~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/crypto/tea.c

Version: ~ [ linux-6.12-rc7 ] ~ [ linux-6.11.7 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.60 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.116 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.171 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.229 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.285 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.323 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.12 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

Diff markup

Differences between /crypto/tea.c (Version linux-6.12-rc7) and /crypto/tea.c (Version linux-3.10.108)


  1 // SPDX-License-Identifier: GPL-2.0-or-later   << 
  2 /*                                                  1 /* 
  3  * Cryptographic API.                               2  * Cryptographic API.
  4  *                                                  3  *
  5  * TEA, XTEA, and XETA crypto alogrithms            4  * TEA, XTEA, and XETA crypto alogrithms
  6  *                                                  5  *
  7  * The TEA and Xtended TEA algorithms were dev      6  * The TEA and Xtended TEA algorithms were developed by David Wheeler 
  8  * and Roger Needham at the Computer Laborator      7  * and Roger Needham at the Computer Laboratory of Cambridge University.
  9  *                                                  8  *
 10  * Due to the order of evaluation in XTEA many      9  * Due to the order of evaluation in XTEA many people have incorrectly
 11  * implemented it.  XETA (XTEA in the wrong or     10  * implemented it.  XETA (XTEA in the wrong order), exists for
 12  * compatibility with these implementations.       11  * compatibility with these implementations.
 13  *                                                 12  *
 14  * Copyright (c) 2004 Aaron Grothe ajgrothe@ya     13  * Copyright (c) 2004 Aaron Grothe ajgrothe@yahoo.com
                                                   >>  14  *
                                                   >>  15  * This program is free software; you can redistribute it and/or modify
                                                   >>  16  * it under the terms of the GNU General Public License as published by
                                                   >>  17  * the Free Software Foundation; either version 2 of the License, or
                                                   >>  18  * (at your option) any later version.
                                                   >>  19  *
 15  */                                                20  */
 16                                                    21 
 17 #include <crypto/algapi.h>                     << 
 18 #include <linux/init.h>                            22 #include <linux/init.h>
 19 #include <linux/module.h>                          23 #include <linux/module.h>
 20 #include <linux/mm.h>                              24 #include <linux/mm.h>
 21 #include <asm/byteorder.h>                         25 #include <asm/byteorder.h>
                                                   >>  26 #include <linux/crypto.h>
 22 #include <linux/types.h>                           27 #include <linux/types.h>
 23                                                    28 
 24 #define TEA_KEY_SIZE            16                 29 #define TEA_KEY_SIZE            16
 25 #define TEA_BLOCK_SIZE          8                  30 #define TEA_BLOCK_SIZE          8
 26 #define TEA_ROUNDS              32                 31 #define TEA_ROUNDS              32
 27 #define TEA_DELTA               0x9e3779b9         32 #define TEA_DELTA               0x9e3779b9
 28                                                    33 
 29 #define XTEA_KEY_SIZE           16                 34 #define XTEA_KEY_SIZE           16
 30 #define XTEA_BLOCK_SIZE         8                  35 #define XTEA_BLOCK_SIZE         8
 31 #define XTEA_ROUNDS             32                 36 #define XTEA_ROUNDS             32
 32 #define XTEA_DELTA              0x9e3779b9         37 #define XTEA_DELTA              0x9e3779b9
 33                                                    38 
 34 struct tea_ctx {                                   39 struct tea_ctx {
 35         u32 KEY[4];                                40         u32 KEY[4];
