1 /* SPDX-License-Identifier: GPL-2.0 */ 1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 2 /* 3 * Copyright (C) 2007 Oracle. All rights rese 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 4 */ 5 5 6 #ifndef BTRFS_CTREE_H 6 #ifndef BTRFS_CTREE_H 7 #define BTRFS_CTREE_H 7 #define BTRFS_CTREE_H 8 8 9 #include "linux/cleanup.h" << 10 #include <linux/pagemap.h> 9 #include <linux/pagemap.h> 11 #include <linux/spinlock.h> 10 #include <linux/spinlock.h> 12 #include <linux/rbtree.h> 11 #include <linux/rbtree.h> 13 #include <linux/mutex.h> 12 #include <linux/mutex.h> 14 #include <linux/wait.h> 13 #include <linux/wait.h> 15 #include <linux/list.h> 14 #include <linux/list.h> 16 #include <linux/atomic.h> 15 #include <linux/atomic.h> 17 #include <linux/xarray.h> 16 #include <linux/xarray.h> 18 #include <linux/refcount.h> 17 #include <linux/refcount.h> 19 #include <uapi/linux/btrfs_tree.h> 18 #include <uapi/linux/btrfs_tree.h> 20 #include "locking.h" 19 #include "locking.h" 21 #include "fs.h" 20 #include "fs.h" 22 #include "accessors.h" 21 #include "accessors.h" 23 #include "extent-io-tree.h" 22 #include "extent-io-tree.h" 24 23 25 struct extent_buffer; 24 struct extent_buffer; 26 struct btrfs_block_rsv; 25 struct btrfs_block_rsv; 27 struct btrfs_trans_handle; 26 struct btrfs_trans_handle; 28 struct btrfs_block_group; 27 struct btrfs_block_group; 29 28 30 /* Read ahead values for struct btrfs_path.rea 29 /* Read ahead values for struct btrfs_path.reada */ 31 enum { 30 enum { 32 READA_NONE, 31 READA_NONE, 33 READA_BACK, 32 READA_BACK, 34 READA_FORWARD, 33 READA_FORWARD, 35 /* 34 /* 36 * Similar to READA_FORWARD but unlike 35 * Similar to READA_FORWARD but unlike it: 37 * 36 * 38 * 1) It will trigger readahead even f 37 * 1) It will trigger readahead even for leaves that are not close to 39 * each other on disk; 38 * each other on disk; 40 * 2) It also triggers readahead for n 39 * 2) It also triggers readahead for nodes; 41 * 3) During a search, even when a nod 40 * 3) During a search, even when a node or leaf is already in memory, it 42 * will still trigger readahead for 41 * will still trigger readahead for other nodes and leaves that follow 43 * it. 42 * it. 44 * 43 * 45 * This is meant to be used only when 44 * This is meant to be used only when we know we are iterating over the 46 * entire tree or a very large part of 45 * entire tree or a very large part of it. 47 */ 46 */ 48 READA_FORWARD_ALWAYS, 47 READA_FORWARD_ALWAYS, 49 }; 48 }; 50 49 51 /* 50 /* 52 * btrfs_paths remember the path taken from th 51 * btrfs_paths remember the path taken from the root down to the leaf. 53 * level 0 is always the leaf, and nodes[1...B 52 * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point 54 * to any other levels that are present. 53 * to any other levels that are present. 55 * 54 * 56 * The slots array records the index of the it 55 * The slots array records the index of the item or block pointer 57 * used while walking the tree. 56 * used while walking the tree. 58 */ 57 */ 59 struct btrfs_path { 58 struct btrfs_path { 60 struct extent_buffer *nodes[BTRFS_MAX_ 59 struct extent_buffer *nodes[BTRFS_MAX_LEVEL]; 61 int slots[BTRFS_MAX_LEVEL]; 60 int slots[BTRFS_MAX_LEVEL]; 62 /* if there is real range locking, thi 61 /* if there is real range locking, this locks field will change */ 63 u8 locks[BTRFS_MAX_LEVEL]; 62 u8 locks[BTRFS_MAX_LEVEL]; 64 u8 reada; 63 u8 reada; 65 /* keep some upper locks as we walk do 64 /* keep some upper locks as we walk down */ 66 u8 lowest_level; 65 u8 lowest_level; 67 66 68 /* 67 /* 69 * set by btrfs_split_item, tells sear 68 * set by btrfs_split_item, tells search_slot to keep all locks 70 * and to force calls to keep space in 69 * and to force calls to keep space in the nodes 71 */ 70 */ 72 unsigned int search_for_split:1; 71 unsigned int search_for_split:1; 73 unsigned int keep_locks:1; 72 unsigned int keep_locks:1; 74 unsigned int skip_locking:1; 73 unsigned int skip_locking:1; 75 unsigned int search_commit_root:1; 74 unsigned int search_commit_root:1; 76 unsigned int need_commit_sem:1; 75 unsigned int need_commit_sem:1; 77 unsigned int skip_release_on_error:1; 76 unsigned int skip_release_on_error:1; 78 /* 77 /* 79 * Indicate that new item (btrfs_searc 78 * Indicate that new item (btrfs_search_slot) is extending already 80 * existing item and ins_len contains 79 * existing item and ins_len contains only the data size and not item 81 * header (ie. sizeof(struct btrfs_ite 80 * header (ie. sizeof(struct btrfs_item) is not included). 82 */ 81 */ 83 unsigned int search_for_extension:1; 82 unsigned int search_for_extension:1; 84 /* Stop search if any locks need to be 83 /* Stop search if any locks need to be taken (for read) */ 85 unsigned int nowait:1; 84 unsigned int nowait:1; 86 }; 85 }; 87 86 88 #define BTRFS_PATH_AUTO_FREE(path_name) << 89 struct btrfs_path *path_name __free(bt << 90 << 91 /* 87 /* 92 * The state of btrfs root 88 * The state of btrfs root 93 */ 89 */ 94 enum { 90 enum { 95 /* 91 /* 96 * btrfs_record_root_in_trans is a mul 92 * btrfs_record_root_in_trans is a multi-step process, and it can race 97 * with the balancing code. But the 93 * with the balancing code. But the race is very small, and only the 98 * first time the root is added to eac 94 * first time the root is added to each transaction. So IN_TRANS_SETUP 99 * is used to tell us when more checks 95 * is used to tell us when more checks are required 100 */ 96 */ 101 BTRFS_ROOT_IN_TRANS_SETUP, 97 BTRFS_ROOT_IN_TRANS_SETUP, 102 98 103 /* 99 /* 104 * Set if tree blocks of this root can 100 * Set if tree blocks of this root can be shared by other roots. 