 870 return crypto_register_instance(tmpl, skcipher_crypto_instance(inst)); 975 } 871 } 976 EXPORT_SYMBOL_GPL(skcipher_register_instance); 872 EXPORT_SYMBOL_GPL(skcipher_register_instance); 977 873 978 static int skcipher_setkey_simple(struct crypt 874 static int skcipher_setkey_simple(struct crypto_skcipher *tfm, const u8 *key, 979 unsigned int 875 unsigned int keylen) 980 { 876 { 981 struct crypto_cipher *cipher = skciphe 877 struct crypto_cipher *cipher = skcipher_cipher_simple(tfm); 982 878 983 crypto_cipher_clear_flags(cipher, CRYP 879 crypto_cipher_clear_flags(cipher, CRYPTO_TFM_REQ_MASK); 984 crypto_cipher_set_flags(cipher, crypto 880 crypto_cipher_set_flags(cipher, crypto_skcipher_get_flags(tfm) & 985 CRYPTO_TFM_REQ 881 CRYPTO_TFM_REQ_MASK); 986 return crypto_cipher_setkey(cipher, ke 882 return crypto_cipher_setkey(cipher, key, keylen); 987 } 883 } 988 884 989 static int skcipher_init_tfm_simple(struct cry 885 static int skcipher_init_tfm_simple(struct crypto_skcipher *tfm) 990 { 886 { 991 struct skcipher_instance *inst = skcip 887 struct skcipher_instance *inst = skcipher_alg_instance(tfm); 992 struct crypto_cipher_spawn *spawn = sk 888 struct crypto_cipher_spawn *spawn = skcipher_instance_ctx(inst); 993 struct skcipher_ctx_simple *ctx = cryp 889 struct skcipher_ctx_simple *ctx = crypto_skcipher_ctx(tfm); 994 struct crypto_cipher *cipher; 890 struct crypto_cipher *cipher; 995 891 996 cipher = crypto_spawn_cipher(spawn); 892 cipher = crypto_spawn_cipher(spawn); 997 if (IS_ERR(cipher)) 893 if (IS_ERR(cipher)) 998 return PTR_ERR(cipher); 894 return PTR_ERR(cipher); 999 895 1000 ctx->cipher = cipher; 896 ctx->cipher = cipher; 1001 return 0; 897 return 0; 1002 } 898 } 1003 899 1004 static void skcipher_exit_tfm_simple(struct c 900 static void skcipher_exit_tfm_simple(struct crypto_skcipher *tfm) 1005 { 901 { 1006 struct skcipher_ctx_simple *ctx = cry 902 struct skcipher_ctx_simple *ctx = crypto_skcipher_ctx(tfm); 1007 903 1008 crypto_free_cipher(ctx->cipher); 904 crypto_free_cipher(ctx->cipher); 1009 } 905 } 1010 906 1011 static void skcipher_free_instance_simple(str 907 static void skcipher_free_instance_simple(struct skcipher_instance *inst) 1012 { 908 { 1013 crypto_drop_cipher(skcipher_instance_ 909 crypto_drop_cipher(skcipher_instance_ctx(inst)); 1014 kfree(inst); 910 kfree(inst); 1015 } 911 } 1016 912 1017 /** 913 /** 1018 * skcipher_alloc_instance_simple - allocate 914 * skcipher_alloc_instance_simple - allocate instance of simple block cipher mode 1019 * 915 * 1020 * Allocate an skcipher_instance for a simple 916 * Allocate an skcipher_instance for a simple block cipher mode of operation, 1021 * e.g. cbc or ecb. The instance context wil 917 * e.g. cbc or ecb. The instance context will have just a single crypto_spawn, 1022 * that for the underlying cipher. The {min, 918 * that for the underlying cipher. The {min,max}_keysize, ivsize, blocksize, 1023 * alignmask, and priority are set from the u 919 * alignmask, and priority are set from the underlying cipher but can be 1024 * overridden if needed. The tfm context def 920 * overridden if needed. The tfm context defaults to skcipher_ctx_simple, and 1025 * default ->setkey(), ->init(), and ->exit() 921 * default ->setkey(), ->init(), and ->exit() methods are installed. 1026 * 922 * 1027 * @tmpl: the template being instantiated 923 * @tmpl: the template being instantiated 1028 * @tb: the template parameters 924 * @tb: the template parameters 1029 * 925 * 1030 * Return: a pointer to the new instance, or 926 * Return: a pointer to the new instance, or an ERR_PTR(). The caller still 1031 * needs to register the instance. 