 36 };                                                 41 };
 37                                                    42 
 38 struct xtea_ctx {                                  43 struct xtea_ctx {
 39         u32 KEY[4];                                44         u32 KEY[4];
 40 };                                                 45 };
 41                                                    46 
 42 static int tea_setkey(struct crypto_tfm *tfm,      47 static int tea_setkey(struct crypto_tfm *tfm, const u8 *in_key,
 43                       unsigned int key_len)        48                       unsigned int key_len)
 44 {                                                  49 {
 45         struct tea_ctx *ctx = crypto_tfm_ctx(t     50         struct tea_ctx *ctx = crypto_tfm_ctx(tfm);
 46         const __le32 *key = (const __le32 *)in     51         const __le32 *key = (const __le32 *)in_key;
 47                                                    52 
 48         ctx->KEY[0] = le32_to_cpu(key[0]);         53         ctx->KEY[0] = le32_to_cpu(key[0]);
 49         ctx->KEY[1] = le32_to_cpu(key[1]);         54         ctx->KEY[1] = le32_to_cpu(key[1]);
 50         ctx->KEY[2] = le32_to_cpu(key[2]);         55         ctx->KEY[2] = le32_to_cpu(key[2]);
 51         ctx->KEY[3] = le32_to_cpu(key[3]);         56         ctx->KEY[3] = le32_to_cpu(key[3]);
 52                                                    57 
 53         return 0;                                  58         return 0; 
 54                                                    59 
 55 }                                                  60 }
 56                                                    61 
 57 static void tea_encrypt(struct crypto_tfm *tfm     62 static void tea_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
 58 {                                                  63 {
 59         u32 y, z, n, sum = 0;                      64         u32 y, z, n, sum = 0;
 60         u32 k0, k1, k2, k3;                        65         u32 k0, k1, k2, k3;
 61         struct tea_ctx *ctx = crypto_tfm_ctx(t     66         struct tea_ctx *ctx = crypto_tfm_ctx(tfm);
 62         const __le32 *in = (const __le32 *)src     67         const __le32 *in = (const __le32 *)src;
 63         __le32 *out = (__le32 *)dst;               68         __le32 *out = (__le32 *)dst;
 64                                                    69 
 65         y = le32_to_cpu(in[0]);                    70         y = le32_to_cpu(in[0]);
 66         z = le32_to_cpu(in[1]);                    71         z = le32_to_cpu(in[1]);
 67                                                    72 
 68         k0 = ctx->KEY[0];                          73         k0 = ctx->KEY[0];
 69         k1 = ctx->KEY[1];                          74         k1 = ctx->KEY[1];
 70         k2 = ctx->KEY[2];                          75         k2 = ctx->KEY[2];
 71         k3 = ctx->KEY[3];                          76         k3 = ctx->KEY[3];
 72                                                    77 
 73         n = TEA_ROUNDS;                            78         n = TEA_ROUNDS;
 74                                                    79 
 75         while (n-- > 0) {                          80         while (n-- > 0) {
 76                 sum += TEA_DELTA;                  81                 sum += TEA_DELTA;
 77                 y += ((z << 4) + k0) ^ (z + su     82                 y += ((z << 4) + k0) ^ (z + sum) ^ ((z >> 5) + k1);
 78                 z += ((y << 4) + k2) ^ (y + su     83                 z += ((y << 4) + k2) ^ (y + sum) ^ ((y >> 5) + k3);
 79         }                                          84         }
 80                                                    85         
 81         out[0] = cpu_to_le32(y);                   86         out[0] = cpu_to_le32(y);
 82         out[1] = cpu_to_le32(z);                   87         out[1] = cpu_to_le32(z);
 83 }                                                  88 }
 84                                                    89 
 85 static void tea_decrypt(struct crypto_tfm *tfm     90 static void tea_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
 86 {                                                  91 {
 87         u32 y, z, n, sum;                          92         u32 y, z, n, sum;
