1 // SPDX-License-Identifier: GPL-2.0-or-later 1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* XTS: as defined in IEEE1619/D16 2 /* XTS: as defined in IEEE1619/D16 3 * http://grouper.ieee.org/groups/1619/em 3 * http://grouper.ieee.org/groups/1619/email/pdf00086.pdf >> 4 * (sector sizes which are not a multiple of 16 bytes are, >> 5 * however currently unsupported) 4 * 6 * 5 * Copyright (c) 2007 Rik Snel <rsnel@cube.dyn 7 * Copyright (c) 2007 Rik Snel <rsnel@cube.dyndns.org> 6 * 8 * 7 * Based on ecb.c 9 * Based on ecb.c 8 * Copyright (c) 2006 Herbert Xu <herbert@gond 10 * Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au> 9 */ 11 */ 10 #include <crypto/internal/cipher.h> << 11 #include <crypto/internal/skcipher.h> 12 #include <crypto/internal/skcipher.h> 12 #include <crypto/scatterwalk.h> 13 #include <crypto/scatterwalk.h> 13 #include <linux/err.h> 14 #include <linux/err.h> 14 #include <linux/init.h> 15 #include <linux/init.h> 15 #include <linux/kernel.h> 16 #include <linux/kernel.h> 16 #include <linux/module.h> 17 #include <linux/module.h> 17 #include <linux/scatterlist.h> 18 #include <linux/scatterlist.h> 18 #include <linux/slab.h> 19 #include <linux/slab.h> 19 20 20 #include <crypto/xts.h> 21 #include <crypto/xts.h> 21 #include <crypto/b128ops.h> 22 #include <crypto/b128ops.h> 22 #include <crypto/gf128mul.h> 23 #include <crypto/gf128mul.h> 23 24 24 struct xts_tfm_ctx { !! 25 struct priv { 25 struct crypto_skcipher *child; 26 struct crypto_skcipher *child; 26 struct crypto_cipher *tweak; 27 struct crypto_cipher *tweak; 27 }; 28 }; 28 29 29 struct xts_instance_ctx { 30 struct xts_instance_ctx { 30 struct crypto_skcipher_spawn spawn; 31 struct crypto_skcipher_spawn spawn; 31 struct crypto_cipher_spawn tweak_spawn !! 32 char name[CRYPTO_MAX_ALG_NAME]; 32 }; 33 }; 33 34 34 struct xts_request_ctx { !! 35 struct rctx { 35 le128 t; 36 le128 t; 36 struct scatterlist *tail; << 37 struct scatterlist sg[2]; << 38 struct skcipher_request subreq; 37 struct skcipher_request subreq; 39 }; 38 }; 40 39 41 static int xts_setkey(struct crypto_skcipher * !! 40 static int setkey(struct crypto_skcipher *parent, const u8 *key, 42 unsigned int keylen) !! 41 unsigned int keylen) 43 { 42 { 44 struct xts_tfm_ctx *ctx = crypto_skcip !! 43 struct priv *ctx = crypto_skcipher_ctx(parent); 45 struct crypto_skcipher *child; 44 struct crypto_skcipher *child; 46 struct crypto_cipher *tweak; 45 struct crypto_cipher *tweak; 47 int err; 46 int err; 48 47 49 err = xts_verify_key(parent, key, keyl 48 err = xts_verify_key(parent, key, keylen); 50 if (err) 49 if (err) 51 return err; 50 return err; 52 51 53 keylen /= 2; 52 keylen /= 2; 54 53 55 /* we need two cipher instances: one t 54 /* we need two cipher instances: one to compute the initial 'tweak' 56 * by encrypting the IV (usually the ' 55 * by encrypting the IV (usually the 'plain' iv) and the other 57 * one to encrypt and decrypt the data 56 * one to encrypt and decrypt the data */ 58 57 59 /* tweak cipher, uses Key2 i.e. the se 58 /* tweak cipher, uses Key2 i.e. the second half of *key */ 60 tweak = ctx->tweak; 59 tweak = ctx->tweak; 61 crypto_cipher_clear_flags(tweak, CRYPT 60 crypto_cipher_clear_flags(tweak, CRYPTO_TFM_REQ_MASK); 62 crypto_cipher_set_flags(tweak, crypto_ 61 crypto_cipher_set_flags(tweak, crypto_skcipher_get_flags(parent) & 63 CRYPTO_ 62 CRYPTO_TFM_REQ_MASK); 64 err = crypto_cipher_setkey(tweak, key 63 err = crypto_cipher_setkey(tweak, key + keylen, keylen); >> 64 crypto_skcipher_set_flags(parent, crypto_cipher_get_flags(tweak) & >> 65 CRYPTO_TFM_RES_MASK); 65 if (err) 66 if (err) 66 return err; 67 return err; 67 68 68 /* data cipher, uses Key1 i.e. the fir 69 /* data cipher, uses Key1 i.e. the first half of *key */ 69 child = ctx->child; 70 child = ctx->child; 70 crypto_skcipher_clear_flags(child, CRY 71 crypto_skcipher_clear_flags(child, CRYPTO_TFM_REQ_MASK); 71 crypto_skcipher_set_flags(child, crypt 72 crypto_skcipher_set_flags(child, crypto_skcipher_get_flags(parent) & 72 CRYPT 73 CRYPTO_TFM_REQ_MASK); 73 return crypto_skcipher_setkey(child, k !! 74 err = crypto_skcipher_setkey(child, key, keylen); >> 75 crypto_skcipher_set_flags(parent, crypto_skcipher_get_flags(child) & >> 76 CRYPTO_TFM_RES_MASK); >> 77 >> 78 return err; 74 } 79 } 75 80 76 /* 81 /* 77 * We compute the tweak masks twice (both befo 82 * We compute the tweak masks twice (both before and after the ECB encryption or 78 * decryption) to avoid having to allocate a t 83 * decryption) to avoid having to allocate a temporary buffer and/or make 79 * mutliple calls to the 'ecb(..)' instance, w 84 * mutliple calls to the 'ecb(..)' instance, which usually would be slower than 80 * just doing the gf128mul_x_ble() calls again 85 * just doing the gf128mul_x_ble() calls again. 81 */ 86 */ 82 static int xts_xor_tweak(struct skcipher_reque !! 87 static int xor_tweak(struct skcipher_request *req, bool second_pass) 83 bool enc) << 84 { 88 { 85 struct xts_request_ctx *rctx = skciphe !! 89 struct rctx *rctx = skcipher_request_ctx(req); 86 struct crypto_skcipher *tfm = crypto_s 90 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); 87 const bool cts = (req->cryptlen % XTS_ << 88 const int bs = XTS_BLOCK_SIZE; 91 const int bs = XTS_BLOCK_SIZE; 89 struct skcipher_walk w; 92 struct skcipher_walk w; 90 le128 t = rctx->t; 93 le128 t = rctx->t; 91 int err; 94 int err; 92 95 93 if (second_pass) { 96 if (second_pass) { 94 req = &rctx->subreq; 97 req = &rctx->subreq; 95 /* set to our TFM to enforce c 98 /* set to our TFM to enforce correct alignment: */ 96 skcipher_request_set_tfm(req, 99 skcipher_request_set_tfm(req, tfm); 97 } 100 } 98 err = skcipher_walk_virt(&w, req, fals 101 err = skcipher_walk_virt(&w, req, false); 99 102 100 while (w.nbytes) { 103 while (w.nbytes) { 101 unsigned int avail = w.nbytes; 104 unsigned int avail = w.nbytes; 102 le128 *wsrc; 105 le128 *wsrc; 103 le128 *wdst; 106 le128 *wdst; 104 107 105 wsrc = w.src.virt.addr; 108 wsrc = w.src.virt.addr; 106 wdst = w.dst.virt.addr; 109 wdst = w.dst.virt.addr; 107 110 108 do { 111 do { 109 if (unlikely(cts) && << 110 w.total - w.nbytes << 111 if (!enc) { << 112 if (se << 113 << 114 gf128m << 115 } << 116 le128_xor(wdst << 117 if (enc && sec << 118 gf128m << 119 skcipher_walk_ << 120 return 0; << 121 } << 122 << 123 le128_xor(wdst++, &t, 112 le128_xor(wdst++, &t, wsrc++); 124 gf128mul_x_ble(&t, &t) 113 gf128mul_x_ble(&t, &t); 125 } while ((avail -= bs) >= bs); 114 } while ((avail -= bs) >= bs); 126 115 127 err = skcipher_walk_done(&w, a 116 err = skcipher_walk_done(&w, avail); 128 } 117 } 129 118 130 return err; 119 return err; 131 } 120 } 132 121 133 static int xts_xor_tweak_pre(struct skcipher_r !! 122 static int xor_tweak_pre(struct skcipher_request *req) 134 { 123 { 135 return xts_xor_tweak(req, false, enc); !! 124 return xor_tweak(req, false); 136 } 125 } 137 126 138 static int xts_xor_tweak_post(struct skcipher_ !! 127 static int xor_tweak_post(struct skcipher_request *req) 139 { 128 { 140 return xts_xor_tweak(req, true, enc); !! 129 return xor_tweak(req, true); 141 } 130 } 142 131 143 static void xts_cts_done(void *data, int err) !! 132 static void crypt_done(struct crypto_async_request *areq, int err) 144 { 133 { 145 struct skcipher_request *req = data; !! 134 struct skcipher_request *req = areq->data; 146 le128 b; << 147 135 148 if (!err) { 136 if (!err) { 149 struct xts_request_ctx *rctx = !! 137 struct rctx *rctx = skcipher_request_ctx(req); 150 138 151 scatterwalk_map_and_copy(&b, r !! 139 rctx->subreq.base.flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP; 152 le128_xor(&b, &rctx->t, &b); !! 140 err = xor_tweak_post(req); 153 scatterwalk_map_and_copy(&b, r << 154 } 141 } 155 142 156 skcipher_request_complete(req, err); 143 skcipher_request_complete(req, err); 157 } 144 } 158 145 159 static int xts_cts_final(struct skcipher_reque !! 146 static void init_crypt(struct skcipher_request *req) 160 int (*crypt)(struct s << 161 { 147 { 162 const struct xts_tfm_ctx *ctx = !! 148 struct priv *ctx = crypto_skcipher_ctx(crypto_skcipher_reqtfm(req)); 163 crypto_skcipher_ctx(crypto_skc !! 149 struct rctx *rctx = skcipher_request_ctx(req); 164 int offset = req->cryptlen & ~(XTS_BLO << 165 struct xts_request_ctx *rctx = skciphe << 166 struct skcipher_request *subreq = &rct 150 struct skcipher_request *subreq = &rctx->subreq; 167 int tail = req->cryptlen % XTS_BLOCK_S << 168 le128 b[2]; << 169 int err; << 170 << 171 rctx->tail = scatterwalk_ffwd(rctx->sg << 172 offset - << 173 << 174 scatterwalk_map_and_copy(b, rctx->tail << 175 b[1] = b[0]; << 176 scatterwalk_map_and_copy(b, req->src, << 177 << 178 le128_xor(b, &rctx->t, b); << 179 << 180 scatterwalk_map_and_copy(b, rctx->tail << 181 151 182 skcipher_request_set_tfm(subreq, ctx-> 152 skcipher_request_set_tfm(subreq, ctx->child); 183 skcipher_request_set_callback(subreq, !! 153 skcipher_request_set_callback(subreq, req->base.flags, crypt_done, req); 184 req); << 185 skcipher_request_set_crypt(subreq, rct << 186 XTS_BLOCK_S << 187 << 188 err = crypt(subreq); << 189 if (err) << 190 return err; << 191 << 192 scatterwalk_map_and_copy(b, rctx->tail << 193 le128_xor(b, &rctx->t, b); << 194 scatterwalk_map_and_copy(b, rctx->tail << 195 << 196 return 0; << 197 } << 198 << 199 static void xts_encrypt_done(void *data, int e << 200 { << 201 