1 // SPDX-License-Identifier: GPL-2.0-or-later 1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* XTS: as defined in IEEE1619/D16 2 /* XTS: as defined in IEEE1619/D16 3 * http://grouper.ieee.org/groups/1619/em 3 * http://grouper.ieee.org/groups/1619/email/pdf00086.pdf 4 * 4 * 5 * Copyright (c) 2007 Rik Snel <rsnel@cube.dyn 5 * Copyright (c) 2007 Rik Snel <rsnel@cube.dyndns.org> 6 * 6 * 7 * Based on ecb.c 7 * Based on ecb.c 8 * Copyright (c) 2006 Herbert Xu <herbert@gond 8 * Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au> 9 */ 9 */ 10 #include <crypto/internal/cipher.h> << 11 #include <crypto/internal/skcipher.h> 10 #include <crypto/internal/skcipher.h> 12 #include <crypto/scatterwalk.h> 11 #include <crypto/scatterwalk.h> 13 #include <linux/err.h> 12 #include <linux/err.h> 14 #include <linux/init.h> 13 #include <linux/init.h> 15 #include <linux/kernel.h> 14 #include <linux/kernel.h> 16 #include <linux/module.h> 15 #include <linux/module.h> 17 #include <linux/scatterlist.h> 16 #include <linux/scatterlist.h> 18 #include <linux/slab.h> 17 #include <linux/slab.h> 19 18 20 #include <crypto/xts.h> 19 #include <crypto/xts.h> 21 #include <crypto/b128ops.h> 20 #include <crypto/b128ops.h> 22 #include <crypto/gf128mul.h> 21 #include <crypto/gf128mul.h> 23 22 24 struct xts_tfm_ctx { !! 23 struct priv { 25 struct crypto_skcipher *child; 24 struct crypto_skcipher *child; 26 struct crypto_cipher *tweak; 25 struct crypto_cipher *tweak; 27 }; 26 }; 28 27 29 struct xts_instance_ctx { 28 struct xts_instance_ctx { 30 struct crypto_skcipher_spawn spawn; 29 struct crypto_skcipher_spawn spawn; 31 struct crypto_cipher_spawn tweak_spawn !! 30 char name[CRYPTO_MAX_ALG_NAME]; 32 }; 31 }; 33 32 34 struct xts_request_ctx { !! 33 struct rctx { 35 le128 t; 34 le128 t; 36 struct scatterlist *tail; 35 struct scatterlist *tail; 37 struct scatterlist sg[2]; 36 struct scatterlist sg[2]; 38 struct skcipher_request subreq; 37 struct skcipher_request subreq; 39 }; 38 }; 40 39 41 static int xts_setkey(struct crypto_skcipher * !! 40 static int setkey(struct crypto_skcipher *parent, const u8 *key, 42 unsigned int keylen) !! 41 unsigned int keylen) 43 { 42 { 44 struct xts_tfm_ctx *ctx = crypto_skcip !! 43 struct priv *ctx = crypto_skcipher_ctx(parent); 45 struct crypto_skcipher *child; 44 struct crypto_skcipher *child; 46 struct crypto_cipher *tweak; 45 struct crypto_cipher *tweak; 47 int err; 46 int err; 48 47 49 err = xts_verify_key(parent, key, keyl 48 err = xts_verify_key(parent, key, keylen); 50 if (err) 49 if (err) 51 return err; 50 return err; 52 51 53 keylen /= 2; 52 keylen /= 2; 54 53 55 /* we need two cipher instances: one t 54 /* we need two cipher instances: one to compute the initial 'tweak' 56 * by encrypting the IV (usually the ' 55 * by encrypting the IV (usually the 'plain' iv) and the other 57 * one to encrypt and decrypt the data 56 * one to encrypt and decrypt the data */ 58 57 59 /* tweak cipher, uses Key2 i.e. the se 58 /* tweak cipher, uses Key2 i.e. the second half of *key */ 60 tweak = ctx->tweak; 59 tweak = ctx->tweak; 61 