1 // SPDX-License-Identifier: GPL-2.0 1 // SPDX-License-Identifier: GPL-2.0 2 /* 2 /* 3 * Copyright 2010, 2011 Kent Overstreet <kent. 3 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com> 4 * Copyright 2012 Google, Inc. 4 * Copyright 2012 Google, Inc. 5 */ 5 */ 6 6 7 #include "bcachefs.h" 7 #include "bcachefs.h" 8 #include "alloc_foreground.h" 8 #include "alloc_foreground.h" 9 #include "bkey_buf.h" 9 #include "bkey_buf.h" 10 #include "bset.h" 10 #include "bset.h" 11 #include "btree_update.h" 11 #include "btree_update.h" 12 #include "buckets.h" 12 #include "buckets.h" 13 #include "checksum.h" 13 #include "checksum.h" 14 #include "clock.h" 14 #include "clock.h" 15 #include "compress.h" 15 #include "compress.h" 16 #include "debug.h" 16 #include "debug.h" 17 #include "ec.h" 17 #include "ec.h" 18 #include "error.h" 18 #include "error.h" 19 #include "extent_update.h" 19 #include "extent_update.h" 20 #include "inode.h" 20 #include "inode.h" 21 #include "io_write.h" 21 #include "io_write.h" 22 #include "journal.h" 22 #include "journal.h" 23 #include "keylist.h" 23 #include "keylist.h" 24 #include "move.h" 24 #include "move.h" 25 #include "nocow_locking.h" 25 #include "nocow_locking.h" 26 #include "rebalance.h" 26 #include "rebalance.h" 27 #include "subvolume.h" 27 #include "subvolume.h" 28 #include "super.h" 28 #include "super.h" 29 #include "super-io.h" 29 #include "super-io.h" 30 #include "trace.h" 30 #include "trace.h" 31 31 32 #include <linux/blkdev.h> 32 #include <linux/blkdev.h> 33 #include <linux/prefetch.h> 33 #include <linux/prefetch.h> 34 #include <linux/random.h> 34 #include <linux/random.h> 35 #include <linux/sched/mm.h> 35 #include <linux/sched/mm.h> 36 36 37 #ifndef CONFIG_BCACHEFS_NO_LATENCY_ACCT 37 #ifndef CONFIG_BCACHEFS_NO_LATENCY_ACCT 38 38 39 static inline void bch2_congested_acct(struct 39 static inline void bch2_congested_acct(struct bch_dev *ca, u64 io_latency, 40 u64 now 40 u64 now, int rw) 41 { 41 { 42 u64 latency_capable = 42 u64 latency_capable = 43 ca->io_latency[rw].quantiles.e 43 ca->io_latency[rw].quantiles.entries[QUANTILE_IDX(1)].m; 44 /* ideally we'd be taking into account 44 /* ideally we'd be taking into account the device's variance here: */ 45 u64 latency_threshold = latency_capabl 45 u64 latency_threshold = latency_capable << (rw == READ ? 2 : 3); 46 s64 latency_over = io_latency - latenc 46 s64 latency_over = io_latency - latency_threshold; 47 47 48 if (latency_threshold && latency_over 48 if (latency_threshold && latency_over > 0) { 49 /* 49 /* 50 * bump up congested by approx 50 * bump up congested by approximately latency_over * 4 / 51 * latency_threshold - we don' 51 * latency_threshold - we don't need much accuracy here so don't 52 * bother with the divide: 52 * bother with the divide: 53 */ 53 */ 54 if (atomic_read(&ca->congested 54 if (atomic_read(&ca->congested) < CONGESTED_MAX) 55 atomic_add(latency_ove 55 atomic_add(latency_over >> 56 max_t(int, 56 max_t(int, ilog2(latency_threshold) - 2, 0), 57 &ca->conges 57 &ca->congested); 58 58 59 ca->congested_last = now; 59 ca->congested_last = now; 60 } else if (atomic_read(&ca->congested) 60 } else if (atomic_read(&ca->congested) > 0) { 61 atomic_dec(&ca->congested); 61 atomic_dec(&ca->congested); 62 } 62 } 63 } 63 } 64 64 65 void bch2_latency_acct(struct bch_dev *ca, u64 65 void bch2_latency_acct(struct bch_dev *ca, u64 submit_time, int rw) 66 { 66 { 67 atomic64_t *latency = &ca->cur_latency 67 atomic64_t *latency = &ca->cur_latency[rw]; 68 u64 now = local_clock(); 68 u64 now = local_clock(); 69 u64 io_latency = time_after64(now, sub 69 u64 io_latency = time_after64(now, submit_time) 70 ? now - submit_time 70 ? now - submit_time 71 : 0; 71 : 0; 72 u64 old, new; !! 72 u64 old, new, v = atomic64_read(latency); 73 73 74 old = atomic64_read(latency); << 75 do { 74 do { >> 75 old = v; >> 76 76 /* 77 /* 77 * If the io latency was reaso 78 * If the io latency was reasonably close to the current 78 * latency, skip doing the upd 79 * latency, skip doing the update and atomic operation - most of 79 * the time: 80 * the time: 80 */ 81 */ 81 if (abs((int) (old - io_latenc 82 if (abs((int) (old - io_latency)) < (old >> 1) && 82 now & ~(~0U << 5)) 83 now & ~(~0U << 5)) 83 break; 84 break; 84 85 85 new = ewma_add(old, io_latency 86 new = ewma_add(old, io_latency, 5); 86 } while (!atomic64_try_cmpxchg(latency !! 87 } while ((v = atomic64_cmpxchg(latency, old, new)) != old); 87 88 88 bch2_congested_acct(ca, io_latency, no 89 bch2_congested_acct(ca, io_latency, now, rw); 89 90 90 __bch2_time_stats_update(&ca->io_laten 91 __bch2_time_stats_update(&ca->io_latency[rw].stats, submit_time, now); 91 } 92 } 92 93 93 #endif 94 #endif 94 95 95 /* Allocate, free from mempool: */ 96 /* Allocate, free from mempool: */ 96 97 97 void bch2_bio_free_pages_pool(struct bch_fs *c 98 void bch2_bio_free_pages_pool(struct bch_fs *c, struct bio *bio) 98 { 99 { 99 struct bvec_iter_all iter; 100 struct bvec_iter_all iter; 100 struct bio_vec *bv; 101 struct bio_vec *bv; 101 102 102 bio_for_each_segment_all(bv, bio, iter 103 bio_for_each_segment_all(bv, bio, iter) 103 if (bv->bv_page != ZERO_PAGE(0 104 if (bv->bv_page != ZERO_PAGE(0)) 104 mempool_free(bv->bv_pa 105 mempool_free(bv->bv_page, &c->bio_bounce_pages); 105 bio->bi_vcnt = 0; 106 bio->bi_vcnt = 0; 106 } 107 } 107 108 108 static struct page *__bio_alloc_page_pool(stru 109 static struct page *__bio_alloc_page_pool(struct bch_fs *c, bool *using_mempool) 109 { 110 { 110 struct page *page; 111 struct page *page; 111 112 112 if (likely(!*using_mempool)) { 113 if (likely(!*using_mempool)) { 113 page = alloc_page(GFP_NOFS); 114 page = alloc_page(GFP_NOFS); 114 if (unlikely(!page)) { 115 if (unlikely(!page)) { 115 mutex_lock(&c->bio_bou 116 mutex_lock(&c->bio_bounce_pages_lock); 116 *using_mempool = true; 117 *using_mempool = true; 117 goto pool_alloc; 118 goto pool_alloc; 118 119 119 } 120 } 120 } else { 121 } else { 121 pool_alloc: 122 pool_alloc: 122 page = mempool_alloc(&c->bio_b 123 page = mempool_alloc(&c->bio_bounce_pages, GFP_NOFS); 123 } 124 } 124 125 125 return page; 126 return page; 126 } 127 } 127 128 128 void bch2_bio_alloc_pages_pool(struct bch_fs * 129 void bch2_bio_alloc_pages_pool(struct bch_fs *c, struct bio *bio, 129 size_t size) 130 size_t size) 130 { 131 { 131 bool using_mempool = false; 132 bool using_mempool = false; 132 133 133 while (size) { 134 while (size) { 134 struct page *page = __bio_allo 135 struct page *page = __bio_alloc_page_pool(c, &using_mempool); 135 unsigned len = min_t(size_t, P 136 unsigned len = min_t(size_t, PAGE_SIZE, size); 136 137 137 BUG_ON(!bio_add_page(bio, page 138 BUG_ON(!bio_add_page(bio, page, len, 0)); 138 size -= len; 139 size -= len; 139 } 140 } 140 141 141 if (using_mempool) 142 if (using_mempool) 142 mutex_unlock(&c->bio_bounce_pa 143 mutex_unlock(&c->bio_bounce_pages_lock); 143 } 144 } 144 145 145 /* Extent update path: */ 146 /* Extent update path: */ 146 147 147 int bch2_sum_sector_overwrites(struct btree_tr 148 int bch2_sum_sector_overwrites(struct btree_trans *trans, 148 struct btree_it 149 struct btree_iter *extent_iter, 149 struct bkey_i * 150 struct bkey_i *new, 150 bool *usage_inc 151 bool *usage_increasing, 151 s64 *i_sectors_ 152 s64 *i_sectors_delta, 152 s64 *disk_secto 153 s64 *disk_sectors_delta) 153 { 154 { 154 struct bch_fs *c = trans->c; 155 struct bch_fs *c = trans->c; 155 struct btree_iter iter; 156 struct btree_iter iter; 156 struct bkey_s_c old; 157 struct bkey_s_c old; 157 unsigned new_replicas = bch2_bkey_repl 158 unsigned new_replicas = bch2_bkey_replicas(c, bkey_i_to_s_c(new)); 158 bool new_compressed = bch2_bkey_sector 159 bool new_compressed = bch2_bkey_sectors_compressed(bkey_i_to_s_c(new)); 159 int ret = 0; 160 int ret = 0; 160 161 161 *usage_increasing = false; 162 *usage_increasing = false; 162 *i_sectors_delta = 0; 163 *i_sectors_delta = 0; 163 *disk_sectors_delta = 0; 164 *disk_sectors_delta = 0; 164 165 165 bch2_trans_copy_iter(&iter, extent_ite 166 bch2_trans_copy_iter(&iter, extent_iter); 166 167 167 for_each_btree_key_upto_continue_nores 168 for_each_btree_key_upto_continue_norestart(iter, 168 new->k.p, BTRE 169 new->k.p, BTREE_ITER_slots, old, ret) { 169 s64 sectors = min(new->k.p.off 170 s64 sectors = min(new->k.p.offset, old.k->p.offset) - 170 max(bkey_start_offset( 171 max(bkey_start_offset(&new->k), 171 bkey_start_offset( 172 bkey_start_offset(old.k)); 172 173 173 *i_sectors_delta += sectors * 174 *i_sectors_delta += sectors * 174 (bkey_extent_is_alloca 175 (bkey_extent_is_allocation(&new->k) - 175 bkey_extent_is_alloca 176 bkey_extent_is_allocation(old.k)); 176 177 177 *disk_sectors_delta += sectors 178 *disk_sectors_delta += sectors * bch2_bkey_nr_ptrs_allocated(bkey_i_to_s_c(new)); 178 *disk_sectors_delta -= new->k. 179 *disk_sectors_delta -= new->k.p.snapshot == old.k->p.snapshot 179 ? sectors * bch2_bkey_ 180 ? sectors * bch2_bkey_nr_ptrs_fully_allocated(old) 180 : 0; 181 : 0; 181 182 182 if (!*usage_increasing && 183 if (!*usage_increasing && 183 (new->k.p.snapshot != old. 184 (new->k.p.snapshot != old.k->p.snapshot || 184 new_replicas > bch2_bkey_ 185 new_replicas > bch2_bkey_replicas(c, old) || 185 (!new_compressed && bch2_ 186 (!new_compressed && bch2_bkey_sectors_compressed(old)))) 186 *usage_increasing = tr 187 *usage_increasing = true; 187 188 188 if (bkey_ge(old.k->p, new->k.p 189 if (bkey_ge(old.k->p, new->k.p)) 189 break; 190 break; 190 } 191 } 191 192 192 bch2_trans_iter_exit(trans, &iter); 193 bch2_trans_iter_exit(trans, &iter); 193 return ret; 194 return ret; 194 } 195 } 195 196 196 static inline int bch2_extent_update_i_size_se 197 static inline int bch2_extent_update_i_size_sectors(struct btree_trans *trans, 197 198 struct btree_iter *extent_iter, 198 199 u64 new_i_size, 199 200 s64 i_sectors_delta) 200 { 201 { 201 /* 202 /* 202 * Crazy performance optimization: 203 * Crazy performance optimization: 203 * Every extent update needs to also u 204 * Every extent update needs to also update the inode: the inode trigger 204 * will set bi->journal_seq to the jou 205 * will set bi->journal_seq to the journal sequence number of this 205 * transaction - for fsync. 206 * transaction - for fsync. 