1 // SPDX-License-Identifier: GPL-2.0-or-later << 2 /* XTS: as defined in IEEE1619/D16 1 /* XTS: as defined in IEEE1619/D16 3 * http://grouper.ieee.org/groups/1619/em 2 * http://grouper.ieee.org/groups/1619/email/pdf00086.pdf >> 3 * (sector sizes which are not a multiple of 16 bytes are, >> 4 * however currently unsupported) 4 * 5 * 5 * Copyright (c) 2007 Rik Snel <rsnel@cube.dyn 6 * Copyright (c) 2007 Rik Snel <rsnel@cube.dyndns.org> 6 * 7 * 7 * Based on ecb.c 8 * Based on ecb.c 8 * Copyright (c) 2006 Herbert Xu <herbert@gond 9 * Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au> >> 10 * >> 11 * This program is free software; you can redistribute it and/or modify it >> 12 * under the terms of the GNU General Public License as published by the Free >> 13 * Software Foundation; either version 2 of the License, or (at your option) >> 14 * any later version. 9 */ 15 */ 10 #include <crypto/internal/cipher.h> << 11 #include <crypto/internal/skcipher.h> 16 #include <crypto/internal/skcipher.h> 12 #include <crypto/scatterwalk.h> 17 #include <crypto/scatterwalk.h> 13 #include <linux/err.h> 18 #include <linux/err.h> 14 #include <linux/init.h> 19 #include <linux/init.h> 15 #include <linux/kernel.h> 20 #include <linux/kernel.h> 16 #include <linux/module.h> 21 #include <linux/module.h> 17 #include <linux/scatterlist.h> 22 #include <linux/scatterlist.h> 18 #include <linux/slab.h> 23 #include <linux/slab.h> 19 24 20 #include <crypto/xts.h> 25 #include <crypto/xts.h> 21 #include <crypto/b128ops.h> 26 #include <crypto/b128ops.h> 22 #include <crypto/gf128mul.h> 27 #include <crypto/gf128mul.h> 23 28 24 struct xts_tfm_ctx { !! 29 struct priv { 25 struct crypto_skcipher *child; 30 struct crypto_skcipher *child; 26 struct crypto_cipher *tweak; 31 struct crypto_cipher *tweak; 27 }; 32 }; 28 33 29 struct xts_instance_ctx { 34 struct xts_instance_ctx { 30 struct crypto_skcipher_spawn spawn; 35 struct crypto_skcipher_spawn spawn; 31 struct crypto_cipher_spawn tweak_spawn !! 36 char name[CRYPTO_MAX_ALG_NAME]; 32 }; 37 }; 33 38 34 struct xts_request_ctx { !! 39 struct rctx { 35 le128 t; 40 le128 t; 36 struct scatterlist *tail; << 37 struct scatterlist sg[2]; << 38 struct skcipher_request subreq; 41 struct skcipher_request subreq; 39 }; 42 }; 40 43 41 static int xts_setkey(struct crypto_skcipher * !! 44 static int setkey(struct crypto_skcipher *parent, const u8 *key, 42 unsigned int keylen) !! 45 unsigned int keylen) 43 { 46 { 44 struct xts_tfm_ctx *ctx = crypto_skcip !! 47 struct priv *ctx = crypto_skcipher_ctx(parent); 45 struct crypto_skcipher *child; 48 struct crypto_skcipher *child; 46 struct crypto_cipher *tweak; 49 struct crypto_cipher *tweak; 47 int err; 50 int err; 48 51 49 err = xts_verify_key(parent, key, keyl 52 err = xts_verify_key(parent, key, keylen); 50 if (err) 53 if (err) 51 return err; 54 return err; 52 55 53 keylen /= 2; 56 keylen /= 2; 54 57 55 /* we need two cipher instances: one t 58 /* we need two cipher instances: one to compute the initial 'tweak' 56 * by encrypting the IV (usually the ' 59 * by encrypting the IV (usually the 'plain' iv) and the other 57 * one to encrypt and