1 // SPDX-License-Identifier: GPL-2.0-or-later 1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* AFS Cache Manager Service 2 /* AFS Cache Manager Service 3 * 3 * 4 * Copyright (C) 2002 Red Hat, Inc. All Rights 4 * Copyright (C) 2002 Red Hat, Inc. All Rights Reserved. 5 * Written by David Howells (dhowells@redhat.c 5 * Written by David Howells (dhowells@redhat.com) 6 */ 6 */ 7 7 8 #include <linux/module.h> 8 #include <linux/module.h> 9 #include <linux/init.h> 9 #include <linux/init.h> 10 #include <linux/slab.h> 10 #include <linux/slab.h> 11 #include <linux/sched.h> 11 #include <linux/sched.h> 12 #include <linux/ip.h> 12 #include <linux/ip.h> 13 #include "internal.h" 13 #include "internal.h" 14 #include "afs_cm.h" 14 #include "afs_cm.h" 15 #include "protocol_yfs.h" 15 #include "protocol_yfs.h" 16 #define RXRPC_TRACE_ONLY_DEFINE_ENUMS 16 #define RXRPC_TRACE_ONLY_DEFINE_ENUMS 17 #include <trace/events/rxrpc.h> 17 #include <trace/events/rxrpc.h> 18 18 19 static int afs_deliver_cb_init_call_back_state 19 static int afs_deliver_cb_init_call_back_state(struct afs_call *); 20 static int afs_deliver_cb_init_call_back_state 20 static int afs_deliver_cb_init_call_back_state3(struct afs_call *); 21 static int afs_deliver_cb_probe(struct afs_cal 21 static int afs_deliver_cb_probe(struct afs_call *); 22 static int afs_deliver_cb_callback(struct afs_ 22 static int afs_deliver_cb_callback(struct afs_call *); 23 static int afs_deliver_cb_probe_uuid(struct af 23 static int afs_deliver_cb_probe_uuid(struct afs_call *); 24 static int afs_deliver_cb_tell_me_about_yourse 24 static int afs_deliver_cb_tell_me_about_yourself(struct afs_call *); 25 static void afs_cm_destructor(struct afs_call 25 static void afs_cm_destructor(struct afs_call *); 26 static void SRXAFSCB_CallBack(struct work_stru 26 static void SRXAFSCB_CallBack(struct work_struct *); 27 static void SRXAFSCB_InitCallBackState(struct 27 static void SRXAFSCB_InitCallBackState(struct work_struct *); 28 static void SRXAFSCB_Probe(struct work_struct 28 static void SRXAFSCB_Probe(struct work_struct *); 29 static void SRXAFSCB_ProbeUuid(struct work_str 29 static void SRXAFSCB_ProbeUuid(struct work_struct *); 30 static void SRXAFSCB_TellMeAboutYourself(struc 30 static void SRXAFSCB_TellMeAboutYourself(struct work_struct *); 31 31 32 static int afs_deliver_yfs_cb_callback(struct 32 static int afs_deliver_yfs_cb_callback(struct afs_call *); 33 33 34 /* 34 /* 35 * CB.CallBack operation type 35 * CB.CallBack operation type 36 */ 36 */ 37 static const struct afs_call_type afs_SRXCBCal 37 static const struct afs_call_type afs_SRXCBCallBack = { 38 .name = "CB.CallBack", 38 .name = "CB.CallBack", 39 .deliver = afs_deliver_cb_callb 39 .deliver = afs_deliver_cb_callback, 40 .destructor = afs_cm_destructor, 40 .destructor = afs_cm_destructor, 41 .work = SRXAFSCB_CallBack, 41 .work = SRXAFSCB_CallBack, 42 }; 42 }; 43 43 44 /* 44 /* 45 * CB.InitCallBackState operation type 45 * CB.InitCallBackState operation type 46 */ 46 */ 47 static const struct afs_call_type afs_SRXCBIni 47 static const struct afs_call_type afs_SRXCBInitCallBackState = { 48 .name = "CB.InitCallBackStat 48 .name = "CB.InitCallBackState", 49 .deliver = afs_deliver_cb_init_ 49 .deliver = afs_deliver_cb_init_call_back_state, 50 .destructor = afs_cm_destructor, 50 .destructor = afs_cm_destructor, 51 .work = SRXAFSCB_InitCallBac 51 .work = SRXAFSCB_InitCallBackState, 52 }; 52 }; 53 53 54 /* 54 /* 55 * CB.InitCallBackState3 operation type 55 * CB.InitCallBackState3 operation type 56 */ 56 */ 57 static const struct afs_call_type afs_SRXCBIni 57 static const struct afs_call_type afs_SRXCBInitCallBackState3 = { 58 .name = "CB.InitCallBackStat 58 .name = "CB.InitCallBackState3", 59 .deliver = afs_deliver_cb_init_ 59 .deliver = afs_deliver_cb_init_call_back_state3, 60 .destructor = afs_cm_destructor, 60 .destructor = afs_cm_destructor, 61 .work = SRXAFSCB_InitCallBac 61 .work = SRXAFSCB_InitCallBackState, 62 }; 62 }; 63 63 64 /* 64 /* 65 * CB.Probe operation type 65 * CB.Probe operation type 66 */ 66 */ 67 static const struct afs_call_type afs_SRXCBPro 