206 * 207 * 207 * But if that's the only reason we're 208 * But if that's the only reason we're updating the inode (we're not 208 * updating bi_size or bi_sectors), th 209 * updating bi_size or bi_sectors), then we don't need the inode update 209 * to be journalled - if we crash, the 210 * to be journalled - if we crash, the bi_journal_seq update will be 210 * lost, but that's fine. 211 * lost, but that's fine. 211 */ 212 */ 212 unsigned inode_update_flags = BTREE_UP 213 unsigned inode_update_flags = BTREE_UPDATE_nojournal; 213 214 214 struct btree_iter iter; 215 struct btree_iter iter; 215 struct bkey_s_c k = bch2_bkey_get_iter 216 struct bkey_s_c k = bch2_bkey_get_iter(trans, &iter, BTREE_ID_inodes, 216 SPOS(0, 217 SPOS(0, 217 extent_iter 218 extent_iter->pos.inode, 218 extent_iter 219 extent_iter->snapshot), 219 BTREE_ITER_cache 220 BTREE_ITER_cached); 220 int ret = bkey_err(k); 221 int ret = bkey_err(k); 221 if (unlikely(ret)) 222 if (unlikely(ret)) 222 return ret; 223 return ret; 223 224 224 /* 225 /* 225 * varint_decode_fast(), in the inode 226 * varint_decode_fast(), in the inode .invalid method, reads up to 7 226 * bytes past the end of the buffer: 227 * bytes past the end of the buffer: 227 */ 228 */ 228 struct bkey_i *k_mut = bch2_trans_kmal 229 struct bkey_i *k_mut = bch2_trans_kmalloc_nomemzero(trans, bkey_bytes(k.k) + 8); 229 ret = PTR_ERR_OR_ZERO(k_mut); 230 ret = PTR_ERR_OR_ZERO(k_mut); 230 if (unlikely(ret)) 231 if (unlikely(ret)) 231 goto err; 232 goto err; 232 233 233 bkey_reassemble(k_mut, k); 234 bkey_reassemble(k_mut, k); 234 235 235 if (unlikely(k_mut->k.type != KEY_TYPE 236 if (unlikely(k_mut->k.type != KEY_TYPE_inode_v3)) { 236 k_mut = bch2_inode_to_v3(trans 237 k_mut = bch2_inode_to_v3(trans, k_mut); 237 ret = PTR_ERR_OR_ZERO(k_mut); 238 ret = PTR_ERR_OR_ZERO(k_mut); 238 if (unlikely(ret)) 239 if (unlikely(ret)) 239 goto err; 240 goto err; 240 } 241 } 241 242 242 struct bkey_i_inode_v3 *inode = bkey_i 243 struct bkey_i_inode_v3 *inode = bkey_i_to_inode_v3(k_mut); 243 244 244 if (!(le64_to_cpu(inode->v.bi_flags) & 245 if (!(le64_to_cpu(inode->v.bi_flags) & BCH_INODE_i_size_dirty) && 245 new_i_size > le64_to_cpu(inode->v. 246 new_i_size > le64_to_cpu(inode->v.bi_size)) { 246 inode->v.bi_size = cpu_to_le64 247 inode->v.bi_size = cpu_to_le64(new_i_size); 247 inode_update_flags = 0; 248 inode_update_flags = 0; 248 } 249 } 249 250 250 if (i_sectors_delta) { 251 if (i_sectors_delta) { 251 le64_add_cpu(&inode->v.bi_sect 252 le64_add_cpu(&inode->v.bi_sectors, i_sectors_delta); 252 inode_update_flags = 0; 253 inode_update_flags = 0; 253 } 254 } 254 255 255 if (inode->k.p.snapshot != iter.snapsh 256 if (inode->k.p.snapshot != iter.snapshot) { 256 inode->k.p.snapshot = iter.sna 257 inode->k.p.snapshot = iter.snapshot; 257 inode_update_flags = 0; 258 inode_update_flags = 0; 258 } 259 } 259 260 260 ret = bch2_trans_update(trans, &iter, 261 ret = bch2_trans_update(trans, &iter, &inode->k_i, 261 BTREE_UPDATE_i 262 BTREE_UPDATE_internal_snapshot_node| 262 inode_update_f 263 inode_update_flags); 263 err: 264 err: 264 bch2_trans_iter_exit(trans, &iter); 265 bch2_trans_iter_exit(trans, &iter); 265 return ret; 266 return ret; 266 } 267 } 267 268 268 int bch2_extent_update(struct btree_trans *tra 269 int bch2_extent_update(struct btree_trans *trans, 269 subvol_inum inum, 270 subvol_inum inum, 270 struct btree_iter *iter 271 struct btree_iter *iter, 271 struct bkey_i *k, 272 struct bkey_i *k, 272 struct disk_reservation 273 struct disk_reservation *disk_res, 273 u64 new_i_size, 274 u64 new_i_size, 274 s64 *i_sectors_delta_to 275 s64 *i_sectors_delta_total, 275 bool check_enospc) 276 bool check_enospc) 276 { 277 { 277 struct bpos next_pos; 278 struct bpos next_pos; 278 bool usage_increasing; 279 bool usage_increasing; 279 s64 i_sectors_delta = 0, disk_sectors_ 280 s64 i_sectors_delta = 0, disk_sectors_delta = 0; 280 int ret; 281 int ret; 281 282 282 /* 283 /* 283 * This traverses us the iterator with 284 * This traverses us the iterator without changing iter->path->pos to 284 * search_key() (which is pos + 1 for 285 * search_key() (which is pos + 1 for extents): we want there to be a 285 * path already traversed at iter->pos 286 * path already traversed at iter->pos because 286 * bch2_trans_extent_update() will use 287 * bch2_trans_extent_update() will use it to attempt extent merging 287 */ 288 */ 288 ret = __bch2_btree_iter_traverse(iter) 289 ret = __bch2_btree_iter_traverse(iter); 289 if (ret) 290 if (ret) 290 return ret; 291 return ret; 291 292 292 ret = bch2_extent_trim_atomic(trans, i 293 ret = bch2_extent_trim_atomic(trans, iter, k); 293 if (ret) 294 if (ret) 294 return ret; 295 return ret; 295 296 296 next_pos = k->k.p; 297 next_pos = k->k.p; 297 298 298 ret = bch2_sum_sector_overwrites(trans 299 ret = bch2_sum_sector_overwrites(trans, iter, k, 299 &usage_increasing, 300 &usage_increasing, 300 &i_sectors_delta, 301 &i_sectors_delta, 301 &disk_sectors_delta); 302 &disk_sectors_delta); 302 if (ret) 303 if (ret) 303 return ret; 304 return ret; 304 305 305 if (disk_res && 306 if (disk_res && 306 disk_sectors_delta > (s64) disk_re 307 disk_sectors_delta > (s64) disk_res->sectors) { 307 ret = bch2_disk_reservation_ad 308 ret = bch2_disk_reservation_add(trans->c, disk_res, 308 disk_s 309 disk_sectors_delta - disk_res->sectors, 309 !check 310 !check_enospc || !usage_increasing 310 ? BCH_ 311 ? BCH_DISK_RESERVATION_NOFAIL : 0); 311 if (ret) 312 if (ret) 312 return ret; 313 return ret; 313 } 314 } 314 315 315 /* 316 /* 316 * Note: 317 * Note: 317 * We always have to do an inode updat 318 * We always have to do an inode update - even when i_size/i_sectors 318 * aren't changing - for fsync to work 319 * aren't changing - for fsync to work properly; fsync relies on 319 * inode->bi_journal_seq which is upda 320 * inode->bi_journal_seq which is updated by the trigger code: 320 */ 321 */ 321 ret = bch2_extent_update_i_size_sect 322 ret = bch2_extent_update_i_size_sectors(trans, iter, 322 323 min(k->k.p.offset << 9, new_i_size), 323 324 i_sectors_delta) ?: 324 bch2_trans_update(trans, iter, 325 bch2_trans_update(trans, iter, k, 0) ?: 325 bch2_trans_commit(trans, disk_ 326 bch2_trans_commit(trans, disk_res, NULL, 326 BCH_TRANS_COMM 327 BCH_TRANS_COMMIT_no_check_rw| 327 BCH_TRANS_COMM 328 BCH_TRANS_COMMIT_no_enospc); 328 if (unlikely(ret)) 329 if (unlikely(ret)) 329 return ret; 330 return ret; 330 331 331 if (i_sectors_delta_total) 332 if (i_sectors_delta_total) 332 *i_sectors_delta_total += i_se 333 *i_sectors_delta_total += i_sectors_delta; 333 bch2_btree_iter_set_pos(iter, next_pos 334 bch2_btree_iter_set_pos(iter, next_pos); 334 return 0; 335 return 0; 335 } 336 } 336 337 337 static int bch2_write_index_default(struct bch 338 static int bch2_write_index_default(struct bch_write_op *op) 338 { 339 { 339 struct bch_fs *c = op->c; 340 struct bch_fs *c = op->c; 340 struct bkey_buf sk; 341 struct bkey_buf sk; 341 struct keylist *keys = &op->insert_key 342 struct keylist *keys = &op->insert_keys; 342 struct bkey_i *k = bch2_keylist_front( 343 struct bkey_i *k = bch2_keylist_front(keys); 343 struct btree_trans *trans = bch2_trans 344 struct btree_trans *trans = bch2_trans_get(c); 344 struct btree_iter iter; 345 struct btree_iter iter; 345 subvol_inum inum = { 346 subvol_inum inum = { 346 .subvol = op->subvol, 347 .subvol = op->subvol, 347 .inum = k->k.p.inode, 348 .inum = k->k.p.inode, 348 }; 349 }; 349 int ret; 350 int ret; 350 351 351 BUG_ON(!inum.subvol); 352 BUG_ON(!inum.subvol); 352 353 353 bch2_bkey_buf_init(&sk); 354 bch2_bkey_buf_init(&sk); 354 355 355 do { 356 do { 356 bch2_trans_begin(trans); 357 bch2_trans_begin(trans); 357 358 358 k = bch2_keylist_front(keys); 359 k = bch2_keylist_front(keys); 359 bch2_bkey_buf_copy(&sk, c, k); 360 bch2_bkey_buf_copy(&sk, c, k); 360 361 361 ret = bch2_subvolume_get_snaps 362 ret = bch2_subvolume_get_snapshot(trans, inum.subvol, 362 363 &sk.k->k.p.snapshot); 363 if (bch2_err_matches(ret, BCH_ 364 if (bch2_err_matches(ret, BCH_ERR_transaction_restart)) 364 continue; 365 continue; 365 if (ret) 366 if (ret) 366 break; 367 break; 367 368 368 bch2_trans_iter_init(trans, &i 369 bch2_trans_iter_init(trans, &iter, BTREE_ID_extents, 369 bkey_star 370 bkey_start_pos(&sk.k->k), 370 BTREE_ITE 371 BTREE_ITER_slots|BTREE_ITER_intent); 371 372 372 ret = bch2_bkey_set_needs_re 373 ret = bch2_bkey_set_needs_rebalance(c, sk.k, &op->opts) ?: 373 bch2_extent_update(tra 374 bch2_extent_update(trans, inum, &iter, sk.k, 374 &op->r 375 &op->res, 375 op->ne 376 op->new_i_size, &op->i_sectors_delta, 376 op->fl 377 op->flags & BCH_WRITE_CHECK_ENOSPC); 377 bch2_trans_iter_exit(trans, &i 378 bch2_trans_iter_exit(trans, &iter); 378 379 379 if (bch2_err_matches(ret, BCH_ 380 if (bch2_err_matches(ret, BCH_ERR_transaction_restart)) 380 continue; 381 continue; 381 if (ret) 382 if (ret) 382 break; 383 break; 383 384 384 if (bkey_ge(iter.pos, k->k.p)) 385 if (bkey_ge(iter.pos, k->k.p)) 385 bch2_keylist_pop_front 386 bch2_keylist_pop_front(&op->insert_keys); 386 else 387 else 387 bch2_cut_front(iter.po 388 bch2_cut_front(iter.pos, k); 388 } while (!bch2_keylist_empty(keys)); 389 } while (!bch2_keylist_empty(keys)); 389 390 390 bch2_trans_put(trans); 391 bch2_trans_put(trans); 391 bch2_bkey_buf_exit(&sk, c); 392 bch2_bkey_buf_exit(&sk, c); 392 393 393 return ret; 394 return ret; 394 } 395 } 395 396 396 /* Writes */ 397 /* Writes */ 397 398 398 void bch2_submit_wbio_replicas(struct bch_writ 399 void bch2_submit_wbio_replicas(struct bch_write_bio *wbio, struct bch_fs *c, 399 enum bch_data_t 400 enum bch_data_type type, 400 const struct bk 401 const struct bkey_i *k, 401 bool nocow) 402 bool nocow) 402 { 403 { 403 struct bkey_ptrs_c ptrs = bch2_bkey_pt 404 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(bkey_i_to_s_c(k)); 404 struct bch_write_bio *n; 405 struct bch_write_bio *n; 405 406 406 BUG_ON(c->opts.nochanges); 407 BUG_ON(c->opts.nochanges); 407 408 408 bkey_for_each_ptr(ptrs, ptr) { 409 bkey_for_each_ptr(ptrs, ptr) { 409 struct bch_dev *ca = nocow 410 struct bch_dev *ca = nocow 410 ? bch2_dev_have_ref(c, 411 ? bch2_dev_have_ref(c, ptr->dev) 411 : bch2_dev_get_ioref(c 412 : bch2_dev_get_ioref(c, ptr->dev, type == BCH_DATA_btree ? READ : WRITE); 412 413 413 if (to_entry(ptr + 1) < ptrs.e 414 if (to_entry(ptr + 1) < ptrs.end) { 414 n = to_wbio(bio_alloc_ 415 n = to_wbio(bio_alloc_clone(NULL, &wbio->bio, GFP_NOFS, &c->replica_set)); 415 416 416 n->bio.bi_end_io 417 n->bio.bi_end_io = wbio->bio.bi_end_io; 417 n->bio.bi_private 418 n->bio.bi_private = wbio->bio.bi_private; 418 n->parent 419 n->parent = wbio; 419 n->split 420 n->split = true; 420 n->bounce 421 n->bounce = false; 421 n->put_bio 422 n->put_bio = true; 422 n->bio.bi_opf 423 n->bio.bi_opf = wbio->bio.bi_opf; 423 bio_inc_remaining(&wbi 424 bio_inc_remaining(&wbio->bio); 424 } else { 425 } else { 425 n = wbio; 426 n = wbio; 426 n->split 427 n->split = false; 427 } 428 } 428 429 429 n->c = c; 430 n->c = c; 430 n->dev = ptr- 431 n->dev = ptr->dev; 431 n->have_ioref = ca ! 