decrypt the data 60 * one to encrypt and decrypt the data */ 58 61 59 /* tweak cipher, uses Key2 i.e. the se 62 /* tweak cipher, uses Key2 i.e. the second half of *key */ 60 tweak = ctx->tweak; 63 tweak = ctx->tweak; 61 crypto_cipher_clear_flags(tweak, CRYPT 64 crypto_cipher_clear_flags(tweak, CRYPTO_TFM_REQ_MASK); 62 crypto_cipher_set_flags(tweak, crypto_ 65 crypto_cipher_set_flags(tweak, crypto_skcipher_get_flags(parent) & 63 CRYPTO_ 66 CRYPTO_TFM_REQ_MASK); 64 err = crypto_cipher_setkey(tweak, key 67 err = crypto_cipher_setkey(tweak, key + keylen, keylen); >> 68 crypto_skcipher_set_flags(parent, crypto_cipher_get_flags(tweak) & >> 69 CRYPTO_TFM_RES_MASK); 65 if (err) 70 if (err) 66 return err; 71 return err; 67 72 68 /* data cipher, uses Key1 i.e. the fir 73 /* data cipher, uses Key1 i.e. the first half of *key */ 69 child = ctx->child; 74 child = ctx->child; 70 crypto_skcipher_clear_flags(child, CRY 75 crypto_skcipher_clear_flags(child, CRYPTO_TFM_REQ_MASK); 71 crypto_skcipher_set_flags(child, crypt 76 crypto_skcipher_set_flags(child, crypto_skcipher_get_flags(parent) & 72 CRYPT 77 CRYPTO_TFM_REQ_MASK); 73 return crypto_skcipher_setkey(child, k !! 78 err = crypto_skcipher_setkey(child, key, keylen); >> 79 crypto_skcipher_set_flags(parent, crypto_skcipher_get_flags(child) & >> 80 CRYPTO_TFM_RES_MASK); >> 81 >> 82 return err; 74 } 83 } 75 84 76 /* 85 /* 77 * We compute the tweak masks twice (both befo 86 * We compute the tweak masks twice (both before and after the ECB encryption or 78 * decryption) to avoid having to allocate a t 87 * decryption) to avoid having to allocate a temporary buffer and/or make 79 * mutliple calls to the 'ecb(..)' instance, w 88 * mutliple calls to the 'ecb(..)' instance, which usually would be slower than 80 * just doing the gf128mul_x_ble() calls again 89 * just doing the gf128mul_x_ble() calls again. 81 */ 90 */ 82 static int xts_xor_tweak(struct skcipher_reque !! 91 static int xor_tweak(struct skcipher_request *req, bool second_pass) 83 bool enc) << 84 { 92 { 85 struct xts_request_ctx *rctx = skciphe !! 93 struct rctx *rctx = skcipher_request_ctx(req); 86 struct crypto_skcipher *tfm = crypto_s 94 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); 87 const bool cts = (req->cryptlen % XTS_ << 88 const int bs = XTS_BLOCK_SIZE; 95 const int bs = XTS_BLOCK_SIZE; 89 struct skcipher_walk w; 96 struct skcipher_walk w; 90 le128 t = rctx->t; 97 le128 t = rctx->t; 91 int err; 98 int err; 92 99 93 if (second_pass) { 100 if (second_pass) { 94 req = &rctx->subreq; 101 req = &rctx->subreq; 95 /* set to our TFM to enforce c 102 /* set to our TFM to enforce correct alignment: */ 96 skcipher_request_set_tfm(req, 103 skcipher_request_set_tfm(req, tfm); 97 } 104 } 98 err = skcipher_walk_virt(&w, req, fals 105 err = skcipher_walk_virt(&w, req, false); 99 106 100 while (w.nbytes) { 107 while (w.nbytes) { 101 unsigned int avail = w.nbytes; 108 unsigned int avail = w.nbytes; 102 le128 *wsrc; 109 le128 *wsrc; 103 le128 *wdst; 110 le128 *wdst; 104 111 105 wsrc = w.src.virt.addr; 112 wsrc = w.src.virt.addr; 106 wdst = w.dst.virt.addr; 113 wdst = w.dst.virt.addr; 107 114 108 