105 * Only subvolume trees and their relo 101 * Only subvolume trees and their reloc trees have this bit set. 106 * Conflicts with TRACK_DIRTY bit. 102 * Conflicts with TRACK_DIRTY bit. 107 * 103 * 108 * This affects two things: 104 * This affects two things: 109 * 105 * 110 * - How balance works 106 * - How balance works 111 * For shareable roots, we need to u 107 * For shareable roots, we need to use reloc tree and do path 112 * replacement for balance, and need 108 * replacement for balance, and need various pre/post hooks for 113 * snapshot creation to handle them. 109 * snapshot creation to handle them. 114 * 110 * 115 * While for non-shareable trees, we 111 * While for non-shareable trees, we just simply do a tree search 116 * with COW. 112 * with COW. 117 * 113 * 118 * - How dirty roots are tracked 114 * - How dirty roots are tracked 119 * For shareable roots, btrfs_record 115 * For shareable roots, btrfs_record_root_in_trans() is needed to 120 * track them, while non-subvolume r 116 * track them, while non-subvolume roots have TRACK_DIRTY bit, they 121 * don't need to set this manually. 117 * don't need to set this manually. 122 */ 118 */ 123 BTRFS_ROOT_SHAREABLE, 119 BTRFS_ROOT_SHAREABLE, 124 BTRFS_ROOT_TRACK_DIRTY, 120 BTRFS_ROOT_TRACK_DIRTY, 125 BTRFS_ROOT_IN_RADIX, 121 BTRFS_ROOT_IN_RADIX, 126 BTRFS_ROOT_ORPHAN_ITEM_INSERTED, 122 BTRFS_ROOT_ORPHAN_ITEM_INSERTED, 127 BTRFS_ROOT_DEFRAG_RUNNING, 123 BTRFS_ROOT_DEFRAG_RUNNING, 128 BTRFS_ROOT_FORCE_COW, 124 BTRFS_ROOT_FORCE_COW, 129 BTRFS_ROOT_MULTI_LOG_TASKS, 125 BTRFS_ROOT_MULTI_LOG_TASKS, 130 BTRFS_ROOT_DIRTY, 126 BTRFS_ROOT_DIRTY, 131 BTRFS_ROOT_DELETING, 127 BTRFS_ROOT_DELETING, 132 128 133 /* 129 /* 134 * Reloc tree is orphan, only kept her 130 * Reloc tree is orphan, only kept here for qgroup delayed subtree scan 135 * 131 * 136 * Set for the subvolume tree owning t 132 * Set for the subvolume tree owning the reloc tree. 137 */ 133 */ 138 BTRFS_ROOT_DEAD_RELOC_TREE, 134 BTRFS_ROOT_DEAD_RELOC_TREE, 139 /* Mark dead root stored on device who 135 /* Mark dead root stored on device whose cleanup needs to be resumed */ 140 BTRFS_ROOT_DEAD_TREE, 136 BTRFS_ROOT_DEAD_TREE, 141 /* The root has a log tree. Used for s 137 /* The root has a log tree. Used for subvolume roots and the tree root. */ 142 BTRFS_ROOT_HAS_LOG_TREE, 138 BTRFS_ROOT_HAS_LOG_TREE, 143 /* Qgroup flushing is in progress */ 139 /* Qgroup flushing is in progress */ 144 BTRFS_ROOT_QGROUP_FLUSHING, 140 BTRFS_ROOT_QGROUP_FLUSHING, 145 /* We started the orphan cleanup for t 141 /* We started the orphan cleanup for this root. */ 146 BTRFS_ROOT_ORPHAN_CLEANUP, 142 BTRFS_ROOT_ORPHAN_CLEANUP, 147 /* This root has a drop operation that 143 /* This root has a drop operation that was started previously. */ 148 BTRFS_ROOT_UNFINISHED_DROP, 144 BTRFS_ROOT_UNFINISHED_DROP, 149 /* This reloc root needs to have its b 145 /* This reloc root needs to have its buffers lockdep class reset. */ 150 BTRFS_ROOT_RESET_LOCKDEP_CLASS, 146 BTRFS_ROOT_RESET_LOCKDEP_CLASS, 151 }; 147 }; 152 148 153 /* 149 /* 154 * Record swapped tree blocks of a subvolume t 150 * Record swapped tree blocks of a subvolume tree for delayed subtree trace 155 * code. For detail check comment in fs/btrfs/ 151 * code. For detail check comment in fs/btrfs/qgroup.c. 156 */ 152 */ 157 struct btrfs_qgroup_swapped_blocks { 153 struct btrfs_qgroup_swapped_blocks { 158 spinlock_t lock; 154 spinlock_t lock; 159 /* RM_EMPTY_ROOT() of above blocks[] * 155 /* RM_EMPTY_ROOT() of above blocks[] */ 160 bool swapped; 156 bool swapped; 161 struct rb_root blocks[BTRFS_MAX_LEVEL] 157 struct rb_root blocks[BTRFS_MAX_LEVEL]; 162 }; 158 }; 163 159 164 /* 160 /* 165 * in ram representation of the tree. extent_ 161 * in ram representation of the tree. extent_root is used for all allocations 166 * and for the extent tree extent_root root. 162 * and for the extent tree extent_root root. 167 */ 163 */ 168 struct btrfs_root { 164 struct btrfs_root { 169 struct rb_node rb_node; 165 struct rb_node rb_node; 170 166 171 struct extent_buffer *node; 167 struct extent_buffer *node; 172 168 173 struct extent_buffer *commit_root; 169 struct extent_buffer *commit_root; 174 struct btrfs_root *log_root; 170 struct btrfs_root *log_root; 175 struct btrfs_root *reloc_root; 171 struct btrfs_root *reloc_root; 176 172 177 unsigned long state; 173 unsigned long state; 178 struct btrfs_root_item root_item; 174 struct btrfs_root_item root_item; 179 struct btrfs_key root_key; 175 struct btrfs_key root_key; 180 struct btrfs_fs_info *fs_info; 176 struct btrfs_fs_info *fs_info; 181 struct extent_io_tree dirty_log_pages; 177 struct extent_io_tree dirty_log_pages; 182 178 183 struct mutex objectid_mutex; 179 struct mutex objectid_mutex; 184 180 185 spinlock_t accounting_lock; 181 spinlock_t accounting_lock; 186 struct btrfs_block_rsv *block_rsv; 182 struct btrfs_block_rsv *block_rsv; 187 183 188 struct mutex log_mutex; 184 struct mutex log_mutex; 189 wait_queue_head_t log_writer_wait; 185 wait_queue_head_t log_writer_wait; 190 wait_queue_head_t log_commit_wait[2]; 186 wait_queue_head_t log_commit_wait[2]; 191 struct list_head log_ctxs[2]; 187 struct list_head log_ctxs[2]; 192 /* Used only for log trees of subvolum 188 /* Used only for log trees of subvolumes, not for the log root tree */ 193 atomic_t log_writers; 189 atomic_t log_writers; 194 atomic_t log_commit[2]; 190 atomic_t log_commit[2]; 195 /* Used only for log trees of subvolum 191 /* Used only for log trees of subvolumes, not for the log root tree */ 196 atomic_t log_batch; 192 atomic_t log_batch; 197 /* 193 /* 198 * Protected by the 'log_mutex' lock b 194 * Protected by the 'log_mutex' lock but can be read without holding 199 * that lock to avoid unnecessary lock 195 * that lock to avoid unnecessary lock contention, in which case it 200 * should be read using btrfs_get_root 196 * should be read using btrfs_get_root_log_transid() except if it's a 201 * log tree in which case it can be di 197 * log tree in which case it can be directly accessed. Updates to this 202 * field should always use btrfs_set_r 198 * field should always use btrfs_set_root_log_transid(), except for log 203 * trees where the field can be update 199 * trees where the field can be updated directly. 