1 // SPDX-License-Identifier: GPL-2.0-or-later << 2 /* 1 /* 3 * Twofish for CryptoAPI 2 * Twofish for CryptoAPI 4 * 3 * 5 * Originally Twofish for GPG 4 * Originally Twofish for GPG 6 * By Matthew Skala <mskala@ansuz.sooke.bc.ca> 5 * By Matthew Skala <mskala@ansuz.sooke.bc.ca>, July 26, 1998 7 * 256-bit key length added March 20, 1999 6 * 256-bit key length added March 20, 1999 8 * Some modifications to reduce the text size 7 * Some modifications to reduce the text size by Werner Koch, April, 1998 9 * Ported to the kerneli patch by Marc Mutz <M 8 * Ported to the kerneli patch by Marc Mutz <Marc@Mutz.com> 10 * Ported to CryptoAPI by Colin Slater <hoho@t 9 * Ported to CryptoAPI by Colin Slater <hoho@tacomeat.net> 11 * 10 * 12 * The original author has disclaimed all copy 11 * The original author has disclaimed all copyright interest in this 13 * code and thus put it in the public domain. 12 * code and thus put it in the public domain. The subsequent authors 14 * have put this under the GNU General Public 13 * have put this under the GNU General Public License. 15 * 14 * >> 15 * This program is free software; you can redistribute it and/or modify >> 16 * it under the terms of the GNU General Public License as published by >> 17 * the Free Software Foundation; either version 2 of the License, or >> 18 * (at your option) any later version. >> 19 * >> 20 * This program is distributed in the hope that it will be useful, >> 21 * but WITHOUT ANY WARRANTY; without even the implied warranty of >> 22 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the >> 23 * GNU General Public License for more details. >> 24 * >> 25 * You should have received a copy of the GNU General Public License >> 26 * along with this program; if not, write to the Free Software >> 27 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 >> 28 * USA >> 29 * 16 * This code is a "clean room" implementation, 30 * This code is a "clean room" implementation, written from the paper 17 * _Twofish: A 128-Bit Block Cipher_ by Bruce 31 * _Twofish: A 128-Bit Block Cipher_ by Bruce Schneier, John Kelsey, 18 * Doug Whiting, David Wagner, Chris Hall, and 32 * Doug Whiting, David Wagner, Chris Hall, and Niels Ferguson, available 19 * through http://www.counterpane.com/twofish. 33 * through http://www.counterpane.com/twofish.html 20 * 34 * 21 * For background information on multiplicatio 35 * For background information on multiplication in finite fields, used for 22 * the matrix operations in the key schedule, 36 * the matrix operations in the key schedule, see the book _Contemporary 23 * Abstract Algebra_ by Joseph A. Gallian, esp 37 * Abstract Algebra_ by Joseph A. Gallian, especially chapter 22 in the 24 * Third Edition. 38 * Third Edition. 25 */ 39 */ 26 40 27 #include <linux/unaligned.h> !! 