1 // SPDX-License-Identifier: GPL-2.0 1 // SPDX-License-Identifier: GPL-2.0 2 2 3 #include <linux/blkdev.h> 3 #include <linux/blkdev.h> 4 #include <linux/iversion.h> 4 #include <linux/iversion.h> 5 #include "ctree.h" 5 #include "ctree.h" 6 #include "fs.h" 6 #include "fs.h" 7 #include "messages.h" 7 #include "messages.h" 8 #include "compression.h" 8 #include "compression.h" 9 #include "delalloc-space.h" 9 #include "delalloc-space.h" 10 #include "disk-io.h" 10 #include "disk-io.h" 11 #include "reflink.h" 11 #include "reflink.h" 12 #include "transaction.h" 12 #include "transaction.h" 13 #include "subpage.h" 13 #include "subpage.h" 14 #include "accessors.h" 14 #include "accessors.h" 15 #include "file-item.h" 15 #include "file-item.h" 16 #include "file.h" 16 #include "file.h" 17 #include "super.h" 17 #include "super.h" 18 18 19 #define BTRFS_MAX_DEDUPE_LEN SZ_16M 19 #define BTRFS_MAX_DEDUPE_LEN SZ_16M 20 20 21 static int clone_finish_inode_update(struct bt 21 static int clone_finish_inode_update(struct btrfs_trans_handle *trans, 22 struct in 22 struct inode *inode, 23 u64 endof 23 u64 endoff, 24 const u64 24 const u64 destoff, 25 const u64 25 const u64 olen, 26 int no_ti 26 int no_time_update) 27 { 27 { >> 28 struct btrfs_root *root = BTRFS_I(inode)->root; 28 int ret; 29 int ret; 29 30 30 inode_inc_iversion(inode); 31 inode_inc_iversion(inode); 31 if (!no_time_update) { 32 if (!no_time_update) { 32 inode_set_mtime_to_ts(inode, i !! 33 inode->i_mtime = current_time(inode); >> 34 inode->i_ctime = inode->i_mtime; 33 } 35 } 34 /* 36 /* 35 * We round up to the block size at eo 37 * We round up to the block size at eof when determining which 36 * extents to clone above, but shouldn 38 * extents to clone above, but shouldn't round up the file size. 37 */ 39 */ 38 if (endoff > destoff + olen) 40 if (endoff > destoff + olen) 39 endoff = destoff + olen; 41 endoff = destoff + olen; 40 if (endoff > inode->i_size) { 42 if (endoff > inode->i_size) { 41 i_size_write(inode, endoff); 43 i_size_write(inode, endoff); 42 btrfs_inode_safe_disk_i_size_w 44 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 43 } 45 } 44 46 45 ret = btrfs_update_inode(trans, BTRFS_ !! 47 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 46 if (ret) { 48 if (ret) { 47 btrfs_abort_transaction(trans, 49 btrfs_abort_transaction(trans, ret); 48 btrfs_end_transaction(trans); 50 btrfs_end_transaction(trans); 49 goto out; 51 goto out; 50 } 52 } 51 ret = btrfs_end_transaction(trans); 53 ret = btrfs_end_transaction(trans); 52 out: 54 out: 53 return ret; 55 return ret; 54 } 56 } 55 57 56 static int copy_inline_to_page(struct btrfs_in 58 static int copy_inline_to_page(struct btrfs_inode *inode, 57 const u64 file_ 59 const u64 file_offset, 58 char *inline_da 60 char *inline_data, 59 const u64 size, 61 const u64 size, 60 const u64 datal 62 const u64 datal, 61 const u8 comp_t 63 const u8 comp_type) 62 { 64 { 63 struct btrfs_fs_info *fs_info = inode- 65 struct btrfs_fs_info *fs_info = inode->root->fs_info; 64 const u32 block_size = fs_info->sector 66 const u32 block_size = fs_info->sectorsize; 65 const u64 range_end = file_offset + bl 67 const u64 range_end = file_offset + block_size - 1; 66 const size_t inline_size = size - btrf 68 const size_t inline_size = size - btrfs_file_extent_calc_inline_size(0); 67 char *data_start = inline_data + btrfs 69 char *data_start = inline_data + btrfs_file_extent_calc_inline_size(0); 68 struct extent_changeset *data_reserved 70 struct extent_changeset *data_reserved = NULL; 69 struct folio *folio = NULL; !! 71 struct page *page = NULL; 70 struct address_space *mapping = inode- 72 struct address_space *mapping = inode->vfs_inode.i_mapping; 71 int ret; 73 int ret; 72 74 73 ASSERT(IS_ALIGNED(file_offset, block_s 75 ASSERT(IS_ALIGNED(file_offset, block_size)); 74 76 75 /* 77 /* 76 * We have flushed and locked the rang 78 * We have flushed and locked the ranges of the source and destination 77 * inodes, we also have locked the ino 79 * inodes, we also have locked the inodes, so we are safe to do a 78 * reservation here. Also we must not 80 * reservation here. Also we must not do the reservation while holding 79 * a transaction open, otherwise we wo 81 * a transaction open, otherwise we would deadlock. 80 */ 82 */ 81 ret = btrfs_delalloc_reserve_space(ino 83 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, file_offset, 82 blo 84 block_size); 83 if (ret) 85 if (ret) 84 goto out; 86 goto out; 85 87 86 folio = __filemap_get_folio(mapping, f !! 88 page = find_or_create_page(mapping, file_offset >> PAGE_SHIFT, 87 FGP_LO !! 89 btrfs_alloc_write_mask(mapping)); 88 btrfs_ !! 90 if (!page) { 89 if (IS_ERR(folio)) { << 90 ret = -ENOMEM; 91 ret = -ENOMEM; 91 goto out_unlock; 92 goto out_unlock; 92 } 93 } 93 94 94 ret = set_folio_extent_mapped(folio); !! 95 ret = set_page_extent_mapped(page); 95 if (ret < 0) 96 if (ret < 0) 96 goto out_unlock; 97 goto out_unlock; 97 98 98 clear_extent_bit(&inode->io_tree, file 99 clear_extent_bit(&inode->io_tree, file_offset, range_end, 99 EXTENT_DELALLOC | EXT 100 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 100 NULL); 101 NULL); 101 ret = btrfs_set_extent_delalloc(inode, 102 ret = btrfs_set_extent_delalloc(inode, file_offset, range_end, 0, NULL); 102 if (ret) 103 if (ret) 103 goto out_unlock; 104 goto out_unlock; 104 105 105 /* 106 /* 106 * After dirtying the page our caller 107 * After dirtying the page our caller will need to start a transaction, 107 * and if we are low on metadata free 108 * and if we are low on metadata free space, that can cause flushing of 108 * delalloc for all inodes in order to 109 * delalloc for all inodes in order to get metadata space released. 109 * However we are holding the range lo 110 * However we are holding the range locked for the whole duration of 110 * the clone/dedupe operation, so we m 111 * the clone/dedupe operation, so we may deadlock if that happens and no 111 * other task releases enough space. S 112 * other task releases enough space. So mark this inode as not being 112 * possible to flush to avoid such dea 113 * possible to flush to avoid such deadlock. We will clear that flag 113 * when we finish cloning all extents, 114 * when we finish cloning all extents, since a transaction is started 114 * after finding each extent to clone. 115 * after finding each extent to clone. 115 */ 116 */ 116 set_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, 117 set_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &inode->runtime_flags); 117 118 118 if (comp_type == BTRFS_COMPRESS_NONE) 119 if (comp_type == BTRFS_COMPRESS_NONE) { 119 memcpy_to_folio(folio, offset_ !! 