1 // SPDX-License-Identifier: GPL-2.0-or-later 1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 2 /* 3 * Symmetric key cipher operations. 3 * Symmetric key cipher operations. 4 * 4 * 5 * Generic encrypt/decrypt wrapper for ciphers 5 * Generic encrypt/decrypt wrapper for ciphers, handles operations across 6 * multiple page boundaries by using temporary 6 * multiple page boundaries by using temporary blocks. In user context, 7 * the kernel is given a chance to schedule us 7 * the kernel is given a chance to schedule us once per page. 8 * 8 * 9 * Copyright (c) 2015 Herbert Xu <herbert@gond 9 * Copyright (c) 2015 Herbert Xu <herbert@gondor.apana.org.au> 10 */ 10 */ 11 11 12 #include <crypto/internal/aead.h> 12 #include <crypto/internal/aead.h> 13 #include <crypto/internal/cipher.h> << 14 #include <crypto/internal/skcipher.h> 13 #include <crypto/internal/skcipher.h> 15 #include <crypto/scatterwalk.h> 14 #include <crypto/scatterwalk.h> 16 #include <linux/bug.h> 15 #include <linux/bug.h> 17 #include <linux/cryptouser.h> 16 #include <linux/cryptouser.h> 18 #include <linux/err.h> !! 17 #include <linux/compiler.h> 19 #include <linux/kernel.h> << 20 #include <linux/list.h> 18 #include <linux/list.h> 21 #include <linux/mm.h> << 22 #include <linux/module.h> 19 #include <linux/module.h> >> 20 #include <linux/rtnetlink.h> 23 #include <linux/seq_file.h> 21 #include <linux/seq_file.h> 24 #include <linux/slab.h> << 25 #include <linux/string.h> << 26 #include <net/netlink.h> 22 #include <net/netlink.h> 27 #include "skcipher.h" << 28 23 29 #define CRYPTO_ALG_TYPE_SKCIPHER_MASK 0x0000 !! 24 #include "internal.h" 30 25 31 enum { 26 enum { 32 SKCIPHER_WALK_PHYS = 1 << 0, 27 SKCIPHER_WALK_PHYS = 1 << 0, 33 SKCIPHER_WALK_SLOW = 1 << 1, 28 SKCIPHER_WALK_SLOW = 1 << 1, 34 SKCIPHER_WALK_COPY = 1 << 2, 29 SKCIPHER_WALK_COPY = 1 << 2, 35 SKCIPHER_WALK_DIFF = 1 << 3, 30 SKCIPHER_WALK_DIFF = 1 << 3, 36 SKCIPHER_WALK_SLEEP = 1 << 4, 31 SKCIPHER_WALK_SLEEP = 1 << 4, 37 }; 32 }; 38 33 39 struct skcipher_walk_buffer { 34 struct skcipher_walk_buffer { 40 struct list_head entry; 35 struct list_head entry; 41 struct scatter_walk dst; 36 struct scatter_walk dst; 42 unsigned int len; 37 unsigned int len; 43 u8 *data; 38 u8 *data; 44 u8 buffer[]; 39 u8 buffer[]; 45 }; 40 }; 46 41 47 static const struct crypto_type crypto_skciphe << 48 << 49 static int skcipher_walk_next(struct skcipher_ 42 static int skcipher_walk_next(struct skcipher_walk *walk); 50 43 >> 44 static inline void skcipher_unmap(struct scatter_walk *walk, void *vaddr) >> 45 { >> 46 if (PageHighMem(scatterwalk_page(walk))) >> 47 kunmap_atomic(vaddr); >> 48 } >> 49 >> 50 static inline void *skcipher_map(struct scatter_walk *walk) >> 51 { >> 52 struct page *page = scatterwalk_page(walk); >> 53 >> 54 return (PageHighMem(page) ? kmap_atomic(page) : page_address(page)) + >> 55 offset_in_page(walk->offset); >> 56 } >> 57 51 static inline void skcipher_map_src(struct skc 58 static inline void skcipher_map_src(struct skcipher_walk *walk) 52 { 59 { 53 walk->src.virt.addr = scatterwalk_map( !! 60 walk->src.virt.addr = skcipher_map(&walk->in); 54 } 61 } 55 62 56 static inline void skcipher_map_dst(struct skc 63 static inline void skcipher_map_dst(struct skcipher_walk *walk) 57 { 64 { 58 walk->dst.virt.addr = scatterwalk_map( !! 65 walk->dst.virt.addr = skcipher_map(&walk->out); 59 } 66 } 60 67 61 static inline void skcipher_unmap_src(struct s 68 static inline void skcipher_unmap_src(struct skcipher_walk *walk) 62 { 69 { 63 scatterwalk_unmap(walk->src.virt.addr) !! 70 skcipher_unmap(&walk->in, walk->src.virt.addr); 64 } 71 } 65 72 66 static inline void skcipher_unmap_dst(struct s 73 static inline void skcipher_unmap_dst(struct skcipher_walk *walk) 67 { 74 { 68 scatterwalk_unmap(walk->dst.virt.addr) !! 75 skcipher_unmap(&walk->out, walk->dst.virt.addr); 69 } 76 } 70 77 71 static inline gfp_t skcipher_walk_gfp(struct s 78 static inline gfp_t skcipher_walk_gfp(struct skcipher_walk *walk) 72 { 79 { 73 return walk->flags & SKCIPHER_WALK_SLE 80 return walk->flags & SKCIPHER_WALK_SLEEP ? GFP_KERNEL : GFP_ATOMIC; 74 } 81 } 75 82 76 /* Get a spot of the specified length that doe 83 /* Get a spot of the specified length that does not straddle a page. 77 * The caller needs to ensure that there is en 84 * The caller needs to ensure that there is enough space for this operation. 78 */ 85 */ 79 static inline u8 *skcipher_get_spot(u8 *start, 86 static inline u8 *skcipher_get_spot(u8 *start, unsigned int len) 80 { 87 { 81 u8 *end_page = (u8 *)(((unsigned long) 88 u8 *end_page = (u8 *)(((unsigned long)(start + len - 1)) & PAGE_MASK); 82 89 83 return max(start, end_page); 90 return max(start, end_page); 84 } 91 } 85 92 86 static inline struct skcipher_alg *__crypto_sk << 87 struct crypto_alg *alg) << 88 { << 89 return container_of(alg, struct skciph << 90 } << 91 << 92 static int skcipher_done_slow(struct skcipher_ 93 static int skcipher_done_slow(struct skcipher_walk *walk, unsigned int bsize) 93 { 94 { 94 u8 *addr; 95 u8 *addr; 95 96 96 addr = (u8 *)ALIGN((unsigned long)walk 97 addr = (u8 *)ALIGN((unsigned long)walk->buffer, walk->alignmask + 1); 97 addr = skcipher_get_spot(addr, bsize); 98 addr = skcipher_get_spot(addr, bsize); 98 scatterwalk_copychunks(addr, &walk->ou 99 scatterwalk_copychunks(addr, &walk->out, bsize, 99 (walk->flags & 100 (walk->flags & SKCIPHER_WALK_PHYS) ? 2 : 1); 100 return 0; 101 return 0; 101 } 102 } 102 103 103 int skcipher_walk_done(struct skcipher_walk *w 104 int skcipher_walk_done(struct skcipher_walk *walk, int err) 104 { 105 { 105 unsigned int n = walk->nbytes; 106 unsigned int n = walk->nbytes; 106 unsigned int nbytes = 0; 107 unsigned int nbytes = 0; 107 108 108 if (!n) 109 if (!n) 109 goto finish; 110 goto finish; 110 111 111 if (likely(err >= 0)) { 112 if (likely(err >= 0)) { 112 n -= err; 113 n -= err; 113 nbytes = walk->total - n; 114 nbytes = walk->total - n; 114 } 115 } 115 116 116 if (likely(!(walk->flags & (SKCIPHER_W 117 if (likely(!(walk->flags & (SKCIPHER_WALK_PHYS | 117 SKCIPHER_W 118 SKCIPHER_WALK_SLOW | 118 SKCIPHER_W 119 SKCIPHER_WALK_COPY | 119 SKCIPHER_W 120 SKCIPHER_WALK_DIFF)))) { 120 unmap_src: 121 unmap_src: 121 skcipher_unmap_src(walk); 122 skcipher_unmap_src(walk); 122 } else if (walk->flags & SKCIPHER_WALK 123 } else if (walk->flags & SKCIPHER_WALK_DIFF) { 123 skcipher_unmap_dst(walk); 124 skcipher_unmap_dst(walk); 124 goto unmap_src; 125 goto unmap_src; 125 } else if (walk->flags & SKCIPHER_WALK 126 } else if (walk->flags & SKCIPHER_WALK_COPY) { 126 skcipher_map_dst(walk); 127 skcipher_map_dst(walk); 127 memcpy(walk->dst.virt.addr, wa 128 memcpy(walk->dst.virt.addr, walk->page, n); 128 skcipher_unmap_dst(walk); 129 skcipher_unmap_dst(walk); 129 } else if (unlikely(walk->flags & SKCI 130 } else if (unlikely(walk->flags & SKCIPHER_WALK_SLOW)) { 130 if (err > 0) { 131 if (err > 0) { 131 /* 132 /* 132 * Didn't process all 133 * Didn't process all bytes. Either the algorithm is 133 * broken, or this was 134 * broken, or this was the last step and it turned out 134 * the message wasn't 135 * the message wasn't evenly divisible into blocks but 135 * the algorithm requi 136 * the algorithm requires it. 136 */ 137 */ 137 err = -EINVAL; 138 err = -EINVAL; 138 nbytes = 0; 139 nbytes = 0; 139 } else 140 } else 140 n = skcipher_done_slow 141 n = skcipher_done_slow(walk, n); 141 } 142 } 142 143 143 if (err > 0) 144 if (err > 0) 144 err = 0; 145 err = 0; 145 146 146 walk->total = nbytes; 147 walk->total = nbytes; 147 walk->nbytes = 0; 148 walk->nbytes = 0; 148 149 149 scatterwalk_advance(&walk->in, n); 150 scatterwalk_advance(&walk->in, n); 150 scatterwalk_advance(&walk->out, n); 151 scatterwalk_advance(&walk->out, n); 151 scatterwalk_done(&walk->in, 0, nbytes) 152 scatterwalk_done(&walk->in, 0, nbytes); 152 scatterwalk_done(&walk->out, 1, nbytes 153 scatterwalk_done(&walk->out, 1, nbytes); 153 154 154 if (nbytes) { 155 if (nbytes) { 155 crypto_yield(walk->flags & SKC 156 crypto_yield(walk->flags & SKCIPHER_WALK_SLEEP ? 