204 */ 200 */ 205 int log_transid; 201 int log_transid; 206 /* No matter the commit succeeds or no 202 /* No matter the commit succeeds or not*/ 207 int log_transid_committed; 203 int log_transid_committed; 208 /* 204 /* 209 * Just be updated when the commit suc 205 * Just be updated when the commit succeeds. Use 210 * btrfs_get_root_last_log_commit() an 206 * btrfs_get_root_last_log_commit() and btrfs_set_root_last_log_commit() 211 * to access this field. 207 * to access this field. 212 */ 208 */ 213 int last_log_commit; 209 int last_log_commit; 214 pid_t log_start_pid; 210 pid_t log_start_pid; 215 211 216 u64 last_trans; 212 u64 last_trans; 217 213 218 u64 free_objectid; 214 u64 free_objectid; 219 215 220 struct btrfs_key defrag_progress; 216 struct btrfs_key defrag_progress; 221 struct btrfs_key defrag_max; 217 struct btrfs_key defrag_max; 222 218 223 /* The dirty list is only used by non- 219 /* The dirty list is only used by non-shareable roots */ 224 struct list_head dirty_list; 220 struct list_head dirty_list; 225 221 226 struct list_head root_list; 222 struct list_head root_list; 227 223 228 /* !! 224 spinlock_t inode_lock; 229 * Xarray that keeps track of in-memor !! 225 /* red-black tree that keeps track of in-memory inodes */ 230 * @inode_lock. !! 226 struct rb_root inode_tree; 231 */ << 232 struct xarray inodes; << 233 227 234 /* 228 /* 235 * Xarray that keeps track of delayed 229 * Xarray that keeps track of delayed nodes of every inode, protected 236 * by @inode_lock. 230 * by @inode_lock. 237 */ 231 */ 238 struct xarray delayed_nodes; 232 struct xarray delayed_nodes; 239 /* 233 /* 240 * right now this just gets used so th 234 * right now this just gets used so that a root has its own devid 241 * for stat. It may be used for more 235 * for stat. It may be used for more later 242 */ 236 */ 243 dev_t anon_dev; 237 dev_t anon_dev; 244 238 245 spinlock_t root_item_lock; 239 spinlock_t root_item_lock; 246 refcount_t refs; 240 refcount_t refs; 247 241 248 struct mutex delalloc_mutex; 242 struct mutex delalloc_mutex; 249 spinlock_t delalloc_lock; 243 spinlock_t delalloc_lock; 250 /* 244 /* 251 * all of the inodes that have delallo 245 * all of the inodes that have delalloc bytes. It is possible for 252 * this list to be empty even when the 246 * this list to be empty even when there is still dirty data=ordered 253 * extents waiting to finish IO. 247 * extents waiting to finish IO. 254 */ 248 */ 255 struct list_head delalloc_inodes; 249 struct list_head delalloc_inodes; 256 struct list_head delalloc_root; 250 struct list_head delalloc_root; 257 u64 nr_delalloc_inodes; 251 u64 nr_delalloc_inodes; 258 252 259 struct mutex ordered_extent_mutex; 253 struct mutex ordered_extent_mutex; 260 /* 254 /* 261 * this is used by the balancing code 255 * this is used by the balancing code to wait for all the pending 262 * ordered extents 256 * ordered extents 263 */ 257 */ 264 spinlock_t ordered_extent_lock; 258 spinlock_t ordered_extent_lock; 265 259 266 /* 260 /* 267 * all of the data=ordered extents pen 261 * all of the data=ordered extents pending writeback 268 * these can span multiple transaction 262 * these can span multiple transactions and basically include 269 * every dirty data page that isn't fr 263 * every dirty data page that isn't from nodatacow 270 */ 264 */ 271 struct list_head ordered_extents; 265 struct list_head ordered_extents; 272 struct list_head ordered_root; 266 struct list_head ordered_root; 273 u64 nr_ordered_extents; 267 u64 nr_ordered_extents; 274 268 275 /* 269 /* 276 * Not empty if this subvolume root ha 270 * Not empty if this subvolume root has gone through tree block swap 277 * (relocation) 271 * (relocation) 278 * 272 * 279 * Will be used by reloc_control::dirt 273 * Will be used by reloc_control::dirty_subvol_roots. 280 */ 274 */ 281 struct list_head reloc_dirty_list; 275 struct list_head reloc_dirty_list; 282 276 283 /* 277 /* 284 * Number of currently running SEND io 278 * Number of currently running SEND ioctls to prevent 285 * manipulation with the read-only sta 279 * manipulation with the read-only status via SUBVOL_SETFLAGS 286 */ 280 */ 287 int send_in_progress; 281 int send_in_progress; 288 /* 282 /* 289 * Number of currently running dedupli 283 * Number of currently running deduplication operations that have a 290 * destination inode belonging to this 284 * destination inode belonging to this root. Protected by the lock 291 * root_item_lock. 285 * root_item_lock. 292 */ 286 */ 293 int dedupe_in_progress; 287 int dedupe_in_progress; 294 /* For exclusion of snapshot creation 288 /* For exclusion of snapshot creation and nocow writes */ 295 struct btrfs_drew_lock snapshot_lock; 289 struct btrfs_drew_lock snapshot_lock; 296 290 297 atomic_t snapshot_force_cow; 291 atomic_t snapshot_force_cow; 298 292 299 /* For qgroup metadata reserved space 293 /* For qgroup metadata reserved space */ 300 spinlock_t qgroup_meta_rsv_lock; 294 spinlock_t qgroup_meta_rsv_lock; 301 u64 qgroup_meta_rsv_pertrans; 295 u64 qgroup_meta_rsv_pertrans; 302 u64 qgroup_meta_rsv_prealloc; 296 u64 qgroup_meta_rsv_prealloc; 303 wait_queue_head_t qgroup_flush_wait; 297 wait_queue_head_t qgroup_flush_wait; 