120 memcpy_to_page(page, offset_in_page(file_offset), data_start, 120 datal) !! 121 datal); 121 } else { 122 } else { 122 ret = btrfs_decompress(comp_ty !! 123 ret = btrfs_decompress(comp_type, data_start, page, 123 offset_ !! 124 offset_in_page(file_offset), 124 inline_ 125 inline_size, datal); 125 if (ret) 126 if (ret) 126 goto out_unlock; 127 goto out_unlock; 127 flush_dcache_folio(folio); !! 128 flush_dcache_page(page); 128 } 129 } 129 130 130 /* 131 /* 131 * If our inline data is smaller then 132 * If our inline data is smaller then the block/page size, then the 132 * remaining of the block/page is equi 133 * remaining of the block/page is equivalent to zeroes. We had something 133 * like the following done: 134 * like the following done: 134 * 135 * 135 * $ xfs_io -f -c "pwrite -S 0xab 0 50 136 * $ xfs_io -f -c "pwrite -S 0xab 0 500" file 136 * $ sync # (or fsync) 137 * $ sync # (or fsync) 137 * $ xfs_io -c "falloc 0 4K" file 138 * $ xfs_io -c "falloc 0 4K" file 138 * $ xfs_io -c "pwrite -S 0xcd 4K 4K" 139 * $ xfs_io -c "pwrite -S 0xcd 4K 4K" 139 * 140 * 140 * So what's in the range [500, 4095] 141 * So what's in the range [500, 4095] corresponds to zeroes. 141 */ 142 */ 142 if (datal < block_size) 143 if (datal < block_size) 143 folio_zero_range(folio, datal, !! 144 memzero_page(page, datal, block_size - datal); 144 145 145 btrfs_folio_set_uptodate(fs_info, foli !! 146 btrfs_page_set_uptodate(fs_info, page, file_offset, block_size); 146 btrfs_folio_clear_checked(fs_info, fol !! 147 btrfs_page_clear_checked(fs_info, page, file_offset, block_size); 147 btrfs_folio_set_dirty(fs_info, folio, !! 148 btrfs_page_set_dirty(fs_info, page, file_offset, block_size); 148 out_unlock: 149 out_unlock: 149 if (!IS_ERR(folio)) { !! 150 if (page) { 150 folio_unlock(folio); !! 151 unlock_page(page); 151 folio_put(folio); !! 152 put_page(page); 152 } 153 } 153 if (ret) 154 if (ret) 154 btrfs_delalloc_release_space(i 155 btrfs_delalloc_release_space(inode, data_reserved, file_offset, 155 b 156 block_size, true); 156 btrfs_delalloc_release_extents(inode, 157 btrfs_delalloc_release_extents(inode, block_size); 157 out: 158 out: 158 extent_changeset_free(data_reserved); 159 extent_changeset_free(data_reserved); 159 160 160 return ret; 161 return ret; 161 } 162 } 162 163 163 /* 164 /* 164 * Deal with cloning of inline extents. We try 165 * Deal with cloning of inline extents. We try to copy the inline extent from 165 * the source inode to destination inode when 166 * the source inode to destination inode when possible. When not possible we 166 * copy the inline extent's data into the resp 167 * copy the inline extent's data into the respective page of the inode. 167 */ 168 */ 168 static int clone_copy_inline_extent(struct ino 169 static int clone_copy_inline_extent(struct inode *dst, 169 struct btr 170 struct btrfs_path *path, 170 struct btr 171 struct btrfs_key *new_key, 171 const u64 172 const u64 drop_start, 172 const u64 173 const u64 datal, 173 const u64 174 const u64 size, 174 const u8 c 175 const u8 comp_type, 175 char *inli 176 char *inline_data, 176 struct btr 177 struct btrfs_trans_handle **trans_out) 177 { 178 { 178 struct btrfs_fs_info *fs_info = inode_ !! 179 struct btrfs_fs_info *fs_info = btrfs_sb(dst->i_sb); 179 struct btrfs_root *root = BTRFS_I(dst) 180 struct btrfs_root *root = BTRFS_I(dst)->root; 180 const u64 aligned_end = ALIGN(new_key- 181 const u64 aligned_end = ALIGN(new_key->offset + datal, 181 fs_info- 182 fs_info->sectorsize); 182 struct btrfs_trans_handle *trans = NUL 183 struct btrfs_trans_handle *trans = NULL; 183 struct btrfs_drop_extents_args drop_ar 184 struct btrfs_drop_extents_args drop_args = { 0 }; 184 int ret; 185 int ret; 185 struct btrfs_key key; 186 struct btrfs_key key; 186 187 187 if (new_key->offset > 0) { 188 if (new_key->offset > 0) { 188 ret = copy_inline_to_page(BTRF 189 ret = copy_inline_to_page(BTRFS_I(dst), new_key->offset, 189 inli 190 inline_data, size, datal, comp_type); 190 goto out; 191 goto out; 191 } 192 } 192 193 193 key.objectid = btrfs_ino(BTRFS_I(dst)) 194 key.objectid = btrfs_ino(BTRFS_I(dst)); 194 key.type = BTRFS_EXTENT_DATA_KEY; 195 key.type = BTRFS_EXTENT_DATA_KEY; 195 key.offset = 0; 196 key.offset = 0; 196 ret = btrfs_search_slot(NULL, root, &k 197 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 197 if (ret < 0) { 198 if (ret < 0) { 198 return ret; 199 return ret; 199 } else if (ret > 0) { 200 } else if (ret > 0) { 200 if (path->slots[0] >= btrfs_he 201 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 201 ret = btrfs_next_leaf( 202 ret = btrfs_next_leaf(root, path); 202 if (ret < 0) 203 if (ret < 0) 203 return ret; 204 return ret; 204 else if (ret > 0) 205 else if (ret > 0) 205 goto copy_inli 206 goto copy_inline_extent; 206 } 207 } 207 btrfs_item_key_to_cpu(path->no 208 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 208 if (key.objectid == btrfs_ino( 209 if (key.objectid == btrfs_ino(BTRFS_I(dst)) && 209 key.type == BTRFS_EXTENT_D 210 key.type == BTRFS_EXTENT_DATA_KEY) { 210 /* 211 /* 211 * There's an implicit 212 * There's an implicit hole at file offset 0, copy the 212 * inline extent's dat 213 * inline extent's data to the page. 213 */ 214 */ 214 ASSERT(key.offset > 0) 215 ASSERT(key.offset > 0); 215 goto copy_to_page; 216 goto copy_to_page; 216 } 217 } 217 } else if (i_size_read(dst) <= datal) 218 } else if (i_size_read(dst) <= datal) { 218 struct btrfs_file_extent_item 219 struct btrfs_file_extent_item *ei; 219 220 220 ei = btrfs_item_ptr(path->node 221 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 221 struct btr 222 struct btrfs_file_extent_item); 222 /* 223 /* 223 * If it's an inline extent re 224 * If it's an inline extent replace it with the source inline 224 * extent, otherwise copy the 225 * extent, otherwise copy the source inline extent data into 225 * the respective page at the 226 * the respective page at the destination inode. 