1 // SPDX-License-Identifier: GPL-2.0 << 2 /* 1 /* 3 * Copyright (C) 2007 Oracle. All rights rese 2 * Copyright (C) 2007 Oracle. All rights reserved. >> 3 * >> 4 * This program is free software; you can redistribute it and/or >> 5 * modify it under the terms of the GNU General Public >> 6 * License v2 as published by the Free Software Foundation. >> 7 * >> 8 * This program is distributed in the hope that it will be useful, >> 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of >> 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU >> 11 * General Public License for more details. >> 12 * >> 13 * You should have received a copy of the GNU General Public >> 14 * License along with this program; if not, write to the >> 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, >> 16 * Boston, MA 021110-1307, USA. 4 */ 17 */ 5 18 6 #include <linux/blkdev.h> 19 #include <linux/blkdev.h> 7 #include <linux/module.h> 20 #include <linux/module.h> >> 21 #include <linux/buffer_head.h> 8 #include <linux/fs.h> 22 #include <linux/fs.h> 9 #include <linux/pagemap.h> 23 #include <linux/pagemap.h> 10 #include <linux/highmem.h> 24 #include <linux/highmem.h> 11 #include <linux/time.h> 25 #include <linux/time.h> 12 #include <linux/init.h> 26 #include <linux/init.h> 13 #include <linux/seq_file.h> 27 #include <linux/seq_file.h> 14 #include <linux/string.h> 28 #include <linux/string.h> 15 #include <linux/backing-dev.h> 29 #include <linux/backing-dev.h> 16 #include <linux/mount.h> 30 #include <linux/mount.h> >> 31 #include <linux/mpage.h> >> 32 #include <linux/swap.h> 17 #include <linux/writeback.h> 33 #include <linux/writeback.h> 18 #include <linux/statfs.h> 34 #include <linux/statfs.h> 19 #include <linux/compat.h> 35 #include <linux/compat.h> 20 #include <linux/parser.h> 36 #include <linux/parser.h> 21 #include <linux/ctype.h> 37 #include <linux/ctype.h> 22 #include <linux/namei.h> 38 #include <linux/namei.h> 23 #include <linux/miscdevice.h> 39 #include <linux/miscdevice.h> 24 #include <linux/magic.h> 40 #include <linux/magic.h> 25 #include <linux/slab.h> 41 #include <linux/slab.h> >> 42 #include <linux/cleancache.h> 26 #include <linux/ratelimit.h> 43 #include <linux/ratelimit.h> 27 #include <linux/crc32c.h> << 28 #include <linux/btrfs.h> 44 #include <linux/btrfs.h> 29 #include <linux/security.h> << 30 #include <linux/fs_parser.h> << 31 #include <linux/swap.h> << 32 #include "messages.h" << 33 #include "delayed-inode.h" 45 #include "delayed-inode.h" 34 #include "ctree.h" 46 #include "ctree.h" 35 #include "disk-io.h" 47 #include "disk-io.h" 36 #include "transaction.h" 48 #include "transaction.h" 37 #include "btrfs_inode.h" 49 #include "btrfs_inode.h" 38 #include "direct-io.h" !! 50 #include "print-tree.h" >> 51 #include "hash.h" 39 #include "props.h" 52 #include "props.h" 40 #include "xattr.h" 53 #include "xattr.h" 41 #include "bio.h" !! 54 #include "volumes.h" 42 #include "export.h" 55 #include "export.h" 43 #include "compression.h" 56 #include "compression.h" >> 57 #include "rcu-string.h" 44 #include "dev-replace.h" 58 #include "dev-replace.h" 45 #include "free-space-cache.h" 59 #include "free-space-cache.h" 46 #include "backref.h" 60 #include "backref.h" 47 #include "space-info.h" << 48 #include "sysfs.h" << 49 #include "zoned.h" << 50 #include "tests/btrfs-tests.h" 61 #include "tests/btrfs-tests.h" 51 #include "block-group.h" !! 62 52 #include "discard.h" << 53 #include "qgroup.h" 63 #include "qgroup.h" 54 #include "raid56.h" << 55 #include "fs.h" << 56 #include "accessors.h" << 57 #include "defrag.h" << 58 #include "dir-item.h" << 59 #include "ioctl.h" << 60 #include "scrub.h" << 61 #include "verity.h" << 62 #include "super.h" << 63 #include "extent-tree.h" << 64 #define CREATE_TRACE_POINTS 64 #define CREATE_TRACE_POINTS 65 #include <trace/events/btrfs.h> 65 #include <trace/events/btrfs.h> 66 66 67 static const struct super_operations btrfs_sup 67 static const struct super_operations btrfs_super_ops; 68 static struct file_system_type btrfs_fs_type; 68 static struct file_system_type btrfs_fs_type; 69 69 70 static void btrfs_put_super(struct super_block !! 70 static int btrfs_remount(struct super_block *sb, int *flags, char *data); >> 71 >> 72 const char *btrfs_decode_error(int errno) 71 { 73 { 72 struct btrfs_fs_info *fs_info = btrfs_ !! 74 char *errstr = "unknown"; 73 75 74 btrfs_info(fs_info, "last unmount of f !! 76 switch (errno) { 75 close_ctree(fs_info); !! 77 case -EIO: >> 78 errstr = "IO failure"; >> 79 break; >> 80 case -ENOMEM: >> 81 errstr = "Out of memory"; >> 82 break; >> 83 case -EROFS: >> 84 errstr = "Readonly filesystem"; >> 85 break; >> 86 case -EEXIST: >> 87 errstr = "Object already exists"; >> 88 break; >> 89 case -ENOSPC: >> 90 errstr = "No space left"; >> 91 break; >> 92 case -ENOENT: >> 93 errstr = "No such entry"; >> 94 break; >> 95 } >> 96 >> 97 return errstr; 76 } 98 } 77 99 78 /* Store the mount options related information !! 100 /* btrfs handle error by forcing the filesystem readonly */ 79 struct btrfs_fs_context { !! 101 static void btrfs_handle_error(struct btrfs_fs_info *fs_info) 80 char *subvol_name; !! 102 { 81 u64 subvol_objectid; !! 103 struct super_block *sb = fs_info->sb; 82 u64 max_inline; << 83 u32 commit_interval; << 84 u32 metadata_ratio; << 85 u32 thread_pool_size; << 86 unsigned long long mount_opt; << 87 unsigned long compress_type:4; << 88 unsigned int compress_level; << 89 refcount_t refs; << 90 }; << 91 104 92 enum { !! 105 if (sb->s_flags & MS_RDONLY) 93 Opt_acl, !! 106 return; 94 Opt_clear_cache, << 95 Opt_commit_interval, << 96 Opt_compress, << 97 Opt_compress_force, << 98 Opt_compress_force_type, << 99 Opt_compress_type, << 100 Opt_degraded, << 101 Opt_device, << 102 Opt_fatal_errors, << 103 Opt_flushoncommit, << 104 Opt_max_inline, << 105 Opt_barrier, << 106 Opt_datacow, << 107 Opt_datasum, << 108 Opt_defrag, << 109 Opt_discard, << 110 Opt_discard_mode, << 111 Opt_ratio, << 112 Opt_rescan_uuid_tree, << 113 Opt_skip_balance, << 114 Opt_space_cache, << 115 Opt_space_cache_version, << 116 Opt_ssd, << 117 Opt_ssd_spread, << 118 Opt_subvol, << 119 Opt_subvol_empty, << 120 Opt_subvolid, << 121 Opt_thread_pool, << 122 Opt_treelog, << 123 Opt_user_subvol_rm_allowed, << 124 Opt_norecovery, << 125 << 126 /* Rescue options */ << 127 Opt_rescue, << 128 Opt_usebackuproot, << 129 Opt_nologreplay, << 130 107 131 /* Debugging options */ !! 108 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 132 Opt_enospc_debug, !! 109 sb->s_flags |= MS_RDONLY; 133 #ifdef CONFIG_BTRFS_DEBUG !! 110 btrfs_info(fs_info, "forced readonly"); 134 Opt_fragment, Opt_fragment_data, Opt_f !! 111 /* >> 112 * Note that a running device replace operation is not >> 113 * canceled here although there is no way to update >> 114 * the progress. It would add the risk of a deadlock, >> 115 * therefore the canceling is omitted. The only penalty >> 116 * is that some I/O remains active until the procedure >> 117 * completes. The next time when the filesystem is >> 118 * mounted writeable again, the device replace >> 119 * operation continues. >> 120 */ >> 121 } >> 122 } >> 123 >> 124 /* >> 125 * __btrfs_handle_fs_error decodes expected errors from the caller and >> 126 * invokes the approciate error response. >> 127 */ >> 128 __cold >> 129 void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function, >> 130 unsigned int line, int errno, const char *fmt, ...) >> 131 { >> 132 struct super_block *sb = fs_info->sb; >> 133 #ifdef CONFIG_PRINTK >> 134 const char *errstr; 135 #endif 135 #endif 136 #ifdef CONFIG_BTRFS_FS_REF_VERIFY !! 136 137 Opt_ref_verify, !! 137 /* >> 138 * Special case: if the error is EROFS, and we're already >> 139 * under MS_RDONLY, then it is safe here. >> 140 */ >> 141 if (errno == -EROFS && (sb->s_flags & MS_RDONLY)) >> 142 return; >> 143 >> 144 #ifdef CONFIG_PRINTK >> 145 errstr = btrfs_decode_error(errno); >> 146 if (fmt) { >> 147 struct va_format vaf; >> 148 va_list args; >> 149 >> 150 va_start(args, fmt); >> 151 vaf.fmt = fmt; >> 152 vaf.va = &args; >> 153 >> 154 pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n", >> 155 sb->s_id, function, line, errno, errstr, &vaf); >> 156 va_end(args); >> 157 } else { >> 158 pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s\n", >> 159 sb->s_id, function, line, errno, errstr); >> 160 } 138 #endif 161 #endif 139 Opt_err, << 140 }; << 141 162 142 enum { !! 163 /* 143 Opt_fatal_errors_panic, !! 164 * Today we only save the error info to memory. Long term we'll 144 Opt_fatal_errors_bug, !! 165 * also send it down to the disk 145 }; !! 166 */ >> 167 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); 146 168 147 static const struct constant_table btrfs_param !! 169 /* Don't go through full error handling during mount */ 148 { "panic", Opt_fatal_errors_panic }, !! 170 if (sb->s_flags & MS_BORN) 149 { "bug", Opt_fatal_errors_bug }, !! 171 btrfs_handle_error(fs_info); 150 {} !! 172 } >> 173 >> 174 #ifdef CONFIG_PRINTK >> 175 static const char * const logtypes[] = { >> 176 "emergency", >> 177 "alert", >> 178 "critical", >> 179 "error", >> 180 "warning", >> 181 "notice", >> 182 "info", >> 183 "debug", 151 }; 184 }; 152 185 153 enum { << 154 Opt_discard_sync, << 155 Opt_discard_async, << 156 }; << 157 186 158 static const struct constant_table btrfs_param !! 187 /* 159 { "sync", Opt_discard_sync }, !! 188 * Use one ratelimit state per log level so that a flood of less important 160 { "async", Opt_discard_async }, !! 189 * messages doesn't cause more important ones to be dropped. 161 {} !! 190 */ >> 191 static struct ratelimit_state printk_limits[] = { >> 192 RATELIMIT_STATE_INIT(printk_limits[0], DEFAULT_RATELIMIT_INTERVAL, 100), >> 193 RATELIMIT_STATE_INIT(printk_limits[1], DEFAULT_RATELIMIT_INTERVAL, 100), >> 194 RATELIMIT_STATE_INIT(printk_limits[2], DEFAULT_RATELIMIT_INTERVAL, 100), >> 195 RATELIMIT_STATE_INIT(printk_limits[3], DEFAULT_RATELIMIT_INTERVAL, 100), >> 196 RATELIMIT_STATE_INIT(printk_limits[4], DEFAULT_RATELIMIT_INTERVAL, 100), >> 197 RATELIMIT_STATE_INIT(printk_limits[5], DEFAULT_RATELIMIT_INTERVAL, 100), >> 198 RATELIMIT_STATE_INIT(printk_limits[6], DEFAULT_RATELIMIT_INTERVAL, 100), >> 199 RATELIMIT_STATE_INIT(printk_limits[7], DEFAULT_RATELIMIT_INTERVAL, 100), 162 }; 200 }; 163 201 164 enum { !! 202 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...) 165 Opt_space_cache_v1, !! 203 { 166 Opt_space_cache_v2, !! 204 struct super_block *sb = fs_info->sb; 167 }; !! 205 char lvl[PRINTK_MAX_SINGLE_HEADER_LEN + 1] = "\0"; >> 206 struct va_format vaf; >> 207 va_list args; >> 208 int kern_level; >> 209 const char *type = logtypes[4]; >> 210 struct ratelimit_state *ratelimit = &printk_limits[4]; 168 211 169 static const struct constant_table btrfs_param !! 212 va_start(args, fmt); 170 { "v1", Opt_space_cache_v1 }, << 171 { "v2", Opt_space_cache_v2 }, << 172 {} << 173 }; << 174 213 175 enum { !! 214 while ((kern_level = printk_get_level(fmt)) != 0) { 176 Opt_rescue_usebackuproot, !! 215 size_t size = printk_skip_level(fmt) - fmt; 177 Opt_rescue_nologreplay, << 178 Opt_rescue_ignorebadroots, << 179 Opt_rescue_ignoredatacsums, << 180 Opt_rescue_ignoremetacsums, << 181 Opt_rescue_ignoresuperflags, << 182 Opt_rescue_parameter_all, << 183 }; << 184 216 185 static const struct constant_table btrfs_param !! 217 if (kern_level >= '' && kern_level <= '7') { 186 { "usebackuproot", Opt_rescue_usebacku !! 218 memcpy(lvl, fmt, size); 187 { "nologreplay", Opt_rescue_nologrepla !! 219 lvl[size] = '\0'; 188 { "ignorebadroots", Opt_rescue_ignoreb !! 220 type = logtypes[kern_level - '']; 189 { "ibadroots", Opt_rescue_ignorebadroo !! 221 ratelimit = &printk_limits[kern_level - '']; 190 { "ignoredatacsums", Opt_rescue_ignore !! 222 } 191 { "ignoremetacsums", Opt_rescue_ignore !! 223 fmt += size; 192 { "ignoresuperflags", Opt_rescue_ignor !! 