1 // SPDX-License-Identifier: GPL-2.0-or-later << 2 /* Maintain an RxRPC server socket to do AFS c 1 /* Maintain an RxRPC server socket to do AFS communications through 3 * 2 * 4 * Copyright (C) 2007 Red Hat, Inc. All Rights 3 * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved. 5 * Written by David Howells (dhowells@redhat.c 4 * Written by David Howells (dhowells@redhat.com) >> 5 * >> 6 * This program is free software; you can redistribute it and/or >> 7 * modify it under the terms of the GNU General Public License >> 8 * as published by the Free Software Foundation; either version >> 9 * 2 of the License, or (at your option) any later version. 6 */ 10 */ 7 11 8 #include <linux/slab.h> 12 #include <linux/slab.h> 9 #include <linux/sched/signal.h> 13 #include <linux/sched/signal.h> 10 14 11 #include <net/sock.h> 15 #include <net/sock.h> 12 #include <net/af_rxrpc.h> 16 #include <net/af_rxrpc.h> 13 #include "internal.h" 17 #include "internal.h" 14 #include "afs_cm.h" 18 #include "afs_cm.h" 15 #include "protocol_yfs.h" 19 #include "protocol_yfs.h" 16 #define RXRPC_TRACE_ONLY_DEFINE_ENUMS << 17 #include <trace/events/rxrpc.h> << 18 20 19 struct workqueue_struct *afs_async_calls; 21 struct workqueue_struct *afs_async_calls; 20 22 21 static void afs_deferred_free_worker(struct wo << 22 static void afs_wake_up_call_waiter(struct soc 23 static void afs_wake_up_call_waiter(struct sock *, struct rxrpc_call *, unsigned long); >> 24 static long afs_wait_for_call_to_complete(struct afs_call *, struct afs_addr_cursor *); 23 static void afs_wake_up_async_call(struct sock 25 static void afs_wake_up_async_call(struct sock *, struct rxrpc_call *, unsigned long); >> 26 static void afs_delete_async_call(struct work_struct *); 24 static void afs_process_async_call(struct work 27 static void afs_process_async_call(struct work_struct *); 25 static void afs_rx_new_call(struct sock *, str 28 static void afs_rx_new_call(struct sock *, struct rxrpc_call *, unsigned long); 26 static void afs_rx_discard_new_call(struct rxr 29 static void afs_rx_discard_new_call(struct rxrpc_call *, unsigned long); 27 static int afs_deliver_cm_op_id(struct afs_cal 30 static int afs_deliver_cm_op_id(struct afs_call *); 28 31 29 /* asynchronous incoming call initial processi 32 /* asynchronous incoming call initial processing */ 30 static const struct afs_call_type afs_RXCMxxxx 33 static const struct afs_call_type afs_RXCMxxxx = { 31 .name = "CB.xxxx", 34 .name = "CB.xxxx", 32 .deliver = afs_deliver_cm_op_id 35 .deliver = afs_deliver_cm_op_id, 33 }; 36 }; 34 37 35 /* 38 /* 36 * open an RxRPC socket and bind it to be a se 39 * open an RxRPC socket and bind it to be a server for callback notifications 37 * - the socket is left in blocking mode and n 40 * - the socket is left in blocking mode and non-blocking ops use MSG_DONTWAIT 38 */ 41 */ 39 int afs_open_socket(struct afs_net *net) 42 int afs_open_socket(struct afs_net *net) 40 { 43 { 41 struct sockaddr_rxrpc srx; 44 struct sockaddr_rxrpc srx; 42 struct socket *socket; 45 struct socket *socket; >> 46 unsigned int min_level; 43 int ret; 47 int ret; 44 48 45 _enter(""); 49 _enter(""); 46 50 47 ret = sock_create_kern(net->net, AF_RX 51 ret = sock_create_kern(net->net, AF_RXRPC, SOCK_DGRAM, PF_INET6, &socket); 48 if (ret < 0) 52 if (ret < 0) 49 goto error_1; 53 goto error_1; 50 54 51 socket->sk->sk_allocation = GFP_NOFS; 55 socket->sk->sk_allocation = GFP_NOFS; 52 56 53 /* bind the callback manager's address 57 /* bind the callback manager's address to make this a server socket */ 54 memset(&srx, 0, sizeof(srx)); 58 memset(&srx, 0, sizeof(srx)); 55 srx.srx_family = AF_R 59 srx.srx_family = AF_RXRPC; 56 srx.srx_service = CM_S 60 srx.srx_service = CM_SERVICE; 57 srx.transport_type = SOCK 61 srx.transport_type = SOCK_DGRAM; 58 srx.transport_len = size 62 srx.transport_len = sizeof(srx.transport.sin6); 59 srx.transport.sin6.sin6_family = AF_I 63 srx.transport.sin6.sin6_family = AF_INET6; 60 srx.transport.sin6.sin6_port = hton 64 srx.transport.sin6.sin6_port = htons(AFS_CM_PORT); 61 65 62 ret = rxrpc_sock_set_min_security_leve !! 66 min_level = RXRPC_SECURITY_ENCRYPT; 63 !! 67 ret = kernel_setsockopt(socket, SOL_RXRPC, RXRPC_MIN_SECURITY_LEVEL, >> 68 (void *)&min_level, sizeof(min_level)); 64 if (ret < 0) 69 if (ret < 0) 65 goto error_2; 70 goto error_2; 66 71 67 ret = kernel_bind(socket, (struct sock 72 ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx)); 68 if (ret == -EADDRINUSE) { 73 if (ret == -EADDRINUSE) { 69 srx.transport.sin6.sin6_port = 74 srx.transport.sin6.sin6_port = 0; 70 ret = kernel_bind(socket, (str 75 ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx)); 71 } 76 } 72 if (ret < 0) 77 if (ret < 0) 73 goto error_2; 78 goto error_2; 74 79 75 srx.srx_service = YFS_CM_SERVICE; 80 srx.srx_service = YFS_CM_SERVICE; 76 ret = kernel_bind(socket, (struct sock 81 ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx)); 77 if (ret < 0) 82 if (ret < 0) 78 goto error_2; 83 goto error_2; 79 84 80 /* Ideally, we'd turn on service upgra 85 /* Ideally, we'd turn on service upgrade here, but we can't because 81 * OpenAFS is buggy and leaks the user 86 * OpenAFS is buggy and leaks the userStatus field from packet to 82 * packet and between FS packets and C 87 * packet and between FS packets and CB packets - so if we try to do an 83 * upgrade on an FS packet, OpenAFS wi 88 * upgrade on an FS packet, OpenAFS will leak that into the CB packet 84 * it sends back to us. 89 * it sends back to us. 85 */ 90 */ 86 91 87 rxrpc_kernel_new_call_notification(soc 92 rxrpc_kernel_new_call_notification(socket, afs_rx_new_call, 88 afs 93 afs_rx_discard_new_call); 89 94 90 ret = kernel_listen(socket, INT_MAX); 95 ret = kernel_listen(socket, INT_MAX); 91 if (ret < 0) 96 if (ret < 0) 92 goto error_2; 97 goto error_2; 93 98 94 net->socket = socket; 99 net->socket = socket; 95 afs_charge_preallocation(&net->charge_ 100 afs_charge_preallocation(&net->charge_preallocation_work); 96 _leave(" = 0"); 101 _leave(" = 0"); 97 return 0; 102 return 0; 98 103 99 error_2: 104 error_2: 100 sock_release(socket); 105 sock_release(socket); 