struct skcipher_request *req = data; << 202 << 203 if (!err) { << 204 struct xts_request_ctx *rctx = << 205 << 206 rctx->subreq.base.flags &= CRY << 207 err = xts_xor_tweak_post(req, << 208 << 209 if (!err && unlikely(req->cryp << 210 err = xts_cts_final(re << 211 if (err == -EINPROGRES << 212 return; << 213 } << 214 } << 215 << 216 skcipher_request_complete(req, err); << 217 } << 218 << 219 static void xts_decrypt_done(void *data, int e << 220 { << 221 struct skcipher_request *req = data; << 222 << 223 if (!err) { << 224 struct xts_request_ctx *rctx = << 225 << 226 rctx->subreq.base.flags &= CRY << 227 err = xts_xor_tweak_post(req, << 228 << 229 if (!err && unlikely(req->cryp << 230 err = xts_cts_final(re << 231 if (err == -EINPROGRES << 232 return; << 233 } << 234 } << 235 << 236 skcipher_request_complete(req, err); << 237 } << 238 << 239 static int xts_init_crypt(struct skcipher_requ << 240 crypto_completion_t << 241 { << 242 const struct xts_tfm_ctx *ctx = << 243 crypto_skcipher_ctx(crypto_skc << 244 struct xts_request_ctx *rctx = skciphe << 245 struct skcipher_request *subreq = &rct << 246 << 247 if (req->cryptlen < XTS_BLOCK_SIZE) << 248 return -EINVAL; << 249 << 250 skcipher_request_set_tfm(subreq, ctx-> << 251 skcipher_request_set_callback(subreq, << 252 skcipher_request_set_crypt(subreq, req 154 skcipher_request_set_crypt(subreq, req->dst, req->dst, 253 req->cryptl !! 155 req->cryptlen, NULL); 254 156 255 /* calculate first value of T */ 157 /* calculate first value of T */ 256 crypto_cipher_encrypt_one(ctx->tweak, 158 crypto_cipher_encrypt_one(ctx->tweak, (u8 *)&rctx->t, req->iv); 257 << 258 return 0; << 259 } 159 } 260 160 261 static int xts_encrypt(struct skcipher_request !! 161 static int encrypt(struct skcipher_request *req) 262 { 162 { 263 struct xts_request_ctx *rctx = skciphe !! 163 struct rctx *rctx = skcipher_request_ctx(req); 264 struct skcipher_request *subreq = &rct 164 struct skcipher_request *subreq = &rctx->subreq; 265 int err; << 266 << 267 err = xts_init_crypt(req, xts_encrypt_ << 268 xts_xor_tweak_pre(req, true) ?: << 269 crypto_skcipher_encrypt(subreq) << 270 xts_xor_tweak_post(req, true); << 271 << 272 if (err || likely((req->cryptlen % XTS << 273 return err; << 274 165 275 return xts_cts_final(req, crypto_skcip !! 166 init_crypt(req); >> 167 return xor_tweak_pre(req) ?: >> 168 crypto_skcipher_encrypt(subreq) ?: >> 169 xor_tweak_post(req); 276 } 170 } 277 171 278 static int xts_decrypt(struct skcipher_request !! 172 static int decrypt(struct skcipher_request *req) 279 { 173 { 280 struct xts_request_ctx *rctx = skciphe !! 174 struct rctx *rctx = skcipher_request_ctx(req); 281 struct skcipher_request *subreq = &rct 175 struct skcipher_request *subreq = &rctx->subreq; 282 int err; << 283 << 284 err = xts_init_crypt(req, xts_decrypt_ << 285 xts_xor_tweak_pre(req, false) ?: << 286 crypto_skcipher_decrypt(subreq) << 287 xts_xor_tweak_post(req, false); << 288 176 289 if (err || likely((req->cryptlen % XTS !! 177 init_crypt(req); 290 return err; !! 178 return xor_tweak_pre(req) ?: 291 !! 