224 } 193 { "idatacsums", Opt_rescue_ignoredatac << 194 { "imetacsums", Opt_rescue_ignoremetac << 195 { "isuperflags", Opt_rescue_ignoresupe << 196 { "all", Opt_rescue_parameter_all }, << 197 {} << 198 }; << 199 225 200 #ifdef CONFIG_BTRFS_DEBUG !! 226 vaf.fmt = fmt; 201 enum { !! 227 vaf.va = &args; 202 Opt_fragment_parameter_data, << 203 Opt_fragment_parameter_metadata, << 204 Opt_fragment_parameter_all, << 205 }; << 206 228 207 static const struct constant_table btrfs_param !! 229 if (__ratelimit(ratelimit)) 208 { "data", Opt_fragment_parameter_data !! 230 printk("%sBTRFS %s (device %s): %pV\n", lvl, type, sb->s_id, &vaf); 209 { "metadata", Opt_fragment_parameter_m !! 231 210 { "all", Opt_fragment_parameter_all }, !! 232 va_end(args); 211 {} !! 233 } 212 }; << 213 #endif 234 #endif 214 235 215 static const struct fs_parameter_spec btrfs_fs !! 236 /* 216 fsparam_flag_no("acl", Opt_acl), !! 237 * We only mark the transaction aborted and then set the file system read-only. 217 fsparam_flag_no("autodefrag", Opt_defr !! 238 * This will prevent new transactions from starting or trying to join this 218 fsparam_flag_no("barrier", Opt_barrier !! 239 * one. 219 fsparam_flag("clear_cache", Opt_clear_ !! 240 * 220 fsparam_u32("commit", Opt_commit_inter !! 241 * This means that error recovery at the call site is limited to freeing 221 fsparam_flag("compress", Opt_compress) !! 242 * any local memory allocations and passing the error code up without 222 fsparam_string("compress", Opt_compres !! 243 * further cleanup. The transaction should complete as it normally would 223 fsparam_flag("compress-force", Opt_com !! 244 * in the call path but will return -EIO. 224 fsparam_string("compress-force", Opt_c !! 245 * 225 fsparam_flag_no("datacow", Opt_datacow !! 246 * We'll complete the cleanup in btrfs_end_transaction and 226 fsparam_flag_no("datasum", Opt_datasum !! 247 * btrfs_commit_transaction. 227 fsparam_flag("degraded", Opt_degraded) !! 248 */ 228 fsparam_string("device", Opt_device), !! 249 __cold 229 fsparam_flag_no("discard", Opt_discard !! 250 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans, 230 fsparam_enum("discard", Opt_discard_mo !! 251 const char *function, 231 fsparam_enum("fatal_errors", Opt_fatal !! 252 unsigned int line, int errno) 232 fsparam_flag_no("flushoncommit", Opt_f !! 253 { 233 fsparam_string("max_inline", Opt_max_i !! 254 struct btrfs_fs_info *fs_info = trans->fs_info; 234 fsparam_u32("metadata_ratio", Opt_rati !! 255 235 fsparam_flag("rescan_uuid_tree", Opt_r !! 256 trans->aborted = errno; 236 fsparam_flag("skip_balance", Opt_skip_ !! 257 /* Nothing used. The other threads that have joined this 237 fsparam_flag_no("space_cache", Opt_spa !! 258 * transaction may be able to continue. */ 238 fsparam_enum("space_cache", Opt_space_ !! 259 if (!trans->dirty && list_empty(&trans->new_bgs)) { 239 fsparam_flag_no("ssd", Opt_ssd), !! 260 const char *errstr; 240 fsparam_flag_no("ssd_spread", Opt_ssd_ !! 261 241 fsparam_string("subvol", Opt_subvol), !! 262 errstr = btrfs_decode_error(errno); 242 fsparam_flag("subvol=", Opt_subvol_emp !! 263 btrfs_warn(fs_info, 243 fsparam_u64("subvolid", Opt_subvolid), !! 264 "%s:%d: Aborting unused transaction(%s).", 244 fsparam_u32("thread_pool", Opt_thread_ !! 265 function, line, errstr); 245 fsparam_flag_no("treelog", Opt_treelog !! 266 return; 246 fsparam_flag("user_subvol_rm_allowed", !! 267 } 247 !! 268 WRITE_ONCE(trans->transaction->aborted, errno); 248 /* Rescue options. */ !! 269 /* Wake up anybody who may be waiting on this transaction */ 249 fsparam_enum("rescue", Opt_rescue, btr !! 270 wake_up(&fs_info->transaction_wait); 250 /* Deprecated, with alias rescue=nolog !! 271 wake_up(&fs_info->transaction_blocked_wait); 251 __fsparam(NULL, "nologreplay", Opt_nol !! 272 __btrfs_handle_fs_error(fs_info, function, line, errno, NULL); 252 /* Deprecated, with alias rescue=useba !! 273 } 253 __fsparam(NULL, "usebackuproot", Opt_u !! 274 /* 254 /* For compatibility only, alias for " !! 275 * __btrfs_panic decodes unexpected, fatal errors from the caller, 255 fsparam_flag("norecovery", Opt_norecov !! 276 * issues an alert, and either panics or BUGs, depending on mount options. >> 277 */ >> 278 __cold >> 279 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function, >> 280 unsigned int line, int errno, const char *fmt, ...) >> 281 { >> 282 char *s_id = "<unknown>"; >> 283 const char *errstr; >> 284 struct va_format vaf = { .fmt = fmt }; >> 285 va_list args; >> 286 >> 287 if (fs_info) >> 288 s_id = fs_info->sb->s_id; >> 289 >> 290 va_start(args, fmt); >> 291 vaf.va = &args; >> 292 >> 293 errstr = btrfs_decode_error(errno); >> 294 if (fs_info && (fs_info->mount_opt & BTRFS_MOUNT_PANIC_ON_FATAL_ERROR)) >> 295 panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n", >> 296 s_id, function, line, &vaf, errno, errstr); >> 297 >> 298 btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)", >> 299 function, line, &vaf, errno, errstr); >> 300 va_end(args); >> 301 /* Caller calls BUG() */ >> 302 } >> 303 >> 304 static void btrfs_put_super(struct super_block *sb) >> 305 { >> 306 close_ctree(btrfs_sb(sb)); >> 307 } 256 308 257 /* Debugging options. */ !! 309 enum { 258 fsparam_flag_no("enospc_debug", Opt_en !! 310 Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum, >> 311 Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd, >> 312 Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress, >> 313 Opt_compress_type, Opt_compress_force, Opt_compress_force_type, >> 314 Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard, >> 315 Opt_space_cache, Opt_space_cache_version, Opt_clear_cache, >> 316 Opt_user_subvol_rm_allowed, Opt_enospc_debug, Opt_subvolrootid, >> 317 Opt_defrag, Opt_inode_cache, Opt_no_space_cache, Opt_recovery, >> 318 Opt_skip_balance, Opt_check_integrity, >> 319 Opt_check_integrity_including_extent_data, >> 320 Opt_check_integrity_print_mask, Opt_fatal_errors, Opt_rescan_uuid_tree, >> 321 Opt_commit_interval, Opt_barrier, Opt_nodefrag, Opt_nodiscard, >> 322 Opt_noenospc_debug, Opt_noflushoncommit, Opt_acl, Opt_datacow, >> 323 Opt_datasum, Opt_treelog, Opt_noinode_cache, Opt_usebackuproot, >> 324 Opt_nologreplay, Opt_norecovery, 259 #ifdef CONFIG_BTRFS_DEBUG 325 #ifdef CONFIG_BTRFS_DEBUG 260 fsparam_enum("fragment", Opt_fragment, !! 326 Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all, 261 #endif 327 #endif 262 #ifdef CONFIG_BTRFS_FS_REF_VERIFY !! 328 Opt_err, 263 fsparam_flag("ref_verify", Opt_ref_ver !! 329 }; >> 330 >> 331 static const match_table_t tokens = { >> 332 {Opt_degraded, "degraded"}, >> 333 {Opt_subvol, "subvol=%s"}, >> 334 {Opt_subvolid, "subvolid=%s"}, >> 335 {Opt_device, "device=%s"}, >> 336 {Opt_nodatasum, "nodatasum"}, >> 337 {Opt_datasum, "datasum"}, >> 338 {Opt_nodatacow, "nodatacow"}, >> 339 {Opt_datacow, "datacow"}, >> 340 {Opt_nobarrier, "nobarrier"}, >> 341 {Opt_barrier, "barrier"}, >> 342 {Opt_max_inline, "max_inline=%s"}, >> 343 {Opt_alloc_start, "alloc_start=%s"}, >> 344 {Opt_thread_pool, "thread_pool=%d"}, >> 345 {Opt_compress, "compress"}, >> 346 {Opt_compress_type, "compress=%s"}, >> 347 {Opt_compress_force, "compress-force"}, >> 348 {Opt_compress_force_type, "compress-force=%s"}, >> 349 {Opt_ssd, "ssd"}, >> 350 {Opt_ssd_spread, "ssd_spread"}, >> 351 {Opt_nossd, "nossd"}, >> 352 {Opt_acl, "acl"}, >> 353 {Opt_noacl, "noacl"}, >> 354 {Opt_notreelog, "notreelog"}, >> 355 {Opt_treelog, "treelog"}, >> 356 {Opt_nologreplay, "nologreplay"}, >> 357 {Opt_norecovery, "norecovery"}, >> 358 {Opt_flushoncommit, "flushoncommit"}, >> 359 {Opt_noflushoncommit, "noflushoncommit"}, >> 360 {Opt_ratio, "metadata_ratio=%d"}, >> 361 {Opt_discard, "discard"}, >> 362 {Opt_nodiscard, "nodiscard"}, >> 363 {Opt_space_cache, "space_cache"}, >> 364 {Opt_space_cache_version, "space_cache=%s"}, >> 365 {Opt_clear_cache, "clear_cache"}, >> 366 {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"}, >> 367 {Opt_enospc_debug, "enospc_debug"}, >> 368 {Opt_noenospc_debug, "noenospc_debug"}, >> 369 {Opt_subvolrootid, "subvolrootid=%d"}, >> 370 {Opt_defrag, "autodefrag"}, >> 371 {Opt_nodefrag, "noautodefrag"}, >> 372 {Opt_inode_cache, "inode_cache"}, >> 373 {Opt_noinode_cache, "noinode_cache"}, >> 374 {Opt_no_space_cache, "nospace_cache"}, >> 375 {Opt_recovery, "recovery"}, /* deprecated */ >> 376 {Opt_usebackuproot, "usebackuproot"}, >> 377 {Opt_skip_balance, "skip_balance"}, >> 378 {Opt_check_integrity, "check_int"}, >> 379 {Opt_check_integrity_including_extent_data, "check_int_data"}, >> 380 {Opt_check_integrity_print_mask, "check_int_print_mask=%d"}, >> 381 {Opt_rescan_uuid_tree, "rescan_uuid_tree"}, >> 382 {Opt_fatal_errors, "fatal_errors=%s"}, >> 383 {Opt_commit_interval, "commit=%d"}, >> 384 #ifdef CONFIG_BTRFS_DEBUG >> 385 {Opt_fragment_data, "fragment=data"}, >> 386 {Opt_fragment_metadata, "fragment=metadata"}, >> 387 {Opt_fragment_all, "fragment=all"}, 264 #endif 388 #endif 265 {} !! 389 {Opt_err, NULL}, 266 }; 390 }; 267 391 268 /* No support for restricting writes to btrfs !! 392 /* 269 static inline blk_mode_t btrfs_open_mode(struc !! 393 * Regular mount options parser. Everything that is needed only when >> 394 * reading in a new superblock is parsed here. >> 395 * XXX JDM: This needs to be cleaned up for remount. >> 396 */ >> 397 int btrfs_parse_options(struct btrfs_fs_info *info, char *options, >> 398 unsigned long new_flags) 270 { 399 { 271 return sb_open_mode(fc->sb_flags) & ~B !! 400 substring_t args[MAX_OPT_ARGS]; 272 } !! 401 char *p, *num, *orig = NULL; >> 402 u64 cache_gen; >> 403 int intarg; >> 404 int ret = 0; >> 405 char *compress_type; >> 406 bool compress_force = false; >> 407 enum btrfs_compression_type saved_compress_type; >> 408 bool saved_compress_force; >> 409 int no_compress = 0; 273 410 274 static int btrfs_parse_param(struct fs_context !! 411 cache_gen = btrfs_super_cache_generation(info->super_copy); 275 { !! 412 if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE)) 276 struct btrfs_fs_context *ctx = fc->fs_ !! 413 btrfs_set_opt(info->mount_opt, FREE_SPACE_TREE); 277 struct fs_parse_result result; !! 414 else if (cache_gen) 278 int opt; !! 415 btrfs_set_opt(info->mount_opt, SPACE_CACHE); 279 416 280 opt = fs_parse(fc, btrfs_fs_parameters !! 417 /* 281 if (opt < 0) !! 418 * Even the options are empty, we still need to do extra check 282 return opt; !! 419 * against new flags >> 420 */ >> 421 if (!options) >> 422 goto check; 283 423 284 switch (opt) { !! 424 /* 285 case Opt_degraded: !! 425 * strsep changes the string, duplicate it because parse_options 286 btrfs_set_opt(ctx->mount_opt, !! 426 * gets called twice 287 break; !! 427 */ 288 case Opt_subvol_empty: !! 428 options = kstrdup(options, GFP_NOFS); 289 /* !! 429 if (!options) 290 * This exists because we used !! 430 return -ENOMEM; 291 * keeping it to maintain ABI. << 292 * empty subvol= again"). << 293 */ << 294 break; << 295 case Opt_subvol: << 296 kfree(ctx->subvol_name); << 297 ctx->subvol_name = kstrdup(par << 298 if (!ctx->subvol_name) << 299 return -ENOMEM; << 300 break; << 301 case Opt_subvolid: << 302 ctx->subvol_objectid = result. << 303 431 304 /* subvolid=0 means give me th !! 432 orig = options; 305 if (!ctx->subvol_objectid) << 306 ctx->subvol_objectid = << 307 break; << 308 case Opt_device: { << 309 struct btrfs_device *device; << 310 blk_mode_t mode = btrfs_open_m << 311 << 312 mutex_lock(&uuid_mutex); << 313 device = btrfs_scan_one_device << 314 mutex_unlock(&uuid_mutex); << 315 if (IS_ERR(device)) << 316 return PTR_ERR(device) << 317 break; << 318 } << 319 case Opt_datasum: << 320 if (result.negated) { << 321 btrfs_set_opt(ctx->mou << 322 } else { << 323 btrfs_clear_opt(ctx->m << 324 btrfs_clear_opt(ctx->m << 325 } << 326 break; << 327 case Opt_datacow: << 328 if (result.negated) { << 329 btrfs_clear_opt(ctx->m << 330 btrfs_clear_opt(ctx->m << 331 btrfs_set_opt(ctx->mou << 332 btrfs_set_opt(ctx->mou << 333 } else { << 334 btrfs_clear_opt(ctx->m << 335 } << 336 break; << 337 case Opt_compress_force: << 338 case Opt_compress_force_type: << 339 btrfs_set_opt(ctx->mount_opt, << 340 fallthrough; << 341 case Opt_compress: << 342 case Opt_compress_type: << 343 /* << 344 * Provide the same semantics << 345 * context, specifying the "co << 346 * "force-compress" without th << 347 * "compress-force=[no|none]" << 348 */ << 349 if (opt != Opt_compress_force << 350 btrfs_clear_opt(ctx->m << 351 433 352 if (opt == Opt_compress || opt !! 