 88         u32 k0, k1, k2, k3;                        93         u32 k0, k1, k2, k3;
 89         struct tea_ctx *ctx = crypto_tfm_ctx(t     94         struct tea_ctx *ctx = crypto_tfm_ctx(tfm);
 90         const __le32 *in = (const __le32 *)src     95         const __le32 *in = (const __le32 *)src;
 91         __le32 *out = (__le32 *)dst;               96         __le32 *out = (__le32 *)dst;
 92                                                    97 
 93         y = le32_to_cpu(in[0]);                    98         y = le32_to_cpu(in[0]);
 94         z = le32_to_cpu(in[1]);                    99         z = le32_to_cpu(in[1]);
 95                                                   100 
 96         k0 = ctx->KEY[0];                         101         k0 = ctx->KEY[0];
 97         k1 = ctx->KEY[1];                         102         k1 = ctx->KEY[1];
 98         k2 = ctx->KEY[2];                         103         k2 = ctx->KEY[2];
 99         k3 = ctx->KEY[3];                         104         k3 = ctx->KEY[3];
100                                                   105 
101         sum = TEA_DELTA << 5;                     106         sum = TEA_DELTA << 5;
102                                                   107 
103         n = TEA_ROUNDS;                           108         n = TEA_ROUNDS;
104                                                   109 
105         while (n-- > 0) {                         110         while (n-- > 0) {
106                 z -= ((y << 4) + k2) ^ (y + su    111                 z -= ((y << 4) + k2) ^ (y + sum) ^ ((y >> 5) + k3);
107                 y -= ((z << 4) + k0) ^ (z + su    112                 y -= ((z << 4) + k0) ^ (z + sum) ^ ((z >> 5) + k1);
108                 sum -= TEA_DELTA;                 113                 sum -= TEA_DELTA;
109         }                                         114         }
110                                                   115         
111         out[0] = cpu_to_le32(y);                  116         out[0] = cpu_to_le32(y);
112         out[1] = cpu_to_le32(z);                  117         out[1] = cpu_to_le32(z);
113 }                                                 118 }
114                                                   119 
115 static int xtea_setkey(struct crypto_tfm *tfm,    120 static int xtea_setkey(struct crypto_tfm *tfm, const u8 *in_key,
116                        unsigned int key_len)      121                        unsigned int key_len)
117 {                                                 122 {
118         struct xtea_ctx *ctx = crypto_tfm_ctx(    123         struct xtea_ctx *ctx = crypto_tfm_ctx(tfm);
119         const __le32 *key = (const __le32 *)in    124         const __le32 *key = (const __le32 *)in_key;
120                                                   125 
121         ctx->KEY[0] = le32_to_cpu(key[0]);        126         ctx->KEY[0] = le32_to_cpu(key[0]);
122         ctx->KEY[1] = le32_to_cpu(key[1]);        127         ctx->KEY[1] = le32_to_cpu(key[1]);
123         ctx->KEY[2] = le32_to_cpu(key[2]);        128         ctx->KEY[2] = le32_to_cpu(key[2]);
124         ctx->KEY[3] = le32_to_cpu(key[3]);        129         ctx->KEY[3] = le32_to_cpu(key[3]);
125                                                   130 
126         return 0;                                 131         return 0; 
127                                                   132 
128 }                                                 133 }
129                                                   134 
130 static void xtea_encrypt(struct crypto_tfm *tf    135 static void xtea_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
131 {                                                 136 {
132         u32 y, z, sum = 0;                        137         u32 y, z, sum = 0;
133         u32 limit = XTEA_DELTA * XTEA_ROUNDS;     138         u32 limit = XTEA_DELTA * XTEA_ROUNDS;
134         struct xtea_ctx *ctx = crypto_tfm_ctx(    139         struct xtea_ctx *ctx = crypto_tfm_ctx(tfm);
135         const __le32 *in = (const __le32 *)src    140         const __le32 *in = (const __le32 *)src;
136         __le32 *out = (__le32 *)dst;              141         __le32 *out = (__le32 *)dst;
137                                                   142 
138         y = le32_to_cpu(in[0]);                   143         y = le32_to_cpu(in[0]);