crypto_cipher_clear_flags(tweak, CRYPT 60 crypto_cipher_clear_flags(tweak, CRYPTO_TFM_REQ_MASK); 62 crypto_cipher_set_flags(tweak, crypto_ 61 crypto_cipher_set_flags(tweak, crypto_skcipher_get_flags(parent) & 63 CRYPTO_ 62 CRYPTO_TFM_REQ_MASK); 64 err = crypto_cipher_setkey(tweak, key 63 err = crypto_cipher_setkey(tweak, key + keylen, keylen); >> 64 crypto_skcipher_set_flags(parent, crypto_cipher_get_flags(tweak) & >> 65 CRYPTO_TFM_RES_MASK); 65 if (err) 66 if (err) 66 return err; 67 return err; 67 68 68 /* data cipher, uses Key1 i.e. the fir 69 /* data cipher, uses Key1 i.e. the first half of *key */ 69 child = ctx->child; 70 child = ctx->child; 70 crypto_skcipher_clear_flags(child, CRY 71 crypto_skcipher_clear_flags(child, CRYPTO_TFM_REQ_MASK); 71 crypto_skcipher_set_flags(child, crypt 72 crypto_skcipher_set_flags(child, crypto_skcipher_get_flags(parent) & 72 CRYPT 73 CRYPTO_TFM_REQ_MASK); 73 return crypto_skcipher_setkey(child, k !! 74 err = crypto_skcipher_setkey(child, key, keylen); >> 75 crypto_skcipher_set_flags(parent, crypto_skcipher_get_flags(child) & >> 76 CRYPTO_TFM_RES_MASK); >> 77 >> 78 return err; 74 } 79 } 75 80 76 /* 81 /* 77 * We compute the tweak masks twice (both befo 82 * We compute the tweak masks twice (both before and after the ECB encryption or 78 * decryption) to avoid having to allocate a t 83 * decryption) to avoid having to allocate a temporary buffer and/or make 79 * mutliple calls to the 'ecb(..)' instance, w 84 * mutliple calls to the 'ecb(..)' instance, which usually would be slower than 80 * just doing the gf128mul_x_ble() calls again 85 * just doing the gf128mul_x_ble() calls again. 81 */ 86 */ 82 static int xts_xor_tweak(struct skcipher_reque !! 87 static int xor_tweak(struct skcipher_request *req, bool second_pass, bool enc) 83 bool enc) << 84 { 88 { 85 struct xts_request_ctx *rctx = skciphe !! 89 struct rctx *rctx = skcipher_request_ctx(req); 86 struct crypto_skcipher *tfm = crypto_s 90 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); 87 const bool cts = (req->cryptlen % XTS_ 91 const bool cts = (req->cryptlen % XTS_BLOCK_SIZE); 88 const int bs = XTS_BLOCK_SIZE; 92 const int bs = XTS_BLOCK_SIZE; 89 struct skcipher_walk w; 93 struct skcipher_walk w; 90 le128 t = rctx->t; 94 le128 t = rctx->t; 91 int err; 95 int err; 92 96 93 if (second_pass) { 97 if (second_pass) { 94 req = &rctx->subreq; 98 req = &rctx->subreq; 95 /* set to our TFM to enforce c 99 /* set to our TFM to enforce correct alignment: */ 96 skcipher_request_set_tfm(req, 100 skcipher_request_set_tfm(req, tfm); 97 } 101 } 98 err = skcipher_walk_virt(&w, req, fals 102 err = skcipher_walk_virt(&w, req, false); 99 103 100 while (w.nbytes) { 104 while (w.nbytes) { 101 unsigned int avail = w.nbytes; 105 unsigned int avail = w.nbytes; 102 le128 *wsrc; 106 le128 *wsrc; 103 le128 *wdst; 107 le128 *wdst; 104 108 105 wsrc = w.src.virt.addr; 109 wsrc = w.src.virt.addr; 106 wdst = w.dst.virt.addr; 110 wdst = w.dst.virt.addr; 107 111 108 do { 112 do { 109 if (unlikely(cts) && 113 if (unlikely(cts) && 110 w.total - w.nbytes 114 w.total - w.nbytes + avail < 2 * XTS_BLOCK_SIZE) { 111 if (!enc) { 115 if (!enc) { 112 if (se 116 if (second_pass) 113 117 rctx->t = t; 114 gf128m 118 gf128mul_x_ble(&t, &t); 115 } 119 } 116 le128_xor(wdst 120 le128_xor(wdst, &t, wsrc); 117 if (enc && sec 121 if (enc && second_pass) 118 gf128m 122 gf128mul_x_ble(&rctx->t, &t); 119 skcipher_walk_ 123 skcipher_walk_done(&w, avail - bs); 120 return 0; 124 return 0; 121 } 125 } 122 126 123 le128_xor(wdst++, &t, 127 le128_xor(wdst++, &t, wsrc++); 124 gf128mul_x_ble(&t, &t) 128 gf128mul_x_ble(&t, &t); 125 } while ((avail -= bs) >= bs); 129 } while ((avail -= bs) >= bs); 126 130 127 err = skcipher_walk_done(&w, a 131 err = skcipher_walk_done(&w, avail); 128 } 132 } 129 133 130 return err; 134 return err; 131 } 135 } 132 136 133 static int xts_xor_tweak_pre(struct skcipher_r !! 137 static int xor_tweak_pre(struct skcipher_request *req, bool enc) 134 { 138 { 135 return xts_xor_tweak(req, false, enc); !! 139 return xor_tweak(req, false, enc); 136 } 140 } 137 141 138 static int xts_xor_tweak_post(struct skcipher_ !! 142 static int xor_tweak_post(struct skcipher_request *req, bool enc) 139 { 143 { 140 return xts_xor_tweak(req, true, enc); !! 144 return xor_tweak(req, true, enc); 141 } 145 } 142 146 143 static void xts_cts_done(void *data, int err) !! 147 static void cts_done(struct crypto_async_request *areq, int err) 144 { 148 { 145 struct skcipher_request *req = data; !! 149 struct skcipher_request *req = areq->data; 146 le128 b; 150 le128 b; 147 151 148 if (!err) { 152 if (!err) { 149 struct xts_request_ctx *rctx = !! 153 struct rctx *rctx = skcipher_request_ctx(req); 150 154 151 scatterwalk_map_and_copy(&b, r 155 scatterwalk_map_and_copy(&b, rctx->tail, 0, XTS_BLOCK_SIZE, 0); 152 le128_xor(&b, &rctx->t, &b); 156 le128_xor(&b, &rctx->t, &b); 153 scatterwalk_map_and_copy(&b, r 157 scatterwalk_map_and_copy(&b, rctx->tail, 0, XTS_BLOCK_SIZE, 1); 154 } 158 } 155 159 156 skcipher_request_complete(req, err); 160 skcipher_request_complete(req, err); 157 } 161 } 158 162 159 static int xts_cts_final(struct skcipher_reque !! 163 static int cts_final(struct skcipher_request *req, 160 int (*crypt)(struct s !! 164 int (*crypt)(struct skcipher_request *req)) 161 { 165 { 162 const struct xts_tfm_ctx *ctx = !! 166 struct priv *ctx = crypto_skcipher_ctx(crypto_skcipher_reqtfm(req)); 163 crypto_skcipher_ctx(crypto_skc << 164 int offset = req->cryptlen & ~(XTS_BLO 167 int offset = req->cryptlen & ~(XTS_BLOCK_SIZE - 1); 165 struct xts_request_ctx *rctx = skciphe !! 168 struct rctx *rctx = skcipher_request_ctx(req); 166 struct skcipher_request *subreq = &rct 169 struct skcipher_request *subreq = &rctx->subreq; 167 int tail = req->cryptlen % XTS_BLOCK_S 170 int tail = req->cryptlen % XTS_BLOCK_SIZE; 168 le128 b[2]; 171 le128 b[2]; 169 int err; 172 int err; 170 173 171 rctx->tail = scatterwalk_ffwd(rctx->sg 174 rctx->tail = scatterwalk_ffwd(rctx->sg, req->dst, 172 offset - 175 offset - XTS_BLOCK_SIZE); 173 176 174 scatterwalk_map_and_copy(b, rctx->tail 177 scatterwalk_map_and_copy(b, rctx->tail, 0, XTS_BLOCK_SIZE, 0); 175 b[1] = b[0]; !! 