41 #include <asm/byteorder.h> 28 #include <crypto/algapi.h> << 29 #include <crypto/twofish.h> 42 #include <crypto/twofish.h> 30 #include <linux/module.h> 43 #include <linux/module.h> 31 #include <linux/init.h> 44 #include <linux/init.h> 32 #include <linux/types.h> 45 #include <linux/types.h> 33 #include <linux/errno.h> 46 #include <linux/errno.h> >> 47 #include <linux/crypto.h> 34 #include <linux/bitops.h> 48 #include <linux/bitops.h> 35 49 36 /* Macros to compute the g() function in the e 50 /* Macros to compute the g() function in the encryption and decryption 37 * rounds. G1 is the straight g() function; G 51 * rounds. G1 is the straight g() function; G2 includes the 8-bit 38 * rotation for the high 32-bit word. */ 52 * rotation for the high 32-bit word. */ 39 53 40 #define G1(a) \ 54 #define G1(a) \ 41 (ctx->s[0][(a) & 0xFF]) ^ (ctx->s[1][((a) 55 (ctx->s[0][(a) & 0xFF]) ^ (ctx->s[1][((a) >> 8) & 0xFF]) \ 42 ^ (ctx->s[2][((a) >> 16) & 0xFF]) ^ (ctx->s 56 ^ (ctx->s[2][((a) >> 16) & 0xFF]) ^ (ctx->s[3][(a) >> 24]) 43 57 44 #define G2(b) \ 58 #define G2(b) \ 45 (ctx->s[1][(b) & 0xFF]) ^ (ctx->s[2][((b) 59 (ctx->s[1][(b) & 0xFF]) ^ (ctx->s[2][((b) >> 8) & 0xFF]) \ 46 ^ (ctx->s[3][((b) >> 16) & 0xFF]) ^ (ctx->s 60 ^ (ctx->s[3][((b) >> 16) & 0xFF]) ^ (ctx->s[0][(b) >> 24]) 47 61 48 /* Encryption and decryption Feistel rounds. 62 /* Encryption and decryption Feistel rounds. Each one calls the two g() 49 * macros, does the PHT, and performs the XOR 63 * macros, does the PHT, and performs the XOR and the appropriate bit 50 * rotations. The parameters are the round nu 64 * rotations. The parameters are the round number (used to select subkeys), 51 * and the four 32-bit chunks of the text. */ 65 * and the four 32-bit chunks of the text. */ 52 66 53 #define ENCROUND(n, a, b, c, d) \ 67 #define ENCROUND(n, a, b, c, d) \ 54 x = G1 (a); y = G2 (b); \ 68 x = G1 (a); y = G2 (b); \ 55 x += y; y += x + ctx->k[2 * (n) + 1]; \ 69 x += y; y += x + ctx->k[2 * (n) + 1]; \ 56 (c) ^= x + ctx->k[2 * (n)]; \ 70 (c) ^= x + ctx->k[2 * (n)]; \ 57 (c) = ror32((c), 1); \ 71 (c) = ror32((c), 1); \ 58 (d) = rol32((d), 1) ^ y 72 (d) = rol32((d), 1) ^ y 59 73 60 #define DECROUND(n, a, b, c, d) \ 74 #define DECROUND(n, a, b, c, d) \ 61 x = G1 (a); y = G2 (b); \ 75 x = G1 (a); y = G2 (b); \ 62 x += y; y += x; \ 76 x += y; y += x; \ 63 (d) ^= y + ctx->k[2 * (n) + 1]; \ 77 (d) ^= y + ctx->k[2 * (n) + 1]; \ 64 (d) = ror32((d), 1); \ 78 (d) = ror32((d), 1); \ 65 (c) = rol32((c), 1); \ 79 (c) = rol32((c), 1); \ 66 (c) ^= (x + ctx->k[2 * (n)]) 80 (c) ^= (x + ctx->k[2 * (n)]) 67 81 68 /* Encryption and decryption cycles; each one 82 /* Encryption and decryption cycles; each one is simply two Feistel rounds 69 * with the 32-bit chunks re-ordered to simula 83 * with the 32-bit chunks re-ordered to simulate the "swap" */ 70 84 71 #define ENCCYCLE(n) \ 85 #define ENCCYCLE(n) \ 72 ENCROUND (2 * (n), a, b, c, d); \ 86 ENCROUND (2 * (n), a, b, c, d); \ 73 ENCROUND (2 * (n) + 1, c, d, a, b) 87 ENCROUND (2 * (n) + 1, c, d, a, b) 74 88 75 #define DECCYCLE(n) \ 89 #define DECCYCLE(n) \ 76 DECROUND (2 * (n) + 1, c, d, a, b); \ 90 DECROUND (2 * (n) + 1, c, d, a, b); \ 77 DECROUND (2 * (n), a, b, c, d) 91 DECROUND (2 * (n), a, b, c, d) 78 92 79 /* Macros to convert the input and output byte 