434 while ((p = strsep(&options, ",")) != NULL) { 353 ctx->compress_type = B !! 435 int token; 354 ctx->compress_level = !! 436 if (!*p) 355 btrfs_set_opt(ctx->mou !! 437 continue; 356 btrfs_clear_opt(ctx->m !! 438 357 btrfs_clear_opt(ctx->m !! 439 token = match_token(p, tokens, args); 358 } else if (strncmp(param->stri !! 440 switch (token) { 359 ctx->compress_type = B !! 441 case Opt_degraded: 360 ctx->compress_level = !! 442 btrfs_info(info, "allowing degraded mounts"); 361 btrfs_compress !! 443 btrfs_set_opt(info->mount_opt, DEGRADED); 362 !! 444 break; 363 btrfs_set_opt(ctx->mou !! 445 case Opt_subvol: 364 btrfs_clear_opt(ctx->m !! 446 case Opt_subvolid: 365 btrfs_clear_opt(ctx->m !! 447 case Opt_subvolrootid: 366 } else if (strncmp(param->stri !! 448 case Opt_device: 367 ctx->compress_type = B !! 449 /* 368 ctx->compress_level = !! 450 * These are parsed by btrfs_parse_early_options 369 btrfs_set_opt(ctx->mou !! 451 * and can be happily ignored here. 370 btrfs_clear_opt(ctx->m !! 452 */ 371 btrfs_clear_opt(ctx->m !! 453 break; 372 } else if (strncmp(param->stri !! 454 case Opt_nodatasum: 373 ctx->compress_type = B !! 455 btrfs_set_and_info(info, NODATASUM, 374 ctx->compress_level = !! 456 "setting nodatasum"); 375 btrfs_compress !! 457 break; 376 !! 458 case Opt_datasum: 377 btrfs_set_opt(ctx->mou !! 459 if (btrfs_test_opt(info, NODATASUM)) { 378 btrfs_clear_opt(ctx->m !! 460 if (btrfs_test_opt(info, NODATACOW)) 379 btrfs_clear_opt(ctx->m !! 461 btrfs_info(info, 380 } else if (strncmp(param->stri !! 462 "setting datasum, datacow enabled"); 381 ctx->compress_level = !! 463 else 382 ctx->compress_type = 0 !! 464 btrfs_info(info, "setting datasum"); 383 btrfs_clear_opt(ctx->m !! 465 } 384 btrfs_clear_opt(ctx->m !! 466 btrfs_clear_opt(info->mount_opt, NODATACOW); 385 } else { !! 467 btrfs_clear_opt(info->mount_opt, NODATASUM); 386 btrfs_err(NULL, "unrec !! 468 break; 387 param->strin !! 469 case Opt_nodatacow: 388 return -EINVAL; !! 470 if (!btrfs_test_opt(info, NODATACOW)) { 389 } !! 471 if (!btrfs_test_opt(info, COMPRESS) || 390 break; !! 472 !btrfs_test_opt(info, FORCE_COMPRESS)) { 391 case Opt_ssd: !! 473 btrfs_info(info, 392 if (result.negated) { !! 474 "setting nodatacow, compression disabled"); 393 btrfs_set_opt(ctx->mou !! 475 } else { 394 btrfs_clear_opt(ctx->m !! 476 btrfs_info(info, "setting nodatacow"); 395 btrfs_clear_opt(ctx->m !! 477 } 396 } else { !! 478 } 397 btrfs_set_opt(ctx->mou !! 479 btrfs_clear_opt(info->mount_opt, COMPRESS); 398 btrfs_clear_opt(ctx->m !! 480 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); 399 } !! 481 btrfs_set_opt(info->mount_opt, NODATACOW); 400 break; !! 482 btrfs_set_opt(info->mount_opt, NODATASUM); 401 case Opt_ssd_spread: !! 483 break; 402 if (result.negated) { !! 484 case Opt_datacow: 403 btrfs_clear_opt(ctx->m !! 485 btrfs_clear_and_info(info, NODATACOW, 404 } else { !! 486 "setting datacow"); 405 btrfs_set_opt(ctx->mou !! 487 break; 406 btrfs_set_opt(ctx->mou !! 488 case Opt_compress_force: 407 btrfs_clear_opt(ctx->m !! 489 case Opt_compress_force_type: 408 } !! 490 compress_force = true; 409 break; !! 491 /* Fallthrough */ 410 case Opt_barrier: !! 492 case Opt_compress: 411 if (result.negated) !! 493 case Opt_compress_type: 412 btrfs_set_opt(ctx->mou !! 494 saved_compress_type = btrfs_test_opt(info, 413 else !! 495 COMPRESS) ? 414 btrfs_clear_opt(ctx->m !! 496 info->compress_type : BTRFS_COMPRESS_NONE; 415 break; !! 497 saved_compress_force = 416 case Opt_thread_pool: !! 498 btrfs_test_opt(info, FORCE_COMPRESS); 417 if (result.uint_32 == 0) { !! 499 if (token == Opt_compress || 418 btrfs_err(NULL, "inval !! 500 token == Opt_compress_force || 419 return -EINVAL; !! 501 strcmp(args[0].from, "zlib") == 0) { 420 } !! 502 compress_type = "zlib"; 421 ctx->thread_pool_size = result !! 503 info->compress_type = BTRFS_COMPRESS_ZLIB; 422 break; !! 504 btrfs_set_opt(info->mount_opt, COMPRESS); 423 case Opt_max_inline: !! 505 btrfs_clear_opt(info->mount_opt, NODATACOW); 424 ctx->max_inline = memparse(par !! 506 btrfs_clear_opt(info->mount_opt, NODATASUM); 425 break; !! 507 no_compress = 0; 426 case Opt_acl: !! 508 } else if (strcmp(args[0].from, "lzo") == 0) { 427 if (result.negated) { !! 509 compress_type = "lzo"; 428 fc->sb_flags &= ~SB_PO !! 510 info->compress_type = BTRFS_COMPRESS_LZO; 429 } else { !! 511 btrfs_set_opt(info->mount_opt, COMPRESS); >> 512 btrfs_clear_opt(info->mount_opt, NODATACOW); >> 513 btrfs_clear_opt(info->mount_opt, NODATASUM); >> 514 btrfs_set_fs_incompat(info, COMPRESS_LZO); >> 515 no_compress = 0; >> 516 } else if (strncmp(args[0].from, "no", 2) == 0) { >> 517 compress_type = "no"; >> 518 btrfs_clear_opt(info->mount_opt, COMPRESS); >> 519 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); >> 520 compress_force = false; >> 521 no_compress++; >> 522 } else { >> 523 ret = -EINVAL; >> 524 goto out; >> 525 } >> 526 >> 527 if (compress_force) { >> 528 btrfs_set_opt(info->mount_opt, FORCE_COMPRESS); >> 529 } else { >> 530 /* >> 531 * If we remount from compress-force=xxx to >> 532 * compress=xxx, we need clear FORCE_COMPRESS >> 533 * flag, otherwise, there is no way for users >> 534 * to disable forcible compression separately. >> 535 */ >> 536 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); >> 537 } >> 538 if ((btrfs_test_opt(info, COMPRESS) && >> 539 (info->compress_type != saved_compress_type || >> 540 compress_force != saved_compress_force)) || >> 541 (!btrfs_test_opt(info, COMPRESS) && >> 542 no_compress == 1)) { >> 543 btrfs_info(info, "%s %s compression", >> 544 (compress_force) ? "force" : "use", >> 545 compress_type); >> 546 } >> 547 compress_force = false; >> 548 break; >> 549 case Opt_ssd: >> 550 btrfs_set_and_info(info, SSD, >> 551 "use ssd allocation scheme"); >> 552 btrfs_clear_opt(info->mount_opt, NOSSD); >> 553 break; >> 554 case Opt_ssd_spread: >> 555 btrfs_set_and_info(info, SSD_SPREAD, >> 556 "use spread ssd allocation scheme"); >> 557 btrfs_set_opt(info->mount_opt, SSD); >> 558 btrfs_clear_opt(info->mount_opt, NOSSD); >> 559 break; >> 560 case Opt_nossd: >> 561 btrfs_set_and_info(info, NOSSD, >> 562 "not using ssd allocation scheme"); >> 563 btrfs_clear_opt(info->mount_opt, SSD); >> 564 btrfs_clear_opt(info->mount_opt, SSD_SPREAD); >> 565 break; >> 566 case Opt_barrier: >> 567 btrfs_clear_and_info(info, NOBARRIER, >> 568 "turning on barriers"); >> 569 break; >> 570 case Opt_nobarrier: >> 571 btrfs_set_and_info(info, NOBARRIER, >> 572 "turning off barriers"); >> 573 break; >> 574 case Opt_thread_pool: >> 575 ret = match_int(&args[0], &intarg); >> 576 if (ret) { >> 577 goto out; >> 578 } else if (intarg > 0) { >> 579 info->thread_pool_size = intarg; >> 580 } else { >> 581 ret = -EINVAL; >> 582 goto out; >> 583 } >> 584 break; >> 585 case Opt_max_inline: >> 586 num = match_strdup(&args[0]); >> 587 if (num) { >> 588 info->max_inline = memparse(num, NULL); >> 589 kfree(num); >> 590 >> 591 if (info->max_inline) { >> 592 info->max_inline = min_t(u64, >> 593 info->max_inline, >> 594 info->sectorsize); >> 595 } >> 596 btrfs_info(info, "max_inline at %llu", >> 597 info->max_inline); >> 598 } else { >> 599 ret = -ENOMEM; >> 600 goto out; >> 601 } >> 602 break; >> 603 case Opt_alloc_start: >> 604 num = match_strdup(&args[0]); >> 605 if (num) { >> 606 mutex_lock(&info->chunk_mutex); >> 607 info->alloc_start = memparse(num, NULL); >> 608 mutex_unlock(&info->chunk_mutex); >> 609 kfree(num); >> 610 btrfs_info(info, "allocations start at %llu", >> 611 info->alloc_start); >> 612 } else { >> 613 ret = -ENOMEM; >> 614 goto out; >> 615 } >> 616 break; >> 617 case Opt_acl: 430 #ifdef CONFIG_BTRFS_FS_POSIX_ACL 618 #ifdef CONFIG_BTRFS_FS_POSIX_ACL 431 fc->sb_flags |= SB_POS !! 619 info->sb->s_flags |= MS_POSIXACL; >> 620 break; 432 #else 621 #else 433 btrfs_err(NULL, "suppo !! 622 btrfs_err(info, "support for ACL not compiled in!"); 434 return -EINVAL; !! 623 ret = -EINVAL; >> 624 goto out; 435 #endif 625 #endif 436 } !! 626 case Opt_noacl: 437 /* !! 627 info->sb->s_flags &= ~MS_POSIXACL; 438 * VFS limits the ability to t << 439 * despite every file system a << 440 * an oversight since we all d << 441 * remounting. So don't set t << 442 * btrfs_reconfigure and do th << 443 */ << 444 if (fc->purpose != FS_CONTEXT_ << 445 fc->sb_flags_mask |= S << 446 break; << 447 case Opt_treelog: << 448 if (result.negated) << 449 btrfs_set_opt(ctx->mou << 450 else << 451 btrfs_clear_opt(ctx->m << 452 break; << 453 case Opt_nologreplay: << 454 btrfs_warn(NULL, << 455 "'nologreplay' is deprecated, << 456 btrfs_set_opt(ctx->mount_opt, << 457 break; << 458 case Opt_norecovery: << 459 btrfs_info(NULL, << 460 "'norecovery' is for compatibility only, recom << 461 btrfs_set_opt(ctx->mount_opt, << 462 break; << 463 case Opt_flushoncommit: << 464 if (result.negated) << 465 btrfs_clear_opt(ctx->m << 466 else << 467 btrfs_set_opt(ctx->mou << 468 break; << 469 case Opt_ratio: << 470 ctx->metadata_ratio = result.u << 471 break; << 472 case Opt_discard: << 473 if (result.negated) { << 474 btrfs_clear_opt(ctx->m << 475 btrfs_clear_opt(ctx->m << 476 btrfs_set_opt(ctx->mou << 477 } else { << 478 btrfs_set_opt(ctx->mou << 479 btrfs_clear_opt(ctx->m << 480 } << 481 break; << 482 case Opt_discard_mode: << 483 switch (result.uint_32) { << 484 case Opt_discard_sync: << 485 btrfs_clear_opt(ctx->m << 486 btrfs_set_opt(ctx->mou << 487 break; << 488 case Opt_discard_async: << 489 btrfs_clear_opt(ctx->m << 490 btrfs_set_opt(ctx->mou << 491 break; 628 break; 492 default: !! 629 case Opt_notreelog: 493 btrfs_err(NULL, "unrec !! 630 btrfs_set_and_info(info, NOTREELOG, 494 param->key); !! 631 "disabling tree log"); 495 return -EINVAL; << 496 } << 497 btrfs_clear_opt(ctx->mount_opt << 498 break; << 499 case Opt_space_cache: << 500 if (result.negated) { << 501 btrfs_set_opt(ctx->mou << 502 btrfs_clear_opt(ctx->m << 503 btrfs_clear_opt(ctx->m << 504 } else { << 505 btrfs_clear_opt(ctx->m << 506 btrfs_set_opt(ctx->mou << 507 } << 508 break; << 509 case Opt_space_cache_version: << 510 switch (result.uint_32) { << 511 case Opt_space_cache_v1: << 512 btrfs_set_opt(ctx->mou << 513 btrfs_clear_opt(ctx->m << 514 break; << 515 case Opt_space_cache_v2: << 516 btrfs_clear_opt(ctx->m << 517 btrfs_set_opt(ctx->mou << 518 break; 632 break; 519 default: !! 633 case Opt_treelog: 520 btrfs_err(NULL, "unrec !! 634 btrfs_clear_and_info(info, NOTREELOG, 521 param->key); !! 635 "enabling tree log"); 522 return -EINVAL; << 523 } << 524 break; << 525 case Opt_rescan_uuid_tree: << 526 btrfs_set_opt(ctx->mount_opt, << 527 break; << 528 case Opt_clear_cache: << 529 btrfs_set_opt(ctx->mount_opt, << 530 break; << 531 case Opt_user_subvol_rm_allowed: << 532 btrfs_set_opt(ctx->mount_opt, << 533 break; << 534 case Opt_enospc_debug: << 535 if (result.negated) << 536 btrfs_clear_opt(ctx->m << 537 else << 538 btrfs_set_opt(ctx->mou << 539 break; << 540 case Opt_defrag: << 541 if (result.negated) << 542 btrfs_clear_opt(ctx->m << 543 else << 544 btrfs_set_opt(ctx->mou << 545 break; << 546 case Opt_usebackuproot: << 547 btrfs_warn(NULL, << 548 "'usebackuproot' is << 549 btrfs_set_opt(ctx->mount_opt, << 550 << 551 /* If we're loading the backup << 552 btrfs_set_opt(ctx->mount_opt, << 553 break; << 554 case Opt_skip_balance: << 555 btrfs_set_opt(ctx->mount_opt, << 556 break; << 557 case Opt_fatal_errors: << 558 switch (result.uint_32) { << 559 case Opt_fatal_errors_panic: << 560 btrfs_set_opt(ctx->mou << 561 break; 636 break; 562 case Opt_fatal_errors_bug: !! 