67 static const struct afs_call_type afs_SRXCBProbe = { 68 .name = "CB.Probe", 68 .name = "CB.Probe", 69 .deliver = afs_deliver_cb_probe 69 .deliver = afs_deliver_cb_probe, 70 .destructor = afs_cm_destructor, 70 .destructor = afs_cm_destructor, 71 .work = SRXAFSCB_Probe, 71 .work = SRXAFSCB_Probe, 72 }; 72 }; 73 73 74 /* 74 /* 75 * CB.ProbeUuid operation type 75 * CB.ProbeUuid operation type 76 */ 76 */ 77 static const struct afs_call_type afs_SRXCBPro 77 static const struct afs_call_type afs_SRXCBProbeUuid = { 78 .name = "CB.ProbeUuid", 78 .name = "CB.ProbeUuid", 79 .deliver = afs_deliver_cb_probe 79 .deliver = afs_deliver_cb_probe_uuid, 80 .destructor = afs_cm_destructor, 80 .destructor = afs_cm_destructor, 81 .work = SRXAFSCB_ProbeUuid, 81 .work = SRXAFSCB_ProbeUuid, 82 }; 82 }; 83 83 84 /* 84 /* 85 * CB.TellMeAboutYourself operation type 85 * CB.TellMeAboutYourself operation type 86 */ 86 */ 87 static const struct afs_call_type afs_SRXCBTel 87 static const struct afs_call_type afs_SRXCBTellMeAboutYourself = { 88 .name = "CB.TellMeAboutYours 88 .name = "CB.TellMeAboutYourself", 89 .deliver = afs_deliver_cb_tell_ 89 .deliver = afs_deliver_cb_tell_me_about_yourself, 90 .destructor = afs_cm_destructor, 90 .destructor = afs_cm_destructor, 91 .work = SRXAFSCB_TellMeAbout 91 .work = SRXAFSCB_TellMeAboutYourself, 92 }; 92 }; 93 93 94 /* 94 /* 95 * YFS CB.CallBack operation type 95 * YFS CB.CallBack operation type 96 */ 96 */ 97 static const struct afs_call_type afs_SRXYFSCB 97 static const struct afs_call_type afs_SRXYFSCB_CallBack = { 98 .name = "YFSCB.CallBack", 98 .name = "YFSCB.CallBack", 99 .deliver = afs_deliver_yfs_cb_c 99 .deliver = afs_deliver_yfs_cb_callback, 100 .destructor = afs_cm_destructor, 100 .destructor = afs_cm_destructor, 101 .work = SRXAFSCB_CallBack, 101 .work = SRXAFSCB_CallBack, 102 }; 102 }; 103 103 104 /* 104 /* 105 * route an incoming cache manager call 105 * route an incoming cache manager call 106 * - return T if supported, F if not 106 * - return T if supported, F if not 107 */ 107 */ 108 bool afs_cm_incoming_call(struct afs_call *cal 108 bool afs_cm_incoming_call(struct afs_call *call) 109 { 109 { 110 _enter("{%u, CB.OP %u}", call->service 110 _enter("{%u, CB.OP %u}", call->service_id, call->operation_ID); 111 111 112 switch (call->operation_ID) { 112 switch (call->operation_ID) { 113 case CBCallBack: 113 case CBCallBack: 114 call->type = &afs_SRXCBCallBac 114 call->type = &afs_SRXCBCallBack; 115 return true; 115 return true; 116 case CBInitCallBackState: 116 case CBInitCallBackState: 117 call->type = &afs_SRXCBInitCal 117 call->type = &afs_SRXCBInitCallBackState; 118 return true; 118 return true; 119 case CBInitCallBackState3: 119 case CBInitCallBackState3: 120 call->type = &afs_SRXCBInitCal 120 call->type = &afs_SRXCBInitCallBackState3; 121 return true; 121 return true; 122 case CBProbe: 122 case CBProbe: 123 call->type = &afs_SRXCBProbe; 123 call->type = &afs_SRXCBProbe; 124 return true; 124 return true; 125 case CBProbeUuid: 125 case CBProbeUuid: 126 call->type = &afs_SRXCBProbeUu 126 call->type = &afs_SRXCBProbeUuid; 127 return true; 127 return true; 128 case CBTellMeAboutYourself: 128 case CBTellMeAboutYourself: 129 call->type = &afs_SRXCBTellMeA 129 call->type = &afs_SRXCBTellMeAboutYourself; 130 return true; 130 return true; 131 case YFSCBCallBack: 131 case YFSCBCallBack: 132 if (call->service_id != YFS_CM 132 if (call->service_id != YFS_CM_SERVICE) 133 return false; 133 return false; 134 call->type = &afs_SRXYFSCB_Cal 134 call->type = &afs_SRXYFSCB_CallBack; 135 return true; 135 return true; 136 default: 136 default: 137 return false; 137 return false; 138 } 138 } 139 } 139 } 140 140 141 /* 141 /* 142 * Find the server record by peer address and 142 * Find the server record by peer address and record a probe to the cache 143 * manager from a server. 143 * manager from a server. 