do { 115 do { 109 if (unlikely(cts) && << 110 w.total - w.nbytes << 111 if (!enc) { << 112 if (se << 113 << 114 gf128m << 115 } << 116 le128_xor(wdst << 117 if (enc && sec << 118 gf128m << 119 skcipher_walk_ << 120 return 0; << 121 } << 122 << 123 le128_xor(wdst++, &t, 116 le128_xor(wdst++, &t, wsrc++); 124 gf128mul_x_ble(&t, &t) 117 gf128mul_x_ble(&t, &t); 125 } while ((avail -= bs) >= bs); 118 } while ((avail -= bs) >= bs); 126 119 127 err = skcipher_walk_done(&w, a 120 err = skcipher_walk_done(&w, avail); 128 } 121 } 129 122 130 return err; 123 return err; 131 } 124 } 132 125 133 static int xts_xor_tweak_pre(struct skcipher_r !! 126 static int xor_tweak_pre(struct skcipher_request *req) 134 { 127 { 135 return xts_xor_tweak(req, false, enc); !! 128 return xor_tweak(req, false); 136 } 129 } 137 130 138 static int xts_xor_tweak_post(struct skcipher_ !! 131 static int xor_tweak_post(struct skcipher_request *req) 139 { 132 { 140 return xts_xor_tweak(req, true, enc); !! 133 return xor_tweak(req, true); 141 } << 142 << 143 static void xts_cts_done(void *data, int err) << 144 { << 145 struct skcipher_request *req = data; << 146 le128 b; << 147 << 148 if (!err) { << 149 struct xts_request_ctx *rctx = << 150 << 151 scatterwalk_map_and_copy(&b, r << 152 le128_xor(&b, &rctx->t, &b); << 153 scatterwalk_map_and_copy(&b, r << 154 } << 155 << 156 skcipher_request_complete(req, err); << 157 } << 158 << 159 static int xts_cts_final(struct skcipher_reque << 160 int (*crypt)(struct s << 161 { << 162 const struct xts_tfm_ctx *ctx = << 163 crypto_skcipher_ctx(crypto_skc << 164 int offset = req->cryptlen & ~(XTS_BLO << 165 struct xts_request_ctx *rctx = skciphe << 166 struct skcipher_request *subreq = &rct << 167 int tail = req->cryptlen % XTS_BLOCK_S << 168 le128 b[2]; << 169 int err; << 170 << 171 rctx->tail = scatterwalk_ffwd(rctx->sg << 172 offset - << 173 << 174 scatterwalk_map_and_copy(b, rctx->tail << 175 b[1] = b[0]; << 176 scatterwalk_map_and_copy(b, req->src, << 177 << 178 le128_xor(b, &rctx->t, b); << 179 << 180 scatterwalk_map_and_copy(b, rctx->tail << 181 << 182 skcipher_request_set_tfm(subreq, ctx-> << 183 skcipher_request_set_callback(subreq, << 184 req); << 185 skcipher_request_set_crypt(subreq, rct << 186 XTS_BLOCK_S << 187 << 188 err = crypt(subreq); << 189 if (err) << 190 return err; << 191 << 192 scatterwalk_map_and_copy(b, rctx->tail << 193 le128_xor(b, &rctx->t, b); << 194 scatterwalk_map_and_copy(b, rctx->tail << 195 << 196 return 0; << 197 } << 198 << 199 static void xts_encrypt_done(void *data, int e << 200 { << 201 struct skcipher_request *req = data; << 202 << 203 if (!err) { << 204 struct xts_request_ctx *rctx = << 205 << 206 rctx->subreq.base.flags &= CRY << 207 err = xts_xor_tweak_post(req, << 208 << 209 if (!err && unlikely(req->cryp << 210 err = xts_cts_final(re << 211 if (err == -EINPROGRES << 212 return; << 213 } << 214 } << 215 << 216 skcipher_request_complete(req, err); << 217 } 134 } 218 135 219 static void xts_decrypt_done(void *data, int e !! 136 static void crypt_done(struct crypto_async_request *areq, int err) 220 { 137 { 221 struct skcipher_request *req = data; !! 