637 case Opt_norecovery: 563 btrfs_clear_opt(ctx->m !! 638 case Opt_nologreplay: >> 639 btrfs_set_and_info(info, NOLOGREPLAY, >> 640 "disabling log replay at mount time"); 564 break; 641 break; 565 default: !! 642 case Opt_flushoncommit: 566 btrfs_err(NULL, "unrec !! 643 btrfs_set_and_info(info, FLUSHONCOMMIT, 567 param->key); !! 644 "turning on flush-on-commit"); 568 return -EINVAL; !! 645 break; 569 } !! 646 case Opt_noflushoncommit: 570 break; !! 647 btrfs_clear_and_info(info, FLUSHONCOMMIT, 571 case Opt_commit_interval: !! 648 "turning off flush-on-commit"); 572 ctx->commit_interval = result. !! 649 break; 573 if (ctx->commit_interval == 0) !! 650 case Opt_ratio: 574 ctx->commit_interval = !! 651 ret = match_int(&args[0], &intarg); 575 break; !! 652 if (ret) { 576 case Opt_rescue: !! 653 goto out; 577 switch (result.uint_32) { !! 654 } else if (intarg >= 0) { 578 case Opt_rescue_usebackuproot: !! 655 info->metadata_ratio = intarg; 579 btrfs_set_opt(ctx->mou !! 656 btrfs_info(info, "metadata ratio %d", 580 break; !! 657 info->metadata_ratio); 581 case Opt_rescue_nologreplay: !! 658 } else { 582 btrfs_set_opt(ctx->mou !! 659 ret = -EINVAL; 583 break; !! 660 goto out; 584 case Opt_rescue_ignorebadroots !! 661 } 585 btrfs_set_opt(ctx->mou !! 662 break; 586 break; !! 663 case Opt_discard: 587 case Opt_rescue_ignoredatacsum !! 664 btrfs_set_and_info(info, DISCARD, 588 btrfs_set_opt(ctx->mou !! 665 "turning on discard"); 589 break; !! 666 break; 590 case Opt_rescue_ignoremetacsum !! 667 case Opt_nodiscard: 591 btrfs_set_opt(ctx->mou !! 668 btrfs_clear_and_info(info, DISCARD, 592 break; !! 669 "turning off discard"); 593 case Opt_rescue_ignoresuperfla !! 670 break; 594 btrfs_set_opt(ctx->mou !! 671 case Opt_space_cache: 595 break; !! 672 case Opt_space_cache_version: 596 case Opt_rescue_parameter_all: !! 673 if (token == Opt_space_cache || 597 btrfs_set_opt(ctx->mou !! 674 strcmp(args[0].from, "v1") == 0) { 598 btrfs_set_opt(ctx->mou !! 675 btrfs_clear_opt(info->mount_opt, 599 btrfs_set_opt(ctx->mou !! 676 FREE_SPACE_TREE); 600 btrfs_set_opt(ctx->mou !! 677 btrfs_set_and_info(info, SPACE_CACHE, 601 btrfs_set_opt(ctx->mou !! 678 "enabling disk space caching"); >> 679 } else if (strcmp(args[0].from, "v2") == 0) { >> 680 btrfs_clear_opt(info->mount_opt, >> 681 SPACE_CACHE); >> 682 btrfs_set_and_info(info, FREE_SPACE_TREE, >> 683 "enabling free space tree"); >> 684 } else { >> 685 ret = -EINVAL; >> 686 goto out; >> 687 } >> 688 break; >> 689 case Opt_rescan_uuid_tree: >> 690 btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE); >> 691 break; >> 692 case Opt_no_space_cache: >> 693 if (btrfs_test_opt(info, SPACE_CACHE)) { >> 694 btrfs_clear_and_info(info, SPACE_CACHE, >> 695 "disabling disk space caching"); >> 696 } >> 697 if (btrfs_test_opt(info, FREE_SPACE_TREE)) { >> 698 btrfs_clear_and_info(info, FREE_SPACE_TREE, >> 699 "disabling free space tree"); >> 700 } >> 701 break; >> 702 case Opt_inode_cache: >> 703 btrfs_set_pending_and_info(info, INODE_MAP_CACHE, >> 704 "enabling inode map caching"); >> 705 break; >> 706 case Opt_noinode_cache: >> 707 btrfs_clear_pending_and_info(info, INODE_MAP_CACHE, >> 708 "disabling inode map caching"); >> 709 break; >> 710 case Opt_clear_cache: >> 711 btrfs_set_and_info(info, CLEAR_CACHE, >> 712 "force clearing of disk cache"); >> 713 break; >> 714 case Opt_user_subvol_rm_allowed: >> 715 btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED); >> 716 break; >> 717 case Opt_enospc_debug: >> 718 btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG); >> 719 break; >> 720 case Opt_noenospc_debug: >> 721 btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG); >> 722 break; >> 723 case Opt_defrag: >> 724 btrfs_set_and_info(info, AUTO_DEFRAG, >> 725 "enabling auto defrag"); >> 726 break; >> 727 case Opt_nodefrag: >> 728 btrfs_clear_and_info(info, AUTO_DEFRAG, >> 729 "disabling auto defrag"); >> 730 break; >> 731 case Opt_recovery: >> 732 btrfs_warn(info, >> 733 "'recovery' is deprecated, use 'usebackuproot' instead"); >> 734 case Opt_usebackuproot: >> 735 btrfs_info(info, >> 736 "trying to use backup root at mount time"); >> 737 btrfs_set_opt(info->mount_opt, USEBACKUPROOT); >> 738 break; >> 739 case Opt_skip_balance: >> 740 btrfs_set_opt(info->mount_opt, SKIP_BALANCE); >> 741 break; >> 742 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY >> 743 case Opt_check_integrity_including_extent_data: >> 744 btrfs_info(info, >> 745 "enabling check integrity including extent data"); >> 746 btrfs_set_opt(info->mount_opt, >> 747 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA); >> 748 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY); >> 749 break; >> 750 case Opt_check_integrity: >> 751 btrfs_info(info, "enabling check integrity"); >> 752 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY); >> 753 break; >> 754 case Opt_check_integrity_print_mask: >> 755 ret = match_int(&args[0], &intarg); >> 756 if (ret) { >> 757 goto out; >> 758 } else if (intarg >= 0) { >> 759 info->check_integrity_print_mask = intarg; >> 760 btrfs_info(info, >> 761 "check_integrity_print_mask 0x%x", >> 762 info->check_integrity_print_mask); >> 763 } else { >> 764 ret = -EINVAL; >> 765 goto out; >> 766 } >> 767 break; >> 768 #else >> 769 case Opt_check_integrity_including_extent_data: >> 770 case Opt_check_integrity: >> 771 case Opt_check_integrity_print_mask: >> 772 btrfs_err(info, >> 773 "support for check_integrity* not compiled in!"); >> 774 ret = -EINVAL; >> 775 goto out; >> 776 #endif >> 777 case Opt_fatal_errors: >> 778 if (strcmp(args[0].from, "panic") == 0) >> 779 btrfs_set_opt(info->mount_opt, >> 780 PANIC_ON_FATAL_ERROR); >> 781 else if (strcmp(args[0].from, "bug") == 0) >> 782 btrfs_clear_opt(info->mount_opt, >> 783 PANIC_ON_FATAL_ERROR); >> 784 else { >> 785 ret = -EINVAL; >> 786 goto out; >> 787 } >> 788 break; >> 789 case Opt_commit_interval: >> 790 intarg = 0; >> 791 ret = match_int(&args[0], &intarg); >> 792 if (ret < 0) { >> 793 btrfs_err(info, "invalid commit interval"); >> 794 ret = -EINVAL; >> 795 goto out; >> 796 } >> 797 if (intarg > 0) { >> 798 if (intarg > 300) { >> 799 btrfs_warn(info, >> 800 "excessive commit interval %d", >> 801 intarg); >> 802 } >> 803 info->commit_interval = intarg; >> 804 } else { >> 805 btrfs_info(info, >> 806 "using default commit interval %ds", >> 807 BTRFS_DEFAULT_COMMIT_INTERVAL); >> 808 info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; >> 809 } 602 break; 810 break; 603 default: << 604 btrfs_info(NULL, "unre << 605 param->key) << 606 return -EINVAL; << 607 } << 608 break; << 609 #ifdef CONFIG_BTRFS_DEBUG 811 #ifdef CONFIG_BTRFS_DEBUG 610 case Opt_fragment: !! 812 case Opt_fragment_all: 611 switch (result.uint_32) { !! 813 btrfs_info(info, "fragmenting all space"); 612 case Opt_fragment_parameter_al !! 814 btrfs_set_opt(info->mount_opt, FRAGMENT_DATA); 613 btrfs_set_opt(ctx->mou !! 815 btrfs_set_opt(info->mount_opt, FRAGMENT_METADATA); 614 btrfs_set_opt(ctx->mou << 615 break; 816 break; 616 case Opt_fragment_parameter_me !! 817 case Opt_fragment_metadata: 617 btrfs_set_opt(ctx->mou !! 818 btrfs_info(info, "fragmenting metadata"); >> 819 btrfs_set_opt(info->mount_opt, >> 820 FRAGMENT_METADATA); 618 break; 821 break; 619 case Opt_fragment_parameter_da !! 822 case Opt_fragment_data: 620 btrfs_set_opt(ctx->mou !! 823 btrfs_info(info, "fragmenting data"); >> 824 btrfs_set_opt(info->mount_opt, FRAGMENT_DATA); 621 break; 825 break; >> 826 #endif >> 827 case Opt_err: >> 828 btrfs_info(info, "unrecognized mount option '%s'", p); >> 829 ret = -EINVAL; >> 830 goto out; 622 default: 831 default: 623 btrfs_info(NULL, "unre !! 832 break; 624 param->key) << 625 return -EINVAL; << 626 } 833 } 627 break; << 628 #endif << 629 #ifdef CONFIG_BTRFS_FS_REF_VERIFY << 630 case Opt_ref_verify: << 631 btrfs_set_opt(ctx->mount_opt, << 632 break; << 633 #endif << 634 default: << 635 btrfs_err(NULL, "unrecognized << 636 return -EINVAL; << 637 } 834 } 638 !! 835 check: 639 return 0; !! 836 /* 640 } !! 837 * Extra check for current option against current flag 641 !! 838 */ 642 /* !! 839 if (btrfs_test_opt(info, NOLOGREPLAY) && !(new_flags & MS_RDONLY)) { 643 * Some options only have meaning at mount tim !! 840 btrfs_err(info, 644 * remounts, or be displayed. Clear these at t !! 841 "nologreplay must be used with ro mount option"); 645 * paths. !! 842 ret = -EINVAL; 646 */ << 647 static void btrfs_clear_oneshot_options(struct << 648 { << 649 btrfs_clear_opt(fs_info->mount_opt, US << 650 btrfs_clear_opt(fs_info->mount_opt, CL << 651 btrfs_clear_opt(fs_info->mount_opt, NO << 652 } << 653 << 654 static bool check_ro_option(const struct btrfs << 655 unsigned long long << 656 const char *opt_na << 657 { << 658 if (mount_opt & opt) { << 659 btrfs_err(fs_info, "%s must be << 660 opt_name); << 661 return true; << 662 } 843 } 663 return false; !! 844 out: 664 } << 665 << 666 bool btrfs_check_options(const struct btrfs_fs << 667 unsigned long long *m << 668 unsigned long flags) << 669 { << 670 bool ret = true; << 671 << 672 if (!(flags & SB_RDONLY) && << 673 (check_ro_option(info, *mount_opt, << 674 check_ro_option(info, *mount_opt, << 675 check_ro_option(info, *mount_opt, << 676 check_ro_option(info, *mount_opt, << 677 check_ro_option(info, *mount_opt, << 678 ret = false; << 679 << 680 if (btrfs_fs_compat_ro(info, FREE_SPAC 845 if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) && 681 !btrfs_raw_test_opt(*mount_opt, FR !! 846 !btrfs_test_opt(info, FREE_SPACE_TREE) && 682 !btrfs_raw_test_opt(*mount_opt, CL !! 847 !btrfs_test_opt(info, CLEAR_CACHE)) { 683 btrfs_err(info, "cannot disabl !! 848 btrfs_err(info, "cannot disable free space tree"); 684 ret = false; !! 849 ret = -EINVAL; 685 } << 686 if (btrfs_fs_compat_ro(info, BLOCK_GRO << 687 !btrfs_raw_test_opt(*mount_opt, F << 688 btrfs_err(info, "cannot disabl << 689 ret = false; << 690 } << 691 << 692 if (btrfs_check_mountopts_zoned(info, << 693 ret = false; << 694 << 695 if (!test_bit(BTRFS_FS_STATE_REMOUNTIN << 696 if (btrfs_raw_test_opt(*mount_ << 697 btrfs_info(info, "disk << 698 btrfs_warn(info, << 699 "space cache v1 is being deprecated and will b << 700 } << 701 if (btrfs_raw_test_opt(*mount_ << 702 btrfs_info(info, "usin << 703 } << 704 850 >> 851 } >> 852 if (!ret && btrfs_test_opt(info, SPACE_CACHE)) >> 853 btrfs_info(info, "disk space caching is enabled"); >> 854 if (!ret && btrfs_test_opt(info, FREE_SPACE_TREE)) >> 855 btrfs_info(info, "using free space tree"); >> 856 kfree(orig); 705 return ret; 857 return ret; 706 } 858 } 707 859 708 /* 860 /* 709 * This is subtle, we only call this during op !! 861 * Parse mount options that are required early in the mount process. 710 * the mount options with the on-disk settings << 711 * effect we would do this on mount and remoun << 712 * only do this on the initial mount. << 713 * 862 * 714 * This isn't a change in behavior, because we !! 863 * All other options will be parsed on much later in the mount process and 715 * file system to set the current mount option !! 864 * only when we need to allocate a new super block. 716 * options to disable these features and then << 717 * settings, because mounting without these fe << 718 * settings, so this being called on re-mount << 719 */ 865 */ 720 void btrfs_set_free_space_cache_settings(struc !! 866 static int btrfs_parse_early_options(const char *options, fmode_t flags, 721 { !! 867 void *holder, char **subvol_name, u64 *subvol_objectid, 722 if (fs_info->sectorsize < PAGE_SIZE) { !! 