179 crypto_skcipher_decrypt(subreq) ?: 292 return xts_cts_final(req, crypto_skcip !! 180 xor_tweak_post(req); 293 } 181 } 294 182 295 static int xts_init_tfm(struct crypto_skcipher !! 183 static int init_tfm(struct crypto_skcipher *tfm) 296 { 184 { 297 struct skcipher_instance *inst = skcip 185 struct skcipher_instance *inst = skcipher_alg_instance(tfm); 298 struct xts_instance_ctx *ictx = skciph 186 struct xts_instance_ctx *ictx = skcipher_instance_ctx(inst); 299 struct xts_tfm_ctx *ctx = crypto_skcip !! 187 struct priv *ctx = crypto_skcipher_ctx(tfm); 300 struct crypto_skcipher *child; 188 struct crypto_skcipher *child; 301 struct crypto_cipher *tweak; 189 struct crypto_cipher *tweak; 302 190 303 child = crypto_spawn_skcipher(&ictx->s 191 child = crypto_spawn_skcipher(&ictx->spawn); 304 if (IS_ERR(child)) 192 if (IS_ERR(child)) 305 return PTR_ERR(child); 193 return PTR_ERR(child); 306 194 307 ctx->child = child; 195 ctx->child = child; 308 196 309 tweak = crypto_spawn_cipher(&ictx->twe !! 197 tweak = crypto_alloc_cipher(ictx->name, 0, 0); 310 if (IS_ERR(tweak)) { 198 if (IS_ERR(tweak)) { 311 crypto_free_skcipher(ctx->chil 199 crypto_free_skcipher(ctx->child); 312 return PTR_ERR(tweak); 200 return PTR_ERR(tweak); 313 } 201 } 314 202 315 ctx->tweak = tweak; 203 ctx->tweak = tweak; 316 204 317 crypto_skcipher_set_reqsize(tfm, crypt 205 crypto_skcipher_set_reqsize(tfm, crypto_skcipher_reqsize(child) + 318 sizeo !! 206 sizeof(struct rctx)); 319 207 320 return 0; 208 return 0; 321 } 209 } 322 210 323 static void xts_exit_tfm(struct crypto_skciphe !! 211 static void exit_tfm(struct crypto_skcipher *tfm) 324 { 212 { 325 struct xts_tfm_ctx *ctx = crypto_skcip !! 213 struct priv *ctx = crypto_skcipher_ctx(tfm); 326 214 327 crypto_free_skcipher(ctx->child); 215 crypto_free_skcipher(ctx->child); 328 crypto_free_cipher(ctx->tweak); 216 crypto_free_cipher(ctx->tweak); 329 } 217 } 330 218 331 static void xts_free_instance(struct skcipher_ !! 219 static void free(struct skcipher_instance *inst) 332 { 220 { 333 struct xts_instance_ctx *ictx = skciph !! 221 crypto_drop_skcipher(skcipher_instance_ctx(inst)); 334 << 335 crypto_drop_skcipher(&ictx->spawn); << 336 crypto_drop_cipher(&ictx->tweak_spawn) << 337 kfree(inst); 222 kfree(inst); 338 } 223 } 339 224 340 static int xts_create(struct crypto_template * !! 225 static int create(struct crypto_template *tmpl, struct rtattr **tb) 341 { 226 { 342 struct skcipher_alg_common *alg; << 343 char name[CRYPTO_MAX_ALG_NAME]; << 344 struct skcipher_instance *inst; 227 struct skcipher_instance *inst; >> 228 struct crypto_attr_type *algt; 345 struct xts_instance_ctx *ctx; 229 struct xts_instance_ctx *ctx; >> 230 struct skcipher_alg *alg; 346 const char *cipher_name; 231 const char *cipher_name; 347 u32 mask; 232 u32 mask; 348 int err; 233 int err; 349 234 350 err = crypto_check_attr_type(tb, CRYPT !! 235 algt = crypto_get_attr_type(tb); 351 if (err) !! 236 if (IS_ERR(algt)) 352 return err; !! 