226 */ 227 */ 227 if (btrfs_file_extent_type(pat 228 if (btrfs_file_extent_type(path->nodes[0], ei) == 228 BTRFS_FILE_EXTENT_INLINE) 229 BTRFS_FILE_EXTENT_INLINE) 229 goto copy_inline_exten 230 goto copy_inline_extent; 230 231 231 goto copy_to_page; 232 goto copy_to_page; 232 } 233 } 233 234 234 copy_inline_extent: 235 copy_inline_extent: 235 /* 236 /* 236 * We have no extent items, or we have 237 * We have no extent items, or we have an extent at offset 0 which may 237 * or may not be inlined. All these ca 238 * or may not be inlined. All these cases are dealt the same way. 238 */ 239 */ 239 if (i_size_read(dst) > datal) { 240 if (i_size_read(dst) > datal) { 240 /* 241 /* 241 * At the destination offset 0 242 * At the destination offset 0 we have either a hole, a regular 242 * extent or an inline extent 243 * extent or an inline extent larger then the one we want to 243 * clone. Deal with all these 244 * clone. Deal with all these cases by copying the inline extent 244 * data into the respective pa 245 * data into the respective page at the destination inode. 245 */ 246 */ 246 goto copy_to_page; 247 goto copy_to_page; 247 } 248 } 248 249 249 /* 250 /* 250 * Release path before starting a new 251 * Release path before starting a new transaction so we don't hold locks 251 * that would confuse lockdep. 252 * that would confuse lockdep. 252 */ 253 */ 253 btrfs_release_path(path); 254 btrfs_release_path(path); 254 /* 255 /* 255 * If we end up here it means were cop 256 * If we end up here it means were copy the inline extent into a leaf 256 * of the destination inode. We know w 257 * of the destination inode. We know we will drop or adjust at most one 257 * extent item in the destination root 258 * extent item in the destination root. 258 * 259 * 259 * 1 unit - adjusting old extent (we m 260 * 1 unit - adjusting old extent (we may have to split it) 260 * 1 unit - add new extent 261 * 1 unit - add new extent 261 * 1 unit - inode update 262 * 1 unit - inode update 262 */ 263 */ 263 trans = btrfs_start_transaction(root, 264 trans = btrfs_start_transaction(root, 3); 264 if (IS_ERR(trans)) { 265 if (IS_ERR(trans)) { 265 ret = PTR_ERR(trans); 266 ret = PTR_ERR(trans); 266 trans = NULL; 267 trans = NULL; 267 goto out; 268 goto out; 268 } 269 } 269 drop_args.path = path; 270 drop_args.path = path; 270 drop_args.start = drop_start; 271 drop_args.start = drop_start; 271 drop_args.end = aligned_end; 272 drop_args.end = aligned_end; 272 drop_args.drop_cache = true; 273 drop_args.drop_cache = true; 273 ret = btrfs_drop_extents(trans, root, 274 ret = btrfs_drop_extents(trans, root, BTRFS_I(dst), &drop_args); 274 if (ret) 275 if (ret) 275 goto out; 276 goto out; 276 ret = btrfs_insert_empty_item(trans, r 277 ret = btrfs_insert_empty_item(trans, root, path, new_key, size); 277 if (ret) 278 if (ret) 278 goto out; 279 goto out; 279 280 280 write_extent_buffer(path->nodes[0], in 281 write_extent_buffer(path->nodes[0], inline_data, 281 btrfs_item_ptr_off 282 btrfs_item_ptr_offset(path->nodes[0], 282 283 path->slots[0]), 283 size); 284 size); 284 btrfs_update_inode_bytes(BTRFS_I(dst), 285 btrfs_update_inode_bytes(BTRFS_I(dst), datal, drop_args.bytes_found); 285 btrfs_set_inode_full_sync(BTRFS_I(dst) 286 btrfs_set_inode_full_sync(BTRFS_I(dst)); 286 ret = btrfs_inode_set_file_extent_rang 287 ret = btrfs_inode_set_file_extent_range(BTRFS_I(dst), 0, aligned_end); 287 out: 288 out: 288 if (!ret && !trans) { 289 if (!ret && !trans) { 289 /* 290 /* 290 * No transaction here means w 291 * No transaction here means we copied the inline extent into a 291 * page of the destination ino 292 * page of the destination inode. 292 * 293 * 293 * 1 unit to update inode item 294 * 1 unit to update inode item 294 */ 295 */ 295 trans = btrfs_start_transactio 296 trans = btrfs_start_transaction(root, 1); 296 if (IS_ERR(trans)) { 297 if (IS_ERR(trans)) { 297 ret = PTR_ERR(trans); 298 ret = PTR_ERR(trans); 298 trans = NULL; 299 trans = NULL; 299 } 300 } 300 } 301 } 301 if (ret && trans) { 302 if (ret && trans) { 302 btrfs_abort_transaction(trans, 303 btrfs_abort_transaction(trans, ret); 303 btrfs_end_transaction(trans); 304 btrfs_end_transaction(trans); 304 } 305 } 305 if (!ret) 306 if (!ret) 306 *trans_out = trans; 307 *trans_out = trans; 307 308 308 return ret; 309 return ret; 309 310 310 copy_to_page: 311 copy_to_page: 311 /* 312 /* 312 * Release our path because we don't n 313 * Release our path because we don't need it anymore and also because 313 * copy_inline_to_page() needs to rese 314 * copy_inline_to_page() needs to reserve data and metadata, which may 314 * need to flush delalloc when we are 315 * need to flush delalloc when we are low on available space and 315 * therefore cause a deadlock if write 316 * therefore cause a deadlock if writeback of an inline extent needs to 316 * write to the same leaf or an ordere 317 * write to the same leaf or an ordered extent completion needs to write 317 * to the same leaf. 318 * to the same leaf. 318 */ 319 */ 319 btrfs_release_path(path); 320 btrfs_release_path(path); 320 321 321 ret = copy_inline_to_page(BTRFS_I(dst) 322 ret = copy_inline_to_page(BTRFS_I(dst), new_key->offset, 322 inline_data, 323 inline_data, size, datal, comp_type); 323 goto out; 324 goto out; 324 } 325 } 325 326 326 /* 327 /* 327 * Clone a range from inode file to another. 328 * Clone a range from inode file to another. 328 * 329 * 329 * @src: Inode to clone from 330 * @src: Inode to clone from 330 * @inode: Inode to clone to 331 * @inode: Inode to clone to 331 * @off: Offset within source to s 332 * @off: Offset within source to start clone from 332 * @olen: Original length, passed b 333 * @olen: Original length, passed by user, of range to clone 333 * @olen_aligned: Block-aligned value of ol 334 * @olen_aligned: Block-aligned value of olen 334 * @destoff: Offset within @inode to s 335 * @destoff: Offset within @inode to start clone 335 * @no_time_update: Whether to update mtime/c 336 * @no_time_update: Whether to update mtime/ctime on the target inode 336 */ 337 */ 337 static int btrfs_clone(struct inode *src, stru 338 static int btrfs_clone(struct inode *src, struct inode *inode, 338 const u64 off, const u6 339 const u64 off, const u64 olen, const u64 olen_aligned, 339 const u64 destoff, int 340 const u64 destoff, int no_time_update) 340 { 341 { 341 struct btrfs_fs_info *fs_info = inode_ !! 