138 struct skcipher_request *req = areq->data; 222 139 223 if (!err) { 140 if (!err) { 224 struct xts_request_ctx *rctx = !! 141 struct rctx *rctx = skcipher_request_ctx(req); 225 << 226 rctx->subreq.base.flags &= CRY << 227 err = xts_xor_tweak_post(req, << 228 142 229 if (!err && unlikely(req->cryp !! 143 rctx->subreq.base.flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP; 230 err = xts_cts_final(re !! 144 err = xor_tweak_post(req); 231 if (err == -EINPROGRES << 232 return; << 233 } << 234 } 145 } 235 146 236 skcipher_request_complete(req, err); 147 skcipher_request_complete(req, err); 237 } 148 } 238 149 239 static int xts_init_crypt(struct skcipher_requ !! 150 static void init_crypt(struct skcipher_request *req) 240 crypto_completion_t << 241 { 151 { 242 const struct xts_tfm_ctx *ctx = !! 152 struct priv *ctx = crypto_skcipher_ctx(crypto_skcipher_reqtfm(req)); 243 crypto_skcipher_ctx(crypto_skc !! 153 struct rctx *rctx = skcipher_request_ctx(req); 244 struct xts_request_ctx *rctx = skciphe << 245 struct skcipher_request *subreq = &rct 154 struct skcipher_request *subreq = &rctx->subreq; 246 155 247 if (req->cryptlen < XTS_BLOCK_SIZE) << 248 return -EINVAL; << 249 << 250 skcipher_request_set_tfm(subreq, ctx-> 156 skcipher_request_set_tfm(subreq, ctx->child); 251 skcipher_request_set_callback(subreq, !! 157 skcipher_request_set_callback(subreq, req->base.flags, crypt_done, req); 252 skcipher_request_set_crypt(subreq, req 158 skcipher_request_set_crypt(subreq, req->dst, req->dst, 253 req->cryptl !! 159 req->cryptlen, NULL); 254 160 255 /* calculate first value of T */ 161 /* calculate first value of T */ 256 crypto_cipher_encrypt_one(ctx->tweak, 162 crypto_cipher_encrypt_one(ctx->tweak, (u8 *)&rctx->t, req->iv); 257 << 258 return 0; << 259 } 163 } 260 164 261 static int xts_encrypt(struct skcipher_request !! 165 static int encrypt(struct skcipher_request *req) 262 { 166 { 263 struct xts_request_ctx *rctx = skciphe !! 167 struct rctx *rctx = skcipher_request_ctx(req); 264 struct skcipher_request *subreq = &rct 168 struct skcipher_request *subreq = &rctx->subreq; 265 int err; << 266 << 267 err = xts_init_crypt(req, xts_encrypt_ << 268 xts_xor_tweak_pre(req, true) ?: << 269 crypto_skcipher_encrypt(subreq) << 270 xts_xor_tweak_post(req, true); << 271 << 272 if (err || likely((req->cryptlen % XTS << 273 return err; << 274 169 275 return xts_cts_final(req, crypto_skcip !! 170 init_crypt(req); >> 171 return xor_tweak_pre(req) ?: >> 172 crypto_skcipher_encrypt(subreq) ?: >> 173 xor_tweak_post(req); 276 } 174 } 277 175 278 static int xts_decrypt(struct skcipher_request !! 176 static int decrypt(struct skcipher_request *req) 279 { 177 { 280 struct xts_request_ctx *rctx = skciphe !! 178 struct rctx *rctx = skcipher_request_ctx(req); 281 struct skcipher_request *subreq = &rct 179 struct skcipher_request *subreq = &rctx->subreq; 282 int err; << 283 << 284 err = xts_init_crypt(req, xts_decrypt_ << 285 xts_xor_tweak_pre(req, false) ?: << 286 crypto_skcipher_decrypt(subreq) << 287 xts_xor_tweak_post(req, false); << 288 180 289 if (err || likely((req->cryptlen % XTS !! 