237 return PTR_ERR(algt); >> 238 >> 239 if ((algt->type ^ CRYPTO_ALG_TYPE_SKCIPHER) & algt->mask) >> 240 return -EINVAL; 353 241 354 cipher_name = crypto_attr_alg_name(tb[ 242 cipher_name = crypto_attr_alg_name(tb[1]); 355 if (IS_ERR(cipher_name)) 243 if (IS_ERR(cipher_name)) 356 return PTR_ERR(cipher_name); 244 return PTR_ERR(cipher_name); 357 245 358 inst = kzalloc(sizeof(*inst) + sizeof( 246 inst = kzalloc(sizeof(*inst) + sizeof(*ctx), GFP_KERNEL); 359 if (!inst) 247 if (!inst) 360 return -ENOMEM; 248 return -ENOMEM; 361 249 362 ctx = skcipher_instance_ctx(inst); 250 ctx = skcipher_instance_ctx(inst); 363 251 364 err = crypto_grab_skcipher(&ctx->spawn !! 252 crypto_set_skcipher_spawn(&ctx->spawn, skcipher_crypto_instance(inst)); 365 cipher_name !! 253 >> 254 mask = crypto_requires_off(algt->type, algt->mask, >> 255 CRYPTO_ALG_NEED_FALLBACK | >> 256 CRYPTO_ALG_ASYNC); >> 257 >> 258 err = crypto_grab_skcipher(&ctx->spawn, cipher_name, 0, mask); 366 if (err == -ENOENT) { 259 if (err == -ENOENT) { 367 err = -ENAMETOOLONG; 260 err = -ENAMETOOLONG; 368 if (snprintf(name, CRYPTO_MAX_ !! 261 if (snprintf(ctx->name, CRYPTO_MAX_ALG_NAME, "ecb(%s)", 369 cipher_name) >= C 262 cipher_name) >= CRYPTO_MAX_ALG_NAME) 370 goto err_free_inst; 263 goto err_free_inst; 371 264 372 err = crypto_grab_skcipher(&ct !! 265 err = crypto_grab_skcipher(&ctx->spawn, ctx->name, 0, mask); 373 skc << 374 nam << 375 } 266 } 376 267 377 if (err) 268 if (err) 378 goto err_free_inst; 269 goto err_free_inst; 379 270 380 alg = crypto_spawn_skcipher_alg_common !! 271 alg = crypto_skcipher_spawn_alg(&ctx->spawn); 381 272 382 err = -EINVAL; 273 err = -EINVAL; 383 if (alg->base.cra_blocksize != XTS_BLO 274 if (alg->base.cra_blocksize != XTS_BLOCK_SIZE) 384 goto err_free_inst; !! 275 goto err_drop_spawn; 385 276 386 if (alg->ivsize) !! 277 if (crypto_skcipher_alg_ivsize(alg)) 387 goto err_free_inst; !! 278 goto err_drop_spawn; 388 279 389 err = crypto_inst_setname(skcipher_cry 280 err = crypto_inst_setname(skcipher_crypto_instance(inst), "xts", 390 &alg->base); 281 &alg->base); 391 if (err) 282 if (err) 392 goto err_free_inst; !! 283 goto err_drop_spawn; 393 284 394 err = -EINVAL; 285 err = -EINVAL; 395 cipher_name = alg->base.cra_name; 286 cipher_name = alg->base.cra_name; 396 287 397 /* Alas we screwed up the naming so we 288 /* Alas we screwed up the naming so we have to mangle the 398 * cipher name. 289 * cipher name. 399 */ 290 */ 400 if (!strncmp(cipher_name, "ecb(", 4)) 291 if (!strncmp(cipher_name, "ecb(", 4)) { 401 int len; !! 292 unsigned len; 402 293 403 len = strscpy(name, cipher_nam !! 294 len = strlcpy(ctx->name, cipher_name + 4, sizeof(ctx->name)); 404 if (len < 2) !! 295 if (len < 2 || len >= sizeof(ctx->name)) 405 goto err_free_inst; !! 296 goto err_drop_spawn; 406 297 407 if (name[len - 1] != ')') !! 298 if (ctx->name[len - 1] != ')') 408 goto err_free_inst; !! 299 goto err_drop_spawn; 409 300 410 name[len - 1] = 0; !! 301 ctx->name[len - 1] = 0; 411 302 412 if (snprintf(inst->alg.base.cr 303 if (snprintf(inst->alg.base.cra_name, CRYPTO_MAX_ALG_NAME, 413 "xts(%s)", name) !! 304 "xts(%s)", ctx->name) >= CRYPTO_MAX_ALG_NAME) { 414 err = -ENAMETOOLONG; 305 err = -ENAMETOOLONG; 415 goto err_free_inst; !! 306 goto err_drop_spawn; 416 } 307 } 417 } else 308 } else 418 goto err_free_inst; !! 