432 n->have_ioref = ca != NULL; 432 n->nocow = noco 433 n->nocow = nocow; 433 n->submit_time = loca 434 n->submit_time = local_clock(); 434 n->inode_offset = bkey 435 n->inode_offset = bkey_start_offset(&k->k); 435 if (nocow) 436 if (nocow) 436 n->nocow_bucket = PTR_ 437 n->nocow_bucket = PTR_BUCKET_NR(ca, ptr); 437 n->bio.bi_iter.bi_sector = ptr 438 n->bio.bi_iter.bi_sector = ptr->offset; 438 439 439 if (likely(n->have_ioref)) { 440 if (likely(n->have_ioref)) { 440 this_cpu_add(ca->io_do 441 this_cpu_add(ca->io_done->sectors[WRITE][type], 441 bio_secto 442 bio_sectors(&n->bio)); 442 443 443 bio_set_dev(&n->bio, c 444 bio_set_dev(&n->bio, ca->disk_sb.bdev); 444 445 445 if (type != BCH_DATA_b 446 if (type != BCH_DATA_btree && unlikely(c->opts.no_data_io)) { 446 bio_endio(&n-> 447 bio_endio(&n->bio); 447 continue; 448 continue; 448 } 449 } 449 450 450 submit_bio(&n->bio); 451 submit_bio(&n->bio); 451 } else { 452 } else { 452 n->bio.bi_status 453 n->bio.bi_status = BLK_STS_REMOVED; 453 bio_endio(&n->bio); 454 bio_endio(&n->bio); 454 } 455 } 455 } 456 } 456 } 457 } 457 458 458 static void __bch2_write(struct bch_write_op * 459 static void __bch2_write(struct bch_write_op *); 459 460 460 static void bch2_write_done(struct closure *cl 461 static void bch2_write_done(struct closure *cl) 461 { 462 { 462 struct bch_write_op *op = container_of 463 struct bch_write_op *op = container_of(cl, struct bch_write_op, cl); 463 struct bch_fs *c = op->c; 464 struct bch_fs *c = op->c; 464 465 465 EBUG_ON(op->open_buckets.nr); 466 EBUG_ON(op->open_buckets.nr); 466 467 467 bch2_time_stats_update(&c->times[BCH_T 468 bch2_time_stats_update(&c->times[BCH_TIME_data_write], op->start_time); 468 bch2_disk_reservation_put(c, &op->res) 469 bch2_disk_reservation_put(c, &op->res); 469 470 470 if (!(op->flags & BCH_WRITE_MOVE)) 471 if (!(op->flags & BCH_WRITE_MOVE)) 471 bch2_write_ref_put(c, BCH_WRIT 472 bch2_write_ref_put(c, BCH_WRITE_REF_write); 472 bch2_keylist_free(&op->insert_keys, op 473 bch2_keylist_free(&op->insert_keys, op->inline_keys); 473 474 474 EBUG_ON(cl->parent); 475 EBUG_ON(cl->parent); 475 closure_debug_destroy(cl); 476 closure_debug_destroy(cl); 476 if (op->end_io) 477 if (op->end_io) 477 op->end_io(op); 478 op->end_io(op); 478 } 479 } 479 480 480 static noinline int bch2_write_drop_io_error_p 481 static noinline int bch2_write_drop_io_error_ptrs(struct bch_write_op *op) 481 { 482 { 482 struct keylist *keys = &op->insert_key 483 struct keylist *keys = &op->insert_keys; 483 struct bkey_i *src, *dst = keys->keys, 484 struct bkey_i *src, *dst = keys->keys, *n; 484 485 485 for (src = keys->keys; src != keys->to 486 for (src = keys->keys; src != keys->top; src = n) { 486 n = bkey_next(src); 487 n = bkey_next(src); 487 488 488 if (bkey_extent_is_direct_data 489 if (bkey_extent_is_direct_data(&src->k)) { 489 bch2_bkey_drop_ptrs(bk 490 bch2_bkey_drop_ptrs(bkey_i_to_s(src), ptr, 490 te 491 test_bit(ptr->dev, op->failed.d)); 491 492 492 if (!bch2_bkey_nr_ptrs 493 if (!bch2_bkey_nr_ptrs(bkey_i_to_s_c(src))) 493 return -EIO; 494 return -EIO; 494 } 495 } 495 496 496 if (dst != src) 497 if (dst != src) 497 memmove_u64s_down(dst, 498 memmove_u64s_down(dst, src, src->k.u64s); 498 dst = bkey_next(dst); 499 dst = bkey_next(dst); 499 } 500 } 500 501 501 keys->top = dst; 502 keys->top = dst; 502 return 0; 503 return 0; 503 } 504 } 504 505 505 /** 506 /** 506 * __bch2_write_index - after a write, update 507 * __bch2_write_index - after a write, update index to point to new data 507 * @op: bch_write_op to process 508 * @op: bch_write_op to process 508 */ 509 */ 509 static void __bch2_write_index(struct bch_writ 510 static void __bch2_write_index(struct bch_write_op *op) 510 { 511 { 511 struct bch_fs *c = op->c; 512 struct bch_fs *c = op->c; 512 struct keylist *keys = &op->insert_key 513 struct keylist *keys = &op->insert_keys; 513 unsigned dev; 514 unsigned dev; 514 int ret = 0; 515 int ret = 0; 515 516 516 if (unlikely(op->flags & BCH_WRITE_IO_ 517 if (unlikely(op->flags & BCH_WRITE_IO_ERROR)) { 517 ret = bch2_write_drop_io_error 518 ret = bch2_write_drop_io_error_ptrs(op); 518 if (ret) 519 if (ret) 519 goto err; 520 goto err; 520 } 521 } 521 522 522 if (!bch2_keylist_empty(keys)) { 523 if (!bch2_keylist_empty(keys)) { 523 u64 sectors_start = keylist_se 524 u64 sectors_start = keylist_sectors(keys); 524 525 525 ret = !(op->flags & BCH_WRITE_ 526 ret = !(op->flags & BCH_WRITE_MOVE) 526 ? bch2_write_index_def 527 ? bch2_write_index_default(op) 527 : bch2_data_update_ind 528 : bch2_data_update_index_update(op); 528 529 529 BUG_ON(bch2_err_matches(ret, B 530 BUG_ON(bch2_err_matches(ret, BCH_ERR_transaction_restart)); 530 BUG_ON(keylist_sectors(keys) & 531 BUG_ON(keylist_sectors(keys) && !ret); 531 532 532 op->written += sectors_start - 533 op->written += sectors_start - keylist_sectors(keys); 533 534 534 if (ret && !bch2_err_matches(r 535 if (ret && !bch2_err_matches(ret, EROFS)) { 535 struct bkey_i *insert 536 struct bkey_i *insert = bch2_keylist_front(&op->insert_keys); 536 537 537 bch_err_inum_offset_ra 538 bch_err_inum_offset_ratelimited(c, 538 insert->k.p.in 539 insert->k.p.inode, insert->k.p.offset << 9, 539 "%s write erro 540 "%s write error while doing btree update: %s", 540 op->flags & BC 541 op->flags & BCH_WRITE_MOVE ? "move" : "user", 541 bch2_err_str(r 542 bch2_err_str(ret)); 542 } 543 } 543 544 544 if (ret) 545 if (ret) 545 goto err; 546 goto err; 546 } 547 } 547 out: 548 out: 548 /* If some a bucket wasn't written, we 549 /* If some a bucket wasn't written, we can't erasure code it: */ 549 for_each_set_bit(dev, op->failed.d, BC 550 for_each_set_bit(dev, op->failed.d, BCH_SB_MEMBERS_MAX) 550 bch2_open_bucket_write_error(c 551 bch2_open_bucket_write_error(c, &op->open_buckets, dev); 551 552 552 bch2_open_buckets_put(c, &op->open_buc 553 bch2_open_buckets_put(c, &op->open_buckets); 553 return; 554 return; 554 err: 555 err: 555 keys->top = keys->keys; 556 keys->top = keys->keys; 556 op->error = ret; 557 op->error = ret; 557 op->flags |= BCH_WRITE_SUBMITTED; !! 558 op->flags |= BCH_WRITE_DONE; 558 goto out; 559 goto out; 559 } 560 } 560 561 561 static inline void __wp_update_state(struct wr 562 static inline void __wp_update_state(struct write_point *wp, enum write_point_state state) 562 { 563 { 563 if (state != wp->state) { 564 if (state != wp->state) { 564 u64 now = ktime_get_ns(); 565 u64 now = ktime_get_ns(); 565 566 566 if (wp->last_state_change && 567 if (wp->last_state_change && 567 time_after64(now, wp->last 568 time_after64(now, wp->last_state_change)) 568 wp->time[wp->state] += 569 wp->time[wp->state] += now - wp->last_state_change; 569 wp->state = state; 570 wp->state = state; 570 wp->last_state_change = now; 571 wp->last_state_change = now; 571 } 572 } 572 } 573 } 573 574 574 static inline void wp_update_state(struct writ 575 static inline void wp_update_state(struct write_point *wp, bool running) 575 { 576 { 576 enum write_point_state state; 577 enum write_point_state state; 577 578 578 state = running ? WRI 579 state = running ? WRITE_POINT_running : 579 !list_empty(&wp->writes) ? WRI 580 !list_empty(&wp->writes) ? WRITE_POINT_waiting_io 580 : WRI 581 : WRITE_POINT_stopped; 581 582 582 __wp_update_state(wp, state); 583 __wp_update_state(wp, state); 583 } 584 } 584 585 585 static CLOSURE_CALLBACK(bch2_write_index) 586 static CLOSURE_CALLBACK(bch2_write_index) 586 { 587 { 587 closure_type(op, struct bch_write_op, 588 closure_type(op, struct bch_write_op, cl); 588 struct write_point *wp = op->wp; 589 struct write_point *wp = op->wp; 589 struct workqueue_struct *wq = index_up 590 struct workqueue_struct *wq = index_update_wq(op); 590 unsigned long flags; 591 unsigned long flags; 591 592 592 if ((op->flags & BCH_WRITE_SUBMITTED) !! 593 if ((op->flags & BCH_WRITE_DONE) && 593 (op->flags & BCH_WRITE_MOVE)) 594 (op->flags & BCH_WRITE_MOVE)) 594 bch2_bio_free_pages_pool(op->c 595 bch2_bio_free_pages_pool(op->c, &op->wbio.bio); 595 596 596 spin_lock_irqsave(&wp->writes_lock, fl 597 spin_lock_irqsave(&wp->writes_lock, flags); 597 if (wp->state == WRITE_POINT_waiting_i 598 if (wp->state == WRITE_POINT_waiting_io) 598 __wp_update_state(wp, WRITE_PO 599 __wp_update_state(wp, WRITE_POINT_waiting_work); 599 list_add_tail(&op->wp_list, &wp->write 600 list_add_tail(&op->wp_list, &wp->writes); 600 spin_unlock_irqrestore (&wp->writes_lo 601 spin_unlock_irqrestore (&wp->writes_lock, flags); 601 602 602 queue_work(wq, &wp->index_update_work) 603 queue_work(wq, &wp->index_update_work); 603 } 604 } 604 605 605 static inline void bch2_write_queue(struct bch 606 static inline void bch2_write_queue(struct bch_write_op *op, struct write_point *wp) 606 { 607 { 607 op->wp = wp; 608 op->wp = wp; 608 609 609 if (wp->state == WRITE_POINT_stopped) 610 if (wp->state == WRITE_POINT_stopped) { 610 spin_lock_irq(&wp->writes_lock 611 spin_lock_irq(&wp->writes_lock); 611 __wp_update_state(wp, WRITE_PO 612 __wp_update_state(wp, WRITE_POINT_waiting_io); 612 spin_unlock_irq(&wp->writes_lo 613 spin_unlock_irq(&wp->writes_lock); 613 } 614 } 614 } 615 } 615 616 616 void bch2_write_point_do_index_updates(struct 617 void bch2_write_point_do_index_updates(struct work_struct *work) 617 { 618 { 618 struct write_point *wp = 619 struct write_point *wp = 619 container_of(work, struct writ 620 container_of(work, struct write_point, index_update_work); 620 struct bch_write_op *op; 621 struct bch_write_op *op; 621 622 622 while (1) { 623 while (1) { 623 spin_lock_irq(&wp->writes_lock 624 spin_lock_irq(&wp->writes_lock); 624 op = list_first_entry_or_null( 625 op = list_first_entry_or_null(&wp->writes, struct bch_write_op, wp_list); 625 if (op) 626 if (op) 626 list_del(&op->wp_list) 627 list_del(&op->wp_list); 627 wp_update_state(wp, op != NULL 628 wp_update_state(wp, op != NULL); 628 spin_unlock_irq(&wp->writes_lo 629 spin_unlock_irq(&wp->writes_lock); 629 630 630 if (!op) 631 if (!op) 631 break; 632 break; 632 633 633 op->flags |= BCH_WRITE_IN_WORK 634 op->flags |= BCH_WRITE_IN_WORKER; 634 635 635 __bch2_write_index(op); 636 __bch2_write_index(op); 636 637 637 if (!(op->flags & BCH_WRITE_SU !! 638 if (!