181 init_crypt(req); 290 return err; !! 182 return xor_tweak_pre(req) ?: 291 !! 183 crypto_skcipher_decrypt(subreq) ?: 292 return xts_cts_final(req, crypto_skcip !! 184 xor_tweak_post(req); 293 } 185 } 294 186 295 static int xts_init_tfm(struct crypto_skcipher !! 187 static int init_tfm(struct crypto_skcipher *tfm) 296 { 188 { 297 struct skcipher_instance *inst = skcip 189 struct skcipher_instance *inst = skcipher_alg_instance(tfm); 298 struct xts_instance_ctx *ictx = skciph 190 struct xts_instance_ctx *ictx = skcipher_instance_ctx(inst); 299 struct xts_tfm_ctx *ctx = crypto_skcip !! 191 struct priv *ctx = crypto_skcipher_ctx(tfm); 300 struct crypto_skcipher *child; 192 struct crypto_skcipher *child; 301 struct crypto_cipher *tweak; 193 struct crypto_cipher *tweak; 302 194 303 child = crypto_spawn_skcipher(&ictx->s 195 child = crypto_spawn_skcipher(&ictx->spawn); 304 if (IS_ERR(child)) 196 if (IS_ERR(child)) 305 return PTR_ERR(child); 197 return PTR_ERR(child); 306 198 307 ctx->child = child; 199 ctx->child = child; 308 200 309 tweak = crypto_spawn_cipher(&ictx->twe !! 201 tweak = crypto_alloc_cipher(ictx->name, 0, 0); 310 if (IS_ERR(tweak)) { 202 if (IS_ERR(tweak)) { 311 crypto_free_skcipher(ctx->chil 203 crypto_free_skcipher(ctx->child); 312 return PTR_ERR(tweak); 204 return PTR_ERR(tweak); 313 } 205 } 314 206 315 ctx->tweak = tweak; 207 ctx->tweak = tweak; 316 208 317 crypto_skcipher_set_reqsize(tfm, crypt 209 crypto_skcipher_set_reqsize(tfm, crypto_skcipher_reqsize(child) + 318 sizeo !! 210 sizeof(struct rctx)); 319 211 320 return 0; 212 return 0; 321 } 213 } 322 214 323 static void xts_exit_tfm(struct crypto_skciphe !! 215 static void exit_tfm(struct crypto_skcipher *tfm) 324 { 216 { 325 struct xts_tfm_ctx *ctx = crypto_skcip !! 217 struct priv *ctx = crypto_skcipher_ctx(tfm); 326 218 327 crypto_free_skcipher(ctx->child); 219 crypto_free_skcipher(ctx->child); 328 crypto_free_cipher(ctx->tweak); 220 crypto_free_cipher(ctx->tweak); 329 } 221 } 330 222 331 static void xts_free_instance(struct skcipher_ !! 223 static void free(struct skcipher_instance *inst) 332 { 224 { 333 struct xts_instance_ctx *ictx = skciph !! 225 crypto_drop_skcipher(skcipher_instance_ctx(inst)); 334 << 335 crypto_drop_skcipher(&ictx->spawn); << 336 crypto_drop_cipher(&ictx->tweak_spawn) << 337 kfree(inst); 226 kfree(inst); 338 } 227 } 339 228 340 static int xts_create(struct crypto_template * !! 229 static int create(struct crypto_template *tmpl, struct rtattr **tb) 341 { 230 { 342 struct skcipher_alg_common *alg; << 343 char name[CRYPTO_MAX_ALG_NAME]; << 344 struct skcipher_instance *inst; 231 struct skcipher_instance *inst; >> 232 struct crypto_attr_type *algt; 345 struct xts_instance_ctx *ctx; 233 struct xts_instance_ctx *ctx; >> 234 struct skcipher_alg *alg; 346 const char *cipher_name; 235 const char *cipher_name; 347 u32 mask; 236 u32 mask; 348 int err; 237 int err; 349 238 350 err = crypto_check_attr_type(tb, CRYPT !! 239 algt = crypto_get_attr_type(tb); 351 if (err) !! 240 if (IS_ERR(algt)) 352 return err; !! 