309 goto err_drop_spawn; 419 << 420 err = crypto_grab_cipher(&ctx->tweak_s << 421 skcipher_cryp << 422 if (err) << 423 goto err_free_inst; << 424 310 >> 311 inst->alg.base.cra_flags = alg->base.cra_flags & CRYPTO_ALG_ASYNC; 425 inst->alg.base.cra_priority = alg->bas 312 inst->alg.base.cra_priority = alg->base.cra_priority; 426 inst->alg.base.cra_blocksize = XTS_BLO 313 inst->alg.base.cra_blocksize = XTS_BLOCK_SIZE; 427 inst->alg.base.cra_alignmask = alg->ba 314 inst->alg.base.cra_alignmask = alg->base.cra_alignmask | 428 (__alig 315 (__alignof__(u64) - 1); 429 316 430 inst->alg.ivsize = XTS_BLOCK_SIZE; 317 inst->alg.ivsize = XTS_BLOCK_SIZE; 431 inst->alg.min_keysize = alg->min_keysi !! 318 inst->alg.min_keysize = crypto_skcipher_alg_min_keysize(alg) * 2; 432 inst->alg.max_keysize = alg->max_keysi !! 319 inst->alg.max_keysize = crypto_skcipher_alg_max_keysize(alg) * 2; 433 320 434 inst->alg.base.cra_ctxsize = sizeof(st !! 321 inst->alg.base.cra_ctxsize = sizeof(struct priv); 435 322 436 inst->alg.init = xts_init_tfm; !! 323 inst->alg.init = init_tfm; 437 inst->alg.exit = xts_exit_tfm; !! 324 inst->alg.exit = exit_tfm; 438 325 439 inst->alg.setkey = xts_setkey; !! 326 inst->alg.setkey = setkey; 440 inst->alg.encrypt = xts_encrypt; !! 327 inst->alg.encrypt = encrypt; 441 inst->alg.decrypt = xts_decrypt; !! 328 inst->alg.decrypt = decrypt; 442 329 443 inst->free = xts_free_instance; !! 330 inst->free = free; 444 331 445 err = skcipher_register_instance(tmpl, 332 err = skcipher_register_instance(tmpl, inst); 446 if (err) { !! 333 if (err) 447 err_free_inst: !! 334 goto err_drop_spawn; 448 xts_free_instance(inst); !! 335 449 } !! 336 out: 450 return err; 337 return err; >> 338 >> 339 err_drop_spawn: >> 340 crypto_drop_skcipher(&ctx->spawn); >> 341 err_free_inst: >> 342 kfree(inst); >> 343 goto out; 451 } 344 } 452 345 453 static struct crypto_template xts_tmpl = { !! 346 static struct crypto_template crypto_tmpl = { 454 .name = "xts", 347 .name = "xts", 455 .create = xts_create, !! 348 .create = create, 456 .module = THIS_MODULE, 349 .module = THIS_MODULE, 457 }; 350 }; 458 351 459 static int __init xts_module_init(void) !! 352 static int __init crypto_module_init(void) 460 { 353 { 461 return crypto_register_template(&xts_t !! 354 return crypto_register_template(&crypto_tmpl); 462 } 355 } 463 356 464 static void __exit xts_module_exit(void) !! 357 static void __exit crypto_module_exit(void) 465 { 358 { 466 crypto_unregister_template(&xts_tmpl); !! 359 crypto_unregister_template(&crypto_tmpl); 467 } 360 } 468 361 469 subsys_initcall(xts_module_init); !! 362 subsys_initcall(crypto_module_init); 470 module_exit(xts_module_exit); !! 363 module_exit(crypto_module_exit); 471 364 472 MODULE_LICENSE("GPL"); 365 MODULE_LICENSE("GPL"); 473 MODULE_DESCRIPTION("XTS block cipher mode"); 366 MODULE_DESCRIPTION("XTS block cipher mode"); 474 MODULE_ALIAS_CRYPTO("xts"); 367 MODULE_ALIAS_CRYPTO("xts"); 475 MODULE_IMPORT_NS(CRYPTO_INTERNAL); << 476 MODULE_SOFTDEP("pre: ecb"); << 477 368
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.