342 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 342 struct btrfs_path *path = NULL; 343 struct btrfs_path *path = NULL; 343 struct extent_buffer *leaf; 344 struct extent_buffer *leaf; 344 struct btrfs_trans_handle *trans; 345 struct btrfs_trans_handle *trans; 345 char *buf = NULL; 346 char *buf = NULL; 346 struct btrfs_key key; 347 struct btrfs_key key; 347 u32 nritems; 348 u32 nritems; 348 int slot; 349 int slot; 349 int ret; 350 int ret; 350 const u64 len = olen_aligned; 351 const u64 len = olen_aligned; 351 u64 last_dest_end = destoff; 352 u64 last_dest_end = destoff; 352 u64 prev_extent_end = off; 353 u64 prev_extent_end = off; 353 354 354 ret = -ENOMEM; 355 ret = -ENOMEM; 355 buf = kvmalloc(fs_info->nodesize, GFP_ 356 buf = kvmalloc(fs_info->nodesize, GFP_KERNEL); 356 if (!buf) 357 if (!buf) 357 return ret; 358 return ret; 358 359 359 path = btrfs_alloc_path(); 360 path = btrfs_alloc_path(); 360 if (!path) { 361 if (!path) { 361 kvfree(buf); 362 kvfree(buf); 362 return ret; 363 return ret; 363 } 364 } 364 365 365 path->reada = READA_FORWARD; 366 path->reada = READA_FORWARD; 366 /* Clone data */ 367 /* Clone data */ 367 key.objectid = btrfs_ino(BTRFS_I(src)) 368 key.objectid = btrfs_ino(BTRFS_I(src)); 368 key.type = BTRFS_EXTENT_DATA_KEY; 369 key.type = BTRFS_EXTENT_DATA_KEY; 369 key.offset = off; 370 key.offset = off; 370 371 371 while (1) { 372 while (1) { 372 struct btrfs_file_extent_item 373 struct btrfs_file_extent_item *extent; 373 u64 extent_gen; 374 u64 extent_gen; 374 int type; 375 int type; 375 u32 size; 376 u32 size; 376 struct btrfs_key new_key; 377 struct btrfs_key new_key; 377 u64 disko = 0, diskl = 0; 378 u64 disko = 0, diskl = 0; 378 u64 datao = 0, datal = 0; 379 u64 datao = 0, datal = 0; 379 u8 comp; 380 u8 comp; 380 u64 drop_start; 381 u64 drop_start; 381 382 382 /* Note the key will change ty 383 /* Note the key will change type as we walk through the tree */ 383 ret = btrfs_search_slot(NULL, 384 ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path, 384 0, 0); 385 0, 0); 385 if (ret < 0) 386 if (ret < 0) 386 goto out; 387 goto out; 387 /* 388 /* 388 * First search, if no extent 389 * First search, if no extent item that starts at offset off was 389 * found but the previous item 390 * found but the previous item is an extent item, it's possible 390 * it might overlap our target 391 * it might overlap our target range, therefore process it. 391 */ 392 */ 392 if (key.offset == off && ret > 393 if (key.offset == off && ret > 0 && path->slots[0] > 0) { 393 btrfs_item_key_to_cpu( 394 btrfs_item_key_to_cpu(path->nodes[0], &key, 394 395 path->slots[0] - 1); 395 if (key.type == BTRFS_ 396 if (key.type == BTRFS_EXTENT_DATA_KEY) 396 path->slots[0] 397 path->slots[0]--; 397 } 398 } 398 399 399 nritems = btrfs_header_nritems 400 nritems = btrfs_header_nritems(path->nodes[0]); 400 process_slot: 401 process_slot: 401 if (path->slots[0] >= nritems) 402 if (path->slots[0] >= nritems) { 402 ret = btrfs_next_leaf( 403 ret = btrfs_next_leaf(BTRFS_I(src)->root, path); 403 if (ret < 0) 404 if (ret < 0) 404 goto out; 405 goto out; 405 if (ret > 0) 406 if (ret > 0) 406 break; 407 break; 407 nritems = btrfs_header 408 nritems = btrfs_header_nritems(path->nodes[0]); 408 } 409 } 409 leaf = path->nodes[0]; 410 leaf = path->nodes[0]; 410 slot = path->slots[0]; 411 slot = path->slots[0]; 411 412 412 btrfs_item_key_to_cpu(leaf, &k 413 btrfs_item_key_to_cpu(leaf, &key, slot); 413 if (key.type > BTRFS_EXTENT_DA 414 if (key.type > BTRFS_EXTENT_DATA_KEY || 414 key.objectid != btrfs_ino( 415 key.objectid != btrfs_ino(BTRFS_I(src))) 415 break; 416 break; 416 417 417 ASSERT(key.type == BTRFS_EXTEN 418 ASSERT(key.type == BTRFS_EXTENT_DATA_KEY); 418 419 419 extent = btrfs_item_ptr(leaf, 420 extent = btrfs_item_ptr(leaf, slot, 420 struct 421 struct btrfs_file_extent_item); 421 extent_gen = btrfs_file_extent 422 extent_gen = btrfs_file_extent_generation(leaf, extent); 422 comp = btrfs_file_extent_compr 423 comp = btrfs_file_extent_compression(leaf, extent); 423 type = btrfs_file_extent_type( 424 type = btrfs_file_extent_type(leaf, extent); 424 if (type == BTRFS_FILE_EXTENT_ 425 if (type == BTRFS_FILE_EXTENT_REG || 425 type == BTRFS_FILE_EXTENT_ 426 type == BTRFS_FILE_EXTENT_PREALLOC) { 426 disko = btrfs_file_ext 427 disko = btrfs_file_extent_disk_bytenr(leaf, extent); 427 diskl = btrfs_file_ext 428 diskl = btrfs_file_extent_disk_num_bytes(leaf, extent); 428 datao = btrfs_file_ext 429 datao = btrfs_file_extent_offset(leaf, extent); 429 datal = btrfs_file_ext 430 datal = btrfs_file_extent_num_bytes(leaf, extent); 430 } else if (type == BTRFS_FILE_ 431 } else if (type == BTRFS_FILE_EXTENT_INLINE) { 431 /* Take upper bound, m 432 /* Take upper bound, may be compressed */ 432 datal = btrfs_file_ext 433 datal = btrfs_file_extent_ram_bytes(leaf, extent); 433 } 434 } 434 435 435 /* 436 /* 436 * The first search might have 437 * The first search might have left us at an extent item that 437 * ends before our target rang 438 * ends before our target range's start, can happen if we have 438 * holes and NO_HOLES feature 439 * holes and NO_HOLES feature enabled. 439 * 440 * 440 * Subsequent searches may lea 441 * Subsequent searches may leave us on a file range we have 441 * processed before - this hap 442 * processed before - this happens due to a race with ordered 442 * extent completion for a fil 443 * extent completion for a file range that is outside our source 443 * range, but that range was p 444 * range, but that range was part of a file extent item that 444 * also covered a leading part 445 * also covered a leading part of our source range. 445 */ 446 */ 446 if (key.offset + datal <= prev 447 if (key.offset + datal <= prev_extent_end) { 447 path->slots[0]++; 448 path->slots[0]++; 448 goto process_slot; 449 goto process_slot; 449 } else if (key.offset >= off + 450 } else if (key.offset >= off + len) { 450 break; 451 break; 451 } 452 } 452 453 453 prev_extent_end = key.offset + 454 prev_extent_end = key.offset + datal; 454 size = btrfs_item_size(leaf, s 455 size = btrfs_item_size(leaf, slot); 455 read_extent_buffer(leaf, buf, 456 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, slot), 456 size); 457 size); 457 458 458 btrfs_release_path(path); 459 btrfs_release_path(path); 459 460 460 memcpy(&new_key, &key, sizeof( 461 memcpy(&new_key, &key, sizeof(new_key)); 461 new_key.objectid = btrfs_ino(B 462 new_key.objectid = btrfs_ino(BTRFS_I(inode)); 462 if (off <= key.offset) 463 if (off <= key.offset) 463 new_key.offset = key.o 464 new_key.offset = key.offset + destoff - off; 464 else 465 else 465 new_key.offset = desto 466 new_key.offset = destoff; 466 467 467 /* 468 /* 468 * Deal with a hole that doesn 469 * Deal with a hole that doesn't have an extent item that 469 * represents it (NO_HOLES fea 470 * represents it (NO_HOLES feature enabled). 470 * This hole is either in the 471 * This hole is either in the middle of the cloning range or at 471 * the beginning (fully overla 472 * the beginning (fully overlaps it or partially overlaps it). 