156 CRYPTO_TFM_REQ_MA 157 CRYPTO_TFM_REQ_MAY_SLEEP : 0); 157 return skcipher_walk_next(walk 158 return skcipher_walk_next(walk); 158 } 159 } 159 160 160 finish: 161 finish: 161 /* Short-circuit for the common/fast p 162 /* Short-circuit for the common/fast path. */ 162 if (!((unsigned long)walk->buffer | (u 163 if (!((unsigned long)walk->buffer | (unsigned long)walk->page)) 163 goto out; 164 goto out; 164 165 165 if (walk->flags & SKCIPHER_WALK_PHYS) 166 if (walk->flags & SKCIPHER_WALK_PHYS) 166 goto out; 167 goto out; 167 168 168 if (walk->iv != walk->oiv) 169 if (walk->iv != walk->oiv) 169 memcpy(walk->oiv, walk->iv, wa 170 memcpy(walk->oiv, walk->iv, walk->ivsize); 170 if (walk->buffer != walk->page) 171 if (walk->buffer != walk->page) 171 kfree(walk->buffer); 172 kfree(walk->buffer); 172 if (walk->page) 173 if (walk->page) 173 free_page((unsigned long)walk- 174 free_page((unsigned long)walk->page); 174 175 175 out: 176 out: 176 return err; 177 return err; 177 } 178 } 178 EXPORT_SYMBOL_GPL(skcipher_walk_done); 179 EXPORT_SYMBOL_GPL(skcipher_walk_done); 179 180 180 void skcipher_walk_complete(struct skcipher_wa 181 void skcipher_walk_complete(struct skcipher_walk *walk, int err) 181 { 182 { 182 struct skcipher_walk_buffer *p, *tmp; 183 struct skcipher_walk_buffer *p, *tmp; 183 184 184 list_for_each_entry_safe(p, tmp, &walk 185 list_for_each_entry_safe(p, tmp, &walk->buffers, entry) { 185 u8 *data; 186 u8 *data; 186 187 187 if (err) 188 if (err) 188 goto done; 189 goto done; 189 190 190 data = p->data; 191 data = p->data; 191 if (!data) { 192 if (!data) { 192 data = PTR_ALIGN(&p->b 193 data = PTR_ALIGN(&p->buffer[0], walk->alignmask + 1); 193 data = skcipher_get_sp 194 data = skcipher_get_spot(data, walk->stride); 194 } 195 } 195 196 196 scatterwalk_copychunks(data, & 197 scatterwalk_copychunks(data, &p->dst, p->len, 1); 197 198 198 if (offset_in_page(p->data) + 199 if (offset_in_page(p->data) + p->len + walk->stride > 199 PAGE_SIZE) 200 PAGE_SIZE) 200 free_page((unsigned lo 201 free_page((unsigned long)p->data); 201 202 202 done: 203 done: 203 list_del(&p->entry); 204 list_del(&p->entry); 204 kfree(p); 205 kfree(p); 205 } 206 } 206 207 207 if (!err && walk->iv != walk->oiv) 208 if (!err && walk->iv != walk->oiv) 208 memcpy(walk->oiv, walk->iv, wa 209 memcpy(walk->oiv, walk->iv, walk->ivsize); 209 if (walk->buffer != walk->page) 210 if (walk->buffer != walk->page) 210 kfree(walk->buffer); 211 kfree(walk->buffer); 211 if (walk->page) 212 if (walk->page) 212 free_page((unsigned long)walk- 213 free_page((unsigned long)walk->page); 213 } 214 } 214 EXPORT_SYMBOL_GPL(skcipher_walk_complete); 215 EXPORT_SYMBOL_GPL(skcipher_walk_complete); 215 216 216 static void skcipher_queue_write(struct skciph 217 static void skcipher_queue_write(struct skcipher_walk *walk, 217 struct skciph 218 struct skcipher_walk_buffer *p) 218 { 219 { 219 p->dst = walk->out; 220 p->dst = walk->out; 220 list_add_tail(&p->entry, &walk->buffer 221 list_add_tail(&p->entry, &walk->buffers); 221 } 222 } 222 223 223 static int skcipher_next_slow(struct skcipher_ 224 static int skcipher_next_slow(struct skcipher_walk *walk, unsigned int bsize) 224 { 225 { 225 bool phys = walk->flags & SKCIPHER_WAL 226 bool phys = walk->flags & SKCIPHER_WALK_PHYS; 226 unsigned alignmask = walk->alignmask; 227 unsigned alignmask = walk->alignmask; 227 struct skcipher_walk_buffer *p; 228 struct skcipher_walk_buffer *p; 228 unsigned a; 229 unsigned a; 229 unsigned n; 230 unsigned n; 230 u8 *buffer; 231 u8 *buffer; 231 void *v; 232 void *v; 232 233 233 if (!phys) { 234 if (!phys) { 234 if (!walk->buffer) 235 if (!walk->buffer) 235 walk->buffer = walk->p 236 walk->buffer = walk->page; 236 buffer = walk->buffer; 237 buffer = walk->buffer; 237 if (buffer) 238 if (buffer) 238 goto ok; 239 goto ok; 239 } 240 } 240 241 241 /* Start with the minimum alignment of 242 /* Start with the minimum alignment of kmalloc. */ 242 a = crypto_tfm_ctx_alignment() - 1; 243 a = crypto_tfm_ctx_alignment() - 1; 243 n = bsize; 244 n = bsize; 244 245 245 if (phys) { 246 if (phys) { 246 /* Calculate the minimum align 247 /* Calculate the minimum alignment of p->buffer. */ 247 a &= (sizeof(*p) ^ (sizeof(*p) 248 a &= (sizeof(*p) ^ (sizeof(*p) - 1)) >> 1; 248 n += sizeof(*p); 249 n += sizeof(*p); 249 } 250 } 250 251 251 /* Minimum size to align p->buffer by 252 /* Minimum size to align p->buffer by alignmask. */ 252 n += alignmask & ~a; 253 n += alignmask & ~a; 253 254 254 /* Minimum size to ensure p->buffer do 255 /* Minimum size to ensure p->buffer does not straddle a page. */ 255 n += (bsize - 1) & ~(alignmask | a); 256 n += (bsize - 1) & ~(alignmask | a); 256 257 257 v = kzalloc(n, skcipher_walk_gfp(walk) 258 v = kzalloc(n, skcipher_walk_gfp(walk)); 258 if (!v) 259 if (!v) 259 return skcipher_walk_done(walk 260 return skcipher_walk_done(walk, -ENOMEM); 260 261 261 if (phys) { 262 if (phys) { 262 p = v; 263 p = v; 263 p->len = bsize; 264 p->len = bsize; 264 skcipher_queue_write(walk, p); 265 skcipher_queue_write(walk, p); 265 buffer = p->buffer; 266 buffer = p->buffer; 266 } else { 267 } else { 267 walk->buffer = v; 268 walk->buffer = v; 268 buffer = v; 269 buffer = v; 269 } 270 } 270 271 271 ok: 272 ok: 272 walk->dst.virt.addr = PTR_ALIGN(buffer 273 walk->dst.virt.addr = PTR_ALIGN(buffer, alignmask + 1); 273 walk->dst.virt.addr = skcipher_get_spo 274 walk->dst.virt.addr = skcipher_get_spot(walk->dst.virt.addr, bsize); 274 walk->src.virt.addr = walk->dst.virt.a 275 walk->src.virt.addr = walk->dst.virt.addr; 275 276 276 scatterwalk_copychunks(walk->src.virt. 277 scatterwalk_copychunks(walk->src.virt.addr, &walk->in, bsize, 0); 277 278 278 walk->nbytes = bsize; 279 walk->nbytes = bsize; 279 walk->flags |= SKCIPHER_WALK_SLOW; 280 walk->flags |= SKCIPHER_WALK_SLOW; 280 281 281 return 0; 282 return 0; 282 } 283 } 283 284 284 static int skcipher_next_copy(struct skcipher_ 285 static int skcipher_next_copy(struct skcipher_walk *walk) 285 { 286 { 286 struct skcipher_walk_buffer *p; 287 struct skcipher_walk_buffer *p; 287 u8 *tmp = walk->page; 288 u8 *tmp = walk->page; 288 289 289 skcipher_map_src(walk); 290 skcipher_map_src(walk); 290 memcpy(tmp, walk->src.virt.addr, walk- 291 memcpy(tmp, walk->src.virt.addr, walk->nbytes); 291 skcipher_unmap_src(walk); 292 skcipher_unmap_src(walk); 292 293 293 walk->src.virt.addr = tmp; 294 walk->src.virt.addr = tmp; 294 walk->dst.virt.addr = tmp; 295 walk->dst.virt.addr = tmp; 295 296 296 if (!(walk->flags & SKCIPHER_WALK_PHYS 297 if (!(walk->flags & SKCIPHER_WALK_PHYS)) 297 return 0; 298 return 0; 298 299 299 p = kmalloc(sizeof(*p), skcipher_walk_ 300 p = kmalloc(sizeof(*p), skcipher_walk_gfp(walk)); 300 if (!p) 301 if (!p) 301 return -ENOMEM; 302 return -ENOMEM; 302 303 303 p->data = walk->page; 304 p->data = walk->page; 304 p->len = walk->nbytes; 305 p->len = walk->nbytes; 305 skcipher_queue_write(walk, p); 306 skcipher_queue_write(walk, p); 306 307 307 if (offset_in_page(walk->page) + walk- 308 if (offset_in_page(walk->page) + walk->nbytes + walk->stride > 308 PAGE_SIZE) 309 PAGE_SIZE) 309 walk->page = NULL; 310 walk->page = NULL; 310 else 311 else 311 walk->page += walk->nbytes; 312 walk->page += walk->nbytes; 312 313 313 return 0; 314 return 0; 314 } 315 } 315 316 316 static int skcipher_next_fast(struct skcipher_ 317 static int skcipher_next_fast(struct skcipher_walk *walk) 317 { 318 { 318 unsigned long diff; 319 unsigned long diff; 319 320 320 walk->src.phys.page = scatterwalk_page 321 walk->src.phys.page = scatterwalk_page(&walk->in); 321 walk->src.phys.offset = offset_in_page 322 walk->src.phys.offset = offset_in_page(walk->in.offset); 322 walk->dst.phys.page = scatterwalk_page 323 walk->dst.phys.page = scatterwalk_page(&walk->out); 323 walk->dst.phys.offset = offset_in_page 324 walk->dst.phys.offset = offset_in_page(walk->out.offset); 324 325 325 if (walk->flags & SKCIPHER_WALK_PHYS) 326 if (walk->flags & SKCIPHER_WALK_PHYS) 326 return 0; 327 return 0; 327 328 328 diff = walk->src.phys.offset - walk->d 329 diff = walk->src.phys.offset - walk->dst.phys.offset; 329 diff |= walk->src.virt.page - walk->ds 330 diff |= walk->src.virt.page - walk->dst.virt.page; 330 331 331 skcipher_map_src(walk); 332 skcipher_map_src(walk); 332 walk->dst.virt.addr = walk->src.virt.a 333 walk->dst.virt.addr = walk->src.virt.addr; 333 334 334 if (diff) { 335 if (diff) { 335 walk->flags |= SKCIPHER_WALK_D 336 walk->flags |= SKCIPHER_WALK_DIFF; 336 skcipher_map_dst(walk); 337 skcipher_map_dst(walk); 337 } 338 } 338 339 339 return 0; 340 return 0; 340 } 341 } 341 342 342 static int skcipher_walk_next(struct skcipher_ 343 static int skcipher_walk_next(struct skcipher_walk *walk) 343 { 344 { 344 unsigned int bsize; 345 unsigned int bsize; 345 unsigned int n; 346 unsigned int n; 346 int err; 347 int err; 347 348 348 walk->flags &= ~(SKCIPHER_WALK_SLOW | 349 walk->flags &= ~(SKCIPHER_WALK_SLOW | SKCIPHER_WALK_COPY | 349 SKCIPHER_WALK_DIFF); 350 SKCIPHER_WALK_DIFF); 350 351 351 n = walk->total; 352 n = walk->total; 352 bsize = min(walk->stride, max(n, walk- 353 bsize = min(walk->stride, max(n, walk->blocksize)); 353 n = scatterwalk_clamp(&walk->in, n); 354 n = scatterwalk_clamp(&walk->in, n); 354 n = scatterwalk_clamp(&walk->out, n); 355 n = scatterwalk_clamp(&walk->out, n); 355 356 356 if (unlikely(n < bsize)) { 357 if (unlikely(n < bsize)) { 357 if (unlikely(walk->total < wal 358 if (unlikely(walk->total < walk->blocksize)) 358 return skcipher_walk_d 359 return skcipher_walk_done(walk, -EINVAL); 359 360 360 slow_path: 361 slow_path: 361 err = skcipher_next_slow(walk, 362 err = skcipher_next_slow(walk, bsize); 362 goto set_phys_lowmem; 363 goto set_phys_lowmem; 363 } 364 } 364 365 365 if (unlikely((walk->in.offset | walk-> 366 if (unlikely((walk->in.offset | walk->out.offset) & walk->alignmask)) { 366 if (!walk->page) { 367 if (!walk->page) { 367 gfp_t gfp = skcipher_w 368 gfp_t gfp = skcipher_walk_gfp(walk); 368 369 369 walk->page = (void *)_ 370 walk->page = (void *)__get_free_page(gfp); 370 if (!walk->page) 371 if (!walk->page) 371 goto slow_path 372 goto slow_path; 372 } 373 } 373 374 374 walk->nbytes = min_t(unsigned, 375 walk->nbytes = min_t(unsigned, n, 375 PAGE_SIZE 376 PAGE_SIZE - offset_in_page(walk->page)); 376 walk->flags |= SKCIPHER_WALK_C 377 walk->flags |= SKCIPHER_WALK_COPY; 377 err = skcipher_next_copy(walk) 378 err = skcipher_next_copy(walk); 378 goto set_phys_lowmem; 379 goto set_phys_lowmem; 379 } 380 } 380 381 381 walk->nbytes = n; 382 walk->nbytes = n; 382 383 383 return skcipher_next_fast(walk); 384 return skcipher_next_fast(walk); 384 385 385 set_phys_lowmem: 386 set_phys_lowmem: 386 if (!err && (walk->flags & SKCIPHER_WA 387 if (!err && (walk->flags & SKCIPHER_WALK_PHYS)) { 387 walk->src.phys.page = virt_to_ 388 walk->src.phys.page = virt_to_page(walk->src.virt.addr); 388 walk->dst.phys.page = virt_to_ 389 walk->dst.phys.page = virt_to_page(walk->dst.virt.addr); 389 walk->src.phys.offset &= PAGE_ 390 walk->src.phys.offset &= PAGE_SIZE - 1; 390 walk->dst.phys.offset &= PAGE_ 391 walk->dst.phys.offset &= PAGE_SIZE - 1; 391 } 392 } 392 return err; 393 return err; 393 } 394 } 394 395 395 static int skcipher_copy_iv(struct skcipher_wa 396 static int skcipher_copy_iv(struct skcipher_walk *walk) 396 { 397 { 397 unsigned a = crypto_tfm_ctx_alignment( 398 unsigned a = crypto_tfm_ctx_alignment() - 1; 398 unsigned alignmask = walk->alignmask; 399 unsigned alignmask = walk->alignmask; 399 unsigned ivsize = walk->ivsize; 400 unsigned ivsize = walk->ivsize; 400 unsigned bs = walk->stride; 401 unsigned bs = walk->stride; 401 unsigned aligned_bs; 402 unsigned aligned_bs; 402 unsigned size; 403 unsigned size; 403 u8 *iv; 404 u8 *iv; 404 405 405 aligned_bs = ALIGN(bs, alignmask + 1); 406 aligned_bs = ALIGN(bs, alignmask + 1); 406 407 407 /* Minimum size to align buffer by ali 408 /* Minimum size to align buffer by alignmask. */ 408 size = alignmask & ~a; 409 size = alignmask & ~a; 409 410 410 if (walk->flags & SKCIPHER_WALK_PHYS) 411 if (walk->flags & SKCIPHER_WALK_PHYS) 411 size += ivsize; 412 size += ivsize; 412 else { 413 else { 413 size += aligned_bs + ivsize; 414 size += aligned_bs + ivsize; 414 415 415 /* Minimum size to ensure buff 416 /* Minimum size to ensure buffer does not straddle a page. */ 416 size += (bs - 1) & ~(alignmask 417 size += (bs - 1) & ~(alignmask | a); 417 } 418 } 418 419 419 walk->buffer = kmalloc(size, skcipher_ 420 walk->buffer = kmalloc(size, skcipher_walk_gfp(walk)); 420 if (!walk->buffer) 421 if (!walk->buffer) 421 return -ENOMEM; 422 return -ENOMEM; 422 423 423 iv = PTR_ALIGN(walk->buffer, alignmask 424 iv = PTR_ALIGN(walk->buffer, alignmask + 1); 424 iv = skcipher_get_spot(iv, bs) + align 425 iv = skcipher_get_spot(iv, bs) + aligned_bs; 425 426 426 walk->iv = memcpy(iv, walk->iv, walk-> 427 walk->iv = memcpy(iv, walk->iv, walk->ivsize); 427 return 0; 428 return 0; 428 } 429 } 429 430 430 static int skcipher_walk_first(struct skcipher 431 static int skcipher_walk_first(struct skcipher_walk *walk) 431 { 432 { 432 if (WARN_ON_ONCE(in_hardirq())) !! 433 if (WARN_ON_ONCE(in_irq())) 433 return -EDEADLK; 434 return -EDEADLK; 434 435 435 walk->buffer = NULL; 436 walk->buffer = NULL; 436 if (unlikely(((unsigned long)walk->iv 437 if (unlikely(((unsigned long)walk->iv & walk->alignmask))) { 437 int err = skcipher_copy_iv(wal 438 int err = skcipher_copy_iv(walk); 438 if (err) 439 if (err) 439 return err; 440 return err; 440 } 441 } 441 442 442 walk->page = NULL; 443 walk->page = NULL; 443 444 444 return skcipher_walk_next(walk); 445 return skcipher_walk_next(walk); 445 } 446 } 446 447 447 static int skcipher_walk_skcipher(struct skcip 448 static int skcipher_walk_skcipher(struct skcipher_walk *walk, 448 struct skcip 449 struct skcipher_request *req) 449 { 450 { 450 struct crypto_skcipher *tfm = crypto_s 451 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); 451 struct skcipher_alg *alg = crypto_skci << 452 452 453 walk->total = req->cryptlen; 453 walk->total = req->cryptlen; 454 walk->nbytes = 0; 454 walk->nbytes = 0; 455 walk->iv = req->iv; 455 walk->iv = req->iv; 456 walk->oiv = req->iv; 456 walk->oiv = req->iv; 457 457 458 if (unlikely(!walk->total)) 458 if (unlikely(!walk->total)) 459 return 0; 459 return 0; 460 460 461 scatterwalk_start(&walk->in, req->src) 461 scatterwalk_start(&walk->in, req->src); 462 scatterwalk_start(&walk->out, req->dst 462 scatterwalk_start(&walk->out, req->dst); 463 463 464 walk->flags &= ~SKCIPHER_WALK_SLEEP; 464 walk->flags &= ~SKCIPHER_WALK_SLEEP; 465 walk->flags |= req->base.flags & CRYPT 465 walk->flags |= req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ? 