93 /* Macros to convert the input and output bytes into 32-bit words, 80 * and simultaneously perform the whitening st 94 * and simultaneously perform the whitening step. INPACK packs word 81 * number n into the variable named by x, usin 95 * number n into the variable named by x, using whitening subkey number m. 82 * OUTUNPACK unpacks word number n from the va 96 * OUTUNPACK unpacks word number n from the variable named by x, using 83 * whitening subkey number m. */ 97 * whitening subkey number m. */ 84 98 85 #define INPACK(n, x, m) \ 99 #define INPACK(n, x, m) \ 86 x = get_unaligned_le32(in + (n) * 4) ^ ctx- !! 100 x = le32_to_cpu(src[n]) ^ ctx->w[m] 87 101 88 #define OUTUNPACK(n, x, m) \ 102 #define OUTUNPACK(n, x, m) \ 89 x ^= ctx->w[m]; \ 103 x ^= ctx->w[m]; \ 90 put_unaligned_le32(x, out + (n) * 4) !! 104 dst[n] = cpu_to_le32(x) 91 105 92 106 93 107 94 /* Encrypt one block. in and out may be the s 108 /* Encrypt one block. in and out may be the same. */ 95 static void twofish_encrypt(struct crypto_tfm 109 static void twofish_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in) 96 { 110 { 97 struct twofish_ctx *ctx = crypto_tfm_c 111 struct twofish_ctx *ctx = crypto_tfm_ctx(tfm); >> 112 const __le32 *src = (const __le32 *)in; >> 113 __le32 *dst = (__le32 *)out; 98 114 99 /* The four 32-bit chunks of the text. 115 /* The four 32-bit chunks of the text. */ 100 u32 a, b, c, d; 116 u32 a, b, c, d; 101 117 102 /* Temporaries used by the round funct 118 /* Temporaries used by the round function. */ 103 u32 x, y; 119 u32 x, y; 104 120 105 /* Input whitening and packing. */ 121 /* Input whitening and packing. */ 106 INPACK (0, a, 0); 122 INPACK (0, a, 0); 107 INPACK (1, b, 1); 123 INPACK (1, b, 1); 108 INPACK (2, c, 2); 124 INPACK (2, c, 2); 109 INPACK (3, d, 3); 125 INPACK (3, d, 3); 110 126 111 /* Encryption Feistel cycles. */ 127 /* Encryption Feistel cycles. */ 112 ENCCYCLE (0); 128 ENCCYCLE (0); 113 ENCCYCLE (1); 129 ENCCYCLE (1); 114 ENCCYCLE (2); 130 ENCCYCLE (2); 115 ENCCYCLE (3); 131 ENCCYCLE (3); 116 ENCCYCLE (4); 132 ENCCYCLE (4); 117 ENCCYCLE (5); 133 ENCCYCLE (5); 118 ENCCYCLE (6); 134 ENCCYCLE (6); 119 ENCCYCLE (7); 135 ENCCYCLE (7); 120 136 121 /* Output whitening and unpacking. */ 137 /* Output whitening and unpacking. */ 122 OUTUNPACK (0, c, 4); 138 OUTUNPACK (0, c, 4); 123 OUTUNPACK (1, d, 5); 139 OUTUNPACK (1, d, 5); 124 OUTUNPACK (2, a, 6); 140 OUTUNPACK (2, a, 6); 125 OUTUNPACK (3, b, 7); 141 OUTUNPACK (3, b, 7); 126 142 127 } 143 } 128 144 129 /* Decrypt one block. in and out may be the s 145 /* Decrypt one block. in and out may be the same. */ 130 static void twofish_decrypt(struct crypto_tfm 146 static void twofish_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in) 131 { 147 { 132 struct twofish_ctx *ctx = crypto_tfm_c 148 struct twofish_ctx *ctx = crypto_tfm_ctx(tfm); >> 149 const __le32 *src = (const __le32 *)in; >> 150 __le32 *dst = (__le32 *)out; 133 151 134 /* The four 32-bit chunks of the text. 152 /* The four 32-bit chunks of the text. */ 135 u32 