101 error_1: 106 error_1: 102 _leave(" = %d", ret); 107 _leave(" = %d", ret); 103 return ret; 108 return ret; 104 } 109 } 105 110 106 /* 111 /* 107 * close the RxRPC socket AFS was using 112 * close the RxRPC socket AFS was using 108 */ 113 */ 109 void afs_close_socket(struct afs_net *net) 114 void afs_close_socket(struct afs_net *net) 110 { 115 { 111 _enter(""); 116 _enter(""); 112 117 113 kernel_listen(net->socket, 0); 118 kernel_listen(net->socket, 0); 114 flush_workqueue(afs_async_calls); 119 flush_workqueue(afs_async_calls); 115 120 116 if (net->spare_incoming_call) { 121 if (net->spare_incoming_call) { 117 afs_put_call(net->spare_incomi 122 afs_put_call(net->spare_incoming_call); 118 net->spare_incoming_call = NUL 123 net->spare_incoming_call = NULL; 119 } 124 } 120 125 121 _debug("outstanding %u", atomic_read(& 126 _debug("outstanding %u", atomic_read(&net->nr_outstanding_calls)); 122 wait_var_event(&net->nr_outstanding_ca 127 wait_var_event(&net->nr_outstanding_calls, 123 !atomic_read(&net->nr_o 128 !atomic_read(&net->nr_outstanding_calls)); 124 _debug("no outstanding calls"); 129 _debug("no outstanding calls"); 125 130 126 kernel_sock_shutdown(net->socket, SHUT 131 kernel_sock_shutdown(net->socket, SHUT_RDWR); 127 flush_workqueue(afs_async_calls); 132 flush_workqueue(afs_async_calls); 128 sock_release(net->socket); 133 sock_release(net->socket); 129 134 130 _debug("dework"); 135 _debug("dework"); 131 _leave(""); 136 _leave(""); 132 } 137 } 133 138 134 /* 139 /* 135 * Allocate a call. 140 * Allocate a call. 136 */ 141 */ 137 static struct afs_call *afs_alloc_call(struct 142 static struct afs_call *afs_alloc_call(struct afs_net *net, 138 const s 143 const struct afs_call_type *type, 139 gfp_t g 144 gfp_t gfp) 140 { 145 { 141 struct afs_call *call; 146 struct afs_call *call; 142 int o; 147 int o; 143 148 144 call = kzalloc(sizeof(*call), gfp); 149 call = kzalloc(sizeof(*call), gfp); 145 if (!call) 150 if (!call) 146 return NULL; 151 return NULL; 147 152 148 call->type = type; 153 call->type = type; 149 call->net = net; 154 call->net = net; 150 call->debug_id = atomic_inc_return(&rx 155 call->debug_id = atomic_inc_return(&rxrpc_debug_id); 151 refcount_set(&call->ref, 1); !! 156 atomic_set(&call->usage, 1); 152 INIT_WORK(&call->async_work, afs_proce 157 INIT_WORK(&call->async_work, afs_process_async_call); 153 INIT_WORK(&call->free_work, afs_deferr << 154 init_waitqueue_head(&call->waitq); 158 init_waitqueue_head(&call->waitq); 155 spin_lock_init(&call->state_lock); 159 spin_lock_init(&call->state_lock); 156 call->iter = &call->def_iter; !! 160 call->_iter = &call->iter; 157 161 158 o = atomic_inc_return(&net->nr_outstan 162 o = atomic_inc_return(&net->nr_outstanding_calls); 159 trace_afs_call(call->debug_id, afs_cal !! 163 trace_afs_call(call, afs_call_trace_alloc, 1, o, 160 __builtin_return_addres 164 __builtin_return_address(0)); 161 return call; 165 return call; 162 } 166 } 163 167 164 static void afs_free_call(struct afs_call *cal << 165 { << 166 struct afs_net *net = call->net; << 167 int o; << 168 << 169 ASSERT(!work_pending(&call->async_work << 170 << 171 rxrpc_kernel_put_peer(call->peer); << 172 << 173 if (call->rxcall) { << 174 rxrpc_kernel_shutdown_call(net << 175 rxrpc_kernel_put_call(net->soc << 176 call->rxcall = NULL; << 177 } << 178 if (call->type->destructor) << 179 call->type->destructor(call); << 180 << 181 afs_unuse_server_notime(call->net, cal << 182 kfree(call->request); << 183 << 184 o = atomic_read(&net->nr_outstanding_c << 185 trace_afs_call(call->debug_id, afs_cal << 186 __builtin_return_addres << 187 kfree(call); << 188 << 189 o = atomic_dec_return(&net->nr_outstan << 190 if (o == 0) << 191 wake_up_var(&net->nr_outstandi << 192 } << 193 << 194 /* 168 /* 195 * Dispose of a reference on a call. 169 * Dispose of a reference on a call. 196 */ 170 */ 197 void afs_put_call(struct afs_call *call) 171 void afs_put_call(struct afs_call *call) 198 { 172 { 199 struct afs_net *net = call->net; 173 struct afs_net *net = call->net; 200 unsigned int debug_id = call->debug_id !! 174 int n = atomic_dec_return(&call->usage); 201 bool zero; !! 175 int o = atomic_read(&net->nr_outstanding_calls); 202 int r, o; !! 176 203 !! 177 trace_afs_call(call, afs_call_trace_put, n + 1, o, 204 zero = __refcount_dec_and_test(&call-> << 205 o = atomic_read(&net->nr_outstanding_c << 206 trace_afs_call(debug_id, afs_call_trac << 207 __builtin_return_addres 178 __builtin_return_address(0)); 208 if (zero) << 209 afs_free_call(call); << 210 } << 211 179 212 static void afs_deferred_free_worker(struct wo !! 180 ASSERTCMP(n, >=, 0); 213 { !! 181 if (n == 0) { 214 struct afs_call *call = container_of(w !! 182 ASSERT(!work_pending(&call->async_work)); >> 183 ASSERT(call->type->name != NULL); >> 184 >> 185 if (call->rxcall) { >> 186 rxrpc_kernel_end_call(net->socket, call->rxcall); >> 187 call->rxcall = NULL; >> 188 } >> 189 if (call->type->destructor) >> 190 call->type->destructor(call); 215 191 216 afs_free_call(call); !! 192 afs_put_server(call->net, call->cm_server); 217 } !! 193 afs_put_cb_interest(call->net, call->cbi); >> 194 afs_put_addrlist(call->alist); >> 195 kfree(call->request); 218 196 219 /* !! 197 trace_afs_call(call, afs_call_trace_free, 0, o, 220 * Dispose of a reference on a call, deferring !! 198 __builtin_return_address(0)); 221 * to avoid lock recursion. !! 199 kfree(call); 222 */ !! 200 223 void afs_deferred_put_call(struct afs_call *ca !! 201 o = atomic_dec_return(&net->nr_outstanding_calls); 224 { !! 202 if (o == 0) 225 struct afs_net *net = call->net; !! 203 wake_up_var(&net->nr_outstanding_calls); 226 unsigned int debug_id = call->debug_id !! 204 } 227 bool zero; << 228 int r, o; << 229 << 230 zero = __refcount_dec_and_test(&call-> << 231 o = atomic_read(&net->nr_outstanding_c << 232 trace_afs_call(debug_id, afs_call_trac << 233 __builtin_return_addres << 234 if (zero) << 235 schedule_work(&call->free_work << 236 } 205 } 237 206 238 static struct afs_call *afs_get_call(struct af 207 static struct afs_call *afs_get_call(struct afs_call *call, 239 enum afs_ 208 enum afs_call_trace why) 240 { 209 { 241 int r; !! 