178 memcpy(b + 1, b, tail); 176 scatterwalk_map_and_copy(b, req->src, 179 scatterwalk_map_and_copy(b, req->src, offset, tail, 0); 177 180 178 le128_xor(b, &rctx->t, b); 181 le128_xor(b, &rctx->t, b); 179 182 180 scatterwalk_map_and_copy(b, rctx->tail 183 scatterwalk_map_and_copy(b, rctx->tail, 0, XTS_BLOCK_SIZE + tail, 1); 181 184 182 skcipher_request_set_tfm(subreq, ctx-> 185 skcipher_request_set_tfm(subreq, ctx->child); 183 skcipher_request_set_callback(subreq, !! 186 skcipher_request_set_callback(subreq, req->base.flags, cts_done, req); 184 req); << 185 skcipher_request_set_crypt(subreq, rct 187 skcipher_request_set_crypt(subreq, rctx->tail, rctx->tail, 186 XTS_BLOCK_S 188 XTS_BLOCK_SIZE, NULL); 187 189 188 err = crypt(subreq); 190 err = crypt(subreq); 189 if (err) 191 if (err) 190 return err; 192 return err; 191 193 192 scatterwalk_map_and_copy(b, rctx->tail 194 scatterwalk_map_and_copy(b, rctx->tail, 0, XTS_BLOCK_SIZE, 0); 193 le128_xor(b, &rctx->t, b); 195 le128_xor(b, &rctx->t, b); 194 scatterwalk_map_and_copy(b, rctx->tail 196 scatterwalk_map_and_copy(b, rctx->tail, 0, XTS_BLOCK_SIZE, 1); 195 197 196 return 0; 198 return 0; 197 } 199 } 198 200 199 static void xts_encrypt_done(void *data, int e !! 201 static void encrypt_done(struct crypto_async_request *areq, int err) 200 { 202 { 201 struct skcipher_request *req = data; !! 203 struct skcipher_request *req = areq->data; 202 204 203 if (!err) { 205 if (!err) { 204 struct xts_request_ctx *rctx = !! 206 struct rctx *rctx = skcipher_request_ctx(req); 205 207 206 rctx->subreq.base.flags &= CRY !! 208 rctx->subreq.base.flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP; 207 err = xts_xor_tweak_post(req, !! 209 err = xor_tweak_post(req, true); 208 210 209 if (!err && unlikely(req->cryp 211 if (!err && unlikely(req->cryptlen % XTS_BLOCK_SIZE)) { 210 err = xts_cts_final(re !! 212 err = cts_final(req, crypto_skcipher_encrypt); 211 if (err == -EINPROGRES !! 213 if (err == -EINPROGRESS) 212 return; 214 return; 213 } 215 } 214 } 216 } 215 217 216 skcipher_request_complete(req, err); 218 skcipher_request_complete(req, err); 217 } 219 } 218 220 219 static void xts_decrypt_done(void *data, int e !! 221 static void decrypt_done(struct crypto_async_request *areq, int err) 220 { 222 { 221 struct skcipher_request *req = data; !! 223 struct skcipher_request *req = areq->data; 222 224 223 if (!err) { 225 if (!err) { 224 struct xts_request_ctx *rctx = !! 226 struct rctx *rctx = skcipher_request_ctx(req); 225 227 226 rctx->subreq.base.flags &= CRY !! 228 rctx->subreq.base.flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP; 227 err = xts_xor_tweak_post(req, !! 229 err = xor_tweak_post(req, false); 228 230 229 if (!err && unlikely(req->cryp 231 if (!err && unlikely(req->cryptlen % XTS_BLOCK_SIZE)) { 230 err = xts_cts_final(re !! 232 err = cts_final(req, crypto_skcipher_decrypt); 231 if (err == -EINPROGRES !! 233 if (err == -EINPROGRESS) 232 return; 234 return; 233 } 235 } 234 } 236 } 235 237 236 skcipher_request_complete(req, err); 238 skcipher_request_complete(req, err); 237 } 239 } 238 240 239 static int xts_init_crypt(struct skcipher_requ !! 