868 struct btrfs_fs_devices **fs_devices) 723 btrfs_clear_opt(fs_info->mount !! 869 { 724 if (!btrfs_test_opt(fs_info, F !! 870 substring_t args[MAX_OPT_ARGS]; 725 btrfs_info(fs_info, !! 871 char *device_name, *opts, *orig, *p; 726 "forcing fr !! 872 char *num = NULL; 727 fs_info->se !! 873 int error = 0; 728 btrfs_set_opt(fs_info- << 729 } << 730 } << 731 << 732 /* << 733 * At this point our mount options are << 734 * these settings if we don't have any << 735 */ << 736 if (btrfs_test_opt(fs_info, FREE_SPACE << 737 return; << 738 << 739 if (btrfs_is_zoned(fs_info) && << 740 btrfs_free_space_cache_v1_active(f << 741 btrfs_info(fs_info, "zoned: cl << 742 btrfs_set_super_cache_generati << 743 return; << 744 } << 745 << 746 if (btrfs_test_opt(fs_info, SPACE_CACH << 747 return; << 748 874 749 if (btrfs_test_opt(fs_info, NOSPACECAC !! 875 if (!options) 750 return; !! 876 return 0; 751 877 752 /* 878 /* 753 * At this point we don't have explici !! 879 * strsep changes the string, duplicate it because parse_options 754 * them ourselves based on the state o !! 880 * gets called twice 755 */ 881 */ 756 if (btrfs_fs_compat_ro(fs_info, FREE_S !! 882 opts = kstrdup(options, GFP_KERNEL); 757 btrfs_set_opt(fs_info->mount_o !! 883 if (!opts) 758 else if (btrfs_free_space_cache_v1_act !! 884 return -ENOMEM; 759 btrfs_set_opt(fs_info->mount_o !! 885 orig = opts; 760 } << 761 886 762 static void set_device_specific_options(struct !! 887 while ((p = strsep(&opts, ",")) != NULL) { 763 { !! 888 int token; 764 if (!btrfs_test_opt(fs_info, NOSSD) && !! 889 if (!*p) 765 !fs_info->fs_devices->rotating) !! 890 continue; 766 btrfs_set_opt(fs_info->mount_o << 767 891 768 /* !! 892 token = match_token(p, tokens, args); 769 * For devices supporting discard turn !! 893 switch (token) { 770 * unless it's already set or disabled !! 894 case Opt_subvol: 771 * nodiscard for the same mount. !! 895 kfree(*subvol_name); 772 * !! 896 *subvol_name = match_strdup(&args[0]); 773 * The zoned mode piggy backs on the d !! 897 if (!*subvol_name) { 774 * resetting a zone. There is no reaso !! 898 error = -ENOMEM; 775 * fast enough. So, do not enable asyn !! 899 goto out; 776 */ !! 900 } 777 if (!(btrfs_test_opt(fs_info, DISCARD_ !! 901 break; 778 btrfs_test_opt(fs_info, DISCARD_ !! 902 case Opt_subvolid: 779 btrfs_test_opt(fs_info, NODISCAR !! 903 num = match_strdup(&args[0]); 780 fs_info->fs_devices->discardable & !! 904 if (num) { 781 !btrfs_is_zoned(fs_info)) !! 905 *subvol_objectid = memparse(num, NULL); 782 btrfs_set_opt(fs_info->mount_o !! 906 kfree(num); >> 907 /* we want the original fs_tree */ >> 908 if (!*subvol_objectid) >> 909 *subvol_objectid = >> 910 BTRFS_FS_TREE_OBJECTID; >> 911 } else { >> 912 error = -EINVAL; >> 913 goto out; >> 914 } >> 915 break; >> 916 case Opt_subvolrootid: >> 917 pr_warn("BTRFS: 'subvolrootid' mount option is deprecated and has no effect\n"); >> 918 break; >> 919 case Opt_device: >> 920 device_name = match_strdup(&args[0]); >> 921 if (!device_name) { >> 922 error = -ENOMEM; >> 923 goto out; >> 924 } >> 925 error = btrfs_scan_one_device(device_name, >> 926 flags, holder, fs_devices); >> 927 kfree(device_name); >> 928 if (error) >> 929 goto out; >> 930 break; >> 931 default: >> 932 break; >> 933 } >> 934 } >> 935 >> 936 out: >> 937 kfree(orig); >> 938 return error; 783 } 939 } 784 940 785 char *btrfs_get_subvol_name_from_objectid(stru !! 941 static char *get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info, 786 u64 !! 942 u64 subvol_objectid) 787 { 943 { 788 struct btrfs_root *root = fs_info->tre 944 struct btrfs_root *root = fs_info->tree_root; 789 struct btrfs_root *fs_root = NULL; !! 945 struct btrfs_root *fs_root; 790 struct btrfs_root_ref *root_ref; 946 struct btrfs_root_ref *root_ref; 791 struct btrfs_inode_ref *inode_ref; 947 struct btrfs_inode_ref *inode_ref; 792 struct btrfs_key key; 948 struct btrfs_key key; 793 struct btrfs_path *path = NULL; 949 struct btrfs_path *path = NULL; 794 char *name = NULL, *ptr; 950 char *name = NULL, *ptr; 795 u64 dirid; 951 u64 dirid; 796 int len; 952 int len; 797 int ret; 953 int ret; 798 954 799 path = btrfs_alloc_path(); 955 path = btrfs_alloc_path(); 800 if (!path) { 956 if (!path) { 801 ret = -ENOMEM; 957 ret = -ENOMEM; 802 goto err; 958 goto err; 803 } 959 } >> 960 path->leave_spinning = 1; 804 961 805 name = kmalloc(PATH_MAX, GFP_KERNEL); !! 962 name = kmalloc(PATH_MAX, GFP_NOFS); 806 if (!name) { 963 if (!name) { 807 ret = -ENOMEM; 964 ret = -ENOMEM; 808 goto err; 965 goto err; 809 } 966 } 810 ptr = name + PATH_MAX - 1; 967 ptr = name + PATH_MAX - 1; 811 ptr[0] = '\0'; 968 ptr[0] = '\0'; 812 969 813 /* 970 /* 814 * Walk up the subvolume trees in the 971 * Walk up the subvolume trees in the tree of tree roots by root 815 * backrefs until we hit the top-level 972 * backrefs until we hit the top-level subvolume. 816 */ 973 */ 817 while (subvol_objectid != BTRFS_FS_TRE 974 while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) { 818 key.objectid = subvol_objectid 975 key.objectid = subvol_objectid; 819 key.type = BTRFS_ROOT_BACKREF_ 976 key.type = BTRFS_ROOT_BACKREF_KEY; 820 key.offset = (u64)-1; 977 key.offset = (u64)-1; 821 978 822 ret = btrfs_search_backwards(r !! 979 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 823 if (ret < 0) { 980 if (ret < 0) { 824 goto err; 981 goto err; 825 } else if (ret > 0) { 982 } else if (ret > 0) { 826 ret = -ENOENT; !! 983 ret = btrfs_previous_item(root, path, subvol_objectid, 827 goto err; !! 984 BTRFS_ROOT_BACKREF_KEY); >> 985 if (ret < 0) { >> 986 goto err; >> 987 } else if (ret > 0) { >> 988 ret = -ENOENT; >> 989 goto err; >> 990 } 828 } 991 } 829 992 >> 993 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 830 subvol_objectid = key.offset; 994 subvol_objectid = key.offset; 831 995 832 root_ref = btrfs_item_ptr(path 996 root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0], 833 stru 997 struct btrfs_root_ref); 834 len = btrfs_root_ref_name_len( 998 len = btrfs_root_ref_name_len(path->nodes[0], root_ref); 835 ptr -= len + 1; 999 ptr -= len + 1; 836 if (ptr < name) { 1000 if (ptr < name) { 837 ret = -ENAMETOOLONG; 1001 ret = -ENAMETOOLONG; 838 goto err; 1002 goto err; 839 } 1003 } 840 read_extent_buffer(path->nodes 1004 read_extent_buffer(path->nodes[0], ptr + 1, 841 (unsigned l 1005 (unsigned long)(root_ref + 1), len); 842 ptr[0] = '/'; 1006 ptr[0] = '/'; 843 dirid = btrfs_root_ref_dirid(p 1007 dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref); 844 btrfs_release_path(path); 1008 btrfs_release_path(path); 845 1009 846 fs_root = btrfs_get_fs_root(fs !! 1010 key.objectid = subvol_objectid; >> 1011 key.type = BTRFS_ROOT_ITEM_KEY; >> 1012 key.offset = (u64)-1; >> 1013 fs_root = btrfs_read_fs_root_no_name(fs_info, &key); 847 if (IS_ERR(fs_root)) { 1014 if (IS_ERR(fs_root)) { 848 ret = PTR_ERR(fs_root) 1015 ret = PTR_ERR(fs_root); 849 fs_root = NULL; << 850 goto err; 1016 goto err; 851 } 1017 } 852 1018 853 /* 1019 /* 854 * Walk up the filesystem tree 1020 * Walk up the filesystem tree by inode refs until we hit the 855 * root directory. 1021 * root directory. 856 */ 1022 */ 857 while (dirid != BTRFS_FIRST_FR 1023 while (dirid != BTRFS_FIRST_FREE_OBJECTID) { 858 key.objectid = dirid; 1024 key.objectid = dirid; 859 key.type = BTRFS_INODE 1025 key.type = BTRFS_INODE_REF_KEY; 860 key.offset = (u64)-1; 1026 key.offset = (u64)-1; 861 1027 862 ret = btrfs_search_bac !! 1028 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0); 863 if (ret < 0) { 1029 if (ret < 0) { 864 goto err; 1030 goto err; 865 } else if (ret > 0) { 1031 } else if (ret > 0) { 866 ret = -ENOENT; !! 1032 ret = btrfs_previous_item(fs_root, path, dirid, 867 goto err; !! 1033 BTRFS_INODE_REF_KEY); >> 1034 if (ret < 0) { >> 1035 goto err; >> 1036 } else if (ret > 0) { >> 1037 ret = -ENOENT; >> 1038 goto err; >> 1039 } 868 } 1040 } 869 1041 >> 1042 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 870 dirid = key.offset; 1043 dirid = key.offset; 871 1044 872 inode_ref = btrfs_item 1045 inode_ref = btrfs_item_ptr(path->nodes[0], 873 1046 path->slots[0], 874 1047 struct btrfs_inode_ref); 875 len = btrfs_inode_ref_ 1048 len = btrfs_inode_ref_name_len(path->nodes[0], 876 1049 inode_ref); 877 ptr -= len + 1; 1050 ptr -= len + 1; 878 if (ptr < name) { 1051 if (ptr < name) { 879 ret = -ENAMETO 1052 ret = -ENAMETOOLONG; 880 goto err; 1053 goto err; 881 } 1054 } 882 read_extent_buffer(pat 1055 read_extent_buffer(path->nodes[0], ptr + 1, 883 (un 1056 (unsigned long)(inode_ref + 1), len); 884 ptr[0] = '/'; 1057 ptr[0] = '/'; 885 btrfs_release_path(pat 1058 btrfs_release_path(path); 886 } 1059 } 887 btrfs_put_root(fs_root); << 888 fs_root = NULL; << 889 } 1060 } 890 1061 891 btrfs_free_path(path); 1062 btrfs_free_path(path); 892 if (ptr == name + PATH_MAX - 1) { 1063 if (ptr == name + PATH_MAX - 1) { 893 name[0] = '/'; 1064 name[0] = '/'; 894 name[1] = '\0'; 1065 name[1] = '\0'; 895 } else { 1066 } else { 896 memmove(name, ptr, name + PATH 1067 memmove(name, ptr, name + PATH_MAX - ptr); 897 } 1068 } 898 return name; 1069 return name; 899 1070 900 err: 1071 err: 901 btrfs_put_root(fs_root); << 902 btrfs_free_path(path); 1072 btrfs_free_path(path); 903 kfree(name); 1073 kfree(name); 904 return ERR_PTR(ret); 1074 return ERR_PTR(ret); 905 } 1075 } 906 1076 907 static int get_default_subvol_objectid(struct 1077 static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid) 908 { 1078 { 909 struct btrfs_root *root = fs_info->tre 1079 struct btrfs_root *root = fs_info->tree_root; 910 struct btrfs_dir_item *di; 1080 struct btrfs_dir_item *di; 911 struct btrfs_path *path; 1081 struct btrfs_path *path; 912 struct btrfs_key location; 1082 struct btrfs_key location; 913 struct fscrypt_str name = FSTR_INIT("d << 914 u64 dir_id; 1083 u64 dir_id; 915 1084 916 path = btrfs_alloc_path(); 1085 path = btrfs_alloc_path(); 917 if (!path) 1086 if (!path) 918 return -ENOMEM; 1087 return -ENOMEM; >> 1088 path->leave_spinning = 1; 919 1089 920 /* 1090 /* 921 * Find the "default" dir item which p 1091 * Find the "default" dir item which points to the root item that we 922 * will mount by default if we haven't 1092 * will mount by default if we haven't been given a specific subvolume 923 * to mount. 1093 * to mount. 924 */ 1094 */ 925 dir_id = btrfs_super_root_dir(fs_info- 1095 dir_id = btrfs_super_root_dir(fs_info->super_copy); 926 di = btrfs_lookup_dir_item(NULL, root, !! 1096 di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0); 927 if (IS_ERR(di)) { 1097 if (IS_ERR(di)) { 928 btrfs_free_path(path); 1098 btrfs_free_path(path); 929 return PTR_ERR(di); 1099 return PTR_ERR(di); 930 } 1100 } 931 if (!di) { 1101 if (!di) { 932 /* 1102 /* 933 * Ok the default dir item isn 1103 * Ok the default dir item isn't there. This is weird since 934 * it's always been there, but 1104 * it's always been there, but don't freak out, just try and 935 * mount the top-level subvolu 1105 * mount the top-level subvolume. 