(op->flags & BCH_WRITE_DONE)) 638 __bch2_write(op); 639 __bch2_write(op); 639 else 640 else 640 bch2_write_done(&op->c 641 bch2_write_done(&op->cl); 641 } 642 } 642 } 643 } 643 644 644 static void bch2_write_endio(struct bio *bio) 645 static void bch2_write_endio(struct bio *bio) 645 { 646 { 646 struct closure *cl = bio- 647 struct closure *cl = bio->bi_private; 647 struct bch_write_op *op = cont 648 struct bch_write_op *op = container_of(cl, struct bch_write_op, cl); 648 struct bch_write_bio *wbio = to_w 649 struct bch_write_bio *wbio = to_wbio(bio); 649 struct bch_write_bio *parent = wbio 650 struct bch_write_bio *parent = wbio->split ? wbio->parent : NULL; 650 struct bch_fs *c = wbio 651 struct bch_fs *c = wbio->c; 651 struct bch_dev *ca = wbio 652 struct bch_dev *ca = wbio->have_ioref 652 ? bch2_dev_have_ref(c, wbio->d 653 ? bch2_dev_have_ref(c, wbio->dev) 653 : NULL; 654 : NULL; 654 655 655 if (bch2_dev_inum_io_err_on(bio->bi_st 656 if (bch2_dev_inum_io_err_on(bio->bi_status, ca, BCH_MEMBER_ERROR_write, 656 op->pos.in 657 op->pos.inode, 657 wbio->inod 658 wbio->inode_offset << 9, 658 "data writ 659 "data write error: %s", 659 bch2_blk_s 660 bch2_blk_status_to_str(bio->bi_status))) { 660 set_bit(wbio->dev, op->failed. 661 set_bit(wbio->dev, op->failed.d); 661 op->flags |= BCH_WRITE_IO_ERRO 662 op->flags |= BCH_WRITE_IO_ERROR; 662 } 663 } 663 664 664 if (wbio->nocow) { 665 if (wbio->nocow) { 665 bch2_bucket_nocow_unlock(&c->n 666 bch2_bucket_nocow_unlock(&c->nocow_locks, 666 POS(c 667 POS(ca->dev_idx, wbio->nocow_bucket), 667 BUCKE 668 BUCKET_NOCOW_LOCK_UPDATE); 668 set_bit(wbio->dev, op->devs_ne 669 set_bit(wbio->dev, op->devs_need_flush->d); 669 } 670 } 670 671 671 if (wbio->have_ioref) { 672 if (wbio->have_ioref) { 672 bch2_latency_acct(ca, wbio->su 673 bch2_latency_acct(ca, wbio->submit_time, WRITE); 673 percpu_ref_put(&ca->io_ref); 674 percpu_ref_put(&ca->io_ref); 674 } 675 } 675 676 676 if (wbio->bounce) 677 if (wbio->bounce) 677 bch2_bio_free_pages_pool(c, bi 678 bch2_bio_free_pages_pool(c, bio); 678 679 679 if (wbio->put_bio) 680 if (wbio->put_bio) 680 bio_put(bio); 681 bio_put(bio); 681 682 682 if (parent) 683 if (parent) 683 bio_endio(&parent->bio); 684 bio_endio(&parent->bio); 684 else 685 else 685 closure_put(cl); 686 closure_put(cl); 686 } 687 } 687 688 688 static void init_append_extent(struct bch_writ 689 static void init_append_extent(struct bch_write_op *op, 689 struct write_po 690 struct write_point *wp, 690 struct bversion 691 struct bversion version, 691 struct bch_exte 692 struct bch_extent_crc_unpacked crc) 692 { 693 { 693 struct bkey_i_extent *e; 694 struct bkey_i_extent *e; 694 695 695 op->pos.offset += crc.uncompressed_siz 696 op->pos.offset += crc.uncompressed_size; 696 697 697 e = bkey_extent_init(op->insert_keys.t 698 e = bkey_extent_init(op->insert_keys.top); 698 e->k.p = op->pos; 699 e->k.p = op->pos; 699 e->k.size = crc.uncompressed_siz 700 e->k.size = crc.uncompressed_size; 700 e->k.bversion = version; !! 701 e->k.version = version; 701 702 702 if (crc.csum_type || 703 if (crc.csum_type || 703 crc.compression_type || 704 crc.compression_type || 704 crc.nonce) 705 crc.nonce) 705 bch2_extent_crc_append(&e->k_i 706 bch2_extent_crc_append(&e->k_i, crc); 706 707 707 bch2_alloc_sectors_append_ptrs_inlined 708 bch2_alloc_sectors_append_ptrs_inlined(op->c, wp, &e->k_i, crc.compressed_size, 708 op->fla 709 op->flags & BCH_WRITE_CACHED); 709 710 710 bch2_keylist_push(&op->insert_keys); 711 bch2_keylist_push(&op->insert_keys); 711 } 712 } 712 713 713 static struct bio *bch2_write_bio_alloc(struct 714 static struct bio *bch2_write_bio_alloc(struct bch_fs *c, 714 struct 715 struct write_point *wp, 715 struct 716 struct bio *src, 716 bool * 717 bool *page_alloc_failed, 717 void * 718 void *buf) 718 { 719 { 719 struct bch_write_bio *wbio; 720 struct bch_write_bio *wbio; 720 struct bio *bio; 721 struct bio *bio; 721 unsigned output_available = 722 unsigned output_available = 722 min(wp->sectors_free << 9, src 723 min(wp->sectors_free << 9, src->bi_iter.bi_size); 723 unsigned pages = DIV_ROUND_UP(output_a 724 unsigned pages = DIV_ROUND_UP(output_available + 724 (buf 725 (buf 725 ? ((uns 726 ? ((unsigned long) buf & (PAGE_SIZE - 1)) 726 : 0), P 727 : 0), PAGE_SIZE); 727 728 728 pages = min(pages, BIO_MAX_VECS); 729 pages = min(pages, BIO_MAX_VECS); 729 730 730 bio = bio_alloc_bioset(NULL, pages, 0, 731 bio = bio_alloc_bioset(NULL, pages, 0, 731 GFP_NOFS, &c->b 732 GFP_NOFS, &c->bio_write); 732 wbio = wbio_init(bi 733 wbio = wbio_init(bio); 733 wbio->put_bio = true; 734 wbio->put_bio = true; 734 /* copy WRITE_SYNC flag */ 735 /* copy WRITE_SYNC flag */ 735 wbio->bio.bi_opf = src->bi_opf; 736 wbio->bio.bi_opf = src->bi_opf; 736 737 737 if (buf) { 738 if (buf) { 738 bch2_bio_map(bio, buf, output_ 739 bch2_bio_map(bio, buf, output_available); 739 return bio; 740 return bio; 740 } 741 } 741 742 742 wbio->bounce = true; 743 wbio->bounce = true; 743 744 744 /* 745 /* 745 * We can't use mempool for more than 746 * We can't use mempool for more than c->sb.encoded_extent_max 746 * worth of pages, but we'd like to al 747 * worth of pages, but we'd like to allocate more if we can: 747 */ 748 */ 748 bch2_bio_alloc_pages_pool(c, bio, 749 bch2_bio_alloc_pages_pool(c, bio, 749 min_t(unsign 750 min_t(unsigned, output_available, 750 c->opt 751 c->opts.encoded_extent_max)); 751 752 752 if (bio->bi_iter.bi_size < output_avai 753 if (bio->bi_iter.bi_size < output_available) 753 *page_alloc_failed = 754 *page_alloc_failed = 754 bch2_bio_alloc_pages(b 755 bch2_bio_alloc_pages(bio, 755 o 756 output_available - 756 b 757 bio->bi_iter.bi_size, 757 G 758 GFP_NOFS) != 0; 758 759 759 return bio; 760 return bio; 760 } 761 } 761 762 762 static int bch2_write_rechecksum(struct bch_fs 763 static int bch2_write_rechecksum(struct bch_fs *c, 763 struct bch_wr 764 struct bch_write_op *op, 764 unsigned new_ 765 unsigned new_csum_type) 765 { 766 { 766 struct bio *bio = &op->wbio.bio; 767 struct bio *bio = &op->wbio.bio; 767 struct bch_extent_crc_unpacked new_crc 768 struct bch_extent_crc_unpacked new_crc; 768 int ret; 769 int ret; 769 770 770 /* bch2_rechecksum_bio() can't encrypt 771 /* bch2_rechecksum_bio() can't encrypt or decrypt data: */ 771 772 772 if (bch2_csum_type_is_encryption(op->c 773 if (bch2_csum_type_is_encryption(op->crc.csum_type) != 773 bch2_csum_type_is_encryption(new_c 774 bch2_csum_type_is_encryption(new_csum_type)) 774 new_csum_type = op->crc.csum_t 775 new_csum_type = op->crc.csum_type; 775 776 776 ret = bch2_rechecksum_bio(c, bio, op-> 777 ret = bch2_rechecksum_bio(c, bio, op->version, op->crc, 777 NULL, &new_c 778 NULL, &new_crc, 778 op->crc.offs 779 op->crc.offset, op->crc.live_size, 779 new_csum_typ 780 new_csum_type); 780 if (ret) 781 if (ret) 781 return ret; 782 return ret; 782 783 783 bio_advance(bio, op->crc.offset << 9); 784 bio_advance(bio, op->crc.offset << 9); 784 bio->bi_iter.bi_size = op->crc.live_si 785 bio->bi_iter.bi_size = op->crc.live_size << 9; 785 op->crc = new_crc; 786 op->crc = new_crc; 786 return 0; 787 return 0; 787 } 788 } 788 789 789 static int bch2_write_decrypt(struct bch_write 790 static int bch2_write_decrypt(struct bch_write_op *op) 790 { 791 { 791 struct bch_fs *c = op->c; 792 struct bch_fs *c = op->c; 792 struct nonce nonce = extent_nonce(op-> 793 struct nonce nonce = extent_nonce(op->version, op->crc); 793 struct bch_csum csum; 794 struct bch_csum csum; 794 int ret; 795 int ret; 795 796 796 if (!bch2_csum_type_is_encryption(op-> 797 if (!bch2_csum_type_is_encryption(op->crc.csum_type)) 797 return 0; 798 return 0; 798 799 799 /* 800 /* 800 * If we need to decrypt data in the w 801 * If we need to decrypt data in the write path, we'll no longer be able 801 * to verify the existing checksum (po 802 * to verify the existing checksum (poly1305 mac, in this case) after 802 * it's decrypted - this is the last p 803 * it's decrypted - this is the last point we'll be able to reverify the 803 * checksum: 804 * checksum: 804 */ 805 */ 805 csum = bch2_checksum_bio(c, op->crc.cs 806 csum = bch2_checksum_bio(c, op->crc.csum_type, nonce, &op->wbio.bio); 806 if (bch2_crc_cmp(op->crc.csum, csum) & 807 if (bch2_crc_cmp(op->crc.csum, csum) && !c->opts.no_data_io) 807 return -EIO; 808 return -EIO; 808 809 809 ret = bch2_encrypt_bio(c, op->crc.csum 810 ret = bch2_encrypt_bio(c, op->crc.csum_type, nonce, &op->wbio.bio); 810 op->crc.csum_type = 0; 811 op->crc.csum_type = 0; 811 op->crc.csum = (struct bch_csum) { 0, 812 op->crc.csum = (struct bch_csum) { 0, 0 }; 812 return ret; 813 return ret; 813 } 814 } 814 815 815 static enum prep_encoded_ret { 816 static enum prep_encoded_ret { 816 PREP_ENCODED_OK, 817 PREP_ENCODED_OK, 817 PREP_ENCODED_ERR, 818 PREP_ENCODED_ERR, 818 PREP_ENCODED_CHECKSUM_ERR, 819 PREP_ENCODED_CHECKSUM_ERR, 819 PREP_ENCODED_DO_WRITE, 820 PREP_ENCODED_DO_WRITE, 820 } bch2_write_prep_encoded_data(struct bch_writ 821 } bch2_write_prep_encoded_data(struct bch_write_op *op, struct write_point *wp) 821 { 822 { 822 struct bch_fs *c = op->c; 823 struct bch_fs *c = op->c; 823 struct bio *bio = &op->wbio.bio; 824 struct bio *bio = &op->wbio.bio; 824 825 825 if (!(op->flags & BCH_WRITE_DATA_ENCOD 826 if (!(op->flags & BCH_WRITE_DATA_ENCODED)) 826 return PREP_ENCODED_OK; 827 return PREP_ENCODED_OK; 827 828 828 BUG_ON(bio_sectors(bio) != op->crc.com 829 BUG_ON(bio_sectors(bio) != op->crc.compressed_size); 829 830 830 /* Can we just write the entire extent 831 /* Can we just write the entire extent as is? */ 831 if (op->crc.uncompressed_size == op->c 832 if (op->crc.uncompressed_size == op->crc.live_size && 832 op->crc.uncompressed_size <= c->op 833 op->crc.uncompressed_size <= c->opts.encoded_extent_max >> 9 && 833 op->crc.compressed_size <= wp->sec 834 op->crc.compressed_size <= wp->sectors_free && 834 (op->crc.compression_type == bch2_ 835 (op->crc.compression_type == bch2_compression_opt_to_type(op->compression_opt) || 835 op->incompressible)) { 836 op->incompressible)) { 836 if (!crc_is_compressed(op->crc 837 if (!crc_is_compressed(op->crc) && 837 op->csum_type != op->crc.c 838 op->csum_type != op->crc.csum_type && 838 bch2_write_rechecksum(c, o 839 bch2_write_rechecksum(c, op, op->csum_type) && 839 !c->opts.no_data_io) 840 !c->opts.no_data_io) 840 return PREP_ENCODED_CH 841 return PREP_ENCODED_CHECKSUM_ERR; 841 842 842 return PREP_ENCODED_DO_WRITE; 843 return PREP_ENCODED_DO_WRITE; 843 } 844 } 844 845 845 /* 846 /* 846 * If the data is compressed and we co 847 * If the data is compressed and we couldn't write the entire extent as 847 * is, we have to decompress it: 848 * is, we have to decompress it: 848 */ 849 */ 849 if (crc_is_compressed(op->crc)) { 850 if (crc_is_compressed(op->crc)) { 850 struct bch_csum csum; 851 struct bch_csum csum; 851 852 852 if (bch2_write_decrypt(op)) 853 if (bch2_write_decrypt(op)) 853 return PREP_ENCODED_CH 854 return PREP_ENCODED_CHECKSUM_ERR; 854 855 855 /* Last point we can still ver 856 /* Last point we can still verify checksum: */ 856 csum = bch2_checksum_bio(c, op 857 csum = bch2_checksum_bio(c, op->crc.csum_type, 857 exten 858 extent_nonce(op->version, op->crc), 858 bio); 859 bio); 859 if (bch2_crc_cmp(op->crc.csum, 860 if (bch2_crc_cmp(op->crc.csum, csum) && !c->opts.no_data_io) 860 return PREP_ENCODED_CH 861 return PREP_ENCODED_CHECKSUM_ERR; 861 862 862 if (bch2_bio_uncompress_inplac 863 if (bch2_bio_uncompress_inplace(c, bio, &op->crc)) 863 return PREP_ENCODED_ER 864 return PREP_ENCODED_ERR; 864 } 865 } 865 866 866 /* 867 /* 867 * No longer have compressed data afte 868 * No longer have compressed data after this point - data might be 868 * encrypted: 869 * encrypted: 869 */ 870 */ 870 871 871 /* 872 /* 872 * If the data is checksummed and we'r 873 * If the data is checksummed and we're only writing a subset, 873 * rechecksum and adjust bio to point 874 * rechecksum and adjust bio to point to currently live data: 874 */ 875 */ 875 if ((op->crc.live_size != op->crc.unco 876 if ((op->crc.live_size != op->crc.uncompressed_size || 876 op->crc.csum_type != op->csum_typ 877 op->crc.csum_type != op->csum_type) && 877 bch2_write_rechecksum(c, op, op->c 878 bch2_write_rechecksum(c, op, op->csum_type) && 878 !c->opts.no_data_io) 879 !c->opts.no_data_io) 879 return PREP_ENCODED_CHECKSUM_E 880 return PREP_ENCODED_CHECKSUM_ERR; 880 881 881 /* 882 /* 882 * If we want to compress the data, it 883 * If we want to compress the data, it has to be decrypted: 883 */ 884 */ 884 if ((op->compression_opt || 885 if ((op->compression_opt || 885 bch2_csum_type_is_encryption(op-> 886 bch2_csum_type_is_encryption(op->crc.csum_type) != 886 bch2_csum_type_is_encryption(op-> 887 bch2_csum_type_is_encryption(op->csum_type)) && 887 bch2_write_decrypt(op)) 888 bch2_write_decrypt(op)) 888 return PREP_ENCODED_CHECKSUM_E 889 return PREP_ENCODED_CHECKSUM_ERR; 889 890 890 return PREP_ENCODED_OK; 891 return PREP_ENCODED_OK; 891 } 892 } 892 893 893 static int bch2_write_extent(struct bch_write_ 894 static int bch2_write_extent(struct bch_write_op *op, struct write_point *wp, 894 struct bio **_dst 895 struct bio **_dst) 895 { 896 { 896 struct bch_fs *c = op->c; 897 struct bch_fs *c = op->c; 897 struct bio *src = &op->wbio.bio, *dst 898 struct bio *src = &op->wbio.bio, *dst = src; 898 struct bvec_iter saved_iter; 899 struct bvec_iter saved_iter; 899 void *ec_buf; 900 void *ec_buf; 900 unsigned total_output = 0, total_input 901 unsigned total_output = 0, total_input = 0; 901 bool bounce = false; 902 bool bounce = false; 902 bool page_alloc_failed = false; 903 bool page_alloc_failed = false; 903 int ret, more = 0; 904 int ret, more = 0; 904 905 905 BUG_ON(!bio_sectors(src)); 906 BUG_ON(!bio_sectors(src)); 906 907 907 ec_buf = bch2_writepoint_ec_buf(c, wp) 908 ec_buf = bch2_writepoint_ec_buf(c, wp); 908 909 909 switch (bch2_write_prep_encoded_data(o 910 switch (bch2_write_prep_encoded_data(op, wp)) { 910 case PREP_ENCODED_OK: 911 case PREP_ENCODED_OK: 911 break; 912 break; 912 case PREP_ENCODED_ERR: 913 case PREP_ENCODED_ERR: 913 ret = -EIO; 914 ret = -EIO; 914 goto err; 915 goto err; 915 case PREP_ENCODED_CHECKSUM_ERR: 916 case PREP_ENCODED_CHECKSUM_ERR: 916 goto csum_err; 917 goto csum_err; 917 case PREP_ENCODED_DO_WRITE: 918 case PREP_ENCODED_DO_WRITE: 918 /* XXX look for bug here */ 919 /* XXX look for bug here */ 919 if (ec_buf) { 920 if (ec_buf) { 920 dst = bch2_write_bio_a 921 dst = bch2_write_bio_alloc(c, wp, src, 921 922 &page_alloc_failed, 922 923 ec_buf); 923 bio_copy_data(dst, src 924 bio_copy_data(dst, src); 924 bounce = true; 925 bounce = true; 925 } 926 } 926 init_append_extent(op, wp, op- 927 init_append_extent(op, wp, op->version, op->crc); 927 goto do_write; 928 goto do_write; 928 } 929 } 929 930 930 if (ec_buf || 931 if (ec_buf || 931 op->compression_opt || 932 op->compression_opt || 932 (op->csum_type && 933 (op->csum_type && 933 !(op->flags & BCH_WRITE_PAGES_STA 934 !(op->flags & BCH_WRITE_PAGES_STABLE)) || 934 (bch2_csum_type_is_encryption(op-> 935 (bch2_csum_type_is_encryption(op->csum_type) && 935 !(op->flags & BCH_WRITE_PAGES_OWN 936 !(op->flags & BCH_WRITE_PAGES_OWNED))) { 936 dst = bch2_write_bio_alloc(c, 937 dst = bch2_write_bio_alloc(c, wp, src, 937 &pa 938 &page_alloc_failed, 938 ec_ 939 ec_buf); 939 bounce = true; 940 bounce = true; 940 } 941 } 941 942 942 saved_iter = dst->bi_iter; 943 saved_iter = dst->bi_iter; 943 944 944 do { 945 do { 945 struct bch_extent_crc_unpacked 946 struct bch_extent_crc_unpacked crc = { 0 }; 946 struct bversion version = op-> 947 struct bversion version = op->version; 947 size_t dst_len = 0, src_len = 948 size_t dst_len = 0, src_len = 0; 948 949 949 if (page_alloc_failed && 950 if (page_alloc_failed && 950 dst->bi_iter.bi_size < (w 951 dst->bi_iter.bi_size < (wp->sectors_free << 9) && 951 dst->bi_iter.bi_size < c-> 952 dst->bi_iter.bi_size < c->opts.encoded_extent_max) 952 break; 953 break; 953 954 954 BUG_ON(op->compression_opt && 955 BUG_ON(op->compression_opt && 955 (op->flags & BCH_WRITE_ 956 (op->flags & BCH_WRITE_DATA_ENCODED) && 956 bch2_csum_type_is_encry 957 bch2_csum_type_is_encryption(op->crc.csum_type)); 957 BUG_ON(op->compression_opt && 958 BUG_ON(op->compression_opt && !bounce); 958 959 959 crc.compression_type = op->inc 960 crc.compression_type = op->incompressible 960 ? BCH_COMPRESSION_TYPE 961 ? BCH_COMPRESSION_TYPE_incompressible 961 : op->compression_opt 962 : op->compression_opt 962 ? bch2_bio_compress(c, 963 ? bch2_bio_compress(c, dst, &dst_len, src, &src_len, 963 op 964 op->compression_opt) 964 : 0; 965 : 0; 965 if (!crc_is_compressed(crc)) { 966 if (!crc_is_compressed(crc)) { 966 dst_len = min(dst->bi_ 967 dst_len = min(dst->bi_iter.bi_size, src->bi_iter.bi_size); 967 dst_len = min_t(unsign 968 dst_len = min_t(unsigned, dst_len, wp->sectors_free << 9); 968 969 969 if (op->csum_type) 970 if (op->csum_type) 970 dst_len = min_ 971 dst_len = min_t(unsigned, dst_len, 971 972 c->opts.encoded_extent_max); 972 973 973 if (bounce) { 974 if (bounce) { 974 swap(dst->bi_i 975 swap(dst->bi_iter.bi_size, dst_len); 975 bio_copy_data( 976 bio_copy_data(dst, src); 976 swap(dst->bi_i 977 swap(dst->bi_iter.bi_size, dst_len); 977 } 978 } 978 979 979 src_len = dst_len; 980 src_len = dst_len; 980 } 981 } 981 982 982 BUG_ON(!src_len || !dst_len); 983 BUG_ON(!src_len || !dst_len); 983 984 984 if (bch2_csum_type_is_encrypti 985 if (bch2_csum_type_is_encryption(op->csum_type)) { 985 if (bversion_zero(vers 986 if (bversion_zero(version)) { 986 version.lo = a 987 version.lo = atomic64_inc_return(&c->key_version); 987 } else { 988 } else { 988 crc.nonce = op 989 crc.nonce = op->nonce; 989 op->nonce += s 990 op->nonce += src_len >> 9; 990 } 991 } 991 } 992 } 992 993 993 if ((op->flags & BCH_WRITE_DAT 994 if ((op->flags & BCH_WRITE_DATA_ENCODED) && 994 !crc_is_compressed(crc) && 995 !crc_is_compressed(crc) && 995 bch2_csum_type_is_encrypti 996 bch2_csum_type_is_encryption(op->crc.csum_type) == 996 bch2_csum_type_is_encrypti 997 bch2_csum_type_is_encryption(op->csum_type)) { 997 u8 compression_type = 998 u8 compression_type = crc.compression_type; 998 u16 nonce = crc.nonce; 999 u16 nonce = crc.nonce; 999 /* 1000 /* 1000 * Note: when we're u 1001 * Note: when we're using rechecksum(), we need to be 1001 * checksumming @src 1002 * checksumming @src because it has all the data our 1002 * existing checksum 1003 * existing checksum covers - if we bounced (because we 1003 * were trying to com 1004 * were trying to compress), @dst will only have the 1004 * part of the data t 1005 * part of the data the new checksum will cover. 1005 * 1006 * 1006 * But normally we wa 1007 * But normally we want to be checksumming post bounce, 1007 * because part of th 1008 * because part of the reason for bouncing is so the 1008 * data can't be modi 1009 * data can't be modified (by userspace) while it's in 1009 * flight. 1010 * flight. 1010 */ 1011 */ 1011 if (bch2_rechecksum_b 1012 if (bch2_rechecksum_bio(c, src, version, op->crc, 1012 &crc, 1013 &crc, &op->crc, 1013 src_l 1014 src_len >> 9, 1014 bio_s 1015 bio_sectors(src) - (src_len >> 9), 1015 op->c 1016 op->csum_type)) 1016 goto csum_err 1017 goto csum_err; 1017 /* 1018 /* 1018 * rchecksum_bio sets 1019 * rchecksum_bio sets compression_type on crc from op->crc, 1019 * this isn't always 1020 * this isn't always correct as sometimes we're changing 1020 * an extent from unc 1021 * an extent from uncompressed to incompressible. 1021 */ 1022 */ 1022 crc.compression_type 1023 crc.compression_type = compression_type; 1023 crc.nonce = nonce; 1024 crc.nonce = nonce; 1024 } else { 1025 } else { 1025 if ((op->flags & BCH_ 1026 if ((op->flags & BCH_WRITE_DATA_ENCODED) && 1026 bch2_rechecksum_b 1027 bch2_rechecksum_bio(c, src, version, op->crc, 1027 NULL, 1028 NULL, &op->crc, 1028 src_l 1029 src_len >> 9, 1029 bio_s 1030 bio_sectors(src) - (src_len >> 9), 1030 op->c 1031 op->crc.csum_type)) 1031 goto csum_err 1032 goto csum_err; 1032 1033 1033 crc.compressed_size 1034 crc.compressed_size = dst_len >> 9; 1034 crc.uncompressed_size 1035 crc.uncompressed_size = src_len >> 9; 1035 crc.live_size 1036 crc.live_size = src_len >> 9; 1036 1037 1037 swap(dst->bi_iter.bi_ 1038 swap(dst->bi_iter.bi_size, dst_len); 1038 ret = bch2_encrypt_bi 1039 ret = bch2_encrypt_bio(c, op->csum_type, 1039 1040 extent_nonce(version, crc), dst); 1040 if (ret) 1041 if (ret) 1041 goto err; 1042 goto err; 1042 1043 1043 crc.csum = bch2_check 1044 crc.csum = bch2_checksum_bio(c, op->csum_type, 1044 exte 1045 extent_nonce(version, crc), dst); 1045 crc.csum_type = op->c 1046 crc.csum_type = op->csum_type; 1046 swap(dst->bi_iter.bi_ 1047 swap(dst->bi_iter.bi_size, dst_len); 1047 } 1048 } 1048 1049 1049 init_append_extent(op, wp, ve 1050 init_append_extent(op, wp, version, crc); 1050 1051 1051 if (dst != src) 1052 if (dst != src) 1052 bio_advance(dst, dst_ 1053 bio_advance(dst, dst_len); 1053 bio_advance(src, src_len); 1054 bio_advance(src, src_len); 1054 total_output += dst_len; 1055 total_output += dst_len; 1055 total_input += src_len; 1056 total_input += src_len; 1056 } while (dst->bi_iter.bi_size && 1057 } while (dst->bi_iter.bi_size && 1057 src->bi_iter.bi_size && 1058 src->bi_iter.bi_size && 1058 wp->sectors_free && 1059 wp->sectors_free && 1059 !bch2_keylist_realloc(&op->i 1060 !bch2_keylist_realloc(&op->insert_keys, 1060 op->inl 1061 op->inline_keys, 1061 ARRAY_S 1062 ARRAY_SIZE(op->inline_keys), 1062 BKEY_EX 1063 BKEY_EXTENT_U64s_MAX)); 1063 1064 1064 more = src->bi_iter.bi_size != 0; 1065 more = src->bi_iter.bi_size != 0; 1065 1066 1066 dst->bi_iter = saved_iter; 1067 dst->bi_iter = saved_iter; 1067 1068 1068 if (dst == src && more) { 1069 if (dst == src && more) { 1069 BUG_ON(total_output != total_ 1070 BUG_ON(total_output != total_input); 1070 1071 1071 dst = bio_split(src, total_in 1072 dst = bio_split(src, total_input >> 9, 1072 GFP_NOFS, &c- 1073 GFP_NOFS, &c->bio_write); 1073 wbio_init(dst)->put_bio = tru 1074 wbio_init(dst)->put_bio = true; 1074 /* copy WRITE_SYNC flag */ 1075 /* copy WRITE_SYNC flag */ 1075 dst->bi_opf = src 1076 dst->bi_opf = src->bi_opf; 1076 } 1077 } 1077 1078 1078 dst->bi_iter.bi_size = total_output; 1079 dst->bi_iter.bi_size = total_output; 1079 do_write: 1080 do_write: 1080 *_dst = dst; 1081 *_dst = dst; 1081 return more; 1082 return more; 1082 csum_err: 1083 csum_err: 1083 bch_err_inum_offset_ratelimited(c, !! 