241 return PTR_ERR(algt); >> 242 >> 243 if ((algt->type ^ CRYPTO_ALG_TYPE_SKCIPHER) & algt->mask) >> 244 return -EINVAL; 353 245 354 cipher_name = crypto_attr_alg_name(tb[ 246 cipher_name = crypto_attr_alg_name(tb[1]); 355 if (IS_ERR(cipher_name)) 247 if (IS_ERR(cipher_name)) 356 return PTR_ERR(cipher_name); 248 return PTR_ERR(cipher_name); 357 249 358 inst = kzalloc(sizeof(*inst) + sizeof( 250 inst = kzalloc(sizeof(*inst) + sizeof(*ctx), GFP_KERNEL); 359 if (!inst) 251 if (!inst) 360 return -ENOMEM; 252 return -ENOMEM; 361 253 362 ctx = skcipher_instance_ctx(inst); 254 ctx = skcipher_instance_ctx(inst); 363 255 364 err = crypto_grab_skcipher(&ctx->spawn !! 256 crypto_set_skcipher_spawn(&ctx->spawn, skcipher_crypto_instance(inst)); 365 cipher_name !! 257 >> 258 mask = crypto_requires_off(algt->type, algt->mask, >> 259 CRYPTO_ALG_NEED_FALLBACK | >> 260 CRYPTO_ALG_ASYNC); >> 261 >> 262 err = crypto_grab_skcipher(&ctx->spawn, cipher_name, 0, mask); 366 if (err == -ENOENT) { 263 if (err == -ENOENT) { 367 err = -ENAMETOOLONG; 264 err = -ENAMETOOLONG; 368 if (snprintf(name, CRYPTO_MAX_ !! 265 if (snprintf(ctx->name, CRYPTO_MAX_ALG_NAME, "ecb(%s)", 369 cipher_name) >= C 266 cipher_name) >= CRYPTO_MAX_ALG_NAME) 370 goto err_free_inst; 267 goto err_free_inst; 371 268 372 err = crypto_grab_skcipher(&ct !! 269 err = crypto_grab_skcipher(&ctx->spawn, ctx->name, 0, mask); 373 skc << 374 nam << 375 } 270 } 376 271 377 if (err) 272 if (err) 378 goto err_free_inst; 273 goto err_free_inst; 379 274 380 alg = crypto_spawn_skcipher_alg_common !! 275 alg = crypto_skcipher_spawn_alg(&ctx->spawn); 381 276 382 err = -EINVAL; 277 err = -EINVAL; 383 if (alg->base.cra_blocksize != XTS_BLO 278 if (alg->base.cra_blocksize != XTS_BLOCK_SIZE) 384 goto err_free_inst; !! 279 goto err_drop_spawn; 385 280 386 if (alg->ivsize) !! 281 if (crypto_skcipher_alg_ivsize(alg)) 387 goto err_free_inst; !! 282 goto err_drop_spawn; 388 283 389 err = crypto_inst_setname(skcipher_cry 284 err = crypto_inst_setname(skcipher_crypto_instance(inst), "xts", 390 &alg->base); 285 &alg->base); 391 if (err) 286 if (err) 392 goto err_free_inst; !! 287 goto err_drop_spawn; 393 288 394 err = -EINVAL; 289 err = -EINVAL; 395 cipher_name = alg->base.cra_name; 290 cipher_name = alg->base.cra_name; 396 291 397 /* Alas we screwed up the naming so we 292 /* Alas we screwed up the naming so we have to mangle the 398 * cipher name. 293 * cipher name. 399 */ 294 */ 400 if (!strncmp(cipher_name, "ecb(", 4)) 295 if (!strncmp(cipher_name, "ecb(", 4)) { 401 int len; !! 296 unsigned len; 402 297 403 len = strscpy(name, cipher_nam !! 298 len = strlcpy(ctx->name, cipher_name + 4, sizeof(ctx->name)); 404 if (len < 2) !! 299 if (len < 2 || len >= sizeof(ctx->name)) 405 goto err_free_inst; !! 300 goto err_drop_spawn; 406 301 407 if (name[len - 1] != ')') !! 302 if (ctx->name[len - 1] != ')') 408 goto err_free_inst; !! 303 goto err_drop_spawn; 409 304 410 name[len - 1] = 0; !! 305 ctx->name[len - 1] = 0; 411 306 412 if (snprintf(inst->alg.base.cr 307 if (snprintf(inst->alg.base.cra_name, CRYPTO_MAX_ALG_NAME, 413 "xts(%s)", name) !! 308 "xts(%s)", ctx->name) >= CRYPTO_MAX_ALG_NAME) { 414 err = -ENAMETOOLONG; 309 err = -ENAMETOOLONG; 415 goto err_free_inst; !! 