472 */ 473 */ 473 if (new_key.offset != last_des 474 if (new_key.offset != last_dest_end) 474 drop_start = last_dest 475 drop_start = last_dest_end; 475 else 476 else 476 drop_start = new_key.o 477 drop_start = new_key.offset; 477 478 478 if (type == BTRFS_FILE_EXTENT_ 479 if (type == BTRFS_FILE_EXTENT_REG || 479 type == BTRFS_FILE_EXTENT_ 480 type == BTRFS_FILE_EXTENT_PREALLOC) { 480 struct btrfs_replace_e 481 struct btrfs_replace_extent_info clone_info; 481 482 482 /* 483 /* 483 * a | --- range t 484 * a | --- range to clone ---| b 484 * | ------------- ext 485 * | ------------- extent ------------- | 485 */ 486 */ 486 487 487 /* Subtract range b */ 488 /* Subtract range b */ 488 if (key.offset + datal 489 if (key.offset + datal > off + len) 489 datal = off + 490 datal = off + len - key.offset; 490 491 491 /* Subtract range a */ 492 /* Subtract range a */ 492 if (off > key.offset) 493 if (off > key.offset) { 493 datao += off - 494 datao += off - key.offset; 494 datal -= off - 495 datal -= off - key.offset; 495 } 496 } 496 497 497 clone_info.disk_offset 498 clone_info.disk_offset = disko; 498 clone_info.disk_len = 499 clone_info.disk_len = diskl; 499 clone_info.data_offset 500 clone_info.data_offset = datao; 500 clone_info.data_len = 501 clone_info.data_len = datal; 501 clone_info.file_offset 502 clone_info.file_offset = new_key.offset; 502 clone_info.extent_buf 503 clone_info.extent_buf = buf; 503 clone_info.is_new_exte 504 clone_info.is_new_extent = false; 504 clone_info.update_time 505 clone_info.update_times = !no_time_update; 505 ret = btrfs_replace_fi 506 ret = btrfs_replace_file_extents(BTRFS_I(inode), path, 506 drop_s 507 drop_start, new_key.offset + datal - 1, 507 &clone 508 &clone_info, &trans); 508 if (ret) 509 if (ret) 509 goto out; 510 goto out; 510 } else { 511 } else { 511 ASSERT(type == BTRFS_F 512 ASSERT(type == BTRFS_FILE_EXTENT_INLINE); 512 /* 513 /* 513 * Inline extents alwa 514 * Inline extents always have to start at file offset 0 514 * and can never be bi 515 * and can never be bigger then the sector size. We can 515 * never clone only pa 516 * never clone only parts of an inline extent, since all 516 * reflink operations 517 * reflink operations must start at a sector size aligned 517 * offset, and the len 518 * offset, and the length must be aligned too or end at 518 * the i_size (which i 519 * the i_size (which implies the whole inlined data). 519 */ 520 */ 520 ASSERT(key.offset == 0 521 ASSERT(key.offset == 0); 521 ASSERT(datal <= fs_inf 522 ASSERT(datal <= fs_info->sectorsize); 522 if (WARN_ON(type != BT 523 if (WARN_ON(type != BTRFS_FILE_EXTENT_INLINE) || 523 WARN_ON(key.offset 524 WARN_ON(key.offset != 0) || 524 WARN_ON(datal > fs 525 WARN_ON(datal > fs_info->sectorsize)) { 525 ret = -EUCLEAN 526 ret = -EUCLEAN; 526 goto out; 527 goto out; 527 } 528 } 528 529 529 ret = clone_copy_inlin 530 ret = clone_copy_inline_extent(inode, path, &new_key, 530 531 drop_start, datal, size, 531 532 comp, buf, &trans); 532 if (ret) 533 if (ret) 533 goto out; 534 goto out; 534 } 535 } 535 536 536 btrfs_release_path(path); 537 btrfs_release_path(path); 537 538 538 /* 539 /* 539 * Whenever we share an extent 540 * Whenever we share an extent we update the last_reflink_trans 540 * of each inode to the curren 541 * of each inode to the current transaction. This is needed to 541 * make sure fsync does not lo 542 * make sure fsync does not log multiple checksum items with 542 * overlapping ranges (because 543 * overlapping ranges (because some extent items might refer 543 * only to sections of the ori 544 * only to sections of the original extent). For the destination 544 * inode we do this regardless 545 * inode we do this regardless of the generation of the extents 545 * or even if they are inline 546 * or even if they are inline extents or explicit holes, to make 546 * sure a full fsync does not 547 * sure a full fsync does not skip them. For the source inode, 547 * we only need to update last 548 * we only need to update last_reflink_trans in case it's a new 548 * extent that is not a hole o 549 * extent that is not a hole or an inline extent, to deal with 549 * the checksums problem on fs 550 * the checksums problem on fsync. 550 */ 551 */ 551 if (extent_gen == trans->trans 552 if (extent_gen == trans->transid && disko > 0) 552 BTRFS_I(src)->last_ref 553 BTRFS_I(src)->last_reflink_trans = trans->transid; 553 554 554 BTRFS_I(inode)->last_reflink_t 555 BTRFS_I(inode)->last_reflink_trans = trans->transid; 555 556 556 last_dest_end = ALIGN(new_key. 557 last_dest_end = ALIGN(new_key.offset + datal, 557 fs_info- 558 fs_info->sectorsize); 558 ret = clone_finish_inode_updat 559 ret = clone_finish_inode_update(trans, inode, last_dest_end, 559 560 destoff, olen, no_time_update); 560 if (ret) 561 if (ret) 561 goto out; 562 goto out; 562 if (new_key.offset + datal >= 563 if (new_key.offset + datal >= destoff + len) 563 break; 564 break; 564 565 565 btrfs_release_path(path); 566 btrfs_release_path(path); 566 key.offset = prev_extent_end; 567 key.offset = prev_extent_end; 567 568 568 if (fatal_signal_pending(curre 569 if (fatal_signal_pending(current)) { 569 ret = -EINTR; 570 ret = -EINTR; 570 goto out; 571 goto out; 571 } 572 } 572 573 573 cond_resched(); 574 cond_resched(); 574 } 575 } 575 ret = 0; 576 ret = 0; 576 577 577 if (last_dest_end < destoff + len) { 578 if (last_dest_end < destoff + len) { 578 /* 579 /* 579 * We have an implicit hole th 580 * We have an implicit hole that fully or partially overlaps our 580 * cloning range at its end. T 581 * cloning range at its end. This means that we either have the 581 * NO_HOLES feature enabled or 582 * NO_HOLES feature enabled or the implicit hole happened due to 582 * mixing buffered and direct 583 * mixing buffered and direct IO writes against this file. 583 */ 584 */ 584 btrfs_release_path(path); 585 btrfs_release_path(path); 585 586 586 /* 587 /* 587 * When using NO_HOLES and we 588 * When using NO_HOLES and we are cloning a range that covers 588 * only a hole (no extents) in 589 * only a hole (no extents) into a range beyond the current 589 * i_size, punching a hole in 590 * i_size, punching a hole in the target range will not create 590 * an extent map defining a ho 591 * an extent map defining a hole, because the range starts at or 591 * beyond current i_size. If t 592 * beyond current i_size. If the file previously had an i_size 592 * greater than the new i_size 593 * greater than the new i_size set by this clone operation, we 593 * need to make sure the next 594 * need to make sure the next fsync is a full fsync, so that it 594 * detects and logs a hole cov 595 * detects and logs a hole covering a range from the current 595 * i_size to the new i_size. I 596 * i_size to the new i_size. If the clone range covers extents, 596 * besides a hole, then we kno 597 * besides a hole, then we know the full sync flag was already 597 * set by previous calls to bt 598 * set by previous calls to btrfs_replace_file_extents() that 598 * replaced file extent items. 