1084 bch_err(c, "%s writ error: error verifying existing checksum while rewriting existing data (memory corruption?)", 1084 op->pos.inode, << 1085 op->pos.offset << 9, << 1086 "%s write error: error verify << 1087 op->flags & BCH_WRITE_MOVE ? 1085 op->flags & BCH_WRITE_MOVE ? "move" : "user"); 1088 ret = -EIO; 1086 ret = -EIO; 1089 err: 1087 err: 1090 if (to_wbio(dst)->bounce) 1088 if (to_wbio(dst)->bounce) 1091 bch2_bio_free_pages_pool(c, d 1089 bch2_bio_free_pages_pool(c, dst); 1092 if (to_wbio(dst)->put_bio) 1090 if (to_wbio(dst)->put_bio) 1093 bio_put(dst); 1091 bio_put(dst); 1094 1092 1095 return ret; 1093 return ret; 1096 } 1094 } 1097 1095 1098 static bool bch2_extent_is_writeable(struct b 1096 static bool bch2_extent_is_writeable(struct bch_write_op *op, 1099 struct b 1097 struct bkey_s_c k) 1100 { 1098 { 1101 struct bch_fs *c = op->c; 1099 struct bch_fs *c = op->c; 1102 struct bkey_s_c_extent e; 1100 struct bkey_s_c_extent e; 1103 struct extent_ptr_decoded p; 1101 struct extent_ptr_decoded p; 1104 const union bch_extent_entry *entry; 1102 const union bch_extent_entry *entry; 1105 unsigned replicas = 0; 1103 unsigned replicas = 0; 1106 1104 1107 if (k.k->type != KEY_TYPE_extent) 1105 if (k.k->type != KEY_TYPE_extent) 1108 return false; 1106 return false; 1109 1107 1110 e = bkey_s_c_to_extent(k); 1108 e = bkey_s_c_to_extent(k); 1111 1109 1112 rcu_read_lock(); 1110 rcu_read_lock(); 1113 extent_for_each_ptr_decode(e, p, entr 1111 extent_for_each_ptr_decode(e, p, entry) { 1114 if (crc_is_encoded(p.crc) || 1112 if (crc_is_encoded(p.crc) || p.has_ec) { 1115 rcu_read_unlock(); 1113 rcu_read_unlock(); 1116 return false; 1114 return false; 1117 } 1115 } 1118 1116 1119 replicas += bch2_extent_ptr_d 1117 replicas += bch2_extent_ptr_durability(c, &p); 1120 } 1118 } 1121 rcu_read_unlock(); 1119 rcu_read_unlock(); 1122 1120 1123 return replicas >= op->opts.data_repl 1121 return replicas >= op->opts.data_replicas; 1124 } 1122 } 1125 1123 1126 static int bch2_nocow_write_convert_one_unwri 1124 static int bch2_nocow_write_convert_one_unwritten(struct btree_trans *trans, 1127 1125 struct btree_iter *iter, 1128 1126 struct bkey_i *orig, 1129 1127 struct bkey_s_c k, 1130 1128 u64 new_i_size) 1131 { 1129 { 1132 if (!bch2_extents_match(bkey_i_to_s_c 1130 if (!bch2_extents_match(bkey_i_to_s_c(orig), k)) { 1133 /* trace this */ 1131 /* trace this */ 1134 return 0; 1132 return 0; 1135 } 1133 } 1136 1134 1137 struct bkey_i *new = bch2_bkey_make_m 1135 struct bkey_i *new = bch2_bkey_make_mut_noupdate(trans, k); 1138 int ret = PTR_ERR_OR_ZERO(new); 1136 int ret = PTR_ERR_OR_ZERO(new); 1139 if (ret) 1137 if (ret) 1140 return ret; 1138 return ret; 1141 1139 1142 bch2_cut_front(bkey_start_pos(&orig-> 1140 bch2_cut_front(bkey_start_pos(&orig->k), new); 1143 bch2_cut_back(orig->k.p, new); 1141 bch2_cut_back(orig->k.p, new); 1144 1142 1145 struct bkey_ptrs ptrs = bch2_bkey_ptr 1143 struct bkey_ptrs ptrs = bch2_bkey_ptrs(bkey_i_to_s(new)); 1146 bkey_for_each_ptr(ptrs, ptr) 1144 bkey_for_each_ptr(ptrs, ptr) 1147 ptr->unwritten = 0; 1145 ptr->unwritten = 0; 1148 1146 1149 /* 1147 /* 1150 * Note that we're not calling bch2_s 1148 * Note that we're not calling bch2_subvol_get_snapshot() in this path - 1151 * that was done when we kicked off t 1149 * that was done when we kicked off the write, and here it's important 1152 * that we update the extent that we 1150 * that we update the extent that we wrote to - even if a snapshot has 1153 * since been created. The write is s 1151 * since been created. The write is still outstanding, so we're ok 1154 * w.r.t. snapshot atomicity: 1152 * w.r.t. snapshot atomicity: 1155 */ 1153 */ 1156 return bch2_extent_update_i_size_sec 1154 return bch2_extent_update_i_size_sectors(trans, iter, 1157 min(n 1155 min(new->k.p.offset << 9, new_i_size), 0) ?: 1158 bch2_trans_update(trans, iter 1156 bch2_trans_update(trans, iter, new, 1159 BTREE_UPDAT 1157 BTREE_UPDATE_internal_snapshot_node); 1160 } 1158 } 1161 1159 1162 static void bch2_nocow_write_convert_unwritte 1160 static void bch2_nocow_write_convert_unwritten(struct bch_write_op *op) 1163 { 1161 { 1164 struct bch_fs *c = op->c; 1162 struct bch_fs *c = op->c; 1165 struct btree_trans *trans = bch2_tran 1163 struct btree_trans *trans = bch2_trans_get(c); 1166 1164 1167 for_each_keylist_key(&op->insert_keys 1165 for_each_keylist_key(&op->insert_keys, orig) { 1168 int ret = for_each_btree_key_ 1166 int ret = for_each_btree_key_upto_commit(trans, iter, BTREE_ID_extents, 1169 bkey_sta 1167 bkey_start_pos(&orig->k), orig->k.p, 1170 BTREE_IT 1168 BTREE_ITER_intent, k, 1171 NULL, NU 1169 NULL, NULL, BCH_TRANS_COMMIT_no_enospc, ({ 1172 bch2_nocow_write_conv 1170 bch2_nocow_write_convert_one_unwritten(trans, &iter, orig, k, op->new_i_size); 1173 })); 1171 })); 1174 1172 1175 if (ret && !bch2_err_matches( 1173 if (ret && !bch2_err_matches(ret, EROFS)) { 1176 struct bkey_i *insert 1174 struct bkey_i *insert = bch2_keylist_front(&op->insert_keys); 1177 1175 1178 bch_err_inum_offset_r 1176 bch_err_inum_offset_ratelimited(c, 1179 insert->k.p.i 1177 insert->k.p.inode, insert->k.p.offset << 9, 1180 "%s write err 1178 "%s write error while doing btree update: %s", 1181 op->flags & B 1179 op->flags & BCH_WRITE_MOVE ? "move" : "user", 1182 bch2_err_str( 1180 bch2_err_str(ret)); 1183 } 1181 } 1184 1182 1185 if (ret) { 1183 if (ret) { 1186 op->error = ret; 1184 op->error = ret; 1187 break; 1185 break; 1188 } 1186 } 1189 } 1187 } 1190 1188 1191 bch2_trans_put(trans); 1189 bch2_trans_put(trans); 1192 } 1190 } 1193 1191 1194 static void __bch2_nocow_write_done(struct bc 1192 static void __bch2_nocow_write_done(struct bch_write_op *op) 1195 { 1193 { 1196 if (unlikely(op->flags & BCH_WRITE_IO 1194 if (unlikely(op->flags & BCH_WRITE_IO_ERROR)) { 1197 op->error = -EIO; 1195 op->error = -EIO; 1198 } else if (unlikely(op->flags & BCH_W 1196 } else if (unlikely(op->flags & BCH_WRITE_CONVERT_UNWRITTEN)) 1199 bch2_nocow_write_convert_unwr 1197 bch2_nocow_write_convert_unwritten(op); 1200 } 1198 } 1201 1199 1202 static CLOSURE_CALLBACK(bch2_nocow_write_done 1200 static CLOSURE_CALLBACK(bch2_nocow_write_done) 1203 { 1201 { 1204 closure_type(op, struct bch_write_op, 1202 closure_type(op, struct bch_write_op, cl); 1205 1203 1206 __bch2_nocow_write_done(op); 1204 __bch2_nocow_write_done(op); 1207 bch2_write_done(cl); 1205 bch2_write_done(cl); 1208 } 1206 } 1209 1207 1210 struct bucket_to_lock { 1208 struct bucket_to_lock { 1211 struct bpos b; 1209 struct bpos b; 1212 unsigned gen; 1210 unsigned gen; 1213 struct nocow_lock_bucket *l; 1211 struct nocow_lock_bucket *l; 1214 }; 1212 }; 1215 1213 1216 static void bch2_nocow_write(struct bch_write 1214 static void bch2_nocow_write(struct bch_write_op *op) 1217 { 1215 { 1218 struct bch_fs *c = op->c; 1216 struct bch_fs *c = op->c; 1219 struct btree_trans *trans; 1217 struct btree_trans *trans; 1220 struct btree_iter iter; 1218 struct btree_iter iter; 1221 struct bkey_s_c k; 1219 struct bkey_s_c k; 1222 DARRAY_PREALLOCATED(struct bucket_to_ 1220 DARRAY_PREALLOCATED(struct bucket_to_lock, 3) buckets; 1223 u32 snapshot; 1221 u32 snapshot; 1224 struct bucket_to_lock *stale_at; 1222 struct bucket_to_lock *stale_at; 1225 int stale, ret; 1223 int stale, ret; 1226 1224 1227 if (op->flags & BCH_WRITE_MOVE) 1225 if (op->flags & BCH_WRITE_MOVE) 1228 return; 1226 return; 1229 1227 1230 darray_init(&buckets); 1228 darray_init(&buckets); 1231 trans = bch2_trans_get(c); 1229 trans = bch2_trans_get(c); 1232 retry: 1230 retry: 1233 bch2_trans_begin(trans); 1231 bch2_trans_begin(trans); 1234 1232 1235 ret = bch2_subvolume_get_snapshot(tra 1233 ret = bch2_subvolume_get_snapshot(trans, op->subvol, &snapshot); 1236 if (unlikely(ret)) 1234 if (unlikely(ret)) 1237 goto err; 1235 goto err; 1238 1236 1239 bch2_trans_iter_init(trans, &iter, BT 1237 bch2_trans_iter_init(trans, &iter, BTREE_ID_extents, 1240 SPOS(op->pos.ino 1238 SPOS(op->pos.inode, op->pos.offset, snapshot), 1241 BTREE_ITER_slots 1239 BTREE_ITER_slots); 1242 while (1) { 1240 while (1) { 1243 struct bio *bio = &op->wbio.b 1241 struct bio *bio = &op->wbio.bio; 1244 1242 1245 buckets.nr = 0; 1243 buckets.nr = 0; 1246 1244 1247 ret = bch2_trans_relock(trans 1245 ret = bch2_trans_relock(trans); 1248 if (ret) 1246 if (ret) 1249 break; 1247 break; 1250 1248 1251 k = bch2_btree_iter_peek_slot 1249 k = bch2_btree_iter_peek_slot(&iter); 1252 ret = bkey_err(k); 1250 ret = bkey_err(k); 1253 if (ret) 1251 if (ret) 1254 break; 1252 break; 1255 1253 1256 /* fall back to normal cow wr 1254 /* fall back to normal cow write path? */ 1257 if (unlikely(k.k->p.snapshot 1255 if (unlikely(k.k->p.snapshot != snapshot || 1258 !bch2_extent_is_ 1256 !bch2_extent_is_writeable(op, k))) 1259 break; 1257 break; 1260 1258 1261 if (bch2_keylist_realloc(&op- 1259 if (bch2_keylist_realloc(&op->insert_keys, 1262 op-> 1260 op->inline_keys, 1263 ARRA 1261 ARRAY_SIZE(op->inline_keys), 1264 k.k- 1262 k.k->u64s)) 1265 break; 1263 break; 1266 1264 1267 /* Get iorefs before dropping 1265 /* Get iorefs before dropping btree locks: */ 1268 struct bkey_ptrs_c ptrs = bch 1266 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); 1269 bkey_for_each_ptr(ptrs, ptr) 1267 bkey_for_each_ptr(ptrs, ptr) { 1270 struct bch_dev *ca = 1268 struct bch_dev *ca = bch2_dev_get_ioref(c, ptr->dev, WRITE); 1271 if (unlikely(!ca)) 1269 if (unlikely(!ca)) 1272 goto err_get_ 1270 goto err_get_ioref; 1273 1271 1274 struct bpos b = PTR_B 1272 struct bpos b = PTR_BUCKET_POS(ca, ptr); 1275 struct nocow_lock_buc 1273 struct nocow_lock_bucket *l = 1276 bucket_nocow_ 1274 bucket_nocow_lock(&c->nocow_locks, bucket_to_u64(b)); 1277 prefetch(l); 1275 prefetch(l); 1278 1276 1279 /* XXX allocating mem 1277 /* XXX allocating memory with btree locks held - rare */ 1280 darray_push_gfp(&buck 1278 darray_push_gfp(&buckets, ((struct bucket_to_lock) { 1281 1279 .b = b, .gen = ptr->gen, .l = l, 1282 1280 }), GFP_KERNEL|__GFP_NOFAIL); 1283 1281 1284 if (ptr->unwritten) 1282 if (ptr->unwritten) 1285 op->flags |= 1283 op->flags |= BCH_WRITE_CONVERT_UNWRITTEN; 1286 } 1284 } 1287 1285 1288 /* Unlock before taking nocow 1286 /* Unlock before taking nocow locks, doing IO: */ 1289 bkey_reassemble(op->insert_ke 1287 bkey_reassemble(op->insert_keys.top, k); 1290 bch2_trans_unlock(trans); 1288 bch2_trans_unlock(trans); 1291 1289 1292 bch2_cut_front(op->pos, op->i 1290 bch2_cut_front(op->pos, op->insert_keys.top); 1293 if (op->flags & BCH_WRITE_CON 1291 if (op->flags & BCH_WRITE_CONVERT_UNWRITTEN) 1294 bch2_cut_back(POS(op- 1292 bch2_cut_back(POS(op->pos.inode, op->pos.offset + bio_sectors(bio)), op->insert_keys.top); 1295 1293 1296 darray_for_each(buckets, i) { 1294 darray_for_each(buckets, i) { 1297 struct bch_dev *ca = 1295 struct bch_dev *ca = bch2_dev_have_ref(c, i->b.inode); 1298 1296 1299 __bch2_bucket_nocow_l 1297 __bch2_bucket_nocow_lock(&c->nocow_locks, i->l, 1300 1298 bucket_to_u64(i->b), 1301 1299 BUCKET_NOCOW_LOCK_UPDATE); 1302 1300 1303 int gen = bucket_gen_ !! 