a, b, c, d; 153 u32 a, b, c, d; 136 154 137 /* Temporaries used by the round funct 155 /* Temporaries used by the round function. */ 138 u32 x, y; 156 u32 x, y; 139 157 140 /* Input whitening and packing. */ 158 /* Input whitening and packing. */ 141 INPACK (0, c, 4); 159 INPACK (0, c, 4); 142 INPACK (1, d, 5); 160 INPACK (1, d, 5); 143 INPACK (2, a, 6); 161 INPACK (2, a, 6); 144 INPACK (3, b, 7); 162 INPACK (3, b, 7); 145 163 146 /* Encryption Feistel cycles. */ 164 /* Encryption Feistel cycles. */ 147 DECCYCLE (7); 165 DECCYCLE (7); 148 DECCYCLE (6); 166 DECCYCLE (6); 149 DECCYCLE (5); 167 DECCYCLE (5); 150 DECCYCLE (4); 168 DECCYCLE (4); 151 DECCYCLE (3); 169 DECCYCLE (3); 152 DECCYCLE (2); 170 DECCYCLE (2); 153 DECCYCLE (1); 171 DECCYCLE (1); 154 DECCYCLE (0); 172 DECCYCLE (0); 155 173 156 /* Output whitening and unpacking. */ 174 /* Output whitening and unpacking. */ 157 OUTUNPACK (0, a, 0); 175 OUTUNPACK (0, a, 0); 158 OUTUNPACK (1, b, 1); 176 OUTUNPACK (1, b, 1); 159 OUTUNPACK (2, c, 2); 177 OUTUNPACK (2, c, 2); 160 OUTUNPACK (3, d, 3); 178 OUTUNPACK (3, d, 3); 161 179 162 } 180 } 163 181 164 static struct crypto_alg alg = { 182 static struct crypto_alg alg = { 165 .cra_name = "twofish", 183 .cra_name = "twofish", 166 .cra_driver_name = "twofish-gener 184 .cra_driver_name = "twofish-generic", 167 .cra_priority = 100, 185 .cra_priority = 100, 168 .cra_flags = CRYPTO_ALG_TYP 186 .cra_flags = CRYPTO_ALG_TYPE_CIPHER, 169 .cra_blocksize = TF_BLOCK_SIZE, 187 .cra_blocksize = TF_BLOCK_SIZE, 170 .cra_ctxsize = sizeof(struct 188 .cra_ctxsize = sizeof(struct twofish_ctx), >> 189 .cra_alignmask = 3, 171 .cra_module = THIS_MODULE, 190 .cra_module = THIS_MODULE, 172 .cra_u = { .cipher = { 191 .cra_u = { .cipher = { 173 .cia_min_keysize = TF_MIN_KEY_SIZ 192 .cia_min_keysize = TF_MIN_KEY_SIZE, 174 .cia_max_keysize = TF_MAX_KEY_SIZ 193 .cia_max_keysize = TF_MAX_KEY_SIZE, 175 .cia_setkey = twofish_setkey 194 .cia_setkey = twofish_setkey, 176 .cia_encrypt = twofish_encryp 195 .cia_encrypt = twofish_encrypt, 177 .cia_decrypt = twofish_decryp 196 .cia_decrypt = twofish_decrypt } } 178 }; 197 }; 179 198 180 static int __init twofish_mod_init(void) 199 static int __init twofish_mod_init(void) 181 { 200 { 182 return crypto_register_alg(&alg); 201 return crypto_register_alg(&alg); 183 } 202 } 184 203 185 static void __exit twofish_mod_fini(void) 204 static void __exit twofish_mod_fini(void) 186 { 205 { 187 crypto_unregister_alg(&alg); 206 crypto_unregister_alg(&alg); 188 } 207 } 189 208 190 subsys_initcall(twofish_mod_init); !! 209 module_init(twofish_mod_init); 191 module_exit(twofish_mod_fini); 210 module_exit(twofish_mod_fini); 192 211 193 MODULE_LICENSE("GPL"); 212 MODULE_LICENSE("GPL"); 194 MODULE_DESCRIPTION ("Twofish Cipher Algorithm" 213 MODULE_DESCRIPTION ("Twofish Cipher Algorithm"); 195 MODULE_ALIAS_CRYPTO("twofish"); 214 MODULE_ALIAS_CRYPTO("twofish"); 196 MODULE_ALIAS_CRYPTO("twofish-generic"); 215 MODULE_ALIAS_CRYPTO("twofish-generic"); 197 216
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.