599 * replaced file extent items. 599 */ 600 */ 600 if (last_dest_end >= i_size_re 601 if (last_dest_end >= i_size_read(inode)) 601 btrfs_set_inode_full_s 602 btrfs_set_inode_full_sync(BTRFS_I(inode)); 602 603 603 ret = btrfs_replace_file_exten 604 ret = btrfs_replace_file_extents(BTRFS_I(inode), path, 604 last_dest_end, 605 last_dest_end, destoff + len - 1, NULL, &trans); 605 if (ret) 606 if (ret) 606 goto out; 607 goto out; 607 608 608 ret = clone_finish_inode_updat 609 ret = clone_finish_inode_update(trans, inode, destoff + len, 609 610 destoff, olen, no_time_update); 610 } 611 } 611 612 612 out: 613 out: 613 btrfs_free_path(path); 614 btrfs_free_path(path); 614 kvfree(buf); 615 kvfree(buf); 615 clear_bit(BTRFS_INODE_NO_DELALLOC_FLUS 616 clear_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &BTRFS_I(inode)->runtime_flags); 616 617 617 return ret; 618 return ret; 618 } 619 } 619 620 >> 621 static void btrfs_double_extent_unlock(struct inode *inode1, u64 loff1, >> 622 struct inode *inode2, u64 loff2, u64 len) >> 623 { >> 624 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1, NULL); >> 625 unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1, NULL); >> 626 } >> 627 >> 628 static void btrfs_double_extent_lock(struct inode *inode1, u64 loff1, >> 629 struct inode *inode2, u64 loff2, u64 len) >> 630 { >> 631 u64 range1_end = loff1 + len - 1; >> 632 u64 range2_end = loff2 + len - 1; >> 633 >> 634 if (inode1 < inode2) { >> 635 swap(inode1, inode2); >> 636 swap(loff1, loff2); >> 637 swap(range1_end, range2_end); >> 638 } else if (inode1 == inode2 && loff2 < loff1) { >> 639 swap(loff1, loff2); >> 640 swap(range1_end, range2_end); >> 641 } >> 642 >> 643 lock_extent(&BTRFS_I(inode1)->io_tree, loff1, range1_end, NULL); >> 644 lock_extent(&BTRFS_I(inode2)->io_tree, loff2, range2_end, NULL); >> 645 >> 646 btrfs_assert_inode_range_clean(BTRFS_I(inode1), loff1, range1_end); >> 647 btrfs_assert_inode_range_clean(BTRFS_I(inode2), loff2, range2_end); >> 648 } >> 649 620 static void btrfs_double_mmap_lock(struct inod 650 static void btrfs_double_mmap_lock(struct inode *inode1, struct inode *inode2) 621 { 651 { 622 if (inode1 < inode2) 652 if (inode1 < inode2) 623 swap(inode1, inode2); 653 swap(inode1, inode2); 624 down_write(&BTRFS_I(inode1)->i_mmap_lo 654 down_write(&BTRFS_I(inode1)->i_mmap_lock); 625 down_write_nested(&BTRFS_I(inode2)->i_ 655 down_write_nested(&BTRFS_I(inode2)->i_mmap_lock, SINGLE_DEPTH_NESTING); 626 } 656 } 627 657 628 static void btrfs_double_mmap_unlock(struct in 658 static void btrfs_double_mmap_unlock(struct inode *inode1, struct inode *inode2) 629 { 659 { 630 up_write(&BTRFS_I(inode1)->i_mmap_lock 660 up_write(&BTRFS_I(inode1)->i_mmap_lock); 631 up_write(&BTRFS_I(inode2)->i_mmap_lock 661 up_write(&BTRFS_I(inode2)->i_mmap_lock); 632 } 662 } 633 663 634 static int btrfs_extent_same_range(struct inod 664 static int btrfs_extent_same_range(struct inode *src, u64 loff, u64 len, 635 struct inod 665 struct inode *dst, u64 dst_loff) 636 { 666 { 637 const u64 end = dst_loff + len - 1; << 638 struct extent_state *cached_state = NU << 639 struct btrfs_fs_info *fs_info = BTRFS_ 667 struct btrfs_fs_info *fs_info = BTRFS_I(src)->root->fs_info; 640 const u64 bs = fs_info->sectorsize; !! 668 const u64 bs = fs_info->sb->s_blocksize; 641 int ret; 669 int ret; 642 670 643 /* 671 /* 644 * Lock destination range to serialize !! 672 * Lock destination range to serialize with concurrent readahead() and 645 * we are safe from concurrency with r !! 673 * source range to serialize with relocation. 646 * because we have already locked the << 647 * mode. << 648 */ 674 */ 649 lock_extent(&BTRFS_I(dst)->io_tree, ds !! 675 btrfs_double_extent_lock(src, loff, dst, dst_loff, len); 650 ret = btrfs_clone(src, dst, loff, len, 676 ret = btrfs_clone(src, dst, loff, len, ALIGN(len, bs), dst_loff, 1); 651 unlock_extent(&BTRFS_I(dst)->io_tree, !! 677 btrfs_double_extent_unlock(src, loff, dst, dst_loff, len); 652 678 653 btrfs_btree_balance_dirty(fs_info); 679 btrfs_btree_balance_dirty(fs_info); 654 680 655 return ret; 681 return ret; 656 } 682 } 657 683 658 static int btrfs_extent_same(struct inode *src 684 static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen, 659 struct inode *dst 685 struct inode *dst, u64 dst_loff) 660 { 686 { 661 int ret = 0; 687 int ret = 0; 662 u64 i, tail_len, chunk_count; 688 u64 i, tail_len, chunk_count; 663 struct btrfs_root *root_dst = BTRFS_I( 689 struct btrfs_root *root_dst = BTRFS_I(dst)->root; 664 690 665 spin_lock(&root_dst->root_item_lock); 691 spin_lock(&root_dst->root_item_lock); 666 if (root_dst->send_in_progress) { 692 if (root_dst->send_in_progress) { 667 btrfs_warn_rl(root_dst->fs_inf 693 btrfs_warn_rl(root_dst->fs_info, 668 "cannot deduplicate to root %llu while send op 694 "cannot deduplicate to root %llu while send operations are using it (%d in progress)", 669 btrfs_root_id(ro !! 695 root_dst->root_key.objectid, 670 root_dst->send_i 696 root_dst->send_in_progress); 671 spin_unlock(&root_dst->root_it 697 spin_unlock(&root_dst->root_item_lock); 672 return -EAGAIN; 698 return -EAGAIN; 673 } 699 } 674 root_dst->dedupe_in_progress++; 700 root_dst->dedupe_in_progress++; 675 spin_unlock(&root_dst->root_item_lock) 701 spin_unlock(&root_dst->root_item_lock); 676 702 677 tail_len = olen % BTRFS_MAX_DEDUPE_LEN 703 tail_len = olen % BTRFS_MAX_DEDUPE_LEN; 678 chunk_count = div_u64(olen, BTRFS_MAX_ 704 chunk_count = div_u64(olen, BTRFS_MAX_DEDUPE_LEN); 679 705 680 for (i = 0; i < chunk_count; i++) { 706 for (i = 0; i < chunk_count; i++) { 681 ret = btrfs_extent_same_range( 707 ret = btrfs_extent_same_range(src, loff, BTRFS_MAX_DEDUPE_LEN, 682 708 dst, dst_loff); 683 if (ret) 709 if (ret) 684 goto out; 710 goto out; 685 711 686 loff += BTRFS_MAX_DEDUPE_LEN; 712 loff += BTRFS_MAX_DEDUPE_LEN; 687 dst_loff += BTRFS_MAX_DEDUPE_L 713 dst_loff += BTRFS_MAX_DEDUPE_LEN; 688 } 714 } 689 715 690 if (tail_len > 0) 716 if (tail_len > 0) 691 ret = btrfs_extent_same_range( 717 ret = btrfs_extent_same_range(src, loff, tail_len, dst, dst_loff); 692 out: 718 out: 693 spin_lock(&root_dst->root_item_lock); 719 spin_lock(&root_dst->root_item_lock); 694 root_dst->dedupe_in_progress--; 720 root_dst->dedupe_in_progress--; 695 spin_unlock(&root_dst->root_item_lock) 721 spin_unlock(&root_dst->root_item_lock); 696 722 697 return ret; 723 return ret; 698 } 724 } 699 725 700 static noinline int btrfs_clone_files(struct f 726 static noinline int btrfs_clone_files(struct file *file, struct file *file_src, 701 u64 of 727 u64 off, u64 olen, u64 destoff) 702 { 728 { 703 struct extent_state *cached_state = NU << 704 struct inode *inode = file_inode(file) 729 struct inode *inode = file_inode(file); 705 struct inode *src = file_inode(file_sr 730 struct inode *src = file_inode(file_src); 706 struct btrfs_fs_info *fs_info = inode_ !! 