144 */ 144 */ 145 static int afs_find_cm_server_by_peer(struct a 145 static int afs_find_cm_server_by_peer(struct afs_call *call) 146 { 146 { 147 struct sockaddr_rxrpc srx; 147 struct sockaddr_rxrpc srx; 148 struct afs_server *server; 148 struct afs_server *server; 149 struct rxrpc_peer *peer; 149 struct rxrpc_peer *peer; 150 150 151 peer = rxrpc_kernel_get_call_peer(call 151 peer = rxrpc_kernel_get_call_peer(call->net->socket, call->rxcall); 152 152 153 server = afs_find_server(call->net, pe 153 server = afs_find_server(call->net, peer); 154 if (!server) { 154 if (!server) { 155 trace_afs_cm_no_server(call, & 155 trace_afs_cm_no_server(call, &srx); 156 return 0; 156 return 0; 157 } 157 } 158 158 159 call->server = server; 159 call->server = server; 160 return 0; 160 return 0; 161 } 161 } 162 162 163 /* 163 /* 164 * Find the server record by server UUID and r 164 * Find the server record by server UUID and record a probe to the cache 165 * manager from a server. 165 * manager from a server. 166 */ 166 */ 167 static int afs_find_cm_server_by_uuid(struct a 167 static int afs_find_cm_server_by_uuid(struct afs_call *call, 168 struct a 168 struct afs_uuid *uuid) 169 { 169 { 170 struct afs_server *server; 170 struct afs_server *server; 171 171 172 rcu_read_lock(); 172 rcu_read_lock(); 173 server = afs_find_server_by_uuid(call- 173 server = afs_find_server_by_uuid(call->net, call->request); 174 rcu_read_unlock(); 174 rcu_read_unlock(); 175 if (!server) { 175 if (!server) { 176 trace_afs_cm_no_server_u(call, 176 trace_afs_cm_no_server_u(call, call->request); 177 return 0; 177 return 0; 178 } 178 } 179 179 180 call->server = server; 180 call->server = server; 181 return 0; 181 return 0; 182 } 182 } 183 183 184 /* 184 /* 185 * Clean up a cache manager call. 185 * Clean up a cache manager call. 186 */ 186 */ 187 static void afs_cm_destructor(struct afs_call 187 static void afs_cm_destructor(struct afs_call *call) 188 { 188 { 189 kfree(call->buffer); 189 kfree(call->buffer); 190 call->buffer = NULL; 190 call->buffer = NULL; 191 } 191 } 192 192 193 /* 193 /* 194 * Abort a service call from within an action 194 * Abort a service call from within an action function. 195 */ 195 */ 196 static void afs_abort_service_call(struct afs_ 196 static void afs_abort_service_call(struct afs_call *call, u32 abort_code, int error, 197 enum rxrpc_ 197 enum rxrpc_abort_reason why) 198 { 198 { 199 rxrpc_kernel_abort_call(call->net->soc 199 rxrpc_kernel_abort_call(call->net->socket, call->rxcall, 200 abort_code, er 200 abort_code, error, why); 201 afs_set_call_complete(call, error, 0); 201 afs_set_call_complete(call, error, 0); 202 } 202 } 203 203 204 /* 204 /* 205 * The server supplied a list of callbacks tha 205 * The server supplied a list of callbacks that it wanted to break. 206 */ 206 */ 207 static void SRXAFSCB_CallBack(struct work_stru 207 static void SRXAFSCB_CallBack(struct work_struct *work) 208 { 208 { 209 struct afs_call *call = container_of(w 209 struct afs_call *call = container_of(work, struct afs_call, work); 210 210 211 _enter(""); 211 _enter(""); 212 212 213 /* We need to break the callbacks befo 213 /* We need to break the callbacks before sending the reply as the 214 * server holds up change visibility t 214 * server holds up change visibility till it receives our reply so as 215 * to maintain cache coherency. 215 * to maintain cache coherency. 216 */ 216 */ 217 if (call->server) { 217 if (call->server) { 218 trace_afs_server(call->server- 218 trace_afs_server(call->server->debug_id, 219 refcount_read 219 refcount_read(&call->server->ref), 220 atomic_read(& 220 atomic_read(&call->server->active), 221 afs_server_tr 221 afs_server_trace_callback); 222 afs_break_callbacks(call->serv 222 afs_break_callbacks(call->server, call->count, call->request); 223 } 223 } 224 224 225 afs_send_empty_reply(call); 225 afs_send_empty_reply(call); 226 afs_put_call(call); 226 afs_put_call(call); 227 _leave(""); 227 _leave(""); 228 } 228 } 229 229 230 /* 230 /* 231 * deliver request data to a CB.CallBack call 231 * deliver request data to a CB.CallBack call 232 */ 232 */ 233 static int afs_deliver_cb_callback(struct afs_ 233 static int afs_deliver_cb_callback(struct afs_call *call) 234 { 234 { 235 struct afs_callback_break *cb; 235 struct afs_callback_break *cb; 236 __be32 *bp; 236 __be32 *bp; 237 int ret, loop; 237 int ret, loop; 238 238 239 _enter("{%u}", call->unmarshall); 239 _enter("{%u}", call->unmarshall); 240 240 241 switch (call->unmarshall) { 241 switch (call->unmarshall) { 242 case 0: 242 case 0: 243 afs_extract_to_tmp(call); 243 afs_extract_to_tmp(call); 244 call->unmarshall++; 244 call->unmarshall++; 245 245 246 /* extract the FID array and i 246 /* extract the FID array and its count in two steps */ 247 fallthrough; 247 fallthrough; 248 case 1: 248 case 1: 249 _debug("extract FID count"); 249 _debug("extract FID count"); 250 ret = afs_extract_data(call, t 250 ret = afs_extract_data(call, true); 251 if (ret < 0) 251 if (ret < 0) 252 return ret; 252 return ret; 253 253 254 call->count = ntohl(call->tmp) 254 call->count = ntohl(call->tmp); 255 _debug("FID count: %u", call-> 255 _debug("FID count: %u", call->count); 256 if (call->count > AFSCBMAX) 256 if (call->count > AFSCBMAX) 257 return afs_protocol_er 257 return afs_protocol_error(call, afs_eproto_cb_fid_count); 258 258 259 call->buffer = kmalloc(array3_ 259 call->buffer = kmalloc(array3_size(call->count, 3, 4), 260 GFP_KER 260 GFP_KERNEL); 261 if (!call->buffer) 261 if (!call->buffer) 262 return -ENOMEM; 262 return -ENOMEM; 263 afs_extract_to_buf(call, call- 263 afs_extract_to_buf(call, call->count * 3 * 4); 264 call->unmarshall++; 264 call->unmarshall++; 265 265 266 fallthrough; 266 fallthrough; 267 case 2: 267 case 2: 268 _debug("extract FID array"); 268 _debug("extract FID array"); 269 ret = afs_extract_data(call, t 269 ret = afs_extract_data(call, true); 270 if (ret < 0) 270 if (ret < 0) 271 return ret; 271 return ret; 272 272 273 _debug("unmarshall FID array") 273 _debug("unmarshall FID array"); 274 call->request = kcalloc(call-> 274 call->request = kcalloc(call->count, 275 sizeof 275 sizeof(struct afs_callback_break), 276 GFP_KE 276 GFP_KERNEL); 277 if (!call->request) 277 if (!call->request) 278 return -ENOMEM; 278 return -ENOMEM; 279 279 280 cb = call->request; 280 cb = call->request; 281 bp = call->buffer; 281 bp = call->buffer; 282 for (loop = call->count; loop 282 for (loop = call->count; loop > 0; loop--, cb++) { 283 cb->fid.vid = ntoh 283 cb->fid.vid = ntohl(*bp++); 284 cb->fid.vnode = ntoh 284 cb->fid.vnode = ntohl(*bp++); 285 cb->fid.unique = ntoh 285 cb->fid.unique = ntohl(*bp++); 286 } 286 } 287 287 288 afs_extract_to_tmp(call); 288 afs_extract_to_tmp(call); 289 call->unmarshall++; 289 call->unmarshall++; 290 290 291 /* extract the callback array 291 /* extract the callback array and its count in two steps */ 292 fallthrough; 292 fallthrough; 293 case 3: 293 case 3: 294 _debug("extract CB count"); 294 _debug("extract CB count"); 295 ret = afs_extract_data(call, t 295 ret = afs_extract_data(call, true); 296 if (ret < 0) 296 if (ret < 0) 297 return ret; 297 return ret; 298 298 299 call->count2 = ntohl(call->tmp 299 call->count2 = ntohl(call->tmp); 300 _debug("CB count: %u", call->c 300 _debug("CB count: %u", call->count2); 301 if (call->count2 != call->coun 301 if (call->count2 != call->count && call->count2 != 0) 302 return afs_protocol_er 302 return afs_protocol_error(call, afs_eproto_cb_count); 303 call->iter = &call->def_iter; 303 call->iter = &call->def_iter; 304 iov_iter_discard(&call->def_it 304 iov_iter_discard(&call->def_iter, ITER_DEST, call->count2 * 3 * 4); 305 call->unmarshall++; 305 call->unmarshall++; 306 306 307 fallthrough; 307 fallthrough; 308 case 4: 308 case 4: 309 _debug("extract discard %zu/%u 309 _debug("extract discard %zu/%u", 310 iov_iter_count(call->it 310 iov_iter_count(call->iter), call->count2 * 3 * 4); 311 311 312 ret = afs_extract_data(call, f 312 ret = afs_extract_data(call, false); 313 if (ret < 0) 313 if (ret < 0) 314 return ret; 314 return ret; 315 315 316 call->unmarshall++; 316 call->unmarshall++; 317 fallthrough; 317 fallthrough; 318 318 319 case 5: 319 case 5: 320 break; 320 break; 321 } 321 } 322 322 323 if (!afs_check_call_state(call, AFS_CA 323 if (!afs_check_call_state(call, AFS_CALL_SV_REPLYING)) 324 return afs_io_error(call, afs_ 324 return afs_io_error(call, afs_io_error_cm_reply); 325 