210 int u = atomic_inc_return(&call->usage); 242 << 243 __refcount_inc(&call->ref, &r); << 244 211 245 trace_afs_call(call->debug_id, why, r !! 212 trace_afs_call(call, why, u, 246 atomic_read(&call->net- 213 atomic_read(&call->net->nr_outstanding_calls), 247 __builtin_return_addres 214 __builtin_return_address(0)); 248 return call; 215 return call; 249 } 216 } 250 217 251 /* 218 /* 252 * Queue the call for actual work. 219 * Queue the call for actual work. 253 */ 220 */ 254 static void afs_queue_call_work(struct afs_cal 221 static void afs_queue_call_work(struct afs_call *call) 255 { 222 { 256 if (call->type->work) { 223 if (call->type->work) { 257 INIT_WORK(&call->work, call->t 224 INIT_WORK(&call->work, call->type->work); 258 225 259 afs_get_call(call, afs_call_tr 226 afs_get_call(call, afs_call_trace_work); 260 if (!queue_work(afs_wq, &call- 227 if (!queue_work(afs_wq, &call->work)) 261 afs_put_call(call); 228 afs_put_call(call); 262 } 229 } 263 } 230 } 264 231 265 /* 232 /* 266 * allocate a call with flat request and reply 233 * allocate a call with flat request and reply buffers 267 */ 234 */ 268 struct afs_call *afs_alloc_flat_call(struct af 235 struct afs_call *afs_alloc_flat_call(struct afs_net *net, 269 const str 236 const struct afs_call_type *type, 270 size_t re 237 size_t request_size, size_t reply_max) 271 { 238 { 272 struct afs_call *call; 239 struct afs_call *call; 273 240 274 call = afs_alloc_call(net, type, GFP_N 241 call = afs_alloc_call(net, type, GFP_NOFS); 275 if (!call) 242 if (!call) 276 goto nomem_call; 243 goto nomem_call; 277 244 278 if (request_size) { 245 if (request_size) { 279 call->request_size = request_s 246 call->request_size = request_size; 280 call->request = kmalloc(reques 247 call->request = kmalloc(request_size, GFP_NOFS); 281 if (!call->request) 248 if (!call->request) 282 goto nomem_free; 249 goto nomem_free; 283 } 250 } 284 251 285 if (reply_max) { 252 if (reply_max) { 286 call->reply_max = reply_max; 253 call->reply_max = reply_max; 287 call->buffer = kmalloc(reply_m 254 call->buffer = kmalloc(reply_max, GFP_NOFS); 288 if (!call->buffer) 255 if (!call->buffer) 289 goto nomem_free; 256 goto nomem_free; 290 } 257 } 291 258 292 afs_extract_to_buf(call, call->reply_m 259 afs_extract_to_buf(call, call->reply_max); 293 call->operation_ID = type->op; 260 call->operation_ID = type->op; 294 init_waitqueue_head(&call->waitq); 261 init_waitqueue_head(&call->waitq); 295 return call; 262 return call; 296 263 297 nomem_free: 264 nomem_free: 298 afs_put_call(call); 265 afs_put_call(call); 299 nomem_call: 266 nomem_call: 300 return NULL; 267 return NULL; 301 } 268 } 302 269 303 /* 270 /* 304 * clean up a call with flat buffer 271 * clean up a call with flat buffer 305 */ 272 */ 306 void afs_flat_call_destructor(struct afs_call 273 void afs_flat_call_destructor(struct afs_call *call) 307 { 274 { 308 _enter(""); 275 _enter(""); 309 276 310 kfree(call->request); 277 kfree(call->request); 311 call->request = NULL; 278 call->request = NULL; 312 kfree(call->buffer); 279 kfree(call->buffer); 313 call->buffer = NULL; 280 call->buffer = NULL; 314 } 281 } 315 282 >> 283 #define AFS_BVEC_MAX 8 >> 284 >> 285 /* >> 286 * Load the given bvec with the next few pages. >> 287 */ >> 288 static void afs_load_bvec(struct afs_call *call, struct msghdr *msg, >> 289 struct bio_vec *bv, pgoff_t first, pgoff_t last, >> 290 unsigned offset) >> 291 { >> 292 struct page *pages[AFS_BVEC_MAX]; >> 293 unsigned int nr, n, i, to, bytes = 0; >> 294 >> 295 nr = min_t(pgoff_t, last - first + 1, AFS_BVEC_MAX); >> 296 n = find_get_pages_contig(call->mapping, first, nr, pages); >> 297 ASSERTCMP(n, ==, nr); >> 298 >> 299 msg->msg_flags |= MSG_MORE; >> 300 for (i = 0; i < nr; i++) { >> 301 to = PAGE_SIZE; >> 302 if (first + i >= last) { >> 303 to = call->last_to; >> 304 msg->msg_flags &= ~MSG_MORE; >> 305 } >> 306 bv[i].bv_page = pages[i]; >> 307 bv[i].bv_len = to - offset; >> 308 bv[i].bv_offset = offset; >> 309 bytes += to - offset; >> 310 offset = 0; >> 311 } >> 312 >> 313 iov_iter_bvec(&msg->msg_iter, WRITE, bv, nr, bytes); >> 314 } >> 315 316 /* 316 /* 317 * Advance the AFS call state when the RxRPC c 317 * Advance the AFS call state when the RxRPC call ends the transmit phase. 318 */ 318 */ 319 static void afs_notify_end_request_tx(struct s 319 static void afs_notify_end_request_tx(struct sock *sock, 320 struct r 320 struct rxrpc_call *rxcall, 321 unsigned 321 unsigned long call_user_ID) 322 { 322 { 323 struct afs_call *call = (struct afs_ca 323 struct afs_call *call = (struct afs_call *)call_user_ID; 324 324 325 afs_set_call_state(call, AFS_CALL_CL_R 325 afs_set_call_state(call, AFS_CALL_CL_REQUESTING, AFS_CALL_CL_AWAIT_REPLY); 326 } 326 } 327 327 328 /* 328 /* 329 * Initiate a call and synchronously queue up !! 329 * attach the data from a bunch of pages on an inode to a call 330 * error is stored into the call struct, which << 331 */ 330 */ 332 void afs_make_call(struct afs_call *call, gfp_ !! 331 static int afs_send_pages(struct afs_call *call, struct msghdr *msg) 333 { 332 { >> 333 struct bio_vec bv[AFS_BVEC_MAX]; >> 334 unsigned int bytes, nr, loop, offset; >> 335 pgoff_t first = call->first, last = call->last; >> 336 int ret; >> 337 >> 338 offset = call->first_offset; >> 339 call->first_offset = 0; >> 340 >> 341 do { >> 342 afs_load_bvec(call, msg, bv, first, last, offset); >> 343 trace_afs_send_pages(call, msg, first, last, offset); >> 344 >> 345 offset = 0; >> 346 bytes = msg->msg_iter.count; >> 347 nr = msg->msg_iter.nr_segs; >> 348 >> 349 ret = rxrpc_kernel_send_data(call->net->socket, call->rxcall, msg, >> 350 bytes, afs_notify_end_request_tx); >> 351 for (loop = 0; loop < nr; loop++) >> 352 put_page(bv[loop].bv_page); >> 353 if (ret < 0) >> 354 break; >> 355 >> 356 first += nr; >> 357 } while (first <= last); >> 358 >> 359 trace_afs_sent_pages(call, call->first, last, first, ret); >> 360 return ret; >> 361 } >> 362 >> 363 /* >> 364 * initiate a call >> 365 */ >> 366 long afs_make_call(struct afs_addr_cursor *ac, struct afs_call *call, >> 367 gfp_t gfp, bool async) >> 368 { >> 369 struct sockaddr_rxrpc *srx = &ac->alist->addrs[ac->index]; 334 struct rxrpc_call *rxcall; 370 struct rxrpc_call *rxcall; 335 struct msghdr msg; 371 struct msghdr msg; 336 struct kvec iov[1]; 372 struct kvec iov[1]; 337 size_t len; << 338 s64 tx_total_len; 373 s64 tx_total_len; 339 int ret; 374 int ret; 340 375 341 _enter(",{%pISp+%u},", rxrpc_kernel_re !! 