466 SKCIPHER_WALK_SLEEP : 0 466 SKCIPHER_WALK_SLEEP : 0; 467 467 468 walk->blocksize = crypto_skcipher_bloc 468 walk->blocksize = crypto_skcipher_blocksize(tfm); >> 469 walk->stride = crypto_skcipher_walksize(tfm); 469 walk->ivsize = crypto_skcipher_ivsize( 470 walk->ivsize = crypto_skcipher_ivsize(tfm); 470 walk->alignmask = crypto_skcipher_alig 471 walk->alignmask = crypto_skcipher_alignmask(tfm); 471 472 472 if (alg->co.base.cra_type != &crypto_s << 473 walk->stride = alg->co.chunksi << 474 else << 475 walk->stride = alg->walksize; << 476 << 477 return skcipher_walk_first(walk); 473 return skcipher_walk_first(walk); 478 } 474 } 479 475 480 int skcipher_walk_virt(struct skcipher_walk *w 476 int skcipher_walk_virt(struct skcipher_walk *walk, 481 struct skcipher_request 477 struct skcipher_request *req, bool atomic) 482 { 478 { 483 int err; 479 int err; 484 480 485 might_sleep_if(req->base.flags & CRYPT 481 might_sleep_if(req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP); 486 482 487 walk->flags &= ~SKCIPHER_WALK_PHYS; 483 walk->flags &= ~SKCIPHER_WALK_PHYS; 488 484 489 err = skcipher_walk_skcipher(walk, req 485 err = skcipher_walk_skcipher(walk, req); 490 486 491 walk->flags &= atomic ? ~SKCIPHER_WALK 487 walk->flags &= atomic ? ~SKCIPHER_WALK_SLEEP : ~0; 492 488 493 return err; 489 return err; 494 } 490 } 495 EXPORT_SYMBOL_GPL(skcipher_walk_virt); 491 EXPORT_SYMBOL_GPL(skcipher_walk_virt); 496 492 >> 493 void skcipher_walk_atomise(struct skcipher_walk *walk) >> 494 { >> 495 walk->flags &= ~SKCIPHER_WALK_SLEEP; >> 496 } >> 497 EXPORT_SYMBOL_GPL(skcipher_walk_atomise); >> 498 497 int skcipher_walk_async(struct skcipher_walk * 499 int skcipher_walk_async(struct skcipher_walk *walk, 498 struct skcipher_reques 500 struct skcipher_request *req) 499 { 501 { 500 walk->flags |= SKCIPHER_WALK_PHYS; 502 walk->flags |= SKCIPHER_WALK_PHYS; 501 503 502 INIT_LIST_HEAD(&walk->buffers); 504 INIT_LIST_HEAD(&walk->buffers); 503 505 504 return skcipher_walk_skcipher(walk, re 506 return skcipher_walk_skcipher(walk, req); 505 } 507 } 506 EXPORT_SYMBOL_GPL(skcipher_walk_async); 508 EXPORT_SYMBOL_GPL(skcipher_walk_async); 507 509 508 static int skcipher_walk_aead_common(struct sk 510 static int skcipher_walk_aead_common(struct skcipher_walk *walk, 509 struct ae 511 struct aead_request *req, bool atomic) 510 { 512 { 511 struct crypto_aead *tfm = crypto_aead_ 513 struct crypto_aead *tfm = crypto_aead_reqtfm(req); 512 int err; 514 int err; 513 515 514 walk->nbytes = 0; 516 walk->nbytes = 0; 515 walk->iv = req->iv; 517 walk->iv = req->iv; 516 walk->oiv = req->iv; 518 walk->oiv = req->iv; 517 519 518 if (unlikely(!walk->total)) 520 if (unlikely(!walk->total)) 519 return 0; 521 return 0; 520 522 521 walk->flags &= ~SKCIPHER_WALK_PHYS; 523 walk->flags &= ~SKCIPHER_WALK_PHYS; 522 524 523 scatterwalk_start(&walk->in, req->src) 525 scatterwalk_start(&walk->in, req->src); 524 scatterwalk_start(&walk->out, req->dst 526 scatterwalk_start(&walk->out, req->dst); 525 527 526 scatterwalk_copychunks(NULL, &walk->in 528 scatterwalk_copychunks(NULL, &walk->in, req->assoclen, 2); 527 scatterwalk_copychunks(NULL, &walk->ou 529 scatterwalk_copychunks(NULL, &walk->out, req->assoclen, 2); 528 530 529 scatterwalk_done(&walk->in, 0, walk->t 531 scatterwalk_done(&walk->in, 0, walk->total); 530 scatterwalk_done(&walk->out, 0, walk-> 532 scatterwalk_done(&walk->out, 0, walk->total); 531 533 532 if (req->base.flags & CRYPTO_TFM_REQ_M 534 if (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) 533 walk->flags |= SKCIPHER_WALK_S 535 walk->flags |= SKCIPHER_WALK_SLEEP; 534 else 536 else 535 walk->flags &= ~SKCIPHER_WALK_ 537 walk->flags &= ~SKCIPHER_WALK_SLEEP; 536 538 537 walk->blocksize = crypto_aead_blocksiz 539 walk->blocksize = crypto_aead_blocksize(tfm); 538 walk->stride = crypto_aead_chunksize(t 540 walk->stride = crypto_aead_chunksize(tfm); 539 walk->ivsize = crypto_aead_ivsize(tfm) 541 walk->ivsize = crypto_aead_ivsize(tfm); 540 walk->alignmask = crypto_aead_alignmas 542 walk->alignmask = crypto_aead_alignmask(tfm); 541 543 542 err = skcipher_walk_first(walk); 544 err = skcipher_walk_first(walk); 543 545 544 if (atomic) 546 if (atomic) 545 walk->flags &= ~SKCIPHER_WALK_ 547 walk->flags &= ~SKCIPHER_WALK_SLEEP; 546 548 547 return err; 549 return err; 548 } 550 } 549 551 >> 552 int skcipher_walk_aead(struct skcipher_walk *walk, struct aead_request *req, >> 553 bool atomic) >> 554 { >> 555 walk->total = req->cryptlen; >> 556 >> 557 return skcipher_walk_aead_common(walk, req, atomic); >> 558 } >> 559 EXPORT_SYMBOL_GPL(skcipher_walk_aead); >> 560 550 int skcipher_walk_aead_encrypt(struct skcipher 561 int skcipher_walk_aead_encrypt(struct skcipher_walk *walk, 551 struct aead_req 562 struct aead_request *req, bool atomic) 552 { 563 { 553 walk->total = req->cryptlen; 564 walk->total = req->cryptlen; 554 565 555 return skcipher_walk_aead_common(walk, 566 return skcipher_walk_aead_common(walk, req, atomic); 556 } 567 } 557 EXPORT_SYMBOL_GPL(skcipher_walk_aead_encrypt); 568 EXPORT_SYMBOL_GPL(skcipher_walk_aead_encrypt); 558 569 559 int skcipher_walk_aead_decrypt(struct skcipher 570 int skcipher_walk_aead_decrypt(struct skcipher_walk *walk, 560 struct aead_req 571 struct aead_request *req, bool atomic) 561 { 572 { 562 struct crypto_aead *tfm = crypto_aead_ 573 struct crypto_aead *tfm = crypto_aead_reqtfm(req); 563 574 564 walk->total = req->cryptlen - crypto_a 575 walk->total = req->cryptlen - crypto_aead_authsize(tfm); 565 576 566 return skcipher_walk_aead_common(walk, 577 return skcipher_walk_aead_common(walk, req, atomic); 567 } 578 } 568 EXPORT_SYMBOL_GPL(skcipher_walk_aead_decrypt); 579 EXPORT_SYMBOL_GPL(skcipher_walk_aead_decrypt); 569 580 >> 581 static unsigned int crypto_skcipher_extsize(struct crypto_alg *alg) >> 582 { >> 583 if (alg->cra_type == &crypto_blkcipher_type) >> 584 return sizeof(struct crypto_blkcipher *); >> 585 >> 586 if (alg->cra_type == &crypto_ablkcipher_type) >> 587 return sizeof(struct crypto_ablkcipher *); >> 588 >> 589 return crypto_alg_extsize(alg); >> 590 } >> 591 570 static void skcipher_set_needkey(struct crypto 592 static void skcipher_set_needkey(struct crypto_skcipher *tfm) 571 { 593 { 572 if (crypto_skcipher_max_keysize(tfm) ! !! 594 if (tfm->keysize) 573 crypto_skcipher_set_flags(tfm, 595 crypto_skcipher_set_flags(tfm, CRYPTO_TFM_NEED_KEY); 574 } 596 } 575 597 576 static int skcipher_setkey_unaligned(struct cr !! 598 static int skcipher_setkey_blkcipher(struct crypto_skcipher *tfm, 577 const u8 599 const u8 *key, unsigned int keylen) 578 { 600 { 579 unsigned long alignmask = crypto_skcip !! 601 struct crypto_blkcipher **ctx = crypto_skcipher_ctx(tfm); 580 struct skcipher_alg *cipher = crypto_s !! 602 struct crypto_blkcipher *blkcipher = *ctx; 581 u8 *buffer, *alignbuffer; !! 603 int err; 582 unsigned long absize; << 583 int ret; << 584 604 585 absize = keylen + alignmask; !! 605 crypto_blkcipher_clear_flags(blkcipher, ~0); 586 buffer = kmalloc(absize, GFP_ATOMIC); !! 606 crypto_blkcipher_set_flags(blkcipher, crypto_skcipher_get_flags(tfm) & 587 if (!buffer) !! 607 CRYPTO_TFM_REQ_MASK); 588 return -ENOMEM; !! 608 err = crypto_blkcipher_setkey(blkcipher, key, keylen); >> 609 crypto_skcipher_set_flags(tfm, crypto_blkcipher_get_flags(blkcipher) & >> 610 CRYPTO_TFM_RES_MASK); >> 611 if (unlikely(err)) { >> 612 skcipher_set_needkey(tfm); >> 613 return err; >> 614 } 589 615 590 alignbuffer = (u8 *)ALIGN((unsigned lo !! 616 crypto_skcipher_clear_flags(tfm, CRYPTO_TFM_NEED_KEY); 591 memcpy(alignbuffer, key, keylen); !! 617 return 0; 592 ret = cipher->setkey(tfm, alignbuffer, << 593 kfree_sensitive(buffer); << 594 return ret; << 595 } 618 } 596 619 597 int crypto_skcipher_setkey(struct crypto_skcip !! 620 static int skcipher_crypt_blkcipher(struct skcipher_request *req, 598 unsigned int keylen !! 621 int (*crypt)(struct blkcipher_desc *, >> 622 struct scatterlist *, >> 623 struct scatterlist *, >> 624 unsigned int)) 599 { 625 { 600 struct skcipher_alg *cipher = crypto_s !! 626 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); 601 unsigned long alignmask = crypto_skcip !! 627 struct crypto_blkcipher **ctx = crypto_skcipher_ctx(tfm); 602 int err; !! 628 struct blkcipher_desc desc = { >> 629 .tfm = *ctx, >> 630 .info = req->iv, >> 631 .flags = req->base.flags, >> 632 }; 603 633 604 if (cipher->co.base.cra_type != &crypt << 605 struct crypto_lskcipher **ctx << 606 634 607 crypto_lskcipher_clear_flags(* !! 635 return crypt(&desc, req->dst, req->src, req->cryptlen); 608 crypto_lskcipher_set_flags(*ct !! 636 } 609 cry !! 637 610 CRY !! 638 static int skcipher_encrypt_blkcipher(struct skcipher_request *req) 611 err = crypto_lskcipher_setkey( !! 639 { 612 goto out; !! 