731 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 707 int ret; 732 int ret; 708 int wb_ret; 733 int wb_ret; 709 u64 len = olen; 734 u64 len = olen; 710 u64 bs = fs_info->sectorsize; !! 735 u64 bs = fs_info->sb->s_blocksize; 711 u64 end; << 712 736 713 /* 737 /* 714 * VFS's generic_remap_file_range_prep 738 * VFS's generic_remap_file_range_prep() protects us from cloning the 715 * eof block into the middle of a file 739 * eof block into the middle of a file, which would result in corruption 716 * if the file size is not blocksize a 740 * if the file size is not blocksize aligned. So we don't need to check 717 * for that case here. 741 * for that case here. 718 */ 742 */ 719 if (off + len == src->i_size) 743 if (off + len == src->i_size) 720 len = ALIGN(src->i_size, bs) - 744 len = ALIGN(src->i_size, bs) - off; 721 745 722 if (destoff > inode->i_size) { 746 if (destoff > inode->i_size) { 723 const u64 wb_start = ALIGN_DOW 747 const u64 wb_start = ALIGN_DOWN(inode->i_size, bs); 724 748 725 ret = btrfs_cont_expand(BTRFS_ 749 ret = btrfs_cont_expand(BTRFS_I(inode), inode->i_size, destoff); 726 if (ret) 750 if (ret) 727 return ret; 751 return ret; 728 /* 752 /* 729 * We may have truncated the l 753 * We may have truncated the last block if the inode's size is 730 * not sector size aligned, so 754 * not sector size aligned, so we need to wait for writeback to 731 * complete before proceeding 755 * complete before proceeding further, otherwise we can race 732 * with cloning and attempt to 756 * with cloning and attempt to increment a reference to an 733 * extent that no longer exist 757 * extent that no longer exists (writeback completed right after 734 * we found the previous exten 758 * we found the previous extent covering eof and before we 735 * attempted to increment its 759 * attempted to increment its reference count). 736 */ 760 */ 737 ret = btrfs_wait_ordered_range !! 761 ret = btrfs_wait_ordered_range(inode, wb_start, 738 762 destoff - wb_start); 739 if (ret) 763 if (ret) 740 return ret; 764 return ret; 741 } 765 } 742 766 743 /* 767 /* 744 * Lock destination range to serialize !! 768 * Lock destination range to serialize with concurrent readahead() and 745 * we are safe from concurrency with r !! 769 * source range to serialize with relocation. 746 * because we have already locked the << 747 * mode. << 748 */ 770 */ 749 end = destoff + len - 1; !! 771 btrfs_double_extent_lock(src, off, inode, destoff, len); 750 lock_extent(&BTRFS_I(inode)->io_tree, << 751 ret = btrfs_clone(src, inode, off, ole 772 ret = btrfs_clone(src, inode, off, olen, len, destoff, 0); 752 unlock_extent(&BTRFS_I(inode)->io_tree !! 773 btrfs_double_extent_unlock(src, off, inode, destoff, len); 753 774 754 /* 775 /* 755 * We may have copied an inline extent 776 * We may have copied an inline extent into a page of the destination 756 * range, so wait for writeback to com 777 * range, so wait for writeback to complete before truncating pages 757 * from the page cache. This is a rare 778 * from the page cache. This is a rare case. 758 */ 779 */ 759 wb_ret = btrfs_wait_ordered_range(BTRF !! 780 wb_ret = btrfs_wait_ordered_range(inode, destoff, len); 760 ret = ret ? ret : wb_ret; 781 ret = ret ? ret : wb_ret; 761 /* 782 /* 762 * Truncate page cache pages so that f 783 * Truncate page cache pages so that future reads will see the cloned 763 * data immediately and not the previo 784 * data immediately and not the previous data. 764 */ 785 */ 765 truncate_inode_pages_range(&inode->i_d 786 truncate_inode_pages_range(&inode->i_data, 766 round_down(des 787 round_down(destoff, PAGE_SIZE), 767 round_up(desto 788 round_up(destoff + len, PAGE_SIZE) - 1); 768 789 769 btrfs_btree_balance_dirty(fs_info); 790 btrfs_btree_balance_dirty(fs_info); 770 791 771 return ret; 792 return ret; 772 } 793 } 773 794 774 static int btrfs_remap_file_range_prep(struct 795 static int btrfs_remap_file_range_prep(struct file *file_in, loff_t pos_in, 775 struct 796 struct file *file_out, loff_t pos_out, 776 loff_t 797 loff_t *len, unsigned int remap_flags) 777 { 798 { 778 struct inode *inode_in = file_inode(fi 799 struct inode *inode_in = file_inode(file_in); 779 struct inode *inode_out = file_inode(f 800 struct inode *inode_out = file_inode(file_out); 780 u64 bs = BTRFS_I(inode_out)->root->fs_ !! 801 u64 bs = BTRFS_I(inode_out)->root->fs_info->sb->s_blocksize; 781 u64 wb_len; 802 u64 wb_len; 782 int ret; 803 int ret; 783 804 784 if (!(remap_flags & REMAP_FILE_DEDUP)) 805 if (!(remap_flags & REMAP_FILE_DEDUP)) { 785 struct btrfs_root *root_out = 806 struct btrfs_root *root_out = BTRFS_I(inode_out)->root; 786 807 787 if (btrfs_root_readonly(root_o 808 if (btrfs_root_readonly(root_out)) 788 return -EROFS; 809 return -EROFS; 789 810 790 ASSERT(inode_in->i_sb == inode 811 ASSERT(inode_in->i_sb == inode_out->i_sb); 791 } 812 } 792 813 793 /* Don't make the dst file partly chec 814 /* Don't make the dst file partly checksummed */ 794 if ((BTRFS_I(inode_in)->flags & BTRFS_ 815 if ((BTRFS_I(inode_in)->flags & BTRFS_INODE_NODATASUM) != 795 (BTRFS_I(inode_out)->flags & BTRFS 816 (BTRFS_I(inode_out)->flags & BTRFS_INODE_NODATASUM)) { 796 return -EINVAL; 817 return -EINVAL; 797 } 818 } 798 819 799 /* 820 /* 800 * Now that the inodes are locked, we 821 * Now that the inodes are locked, we need to start writeback ourselves 801 * and can not rely on the writeback f 822 * and can not rely on the writeback from the VFS's generic helper 802 * generic_remap_file_range_prep() bec 823 * generic_remap_file_range_prep() because: 803 * 824 * 804 * 1) For compression we must call fil 825 * 1) For compression we must call filemap_fdatawrite_range() range 805 * twice (btrfs_fdatawrite_range() 826 * twice (btrfs_fdatawrite_range() does it for us), and the generic 806 * helper only calls it once; 827 * helper only calls it once; 807 * 828 * 808 * 2) filemap_fdatawrite_range(), call 829 * 2) filemap_fdatawrite_range(), called by the generic helper only 809 * waits for the writeback to compl 830 * waits for the writeback to complete, i.e. for IO to be done, and 810 * not for the ordered extents to c 831 * not for the ordered extents to complete. We need to wait for them 811 * to complete so that new file ext 832 * to complete so that new file extent items are in the fs tree. 812 */ 833 */ 813 if (*len == 0 && !