376 _enter(",{%pISp},", &srx->transport); 342 377 343 ASSERT(call->type != NULL); 378 ASSERT(call->type != NULL); 344 ASSERT(call->type->name != NULL); 379 ASSERT(call->type->name != NULL); 345 380 346 _debug("____MAKE %p{%s,%x} [%d]____", 381 _debug("____MAKE %p{%s,%x} [%d]____", 347 call, call->type->name, key_ser 382 call, call->type->name, key_serial(call->key), 348 atomic_read(&call->net->nr_outs 383 atomic_read(&call->net->nr_outstanding_calls)); 349 384 350 trace_afs_make_call(call); !! 385 call->async = async; >> 386 call->addr_ix = ac->index; >> 387 call->alist = afs_get_addrlist(ac->alist); 351 388 352 /* Work out the length we're going to 389 /* Work out the length we're going to transmit. This is awkward for 353 * calls such as FS.StoreData where th 390 * calls such as FS.StoreData where there's an extra injection of data 354 * after the initial fixed part. 391 * after the initial fixed part. 355 */ 392 */ 356 tx_total_len = call->request_size; 393 tx_total_len = call->request_size; 357 if (call->write_iter) !! 394 if (call->send_pages) { 358 tx_total_len += iov_iter_count !! 395 if (call->last == call->first) { >> 396 tx_total_len += call->last_to - call->first_offset; >> 397 } else { >> 398 /* It looks mathematically like you should be able to >> 399 * combine the following lines with the ones above, but >> 400 * unsigned arithmetic is fun when it wraps... >> 401 */ >> 402 tx_total_len += PAGE_SIZE - call->first_offset; >> 403 tx_total_len += call->last_to; >> 404 tx_total_len += (call->last - call->first - 1) * PAGE_SIZE; >> 405 } >> 406 } 359 407 360 /* If the call is going to be asynchro 408 /* If the call is going to be asynchronous, we need an extra ref for 361 * the call to hold itself so the call 409 * the call to hold itself so the caller need not hang on to its ref. 362 */ 410 */ 363 if (call->async) { !! 411 if (call->async) 364 afs_get_call(call, afs_call_tr 412 afs_get_call(call, afs_call_trace_get); 365 call->drop_ref = true; << 366 } << 367 413 368 /* create a call */ 414 /* create a call */ 369 rxcall = rxrpc_kernel_begin_call(call- !! 415 rxcall = rxrpc_kernel_begin_call(call->net->socket, srx, call->key, 370 (unsi 416 (unsigned long)call, 371 tx_to !! 417 tx_total_len, gfp, 372 call- !! 418 (async ? 373 gfp, << 374 (call << 375 afs_ 419 afs_wake_up_async_call : 376 afs_ 420 afs_wake_up_call_waiter), 377 call- << 378 call- 421 call->upgrade, 379 (call << 380 RXRP << 381 call- 422 call->debug_id); 382 if (IS_ERR(rxcall)) { 423 if (IS_ERR(rxcall)) { 383 ret = PTR_ERR(rxcall); 424 ret = PTR_ERR(rxcall); 384 call->error = ret; 425 call->error = ret; 385 goto error_kill_call; 426 goto error_kill_call; 386 } 427 } 387 428 388 call->rxcall = rxcall; 429 call->rxcall = rxcall; 389 call->issue_time = ktime_get_real(); << 390 430 391 /* send the request */ 431 /* send the request */ 392 iov[0].iov_base = call->request; 432 iov[0].iov_base = call->request; 393 iov[0].iov_len = call->request_size; 433 iov[0].iov_len = call->request_size; 394 434 395 msg.msg_name = NULL; 435 msg.msg_name = NULL; 396 msg.msg_namelen = 0; 436 msg.msg_namelen = 0; 397 iov_iter_kvec(&msg.msg_iter, ITER_SOUR !! 437 iov_iter_kvec(&msg.msg_iter, WRITE, iov, 1, call->request_size); 398 msg.msg_control = NULL; 438 msg.msg_control = NULL; 399 msg.msg_controllen = 0; 439 msg.msg_controllen = 0; 400 msg.msg_flags = MSG_WAITALL !! 440 msg.msg_flags = MSG_WAITALL | (call->send_pages ? MSG_MORE : 0); 401 441 402 ret = rxrpc_kernel_send_data(call->net 442 ret = rxrpc_kernel_send_data(call->net->socket, rxcall, 403 &msg, cal 443 &msg, call->request_size, 404 afs_notif 444 afs_notify_end_request_tx); 405 if (ret < 0) 445 if (ret < 0) 406 goto error_do_abort; 446 goto error_do_abort; 407 447 408 if (call->write_iter) { !! 448 if (call->send_pages) { 409 msg.msg_iter = *call->write_it !! 449 ret = afs_send_pages(call, &msg); 410 msg.msg_flags &= ~MSG_MORE; << 411 trace_afs_send_data(call, &msg << 412 << 413 ret = rxrpc_kernel_send_data(c << 414 c << 415 i << 416 a << 417 *call->write_iter = msg.msg_it << 418 << 419 trace_afs_sent_data(call, &msg << 420 if (ret < 0) 450 if (ret < 0) 421 goto error_do_abort; 451 goto error_do_abort; 422 } 452 } 423 453 424 /* Note that at this point, we may hav 454 /* Note that at this point, we may have received the reply or an abort 425 * - and an asynchronous call may alre 455 * - and an asynchronous call may already have completed. 426 * << 427 * afs_wait_for_call_to_complete(call) << 428 * must be called to synchronously cle << 429 */ 456 */ 430 return; !! 457 if (call->async) { >> 458 afs_put_call(call); >> 459 return -EINPROGRESS; >> 460 } >> 461 >> 462 return afs_wait_for_call_to_complete(call, ac); 431 463 432 error_do_abort: 464 error_do_abort: 433 if (ret != -ECONNABORTED) { 465 if (ret != -ECONNABORTED) { 434 rxrpc_kernel_abort_call(call-> 466 rxrpc_kernel_abort_call(call->net->socket, rxcall, 435 RX_USE !! 467 RX_USER_ABORT, ret, "KSD"); 436 afs_ab << 437 } else { 468 } else { 438 len = 0; !! 469 iov_iter_kvec(&msg.msg_iter, READ, NULL, 0, 0); 439 iov_iter_kvec(&msg.msg_iter, I << 440 rxrpc_kernel_recv_data(call->n 470 rxrpc_kernel_recv_data(call->net->socket, rxcall, 441 &msg.ms !! 471 &msg.msg_iter, false, 442 &call-> 472 &call->abort_code, &call->service_id); 443 call->responded = true; !! 473 ac->abort_code = call->abort_code; >> 474 ac->responded = true; 444 } 475 } 445 call->error = ret; 476 call->error = ret; 446 trace_afs_call_done(call); 477 trace_afs_call_done(call); 447 error_kill_call: 478 error_kill_call: 448 if (call->type->done) 479 if (call->type->done) 449 call->type->done(call); 480 call->type->done(call); 450 481 451 /* We need to dispose of the extra ref 482 /* We need to dispose of the extra ref we grabbed for an async call. 452 * The call, however, might be queued 483 * The call, however, might be queued on afs_async_calls and we need to 453 * make sure we don't get any more not 484 * make sure we don't get any more notifications that might requeue it. 454 */ 485 */ 455 if (call->rxcall) !! 