304 298 305 /* Number of active swapfiles */ 299 /* Number of active swapfiles */ 306 atomic_t nr_swapfiles; 300 atomic_t nr_swapfiles; 307 301 308 /* Record pairs of swapped blocks for 302 /* Record pairs of swapped blocks for qgroup */ 309 struct btrfs_qgroup_swapped_blocks swa 303 struct btrfs_qgroup_swapped_blocks swapped_blocks; 310 304 311 /* Used only by log trees, when loggin 305 /* Used only by log trees, when logging csum items */ 312 struct extent_io_tree log_csum_range; 306 struct extent_io_tree log_csum_range; 313 307 314 /* Used in simple quotas, track root d 308 /* Used in simple quotas, track root during relocation. */ 315 u64 relocation_src_root; 309 u64 relocation_src_root; 316 310 317 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 311 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 318 u64 alloc_bytenr; 312 u64 alloc_bytenr; 319 #endif 313 #endif 320 314 321 #ifdef CONFIG_BTRFS_DEBUG 315 #ifdef CONFIG_BTRFS_DEBUG 322 struct list_head leak_list; 316 struct list_head leak_list; 323 #endif 317 #endif 324 }; 318 }; 325 319 326 static inline bool btrfs_root_readonly(const s 320 static inline bool btrfs_root_readonly(const struct btrfs_root *root) 327 { 321 { 328 /* Byte-swap the constant at compile t 322 /* Byte-swap the constant at compile time, root_item::flags is LE */ 329 return (root->root_item.flags & cpu_to 323 return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_RDONLY)) != 0; 330 } 324 } 331 325 332 static inline bool btrfs_root_dead(const struc 326 static inline bool btrfs_root_dead(const struct btrfs_root *root) 333 { 327 { 334 /* Byte-swap the constant at compile t 328 /* Byte-swap the constant at compile time, root_item::flags is LE */ 335 return (root->root_item.flags & cpu_to 329 return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_DEAD)) != 0; 336 } 330 } 337 331 338 static inline u64 btrfs_root_id(const struct b 332 static inline u64 btrfs_root_id(const struct btrfs_root *root) 339 { 333 { 340 return root->root_key.objectid; 334 return root->root_key.objectid; 341 } 335 } 342 336 343 static inline int btrfs_get_root_log_transid(c 337 static inline int btrfs_get_root_log_transid(const struct btrfs_root *root) 344 { 338 { 345 return READ_ONCE(root->log_transid); 339 return READ_ONCE(root->log_transid); 346 } 340 } 347 341 348 static inline void btrfs_set_root_log_transid( 342 static inline void btrfs_set_root_log_transid(struct btrfs_root *root, int log_transid) 349 { 343 { 350 WRITE_ONCE(root->log_transid, log_tran 344 WRITE_ONCE(root->log_transid, log_transid); 351 } 345 } 352 346 353 static inline int btrfs_get_root_last_log_comm 347 static inline int btrfs_get_root_last_log_commit(const struct btrfs_root *root) 354 { 348 { 355 return READ_ONCE(root->last_log_commit 349 return READ_ONCE(root->last_log_commit); 356 } 350 } 357 351 358 static inline void btrfs_set_root_last_log_com 352 static inline void btrfs_set_root_last_log_commit(struct btrfs_root *root, int commit_id) 359 { 353 { 360 WRITE_ONCE(root->last_log_commit, comm 354 WRITE_ONCE(root->last_log_commit, commit_id); 361 } 355 } 362 356 363 static inline u64 btrfs_get_root_last_trans(co 357 static inline u64 btrfs_get_root_last_trans(const struct btrfs_root *root) 364 { 358 { 365 return READ_ONCE(root->last_trans); 359 return READ_ONCE(root->last_trans); 366 } 360 } 367 361 368 static inline void btrfs_set_root_last_trans(s 362 static inline void btrfs_set_root_last_trans(struct btrfs_root *root, u64 transid) 369 { 363 { 370 WRITE_ONCE(root->last_trans, transid); 364 WRITE_ONCE(root->last_trans, transid); 371 } 365 } 372 366 373 /* 367 /* 374 * Structure that conveys information about an 368 * Structure that conveys information about an extent that is going to replace 375 * all the extents in a file range. 369 * all the extents in a file range. 376 */ 370 */ 377 struct btrfs_replace_extent_info { 371 struct btrfs_replace_extent_info { 378 u64 disk_offset; 372 u64 disk_offset; 379 u64 disk_len; 373 u64 disk_len; 380 u64 data_offset; 374 u64 data_offset; 381 u64 data_len; 375 u64 data_len; 382 u64 file_offset; 376 u64 file_offset; 383 /* Pointer to a file extent item of ty 377 /* Pointer to a file extent item of type regular or prealloc. */ 384 char *extent_buf; 378 char *extent_buf; 385 /* 379 /* 386 * Set to true when attempting to repl 380 * Set to true when attempting to replace a file range with a new extent 387 * described by this structure, set to 381 * described by this structure, set to false when attempting to clone an 388 * existing extent into a file range. 382 * existing extent into a file range. 389 */ 383 */ 390 bool is_new_extent; 384 bool is_new_extent; 391 /* Indicate if we should update the in 385 /* Indicate if we should update the inode's mtime and ctime. */ 392 bool update_times; 386 bool update_times; 393 /* Meaningful only if is_new_extent is 387 /* Meaningful only if is_new_extent is true. */ 394 int qgroup_reserved; 388 int qgroup_reserved; 395 /* 389 /* 396 * Meaningful only if is_new_extent is 390 * Meaningful only if is_new_extent is true. 397 * Used to track how many extent items 391 * Used to track how many extent items we have already inserted in a 398 * subvolume tree that refer to the ex 392 * subvolume tree that refer to the extent described by this structure, 399 * so that we know when to create a ne 393 * so that we know when to create a new delayed ref or update an existing 400 * one. 394 * one. 401 */ 395 */ 402 int insertions; 396 int insertions; 403 }; 397 }; 404 398 405 /* Arguments for btrfs_drop_extents() */ 399 /* Arguments for btrfs_drop_extents() */ 406 struct btrfs_drop_extents_args { 400 struct btrfs_drop_extents_args { 407 /* Input parameters */ 401 /* Input parameters */ 408 402 409 /* 403 /* 410 * If NULL, btrfs_drop_extents() will 404 * If NULL, btrfs_drop_extents() will allocate and free its own path. 411 * If 'replace_extent' is true, this m 405 * If 'replace_extent' is true, this must not be NULL. Also the path 412 * is always released except if 'repla 406 * is always released except if 'replace_extent' is true and 413 * btrfs_drop_extents() sets 'extent_i 407 * btrfs_drop_extents() sets 'extent_inserted' to true, in which case 414 * the path is kept locked. 