640 struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req); >> 641 struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher); >> 642 struct blkcipher_alg *alg = &tfm->__crt_alg->cra_blkcipher; >> 643 >> 644 return skcipher_crypt_blkcipher(req, alg->encrypt); >> 645 } >> 646 >> 647 static int skcipher_decrypt_blkcipher(struct skcipher_request *req) >> 648 { >> 649 struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req); >> 650 struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher); >> 651 struct blkcipher_alg *alg = &tfm->__crt_alg->cra_blkcipher; >> 652 >> 653 return skcipher_crypt_blkcipher(req, alg->decrypt); >> 654 } >> 655 >> 656 static void crypto_exit_skcipher_ops_blkcipher(struct crypto_tfm *tfm) >> 657 { >> 658 struct crypto_blkcipher **ctx = crypto_tfm_ctx(tfm); >> 659 >> 660 crypto_free_blkcipher(*ctx); >> 661 } >> 662 >> 663 static int crypto_init_skcipher_ops_blkcipher(struct crypto_tfm *tfm) >> 664 { >> 665 struct crypto_alg *calg = tfm->__crt_alg; >> 666 struct crypto_skcipher *skcipher = __crypto_skcipher_cast(tfm); >> 667 struct crypto_blkcipher **ctx = crypto_tfm_ctx(tfm); >> 668 struct crypto_blkcipher *blkcipher; >> 669 struct crypto_tfm *btfm; >> 670 >> 671 if (!crypto_mod_get(calg)) >> 672 return -EAGAIN; >> 673 >> 674 btfm = __crypto_alloc_tfm(calg, CRYPTO_ALG_TYPE_BLKCIPHER, >> 675 CRYPTO_ALG_TYPE_MASK); >> 676 if (IS_ERR(btfm)) { >> 677 crypto_mod_put(calg); >> 678 return PTR_ERR(btfm); 613 } 679 } 614 680 615 if (keylen < cipher->min_keysize || ke !! 681 blkcipher = __crypto_blkcipher_cast(btfm); 616 return -EINVAL; !! 682 *ctx = blkcipher; >> 683 tfm->exit = crypto_exit_skcipher_ops_blkcipher; >> 684 >> 685 skcipher->setkey = skcipher_setkey_blkcipher; >> 686 skcipher->encrypt = skcipher_encrypt_blkcipher; >> 687 skcipher->decrypt = skcipher_decrypt_blkcipher; 617 688 618 if ((unsigned long)key & alignmask) !! 689 skcipher->ivsize = crypto_blkcipher_ivsize(blkcipher); 619 err = skcipher_setkey_unaligne !! 690 skcipher->keysize = calg->cra_blkcipher.max_keysize; 620 else << 621 err = cipher->setkey(tfm, key, << 622 691 623 out: !! 692 skcipher_set_needkey(skcipher); >> 693 >> 694 return 0; >> 695 } >> 696 >> 697 static int skcipher_setkey_ablkcipher(struct crypto_skcipher *tfm, >> 698 const u8 *key, unsigned int keylen) >> 699 { >> 700 struct crypto_ablkcipher **ctx = crypto_skcipher_ctx(tfm); >> 701 struct crypto_ablkcipher *ablkcipher = *ctx; >> 702 int err; >> 703 >> 704 crypto_ablkcipher_clear_flags(ablkcipher, ~0); >> 705 crypto_ablkcipher_set_flags(ablkcipher, >> 706 crypto_skcipher_get_flags(tfm) & >> 707 CRYPTO_TFM_REQ_MASK); >> 708 err = crypto_ablkcipher_setkey(ablkcipher, key, keylen); >> 709 crypto_skcipher_set_flags(tfm, >> 710 crypto_ablkcipher_get_flags(ablkcipher) & >> 711 CRYPTO_TFM_RES_MASK); 624 if (unlikely(err)) { 712 if (unlikely(err)) { 625 skcipher_set_needkey(tfm); 713 skcipher_set_needkey(tfm); 626 return err; 714 return err; 627 } 715 } 628 716 629 crypto_skcipher_clear_flags(tfm, CRYPT 717 crypto_skcipher_clear_flags(tfm, CRYPTO_TFM_NEED_KEY); 630 return 0; 718 return 0; 631 } 719 } 632 EXPORT_SYMBOL_GPL(crypto_skcipher_setkey); << 633 720 634 int crypto_skcipher_encrypt(struct skcipher_re !! 721 static int skcipher_crypt_ablkcipher(struct skcipher_request *req, >> 722 int (*crypt)(struct ablkcipher_request *)) 635 { 723 { 636 struct crypto_skcipher *tfm = crypto_s 724 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); 637 struct skcipher_alg *alg = crypto_skci !! 725 struct crypto_ablkcipher **ctx = crypto_skcipher_ctx(tfm); >> 726 struct ablkcipher_request *subreq = skcipher_request_ctx(req); 638 727 639 if (crypto_skcipher_get_flags(tfm) & C !! 728 ablkcipher_request_set_tfm(subreq, *ctx); 640 return -ENOKEY; !! 729 ablkcipher_request_set_callback(subreq, skcipher_request_flags(req), 641 if (alg->co.base.cra_type != &crypto_s !! 730 req->base.complete, req->base.data); 642 return crypto_lskcipher_encryp !! 731 ablkcipher_request_set_crypt(subreq, req->src, req->dst, req->cryptlen, 643 return alg->encrypt(req); !! 732 req->iv); >> 733 >> 734 return crypt(subreq); 644 } 735 } 645 EXPORT_SYMBOL_GPL(crypto_skcipher_encrypt); << 646 736 647 int crypto_skcipher_decrypt(struct skcipher_re !! 737 static int skcipher_encrypt_ablkcipher(struct skcipher_request *req) 648 { 738 { 649 struct crypto_skcipher *tfm = crypto_s !! 739 struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req); 650 struct skcipher_alg *alg = crypto_skci !! 740 struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher); >> 741 struct ablkcipher_alg *alg = &tfm->__crt_alg->cra_ablkcipher; 651 742 652 if (crypto_skcipher_get_flags(tfm) & C !! 743 return skcipher_crypt_ablkcipher(req, alg->encrypt); 653 return -ENOKEY; << 654 if (alg->co.base.cra_type != &crypto_s << 655 return crypto_lskcipher_decryp << 656 return alg->decrypt(req); << 657 } 744 } 658 EXPORT_SYMBOL_GPL(crypto_skcipher_decrypt); << 659 745 660 static int crypto_lskcipher_export(struct skci !! 746 static int skcipher_decrypt_ablkcipher(struct skcipher_request *req) 661 { 747 { 662 struct crypto_skcipher *tfm = crypto_s !! 748 struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req); 663 u8 *ivs = skcipher_request_ctx(req); !! 749 struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher); >> 750 struct ablkcipher_alg *alg = &tfm->__crt_alg->cra_ablkcipher; 664 751 665 ivs = PTR_ALIGN(ivs, crypto_skcipher_a !! 752 return skcipher_crypt_ablkcipher(req, alg->decrypt); >> 753 } 666 754 667 memcpy(out, ivs + crypto_skcipher_ivsi !! 755 static void crypto_exit_skcipher_ops_ablkcipher(struct crypto_tfm *tfm) 668 crypto_skcipher_statesize(tfm)) !! 756 { >> 757 struct crypto_ablkcipher **ctx = crypto_tfm_ctx(tfm); 669 758 670 return 0; !! 759 crypto_free_ablkcipher(*ctx); 671 } 760 } 672 761 673 static int crypto_lskcipher_import(struct skci !! 762 static int crypto_init_skcipher_ops_ablkcipher(struct crypto_tfm *tfm) 674 { 763 { 675 struct crypto_skcipher *tfm = crypto_s !! 764 struct crypto_alg *calg = tfm->__crt_alg; 676 u8 *ivs = skcipher_request_ctx(req); !! 765 struct crypto_skcipher *skcipher = __crypto_skcipher_cast(tfm); >> 766 struct crypto_ablkcipher **ctx = crypto_tfm_ctx(tfm); >> 767 struct crypto_ablkcipher *ablkcipher; >> 768 struct crypto_tfm *abtfm; >> 769 >> 770 if (!crypto_mod_get(calg)) >> 771 return -EAGAIN; >> 772 >> 773 abtfm = __crypto_alloc_tfm(calg, 0, 0); >> 774 if (IS_ERR(abtfm)) { >> 775 crypto_mod_put(calg); >> 776 return PTR_ERR(abtfm); >> 777 } 677 778 678 ivs = PTR_ALIGN(ivs, crypto_skcipher_a !! 779 ablkcipher = __crypto_ablkcipher_cast(abtfm); >> 780 *ctx = ablkcipher; >> 781 tfm->exit = crypto_exit_skcipher_ops_ablkcipher; >> 782 >> 783 skcipher->setkey = skcipher_setkey_ablkcipher; >> 784 skcipher->encrypt = skcipher_encrypt_ablkcipher; >> 785 skcipher->decrypt = skcipher_decrypt_ablkcipher; >> 786 >> 787 skcipher->ivsize = crypto_ablkcipher_ivsize(ablkcipher); >> 788 skcipher->reqsize = crypto_ablkcipher_reqsize(ablkcipher) + >> 789 sizeof(struct ablkcipher_request); >> 790 skcipher->keysize = calg->cra_ablkcipher.max_keysize; 679 791 680 memcpy(ivs + crypto_skcipher_ivsize(tf !! 792 skcipher_set_needkey(skcipher); 681 crypto_skcipher_statesize(tfm)) << 682 793 683 return 0; 794 return 0; 684 } 795 } 685 796 686 static int skcipher_noexport(struct skcipher_r !! 797 static int skcipher_setkey_unaligned(struct crypto_skcipher *tfm, >> 798 const u8 *key, unsigned int keylen) 687 { 799 { 688 return 0; !! 800 unsigned long alignmask = crypto_skcipher_alignmask(tfm); >> 801 struct skcipher_alg *cipher = crypto_skcipher_alg(tfm); >> 802 u8 *buffer, *alignbuffer; >> 803 unsigned long absize; >> 804 int ret; >> 805 >> 806 absize = keylen + alignmask; >> 807 buffer = kmalloc(absize, GFP_ATOMIC); >> 808 if (!buffer) >> 809 return -ENOMEM; >> 810 >> 811 alignbuffer = (u8 *)ALIGN((unsigned long)buffer, alignmask + 1); >> 812 memcpy(alignbuffer, key, keylen); >> 813 ret = cipher->setkey(tfm, alignbuffer, keylen); >> 814 kzfree(buffer); >> 815 return ret; 689 } 816 } 690 817 691 static int skcipher_noimport(struct skcipher_r !! 