486 if (call->rxcall) { 456 rxrpc_kernel_shutdown_call(cal !! 487 rxrpc_kernel_end_call(call->net->socket, call->rxcall); >> 488 call->rxcall = NULL; >> 489 } 457 if (call->async) { 490 if (call->async) { 458 if (cancel_work_sync(&call->as 491 if (cancel_work_sync(&call->async_work)) 459 afs_put_call(call); 492 afs_put_call(call); 460 afs_set_call_complete(call, re !! 493 afs_put_call(call); 461 } 494 } 462 495 463 call->error = ret; !! 496 ac->error = ret; 464 call->state = AFS_CALL_COMPLETE; 497 call->state = AFS_CALL_COMPLETE; >> 498 afs_put_call(call); 465 _leave(" = %d", ret); 499 _leave(" = %d", ret); 466 } !! 500 return ret; 467 << 468 /* << 469 * Log remote abort codes that indicate that w << 470 * with the server. << 471 */ << 472 static void afs_log_error(struct afs_call *cal << 473 { << 474 static int max = 0; << 475 const char *msg; << 476 int m; << 477 << 478 switch (remote_abort) { << 479 case RX_EOF: msg = "unexpe << 480 case RXGEN_CC_MARSHAL: msg = "client << 481 case RXGEN_CC_UNMARSHAL: msg = "client << 482 case RXGEN_SS_MARSHAL: msg = "server << 483 case RXGEN_SS_UNMARSHAL: msg = "server << 484 case RXGEN_DECODE: msg = "opcode << 485 case RXGEN_SS_XDRFREE: msg = "server << 486 case RXGEN_CC_XDRFREE: msg = "client << 487 case -32: msg = "insuff << 488 default: << 489 return; << 490 } << 491 << 492 m = max; << 493 if (m < 3) { << 494 max = m + 1; << 495 pr_notice("kAFS: Peer reported << 496 msg, call->type->nam << 497 rxrpc_kernel_remote_ << 498 } << 499 } 501 } 500 502 501 /* 503 /* 502 * deliver messages to a call 504 * deliver messages to a call 503 */ 505 */ 504 static void afs_deliver_to_call(struct afs_cal 506 static void afs_deliver_to_call(struct afs_call *call) 505 { 507 { 506 enum afs_call_state state; 508 enum afs_call_state state; 507 size_t len; << 508 u32 abort_code, remote_abort = 0; 509 u32 abort_code, remote_abort = 0; 509 int ret; 510 int ret; 510 511 511 _enter("%s", call->type->name); 512 _enter("%s", call->type->name); 512 513 513 while (state = READ_ONCE(call->state), 514 while (state = READ_ONCE(call->state), 514 state == AFS_CALL_CL_AWAIT_REPL 515 state == AFS_CALL_CL_AWAIT_REPLY || 515 state == AFS_CALL_SV_AWAIT_OP_I 516 state == AFS_CALL_SV_AWAIT_OP_ID || 516 state == AFS_CALL_SV_AWAIT_REQU 517 state == AFS_CALL_SV_AWAIT_REQUEST || 517 state == AFS_CALL_SV_AWAIT_ACK 518 state == AFS_CALL_SV_AWAIT_ACK 518 ) { 519 ) { 519 if (state == AFS_CALL_SV_AWAIT 520 if (state == AFS_CALL_SV_AWAIT_ACK) { 520 len = 0; !! 521 iov_iter_kvec(&call->iter, READ, NULL, 0, 0); 521 iov_iter_kvec(&call->d << 522 ret = rxrpc_kernel_rec 522 ret = rxrpc_kernel_recv_data(call->net->socket, 523 !! 523 call->rxcall, &call->iter, 524 !! 524 false, &remote_abort, 525 525 &call->service_id); 526 trace_afs_receive_data !! 526 trace_afs_receive_data(call, &call->iter, false, ret); 527 527 528 if (ret == -EINPROGRES 528 if (ret == -EINPROGRESS || ret == -EAGAIN) 529 return; 529 return; 530 if (ret < 0 || ret == 530 if (ret < 0 || ret == 1) { 531 if (ret == 1) 531 if (ret == 1) 532 ret = 532 ret = 0; 533 goto call_comp 533 goto call_complete; 534 } 534 } 535 return; 535 return; 536 } 536 } 537 537 >> 538 if (call->want_reply_time && >> 539 rxrpc_kernel_get_reply_time(call->net->socket, >> 540 call->rxcall, >> 541 &call->reply_time)) >> 542 call->want_reply_time = false; >> 543 538 ret = call->type->deliver(call 544 ret = call->type->deliver(call); 539 state = READ_ONCE(call->state) 545 state = READ_ONCE(call->state); 540 if (ret == 0 && call->unmarsha << 541 ret = -EBADMSG; << 542 switch (ret) { 546 switch (ret) { 543 case 0: 547 case 0: 544 call->responded = true << 545 afs_queue_call_work(ca 548 afs_queue_call_work(call); 546 if (state == AFS_CALL_ 549 if (state == AFS_CALL_CL_PROC_REPLY) { 547 if (call->op) !! 550 if (call->cbi) 548 set_bi 551 set_bit(AFS_SERVER_FL_MAY_HAVE_CB, 549 !! 552 &call->cbi->server->flags); 550 goto call_comp 553 goto call_complete; 551 } 554 } 552 ASSERTCMP(state, >, AF 555 ASSERTCMP(state, >, AFS_CALL_CL_PROC_REPLY); 553 goto done; 556 goto done; 554 case -EINPROGRESS: 557 case -EINPROGRESS: 555 case -EAGAIN: 558 case -EAGAIN: 556 goto out; 559 goto out; 557 case -ECONNABORTED: 560 case -ECONNABORTED: 558 ASSERTCMP(state, ==, A 561 ASSERTCMP(state, ==, AFS_CALL_COMPLETE); 559 call->responded = true << 560 afs_log_error(call, ca << 561 goto done; 562 goto done; 562 case -ENOTSUPP: 563 case -ENOTSUPP: 563 call->responded = true << 564 abort_code = RXGEN_OPC 564 abort_code = RXGEN_OPCODE; 565 rxrpc_kernel_abort_cal 565 rxrpc_kernel_abort_call(call->net->socket, call->rxcall, 566 !! 566 abort_code, ret, "KIV"); 567 << 568 goto local_abort; 567 goto local_abort; 569 case -EIO: 568 case -EIO: 570 pr_err("kAFS: Call %u 569 pr_err("kAFS: Call %u in bad state %u\n", 571 call->debug_id, 570 call->debug_id, state); 572 fallthrough; !! 571 /* Fall through */ 573 case -ENODATA: 572 case -ENODATA: 574 case -EBADMSG: 573 case -EBADMSG: 575 case -EMSGSIZE: 574 case -EMSGSIZE: 576 case -ENOMEM: !! 575 default: 577 case -EFAULT: << 578 abort_code = RXGEN_CC_ 576 abort_code = RXGEN_CC_UNMARSHAL; 579 if (state != AFS_CALL_ 577 if (state != AFS_CALL_CL_AWAIT_REPLY) 580 abort_code = R 578 abort_code = RXGEN_SS_UNMARSHAL; 581 rxrpc_kernel_abort_cal 579 rxrpc_kernel_abort_call(call->net->socket, call->rxcall, 582 !! 580 abort_code, ret, "KUM"); 583 << 584 goto local_abort; << 585 default: << 586 abort_code = RX_CALL_D << 587 rxrpc_kernel_abort_cal << 588 << 589 << 590 goto local_abort; 581 goto local_abort; 591 } 582 } 592 } 583 } 593 584 594 done: 585 done: 595 if (call->type->done) 586 if (call->type->done) 596 call->type->done(call); 587 call->type->done(call); >> 588 if (state == AFS_CALL_COMPLETE && call->incoming) >> 589 afs_put_call(call); 597 out: 590 out: 598 _leave(""); 591 _leave(""); 599 return; 592 return; 600 593 601 local_abort: 594 local_abort: 602 abort_code = 0; 595 abort_code = 0; 603 call_complete: 596 call_complete: 604 afs_set_call_complete(call, ret, remot 597 afs_set_call_complete(call, ret, remote_abort); 605 state = AFS_CALL_COMPLETE; 598 state = AFS_CALL_COMPLETE; 606 goto done; 599 goto done; 607 } 600 } 608 601 609 /* 602 /* 610 * Wait synchronously for a call to complete. !! 