408 * the path is kept locked. 415 */ 409 */ 416 struct btrfs_path *path; 410 struct btrfs_path *path; 417 /* Start offset of the range to drop e 411 /* Start offset of the range to drop extents from */ 418 u64 start; 412 u64 start; 419 /* End (exclusive, last byte + 1) of t 413 /* End (exclusive, last byte + 1) of the range to drop extents from */ 420 u64 end; 414 u64 end; 421 /* If true drop all the extent maps in 415 /* If true drop all the extent maps in the range */ 422 bool drop_cache; 416 bool drop_cache; 423 /* 417 /* 424 * If true it means we want to insert 418 * If true it means we want to insert a new extent after dropping all 425 * the extents in the range. If this i 419 * the extents in the range. If this is true, the 'extent_item_size' 426 * parameter must be set as well and t 420 * parameter must be set as well and the 'extent_inserted' field will 427 * be set to true by btrfs_drop_extent 421 * be set to true by btrfs_drop_extents() if it could insert the new 428 * extent. 422 * extent. 429 * Note: when this is set to true the 423 * Note: when this is set to true the path must not be NULL. 430 */ 424 */ 431 bool replace_extent; 425 bool replace_extent; 432 /* 426 /* 433 * Used if 'replace_extent' is true. S 427 * Used if 'replace_extent' is true. Size of the file extent item to 434 * insert after dropping all existing 428 * insert after dropping all existing extents in the range 435 */ 429 */ 436 u32 extent_item_size; 430 u32 extent_item_size; 437 431 438 /* Output parameters */ 432 /* Output parameters */ 439 433 440 /* 434 /* 441 * Set to the minimum between the inpu 435 * Set to the minimum between the input parameter 'end' and the end 442 * (exclusive, last byte + 1) of the l 436 * (exclusive, last byte + 1) of the last dropped extent. This is always 443 * set even if btrfs_drop_extents() re 437 * set even if btrfs_drop_extents() returns an error. 444 */ 438 */ 445 u64 drop_end; 439 u64 drop_end; 446 /* 440 /* 447 * The number of allocated bytes found 441 * The number of allocated bytes found in the range. This can be smaller 448 * than the range's length when there 442 * than the range's length when there are holes in the range. 449 */ 443 */ 450 u64 bytes_found; 444 u64 bytes_found; 451 /* 445 /* 452 * Only set if 'replace_extent' is tru 446 * Only set if 'replace_extent' is true. Set to true if we were able 453 * to insert a replacement extent afte 447 * to insert a replacement extent after dropping all extents in the 454 * range, otherwise set to false by bt 448 * range, otherwise set to false by btrfs_drop_extents(). 455 * Also, if btrfs_drop_extents() has s 449 * Also, if btrfs_drop_extents() has set this to true it means it 456 * returned with the path locked, othe 450 * returned with the path locked, otherwise if it has set this to 457 * false it has returned with the path 451 * false it has returned with the path released. 458 */ 452 */ 459 bool extent_inserted; 453 bool extent_inserted; 460 }; 454 }; 461 455 462 struct btrfs_file_private { 456 struct btrfs_file_private { 463 void *filldir_buf; 457 void *filldir_buf; 464 u64 last_index; 458 u64 last_index; 465 struct extent_state *llseek_cached_sta 459 struct extent_state *llseek_cached_state; 466 /* Task that allocated this structure. 460 /* Task that allocated this structure. */ 467 struct task_struct *owner_task; 461 struct task_struct *owner_task; 468 }; 462 }; 469 463 470 static inline u32 BTRFS_LEAF_DATA_SIZE(const s 464 static inline u32 BTRFS_LEAF_DATA_SIZE(const struct btrfs_fs_info *info) 471 { 465 { 472 return info->nodesize - sizeof(struct 466 return info->nodesize - sizeof(struct btrfs_header); 473 } 467 } 474 468 475 static inline u32 BTRFS_MAX_ITEM_SIZE(const st 469 static inline u32 BTRFS_MAX_ITEM_SIZE(const struct btrfs_fs_info *info) 476 { 470 { 477 return BTRFS_LEAF_DATA_SIZE(info) - si 471 return BTRFS_LEAF_DATA_SIZE(info) - sizeof(struct btrfs_item); 478 } 472 } 479 473 480 static inline u32 BTRFS_NODEPTRS_PER_BLOCK(con 474 static inline u32 BTRFS_NODEPTRS_PER_BLOCK(const struct btrfs_fs_info *info) 481 { 475 { 482 return BTRFS_LEAF_DATA_SIZE(info) / si 476 return BTRFS_LEAF_DATA_SIZE(info) / sizeof(struct btrfs_key_ptr); 483 } 477 } 484 478 485 static inline u32 BTRFS_MAX_XATTR_SIZE(const s 479 static inline u32 BTRFS_MAX_XATTR_SIZE(const struct btrfs_fs_info *info) 486 { 480 { 487 return BTRFS_MAX_ITEM_SIZE(info) - siz 481 return BTRFS_MAX_ITEM_SIZE(info) - sizeof(struct btrfs_dir_item); 488 } 482 } 489 483 490 #define BTRFS_BYTES_TO_BLKS(fs_info, bytes) \ 484 #define BTRFS_BYTES_TO_BLKS(fs_info, bytes) \ 491 ((bytes) >> (f 485 ((bytes) >> (fs_info)->sectorsize_bits) 492 486 493 static inline gfp_t btrfs_alloc_write_mask(str 487 static inline gfp_t btrfs_alloc_write_mask(struct address_space *mapping) 494 { 488 { 495 return mapping_gfp_constraint(mapping, 489 return mapping_gfp_constraint(mapping, ~__GFP_FS); 496 } 490 } 497 491 498 void btrfs_error_unpin_extent_range(struct btr 492 void btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info, u64 start, u64 end); 499 int btrfs_discard_extent(struct btrfs_fs_info 493 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr, 