139         z = le32_to_cpu(in[1]);                   144         z = le32_to_cpu(in[1]);
140                                                   145 
141         while (sum != limit) {                    146         while (sum != limit) {
142                 y += ((z << 4 ^ z >> 5) + z) ^    147                 y += ((z << 4 ^ z >> 5) + z) ^ (sum + ctx->KEY[sum&3]); 
143                 sum += XTEA_DELTA;                148                 sum += XTEA_DELTA;
144                 z += ((y << 4 ^ y >> 5) + y) ^    149                 z += ((y << 4 ^ y >> 5) + y) ^ (sum + ctx->KEY[sum>>11 &3]); 
145         }                                         150         }
146                                                   151         
147         out[0] = cpu_to_le32(y);                  152         out[0] = cpu_to_le32(y);
148         out[1] = cpu_to_le32(z);                  153         out[1] = cpu_to_le32(z);
149 }                                                 154 }
150                                                   155 
151 static void xtea_decrypt(struct crypto_tfm *tf    156 static void xtea_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
152 {                                                 157 {
153         u32 y, z, sum;                            158         u32 y, z, sum;
154         struct tea_ctx *ctx = crypto_tfm_ctx(t    159         struct tea_ctx *ctx = crypto_tfm_ctx(tfm);
155         const __le32 *in = (const __le32 *)src    160         const __le32 *in = (const __le32 *)src;
156         __le32 *out = (__le32 *)dst;              161         __le32 *out = (__le32 *)dst;
157                                                   162 
158         y = le32_to_cpu(in[0]);                   163         y = le32_to_cpu(in[0]);
159         z = le32_to_cpu(in[1]);                   164         z = le32_to_cpu(in[1]);
160                                                   165 
161         sum = XTEA_DELTA * XTEA_ROUNDS;           166         sum = XTEA_DELTA * XTEA_ROUNDS;
162                                                   167 
163         while (sum) {                             168         while (sum) {
164                 z -= ((y << 4 ^ y >> 5) + y) ^    169                 z -= ((y << 4 ^ y >> 5) + y) ^ (sum + ctx->KEY[sum>>11 & 3]);
165                 sum -= XTEA_DELTA;                170                 sum -= XTEA_DELTA;
166                 y -= ((z << 4 ^ z >> 5) + z) ^    171                 y -= ((z << 4 ^ z >> 5) + z) ^ (sum + ctx->KEY[sum & 3]);
167         }                                         172         }
168                                                   173         
169         out[0] = cpu_to_le32(y);                  174         out[0] = cpu_to_le32(y);
170         out[1] = cpu_to_le32(z);                  175         out[1] = cpu_to_le32(z);
171 }                                                 176 }
172                                                   177 
173                                                   178 
174 static void xeta_encrypt(struct crypto_tfm *tf    179 static void xeta_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
175 {                                                 180 {
176         u32 y, z, sum = 0;                        181         u32 y, z, sum = 0;
177         u32 limit = XTEA_DELTA * XTEA_ROUNDS;     182         u32 limit = XTEA_DELTA * XTEA_ROUNDS;
178         struct xtea_ctx *ctx = crypto_tfm_ctx(    183         struct xtea_ctx *ctx = crypto_tfm_ctx(tfm);
179         const __le32 *in = (const __le32 *)src    184         const __le32 *in = (const __le32 *)src;
180         __le32 *out = (__le32 *)dst;              185         __le32 *out = (__le32 *)dst;
181                                                   186 
182         y = le32_to_cpu(in[0]);                   187         y = le32_to_cpu(in[0]);
183         z = le32_to_cpu(in[1]);                   188         z = le32_to_cpu(in[1]);
184                                                   189 
185         while (sum != limit) {                    190         while (sum != limit) {
186                 y += (z << 4 ^ z >> 5) + (z ^     191                 y += (z << 4 ^ z >> 5) + (z ^ sum) + ctx->KEY[sum&3];
187                 sum += XTEA_DELTA;                192                 sum += XTEA_DELTA;