936 */ 1106 */ 937 btrfs_free_path(path); 1107 btrfs_free_path(path); 938 *objectid = BTRFS_FS_TREE_OBJE 1108 *objectid = BTRFS_FS_TREE_OBJECTID; 939 return 0; 1109 return 0; 940 } 1110 } 941 1111 942 btrfs_dir_item_key_to_cpu(path->nodes[ 1112 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); 943 btrfs_free_path(path); 1113 btrfs_free_path(path); 944 *objectid = location.objectid; 1114 *objectid = location.objectid; 945 return 0; 1115 return 0; 946 } 1116 } 947 1117 948 static int btrfs_fill_super(struct super_block 1118 static int btrfs_fill_super(struct super_block *sb, 949 struct btrfs_fs_de 1119 struct btrfs_fs_devices *fs_devices, 950 void *data) 1120 void *data) 951 { 1121 { 952 struct inode *inode; 1122 struct inode *inode; 953 struct btrfs_fs_info *fs_info = btrfs_ 1123 struct btrfs_fs_info *fs_info = btrfs_sb(sb); >> 1124 struct btrfs_key key; 954 int err; 1125 int err; 955 1126 956 sb->s_maxbytes = MAX_LFS_FILESIZE; 1127 sb->s_maxbytes = MAX_LFS_FILESIZE; 957 sb->s_magic = BTRFS_SUPER_MAGIC; 1128 sb->s_magic = BTRFS_SUPER_MAGIC; 958 sb->s_op = &btrfs_super_ops; 1129 sb->s_op = &btrfs_super_ops; 959 sb->s_d_op = &btrfs_dentry_operations; 1130 sb->s_d_op = &btrfs_dentry_operations; 960 sb->s_export_op = &btrfs_export_ops; 1131 sb->s_export_op = &btrfs_export_ops; 961 #ifdef CONFIG_FS_VERITY << 962 sb->s_vop = &btrfs_verityops; << 963 #endif << 964 sb->s_xattr = btrfs_xattr_handlers; 1132 sb->s_xattr = btrfs_xattr_handlers; 965 sb->s_time_gran = 1; 1133 sb->s_time_gran = 1; >> 1134 #ifdef CONFIG_BTRFS_FS_POSIX_ACL >> 1135 sb->s_flags |= MS_POSIXACL; >> 1136 #endif >> 1137 sb->s_flags |= MS_I_VERSION; 966 sb->s_iflags |= SB_I_CGROUPWB; 1138 sb->s_iflags |= SB_I_CGROUPWB; 967 << 968 err = super_setup_bdi(sb); << 969 if (err) { << 970 btrfs_err(fs_info, "super_setu << 971 return err; << 972 } << 973 << 974 err = open_ctree(sb, fs_devices, (char 1139 err = open_ctree(sb, fs_devices, (char *)data); 975 if (err) { 1140 if (err) { 976 btrfs_err(fs_info, "open_ctree 1141 btrfs_err(fs_info, "open_ctree failed"); 977 return err; 1142 return err; 978 } 1143 } 979 1144 980 inode = btrfs_iget(BTRFS_FIRST_FREE_OB !! 1145 key.objectid = BTRFS_FIRST_FREE_OBJECTID; >> 1146 key.type = BTRFS_INODE_ITEM_KEY; >> 1147 key.offset = 0; >> 1148 inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL); 981 if (IS_ERR(inode)) { 1149 if (IS_ERR(inode)) { 982 err = PTR_ERR(inode); 1150 err = PTR_ERR(inode); 983 btrfs_handle_fs_error(fs_info, << 984 goto fail_close; 1151 goto fail_close; 985 } 1152 } 986 1153 987 sb->s_root = d_make_root(inode); 1154 sb->s_root = d_make_root(inode); 988 if (!sb->s_root) { 1155 if (!sb->s_root) { 989 err = -ENOMEM; 1156 err = -ENOMEM; 990 goto fail_close; 1157 goto fail_close; 991 } 1158 } 992 1159 993 sb->s_flags |= SB_ACTIVE; !! 1160 save_mount_options(sb, data); >> 1161 cleancache_init_fs(sb); >> 1162 sb->s_flags |= MS_ACTIVE; 994 return 0; 1163 return 0; 995 1164 996 fail_close: 1165 fail_close: 997 close_ctree(fs_info); 1166 close_ctree(fs_info); 998 return err; 1167 return err; 999 } 1168 } 1000 1169 1001 int btrfs_sync_fs(struct super_block *sb, int 1170 int btrfs_sync_fs(struct super_block *sb, int wait) 1002 { 1171 { 1003 struct btrfs_trans_handle *trans; 1172 struct btrfs_trans_handle *trans; 1004 struct btrfs_fs_info *fs_info = btrfs 1173 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1005 struct btrfs_root *root = fs_info->tr 1174 struct btrfs_root *root = fs_info->tree_root; 1006 1175 1007 trace_btrfs_sync_fs(fs_info, wait); 1176 trace_btrfs_sync_fs(fs_info, wait); 1008 1177 1009 if (!wait) { 1178 if (!wait) { 1010 filemap_flush(fs_info->btree_ 1179 filemap_flush(fs_info->btree_inode->i_mapping); 1011 return 0; 1180 return 0; 1012 } 1181 } 1013 1182 1014 btrfs_wait_ordered_roots(fs_info, U64 !! 1183 btrfs_wait_ordered_roots(fs_info, -1, 0, (u64)-1); 1015 1184 1016 trans = btrfs_attach_transaction_barr 1185 trans = btrfs_attach_transaction_barrier(root); 1017 if (IS_ERR(trans)) { 1186 if (IS_ERR(trans)) { 1018 /* no transaction, don't both 1187 /* no transaction, don't bother */ 1019 if (PTR_ERR(trans) == -ENOENT 1188 if (PTR_ERR(trans) == -ENOENT) { 1020 /* 1189 /* 1021 * Exit unless we hav 1190 * Exit unless we have some pending changes 1022 * that need to go th 1191 * that need to go through commit 1023 */ 1192 */ 1024 if (!test_bit(BTRFS_F !! 1193 if (fs_info->pending_changes == 0) 1025 &fs_inf << 1026 return 0; 1194 return 0; 1027 /* 1195 /* 1028 * A non-blocking tes 1196 * A non-blocking test if the fs is frozen. We must not 1029 * start a new transa 1197 * start a new transaction here otherwise a deadlock 1030 * happens. The pendi 1198 * happens. The pending operations are delayed to the 1031 * next commit after 1199 * next commit after thawing. 1032 */ 1200 */ 1033 if (sb_start_write_tr !! 1201 if (__sb_start_write(sb, SB_FREEZE_WRITE, false)) 1034 sb_end_write( !! 1202 __sb_end_write(sb, SB_FREEZE_WRITE); 1035 else 1203 else 1036 return 0; 1204 return 0; 1037 trans = btrfs_start_t 1205 trans = btrfs_start_transaction(root, 0); 1038 } 1206 } 1039 if (IS_ERR(trans)) 1207 if (IS_ERR(trans)) 1040 return PTR_ERR(trans) 1208 return PTR_ERR(trans); 1041 } 1209 } 1042 return btrfs_commit_transaction(trans 1210 return btrfs_commit_transaction(trans); 1043 } 1211 } 1044 1212 1045 static void print_rescue_option(struct seq_fi << 1046 { << 1047 seq_printf(seq, "%s%s", (*printed) ? << 1048 *printed = true; << 1049 } << 1050 << 1051 static int btrfs_show_options(struct seq_file 1213 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry) 1052 { 1214 { 1053 struct btrfs_fs_info *info = btrfs_sb 1215 struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb); 1054 const char *compress_type; !! 1216 char *compress_type; 1055 const char *subvol_name; << 1056 bool printed = false; << 1057 1217 1058 if (btrfs_test_opt(info, DEGRADED)) 1218 if (btrfs_test_opt(info, DEGRADED)) 1059 seq_puts(seq, ",degraded"); 1219 seq_puts(seq, ",degraded"); 1060 if (btrfs_test_opt(info, NODATASUM)) 1220 if (btrfs_test_opt(info, NODATASUM)) 1061 seq_puts(seq, ",nodatasum"); 1221 seq_puts(seq, ",nodatasum"); 1062 if (btrfs_test_opt(info, NODATACOW)) 1222 if (btrfs_test_opt(info, NODATACOW)) 1063 seq_puts(seq, ",nodatacow"); 1223 seq_puts(seq, ",nodatacow"); 1064 if (btrfs_test_opt(info, NOBARRIER)) 1224 if (btrfs_test_opt(info, NOBARRIER)) 1065 seq_puts(seq, ",nobarrier"); 1225 seq_puts(seq, ",nobarrier"); 1066 if (info->max_inline != BTRFS_DEFAULT 1226 if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE) 1067 seq_printf(seq, ",max_inline= 1227 seq_printf(seq, ",max_inline=%llu", info->max_inline); >> 1228 if (info->alloc_start != 0) >> 1229 seq_printf(seq, ",alloc_start=%llu", info->alloc_start); 1068 if (info->thread_pool_size != min_t( 1230 if (info->thread_pool_size != min_t(unsigned long, 1069 1231 num_online_cpus() + 2, 8)) 1070 seq_printf(seq, ",thread_pool !! 1232 seq_printf(seq, ",thread_pool=%d", info->thread_pool_size); 1071 if (btrfs_test_opt(info, COMPRESS)) { 1233 if (btrfs_test_opt(info, COMPRESS)) { 1072 compress_type = btrfs_compres !! 1234 if (info->compress_type == BTRFS_COMPRESS_ZLIB) >> 1235 compress_type = "zlib"; >> 1236 else >> 1237 compress_type = "lzo"; 1073 if (btrfs_test_opt(info, FORC 1238 if (btrfs_test_opt(info, FORCE_COMPRESS)) 1074 seq_printf(seq, ",com 1239 seq_printf(seq, ",compress-force=%s", compress_type); 1075 else 1240 else 1076 seq_printf(seq, ",com 1241 seq_printf(seq, ",compress=%s", compress_type); 1077 if (info->compress_level) << 1078 seq_printf(seq, ":%d" << 1079 } 1242 } 1080 if (btrfs_test_opt(info, NOSSD)) 1243 if (btrfs_test_opt(info, NOSSD)) 1081 seq_puts(seq, ",nossd"); 1244 seq_puts(seq, ",nossd"); 1082 if (btrfs_test_opt(info, SSD_SPREAD)) 1245 if (btrfs_test_opt(info, SSD_SPREAD)) 1083 seq_puts(seq, ",ssd_spread"); 1246 seq_puts(seq, ",ssd_spread"); 1084 else if (btrfs_test_opt(info, SSD)) 1247 else if (btrfs_test_opt(info, SSD)) 1085 seq_puts(seq, ",ssd"); 1248 seq_puts(seq, ",ssd"); 1086 if (btrfs_test_opt(info, NOTREELOG)) 1249 if (btrfs_test_opt(info, NOTREELOG)) 1087 seq_puts(seq, ",notreelog"); 1250 seq_puts(seq, ",notreelog"); 1088 if (btrfs_test_opt(info, NOLOGREPLAY) 1251 if (btrfs_test_opt(info, NOLOGREPLAY)) 1089 print_rescue_option(seq, "nol !! 1252 seq_puts(seq, ",nologreplay"); 1090 if (btrfs_test_opt(info, USEBACKUPROO << 1091 print_rescue_option(seq, "use << 1092 if (btrfs_test_opt(info, IGNOREBADROO << 1093 print_rescue_option(seq, "ign << 1094 if (btrfs_test_opt(info, IGNOREDATACS << 1095 print_rescue_option(seq, "ign << 1096 if (btrfs_test_opt(info, IGNOREMETACS << 1097 print_rescue_option(seq, "ign << 1098 if (btrfs_test_opt(info, IGNORESUPERF << 1099 print_rescue_option(seq, "ign << 1100 if (btrfs_test_opt(info, FLUSHONCOMMI 1253 if (btrfs_test_opt(info, FLUSHONCOMMIT)) 1101 seq_puts(seq, ",flushoncommit 1254 seq_puts(seq, ",flushoncommit"); 1102 if (btrfs_test_opt(info, DISCARD_SYNC !! 1255 if (btrfs_test_opt(info, DISCARD)) 1103 seq_puts(seq, ",discard"); 1256 seq_puts(seq, ",discard"); 1104 if (btrfs_test_opt(info, DISCARD_ASYN !! 1257 if (!(info->sb->s_flags & MS_POSIXACL)) 1105 seq_puts(seq, ",discard=async << 1106 if (!(info->sb->s_flags & SB_POSIXACL << 1107 seq_puts(seq, ",noacl"); 1258 seq_puts(seq, ",noacl"); 1108 if (btrfs_free_space_cache_v1_active( !! 1259 if (btrfs_test_opt(info, SPACE_CACHE)) 1109 seq_puts(seq, ",space_cache") 1260 seq_puts(seq, ",space_cache"); 1110 else if (btrfs_fs_compat_ro(info, FRE !! 1261 else if (btrfs_test_opt(info, FREE_SPACE_TREE)) 1111 seq_puts(seq, ",space_cache=v 1262 seq_puts(seq, ",space_cache=v2"); 1112 else 1263 else 1113 seq_puts(seq, ",nospace_cache 1264 seq_puts(seq, ",nospace_cache"); 1114 if (btrfs_test_opt(info, RESCAN_UUID_ 1265 if (btrfs_test_opt(info, RESCAN_UUID_TREE)) 1115 seq_puts(seq, ",rescan_uuid_t 1266 seq_puts(seq, ",rescan_uuid_tree"); 1116 if (btrfs_test_opt(info, CLEAR_CACHE) 1267 if (btrfs_test_opt(info, CLEAR_CACHE)) 1117 seq_puts(seq, ",clear_cache") 1268 seq_puts(seq, ",clear_cache"); 1118 if (btrfs_test_opt(info, USER_SUBVOL_ 1269 if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED)) 1119 seq_puts(seq, ",user_subvol_r 1270 seq_puts(seq, ",user_subvol_rm_allowed"); 1120 if (btrfs_test_opt(info, ENOSPC_DEBUG 1271 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 1121 seq_puts(seq, ",enospc_debug" 1272 seq_puts(seq, ",enospc_debug"); 1122 if (btrfs_test_opt(info, AUTO_DEFRAG) 1273 if (btrfs_test_opt(info, AUTO_DEFRAG)) 1123 seq_puts(seq, ",autodefrag"); 1274 seq_puts(seq, ",autodefrag"); >> 1275 if (btrfs_test_opt(info, INODE_MAP_CACHE)) >> 1276 seq_puts(seq, ",inode_cache"); 1124 if (btrfs_test_opt(info, SKIP_BALANCE 1277 if (btrfs_test_opt(info, SKIP_BALANCE)) 1125 seq_puts(seq, ",skip_balance" 1278 seq_puts(seq, ",skip_balance"); >> 1279 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY >> 1280 if (btrfs_test_opt(info, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA)) >> 1281 seq_puts(seq, ",check_int_data"); >> 1282 else if (btrfs_test_opt(info, CHECK_INTEGRITY)) >> 1283 seq_puts(seq, ",check_int"); >> 1284 if (info->check_integrity_print_mask) >> 1285 seq_printf(seq, ",check_int_print_mask=%d", >> 1286 info->check_integrity_print_mask); >> 1287 #endif 1126 if (info->metadata_ratio) 1288 if (info->metadata_ratio) 1127 seq_printf(seq, ",metadata_ra !! 1289 seq_printf(seq, ",metadata_ratio=%d", >> 1290 info->metadata_ratio); 1128 if (btrfs_test_opt(info, PANIC_ON_FAT 1291 if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR)) 1129 seq_puts(seq, ",fatal_errors= 1292 seq_puts(seq, ",fatal_errors=panic"); 1130 if (info->commit_interval != BTRFS_DE 1293 if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL) 1131 seq_printf(seq, ",commit=%u", !! 1294 seq_printf(seq, ",commit=%d", info->commit_interval); 1132 #ifdef CONFIG_BTRFS_DEBUG 1295 #ifdef CONFIG_BTRFS_DEBUG 1133 if (btrfs_test_opt(info, FRAGMENT_DAT 1296 if (btrfs_test_opt(info, FRAGMENT_DATA)) 1134 seq_puts(seq, ",fragment=data 1297 seq_puts(seq, ",fragment=data"); 1135 if (btrfs_test_opt(info, FRAGMENT_MET 1298 if (btrfs_test_opt(info, FRAGMENT_METADATA)) 1136 seq_puts(seq, ",fragment=meta 1299 seq_puts(seq, ",fragment=metadata"); 1137 #endif 1300 #endif 1138 if (btrfs_test_opt(info, REF_VERIFY)) !! 1301 seq_printf(seq, ",subvolid=%llu", 1139 seq_puts(seq, ",ref_verify"); !! 1302 BTRFS_I(d_inode(dentry))->root->root_key.objectid); 1140 seq_printf(seq, ",subvolid=%llu", btr !! 1303 seq_puts(seq, ",subvol="); 1141 subvol_name = btrfs_get_subvol_name_f !! 