(remap_flags & REMAP 834 if (*len == 0 && !(remap_flags & REMAP_FILE_DEDUP)) 814 wb_len = ALIGN(inode_in->i_siz 835 wb_len = ALIGN(inode_in->i_size, bs) - ALIGN_DOWN(pos_in, bs); 815 else 836 else 816 wb_len = ALIGN(*len, bs); 837 wb_len = ALIGN(*len, bs); 817 838 818 /* 839 /* 819 * Workaround to make sure NOCOW buffe 840 * Workaround to make sure NOCOW buffered write reach disk as NOCOW. 820 * 841 * 821 * Btrfs' back references do not have 842 * Btrfs' back references do not have a block level granularity, they 822 * work at the whole extent level. 843 * work at the whole extent level. 823 * NOCOW buffered write without data s 844 * NOCOW buffered write without data space reserved may not be able 824 * to fall back to CoW due to lack of 845 * to fall back to CoW due to lack of data space, thus could cause 825 * data loss. 846 * data loss. 826 * 847 * 827 * Here we take a shortcut by flushing 848 * Here we take a shortcut by flushing the whole inode, so that all 828 * nocow write should reach disk as no 849 * nocow write should reach disk as nocow before we increase the 829 * reference of the extent. We could d 850 * reference of the extent. We could do better by only flushing NOCOW 830 * data, but that needs extra accounti 851 * data, but that needs extra accounting. 831 * 852 * 832 * Also we don't need to check ASYNC_E 853 * Also we don't need to check ASYNC_EXTENT, as async extent will be 833 * CoWed anyway, not affecting nocow p 854 * CoWed anyway, not affecting nocow part. 834 */ 855 */ 835 ret = filemap_flush(inode_in->i_mappin 856 ret = filemap_flush(inode_in->i_mapping); 836 if (ret < 0) 857 if (ret < 0) 837 return ret; 858 return ret; 838 859 839 ret = btrfs_wait_ordered_range(BTRFS_I !! 860 ret = btrfs_wait_ordered_range(inode_in, ALIGN_DOWN(pos_in, bs), 840 wb_len) 861 wb_len); 841 if (ret < 0) 862 if (ret < 0) 842 return ret; 863 return ret; 843 ret = btrfs_wait_ordered_range(BTRFS_I !! 864 ret = btrfs_wait_ordered_range(inode_out, ALIGN_DOWN(pos_out, bs), 844 wb_len) 865 wb_len); 845 if (ret < 0) 866 if (ret < 0) 846 return ret; 867 return ret; 847 868 848 return generic_remap_file_range_prep(f 869 return generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out, 849 le 870 len, remap_flags); 850 } 871 } 851 872 852 static bool file_sync_write(const struct file 873 static bool file_sync_write(const struct file *file) 853 { 874 { 854 if (file->f_flags & (__O_SYNC | O_DSYN 875 if (file->f_flags & (__O_SYNC | O_DSYNC)) 855 return true; 876 return true; 856 if (IS_SYNC(file_inode(file))) 877 if (IS_SYNC(file_inode(file))) 857 return true; 878 return true; 858 879 859 return false; 880 return false; 860 } 881 } 861 882 862 loff_t btrfs_remap_file_range(struct file *src 883 loff_t btrfs_remap_file_range(struct file *src_file, loff_t off, 863 struct file *dst_file, loff_t 884 struct file *dst_file, loff_t destoff, loff_t len, 864 unsigned int remap_flags) 885 unsigned int remap_flags) 865 { 886 { 866 struct inode *src_inode = file_inode(s 887 struct inode *src_inode = file_inode(src_file); 867 struct inode *dst_inode = file_inode(d 888 struct inode *dst_inode = file_inode(dst_file); 868 bool same_inode = dst_inode == src_ino 889 bool same_inode = dst_inode == src_inode; 869 int ret; 890 int ret; 870 891 871 if (remap_flags & ~(REMAP_FILE_DEDUP | 892 if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY)) 872 return -EINVAL; 893 return -EINVAL; 873 894 874 if (same_inode) { 895 if (same_inode) { 875 btrfs_inode_lock(BTRFS_I(src_i 896 btrfs_inode_lock(BTRFS_I(src_inode), BTRFS_ILOCK_MMAP); 876 } else { 897 } else { 877 lock_two_nondirectories(src_in 898 lock_two_nondirectories(src_inode, dst_inode); 878 btrfs_double_mmap_lock(src_ino 899 btrfs_double_mmap_lock(src_inode, dst_inode); 879 } 900 } 880 901 881 ret = btrfs_remap_file_range_prep(src_ 902 ret = btrfs_remap_file_range_prep(src_file, off, dst_file, destoff, 882 &len 903 &len, remap_flags); 883 if (ret < 0 || len == 0) 904 if (ret < 0 || len == 0) 884 goto out_unlock; 905 goto out_unlock; 885 906 886 if (remap_flags & REMAP_FILE_DEDUP) 907 if (remap_flags & REMAP_FILE_DEDUP) 887 ret = btrfs_extent_same(src_in 908 ret = btrfs_extent_same(src_inode, off, len, dst_inode, destoff); 888 else 909 else 889 ret = btrfs_clone_files(dst_fi 910 ret = btrfs_clone_files(dst_file, src_file, off, len, destoff); 890 911 891 out_unlock: 912 out_unlock: 892 if (same_inode) { 913 if (same_inode) { 893 btrfs_inode_unlock(BTRFS_I(src 914 btrfs_inode_unlock(BTRFS_I(src_inode), BTRFS_ILOCK_MMAP); 894 } else { 915 } else { 895 btrfs_double_mmap_unlock(src_i 916 btrfs_double_mmap_unlock(src_inode, dst_inode); 896 unlock_two_nondirectories(src_ 917 unlock_two_nondirectories(src_inode, dst_inode); 897 } 918 } 898 919 899 /* 920 /* 900 * If either the source or the destina 921 * If either the source or the destination file was opened with O_SYNC, 901 * O_DSYNC or has the S_SYNC attribute 922 * O_DSYNC or has the S_SYNC attribute, fsync both the destination and 902 * source files/ranges, so that after 923 * source files/ranges, so that after a successful return (0) followed 903 * by a power failure results in the r 924 * by a power failure results in the reflinked data to be readable from 904 * both files/ranges. 925 * both files/ranges. 905 */ 926 */ 906 if (ret == 0 && len > 0 && 927 if (ret == 0 && len > 0 && 907 (file_sync_write(src_file) || file 928 (file_sync_write(src_file) || file_sync_write(dst_file))) { 908 ret = btrfs_sync_file(src_file 929 ret = btrfs_sync_file(src_file, off, off + len - 1, 0); 909 if (ret == 0) 930 if (ret == 0) 910 ret = btrfs_sync_file( 931 ret = btrfs_sync_file(dst_file, destoff, 911 932 destoff + len - 1, 0); 912 } 933 } 913 934 914 return ret < 0 ? ret : len; 935 return ret < 0 ? ret : len; 915 } 936 } 916 937
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.