188                 z += (y << 4 ^ y >> 5) + (y ^     193                 z += (y << 4 ^ y >> 5) + (y ^ sum) + ctx->KEY[sum>>11 &3];
189         }                                         194         }
190                                                   195         
191         out[0] = cpu_to_le32(y);                  196         out[0] = cpu_to_le32(y);
192         out[1] = cpu_to_le32(z);                  197         out[1] = cpu_to_le32(z);
193 }                                                 198 }
194                                                   199 
195 static void xeta_decrypt(struct crypto_tfm *tf    200 static void xeta_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
196 {                                                 201 {
197         u32 y, z, sum;                            202         u32 y, z, sum;
198         struct tea_ctx *ctx = crypto_tfm_ctx(t    203         struct tea_ctx *ctx = crypto_tfm_ctx(tfm);
199         const __le32 *in = (const __le32 *)src    204         const __le32 *in = (const __le32 *)src;
200         __le32 *out = (__le32 *)dst;              205         __le32 *out = (__le32 *)dst;
201                                                   206 
202         y = le32_to_cpu(in[0]);                   207         y = le32_to_cpu(in[0]);
203         z = le32_to_cpu(in[1]);                   208         z = le32_to_cpu(in[1]);
204                                                   209 
205         sum = XTEA_DELTA * XTEA_ROUNDS;           210         sum = XTEA_DELTA * XTEA_ROUNDS;
206                                                   211 
207         while (sum) {                             212         while (sum) {
208                 z -= (y << 4 ^ y >> 5) + (y ^     213                 z -= (y << 4 ^ y >> 5) + (y ^ sum) + ctx->KEY[sum>>11 & 3];
209                 sum -= XTEA_DELTA;                214                 sum -= XTEA_DELTA;
210                 y -= (z << 4 ^ z >> 5) + (z ^     215                 y -= (z << 4 ^ z >> 5) + (z ^ sum) + ctx->KEY[sum & 3];
211         }                                         216         }
212                                                   217         
213         out[0] = cpu_to_le32(y);                  218         out[0] = cpu_to_le32(y);
214         out[1] = cpu_to_le32(z);                  219         out[1] = cpu_to_le32(z);
215 }                                                 220 }
216                                                   221 
217 static struct crypto_alg tea_algs[3] = { {        222 static struct crypto_alg tea_algs[3] = { {
218         .cra_name               =       "tea",    223         .cra_name               =       "tea",
219         .cra_driver_name        =       "tea-g << 
220         .cra_flags              =       CRYPTO    224         .cra_flags              =       CRYPTO_ALG_TYPE_CIPHER,
221         .cra_blocksize          =       TEA_BL    225         .cra_blocksize          =       TEA_BLOCK_SIZE,
222         .cra_ctxsize            =       sizeof    226         .cra_ctxsize            =       sizeof (struct tea_ctx),
223         .cra_alignmask          =       3,        227         .cra_alignmask          =       3,
224         .cra_module             =       THIS_M    228         .cra_module             =       THIS_MODULE,
225         .cra_u                  =       { .cip    229         .cra_u                  =       { .cipher = {
226         .cia_min_keysize        =       TEA_KE    230         .cia_min_keysize        =       TEA_KEY_SIZE,
227         .cia_max_keysize        =       TEA_KE    231         .cia_max_keysize        =       TEA_KEY_SIZE,
228         .cia_setkey             =       tea_se    232         .cia_setkey             =       tea_setkey,
229         .cia_encrypt            =       tea_en    233         .cia_encrypt            =       tea_encrypt,
230         .cia_decrypt            =       tea_de    234         .cia_decrypt            =       tea_decrypt } }
231 }, {                                              235 }, {
232         .cra_name               =       "xtea"    236         .cra_name               =       "xtea",
233         .cra_driver_name        =       "xtea- << 
234         .cra_flags              =       CRYPTO    237         .cra_flags              =       CRYPTO_ALG_TYPE_CIPHER,