1301 rcu_read_lock(); 1304 stale = gen < 0 ? gen !! 1302 u8 *gen = bucket_gen(ca, i->b.offset); >> 1303 stale = !gen ? -1 : gen_after(*gen, i->gen); >> 1304 rcu_read_unlock(); >> 1305 1305 if (unlikely(stale)) 1306 if (unlikely(stale)) { 1306 stale_at = i; 1307 stale_at = i; 1307 goto err_buck 1308 goto err_bucket_stale; 1308 } 1309 } 1309 } 1310 } 1310 1311 1311 bio = &op->wbio.bio; 1312 bio = &op->wbio.bio; 1312 if (k.k->p.offset < op->pos.o 1313 if (k.k->p.offset < op->pos.offset + bio_sectors(bio)) { 1313 bio = bio_split(bio, 1314 bio = bio_split(bio, k.k->p.offset - op->pos.offset, 1314 GFP_K 1315 GFP_KERNEL, &c->bio_write); 1315 wbio_init(bio)->put_b 1316 wbio_init(bio)->put_bio = true; 1316 bio->bi_opf = op->wbi 1317 bio->bi_opf = op->wbio.bio.bi_opf; 1317 } else { 1318 } else { 1318 op->flags |= BCH_WRIT !! 1319 op->flags |= BCH_WRITE_DONE; 1319 } 1320 } 1320 1321 1321 op->pos.offset += bio_sectors 1322 op->pos.offset += bio_sectors(bio); 1322 op->written += bio_sectors(bi 1323 op->written += bio_sectors(bio); 1323 1324 1324 bio->bi_end_io = bch2_write_ 1325 bio->bi_end_io = bch2_write_endio; 1325 bio->bi_private = &op->cl; 1326 bio->bi_private = &op->cl; 1326 bio->bi_opf |= REQ_OP_WRITE; 1327 bio->bi_opf |= REQ_OP_WRITE; 1327 closure_get(&op->cl); 1328 closure_get(&op->cl); 1328 bch2_submit_wbio_replicas(to_ 1329 bch2_submit_wbio_replicas(to_wbio(bio), c, BCH_DATA_user, 1329 op- 1330 op->insert_keys.top, true); 1330 1331 1331 bch2_keylist_push(&op->insert 1332 bch2_keylist_push(&op->insert_keys); 1332 if (op->flags & BCH_WRITE_SUB !! 1333 if (op->flags & BCH_WRITE_DONE) 1333 break; 1334 break; 1334 bch2_btree_iter_advance(&iter 1335 bch2_btree_iter_advance(&iter); 1335 } 1336 } 1336 out: 1337 out: 1337 bch2_trans_iter_exit(trans, &iter); 1338 bch2_trans_iter_exit(trans, &iter); 1338 err: 1339 err: 1339 if (bch2_err_matches(ret, BCH_ERR_tra 1340 if (bch2_err_matches(ret, BCH_ERR_transaction_restart)) 1340 goto retry; 1341 goto retry; 1341 1342 1342 if (ret) { 1343 if (ret) { 1343 bch_err_inum_offset_ratelimit 1344 bch_err_inum_offset_ratelimited(c, 1344 op->pos.inode, op->po 1345 op->pos.inode, op->pos.offset << 9, 1345 "%s: btree lookup err 1346 "%s: btree lookup error %s", __func__, bch2_err_str(ret)); 1346 op->error = ret; 1347 op->error = ret; 1347 op->flags |= BCH_WRITE_SUBMIT !! 1348 op->flags |= BCH_WRITE_DONE; 1348 } 1349 } 1349 1350 1350 bch2_trans_put(trans); 1351 bch2_trans_put(trans); 1351 darray_exit(&buckets); 1352 darray_exit(&buckets); 1352 1353 1353 /* fallback to cow write path? */ 1354 /* fallback to cow write path? */ 1354 if (!(op->flags & BCH_WRITE_SUBMITTED !! 1355 if (!(op->flags & BCH_WRITE_DONE)) { 1355 closure_sync(&op->cl); 1356 closure_sync(&op->cl); 1356 __bch2_nocow_write_done(op); 1357 __bch2_nocow_write_done(op); 1357 op->insert_keys.top = op->ins 1358 op->insert_keys.top = op->insert_keys.keys; 1358 } else if (op->flags & BCH_WRITE_SYNC 1359 } else if (op->flags & BCH_WRITE_SYNC) { 1359 closure_sync(&op->cl); 1360 closure_sync(&op->cl); 1360 bch2_nocow_write_done(&op->cl 1361 bch2_nocow_write_done(&op->cl.work); 1361 } else { 1362 } else { 1362 /* 1363 /* 1363 * XXX 1364 * XXX 1364 * needs to run out of proces 1365 * needs to run out of process context because ei_quota_lock is 1365 * a mutex 1366 * a mutex 1366 */ 1367 */ 1367 continue_at(&op->cl, bch2_noc 1368 continue_at(&op->cl, bch2_nocow_write_done, index_update_wq(op)); 1368 } 1369 } 1369 return; 1370 return; 1370 err_get_ioref: 1371 err_get_ioref: 1371 darray_for_each(buckets, i) 1372 darray_for_each(buckets, i) 1372 percpu_ref_put(&bch2_dev_have 1373 percpu_ref_put(&bch2_dev_have_ref(c, i->b.inode)->io_ref); 1373 1374 1374 /* Fall back to COW path: */ 1375 /* Fall back to COW path: */ 1375 goto out; 1376 goto out; 1376 err_bucket_stale: 1377 err_bucket_stale: 1377 darray_for_each(buckets, i) { 1378 darray_for_each(buckets, i) { 1378 bch2_bucket_nocow_unlock(&c-> 1379 bch2_bucket_nocow_unlock(&c->nocow_locks, i->b, BUCKET_NOCOW_LOCK_UPDATE); 1379 if (i == stale_at) 1380 if (i == stale_at) 1380 break; 1381 break; 1381 } 1382 } 1382 1383 1383 struct printbuf buf = PRINTBUF; 1384 struct printbuf buf = PRINTBUF; 1384 if (bch2_fs_inconsistent_on(stale < 0 1385 if (bch2_fs_inconsistent_on(stale < 0, c, 1385 "pointer 1386 "pointer to invalid bucket in nocow path on device %llu\n %s", 1386 stale_at- 1387 stale_at->b.inode, 1387 (bch2_bke 1388 (bch2_bkey_val_to_text(&buf, c, k), buf.buf))) { 1388 ret = -EIO; 1389 ret = -EIO; 1389 } else { 1390 } else { 1390 /* We can retry this: */ 1391 /* We can retry this: */ 1391 ret = -BCH_ERR_transaction_re 1392 ret = -BCH_ERR_transaction_restart; 1392 } 1393 } 1393 printbuf_exit(&buf); 1394 printbuf_exit(&buf); 1394 1395 1395 goto err_get_ioref; 1396 goto err_get_ioref; 1396 } 1397 } 1397 1398 1398 static void __bch2_write(struct bch_write_op 1399 static void __bch2_write(struct bch_write_op *op) 1399 { 1400 { 1400 struct bch_fs *c = op->c; 1401 struct bch_fs *c = op->c; 1401 struct write_point *wp = NULL; 1402 struct write_point *wp = NULL; 1402 struct bio *bio = NULL; 1403 struct bio *bio = NULL; 1403 unsigned nofs_flags; 1404 unsigned nofs_flags; 1404 int ret; 1405 int ret; 1405 1406 1406 nofs_flags = memalloc_nofs_save(); 1407 nofs_flags = memalloc_nofs_save(); 1407 1408 1408 if (unlikely(op->opts.nocow && c->opt 1409 if (unlikely(op->opts.nocow && c->opts.nocow_enabled)) { 1409 bch2_nocow_write(op); 1410 bch2_nocow_write(op); 1410 if (op->flags & BCH_WRITE_SUB !! 1411 if (op->flags & BCH_WRITE_DONE) 1411 goto out_nofs_restore 1412 goto out_nofs_restore; 1412 } 1413 } 1413 again: 1414 again: 1414 memset(&op->failed, 0, sizeof(op->fai 1415 memset(&op->failed, 0, sizeof(op->failed)); 1415 1416 1416 do { 1417 do { 1417 struct bkey_i *key_to_write; 1418 struct bkey_i *key_to_write; 1418 unsigned key_to_write_offset 1419 unsigned key_to_write_offset = op->insert_keys.top_p - 1419 op->insert_keys.keys_ 1420 op->insert_keys.keys_p; 1420 1421 1421 /* +1 for possible cache devi 1422 /* +1 for possible cache device: */ 1422 if (op->open_buckets.nr + op- 1423 if (op->open_buckets.nr + op->nr_replicas + 1 > 1423 ARRAY_SIZE(op->open_bucke 1424 ARRAY_SIZE(op->open_buckets.v)) 1424 break; 1425 break; 1425 1426 1426 if (bch2_keylist_realloc(&op- 1427 if (bch2_keylist_realloc(&op->insert_keys, 1427 op->i 1428 op->inline_keys, 1428 ARRAY 1429 ARRAY_SIZE(op->inline_keys), 1429 BKEY_ 1430 BKEY_EXTENT_U64s_MAX)) 1430 break; 1431 break; 1431 1432 1432 /* 1433 /* 1433 * The copygc thread is now g 1434 * The copygc thread is now global, which means it's no longer 1434 * freeing up space on specif 1435 * freeing up space on specific disks, which means that 1435 * allocations for specific d 1436 * allocations for specific disks may hang arbitrarily long: 1436 */ 1437 */ 1437 ret = bch2_trans_run(c, lockr !! 1438 ret = bch2_trans_do(c, NULL, NULL, 0, 1438 bch2_alloc_sectors_st 1439 bch2_alloc_sectors_start_trans(trans, 1439 op->target, 1440 op->target, 1440 op->opts.eras 1441 op->opts.erasure_code && !(op->flags & BCH_WRITE_CACHED), 1441 op->write_poi 1442 op->write_point, 1442 &op->devs_hav 1443 &op->devs_have, 1443 op->nr_replic 1444 op->nr_replicas, 1444 op->nr_replic 1445 op->nr_replicas_required, 1445 op->watermark 1446 op->watermark, 1446 op->flags, 1447 op->flags, 1447 &op->cl, &wp) !! 1448 (op->flags & (BCH_WRITE_ALLOC_NOWAIT| >> 1449 BCH_WRITE_ONLY_SPECIFIED_DEVS)) >> 1450 ? NULL : &op->cl, &wp)); 1448 if (unlikely(ret)) { 1451 if (unlikely(ret)) { 1449 if (bch2_err_matches( 1452 if (bch2_err_matches(ret, BCH_ERR_operation_blocked)) 1450 break; 1453 break; 1451 1454 1452 goto err; 1455 goto err; 1453 } 1456 } 1454 1457 1455 EBUG_ON(!wp); 1458 EBUG_ON(!wp); 1456 1459 1457 bch2_open_bucket_get(c, wp, & 1460 bch2_open_bucket_get(c, wp, &op->open_buckets); 1458 ret = bch2_write_extent(op, w 1461 ret = bch2_write_extent(op, wp, &bio); 1459 1462 1460 bch2_alloc_sectors_done_inlin 1463 bch2_alloc_sectors_done_inlined(c, wp); 1461 err: 1464 err: 1462 if (ret <= 0) { 1465 if (ret <= 0) { 1463 op->flags |= BCH_WRIT !! 1466 op->flags |= BCH_WRITE_DONE; 1464 1467 1465 if (ret < 0) { 1468 if (ret < 0) { 1466 if (!(op->fla 1469 if (!(op->flags & BCH_WRITE_ALLOC_NOWAIT)) 1467 bch_e 1470 bch_err_inum_offset_ratelimited(c, 1468 1471 op->pos.inode, 1469 1472 op->pos.offset << 9, 1470 1473 "%s(): %s error: %s", __func__, 1471 1474 op->flags & BCH_WRITE_MOVE ? "move" : "user", 1472 1475 bch2_err_str(ret)); 1473 op->error = r 1476 op->error = ret; 1474 break; 1477 break; 1475 } 1478 } 1476 } 1479 } 1477 1480 1478 bio->bi_end_io = bch2_write_ 1481 bio->bi_end_io = bch2_write_endio; 1479 bio->bi_private = &op->cl; 1482 bio->bi_private = &op->cl; 1480 bio->bi_opf |= REQ_OP_WRITE; 1483 bio->bi_opf |= REQ_OP_WRITE; 1481 1484 1482 closure_get(bio->bi_private); 1485 closure_get(bio->bi_private); 1483 1486 1484 key_to_write = (void *) (op-> 1487 key_to_write = (void *) (op->insert_keys.keys_p + 1485 key_ 1488 key_to_write_offset); 1486 1489 1487 bch2_submit_wbio_replicas(to_ 1490 bch2_submit_wbio_replicas(to_wbio(bio), c, BCH_DATA_user, 1488 key 1491 key_to_write, false); 1489 } while (ret); 1492 } while (ret); 1490 1493 1491 /* 1494 /* 1492 * Sync or no? 1495 * Sync or no? 1493 * 1496 * 1494 * If we're running asynchronously, w 1497 * If we're running asynchronously, wne may still want to block 1495 * synchronously here if we weren't a 1498 * synchronously here if we weren't able to submit all of the IO at 1496 * once, as that signals backpressure 1499 * once, as that signals backpressure to the caller. 