1304 seq_dentry(seq, dentry, " \t\n\\"); 1142 btrfs_root_id(BTRFS_I << 1143 if (!IS_ERR(subvol_name)) { << 1144 seq_puts(seq, ",subvol="); << 1145 seq_escape(seq, subvol_name, << 1146 kfree(subvol_name); << 1147 } << 1148 return 0; 1305 return 0; 1149 } 1306 } 1150 1307 >> 1308 static int btrfs_test_super(struct super_block *s, void *data) >> 1309 { >> 1310 struct btrfs_fs_info *p = data; >> 1311 struct btrfs_fs_info *fs_info = btrfs_sb(s); >> 1312 >> 1313 return fs_info->fs_devices == p->fs_devices; >> 1314 } >> 1315 >> 1316 static int btrfs_set_super(struct super_block *s, void *data) >> 1317 { >> 1318 int err = set_anon_super(s, data); >> 1319 if (!err) >> 1320 s->s_fs_info = data; >> 1321 return err; >> 1322 } >> 1323 1151 /* 1324 /* 1152 * subvolumes are identified by ino 256 1325 * subvolumes are identified by ino 256 1153 */ 1326 */ 1154 static inline int is_subvolume_inode(struct i 1327 static inline int is_subvolume_inode(struct inode *inode) 1155 { 1328 { 1156 if (inode && inode->i_ino == BTRFS_FI 1329 if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) 1157 return 1; 1330 return 1; 1158 return 0; 1331 return 0; 1159 } 1332 } 1160 1333 >> 1334 /* >> 1335 * This will add subvolid=0 to the argument string while removing any subvol= >> 1336 * and subvolid= arguments to make sure we get the top-level root for path >> 1337 * walking to the subvol we want. >> 1338 */ >> 1339 static char *setup_root_args(char *args) >> 1340 { >> 1341 char *buf, *dst, *sep; >> 1342 >> 1343 if (!args) >> 1344 return kstrdup("subvolid=0", GFP_NOFS); >> 1345 >> 1346 /* The worst case is that we add ",subvolid=0" to the end. */ >> 1347 buf = dst = kmalloc(strlen(args) + strlen(",subvolid=0") + 1, GFP_NOFS); >> 1348 if (!buf) >> 1349 return NULL; >> 1350 >> 1351 while (1) { >> 1352 sep = strchrnul(args, ','); >> 1353 if (!strstarts(args, "subvol=") && >> 1354 !strstarts(args, "subvolid=")) { >> 1355 memcpy(dst, args, sep - args); >> 1356 dst += sep - args; >> 1357 *dst++ = ','; >> 1358 } >> 1359 if (*sep) >> 1360 args = sep + 1; >> 1361 else >> 1362 break; >> 1363 } >> 1364 strcpy(dst, "subvolid=0"); >> 1365 >> 1366 return buf; >> 1367 } >> 1368 1161 static struct dentry *mount_subvol(const char 1369 static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid, 1162 struct vfs !! 1370 int flags, const char *device_name, >> 1371 char *data) 1163 { 1372 { 1164 struct dentry *root; 1373 struct dentry *root; >> 1374 struct vfsmount *mnt = NULL; >> 1375 char *newargs; 1165 int ret; 1376 int ret; 1166 1377 >> 1378 newargs = setup_root_args(data); >> 1379 if (!newargs) { >> 1380 root = ERR_PTR(-ENOMEM); >> 1381 goto out; >> 1382 } >> 1383 >> 1384 mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name, newargs); >> 1385 if (PTR_ERR_OR_ZERO(mnt) == -EBUSY) { >> 1386 if (flags & MS_RDONLY) { >> 1387 mnt = vfs_kern_mount(&btrfs_fs_type, flags & ~MS_RDONLY, >> 1388 device_name, newargs); >> 1389 } else { >> 1390 mnt = vfs_kern_mount(&btrfs_fs_type, flags | MS_RDONLY, >> 1391 device_name, newargs); >> 1392 if (IS_ERR(mnt)) { >> 1393 root = ERR_CAST(mnt); >> 1394 mnt = NULL; >> 1395 goto out; >> 1396 } >> 1397 >> 1398 down_write(&mnt->mnt_sb->s_umount); >> 1399 ret = btrfs_remount(mnt->mnt_sb, &flags, NULL); >> 1400 up_write(&mnt->mnt_sb->s_umount); >> 1401 if (ret < 0) { >> 1402 root = ERR_PTR(ret); >> 1403 goto out; >> 1404 } >> 1405 } >> 1406 } >> 1407 if (IS_ERR(mnt)) { >> 1408 root = ERR_CAST(mnt); >> 1409 mnt = NULL; >> 1410 goto out; >> 1411 } >> 1412 1167 if (!subvol_name) { 1413 if (!subvol_name) { 1168 if (!subvol_objectid) { 1414 if (!subvol_objectid) { 1169 ret = get_default_sub 1415 ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb), 1170 1416 &subvol_objectid); 1171 if (ret) { 1417 if (ret) { 1172 root = ERR_PT 1418 root = ERR_PTR(ret); 1173 goto out; 1419 goto out; 1174 } 1420 } 1175 } 1421 } 1176 subvol_name = btrfs_get_subvo !! 1422 subvol_name = get_subvol_name_from_objectid(btrfs_sb(mnt->mnt_sb), 1177 btrfs !! 1423 subvol_objectid); 1178 if (IS_ERR(subvol_name)) { 1424 if (IS_ERR(subvol_name)) { 1179 root = ERR_CAST(subvo 1425 root = ERR_CAST(subvol_name); 1180 subvol_name = NULL; 1426 subvol_name = NULL; 1181 goto out; 1427 goto out; 1182 } 1428 } 1183 1429 1184 } 1430 } 1185 1431 1186 root = mount_subtree(mnt, subvol_name 1432 root = mount_subtree(mnt, subvol_name); 1187 /* mount_subtree() drops our referenc 1433 /* mount_subtree() drops our reference on the vfsmount. */ 1188 mnt = NULL; 1434 mnt = NULL; 1189 1435 1190 if (!IS_ERR(root)) { 1436 if (!IS_ERR(root)) { 1191 struct super_block *s = root- 1437 struct super_block *s = root->d_sb; 1192 struct btrfs_fs_info *fs_info 1438 struct btrfs_fs_info *fs_info = btrfs_sb(s); 1193 struct inode *root_inode = d_ 1439 struct inode *root_inode = d_inode(root); 1194 u64 root_objectid = btrfs_roo !! 1440 u64 root_objectid = BTRFS_I(root_inode)->root->root_key.objectid; 1195 1441 1196 ret = 0; 1442 ret = 0; 1197 if (!is_subvolume_inode(root_ 1443 if (!is_subvolume_inode(root_inode)) { 1198 btrfs_err(fs_info, "' 1444 btrfs_err(fs_info, "'%s' is not a valid subvolume", 1199 subvol_name); 1445 subvol_name); 1200 ret = -EINVAL; 1446 ret = -EINVAL; 1201 } 1447 } 1202 if (subvol_objectid && root_o 1448 if (subvol_objectid && root_objectid != subvol_objectid) { 1203 /* 1449 /* 1204 * This will also cat 1450 * This will also catch a race condition where a 1205 * subvolume which wa 1451 * subvolume which was passed by ID is renamed and 1206 * another subvolume 1452 * another subvolume is renamed over the old location. 1207 */ 1453 */ 1208 btrfs_err(fs_info, 1454 btrfs_err(fs_info, 1209 "subvol '%s 1455 "subvol '%s' does not match subvolid %llu", 1210 subvol_name 1456 subvol_name, subvol_objectid); 1211 ret = -EINVAL; 1457 ret = -EINVAL; 1212 } 1458 } 1213 if (ret) { 1459 if (ret) { 1214 dput(root); 1460 dput(root); 1215 root = ERR_PTR(ret); 1461 root = ERR_PTR(ret); 1216 deactivate_locked_sup 1462 deactivate_locked_super(s); 1217 } 1463 } 1218 } 1464 } 1219 1465 1220 out: 1466 out: 1221 mntput(mnt); 1467 mntput(mnt); >> 1468 kfree(newargs); 1222 kfree(subvol_name); 1469 kfree(subvol_name); 1223 return root; 1470 return root; 1224 } 1471 } 1225 1472 >> 1473 static int parse_security_options(char *orig_opts, >> 1474 struct security_mnt_opts *sec_opts) >> 1475 { >> 1476 char *secdata = NULL; >> 1477 int ret = 0; >> 1478 >> 1479 secdata = alloc_secdata(); >> 1480 if (!secdata) >> 1481 return -ENOMEM; >> 1482 ret = security_sb_copy_data(orig_opts, secdata); >> 1483 if (ret) { >> 1484 free_secdata(secdata); >> 1485 return ret; >> 1486 } >> 1487 ret = security_sb_parse_opts_str(secdata, sec_opts); >> 1488 free_secdata(secdata); >> 1489 return ret; >> 1490 } >> 1491 >> 1492 static int setup_security_options(struct btrfs_fs_info *fs_info, >> 1493 struct super_block *sb, >> 1494 struct security_mnt_opts *sec_opts) >> 1495 { >> 1496 int ret = 0; >> 1497 >> 1498 /* >> 1499 * Call security_sb_set_mnt_opts() to check whether new sec_opts >> 1500 * is valid. >> 1501 */ >> 1502 ret = security_sb_set_mnt_opts(sb, sec_opts, 0, NULL); >> 1503 if (ret) >> 1504 return ret; >> 1505 >> 1506 #ifdef CONFIG_SECURITY >> 1507 if (!fs_info->security_opts.num_mnt_opts) { >> 1508 /* first time security setup, copy sec_opts to fs_info */ >> 1509 memcpy(&fs_info->security_opts, sec_opts, sizeof(*sec_opts)); >> 1510 } else { >> 1511 /* >> 1512 * Since SELinux (the only one supporting security_mnt_opts) >> 1513 * does NOT support changing context during remount/mount of >> 1514 * the same sb, this must be the same or part of the same >> 1515 * security options, just free it. >> 1516 */ >> 1517 security_free_mnt_opts(sec_opts); >> 1518 } >> 1519 #endif >> 1520 return ret; >> 1521 } >> 1522 >> 1523 /* >> 1524 * Find a superblock for the given device / mount point. >> 1525 * >> 1526 * Note: This is based on get_sb_bdev from fs/super.c with a few additions >> 1527 * for multiple device setup. Make sure to keep it in sync. >> 1528 */ >> 1529 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags, >> 1530 const char *device_name, void *data) >> 1531 { >> 1532 struct block_device *bdev = NULL; >> 1533 struct super_block *s; >> 1534 struct btrfs_fs_devices *fs_devices = NULL; >> 1535 struct btrfs_fs_info *fs_info = NULL; >> 1536 struct security_mnt_opts new_sec_opts; >> 1537 fmode_t mode = FMODE_READ; >> 1538 char *subvol_name = NULL; >> 1539 u64 subvol_objectid = 0; >> 1540 int error = 0; >> 1541 >> 1542 if (!(flags & MS_RDONLY)) >> 1543 mode |= FMODE_WRITE; >> 1544 >> 1545 error = btrfs_parse_early_options(data, mode, fs_type, >> 1546 &subvol_name, &subvol_objectid, >> 1547 &fs_devices); >> 1548 if (error) { >> 1549 kfree(subvol_name); >> 1550 return ERR_PTR(error); >> 1551 } >> 1552 >> 1553 if (subvol_name || subvol_objectid != BTRFS_FS_TREE_OBJECTID) { >> 1554 /* mount_subvol() will free subvol_name. */ >> 1555 return mount_subvol(subvol_name, subvol_objectid, flags, >> 1556 device_name, data); >> 1557 } >> 1558 >> 1559 security_init_mnt_opts(&new_sec_opts); >> 1560 if (data) { >> 1561 error = parse_security_options(data, &new_sec_opts); >> 1562 if (error) >> 1563 return ERR_PTR(error); >> 1564 } >> 1565 >> 1566 error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices); >> 1567 if (error) >> 1568 goto error_sec_opts; >> 1569 >> 1570 /* >> 1571 * Setup a dummy root and fs_info for test/set super. This is because >> 1572 * we don't actually fill this stuff out until open_ctree, but we need >> 1573 * it for searching for existing supers, so this lets us do that and >> 1574 * then open_ctree will properly initialize everything later. >> 1575 */ >> 1576 fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS); >> 1577 if (!fs_info) { >> 1578 error = -ENOMEM; >> 1579 goto error_sec_opts; >> 1580 } >> 1581 >> 1582 fs_info->fs_devices = fs_devices; >> 1583 >> 1584 fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS); >> 1585 fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS); >> 1586 security_init_mnt_opts(&fs_info->security_opts); >> 1587 if (!fs_info->super_copy || !fs_info->super_for_commit) { >> 1588 error = -ENOMEM; >> 1589 goto error_fs_info; >> 1590 } >> 1591 >> 1592 error = btrfs_open_devices(fs_devices, mode, fs_type); >> 1593 if (error) >> 1594 goto error_fs_info; >> 1595 >> 1596 if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) { >> 1597 error = -EACCES; >> 1598 goto error_close_devices; >> 1599 } >> 1600 >> 1601 bdev = fs_devices->latest_bdev; >> 1602 s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | MS_NOSEC, >> 1603 fs_info); >> 1604 if (IS_ERR(s)) { >> 1605 error = PTR_ERR(s); >> 1606 goto error_close_devices; >> 1607 } >> 1608 >> 1609 if (s->s_root) { >> 1610 btrfs_close_devices(fs_devices); >> 1611 free_fs_info(fs_info); >> 1612 if ((flags ^ s->s_flags) & MS_RDONLY) >> 1613 error = -EBUSY; >> 1614 } else { >> 1615 snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev); >> 1616 btrfs_sb(s)->bdev_holder = fs_type; >> 1617 error = btrfs_fill_super(s, fs_devices, data); >> 1618 } >> 1619 if (error) { >> 1620 deactivate_locked_super(s); >> 1621 goto error_sec_opts; >> 1622 } >> 1623 >> 1624 fs_info = btrfs_sb(s); >> 1625 error = setup_security_options(fs_info, s, &new_sec_opts); >> 1626 if (error) { >> 1627 deactivate_locked_super(s); >> 1628 goto error_sec_opts; >> 1629 } >> 1630 >> 1631 return dget(s->s_root); >> 1632 >> 1633 error_close_devices: >> 1634 btrfs_close_devices(fs_devices); >> 1635 error_fs_info: >> 1636 free_fs_info(fs_info); >> 1637 error_sec_opts: >> 1638 security_free_mnt_opts(&new_sec_opts); >> 1639 return ERR_PTR(error); >> 1640 } >> 1641 1226 static void btrfs_resize_thread_pool(struct b 1642 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info, 1227 u32 new_ !! 