325 326 /* we'll need the file server record a 326 /* we'll need the file server record as that tells us which set of 327 * vnodes to operate upon */ 327 * vnodes to operate upon */ 328 return afs_find_cm_server_by_peer(call 328 return afs_find_cm_server_by_peer(call); 329 } 329 } 330 330 331 /* 331 /* 332 * allow the fileserver to request callback st 332 * allow the fileserver to request callback state (re-)initialisation 333 */ 333 */ 334 static void SRXAFSCB_InitCallBackState(struct 334 static void SRXAFSCB_InitCallBackState(struct work_struct *work) 335 { 335 { 336 struct afs_call *call = container_of(w 336 struct afs_call *call = container_of(work, struct afs_call, work); 337 337 338 _enter("{%p}", call->server); 338 _enter("{%p}", call->server); 339 339 340 if (call->server) 340 if (call->server) 341 afs_init_callback_state(call-> 341 afs_init_callback_state(call->server); 342 afs_send_empty_reply(call); 342 afs_send_empty_reply(call); 343 afs_put_call(call); 343 afs_put_call(call); 344 _leave(""); 344 _leave(""); 345 } 345 } 346 346 347 /* 347 /* 348 * deliver request data to a CB.InitCallBackSt 348 * deliver request data to a CB.InitCallBackState call 349 */ 349 */ 350 static int afs_deliver_cb_init_call_back_state 350 static int afs_deliver_cb_init_call_back_state(struct afs_call *call) 351 { 351 { 352 int ret; 352 int ret; 353 353 354 _enter(""); 354 _enter(""); 355 355 356 afs_extract_discard(call, 0); 356 afs_extract_discard(call, 0); 357 ret = afs_extract_data(call, false); 357 ret = afs_extract_data(call, false); 358 if (ret < 0) 358 if (ret < 0) 359 return ret; 359 return ret; 360 360 361 /* we'll need the file server record a 361 /* we'll need the file server record as that tells us which set of 362 * vnodes to operate upon */ 362 * vnodes to operate upon */ 363 return afs_find_cm_server_by_peer(call 363 return afs_find_cm_server_by_peer(call); 364 } 364 } 365 365 366 /* 366 /* 367 * deliver request data to a CB.InitCallBackSt 367 * deliver request data to a CB.InitCallBackState3 call 368 */ 368 */ 369 static int afs_deliver_cb_init_call_back_state 369 static int afs_deliver_cb_init_call_back_state3(struct afs_call *call) 370 { 370 { 371 struct afs_uuid *r; 371 struct afs_uuid *r; 372 unsigned loop; 372 unsigned loop; 373 __be32 *b; 373 __be32 *b; 374 int ret; 374 int ret; 375 375 376 _enter(""); 376 _enter(""); 377 377 378 _enter("{%u}", call->unmarshall); 378 _enter("{%u}", call->unmarshall); 379 379 380 switch (call->unmarshall) { 380 switch (call->unmarshall) { 381 case 0: 381 case 0: 382 call->buffer = kmalloc_array(1 382 call->buffer = kmalloc_array(11, sizeof(__be32), GFP_KERNEL); 383 if (!call->buffer) 383 if (!call->buffer) 384 return -ENOMEM; 384 return -ENOMEM; 385 afs_extract_to_buf(call, 11 * 385 afs_extract_to_buf(call, 11 * sizeof(__be32)); 386 call->unmarshall++; 386 call->unmarshall++; 387 387 388 fallthrough; 388 fallthrough; 389 case 1: 389 case 1: 390 _debug("extract UUID"); 390 _debug("extract UUID"); 391 ret = afs_extract_data(call, f 391 ret = afs_extract_data(call, false); 392 switch (ret) { 392 switch (ret) { 393 case 0: break; 393 case 0: break; 394 case -EAGAIN: return 0; 394 case -EAGAIN: return 0; 395 default: return ret; 395 default: return ret; 396 } 396 } 397 397 398 _debug("unmarshall UUID"); 398 _debug("unmarshall UUID"); 399 call->request = kmalloc(sizeof 399 call->request = kmalloc(sizeof(struct afs_uuid), GFP_KERNEL); 400 if (!call->request) 400 if (!call->request) 401 return -ENOMEM; 401 return -ENOMEM; 402 402 403 b = call->buffer; 403 b = call->buffer; 404 r = call->request; 404 r = call->request; 405 r->time_low 405 r->time_low = b[0]; 406 r->time_mid 406 r->time_mid = htons(ntohl(b[1])); 407 r->time_hi_and_version 407 r->time_hi_and_version = htons(ntohl(b[2])); 408 r->clock_seq_hi_and_reserved 408 r->clock_seq_hi_and_reserved = ntohl(b[3]); 409 r->clock_seq_low 409 r->clock_seq_low = ntohl(b[4]); 410 410 411 for (loop = 0; loop < 6; loop+ 411 for (loop = 0; loop < 6; loop++) 412 r->node[loop] = ntohl( 412 r->node[loop] = ntohl(b[loop + 5]); 413 413 414 call->unmarshall++; 414 