1497 */ 1500 */ 1498 if ((op->flags & BCH_WRITE_SYNC) || 1501 if ((op->flags & BCH_WRITE_SYNC) || 1499 (!(op->flags & BCH_WRITE_SUBMITTE !! 1502 (!(op->flags & BCH_WRITE_DONE) && 1500 !(op->flags & BCH_WRITE_IN_WORKE 1503 !(op->flags & BCH_WRITE_IN_WORKER))) { 1501 bch2_wait_on_allocator(c, &op !! 1504 if (closure_sync_timeout(&op->cl, HZ * 10)) { >> 1505 bch2_print_allocator_stuck(c); >> 1506 closure_sync(&op->cl); >> 1507 } 1502 1508 1503 __bch2_write_index(op); 1509 __bch2_write_index(op); 1504 1510 1505 if (!(op->flags & BCH_WRITE_S !! 1511 if (!(op->flags & BCH_WRITE_DONE)) 1506 goto again; 1512 goto again; 1507 bch2_write_done(&op->cl); 1513 bch2_write_done(&op->cl); 1508 } else { 1514 } else { 1509 bch2_write_queue(op, wp); 1515 bch2_write_queue(op, wp); 1510 continue_at(&op->cl, bch2_wri 1516 continue_at(&op->cl, bch2_write_index, NULL); 1511 } 1517 } 1512 out_nofs_restore: 1518 out_nofs_restore: 1513 memalloc_nofs_restore(nofs_flags); 1519 memalloc_nofs_restore(nofs_flags); 1514 } 1520 } 1515 1521 1516 static void bch2_write_data_inline(struct bch 1522 static void bch2_write_data_inline(struct bch_write_op *op, unsigned data_len) 1517 { 1523 { 1518 struct bio *bio = &op->wbio.bio; 1524 struct bio *bio = &op->wbio.bio; 1519 struct bvec_iter iter; 1525 struct bvec_iter iter; 1520 struct bkey_i_inline_data *id; 1526 struct bkey_i_inline_data *id; 1521 unsigned sectors; 1527 unsigned sectors; 1522 int ret; 1528 int ret; 1523 1529 1524 memset(&op->failed, 0, sizeof(op->fai 1530 memset(&op->failed, 0, sizeof(op->failed)); 1525 1531 1526 op->flags |= BCH_WRITE_WROTE_DATA_INL 1532 op->flags |= BCH_WRITE_WROTE_DATA_INLINE; 1527 op->flags |= BCH_WRITE_SUBMITTED; !! 1533 op->flags |= BCH_WRITE_DONE; 1528 1534 1529 bch2_check_set_feature(op->c, BCH_FEA 1535 bch2_check_set_feature(op->c, BCH_FEATURE_inline_data); 1530 1536 1531 ret = bch2_keylist_realloc(&op->inser 1537 ret = bch2_keylist_realloc(&op->insert_keys, op->inline_keys, 1532 ARRAY_SIZE 1538 ARRAY_SIZE(op->inline_keys), 1533 BKEY_U64s 1539 BKEY_U64s + DIV_ROUND_UP(data_len, 8)); 1534 if (ret) { 1540 if (ret) { 1535 op->error = ret; 1541 op->error = ret; 1536 goto err; 1542 goto err; 1537 } 1543 } 1538 1544 1539 sectors = bio_sectors(bio); 1545 sectors = bio_sectors(bio); 1540 op->pos.offset += sectors; 1546 op->pos.offset += sectors; 1541 1547 1542 id = bkey_inline_data_init(op->insert 1548 id = bkey_inline_data_init(op->insert_keys.top); 1543 id->k.p = op->pos; 1549 id->k.p = op->pos; 1544 id->k.bversion = op->version; !! 1550 id->k.version = op->version; 1545 id->k.size = sectors; 1551 id->k.size = sectors; 1546 1552 1547 iter = bio->bi_iter; 1553 iter = bio->bi_iter; 1548 iter.bi_size = data_len; 1554 iter.bi_size = data_len; 1549 memcpy_from_bio(id->v.data, bio, iter 1555 memcpy_from_bio(id->v.data, bio, iter); 1550 1556 1551 while (data_len & 7) 1557 while (data_len & 7) 1552 id->v.data[data_len++] = '\0' 1558 id->v.data[data_len++] = '\0'; 1553 set_bkey_val_bytes(&id->k, data_len); 1559 set_bkey_val_bytes(&id->k, data_len); 1554 bch2_keylist_push(&op->insert_keys); 1560 bch2_keylist_push(&op->insert_keys); 1555 1561 1556 __bch2_write_index(op); 1562 __bch2_write_index(op); 1557 err: 1563 err: 1558 bch2_write_done(&op->cl); 1564 bch2_write_done(&op->cl); 1559 } 1565 } 1560 1566 1561 /** 1567 /** 1562 * bch2_write() - handle a write to a cache d 1568 * bch2_write() - handle a write to a cache device or flash only volume 1563 * @cl: &bch_write_op->cl 1569 * @cl: &bch_write_op->cl 1564 * 1570 * 1565 * This is the starting point for any data to 1571 * This is the starting point for any data to end up in a cache device; it could 1566 * be from a normal write, or a writeback wri 1572 * be from a normal write, or a writeback write, or a write to a flash only 1567 * volume - it's also used by the moving garb 1573 * volume - it's also used by the moving garbage collector to compact data in 1568 * mostly empty buckets. 1574 * mostly empty buckets. 1569 * 1575 * 1570 * It first writes the data to the cache, cre 1576 * It first writes the data to the cache, creating a list of keys to be inserted 1571 * (if the data won't fit in a single open bu 1577 * (if the data won't fit in a single open bucket, there will be multiple keys); 1572 * after the data is written it calls bch_jou 1578 * after the data is written it calls bch_journal, and after the keys have been 1573 * added to the next journal write they're in 1579 * added to the next journal write they're inserted into the btree. 1574 * 1580 * 1575 * If op->discard is true, instead of inserti 1581 * If op->discard is true, instead of inserting the data it invalidates the 1576 * region of the cache represented by op->bio 1582 * region of the cache represented by op->bio and op->inode. 1577 */ 1583 */ 1578 CLOSURE_CALLBACK(bch2_write) 1584 CLOSURE_CALLBACK(bch2_write) 1579 { 1585 { 1580 closure_type(op, struct bch_write_op, 1586 closure_type(op, struct bch_write_op, cl); 1581 struct bio *bio = &op->wbio.bio; 1587 struct bio *bio = &op->wbio.bio; 1582 struct bch_fs *c = op->c; 1588 struct bch_fs *c = op->c; 1583 unsigned data_len; 1589 unsigned data_len; 1584 1590 1585 EBUG_ON(op->cl.parent); 1591 EBUG_ON(op->cl.parent); 1586 BUG_ON(!op->nr_replicas); 1592 BUG_ON(!op->nr_replicas); 1587 BUG_ON(!op->write_point.v); 1593 BUG_ON(!op->write_point.v); 1588 BUG_ON(bkey_eq(op->pos, POS_MAX)); 1594 BUG_ON(bkey_eq(op->pos, POS_MAX)); 1589 << 1590 if (op->flags & BCH_WRITE_ONLY_SPECIF << 1591 op->flags |= BCH_WRITE_ALLOC_ << 1592 1595 1593 op->nr_replicas_required = min_t(unsi 1596 op->nr_replicas_required = min_t(unsigned, op->nr_replicas_required, op->nr_replicas); 1594 op->start_time = local_clock(); 1597 op->start_time = local_clock(); 1595 bch2_keylist_init(&op->insert_keys, o 1598 bch2_keylist_init(&op->insert_keys, op->inline_keys); 1596 wbio_init(bio)->put_bio = false; 1599 wbio_init(bio)->put_bio = false; 1597 1600 1598 if (bio->bi_iter.bi_size & (c->opts.b 1601 if (bio->bi_iter.bi_size & (c->opts.block_size - 1)) { 1599 bch_err_inum_offset_ratelimit 1602 bch_err_inum_offset_ratelimited(c, 1600 op->pos.inode, 1603 op->pos.inode, 1601 op->pos.offset << 9, 1604 op->pos.offset << 9, 1602 "%s write error: misa 1605 "%s write error: misaligned write", 1603 op->flags & BCH_WRITE 1606 op->flags & BCH_WRITE_MOVE ? "move" : "user"); 1604 op->error = -EIO; 1607 op->error = -EIO; 1605 goto err; 1608 goto err; 1606 } 1609 } 1607 1610 1608 if (c->opts.nochanges) { 1611 if (c->opts.nochanges) { 1609 op->error = -BCH_ERR_erofs_no 1612 op->error = -BCH_ERR_erofs_no_writes; 1610 goto err; 1613 goto err; 1611 } 1614 } 1612 1615 1613 if (!(op->flags & BCH_WRITE_MOVE) && 1616 if (!(op->flags & BCH_WRITE_MOVE) && 1614 !bch2_write_ref_tryget(c, BCH_WRI 1617 !bch2_write_ref_tryget(c, BCH_WRITE_REF_write)) { 1615 op->error = -BCH_ERR_erofs_no 1618 op->error = -BCH_ERR_erofs_no_writes; 1616 goto err; 1619 goto err; 1617 } 1620 } 1618 1621 1619 this_cpu_add(c->counters[BCH_COUNTER_ 1622 this_cpu_add(c->counters[BCH_COUNTER_io_write], bio_sectors(bio)); 1620 bch2_increment_clock(c, bio_sectors(b 1623 bch2_increment_clock(c, bio_sectors(bio), WRITE); 1621 1624 1622 data_len = min_t(u64, bio->bi_iter.bi 1625 data_len = min_t(u64, bio->bi_iter.bi_size, 1623 op->new_i_size - (op 1626 op->new_i_size - (op->pos.offset << 9)); 1624 1627 1625 if (c->opts.inline_data && 1628 if (c->opts.inline_data && 1626 data_len <= min(block_bytes(c) / 1629 data_len <= min(block_bytes(c) / 2, 1024U)) { 1627 bch2_write_data_inline(op, da 1630 bch2_write_data_inline(op, data_len); 1628 return; 1631 return; 1629 } 1632 } 1630 1633 1631 __bch2_write(op); 1634 __bch2_write(op); 1632 return; 1635 return; 1633 err: 1636 err: 1634 bch2_disk_reservation_put(c, &op->res 1637 bch2_disk_reservation_put(c, &op->res); 1635 1638 1636 closure_debug_destroy(&op->cl); 1639 closure_debug_destroy(&op->cl); 1637 if (op->end_io) 1640 if (op->end_io) 1638 op->end_io(op); 1641 op->end_io(op); 1639 } 1642 } 1640 1643 1641 static const char * const bch2_write_flags[] 1644 static const char * const bch2_write_flags[] = { 1642 #define x(f) #f, 1645 #define x(f) #f, 1643 BCH_WRITE_FLAGS() 1646 BCH_WRITE_FLAGS() 1644 #undef x 1647 #undef x 1645 NULL 1648 NULL 1646 }; 1649 }; 1647 1650 1648 void bch2_write_op_to_text(struct printbuf *o 1651 void bch2_write_op_to_text(struct printbuf *out, struct bch_write_op *op) 1649 { 1652 { 1650 prt_str(out, "pos: "); 1653 prt_str(out, "pos: "); 1651 bch2_bpos_to_text(out, op->pos); 1654 bch2_bpos_to_text(out, op->pos); 1652 prt_newline(out); 1655 prt_newline(out); 1653 printbuf_indent_add(out, 2); 1656 printbuf_indent_add(out, 2); 1654 1657 1655 prt_str(out, "started: "); 1658 prt_str(out, "started: "); 1656 bch2_pr_time_units(out, local_clock() 1659 bch2_pr_time_units(out, local_clock() - op->start_time); 1657 prt_newline(out); 1660 prt_newline(out); 1658 1661 1659 prt_str(out, "flags: "); 1662 prt_str(out, "flags: "); 1660 prt_bitflags(out, bch2_write_flags, o 1663 prt_bitflags(out, bch2_write_flags, op->flags); 1661 prt_newline(out); 1664 prt_newline(out); 1662 1665 1663 prt_printf(out, "ref: %u\n", closure_ 1666 prt_printf(out, "ref: %u\n", closure_nr_remaining(&op->cl)); 1664 1667 1665 printbuf_indent_sub(out, 2); 1668 printbuf_indent_sub(out, 2); 1666 } 1669 } 1667 1670 1668 void bch2_fs_io_write_exit(struct bch_fs *c) 1671 void bch2_fs_io_write_exit(struct bch_fs *c) 1669 { 1672 { 1670 mempool_exit(&c->bio_bounce_pages); 1673 mempool_exit(&c->bio_bounce_pages); 1671 bioset_exit(&c->replica_set); 1674 bioset_exit(&c->replica_set); 1672 bioset_exit(&c->bio_write); 1675 bioset_exit(&c->bio_write); 1673 } 1676 } 1674 1677 1675 int bch2_fs_io_write_init(struct bch_fs *c) 1678 int bch2_fs_io_write_init(struct bch_fs *c) 1676 { 1679 { 1677 if (bioset_init(&c->bio_write, 1, o 1680 if (bioset_init(&c->bio_write, 1, offsetof(struct bch_write_bio, bio), BIOSET_NEED_BVECS) || 1678 bioset_init(&c->replica_set, 4, o 1681 bioset_init(&c->replica_set, 4, offsetof(struct bch_write_bio, bio), 0)) 1679 return -BCH_ERR_ENOMEM_bio_wr 1682 return -BCH_ERR_ENOMEM_bio_write_init; 1680 1683 1681 if (mempool_init_page_pool(&c->bio_bo 1684 if (mempool_init_page_pool(&c->bio_bounce_pages, 1682 max_t(unsi 1685 max_t(unsigned, 1683 c->o 1686 c->opts.btree_node_size, 1684 c->o 1687 c->opts.encoded_extent_max) / 1685 PAGE_SIZE, 1688 PAGE_SIZE, 0)) 1686 return -BCH_ERR_ENOMEM_bio_bo 1689 return -BCH_ERR_ENOMEM_bio_bounce_pages_init; 1687 1690 1688 return 0; 1691 return 0; 1689 } 1692 } 1690 1693
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.