500 u64 num_bytes, u64 *a 494 u64 num_bytes, u64 *actual_bytes); 501 int btrfs_trim_fs(struct btrfs_fs_info *fs_inf 495 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range); 502 496 503 /* ctree.c */ 497 /* ctree.c */ 504 int __init btrfs_ctree_init(void); 498 int __init btrfs_ctree_init(void); 505 void __cold btrfs_ctree_exit(void); 499 void __cold btrfs_ctree_exit(void); 506 500 507 int btrfs_bin_search(struct extent_buffer *eb, 501 int btrfs_bin_search(struct extent_buffer *eb, int first_slot, 508 const struct btrfs_key *k 502 const struct btrfs_key *key, int *slot); 509 503 510 int __pure btrfs_comp_cpu_keys(const struct bt 504 int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2); 511 505 512 #ifdef __LITTLE_ENDIAN 506 #ifdef __LITTLE_ENDIAN 513 507 514 /* 508 /* 515 * Compare two keys, on little-endian the disk 509 * Compare two keys, on little-endian the disk order is same as CPU order and 516 * we can avoid the conversion. 510 * we can avoid the conversion. 517 */ 511 */ 518 static inline int btrfs_comp_keys(const struct 512 static inline int btrfs_comp_keys(const struct btrfs_disk_key *disk_key, 519 const struct 513 const struct btrfs_key *k2) 520 { 514 { 521 const struct btrfs_key *k1 = (const st 515 const struct btrfs_key *k1 = (const struct btrfs_key *)disk_key; 522 516 523 return btrfs_comp_cpu_keys(k1, k2); 517 return btrfs_comp_cpu_keys(k1, k2); 524 } 518 } 525 519 526 #else 520 #else 527 521 528 /* Compare two keys in a memcmp fashion. */ 522 /* Compare two keys in a memcmp fashion. */ 529 static inline int btrfs_comp_keys(const struct 523 static inline int btrfs_comp_keys(const struct btrfs_disk_key *disk, 530 const struct 524 const struct btrfs_key *k2) 531 { 525 { 532 struct btrfs_key k1; 526 struct btrfs_key k1; 533 527 534 btrfs_disk_key_to_cpu(&k1, disk); 528 btrfs_disk_key_to_cpu(&k1, disk); 535 529 536 return btrfs_comp_cpu_keys(&k1, k2); 530 return btrfs_comp_cpu_keys(&k1, k2); 537 } 531 } 538 532 539 #endif 533 #endif 540 534 541 int btrfs_previous_item(struct btrfs_root *roo 535 int btrfs_previous_item(struct btrfs_root *root, 542 struct btrfs_path *pat 536 struct btrfs_path *path, u64 min_objectid, 543 int type); 537 int type); 544 int btrfs_previous_extent_item(struct btrfs_ro 538 int btrfs_previous_extent_item(struct btrfs_root *root, 545 struct btrfs_path *pat 539 struct btrfs_path *path, u64 min_objectid); 546 void btrfs_set_item_key_safe(struct btrfs_tran 540 void btrfs_set_item_key_safe(struct btrfs_trans_handle *trans, 547 const struct btrf !! 541 struct btrfs_path *path, 548 const struct btrf 542 const struct btrfs_key *new_key); 549 struct extent_buffer *btrfs_root_node(struct b 543 struct extent_buffer *btrfs_root_node(struct btrfs_root *root); 550 int btrfs_find_next_key(struct btrfs_root *roo 544 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path, 551 struct btrfs_key *key, 545 struct btrfs_key *key, int lowest_level, 552 u64 min_trans); 546 u64 min_trans); 553 int btrfs_search_forward(struct btrfs_root *ro 547 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key, 554 struct btrfs_path *pa 548 struct btrfs_path *path, 555 u64 min_trans); 549 u64 min_trans); 556 struct extent_buffer *btrfs_read_node_slot(str 550 struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent, 557 int 551 int slot); 558 552 559 int btrfs_cow_block(struct btrfs_trans_handle 553 int btrfs_cow_block(struct btrfs_trans_handle *trans, 560 struct btrfs_root *root, s 554 struct btrfs_root *root, struct extent_buffer *buf, 561 struct extent_buffer *pare 555 struct extent_buffer *parent, int parent_slot, 562 struct extent_buffer **cow 556 struct extent_buffer **cow_ret, 563 enum btrfs_lock_nesting ne 557 enum btrfs_lock_nesting nest); 564 int btrfs_force_cow_block(struct btrfs_trans_h 558 int btrfs_force_cow_block(struct btrfs_trans_handle *trans, 565 struct btrfs_root *r 559 struct btrfs_root *root, 566 struct extent_buffer 560 struct extent_buffer *buf, 567 struct extent_buffer 561 struct extent_buffer *parent, int parent_slot, 568 struct extent_buffer 562 struct extent_buffer **cow_ret, 569 u64 search_start, u6 563 u64 search_start, u64 empty_size, 570 enum btrfs_lock_nest 564 enum btrfs_lock_nesting nest); 571 int btrfs_copy_root(struct btrfs_trans_handle 565 int btrfs_copy_root(struct btrfs_trans_handle *trans, 572 struct btrfs_root *root, 566 struct btrfs_root *root, 573 struct extent_buffer *bu 567 struct extent_buffer *buf, 574 struct extent_buffer **c 568 struct extent_buffer **cow_ret, u64 new_root_objectid); 575 bool btrfs_block_can_be_shared(struct btrfs_tr 569 bool btrfs_block_can_be_shared(struct btrfs_trans_handle *trans, 576 struct btrfs_ro 570 struct btrfs_root *root, 577 struct extent_b 571 struct extent_buffer *buf); 578 int btrfs_del_ptr(struct btrfs_trans_handle *t 572 int btrfs_del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root, 579 struct btrfs_path *path, int 573 struct btrfs_path *path, int level, int slot); 580 void btrfs_extend_item(struct btrfs_trans_hand 574 void btrfs_extend_item(struct btrfs_trans_handle *trans, 581 const struct btrfs_path !! 575 struct btrfs_path *path, u32 data_size); 582 void btrfs_truncate_item(struct btrfs_trans_ha 576 void btrfs_truncate_item(struct btrfs_trans_handle *trans, 583 const struct btrfs_pa !! 