call->unmarshall++; 415 fallthrough; 415 fallthrough; 416 416 417 case 2: 417 case 2: 418 break; 418 break; 419 } 419 } 420 420 421 if (!afs_check_call_state(call, AFS_CA 421 if (!afs_check_call_state(call, AFS_CALL_SV_REPLYING)) 422 return afs_io_error(call, afs_ 422 return afs_io_error(call, afs_io_error_cm_reply); 423 423 424 /* we'll need the file server record a 424 /* we'll need the file server record as that tells us which set of 425 * vnodes to operate upon */ 425 * vnodes to operate upon */ 426 return afs_find_cm_server_by_uuid(call 426 return afs_find_cm_server_by_uuid(call, call->request); 427 } 427 } 428 428 429 /* 429 /* 430 * allow the fileserver to see if the cache ma 430 * allow the fileserver to see if the cache manager is still alive 431 */ 431 */ 432 static void SRXAFSCB_Probe(struct work_struct 432 static void SRXAFSCB_Probe(struct work_struct *work) 433 { 433 { 434 struct afs_call *call = container_of(w 434 struct afs_call *call = container_of(work, struct afs_call, work); 435 435 436 _enter(""); 436 _enter(""); 437 afs_send_empty_reply(call); 437 afs_send_empty_reply(call); 438 afs_put_call(call); 438 afs_put_call(call); 439 _leave(""); 439 _leave(""); 440 } 440 } 441 441 442 /* 442 /* 443 * deliver request data to a CB.Probe call 443 * deliver request data to a CB.Probe call 444 */ 444 */ 445 static int afs_deliver_cb_probe(struct afs_cal 445 static int afs_deliver_cb_probe(struct afs_call *call) 446 { 446 { 447 int ret; 447 int ret; 448 448 449 _enter(""); 449 _enter(""); 450 450 451 afs_extract_discard(call, 0); 451 afs_extract_discard(call, 0); 452 ret = afs_extract_data(call, false); 452 ret = afs_extract_data(call, false); 453 if (ret < 0) 453 if (ret < 0) 454 return ret; 454 return ret; 455 455 456 if (!afs_check_call_state(call, AFS_CA 456 if (!afs_check_call_state(call, AFS_CALL_SV_REPLYING)) 457 return afs_io_error(call, afs_ 457 return afs_io_error(call, afs_io_error_cm_reply); 458 return afs_find_cm_server_by_peer(call 458 return afs_find_cm_server_by_peer(call); 459 } 459 } 460 460 461 /* 461 /* 462 * Allow the fileserver to quickly find out if 462 * Allow the fileserver to quickly find out if the cache manager has been 463 * rebooted. 463 * rebooted. 464 */ 464 */ 465 static void SRXAFSCB_ProbeUuid(struct work_str 465 static void SRXAFSCB_ProbeUuid(struct work_struct *work) 466 { 466 { 467 struct afs_call *call = container_of(w 467 struct afs_call *call = container_of(work, struct afs_call, work); 468 struct afs_uuid *r = call->request; 468 struct afs_uuid *r = call->request; 469 469 470 _enter(""); 470 _enter(""); 471 471 472 if (memcmp(r, &call->net->uuid, sizeof 472 if (memcmp(r, &call->net->uuid, sizeof(call->net->uuid)) == 0) 473 afs_send_empty_reply(call); 473 afs_send_empty_reply(call); 474 else 474 else 475 afs_abort_service_call(call, 1 475 afs_abort_service_call(call, 1, 1, afs_abort_probeuuid_negative); 476 476 477 afs_put_call(call); 477 afs_put_call(call); 478 _leave(""); 478 _leave(""); 479 } 479 } 480 480 481 /* 481 /* 482 * deliver request data to a CB.ProbeUuid call 482 * deliver request data to a CB.ProbeUuid call 483 */ 483 */ 484 static int afs_deliver_cb_probe_uuid(struct af 484 static int afs_deliver_cb_probe_uuid(struct afs_call *call) 485 { 485 { 486 struct afs_uuid *r; 486 struct afs_uuid *r; 487 unsigned loop; 487 unsigned loop; 488 __be32 *b; 488 __be32 *b; 489 int ret; 489 int ret; 490 490 491 _enter("{%u}", call->unmarshall); 491 _enter("{%u}", call->unmarshall); 492 492 493 switch (call->unmarshall) { 493 switch (call->unmarshall) { 494 case 0: 494 case 0: 495 call->buffer = kmalloc_array(1 495 call->buffer = kmalloc_array(11, sizeof(__be32), GFP_KERNEL); 496 if (!call->buffer) 496 if (!call->buffer) 497 return -ENOMEM; 497 return -ENOMEM; 498 afs_extract_to_buf(call, 11 * 498 afs_extract_to_buf(call, 11 * sizeof(__be32)); 499 call->unmarshall++; 499 call->unmarshall++; 500 500 501 fallthrough; 501 fallthrough; 502 case 1: 502 case 1: 503 _debug("extract UUID"); 503 _debug("extract UUID"); 504 ret = afs_extract_data(call, f 504 ret = afs_extract_data(call, false); 505 