818 static int skcipher_setkey(struct crypto_skcipher *tfm, const u8 *key, >> 819 unsigned int keylen) 692 { 820 { >> 821 struct skcipher_alg *cipher = crypto_skcipher_alg(tfm); >> 822 unsigned long alignmask = crypto_skcipher_alignmask(tfm); >> 823 int err; >> 824 >> 825 if (keylen < cipher->min_keysize || keylen > cipher->max_keysize) { >> 826 crypto_skcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN); >> 827 return -EINVAL; >> 828 } >> 829 >> 830 if ((unsigned long)key & alignmask) >> 831 err = skcipher_setkey_unaligned(tfm, key, keylen); >> 832 else >> 833 err = cipher->setkey(tfm, key, keylen); >> 834 >> 835 if (unlikely(err)) { >> 836 skcipher_set_needkey(tfm); >> 837 return err; >> 838 } >> 839 >> 840 crypto_skcipher_clear_flags(tfm, CRYPTO_TFM_NEED_KEY); 693 return 0; 841 return 0; 694 } 842 } 695 843 696 int crypto_skcipher_export(struct skcipher_req !! 844 int crypto_skcipher_encrypt(struct skcipher_request *req) 697 { 845 { 698 struct crypto_skcipher *tfm = crypto_s 846 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); 699 struct skcipher_alg *alg = crypto_skci !! 847 struct crypto_alg *alg = tfm->base.__crt_alg; >> 848 unsigned int cryptlen = req->cryptlen; >> 849 int ret; 700 850 701 if (alg->co.base.cra_type != &crypto_s !! 851 crypto_stats_get(alg); 702 return crypto_lskcipher_export !! 852 if (crypto_skcipher_get_flags(tfm) & CRYPTO_TFM_NEED_KEY) 703 return alg->export(req, out); !! 853 ret = -ENOKEY; >> 854 else >> 855 ret = tfm->encrypt(req); >> 856 crypto_stats_skcipher_encrypt(cryptlen, ret, alg); >> 857 return ret; 704 } 858 } 705 EXPORT_SYMBOL_GPL(crypto_skcipher_export); !! 859 EXPORT_SYMBOL_GPL(crypto_skcipher_encrypt); 706 860 707 int crypto_skcipher_import(struct skcipher_req !! 861 int crypto_skcipher_decrypt(struct skcipher_request *req) 708 { 862 { 709 struct crypto_skcipher *tfm = crypto_s 863 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); 710 struct skcipher_alg *alg = crypto_skci !! 864 struct crypto_alg *alg = tfm->base.__crt_alg; >> 865 unsigned int cryptlen = req->cryptlen; >> 866 int ret; 711 867 712 if (alg->co.base.cra_type != &crypto_s !! 868 crypto_stats_get(alg); 713 return crypto_lskcipher_import !! 869 if (crypto_skcipher_get_flags(tfm) & CRYPTO_TFM_NEED_KEY) 714 return alg->import(req, in); !! 870 ret = -ENOKEY; >> 871 else >> 872 ret = tfm->decrypt(req); >> 873 crypto_stats_skcipher_decrypt(cryptlen, ret, alg); >> 874 return ret; 715 } 875 } 716 EXPORT_SYMBOL_GPL(crypto_skcipher_import); !! 876 EXPORT_SYMBOL_GPL(crypto_skcipher_decrypt); 717 877 718 static void crypto_skcipher_exit_tfm(struct cr 878 static void crypto_skcipher_exit_tfm(struct crypto_tfm *tfm) 719 { 879 { 720 struct crypto_skcipher *skcipher = __c 880 struct crypto_skcipher *skcipher = __crypto_skcipher_cast(tfm); 721 struct skcipher_alg *alg = crypto_skci 881 struct skcipher_alg *alg = crypto_skcipher_alg(skcipher); 722 882 723 alg->exit(skcipher); 883 alg->exit(skcipher); 724 } 884 } 725 885 726 static int crypto_skcipher_init_tfm(struct cry 886 static int crypto_skcipher_init_tfm(struct crypto_tfm *tfm) 727 { 887 { 728 struct crypto_skcipher *skcipher = __c 888 struct crypto_skcipher *skcipher = __crypto_skcipher_cast(tfm); 729 struct skcipher_alg *alg = crypto_skci 889 struct skcipher_alg *alg = crypto_skcipher_alg(skcipher); 730 890 731 skcipher_set_needkey(skcipher); !! 891 if (tfm->__crt_alg->cra_type == &crypto_blkcipher_type) >> 892 return crypto_init_skcipher_ops_blkcipher(tfm); 732 893 733 if (tfm->__crt_alg->cra_type != &crypt !! 894 if (tfm->__crt_alg->cra_type == &crypto_ablkcipher_type) 734 unsigned am = crypto_skcipher_ !! 895 return crypto_init_skcipher_ops_ablkcipher(tfm); 735 unsigned reqsize; << 736 << 737 reqsize = am & ~(crypto_tfm_ct << 738 reqsize += crypto_skcipher_ivs << 739 reqsize += crypto_skcipher_sta << 740 crypto_skcipher_set_reqsize(sk << 741 896 742 return crypto_init_lskcipher_o !! 897 skcipher->setkey = skcipher_setkey; 743 } !! 898 skcipher->encrypt = alg->encrypt; >> 899 skcipher->decrypt = alg->decrypt; >> 900 skcipher->ivsize = alg->ivsize; >> 901 skcipher->keysize = alg->max_keysize; >> 902 >> 903 skcipher_set_needkey(skcipher); 744 904 745 if (alg->exit) 905 if (alg->exit) 746 skcipher->base.exit = crypto_s 906 skcipher->base.exit = crypto_skcipher_exit_tfm; 747 907 748 if (alg->init) 908 if (alg->init) 749 return alg->init(skcipher); 909 return alg->init(skcipher); 750 910 751 return 0; 911 return 0; 752 } 912 } 753 913 754 static unsigned int crypto_skcipher_extsize(st << 755 { << 756 if (alg->cra_type != &crypto_skcipher_ << 757 return sizeof(struct crypto_ls << 758 << 759 return crypto_alg_extsize(alg); << 760 } << 761 << 762 static void crypto_skcipher_free_instance(stru 914 static void crypto_skcipher_free_instance(struct crypto_instance *inst) 763 { 915 { 764 struct skcipher_instance *skcipher = 916 struct skcipher_instance *skcipher = 765 container_of(inst, struct skci 917 container_of(inst, struct skcipher_instance, s.base); 766 918 767 skcipher->free(skcipher); 919 skcipher->free(skcipher); 768 } 920 } 769 921 770 static void crypto_skcipher_show(struct seq_fi 922 static void crypto_skcipher_show(struct seq_file *m, struct crypto_alg *alg) 771 __maybe_unused; 923 __maybe_unused; 772 static void crypto_skcipher_show(struct seq_fi 924 static void crypto_skcipher_show(struct seq_file *m, struct crypto_alg *alg) 773 { 925 { 774 struct skcipher_alg *skcipher = __cryp !! 926 struct skcipher_alg *skcipher = container_of(alg, struct skcipher_alg, >> 927 base); 775 928 776 seq_printf(m, "type : skcipher 929 seq_printf(m, "type : skcipher\n"); 777 seq_printf(m, "async : %s\n", 930 seq_printf(m, "async : %s\n", 778 alg->cra_flags & CRYPTO_ALG 931 alg->cra_flags & CRYPTO_ALG_ASYNC ? "yes" : "no"); 779 seq_printf(m, "blocksize : %u\n", a 932 seq_printf(m, "blocksize : %u\n", alg->cra_blocksize); 780 seq_printf(m, "min keysize : %u\n", s 933 seq_printf(m, "min keysize : %u\n", skcipher->min_keysize); 781 seq_printf(m, "max keysize : %u\n", s 934 seq_printf(m, "max keysize : %u\n", skcipher->max_keysize); 782 seq_printf(m, "ivsize : %u\n", s 935 seq_printf(m, "ivsize : %u\n", skcipher->ivsize); 783 seq_printf(m, "chunksize : %u\n", s 936 seq_printf(m, "chunksize : %u\n", skcipher->chunksize); 784 seq_printf(m, "walksize : %u\n", s 937 seq_printf(m, "walksize : %u\n", skcipher->walksize); 785 seq_printf(m, "statesize : %u\n", s << 786 } 938 } 787 939 788 static int __maybe_unused crypto_skcipher_repo !! 940 #ifdef CONFIG_NET 789 struct sk_buff *skb, struct crypto_alg !! 941 static int crypto_skcipher_report(struct sk_buff *skb, struct crypto_alg *alg) 790 { 942 { 791 struct skcipher_alg *skcipher = __cryp << 792 struct crypto_report_blkcipher rblkcip 943 struct crypto_report_blkcipher rblkcipher; >> 944 struct skcipher_alg *skcipher = container_of(alg, struct skcipher_alg, >> 945 base); 793 946 794 memset(&rblkcipher, 0, sizeof(rblkciph 947 memset(&rblkcipher, 0, sizeof(rblkcipher)); 795 948 796 strscpy(rblkcipher.type, "skcipher", s 949 strscpy(rblkcipher.type, "skcipher", sizeof(rblkcipher.type)); 797 strscpy(rblkcipher.geniv, "<none>", si 950 strscpy(rblkcipher.geniv, "<none>", sizeof(rblkcipher.geniv)); 798 951 799 rblkcipher.blocksize = alg->cra_blocks 952 rblkcipher.blocksize = alg->cra_blocksize; 800 rblkcipher.min_keysize = skcipher->min 953 rblkcipher.min_keysize = skcipher->min_keysize; 801 rblkcipher.max_keysize = skcipher->max 954 rblkcipher.max_keysize = skcipher->max_keysize; 802 rblkcipher.ivsize = skcipher->ivsize; 955 rblkcipher.ivsize = skcipher->ivsize; 803 956 804 return nla_put(skb, CRYPTOCFGA_REPORT_ 957 return nla_put(skb, CRYPTOCFGA_REPORT_BLKCIPHER, 805 sizeof(rblkcipher), &rb 958 sizeof(rblkcipher), &rblkcipher); 806 } 959 } >> 960 #else >> 961 static int crypto_skcipher_report(struct sk_buff *skb, struct crypto_alg *alg) >> 962 { >> 963 return -ENOSYS; >> 964 } >> 965 #endif 807 966 808 static const struct crypto_type crypto_skciphe !! 