241 static int init_crypt(struct skcipher_request *req, crypto_completion_t compl) 240 crypto_completion_t << 241 { 242 { 242 const struct xts_tfm_ctx *ctx = !! 243 struct priv *ctx = crypto_skcipher_ctx(crypto_skcipher_reqtfm(req)); 243 crypto_skcipher_ctx(crypto_skc !! 244 struct rctx *rctx = skcipher_request_ctx(req); 244 struct xts_request_ctx *rctx = skciphe << 245 struct skcipher_request *subreq = &rct 245 struct skcipher_request *subreq = &rctx->subreq; 246 246 247 if (req->cryptlen < XTS_BLOCK_SIZE) 247 if (req->cryptlen < XTS_BLOCK_SIZE) 248 return -EINVAL; 248 return -EINVAL; 249 249 250 skcipher_request_set_tfm(subreq, ctx-> 250 skcipher_request_set_tfm(subreq, ctx->child); 251 skcipher_request_set_callback(subreq, 251 skcipher_request_set_callback(subreq, req->base.flags, compl, req); 252 skcipher_request_set_crypt(subreq, req 252 skcipher_request_set_crypt(subreq, req->dst, req->dst, 253 req->cryptl 253 req->cryptlen & ~(XTS_BLOCK_SIZE - 1), NULL); 254 254 255 /* calculate first value of T */ 255 /* calculate first value of T */ 256 crypto_cipher_encrypt_one(ctx->tweak, 256 crypto_cipher_encrypt_one(ctx->tweak, (u8 *)&rctx->t, req->iv); 257 257 258 return 0; 258 return 0; 259 } 259 } 260 260 261 static int xts_encrypt(struct skcipher_request !! 261 static int encrypt(struct skcipher_request *req) 262 { 262 { 263 struct xts_request_ctx *rctx = skciphe !! 263 struct rctx *rctx = skcipher_request_ctx(req); 264 struct skcipher_request *subreq = &rct 264 struct skcipher_request *subreq = &rctx->subreq; 265 int err; 265 int err; 266 266 267 err = xts_init_crypt(req, xts_encrypt_ !! 267 err = init_crypt(req, encrypt_done) ?: 268 xts_xor_tweak_pre(req, true) ?: !! 268 xor_tweak_pre(req, true) ?: 269 crypto_skcipher_encrypt(subreq) 269 crypto_skcipher_encrypt(subreq) ?: 270 xts_xor_tweak_post(req, true); !! 270 xor_tweak_post(req, true); 271 271 272 if (err || likely((req->cryptlen % XTS 272 if (err || likely((req->cryptlen % XTS_BLOCK_SIZE) == 0)) 273 return err; 273 return err; 274 274 275 return xts_cts_final(req, crypto_skcip !! 275 return cts_final(req, crypto_skcipher_encrypt); 276 } 276 } 277 277 278 static int xts_decrypt(struct skcipher_request !! 278 static int decrypt(struct skcipher_request *req) 279 { 279 { 280 struct xts_request_ctx *rctx = skciphe !! 280 struct rctx *rctx = skcipher_request_ctx(req); 281 struct skcipher_request *subreq = &rct 281 struct skcipher_request *subreq = &rctx->subreq; 282 int err; 282 int err; 283 283 284 err = xts_init_crypt(req, xts_decrypt_ !! 284 err = init_crypt(req, decrypt_done) ?: 285 xts_xor_tweak_pre(req, false) ?: !! 285 xor_tweak_pre(req, false) ?: 286 crypto_skcipher_decrypt(subreq) 286 crypto_skcipher_decrypt(subreq) ?: 287 xts_xor_tweak_post(req, false); !! 287 xor_tweak_post(req, false); 288 288 289 if (err || likely((req->cryptlen % XTS 289 if (err || likely((req->cryptlen % XTS_BLOCK_SIZE) == 0)) 290 return err; 290 return err; 291 291 292 return xts_cts_final(req, crypto_skcip !! 