switch (ret) { 505 switch (ret) { 506 case 0: break; 506 case 0: break; 507 case -EAGAIN: return 0; 507 case -EAGAIN: return 0; 508 default: return ret; 508 default: return ret; 509 } 509 } 510 510 511 _debug("unmarshall UUID"); 511 _debug("unmarshall UUID"); 512 call->request = kmalloc(sizeof 512 call->request = kmalloc(sizeof(struct afs_uuid), GFP_KERNEL); 513 if (!call->request) 513 if (!call->request) 514 return -ENOMEM; 514 return -ENOMEM; 515 515 516 b = call->buffer; 516 b = call->buffer; 517 r = call->request; 517 r = call->request; 518 r->time_low 518 r->time_low = b[0]; 519 r->time_mid 519 r->time_mid = htons(ntohl(b[1])); 520 r->time_hi_and_version 520 r->time_hi_and_version = htons(ntohl(b[2])); 521 r->clock_seq_hi_and_reserved 521 r->clock_seq_hi_and_reserved = ntohl(b[3]); 522 r->clock_seq_low 522 r->clock_seq_low = ntohl(b[4]); 523 523 524 for (loop = 0; loop < 6; loop+ 524 for (loop = 0; loop < 6; loop++) 525 r->node[loop] = ntohl( 525 r->node[loop] = ntohl(b[loop + 5]); 526 526 527 call->unmarshall++; 527 call->unmarshall++; 528 fallthrough; 528 fallthrough; 529 529 530 case 2: 530 case 2: 531 break; 531 break; 532 } 532 } 533 533 534 if (!afs_check_call_state(call, AFS_CA 534 if (!afs_check_call_state(call, AFS_CALL_SV_REPLYING)) 535 return afs_io_error(call, afs_ 535 return afs_io_error(call, afs_io_error_cm_reply); 536 return afs_find_cm_server_by_peer(call 536 return afs_find_cm_server_by_peer(call); 537 } 537 } 538 538 539 /* 539 /* 540 * allow the fileserver to ask about the cache 540 * allow the fileserver to ask about the cache manager's capabilities 541 */ 541 */ 542 static void SRXAFSCB_TellMeAboutYourself(struc 542 static void SRXAFSCB_TellMeAboutYourself(struct work_struct *work) 543 { 543 { 544 struct afs_call *call = container_of(w 544 struct afs_call *call = container_of(work, struct afs_call, work); 545 int loop; 545 int loop; 546 546 547 struct { 547 struct { 548 struct /* InterfaceAddr */ { 548 struct /* InterfaceAddr */ { 549 __be32 nifs; 549 __be32 nifs; 550 __be32 uuid[11]; 550 __be32 uuid[11]; 551 __be32 ifaddr[32]; 551 __be32 ifaddr[32]; 552 __be32 netmask[32]; 552 __be32 netmask[32]; 553 __be32 mtu[32]; 553 __be32 mtu[32]; 554 } ia; 554 } ia; 555 struct /* Capabilities */ { 555 struct /* Capabilities */ { 556 __be32 capcount; 556 __be32 capcount; 557 __be32 caps[1]; 557 __be32 caps[1]; 558 } cap; 558 } cap; 559 } reply; 559 } reply; 560 560 561 _enter(""); 561 _enter(""); 562 562 563 memset(&reply, 0, sizeof(reply)); 563 memset(&reply, 0, sizeof(reply)); 564 564 565 reply.ia.uuid[0] = call->net->uuid.tim 565 reply.ia.uuid[0] = call->net->uuid.time_low; 566 reply.ia.uuid[1] = htonl(ntohs(call->n 566 reply.ia.uuid[1] = htonl(ntohs(call->net->uuid.time_mid)); 567 reply.ia.uuid[2] = htonl(ntohs(call->n 567 reply.ia.uuid[2] = htonl(ntohs(call->net->uuid.time_hi_and_version)); 568 reply.ia.uuid[3] = htonl((s8) call->ne 568 reply.ia.uuid[3] = htonl((s8) call->net->uuid.clock_seq_hi_and_reserved); 569 reply.ia.uuid[4] = htonl((s8) call->ne 569 reply.ia.uuid[4] = htonl((s8) call->net->uuid.clock_seq_low); 570 for (loop = 0; loop < 6; loop++) 570 for (loop = 0; loop < 6; loop++) 571 reply.ia.uuid[loop + 5] = hton 571 reply.ia.uuid[loop + 5] = htonl((s8) call->net->uuid.node[loop]); 572 572 573 reply.cap.capcount = htonl(1); 573 reply.cap.capcount = htonl(1); 574 reply.cap.caps[0] = htonl(AFS_CAP_ERRO 574 reply.cap.caps[0] = htonl(AFS_CAP_ERROR_TRANSLATION); 575 afs_send_simple_reply(call, &reply, si 575 afs_send_simple_reply(call, &reply, sizeof(reply)); 576 afs_put_call(call); 576 afs_put_call(call); 577 _leave(""); 577 _leave(""); 578 } 578 } 579 579 580 /* 580 /* 581 * deliver request data to a CB.TellMeAboutYou 581 * deliver request data to a CB.TellMeAboutYourself call 582 */ 582 */ 583 static int afs_deliver_cb_tell_me_about_yourse 583 static int afs_deliver_cb_tell_me_about_yourself(struct afs_call *call) 584 { 584 { 585 int ret; 585 int ret; 586 586 587 _enter(""); 587 _enter(""); 588 588 589 afs_extract_discard(call, 0); 589 afs_extract_discard(call, 0); 590 ret = afs_extract_data(call, false); 