967 static const struct crypto_type crypto_skcipher_type2 = { 809 .extsize = crypto_skcipher_extsize, 968 .extsize = crypto_skcipher_extsize, 810 .init_tfm = crypto_skcipher_init_tfm, 969 .init_tfm = crypto_skcipher_init_tfm, 811 .free = crypto_skcipher_free_instance, 970 .free = crypto_skcipher_free_instance, 812 #ifdef CONFIG_PROC_FS 971 #ifdef CONFIG_PROC_FS 813 .show = crypto_skcipher_show, 972 .show = crypto_skcipher_show, 814 #endif 973 #endif 815 #if IS_ENABLED(CONFIG_CRYPTO_USER) << 816 .report = crypto_skcipher_report, 974 .report = crypto_skcipher_report, 817 #endif << 818 .maskclear = ~CRYPTO_ALG_TYPE_MASK, 975 .maskclear = ~CRYPTO_ALG_TYPE_MASK, 819 .maskset = CRYPTO_ALG_TYPE_SKCIPHER_MA !! 976 .maskset = CRYPTO_ALG_TYPE_BLKCIPHER_MASK, 820 .type = CRYPTO_ALG_TYPE_SKCIPHER, 977 .type = CRYPTO_ALG_TYPE_SKCIPHER, 821 .tfmsize = offsetof(struct crypto_skci 978 .tfmsize = offsetof(struct crypto_skcipher, base), 822 }; 979 }; 823 980 824 int crypto_grab_skcipher(struct crypto_skciphe 981 int crypto_grab_skcipher(struct crypto_skcipher_spawn *spawn, 825 struct crypto_instanc !! 982 const char *name, u32 type, u32 mask) 826 const char *name, u32 << 827 { 983 { 828 spawn->base.frontend = &crypto_skciphe !! 984 spawn->base.frontend = &crypto_skcipher_type2; 829 return crypto_grab_spawn(&spawn->base, !! 985 return crypto_grab_spawn(&spawn->base, name, type, mask); 830 } 986 } 831 EXPORT_SYMBOL_GPL(crypto_grab_skcipher); 987 EXPORT_SYMBOL_GPL(crypto_grab_skcipher); 832 988 833 struct crypto_skcipher *crypto_alloc_skcipher( 989 struct crypto_skcipher *crypto_alloc_skcipher(const char *alg_name, 834 990 u32 type, u32 mask) 835 { 991 { 836 return crypto_alloc_tfm(alg_name, &cry !! 992 return crypto_alloc_tfm(alg_name, &crypto_skcipher_type2, type, mask); 837 } 993 } 838 EXPORT_SYMBOL_GPL(crypto_alloc_skcipher); 994 EXPORT_SYMBOL_GPL(crypto_alloc_skcipher); 839 995 840 struct crypto_sync_skcipher *crypto_alloc_sync 996 struct crypto_sync_skcipher *crypto_alloc_sync_skcipher( 841 const char *al 997 const char *alg_name, u32 type, u32 mask) 842 { 998 { 843 struct crypto_skcipher *tfm; 999 struct crypto_skcipher *tfm; 844 1000 845 /* Only sync algorithms allowed. */ 1001 /* Only sync algorithms allowed. */ 846 mask |= CRYPTO_ALG_ASYNC | CRYPTO_ALG_ !! 1002 mask |= CRYPTO_ALG_ASYNC; 847 1003 848 tfm = crypto_alloc_tfm(alg_name, &cryp !! 1004 tfm = crypto_alloc_tfm(alg_name, &crypto_skcipher_type2, type, mask); 849 1005 850 /* 1006 /* 851 * Make sure we do not allocate someth 1007 * Make sure we do not allocate something that might get used with 852 * an on-stack request: check the requ 1008 * an on-stack request: check the request size. 853 */ 1009 */ 854 if (!IS_ERR(tfm) && WARN_ON(crypto_skc 1010 if (!IS_ERR(tfm) && WARN_ON(crypto_skcipher_reqsize(tfm) > 855 MAX_SYNC_S 1011 MAX_SYNC_SKCIPHER_REQSIZE)) { 856 crypto_free_skcipher(tfm); 1012 crypto_free_skcipher(tfm); 857 return ERR_PTR(-EINVAL); 1013 return ERR_PTR(-EINVAL); 858 } 1014 } 859 1015 860 return (struct crypto_sync_skcipher *) 1016 return (struct crypto_sync_skcipher *)tfm; 861 } 1017 } 862 EXPORT_SYMBOL_GPL(crypto_alloc_sync_skcipher); 1018 EXPORT_SYMBOL_GPL(crypto_alloc_sync_skcipher); 863 1019 864 int crypto_has_skcipher(const char *alg_name, !! 1020 int crypto_has_skcipher2(const char *alg_name, u32 type, u32 mask) 865 { 1021 { 866 return crypto_type_has_alg(alg_name, & !! 1022 return crypto_type_has_alg(alg_name, &crypto_skcipher_type2, >> 1023 type, mask); 867 } 1024 } 868 EXPORT_SYMBOL_GPL(crypto_has_skcipher); !! 1025 EXPORT_SYMBOL_GPL(crypto_has_skcipher2); 869 1026 870 int skcipher_prepare_alg_common(struct skciphe !! 1027 static int skcipher_prepare_alg(struct skcipher_alg *alg) 871 { 1028 { 872 struct crypto_alg *base = &alg->base; 1029 struct crypto_alg *base = &alg->base; 873 1030 874 if (alg->ivsize > PAGE_SIZE / 8 || alg 1031 if (alg->ivsize > PAGE_SIZE / 8 || alg->chunksize > PAGE_SIZE / 8 || 875 alg->statesize > PAGE_SIZE / 2 || !! 1032 alg->walksize > PAGE_SIZE / 8) 876 (alg->ivsize + alg->statesize) > P << 877 return -EINVAL; 1033 return -EINVAL; 878 1034 879 if (!alg->chunksize) 1035 if (!alg->chunksize) 880 alg->chunksize = base->cra_blo 1036 alg->chunksize = base->cra_blocksize; 881 << 882 base->cra_flags &= ~CRYPTO_ALG_TYPE_MA << 883 << 884 return 0; << 885 } << 886 << 887 static int skcipher_prepare_alg(struct skciphe << 888 { << 889 struct crypto_alg *base = &alg->base; << 890 int err; << 891 << 892 err = skcipher_prepare_alg_common(&alg << 893 if (err) << 894 return err; << 895 << 896 if (alg->walksize > PAGE_SIZE / 8) << 897 return -EINVAL; << 898 << 899 if (!alg->walksize) 1037 if (!alg->walksize) 900 alg->walksize = alg->chunksize 1038 alg->walksize = alg->chunksize; 901 1039 902 if (!alg->statesize) { !! 1040 base->cra_type = &crypto_skcipher_type2; 903 alg->import = skcipher_noimpor !! 1041 base->cra_flags &= ~CRYPTO_ALG_TYPE_MASK; 904 alg->export = skcipher_noexpor << 905 } else if (!(alg->import && alg->expor << 906 return -EINVAL; << 907 << 908 base->cra_type = &crypto_skcipher_type << 909 base->cra_flags |= CRYPTO_ALG_TYPE_SKC 1042 base->cra_flags |= CRYPTO_ALG_TYPE_SKCIPHER; 910 1043 911 return 0; 1044 return 0; 912 } 1045 } 913 1046 914 int crypto_register_skcipher(struct skcipher_a 1047 int crypto_register_skcipher(struct skcipher_alg *alg) 915 { 1048 { 916 struct crypto_alg *base = &alg->base; 1049 struct crypto_alg *base = &alg->base; 917 int err; 1050 int err; 918 1051 919 err = skcipher_prepare_alg(alg); 1052 err = skcipher_prepare_alg(alg); 920 if (err) 1053 if (err) 921 return err; 1054 return err; 922 1055 923 return crypto_register_alg(base); 1056 return crypto_register_alg(base); 924 } 1057 } 925 EXPORT_SYMBOL_GPL(crypto_register_skcipher); 1058 EXPORT_SYMBOL_GPL(crypto_register_skcipher); 926 1059 927 void crypto_unregister_skcipher(struct skciphe 1060 void crypto_unregister_skcipher(struct skcipher_alg *alg) 928 { 1061 { 929 crypto_unregister_alg(&alg->base); 1062 crypto_unregister_alg(&alg->base); 930 } 1063 } 931 EXPORT_SYMBOL_GPL(crypto_unregister_skcipher); 1064 EXPORT_SYMBOL_GPL(crypto_unregister_skcipher); 932 1065 933 int crypto_register_skciphers(struct skcipher_ 1066 int crypto_register_skciphers(struct skcipher_alg *algs, int count) 934 { 1067 { 935 int i, ret; 1068 int i, ret; 936 1069 937 for (i = 0; i < count; i++) { 1070 for (i = 0; i < count; i++) { 938 ret = crypto_register_skcipher 1071 ret = crypto_register_skcipher(&algs[i]); 939 if (ret) 1072 if (ret) 940 goto err; 1073 goto err; 941 } 1074 } 942 1075 943 return 0; 1076 return 0; 944 1077 945 err: 1078 err: 946 for (--i; i >= 0; --i) 1079 for (--i; i >= 0; --i) 947 crypto_unregister_skcipher(&al 1080 crypto_unregister_skcipher(&algs[i]); 948 1081 949 return ret; 1082 return ret; 950 } 1083 } 951 EXPORT_SYMBOL_GPL(crypto_register_skciphers); 1084 EXPORT_SYMBOL_GPL(crypto_register_skciphers); 952 1085 953 void crypto_unregister_skciphers(struct skciph 1086 void crypto_unregister_skciphers(struct skcipher_alg *algs, int count) 954 { 1087 { 955 int i; 1088 int i; 956 1089 957 for (i = count - 1; i >= 0; --i) 1090 for (i = count - 1; i >= 0; --i) 958 crypto_unregister_skcipher(&al 1091 crypto_unregister_skcipher(&algs[i]); 959 } 1092 } 960 EXPORT_SYMBOL_GPL(crypto_unregister_skciphers) 1093 EXPORT_SYMBOL_GPL(crypto_unregister_skciphers); 961 1094 962 int skcipher_register_instance(struct crypto_t 1095 int skcipher_register_instance(struct crypto_template *tmpl, 963 struct skcipher_ins 1096 struct skcipher_instance *inst) 964 { 1097 { 965 int err; 1098 int err; 966 1099 967 if (WARN_ON(!inst->free)) << 968 return -EINVAL; << 969 << 970 err = skcipher_prepare_alg(&inst->alg) 1100 err = skcipher_prepare_alg(&inst->alg); 971 if (err) 1101 if (err) 972 return err; 1102 return err; 973 1103 974 return crypto_register_instance(tmpl, 1104 return crypto_register_instance(tmpl, skcipher_crypto_instance(inst)); 975 } 1105 } 976 EXPORT_SYMBOL_GPL(skcipher_register_instance); 1106 EXPORT_SYMBOL_GPL(skcipher_register_instance); 977 1107 978 static int skcipher_setkey_simple(struct crypt 1108 static int skcipher_setkey_simple(struct crypto_skcipher *tfm, const u8 *key, 979 unsigned int 1109 unsigned int keylen) 980 { 1110 { 981 struct crypto_cipher *cipher = skciphe 1111 struct crypto_cipher *cipher = skcipher_cipher_simple(tfm); >> 1112 int err; 982 1113 983 crypto_cipher_clear_flags(cipher, CRYP 1114 crypto_cipher_clear_flags(cipher, CRYPTO_TFM_REQ_MASK); 984 crypto_cipher_set_flags(cipher, crypto 1115 crypto_cipher_set_flags(cipher, crypto_skcipher_get_flags(tfm) & 985 CRYPTO_TFM_REQ 1116 CRYPTO_TFM_REQ_MASK); 986 return crypto_cipher_setkey(cipher, ke !! 