235         .cra_blocksize          =       XTEA_B    238         .cra_blocksize          =       XTEA_BLOCK_SIZE,
236         .cra_ctxsize            =       sizeof    239         .cra_ctxsize            =       sizeof (struct xtea_ctx),
237         .cra_alignmask          =       3,        240         .cra_alignmask          =       3,
238         .cra_module             =       THIS_M    241         .cra_module             =       THIS_MODULE,
239         .cra_u                  =       { .cip    242         .cra_u                  =       { .cipher = {
240         .cia_min_keysize        =       XTEA_K    243         .cia_min_keysize        =       XTEA_KEY_SIZE,
241         .cia_max_keysize        =       XTEA_K    244         .cia_max_keysize        =       XTEA_KEY_SIZE,
242         .cia_setkey             =       xtea_s    245         .cia_setkey             =       xtea_setkey,
243         .cia_encrypt            =       xtea_e    246         .cia_encrypt            =       xtea_encrypt,
244         .cia_decrypt            =       xtea_d    247         .cia_decrypt            =       xtea_decrypt } }
245 }, {                                              248 }, {
246         .cra_name               =       "xeta"    249         .cra_name               =       "xeta",
247         .cra_driver_name        =       "xeta- << 
248         .cra_flags              =       CRYPTO    250         .cra_flags              =       CRYPTO_ALG_TYPE_CIPHER,
249         .cra_blocksize          =       XTEA_B    251         .cra_blocksize          =       XTEA_BLOCK_SIZE,
250         .cra_ctxsize            =       sizeof    252         .cra_ctxsize            =       sizeof (struct xtea_ctx),
251         .cra_alignmask          =       3,        253         .cra_alignmask          =       3,
252         .cra_module             =       THIS_M    254         .cra_module             =       THIS_MODULE,
253         .cra_u                  =       { .cip    255         .cra_u                  =       { .cipher = {
254         .cia_min_keysize        =       XTEA_K    256         .cia_min_keysize        =       XTEA_KEY_SIZE,
255         .cia_max_keysize        =       XTEA_K    257         .cia_max_keysize        =       XTEA_KEY_SIZE,
256         .cia_setkey             =       xtea_s    258         .cia_setkey             =       xtea_setkey,
257         .cia_encrypt            =       xeta_e    259         .cia_encrypt            =       xeta_encrypt,
258         .cia_decrypt            =       xeta_d    260         .cia_decrypt            =       xeta_decrypt } }
259 } };                                              261 } };
260                                                   262 
261 static int __init tea_mod_init(void)              263 static int __init tea_mod_init(void)
262 {                                                 264 {
263         return crypto_register_algs(tea_algs,     265         return crypto_register_algs(tea_algs, ARRAY_SIZE(tea_algs));
264 }                                                 266 }
265                                                   267 
266 static void __exit tea_mod_fini(void)             268 static void __exit tea_mod_fini(void)
267 {                                                 269 {
268         crypto_unregister_algs(tea_algs, ARRAY    270         crypto_unregister_algs(tea_algs, ARRAY_SIZE(tea_algs));
269 }                                                 271 }
270                                                   272 
271 MODULE_ALIAS_CRYPTO("tea");                       273 MODULE_ALIAS_CRYPTO("tea");
272 MODULE_ALIAS_CRYPTO("xtea");                      274 MODULE_ALIAS_CRYPTO("xtea");
273 MODULE_ALIAS_CRYPTO("xeta");                      275 MODULE_ALIAS_CRYPTO("xeta");
274                                                   276 
275 subsys_initcall(tea_mod_init);                 !! 277 module_init(tea_mod_init);
276 module_exit(tea_mod_fini);                        278 module_exit(tea_mod_fini);
277                                                   279 
278 MODULE_LICENSE("GPL");                            280 MODULE_LICENSE("GPL");
279 MODULE_DESCRIPTION("TEA, XTEA & XETA Cryptogra    281 MODULE_DESCRIPTION("TEA, XTEA & XETA Cryptographic Algorithms");
280                                                   282 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php