590 ret = afs_extract_data(call, false); 591 if (ret < 0) 591 if (ret < 0) 592 return ret; 592 return ret; 593 593 594 if (!afs_check_call_state(call, AFS_CA 594 if (!afs_check_call_state(call, AFS_CALL_SV_REPLYING)) 595 return afs_io_error(call, afs_ 595 return afs_io_error(call, afs_io_error_cm_reply); 596 return afs_find_cm_server_by_peer(call 596 return afs_find_cm_server_by_peer(call); 597 } 597 } 598 598 599 /* 599 /* 600 * deliver request data to a YFS CB.CallBack c 600 * deliver request data to a YFS CB.CallBack call 601 */ 601 */ 602 static int afs_deliver_yfs_cb_callback(struct 602 static int afs_deliver_yfs_cb_callback(struct afs_call *call) 603 { 603 { 604 struct afs_callback_break *cb; 604 struct afs_callback_break *cb; 605 struct yfs_xdr_YFSFid *bp; 605 struct yfs_xdr_YFSFid *bp; 606 size_t size; 606 size_t size; 607 int ret, loop; 607 int ret, loop; 608 608 609 _enter("{%u}", call->unmarshall); 609 _enter("{%u}", call->unmarshall); 610 610 611 switch (call->unmarshall) { 611 switch (call->unmarshall) { 612 case 0: 612 case 0: 613 afs_extract_to_tmp(call); 613 afs_extract_to_tmp(call); 614 call->unmarshall++; 614 call->unmarshall++; 615 615 616 /* extract the FID array and i 616 /* extract the FID array and its count in two steps */ 617 fallthrough; 617 fallthrough; 618 case 1: 618 case 1: 619 _debug("extract FID count"); 619 _debug("extract FID count"); 620 ret = afs_extract_data(call, t 620 ret = afs_extract_data(call, true); 621 if (ret < 0) 621 if (ret < 0) 622 return ret; 622 return ret; 623 623 624 call->count = ntohl(call->tmp) 624 call->count = ntohl(call->tmp); 625 _debug("FID count: %u", call-> 625 _debug("FID count: %u", call->count); 626 if (call->count > YFSCBMAX) 626 if (call->count > YFSCBMAX) 627 return afs_protocol_er 627 return afs_protocol_error(call, afs_eproto_cb_fid_count); 628 628 629 size = array_size(call->count, 629 size = array_size(call->count, sizeof(struct yfs_xdr_YFSFid)); 630 call->buffer = kmalloc(size, G 630 call->buffer = kmalloc(size, GFP_KERNEL); 631 if (!call->buffer) 631 if (!call->buffer) 632 return -ENOMEM; 632 return -ENOMEM; 633 afs_extract_to_buf(call, size) 633 afs_extract_to_buf(call, size); 634 call->unmarshall++; 634 call->unmarshall++; 635 635 636 fallthrough; 636 fallthrough; 637 case 2: 637 case 2: 638 _debug("extract FID array"); 638 _debug("extract FID array"); 639 ret = afs_extract_data(call, f 639 ret = afs_extract_data(call, false); 640 if (ret < 0) 640 if (ret < 0) 641 return ret; 641 return ret; 642 642 643 _debug("unmarshall FID array") 643 _debug("unmarshall FID array"); 644 call->request = kcalloc(call-> 644 call->request = kcalloc(call->count, 645 sizeof 645 sizeof(struct afs_callback_break), 646 GFP_KE 646 GFP_KERNEL); 647 if (!call->request) 647 if (!call->request) 648 return -ENOMEM; 648 return -ENOMEM; 649 649 650 cb = call->request; 650 cb = call->request; 651 bp = call->buffer; 651 bp = call->buffer; 652 for (loop = call->count; loop 652 for (loop = call->count; loop > 0; loop--, cb++) { 653 cb->fid.vid = xdr_ 653 cb->fid.vid = xdr_to_u64(bp->volume); 654 cb->fid.vnode = xdr_ 654 cb->fid.vnode = xdr_to_u64(bp->vnode.lo); 655 cb->fid.vnode_hi = nto 655 cb->fid.vnode_hi = ntohl(bp->vnode.hi); 656 cb->fid.unique = ntoh 656 cb->fid.unique = ntohl(bp->vnode.unique); 657 bp++; 657 bp++; 658 } 658 } 659 659 660 afs_extract_to_tmp(call); 660 afs_extract_to_tmp(call); 661 call->unmarshall++; 661 call->unmarshall++; 662 fallthrough; 662 fallthrough; 663 663 664 case 3: 664 case 3: 665 break; 665 break; 666 } 666 } 667 667 668 if (!afs_check_call_state(call, AFS_CA 668 if (!afs_check_call_state(call, AFS_CALL_SV_REPLYING)) 669 return afs_io_error(call, afs_ 669 return afs_io_error(call, afs_io_error_cm_reply); 670 670 671 /* We'll need the file server record a 671 /* We'll need the file server record as that tells us which set of 672 * vnodes to operate upon. 672 * vnodes to operate upon. 673 */ 673 */ 674 return afs_find_cm_server_by_peer(call 674 return afs_find_cm_server_by_peer(call); 675 } 675 } 676 676
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.