603 * wait synchronously for a call to complete 611 */ 604 */ 612 void afs_wait_for_call_to_complete(struct afs_ !! 605 static long afs_wait_for_call_to_complete(struct afs_call *call, >> 606 struct afs_addr_cursor *ac) 613 { 607 { 614 bool rxrpc_complete = false; !! 608 signed long rtt2, timeout; >> 609 long ret; >> 610 bool stalled = false; >> 611 u64 rtt; >> 612 u32 life, last_life; >> 613 >> 614 DECLARE_WAITQUEUE(myself, current); 615 615 616 _enter(""); 616 _enter(""); 617 617 618 if (!afs_check_call_state(call, AFS_CA !! 618 rtt = rxrpc_kernel_get_rtt(call->net->socket, call->rxcall); 619 DECLARE_WAITQUEUE(myself, curr !! 619 rtt2 = nsecs_to_jiffies64(rtt) * 2; >> 620 if (rtt2 < 2) >> 621 rtt2 = 2; 620 622 621 add_wait_queue(&call->waitq, & !! 623 timeout = rtt2; 622 for (;;) { !! 624 last_life = rxrpc_kernel_check_life(call->net->socket, call->rxcall); 623 set_current_state(TASK << 624 << 625 /* deliver any message << 626 if (!afs_check_call_st << 627 call->need_attenti << 628 call->need_att << 629 __set_current_ << 630 afs_deliver_to << 631 continue; << 632 } << 633 625 634 if (afs_check_call_sta !! 626 add_wait_queue(&call->waitq, &myself); 635 break; !! 627 for (;;) { >> 628 set_current_state(TASK_UNINTERRUPTIBLE); >> 629 >> 630 /* deliver any messages that are in the queue */ >> 631 if (!afs_check_call_state(call, AFS_CALL_COMPLETE) && >> 632 call->need_attention) { >> 633 call->need_attention = false; >> 634 __set_current_state(TASK_RUNNING); >> 635 afs_deliver_to_call(call); >> 636 continue; >> 637 } 636 638 637 if (!rxrpc_kernel_chec !! 639 if (afs_check_call_state(call, AFS_CALL_COMPLETE)) 638 /* rxrpc termi !! 640 break; 639 rxrpc_complete !! 641 >> 642 life = rxrpc_kernel_check_life(call->net->socket, call->rxcall); >> 643 if (timeout == 0 && >> 644 life == last_life && signal_pending(current)) { >> 645 if (stalled) 640 break; 646 break; 641 } !! 647 __set_current_state(TASK_RUNNING); >> 648 rxrpc_kernel_probe_life(call->net->socket, call->rxcall); >> 649 timeout = rtt2; >> 650 stalled = true; >> 651 continue; >> 652 } 642 653 643 schedule(); !! 654 if (life != last_life) { >> 655 timeout = rtt2; >> 656 last_life = life; >> 657 stalled = false; 644 } 658 } 645 659 646 remove_wait_queue(&call->waitq !! 660 timeout = schedule_timeout(timeout); 647 __set_current_state(TASK_RUNNI << 648 } 661 } 649 662 >> 663 remove_wait_queue(&call->waitq, &myself); >> 664 __set_current_state(TASK_RUNNING); >> 665 >> 666 /* Kill off the call if it's still live. */ 650 if (!afs_check_call_state(call, AFS_CA 667 if (!afs_check_call_state(call, AFS_CALL_COMPLETE)) { 651 if (rxrpc_complete) { !! 668 _debug("call interrupted"); 652 afs_set_call_complete( !! 669 if (rxrpc_kernel_abort_call(call->net->socket, call->rxcall, 653 } else { !! 670 RX_USER_ABORT, -EINTR, "KWI")) 654 /* Kill off the call i !! 671 afs_set_call_complete(call, -EINTR, 0); 655 _debug("call interrupt !! 672 } 656 if (rxrpc_kernel_abort !! 673 657 !! 674 spin_lock_bh(&call->state_lock); 658 !! 675 ac->abort_code = call->abort_code; 659 afs_set_call_c !! 676 ac->error = call->error; >> 677 spin_unlock_bh(&call->state_lock); >> 678 >> 679 ret = ac->error; >> 680 switch (ret) { >> 681 case 0: >> 682 if (call->ret_reply0) { >> 683 ret = (long)call->reply[0]; >> 684 call->reply[0] = NULL; 660 } 685 } >> 686 /* Fall through */ >> 687 case -ECONNABORTED: >> 688 ac->responded = true; >> 689 break; 661 } 690 } >> 691 >> 692 _debug("call complete"); >> 693 afs_put_call(call); >> 694 _leave(" = %p", (void *)ret); >> 695 return ret; 662 } 696 } 663 697 664 /* 698 /* 665 * wake up a waiting call 699 * wake up a waiting call 666 */ 700 */ 667 static void afs_wake_up_call_waiter(struct soc 701 static void afs_wake_up_call_waiter(struct sock *sk, struct rxrpc_call *rxcall, 668 unsigned l 702 unsigned long call_user_ID) 669 { 703 { 670 struct afs_call *call = (struct afs_ca 704 struct afs_call *call = (struct afs_call *)call_user_ID; 671 705 672 call->need_attention = true; 706 call->need_attention = true; 673 wake_up(&call->waitq); 707 wake_up(&call->waitq); 674 } 708 } 675 709 676 /* 710 /* 677 * Wake up an asynchronous call. The caller i !! 711 * wake up an asynchronous call 678 * spinlock around this, so we can't call afs_ << 679 */ 712 */ 680 static void afs_wake_up_async_call(struct sock 713 static void afs_wake_up_async_call(struct sock *sk, struct rxrpc_call *rxcall, 681 unsigned lo 714 unsigned long call_user_ID) 682 { 715 { 683 struct afs_call *call = (struct afs_ca 716 struct afs_call *call = (struct afs_call *)call_user_ID; 684 int r; !! 717 int u; 685 718 686 trace_afs_notify_call(rxcall, call); 719 trace_afs_notify_call(rxcall, call); 687 call->need_attention = true; 720 call->need_attention = true; 688 721 689 if (__refcount_inc_not_zero(&call->ref !! 722 u = atomic_fetch_add_unless(&call->usage, 1, 0); 690 trace_afs_call(call->debug_id, !! 723 if (u != 0) { >> 724 trace_afs_call(call, afs_call_trace_wake, u, 691 atomic_read(&ca 725 atomic_read(&call->net->nr_outstanding_calls), 692 __builtin_retur 726 __builtin_return_address(0)); 693 727 694 if (!queue_work(afs_async_call 728 if (!queue_work(afs_async_calls, &call->async_work)) 695 afs_deferred_put_call( !! 