292 return cts_final(req, crypto_skcipher_decrypt); 293 } 293 } 294 294 295 static int xts_init_tfm(struct crypto_skcipher !! 295 static int init_tfm(struct crypto_skcipher *tfm) 296 { 296 { 297 struct skcipher_instance *inst = skcip 297 struct skcipher_instance *inst = skcipher_alg_instance(tfm); 298 struct xts_instance_ctx *ictx = skciph 298 struct xts_instance_ctx *ictx = skcipher_instance_ctx(inst); 299 struct xts_tfm_ctx *ctx = crypto_skcip !! 299 struct priv *ctx = crypto_skcipher_ctx(tfm); 300 struct crypto_skcipher *child; 300 struct crypto_skcipher *child; 301 struct crypto_cipher *tweak; 301 struct crypto_cipher *tweak; 302 302 303 child = crypto_spawn_skcipher(&ictx->s 303 child = crypto_spawn_skcipher(&ictx->spawn); 304 if (IS_ERR(child)) 304 if (IS_ERR(child)) 305 return PTR_ERR(child); 305 return PTR_ERR(child); 306 306 307 ctx->child = child; 307 ctx->child = child; 308 308 309 tweak = crypto_spawn_cipher(&ictx->twe !! 309 tweak = crypto_alloc_cipher(ictx->name, 0, 0); 310 if (IS_ERR(tweak)) { 310 if (IS_ERR(tweak)) { 311 crypto_free_skcipher(ctx->chil 311 crypto_free_skcipher(ctx->child); 312 return PTR_ERR(tweak); 312 return PTR_ERR(tweak); 313 } 313 } 314 314 315 ctx->tweak = tweak; 315 ctx->tweak = tweak; 316 316 317 crypto_skcipher_set_reqsize(tfm, crypt 317 crypto_skcipher_set_reqsize(tfm, crypto_skcipher_reqsize(child) + 318 sizeo !! 318 sizeof(struct rctx)); 319 319 320 return 0; 320 return 0; 321 } 321 } 322 322 323 static void xts_exit_tfm(struct crypto_skciphe !! 323 static void exit_tfm(struct crypto_skcipher *tfm) 324 { 324 { 325 struct xts_tfm_ctx *ctx = crypto_skcip !! 325 struct priv *ctx = crypto_skcipher_ctx(tfm); 326 326 327 crypto_free_skcipher(ctx->child); 327 crypto_free_skcipher(ctx->child); 328 crypto_free_cipher(ctx->tweak); 328 crypto_free_cipher(ctx->tweak); 329 } 329 } 330 330 331 static void xts_free_instance(struct skcipher_ !! 331 static void free(struct skcipher_instance *inst) 332 { 332 { 333 struct xts_instance_ctx *ictx = skciph !! 333 crypto_drop_skcipher(skcipher_instance_ctx(inst)); 334 << 335 crypto_drop_skcipher(&ictx->spawn); << 336 crypto_drop_cipher(&ictx->tweak_spawn) << 337 kfree(inst); 334 kfree(inst); 338 } 335 } 339 336 340 static int xts_create(struct crypto_template * !! 337 static int create(struct crypto_template *tmpl, struct rtattr **tb) 341 { 338 { 342 struct skcipher_alg_common *alg; << 343 char name[CRYPTO_MAX_ALG_NAME]; << 344 struct skcipher_instance *inst; 339 struct skcipher_instance *inst; >> 340 struct crypto_attr_type *algt; 345 struct xts_instance_ctx *ctx; 341 struct xts_instance_ctx *ctx; >> 342 struct skcipher_alg *alg; 346 const char *cipher_name; 343 const char *cipher_name; 347 u32 mask; 344 u32 mask; 348 int err; 345 int err; 349 346 350 err = crypto_check_attr_type(tb, CRYPT !! 347 algt = crypto_get_attr_type(tb); 351 if (err) !! 348 if (IS_ERR(algt)) 352 return err; !! 