1117 err = crypto_cipher_setkey(cipher, key, keylen); >> 1118 crypto_skcipher_set_flags(tfm, crypto_cipher_get_flags(cipher) & >> 1119 CRYPTO_TFM_RES_MASK); >> 1120 return err; 987 } 1121 } 988 1122 989 static int skcipher_init_tfm_simple(struct cry 1123 static int skcipher_init_tfm_simple(struct crypto_skcipher *tfm) 990 { 1124 { 991 struct skcipher_instance *inst = skcip 1125 struct skcipher_instance *inst = skcipher_alg_instance(tfm); 992 struct crypto_cipher_spawn *spawn = sk !! 1126 struct crypto_spawn *spawn = skcipher_instance_ctx(inst); 993 struct skcipher_ctx_simple *ctx = cryp 1127 struct skcipher_ctx_simple *ctx = crypto_skcipher_ctx(tfm); 994 struct crypto_cipher *cipher; 1128 struct crypto_cipher *cipher; 995 1129 996 cipher = crypto_spawn_cipher(spawn); 1130 cipher = crypto_spawn_cipher(spawn); 997 if (IS_ERR(cipher)) 1131 if (IS_ERR(cipher)) 998 return PTR_ERR(cipher); 1132 return PTR_ERR(cipher); 999 1133 1000 ctx->cipher = cipher; 1134 ctx->cipher = cipher; 1001 return 0; 1135 return 0; 1002 } 1136 } 1003 1137 1004 static void skcipher_exit_tfm_simple(struct c 1138 static void skcipher_exit_tfm_simple(struct crypto_skcipher *tfm) 1005 { 1139 { 1006 struct skcipher_ctx_simple *ctx = cry 1140 struct skcipher_ctx_simple *ctx = crypto_skcipher_ctx(tfm); 1007 1141 1008 crypto_free_cipher(ctx->cipher); 1142 crypto_free_cipher(ctx->cipher); 1009 } 1143 } 1010 1144 1011 static void skcipher_free_instance_simple(str 1145 static void skcipher_free_instance_simple(struct skcipher_instance *inst) 1012 { 1146 { 1013 crypto_drop_cipher(skcipher_instance_ !! 1147 crypto_drop_spawn(skcipher_instance_ctx(inst)); 1014 kfree(inst); 1148 kfree(inst); 1015 } 1149 } 1016 1150 1017 /** 1151 /** 1018 * skcipher_alloc_instance_simple - allocate 1152 * skcipher_alloc_instance_simple - allocate instance of simple block cipher mode 1019 * 1153 * 1020 * Allocate an skcipher_instance for a simple 1154 * Allocate an skcipher_instance for a simple block cipher mode of operation, 1021 * e.g. cbc or ecb. The instance context wil 1155 * e.g. cbc or ecb. The instance context will have just a single crypto_spawn, 1022 * that for the underlying cipher. The {min, 1156 * that for the underlying cipher. The {min,max}_keysize, ivsize, blocksize, 1023 * alignmask, and priority are set from the u 1157 * alignmask, and priority are set from the underlying cipher but can be 1024 * overridden if needed. The tfm context def 1158 * overridden if needed. The tfm context defaults to skcipher_ctx_simple, and 1025 * default ->setkey(), ->init(), and ->exit() 1159 * default ->setkey(), ->init(), and ->exit() methods are installed. 1026 * 1160 * 1027 * @tmpl: the template being instantiated 1161 * @tmpl: the template being instantiated 1028 * @tb: the template parameters 1162 * @tb: the template parameters >> 1163 * @cipher_alg_ret: on success, a pointer to the underlying cipher algorithm is >> 1164 * returned here. It must be dropped with crypto_mod_put(). 1029 * 1165 * 1030 * Return: a pointer to the new instance, or 1166 * Return: a pointer to the new instance, or an ERR_PTR(). The caller still 1031 * needs to register the instance. 1167 * needs to register the instance. 1032 */ 1168 */ 1033 struct skcipher_instance *skcipher_alloc_inst !! 1169 struct skcipher_instance * 1034 struct crypto_template *tmpl, struct !! 1170 skcipher_alloc_instance_simple(struct crypto_template *tmpl, struct rtattr **tb, >> 1171 struct crypto_alg **cipher_alg_ret) 1035 { 1172 { 1036 u32 mask; !! 1173 struct crypto_attr_type *algt; 1037 struct skcipher_instance *inst; << 1038 struct crypto_cipher_spawn *spawn; << 1039 struct crypto_alg *cipher_alg; 1174 struct crypto_alg *cipher_alg; >> 1175 struct skcipher_instance *inst; >> 1176 struct crypto_spawn *spawn; >> 1177 u32 mask; 1040 int err; 1178 int err; 1041 1179 1042 err = crypto_check_attr_type(tb, CRYP !! 1180 algt = crypto_get_attr_type(tb); 1043 if (err) !! 1181 if (IS_ERR(algt)) 1044 return ERR_PTR(err); !! 1182 return ERR_CAST(algt); >> 1183 >> 1184 if ((algt->type ^ CRYPTO_ALG_TYPE_SKCIPHER) & algt->mask) >> 1185 return ERR_PTR(-EINVAL); >> 1186 >> 1187 mask = CRYPTO_ALG_TYPE_MASK | >> 1188 crypto_requires_off(algt->type, algt->mask, >> 1189 CRYPTO_ALG_NEED_FALLBACK); >> 1190 >> 1191 cipher_alg = crypto_get_attr_alg(tb, CRYPTO_ALG_TYPE_CIPHER, mask); >> 1192 if (IS_ERR(cipher_alg)) >> 1193 return ERR_CAST(cipher_alg); 1045 1194 1046 inst = kzalloc(sizeof(*inst) + sizeof 1195 inst = kzalloc(sizeof(*inst) + sizeof(*spawn), GFP_KERNEL); 1047 if (!inst) !! 1196 if (!inst) { 1048 return ERR_PTR(-ENOMEM); !! 1197 err = -ENOMEM; >> 1198 goto err_put_cipher_alg; >> 1199 } 1049 spawn = skcipher_instance_ctx(inst); 1200 spawn = skcipher_instance_ctx(inst); 1050 1201 1051 err = crypto_grab_cipher(spawn, skcip << 1052 crypto_attr_ << 1053 if (err) << 1054 goto err_free_inst; << 1055 cipher_alg = crypto_spawn_cipher_alg( << 1056 << 1057 err = crypto_inst_setname(skcipher_cr 1202 err = crypto_inst_setname(skcipher_crypto_instance(inst), tmpl->name, 1058 cipher_alg) 1203 cipher_alg); 1059 if (err) 1204 if (err) 1060 goto err_free_inst; 1205 goto err_free_inst; 1061 1206 >> 1207 err = crypto_init_spawn(spawn, cipher_alg, >> 1208 skcipher_crypto_instance(inst), >> 1209 CRYPTO_ALG_TYPE_MASK); >> 1210 if (err) >> 1211 goto err_free_inst; 1062 inst->free = skcipher_free_instance_s 1212 inst->free = skcipher_free_instance_simple; 1063 1213 1064 /* Default algorithm properties, can 1214 /* Default algorithm properties, can be overridden */ 1065 inst->alg.base.cra_blocksize = cipher 1215 inst->alg.base.cra_blocksize = cipher_alg->cra_blocksize; 1066 inst->alg.base.cra_alignmask = cipher 1216 inst->alg.base.cra_alignmask = cipher_alg->cra_alignmask; 1067 inst->alg.base.cra_priority = cipher_ 1217 inst->alg.base.cra_priority = cipher_alg->cra_priority; 1068 inst->alg.min_keysize = cipher_alg->c 1218 inst->alg.min_keysize = cipher_alg->cra_cipher.cia_min_keysize; 1069 inst->alg.max_keysize = cipher_alg->c 1219 inst->alg.max_keysize = cipher_alg->cra_cipher.cia_max_keysize; 1070 inst->alg.ivsize = cipher_alg->cra_bl 1220 inst->alg.ivsize = cipher_alg->cra_blocksize; 1071 1221 1072 /* Use skcipher_ctx_simple by default 1222 /* Use skcipher_ctx_simple by default, can be overridden */ 1073 inst->alg.base.cra_ctxsize = sizeof(s 1223 inst->alg.base.cra_ctxsize = sizeof(struct skcipher_ctx_simple); 1074 inst->alg.setkey = skcipher_setkey_si 1224 inst->alg.setkey = skcipher_setkey_simple; 1075 inst->alg.init = skcipher_init_tfm_si 1225 inst->alg.init = skcipher_init_tfm_simple; 1076 inst->alg.exit = skcipher_exit_tfm_si 1226 inst->alg.exit = skcipher_exit_tfm_simple; 1077 1227 >> 1228 *cipher_alg_ret = cipher_alg; 1078 return inst; 1229 return inst; 1079 1230 1080 err_free_inst: 1231 err_free_inst: 1081 skcipher_free_instance_simple(inst); !! 1232 kfree(inst); >> 1233 err_put_cipher_alg: >> 1234 crypto_mod_put(cipher_alg); 1082 return ERR_PTR(err); 1235 return ERR_PTR(err); 1083 } 1236 } 1084 EXPORT_SYMBOL_GPL(skcipher_alloc_instance_sim 1237 EXPORT_SYMBOL_GPL(skcipher_alloc_instance_simple); 1085 1238 1086 MODULE_LICENSE("GPL"); 1239 MODULE_LICENSE("GPL"); 1087 MODULE_DESCRIPTION("Symmetric key cipher type 1240 MODULE_DESCRIPTION("Symmetric key cipher type"); 1088 MODULE_IMPORT_NS(CRYPTO_INTERNAL); << 1089 1241
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.