729 afs_put_call(call); 696 } 730 } 697 } 731 } 698 732 699 /* 733 /* >> 734 * Delete an asynchronous call. The work item carries a ref to the call struct >> 735 * that we need to release. >> 736 */ >> 737 static void afs_delete_async_call(struct work_struct *work) >> 738 { >> 739 struct afs_call *call = container_of(work, struct afs_call, async_work); >> 740 >> 741 _enter(""); >> 742 >> 743 afs_put_call(call); >> 744 >> 745 _leave(""); >> 746 } >> 747 >> 748 /* 700 * Perform I/O processing on an asynchronous c 749 * Perform I/O processing on an asynchronous call. The work item carries a ref 701 * to the call struct that we either need to r 750 * to the call struct that we either need to release or to pass on. 702 */ 751 */ 703 static void afs_process_async_call(struct work 752 static void afs_process_async_call(struct work_struct *work) 704 { 753 { 705 struct afs_call *call = container_of(w 754 struct afs_call *call = container_of(work, struct afs_call, async_work); 706 755 707 _enter(""); 756 _enter(""); 708 757 709 if (call->state < AFS_CALL_COMPLETE && 758 if (call->state < AFS_CALL_COMPLETE && call->need_attention) { 710 call->need_attention = false; 759 call->need_attention = false; 711 afs_deliver_to_call(call); 760 afs_deliver_to_call(call); 712 } 761 } 713 762 >> 763 if (call->state == AFS_CALL_COMPLETE) { >> 764 /* We have two refs to release - one from the alloc and one >> 765 * queued with the work item - and we can't just deallocate the >> 766 * call because the work item may be queued again. >> 767 */ >> 768 call->async_work.func = afs_delete_async_call; >> 769 if (!queue_work(afs_async_calls, &call->async_work)) >> 770 afs_put_call(call); >> 771 } >> 772 714 afs_put_call(call); 773 afs_put_call(call); 715 _leave(""); 774 _leave(""); 716 } 775 } 717 776 718 static void afs_rx_attach(struct rxrpc_call *r 777 static void afs_rx_attach(struct rxrpc_call *rxcall, unsigned long user_call_ID) 719 { 778 { 720 struct afs_call *call = (struct afs_ca 779 struct afs_call *call = (struct afs_call *)user_call_ID; 721 780 722 call->rxcall = rxcall; 781 call->rxcall = rxcall; 723 } 782 } 724 783 725 /* 784 /* 726 * Charge the incoming call preallocation. 785 * Charge the incoming call preallocation. 727 */ 786 */ 728 void afs_charge_preallocation(struct work_stru 787 void afs_charge_preallocation(struct work_struct *work) 729 { 788 { 730 struct afs_net *net = 789 struct afs_net *net = 731 container_of(work, struct afs_ 790 container_of(work, struct afs_net, charge_preallocation_work); 732 struct afs_call *call = net->spare_inc 791 struct afs_call *call = net->spare_incoming_call; 733 792 734 for (;;) { 793 for (;;) { 735 if (!call) { 794 if (!call) { 736 call = afs_alloc_call( 795 call = afs_alloc_call(net, &afs_RXCMxxxx, GFP_KERNEL); 737 if (!call) 796 if (!call) 738 break; 797 break; 739 798 740 call->drop_ref = true; << 741 call->async = true; 799 call->async = true; 742 call->state = AFS_CALL 800 call->state = AFS_CALL_SV_AWAIT_OP_ID; 743 init_waitqueue_head(&c 801 init_waitqueue_head(&call->waitq); 744 afs_extract_to_tmp(cal 802 afs_extract_to_tmp(call); 745 } 803 } 746 804 747 if (rxrpc_kernel_charge_accept 805 if (rxrpc_kernel_charge_accept(net->socket, 748 806 afs_wake_up_async_call, 749 807 afs_rx_attach, 750 808 (unsigned long)call, 751 809 GFP_KERNEL, 752 810 call->debug_id) < 0) 753 break; 811 break; 754 call = NULL; 812 call = NULL; 755 } 813 } 756 net->spare_incoming_call = call; 814 net->spare_incoming_call = call; 757 } 815 } 758 816 759 /* 817 /* 760 * Discard a preallocated call when a socket i 818 * Discard a preallocated call when a socket is shut down. 761 */ 819 */ 762 static void afs_rx_discard_new_call(struct rxr 820 static void afs_rx_discard_new_call(struct rxrpc_call *rxcall, 763 unsigned l 821 unsigned long user_call_ID) 764 { 822 { 765 struct afs_call *call = (struct afs_ca 823 struct afs_call *call = (struct afs_call *)user_call_ID; 766 824 767 call->rxcall = NULL; 825 call->rxcall = NULL; 768 afs_put_call(call); 826 afs_put_call(call); 769 } 827 } 770 828 771 /* 829 /* 772 * Notification of an incoming call. 830 * Notification of an incoming call. 773 */ 831 */ 774 static void afs_rx_new_call(struct sock *sk, s 832 static void afs_rx_new_call(struct sock *sk, struct rxrpc_call *rxcall, 775 unsigned long user 833 unsigned long user_call_ID) 776 { 834 { 777 struct afs_net *net = afs_sock2net(sk) 835 struct afs_net *net = afs_sock2net(sk); 778 836 779 queue_work(afs_wq, &net->charge_preall 837 queue_work(afs_wq, &net->charge_preallocation_work); 780 } 838 } 781 839 782 /* 840 /* 783 * Grab the operation ID from an incoming cach 841 * Grab the operation ID from an incoming cache manager call. The socket 784 * buffer is discarded on error or if we don't 842 * buffer is discarded on error or if we don't yet have sufficient data. 785 */ 843 */ 786 static int afs_deliver_cm_op_id(struct afs_cal 844 static int afs_deliver_cm_op_id(struct afs_call *call) 787 { 845 { 788 int ret; 846 int ret; 789 847 790 _enter("{%zu}", iov_iter_count(call->i !! 848 _enter("{%zu}", iov_iter_count(call->_iter)); 791 849 792 /* the operation ID forms the first fo 850 /* the operation ID forms the first four bytes of the request data */ 793 ret = afs_extract_data(call, true); 851 ret = afs_extract_data(call, true); 794 if (ret < 0) 852 if (ret < 0) 795 return ret; 853 return ret; 796 854 797 call->operation_ID = ntohl(call->tmp); 855 call->operation_ID = ntohl(call->tmp); 798 afs_set_call_state(call, AFS_CALL_SV_A 856 afs_set_call_state(call, AFS_CALL_SV_AWAIT_OP_ID, AFS_CALL_SV_AWAIT_REQUEST); 799 857 800 /* ask the cache manager to route the 858 /* ask the cache manager to route the call (it'll change the call type 801 * if successful) */ 859 * if successful) */ 802 if (!afs_cm_incoming_call(call)) 860 if (!afs_cm_incoming_call(call)) 803 return -ENOTSUPP; 861 return -ENOTSUPP; 804 862 805 trace_afs_cb_call(call); 863 trace_afs_cb_call(call); 806 864 807 /* pass responsibility for the remaine 865 /* pass responsibility for the remainer of this message off to the 808 * cache manager op */ 866 * cache manager op */ 809 return call->type->deliver(call); 867 return call->type->deliver(call); 810 } 868 } 811 869 812 /* 870 /* 813 * Advance the AFS call state when an RxRPC se 871 * Advance the AFS call state when an RxRPC service call ends the transmit 814 * phase. 872 * phase. 