349 return PTR_ERR(algt); >> 350 >> 351 if ((algt->type ^ CRYPTO_ALG_TYPE_SKCIPHER) & algt->mask) >> 352 return -EINVAL; 353 353 354 cipher_name = crypto_attr_alg_name(tb[ 354 cipher_name = crypto_attr_alg_name(tb[1]); 355 if (IS_ERR(cipher_name)) 355 if (IS_ERR(cipher_name)) 356 return PTR_ERR(cipher_name); 356 return PTR_ERR(cipher_name); 357 357 358 inst = kzalloc(sizeof(*inst) + sizeof( 358 inst = kzalloc(sizeof(*inst) + sizeof(*ctx), GFP_KERNEL); 359 if (!inst) 359 if (!inst) 360 return -ENOMEM; 360 return -ENOMEM; 361 361 362 ctx = skcipher_instance_ctx(inst); 362 ctx = skcipher_instance_ctx(inst); 363 363 364 err = crypto_grab_skcipher(&ctx->spawn !! 364 crypto_set_skcipher_spawn(&ctx->spawn, skcipher_crypto_instance(inst)); 365 cipher_name !! 365 >> 366 mask = crypto_requires_off(algt->type, algt->mask, >> 367 CRYPTO_ALG_NEED_FALLBACK | >> 368 CRYPTO_ALG_ASYNC); >> 369 >> 370 err = crypto_grab_skcipher(&ctx->spawn, cipher_name, 0, mask); 366 if (err == -ENOENT) { 371 if (err == -ENOENT) { 367 err = -ENAMETOOLONG; 372 err = -ENAMETOOLONG; 368 if (snprintf(name, CRYPTO_MAX_ !! 373 if (snprintf(ctx->name, CRYPTO_MAX_ALG_NAME, "ecb(%s)", 369 cipher_name) >= C 374 cipher_name) >= CRYPTO_MAX_ALG_NAME) 370 goto err_free_inst; 375 goto err_free_inst; 371 376 372 err = crypto_grab_skcipher(&ct !! 377 err = crypto_grab_skcipher(&ctx->spawn, ctx->name, 0, mask); 373 skc << 374 nam << 375 } 378 } 376 379 377 if (err) 380 if (err) 378 goto err_free_inst; 381 goto err_free_inst; 379 382 380 alg = crypto_spawn_skcipher_alg_common !! 383 alg = crypto_skcipher_spawn_alg(&ctx->spawn); 381 384 382 err = -EINVAL; 385 err = -EINVAL; 383 if (alg->base.cra_blocksize != XTS_BLO 386 if (alg->base.cra_blocksize != XTS_BLOCK_SIZE) 384 goto err_free_inst; !! 387 goto err_drop_spawn; 385 388 386 if (alg->ivsize) !! 389 if (crypto_skcipher_alg_ivsize(alg)) 387 goto err_free_inst; !! 390 goto err_drop_spawn; 388 391 389 err = crypto_inst_setname(skcipher_cry 392 err = crypto_inst_setname(skcipher_crypto_instance(inst), "xts", 390 &alg->base); 393 &alg->base); 391 if (err) 394 if (err) 392 goto err_free_inst; !! 395 goto err_drop_spawn; 393 396 394 err = -EINVAL; 397 err = -EINVAL; 395 cipher_name = alg->base.cra_name; 398 cipher_name = alg->base.cra_name; 396 399 397 /* Alas we screwed up the naming so we 400 /* Alas we screwed up the naming so we have to mangle the 398 * cipher name. 401 * cipher name. 399 */ 402 */ 400 if (!strncmp(cipher_name, "ecb(", 4)) 403 if (!strncmp(cipher_name, "ecb(", 4)) { 401 int len; !! 404 unsigned len; 402 405 403 len = strscpy(name, cipher_nam !! 406 len = strlcpy(ctx->name, cipher_name + 4, sizeof(ctx->name)); 404 if (len < 2) !! 407 if (len < 2 || len >= sizeof(ctx->name)) 405 goto err_free_inst; !! 408 goto err_drop_spawn; 406 409 407 if (name[len - 1] != ')') !! 410 if (ctx->name[len - 1] != ')') 408 goto err_free_inst; !! 411 goto err_drop_spawn; 409 412 410 name[len - 1] = 0; !! 413 ctx->name[len - 1] = 0; 411 414 412 if (snprintf(inst->alg.base.cr 415 if (snprintf(inst->alg.base.cra_name, CRYPTO_MAX_ALG_NAME, 413 "xts(%s)", name) !! 416 "xts(%s)", ctx->name) >= CRYPTO_MAX_ALG_NAME) { 414 err = -ENAMETOOLONG; 417 err = -ENAMETOOLONG; 415 goto err_free_inst; !! 418 goto err_drop_spawn; 416 } 419 } 417 } else 420 } else 418 goto err_free_inst; !! 