310 goto err_drop_spawn; 416 } 311 } 417 } else 312 } else 418 goto err_free_inst; !! 313 goto err_drop_spawn; 419 << 420 err = crypto_grab_cipher(&ctx->tweak_s << 421 skcipher_cryp << 422 if (err) << 423 goto err_free_inst; << 424 314 >> 315 inst->alg.base.cra_flags = alg->base.cra_flags & CRYPTO_ALG_ASYNC; 425 inst->alg.base.cra_priority = alg->bas 316 inst->alg.base.cra_priority = alg->base.cra_priority; 426 inst->alg.base.cra_blocksize = XTS_BLO 317 inst->alg.base.cra_blocksize = XTS_BLOCK_SIZE; 427 inst->alg.base.cra_alignmask = alg->ba 318 inst->alg.base.cra_alignmask = alg->base.cra_alignmask | 428 (__alig 319 (__alignof__(u64) - 1); 429 320 430 inst->alg.ivsize = XTS_BLOCK_SIZE; 321 inst->alg.ivsize = XTS_BLOCK_SIZE; 431 inst->alg.min_keysize = alg->min_keysi !! 322 inst->alg.min_keysize = crypto_skcipher_alg_min_keysize(alg) * 2; 432 inst->alg.max_keysize = alg->max_keysi !! 323 inst->alg.max_keysize = crypto_skcipher_alg_max_keysize(alg) * 2; 433 324 434 inst->alg.base.cra_ctxsize = sizeof(st !! 325 inst->alg.base.cra_ctxsize = sizeof(struct priv); 435 326 436 inst->alg.init = xts_init_tfm; !! 327 inst->alg.init = init_tfm; 437 inst->alg.exit = xts_exit_tfm; !! 328 inst->alg.exit = exit_tfm; 438 329 439 inst->alg.setkey = xts_setkey; !! 330 inst->alg.setkey = setkey; 440 inst->alg.encrypt = xts_encrypt; !! 331 inst->alg.encrypt = encrypt; 441 inst->alg.decrypt = xts_decrypt; !! 332 inst->alg.decrypt = decrypt; 442 333 443 inst->free = xts_free_instance; !! 334 inst->free = free; 444 335 445 err = skcipher_register_instance(tmpl, 336 err = skcipher_register_instance(tmpl, inst); 446 if (err) { !! 337 if (err) 447 err_free_inst: !! 338 goto err_drop_spawn; 448 xts_free_instance(inst); !! 339 449 } !! 340 out: 450 return err; 341 return err; >> 342 >> 343 err_drop_spawn: >> 344 crypto_drop_skcipher(&ctx->spawn); >> 345 err_free_inst: >> 346 kfree(inst); >> 347 goto out; 451 } 348 } 452 349 453 static struct crypto_template xts_tmpl = { !! 350 static struct crypto_template crypto_tmpl = { 454 .name = "xts", 351 .name = "xts", 455 .create = xts_create, !! 352 .create = create, 456 .module = THIS_MODULE, 353 .module = THIS_MODULE, 457 }; 354 }; 458 355 459 static int __init xts_module_init(void) !! 356 static int __init crypto_module_init(void) 460 { 357 { 461 return crypto_register_template(&xts_t !! 358 return crypto_register_template(&crypto_tmpl); 462 } 359 } 463 360 464 static void __exit xts_module_exit(void) !! 361 static void __exit crypto_module_exit(void) 465 { 362 { 466 crypto_unregister_template(&xts_tmpl); !! 363 crypto_unregister_template(&crypto_tmpl); 467 } 364 } 468 365 469 subsys_initcall(xts_module_init); !! 366 module_init(crypto_module_init); 470 module_exit(xts_module_exit); !! 367 module_exit(crypto_module_exit); 471 368 472 MODULE_LICENSE("GPL"); 369 MODULE_LICENSE("GPL"); 473 MODULE_DESCRIPTION("XTS block cipher mode"); 370 MODULE_DESCRIPTION("XTS block cipher mode"); 474 MODULE_ALIAS_CRYPTO("xts"); 371 MODULE_ALIAS_CRYPTO("xts"); 475 MODULE_IMPORT_NS(CRYPTO_INTERNAL); << 476 MODULE_SOFTDEP("pre: ecb"); << 477 372
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.