577 struct btrfs_path *path, u32 new_size, int from_end); 584 int btrfs_split_item(struct btrfs_trans_handle 578 int btrfs_split_item(struct btrfs_trans_handle *trans, 585 struct btrfs_root *root, 579 struct btrfs_root *root, 586 struct btrfs_path *path, 580 struct btrfs_path *path, 587 const struct btrfs_key *n 581 const struct btrfs_key *new_key, 588 unsigned long split_offse 582 unsigned long split_offset); 589 int btrfs_duplicate_item(struct btrfs_trans_ha 583 int btrfs_duplicate_item(struct btrfs_trans_handle *trans, 590 struct btrfs_root *ro 584 struct btrfs_root *root, 591 struct btrfs_path *pa 585 struct btrfs_path *path, 592 const struct btrfs_ke 586 const struct btrfs_key *new_key); 593 int btrfs_find_item(struct btrfs_root *fs_root 587 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path, 594 u64 inum, u64 ioff, u8 key_typ 588 u64 inum, u64 ioff, u8 key_type, struct btrfs_key *found_key); 595 int btrfs_search_slot(struct btrfs_trans_handl 589 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root, 596 const struct btrfs_key * 590 const struct btrfs_key *key, struct btrfs_path *p, 597 int ins_len, int cow); 591 int ins_len, int cow); 598 int btrfs_search_old_slot(struct btrfs_root *r 592 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key, 599 struct btrfs_path *p 593 struct btrfs_path *p, u64 time_seq); 600 int btrfs_search_slot_for_read(struct btrfs_ro 594 int btrfs_search_slot_for_read(struct btrfs_root *root, 601 const struct bt 595 const struct btrfs_key *key, 602 struct btrfs_pa 596 struct btrfs_path *p, int find_higher, 603 int return_any) 597 int return_any); 604 void btrfs_release_path(struct btrfs_path *p); 598 void btrfs_release_path(struct btrfs_path *p); 605 struct btrfs_path *btrfs_alloc_path(void); 599 struct btrfs_path *btrfs_alloc_path(void); 606 void btrfs_free_path(struct btrfs_path *p); 600 void btrfs_free_path(struct btrfs_path *p); 607 DEFINE_FREE(btrfs_free_path, struct btrfs_path << 608 601 609 int btrfs_del_items(struct btrfs_trans_handle 602 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, 610 struct btrfs_path *path, in 603 struct btrfs_path *path, int slot, int nr); 611 static inline int btrfs_del_item(struct btrfs_ 604 static inline int btrfs_del_item(struct btrfs_trans_handle *trans, 612 struct btrfs_ 605 struct btrfs_root *root, 613 struct btrfs_ 606 struct btrfs_path *path) 614 { 607 { 615 return btrfs_del_items(trans, root, pa 608 return btrfs_del_items(trans, root, path, path->slots[0], 1); 616 } 609 } 617 610 618 /* 611 /* 619 * Describes a batch of items to insert in a b 612 * Describes a batch of items to insert in a btree. This is used by 620 * btrfs_insert_empty_items(). 613 * btrfs_insert_empty_items(). 621 */ 614 */ 622 struct btrfs_item_batch { 615 struct btrfs_item_batch { 623 /* 616 /* 624 * Pointer to an array containing the 617 * Pointer to an array containing the keys of the items to insert (in 625 * sorted order). 618 * sorted order). 626 */ 619 */ 627 const struct btrfs_key *keys; 620 const struct btrfs_key *keys; 628 /* Pointer to an array containing the 621 /* Pointer to an array containing the data size for each item to insert. */ 629 const u32 *data_sizes; 622 const u32 *data_sizes; 630 /* 623 /* 631 * The sum of data sizes for all items 624 * The sum of data sizes for all items. The caller can compute this while 632 * setting up the data_sizes array, so 625 * setting up the data_sizes array, so it ends up being more efficient 633 * than having btrfs_insert_empty_item 626 * than having btrfs_insert_empty_items() or setup_item_for_insert() 634 * doing it, as it would avoid an extr 627 * doing it, as it would avoid an extra loop over a potentially large 635 * array, and in the case of setup_ite 628 * array, and in the case of setup_item_for_insert(), we would be doing 636 * it while holding a write lock on a 629 * it while holding a write lock on a leaf and often on upper level nodes 637 * too, unnecessarily increasing the s 630 * too, unnecessarily increasing the size of a critical section. 638 */ 631 */ 639 u32 total_data_size; 632 u32 total_data_size; 640 /* Size of the keys and data_sizes arr 633 /* Size of the keys and data_sizes arrays (number of items in the batch). */ 641 int nr; 634 int nr; 642 }; 635 }; 643 636 644 void btrfs_setup_item_for_insert(struct btrfs_ 637 void btrfs_setup_item_for_insert(struct btrfs_trans_handle *trans, 645 struct btrfs_ 638 struct btrfs_root *root, 646 struct btrfs_ 639 struct btrfs_path *path, 647 const struct 640 const struct btrfs_key *key, 648 u32 data_size 641 u32 data_size); 649 int btrfs_insert_item(struct btrfs_trans_handl 642 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, 650 const struct btrfs_key * 643 const struct btrfs_key *key, void *data, u32 data_size); 651 int btrfs_insert_empty_items(struct btrfs_tran 644 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans, 652 struct btrfs_root 645 struct btrfs_root *root, 653 struct btrfs_path 646 struct btrfs_path *path, 654 const struct btrf 647 const struct btrfs_item_batch *batch); 655 648 656 static inline int btrfs_insert_empty_item(stru 649 static inline int btrfs_insert_empty_item(struct btrfs_trans_handle *trans, 657 stru 650 struct btrfs_root *root, 658 stru 651 struct btrfs_path *path, 659 cons 652 const struct btrfs_key *key, 660 u32 653 u32 data_size) 661 { 654 { 662 struct btrfs_item_batch batch; 655 struct btrfs_item_batch batch; 663 656 664 batch.keys = key; 657 batch.keys = key; 665 batch.data_sizes = &data_size; 658 batch.data_sizes = &data_size; 666 batch.total_data_size = data_size; 659 batch.total_data_size = data_size; 667 batch.nr = 1; 660 batch.nr = 1; 668 661 669 return btrfs_insert_empty_items(trans, 662 return btrfs_insert_empty_items(trans, root, path, &batch); 670 } 663 } 671 664 672 int btrfs_next_old_leaf(struct btrfs_root *roo 665 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path, 673 u64 time_seq); 666 u64 time_seq); 674 667 675 int btrfs_search_backwards(struct btrfs_root * 668 int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key, 676 struct btrfs_path * 669 struct btrfs_path *path); 677 670 678 int btrfs_get_next_valid_item(struct btrfs_roo 671 int btrfs_get_next_valid_item(struct btrfs_root *root, struct btrfs_key *key, 679 struct btrfs_pat 672 struct btrfs_path *path); 680 673 681 /* 674 /* 682 * Search in @root for a given @key, and store 675 * Search in @root for a given @key, and store the slot found in @found_key. 683 * 676 * 684 * @root: The root node of the tree. 677 * @root: The root node of the tree. 685 * @key: The key we are looking for. 678 * @key: The key we are looking for. 686 * @found_key: Will hold the found item. 679 * @found_key: Will hold the found item. 687 * @path: Holds the current slot/leaf. 680 * @path: Holds the current slot/leaf. 688 * @iter_ret: Contains the value returned fr 681 * @iter_ret: Contains the value returned from btrfs_search_slot or 689 * btrfs_get_next_valid_item, whi 682 * btrfs_get_next_valid_item, whichever was executed last. 690 * 683 * 691 * The @iter_ret is an output variable that wi 684 * The @iter_ret is an output variable that will contain the return value of 692 * btrfs_search_slot, if it encountered an err 685 * btrfs_search_slot, if it encountered an error, or the value returned from 693 * btrfs_get_next_valid_item otherwise. That r 686 * btrfs_get_next_valid_item otherwise. That return value can be 0, if a valid 694 * slot was found, 1 if there were no more lea 687 * slot was found, 1 if there were no more leaves, and <0 if there was an error. 695 * 688 * 696 * It's recommended to use a separate variable 689 * It's recommended to use a separate variable for iter_ret and then use it to 697 * set the function return value so there's no 690 * set the function return value so there's no confusion of the 0/1/errno 698 * values stemming from btrfs_search_slot. 691 * values stemming from btrfs_search_slot. 699 */ 692 */ 700 #define btrfs_for_each_slot(root, key, found_k 693 #define btrfs_for_each_slot(root, key, found_key, path, iter_ret) \ 701 for (iter_ret = btrfs_search_slot(NULL 694 for (iter_ret = btrfs_search_slot(NULL, (root), (key), (path), 0, 0); \ 702 (iter_ret) >= 0 && 695 (iter_ret) >= 0 && \ 703 (iter_ret = btrfs_get_next_val 696 (iter_ret = btrfs_get_next_valid_item((root), (found_key), (path))) == 0; \ 704 (path)->slots[0]++ 697 (path)->slots[0]++ \ 705 ) 698 ) 706 699 707 int btrfs_next_old_item(struct btrfs_root *roo 700 int btrfs_next_old_item(struct btrfs_root *root, struct btrfs_path *path, u64 time_seq); 708 701 709 /* 702 /* 710 * Search the tree again to find a leaf with g 703 * Search the tree again to find a leaf with greater keys. 711 * 704 * 712 * Returns 0 if it found something or 1 if the 705 * Returns 0 if it found something or 1 if there are no greater leaves. 713 * Returns < 0 on error. 706 * Returns < 0 on error. 714 */ 707 */ 715 static inline int btrfs_next_leaf(struct btrfs 708 static inline int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path) 716 { 709 { 717 return btrfs_next_old_leaf(root, path, 710 return btrfs_next_old_leaf(root, path, 0); 718 } 711 } 719 712 720 static inline int btrfs_next_item(struct btrfs 713 static inline int btrfs_next_item(struct btrfs_root *root, struct btrfs_path *p) 721 { 714 { 722 return btrfs_next_old_item(root, p, 0) 715 return btrfs_next_old_item(root, p, 0); 723 } 716 } 724 int btrfs_leaf_free_space(const struct extent_ 717 int btrfs_leaf_free_space(const struct extent_buffer *leaf); 725 718 726 static inline int is_fstree(u64 rootid) 719 static inline int is_fstree(u64 rootid) 727 { 720 { 728 if (rootid == BTRFS_FS_TREE_OBJECTID | 721 if (rootid == BTRFS_FS_TREE_OBJECTID || 729 ((s64)rootid >= (s64)BTRFS_FIRST_F 722 ((s64)rootid >= (s64)BTRFS_FIRST_FREE_OBJECTID && 730 !btrfs_qgroup_level(rootid))) 723 !btrfs_qgroup_level(rootid))) 731 return 1; 724 return 1; 732 return 0; 725 return 0; 733 } 726 } 734 727 735 static inline bool btrfs_is_data_reloc_root(co 728 static inline bool btrfs_is_data_reloc_root(const struct btrfs_root *root) 736 { 729 { 737 return root->root_key.objectid == BTRF 730 return root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID; 738 } 731 } 739 732 740 u16 btrfs_csum_type_size(u16 type); 733 u16 btrfs_csum_type_size(u16 type); 741 int btrfs_super_csum_size(const struct btrfs_s 734 int btrfs_super_csum_size(const struct btrfs_super_block *s); 742 const char *btrfs_super_csum_name(u16 csum_typ 735 const char *btrfs_super_csum_name(u16 csum_type); 743 const char *btrfs_super_csum_driver(u16 csum_t 736 const char *btrfs_super_csum_driver(u16 csum_type); 744 size_t __attribute_const__ btrfs_get_num_csums 737 size_t __attribute_const__ btrfs_get_num_csums(void); 745 738 746 /* 739 /* 747 * We use page status Private2 to indicate the 740 * We use page status Private2 to indicate there is an ordered extent with 748 * unfinished IO. 741 * unfinished IO. 749 * 742 * 750 * Rename the Private2 accessors to Ordered, t 743 * Rename the Private2 accessors to Ordered, to improve readability. 751 */ 744 */ 752 #define PageOrdered(page) PagePr 745 #define PageOrdered(page) PagePrivate2(page) 753 #define SetPageOrdered(page) SetPag 746 #define SetPageOrdered(page) SetPagePrivate2(page) 754 #define ClearPageOrdered(page) ClearP 747 #define ClearPageOrdered(page) ClearPagePrivate2(page) 755 #define folio_test_ordered(folio) folio_ 748 #define folio_test_ordered(folio) folio_test_private_2(folio) 756 #define folio_set_ordered(folio) folio_ 749 #define folio_set_ordered(folio) folio_set_private_2(folio) 757 #define folio_clear_ordered(folio) folio_ 750 #define folio_clear_ordered(folio) folio_clear_private_2(folio) 758 751 759 #endif 752 #endif 760 753
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.