927 * needs to register the instance. 1032 */ 928 */ 1033 struct skcipher_instance *skcipher_alloc_inst 929 struct skcipher_instance *skcipher_alloc_instance_simple( 1034 struct crypto_template *tmpl, struct 930 struct crypto_template *tmpl, struct rtattr **tb) 1035 { 931 { 1036 u32 mask; 932 u32 mask; 1037 struct skcipher_instance *inst; 933 struct skcipher_instance *inst; 1038 struct crypto_cipher_spawn *spawn; 934 struct crypto_cipher_spawn *spawn; 1039 struct crypto_alg *cipher_alg; 935 struct crypto_alg *cipher_alg; 1040 int err; 936 int err; 1041 937 1042 err = crypto_check_attr_type(tb, CRYP 938 err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_SKCIPHER, &mask); 1043 if (err) 939 if (err) 1044 return ERR_PTR(err); 940 return ERR_PTR(err); 1045 941 1046 inst = kzalloc(sizeof(*inst) + sizeof 942 inst = kzalloc(sizeof(*inst) + sizeof(*spawn), GFP_KERNEL); 1047 if (!inst) 943 if (!inst) 1048 return ERR_PTR(-ENOMEM); 944 return ERR_PTR(-ENOMEM); 1049 spawn = skcipher_instance_ctx(inst); 945 spawn = skcipher_instance_ctx(inst); 1050 946 1051 err = crypto_grab_cipher(spawn, skcip 947 err = crypto_grab_cipher(spawn, skcipher_crypto_instance(inst), 1052 crypto_attr_ 948 crypto_attr_alg_name(tb[1]), 0, mask); 1053 if (err) 949 if (err) 1054 goto err_free_inst; 950 goto err_free_inst; 1055 cipher_alg = crypto_spawn_cipher_alg( 951 cipher_alg = crypto_spawn_cipher_alg(spawn); 1056 952 1057 err = crypto_inst_setname(skcipher_cr 953 err = crypto_inst_setname(skcipher_crypto_instance(inst), tmpl->name, 1058 cipher_alg) 954 cipher_alg); 1059 if (err) 955 if (err) 1060 goto err_free_inst; 956 goto err_free_inst; 1061 957 1062 inst->free = skcipher_free_instance_s 958 inst->free = skcipher_free_instance_simple; 1063 959 1064 /* Default algorithm properties, can 960 /* Default algorithm properties, can be overridden */ 1065 inst->alg.base.cra_blocksize = cipher 961 inst->alg.base.cra_blocksize = cipher_alg->cra_blocksize; 1066 inst->alg.base.cra_alignmask = cipher 962 inst->alg.base.cra_alignmask = cipher_alg->cra_alignmask; 1067 inst->alg.base.cra_priority = cipher_ 963 inst->alg.base.cra_priority = cipher_alg->cra_priority; 1068 inst->alg.min_keysize = cipher_alg->c 964 inst->alg.min_keysize = cipher_alg->cra_cipher.cia_min_keysize; 1069 inst->alg.max_keysize = cipher_alg->c 965 inst->alg.max_keysize = cipher_alg->cra_cipher.cia_max_keysize; 1070 inst->alg.ivsize = cipher_alg->cra_bl 966 inst->alg.ivsize = cipher_alg->cra_blocksize; 1071 967 1072 /* Use skcipher_ctx_simple by default 968 /* Use skcipher_ctx_simple by default, can be overridden */ 1073 inst->alg.base.cra_ctxsize = sizeof(s 969 inst->alg.base.cra_ctxsize = sizeof(struct skcipher_ctx_simple); 1074 inst->alg.setkey = skcipher_setkey_si 970 inst->alg.setkey = skcipher_setkey_simple; 1075 inst->alg.init = skcipher_init_tfm_si 971 inst->alg.init = skcipher_init_tfm_simple; 1076 inst->alg.exit = skcipher_exit_tfm_si 972 inst->alg.exit = skcipher_exit_tfm_simple; 1077 973 1078 return inst; 974 return inst; 1079 975 1080 err_free_inst: 976 err_free_inst: 1081 skcipher_free_instance_simple(inst); 977 skcipher_free_instance_simple(inst); 1082 return ERR_PTR(err); 978 return ERR_PTR(err); 1083 } 979 } 1084 EXPORT_SYMBOL_GPL(skcipher_alloc_instance_sim 980 EXPORT_SYMBOL_GPL(skcipher_alloc_instance_simple); 1085 981 1086 MODULE_LICENSE("GPL"); 982 MODULE_LICENSE("GPL"); 1087 MODULE_DESCRIPTION("Symmetric key cipher type 983 MODULE_DESCRIPTION("Symmetric key cipher type"); 1088 MODULE_IMPORT_NS(CRYPTO_INTERNAL); 984 MODULE_IMPORT_NS(CRYPTO_INTERNAL); 1089 985
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.