421 goto err_drop_spawn; 419 << 420 err = crypto_grab_cipher(&ctx->tweak_s << 421 skcipher_cryp << 422 if (err) << 423 goto err_free_inst; << 424 422 >> 423 inst->alg.base.cra_flags = alg->base.cra_flags & CRYPTO_ALG_ASYNC; 425 inst->alg.base.cra_priority = alg->bas 424 inst->alg.base.cra_priority = alg->base.cra_priority; 426 inst->alg.base.cra_blocksize = XTS_BLO 425 inst->alg.base.cra_blocksize = XTS_BLOCK_SIZE; 427 inst->alg.base.cra_alignmask = alg->ba 426 inst->alg.base.cra_alignmask = alg->base.cra_alignmask | 428 (__alig 427 (__alignof__(u64) - 1); 429 428 430 inst->alg.ivsize = XTS_BLOCK_SIZE; 429 inst->alg.ivsize = XTS_BLOCK_SIZE; 431 inst->alg.min_keysize = alg->min_keysi !! 430 inst->alg.min_keysize = crypto_skcipher_alg_min_keysize(alg) * 2; 432 inst->alg.max_keysize = alg->max_keysi !! 431 inst->alg.max_keysize = crypto_skcipher_alg_max_keysize(alg) * 2; 433 432 434 inst->alg.base.cra_ctxsize = sizeof(st !! 433 inst->alg.base.cra_ctxsize = sizeof(struct priv); 435 434 436 inst->alg.init = xts_init_tfm; !! 435 inst->alg.init = init_tfm; 437 inst->alg.exit = xts_exit_tfm; !! 436 inst->alg.exit = exit_tfm; 438 437 439 inst->alg.setkey = xts_setkey; !! 438 inst->alg.setkey = setkey; 440 inst->alg.encrypt = xts_encrypt; !! 439 inst->alg.encrypt = encrypt; 441 inst->alg.decrypt = xts_decrypt; !! 440 inst->alg.decrypt = decrypt; 442 441 443 inst->free = xts_free_instance; !! 442 inst->free = free; 444 443 445 err = skcipher_register_instance(tmpl, 444 err = skcipher_register_instance(tmpl, inst); 446 if (err) { !! 445 if (err) 447 err_free_inst: !! 446 goto err_drop_spawn; 448 xts_free_instance(inst); !! 447 449 } !! 448 out: 450 return err; 449 return err; >> 450 >> 451 err_drop_spawn: >> 452 crypto_drop_skcipher(&ctx->spawn); >> 453 err_free_inst: >> 454 kfree(inst); >> 455 goto out; 451 } 456 } 452 457 453 static struct crypto_template xts_tmpl = { !! 458 static struct crypto_template crypto_tmpl = { 454 .name = "xts", 459 .name = "xts", 455 .create = xts_create, !! 460 .create = create, 456 .module = THIS_MODULE, 461 .module = THIS_MODULE, 457 }; 462 }; 458 463 459 static int __init xts_module_init(void) !! 464 static int __init crypto_module_init(void) 460 { 465 { 461 return crypto_register_template(&xts_t !! 466 return crypto_register_template(&crypto_tmpl); 462 } 467 } 463 468 464 static void __exit xts_module_exit(void) !! 469 static void __exit crypto_module_exit(void) 465 { 470 { 466 crypto_unregister_template(&xts_tmpl); !! 471 crypto_unregister_template(&crypto_tmpl); 467 } 472 } 468 473 469 subsys_initcall(xts_module_init); !! 474 subsys_initcall(crypto_module_init); 470 module_exit(xts_module_exit); !! 475 module_exit(crypto_module_exit); 471 476 472 MODULE_LICENSE("GPL"); 477 MODULE_LICENSE("GPL"); 473 MODULE_DESCRIPTION("XTS block cipher mode"); 478 MODULE_DESCRIPTION("XTS block cipher mode"); 474 MODULE_ALIAS_CRYPTO("xts"); 479 MODULE_ALIAS_CRYPTO("xts"); 475 MODULE_IMPORT_NS(CRYPTO_INTERNAL); << 476 MODULE_SOFTDEP("pre: ecb"); << 477 480
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.