815 */ 873 */ 816 static void afs_notify_end_reply_tx(struct soc 874 static void afs_notify_end_reply_tx(struct sock *sock, 817 struct rxr 875 struct rxrpc_call *rxcall, 818 unsigned l 876 unsigned long call_user_ID) 819 { 877 { 820 struct afs_call *call = (struct afs_ca 878 struct afs_call *call = (struct afs_call *)call_user_ID; 821 879 822 afs_set_call_state(call, AFS_CALL_SV_R 880 afs_set_call_state(call, AFS_CALL_SV_REPLYING, AFS_CALL_SV_AWAIT_ACK); 823 } 881 } 824 882 825 /* 883 /* 826 * send an empty reply 884 * send an empty reply 827 */ 885 */ 828 void afs_send_empty_reply(struct afs_call *cal 886 void afs_send_empty_reply(struct afs_call *call) 829 { 887 { 830 struct afs_net *net = call->net; 888 struct afs_net *net = call->net; 831 struct msghdr msg; 889 struct msghdr msg; 832 890 833 _enter(""); 891 _enter(""); 834 892 835 rxrpc_kernel_set_tx_length(net->socket 893 rxrpc_kernel_set_tx_length(net->socket, call->rxcall, 0); 836 894 837 msg.msg_name = NULL; 895 msg.msg_name = NULL; 838 msg.msg_namelen = 0; 896 msg.msg_namelen = 0; 839 iov_iter_kvec(&msg.msg_iter, ITER_SOUR !! 897 iov_iter_kvec(&msg.msg_iter, WRITE, NULL, 0, 0); 840 msg.msg_control = NULL; 898 msg.msg_control = NULL; 841 msg.msg_controllen = 0; 899 msg.msg_controllen = 0; 842 msg.msg_flags = 0; 900 msg.msg_flags = 0; 843 901 844 switch (rxrpc_kernel_send_data(net->so 902 switch (rxrpc_kernel_send_data(net->socket, call->rxcall, &msg, 0, 845 afs_not 903 afs_notify_end_reply_tx)) { 846 case 0: 904 case 0: 847 _leave(" [replied]"); 905 _leave(" [replied]"); 848 return; 906 return; 849 907 850 case -ENOMEM: 908 case -ENOMEM: 851 _debug("oom"); 909 _debug("oom"); 852 rxrpc_kernel_abort_call(net->s 910 rxrpc_kernel_abort_call(net->socket, call->rxcall, 853 RXGEN_ !! 911 RX_USER_ABORT, -ENOMEM, "KOO"); 854 afs_ab << 855 fallthrough; << 856 default: 912 default: 857 _leave(" [error]"); 913 _leave(" [error]"); 858 return; 914 return; 859 } 915 } 860 } 916 } 861 917 862 /* 918 /* 863 * send a simple reply 919 * send a simple reply 864 */ 920 */ 865 void afs_send_simple_reply(struct afs_call *ca 921 void afs_send_simple_reply(struct afs_call *call, const void *buf, size_t len) 866 { 922 { 867 struct afs_net *net = call->net; 923 struct afs_net *net = call->net; 868 struct msghdr msg; 924 struct msghdr msg; 869 struct kvec iov[1]; 925 struct kvec iov[1]; 870 int n; 926 int n; 871 927 872 _enter(""); 928 _enter(""); 873 929 874 rxrpc_kernel_set_tx_length(net->socket 930 rxrpc_kernel_set_tx_length(net->socket, call->rxcall, len); 875 931 876 iov[0].iov_base = (void *) buf 932 iov[0].iov_base = (void *) buf; 877 iov[0].iov_len = len; 933 iov[0].iov_len = len; 878 msg.msg_name = NULL; 934 msg.msg_name = NULL; 879 msg.msg_namelen = 0; 935 msg.msg_namelen = 0; 880 iov_iter_kvec(&msg.msg_iter, ITER_SOUR !! 936 iov_iter_kvec(&msg.msg_iter, WRITE, iov, 1, len); 881 msg.msg_control = NULL; 937 msg.msg_control = NULL; 882 msg.msg_controllen = 0; 938 msg.msg_controllen = 0; 883 msg.msg_flags = 0; 939 msg.msg_flags = 0; 884 940 885 n = rxrpc_kernel_send_data(net->socket 941 n = rxrpc_kernel_send_data(net->socket, call->rxcall, &msg, len, 886 afs_notify_ 942 afs_notify_end_reply_tx); 887 if (n >= 0) { 943 if (n >= 0) { 888 /* Success */ 944 /* Success */ 889 _leave(" [replied]"); 945 _leave(" [replied]"); 890 return; 946 return; 891 } 947 } 892 948 893 if (n == -ENOMEM) { 949 if (n == -ENOMEM) { 894 _debug("oom"); 950 _debug("oom"); 895 rxrpc_kernel_abort_call(net->s 951 rxrpc_kernel_abort_call(net->socket, call->rxcall, 896 RXGEN_ !! 952 RX_USER_ABORT, -ENOMEM, "KOO"); 897 afs_ab << 898 } 953 } 899 _leave(" [error]"); 954 _leave(" [error]"); 900 } 955 } 901 956 902 /* 957 /* 903 * Extract a piece of data from the received d 958 * Extract a piece of data from the received data socket buffers. 904 */ 959 */ 905 int afs_extract_data(struct afs_call *call, bo 960 int afs_extract_data(struct afs_call *call, bool want_more) 906 { 961 { 907 struct afs_net *net = call->net; 962 struct afs_net *net = call->net; 908 struct iov_iter *iter = call->iter; !! 963 struct iov_iter *iter = call->_iter; 909 enum afs_call_state state; 964 enum afs_call_state state; 910 u32 remote_abort = 0; 965 u32 remote_abort = 0; 911 int ret; 966 int ret; 912 967 913 _enter("{%s,%zu,%zu},%d", !! 968 _enter("{%s,%zu},%d", call->type->name, iov_iter_count(iter), want_more); 914 call->type->name, call->iov_len << 915 969 916 ret = rxrpc_kernel_recv_data(net->sock 970 ret = rxrpc_kernel_recv_data(net->socket, call->rxcall, iter, 917 &call->io !! 971 want_more, &remote_abort, 918 &call->se 972 &call->service_id); 919 trace_afs_receive_data(call, call->ite << 920 if (ret == 0 || ret == -EAGAIN) 973 if (ret == 0 || ret == -EAGAIN) 921 return ret; 974 return ret; 922 975 923 state = READ_ONCE(call->state); 976 state = READ_ONCE(call->state); 924 if (ret == 1) { 977 if (ret == 1) { 925 switch (state) { 978 switch (state) { 926 case AFS_CALL_CL_AWAIT_REPLY: 979 case AFS_CALL_CL_AWAIT_REPLY: 927 afs_set_call_state(cal 980 afs_set_call_state(call, state, AFS_CALL_CL_PROC_REPLY); 928 break; 981 break; 929 case AFS_CALL_SV_AWAIT_REQUEST 982 case AFS_CALL_SV_AWAIT_REQUEST: 930 afs_set_call_state(cal 983 afs_set_call_state(call, state, AFS_CALL_SV_REPLYING); 931 break; 984 break; 932 case AFS_CALL_COMPLETE: 985 case AFS_CALL_COMPLETE: 933 kdebug("prem complete 986 kdebug("prem complete %d", call->error); 934 return afs_io_error(ca 987 return afs_io_error(call, afs_io_error_extract); 935 default: 988 default: 936 break; 989 break; 937 } 990 } 938 return 0; 991 return 0; 939 } 992 } 940 993 941 afs_set_call_complete(call, ret, remot 994 afs_set_call_complete(call, ret, remote_abort); 942 return ret; 995 return ret; 943 } 996 } 944 997 945 /* 998 /* 946 * Log protocol error production. 999 * Log protocol error production. 947 */ 1000 */ 948 noinline int afs_protocol_error(struct afs_cal !! 1001 noinline int afs_protocol_error(struct afs_call *call, int error, 949 enum afs_eprot 1002 enum afs_eproto_cause cause) 950 { 1003 { 951 trace_afs_protocol_error(call, cause); !! 1004 trace_afs_protocol_error(call, error, cause); 952 if (call) !! 1005 return error; 953 call->unmarshalling_error = tr << 954 return -EBADMSG; << 955 } 1006 } 956 1007
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.