1643 int new_pool_size, int old_pool_size) 1228 { 1644 { 1229 if (new_pool_size == old_pool_size) 1645 if (new_pool_size == old_pool_size) 1230 return; 1646 return; 1231 1647 1232 fs_info->thread_pool_size = new_pool_ 1648 fs_info->thread_pool_size = new_pool_size; 1233 1649 1234 btrfs_info(fs_info, "resize thread po 1650 btrfs_info(fs_info, "resize thread pool %d -> %d", 1235 old_pool_size, new_pool_size); 1651 old_pool_size, new_pool_size); 1236 1652 1237 btrfs_workqueue_set_max(fs_info->work 1653 btrfs_workqueue_set_max(fs_info->workers, new_pool_size); 1238 btrfs_workqueue_set_max(fs_info->dela 1654 btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size); >> 1655 btrfs_workqueue_set_max(fs_info->submit_workers, new_pool_size); 1239 btrfs_workqueue_set_max(fs_info->cach 1656 btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size); 1240 workqueue_set_max_active(fs_info->end !! 1657 btrfs_workqueue_set_max(fs_info->endio_workers, new_pool_size); 1241 workqueue_set_max_active(fs_info->end !! 1658 btrfs_workqueue_set_max(fs_info->endio_meta_workers, new_pool_size); >> 1659 btrfs_workqueue_set_max(fs_info->endio_meta_write_workers, >> 1660 new_pool_size); 1242 btrfs_workqueue_set_max(fs_info->endi 1661 btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size); 1243 btrfs_workqueue_set_max(fs_info->endi 1662 btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size); 1244 btrfs_workqueue_set_max(fs_info->dela 1663 btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size); >> 1664 btrfs_workqueue_set_max(fs_info->readahead_workers, new_pool_size); >> 1665 btrfs_workqueue_set_max(fs_info->scrub_wr_completion_workers, >> 1666 new_pool_size); >> 1667 } >> 1668 >> 1669 static inline void btrfs_remount_prepare(struct btrfs_fs_info *fs_info) >> 1670 { >> 1671 set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); 1245 } 1672 } 1246 1673 1247 static inline void btrfs_remount_begin(struct 1674 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info, 1248 unsign !! 1675 unsigned long old_opts, int flags) 1249 { 1676 { 1250 if (btrfs_raw_test_opt(old_opts, AUTO 1677 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) && 1251 (!btrfs_raw_test_opt(fs_info->mou 1678 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || 1252 (flags & SB_RDONLY))) { !! 1679 (flags & MS_RDONLY))) { 1253 /* wait for any defraggers to 1680 /* wait for any defraggers to finish */ 1254 wait_event(fs_info->transacti 1681 wait_event(fs_info->transaction_wait, 1255 (atomic_read(&fs_i 1682 (atomic_read(&fs_info->defrag_running) == 0)); 1256 if (flags & SB_RDONLY) !! 1683 if (flags & MS_RDONLY) 1257 sync_filesystem(fs_in 1684 sync_filesystem(fs_info->sb); 1258 } 1685 } 1259 } 1686 } 1260 1687 1261 static inline void btrfs_remount_cleanup(stru 1688 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info, 1262 unsi !! 1689 unsigned long old_opts) 1263 { 1690 { 1264 const bool cache_opt = btrfs_test_opt << 1265 << 1266 /* 1691 /* 1267 * We need to cleanup all defragable 1692 * We need to cleanup all defragable inodes if the autodefragment is 1268 * close or the filesystem is read on 1693 * close or the filesystem is read only. 1269 */ 1694 */ 1270 if (btrfs_raw_test_opt(old_opts, AUTO 1695 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) && 1271 (!btrfs_raw_test_opt(fs_info->mou !! 1696 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || >> 1697 (fs_info->sb->s_flags & MS_RDONLY))) { 1272 btrfs_cleanup_defrag_inodes(f 1698 btrfs_cleanup_defrag_inodes(fs_info); 1273 } 1699 } 1274 1700 1275 /* If we toggled discard async */ !! 1701 clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); 1276 if (!btrfs_raw_test_opt(old_opts, DIS << 1277 btrfs_test_opt(fs_info, DISCARD_A << 1278 btrfs_discard_resume(fs_info) << 1279 else if (btrfs_raw_test_opt(old_opts, << 1280 !btrfs_test_opt(fs_info, DIS << 1281 btrfs_discard_cleanup(fs_info << 1282 << 1283 /* If we toggled space cache */ << 1284 if (cache_opt != btrfs_free_space_cac << 1285 btrfs_set_free_space_cache_v1 << 1286 } 1702 } 1287 1703 1288 static int btrfs_remount_rw(struct btrfs_fs_i !! 1704 static int btrfs_remount(struct super_block *sb, int *flags, char *data) 1289 { 1705 { >> 1706 struct btrfs_fs_info *fs_info = btrfs_sb(sb); >> 1707 struct btrfs_root *root = fs_info->tree_root; >> 1708 unsigned old_flags = sb->s_flags; >> 1709 unsigned long old_opts = fs_info->mount_opt; >> 1710 unsigned long old_compress_type = fs_info->compress_type; >> 1711 u64 old_max_inline = fs_info->max_inline; >> 1712 u64 old_alloc_start = fs_info->alloc_start; >> 1713 int old_thread_pool_size = fs_info->thread_pool_size; >> 1714 unsigned int old_metadata_ratio = fs_info->metadata_ratio; 1290 int ret; 1715 int ret; 1291 1716 1292 if (BTRFS_FS_ERROR(fs_info)) { !! 1717 sync_filesystem(sb); 1293 btrfs_err(fs_info, !! 1718 btrfs_remount_prepare(fs_info); 1294 "remounting read-wr << 1295 return -EINVAL; << 1296 } << 1297 1719 1298 if (fs_info->fs_devices->rw_devices = !! 1720 if (data) { 1299 return -EACCES; !! 1721 struct security_mnt_opts new_sec_opts; 1300 1722 1301 if (!btrfs_check_rw_degradable(fs_inf !! 1723 security_init_mnt_opts(&new_sec_opts); 1302 btrfs_warn(fs_info, !! 1724 ret = parse_security_options(data, &new_sec_opts); 1303 "too many missing !! 1725 if (ret) 1304 return -EACCES; !! 1726 goto restore; >> 1727 ret = setup_security_options(fs_info, sb, >> 1728 &new_sec_opts); >> 1729 if (ret) { >> 1730 security_free_mnt_opts(&new_sec_opts); >> 1731 goto restore; >> 1732 } 1305 } 1733 } 1306 1734 1307 if (btrfs_super_log_root(fs_info->sup !! 1735 ret = btrfs_parse_options(fs_info, data, *flags); 1308 btrfs_warn(fs_info, !! 1736 if (ret) { 1309 "mount required to !! 1737 ret = -EINVAL; 1310 return -EINVAL; !! 1738 goto restore; 1311 } 1739 } 1312 1740 1313 /* !! 1741 btrfs_remount_begin(fs_info, old_opts, *flags); 1314 * NOTE: when remounting with a chang !! 1742 btrfs_resize_thread_pool(fs_info, 1315 * anywhere above this point, as we a !! 1743 fs_info->thread_pool_size, old_thread_pool_size); 1316 * until we pass the above checks. << 1317 */ << 1318 ret = btrfs_start_pre_rw_mount(fs_inf << 1319 if (ret) << 1320 return ret; << 1321 << 1322 btrfs_clear_sb_rdonly(fs_info->sb); << 1323 << 1324 set_bit(BTRFS_FS_OPEN, &fs_info->flag << 1325 << 1326 /* << 1327 * If we've gone from readonly -> rea << 1328 * sync/async discard lists in the ri << 1329 */ << 1330 btrfs_discard_resume(fs_info); << 1331 << 1332 return 0; << 1333 } << 1334 << 1335 static int btrfs_remount_ro(struct btrfs_fs_i << 1336 { << 1337 /* << 1338 * This also happens on 'umount -rf' << 1339 * filesystem is busy. << 1340 */ << 1341 cancel_work_sync(&fs_info->async_recl << 1342 cancel_work_sync(&fs_info->async_data << 1343 << 1344 btrfs_discard_cleanup(fs_info); << 1345 1744 1346 /* Wait for the uuid_scan task to fin !! 1745 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY)) 1347 down(&fs_info->uuid_tree_rescan_sem); !! 1746 goto out; 1348 /* Avoid complains from lockdep et al << 1349 up(&fs_info->uuid_tree_rescan_sem); << 1350 << 1351 btrfs_set_sb_rdonly(fs_info->sb); << 1352 << 1353 /* << 1354 * Setting SB_RDONLY will put the cle << 1355 * loop if it's already active. If i << 1356 * unused block groups on disk until << 1357 * unless we clean them up here. << 1358 */ << 1359 btrfs_delete_unused_bgs(fs_info); << 1360 << 1361 /* << 1362 * The cleaner task could be already << 1363 * BTRFS_FS_STATE_RO (and SB_RDONLY i << 1364 * sure that after we finish the remo << 1365 * btrfs_commit_super(), the cleaner << 1366 * - either because it was dropping a << 1367 * or deleting an unused block grou << 1368 * group from the list of unused bl << 1369 * in the previous call to btrfs_de << 1370 */ << 1371 wait_on_bit(&fs_info->flags, BTRFS_FS << 1372 << 1373 /* << 1374 * We've set the superblock to RO mod << 1375 * cleaner task sleep without running << 1376 * through all the delayed iputs here << 1377 * without remounting RW we don't end << 1378 * with a non-empty list of delayed i << 1379 */ << 1380 btrfs_run_delayed_iputs(fs_info); << 1381 << 1382 btrfs_dev_replace_suspend_for_unmount << 1383 btrfs_scrub_cancel(fs_info); << 1384 btrfs_pause_balance(fs_info); << 1385 1747 1386 /* !! 1748 if (*flags & MS_RDONLY) { 1387 * Pause the qgroup rescan worker if !! 1749 /* 1388 * be still running after we are in R !! 1750 * this also happens on 'umount -rf' or on shutdown, when 1389 * we unmount, it might have left a t !! 1751 * the filesystem is busy. 1390 * the transaction and/or crash. !! 1752 */ 1391 */ !! 1753 cancel_work_sync(&fs_info->async_reclaim_work); 1392 btrfs_qgroup_wait_for_completion(fs_i << 1393 1754 1394 return btrfs_commit_super(fs_info); !! 1755 /* wait for the uuid_scan task to finish */ 1395 } !! 1756 down(&fs_info->uuid_tree_rescan_sem); >> 1757 /* avoid complains from lockdep et al. */ >> 1758 up(&fs_info->uuid_tree_rescan_sem); 1396 1759 1397 static void btrfs_ctx_to_info(struct btrfs_fs !! 1760 sb->s_flags |= MS_RDONLY; 1398 { << 1399 fs_info->max_inline = ctx->max_inline << 1400 fs_info->commit_interval = ctx->commi << 1401 fs_info->metadata_ratio = ctx->metada << 1402 fs_info->thread_pool_size = ctx->thre << 1403 fs_info->mount_opt = ctx->mount_opt; << 1404 fs_info->compress_type = ctx->compres << 1405 fs_info->compress_level = ctx->compre << 1406 } << 1407 << 1408 static void btrfs_info_to_ctx(struct btrfs_fs << 1409 { << 1410 ctx->max_inline = fs_info->max_inline << 1411 ctx->commit_interval = fs_info->commi << 1412 ctx->metadata_ratio = fs_info->metada << 1413 ctx->thread_pool_size = fs_info->thre << 1414 ctx->mount_opt = fs_info->mount_opt; << 1415 ctx->compress_type = fs_info->compres << 1416 ctx->compress_level = fs_info->compre << 1417 } << 1418 << 1419 #define btrfs_info_if_set(fs_info, old_ctx, o << 1420 do { << 1421 if ((!old_ctx || !btrfs_raw_test_opt( << 1422 btrfs_raw_test_opt(fs_info->mount << 1423 btrfs_info(fs_info, fmt, ##ar << 1424 } while (0) << 1425 << 1426 #define btrfs_info_if_unset(fs_info, old_ctx, << 1427 do { << 1428 if ((old_ctx && btrfs_raw_test_opt(ol << 1429 !btrfs_raw_test_opt(fs_info->moun << 1430 btrfs_info(fs_info, fmt, ##ar << 1431 } while (0) << 1432 << 1433 static void btrfs_emit_options(struct btrfs_f << 1434 struct btrfs_f << 1435 { << 1436 btrfs_info_if_set(info, old, NODATASU << 1437 btrfs_info_if_set(info, old, DEGRADED << 1438 btrfs_info_if_set(info, old, NODATASU << 1439 btrfs_info_if_set(info, old, SSD, "en << 1440 btrfs_info_if_set(info, old, SSD_SPRE << 1441 btrfs_info_if_set(info, old, NOBARRIE << 1442 btrfs_info_if_set(info, old, NOTREELO << 1443 btrfs_info_if_set(info, old, NOLOGREP << 1444 btrfs_info_if_set(info, old, FLUSHONC << 1445 btrfs_info_if_set(info, old, DISCARD_ << 1446 btrfs_info_if_set(info, old, DISCARD_ << 1447 btrfs_info_if_set(info, old, FREE_SPA << 1448 btrfs_info_if_set(info, old, SPACE_CA << 1449 btrfs_info_if_set(info, old, CLEAR_CA << 1450 btrfs_info_if_set(info, old, AUTO_DEF << 1451 btrfs_info_if_set(info, old, FRAGMENT << 1452 btrfs_info_if_set(info, old, FRAGMENT << 1453 btrfs_info_if_set(info, old, REF_VERI << 1454 btrfs_info_if_set(info, old, USEBACKU << 1455 btrfs_info_if_set(info, old, IGNOREBA << 1456 btrfs_info_if_set(info, old, IGNOREDA << 1457 btrfs_info_if_set(info, old, IGNOREME << 1458 btrfs_info_if_set(info, old, IGNORESU << 1459 << 1460 btrfs_info_if_unset(info, old, NODATA << 1461 btrfs_info_if_unset(info, old, SSD, " << 1462 btrfs_info_if_unset(info, old, SSD_SP << 1463 btrfs_info_if_unset(info, old, NOBARR << 1464 btrfs_info_if_unset(info, old, NOTREE << 1465 btrfs_info_if_unset(info, old, SPACE_ << 1466 btrfs_info_if_unset(info, old, FREE_S << 1467 btrfs_info_if_unset(info, old, AUTO_D << 1468 btrfs_info_if_unset(info, old, COMPRE << 1469 << 1470 /* Did the compression settings chang << 1471 if (btrfs_test_opt(info, COMPRESS) && << 1472 (!old || << 1473 old->compress_type != info->comp << 1474 old->compress_level != info->com << 1475 (!btrfs_raw_test_opt(old->mount_ << 1476 btrfs_raw_test_opt(info->mount_ << 1477 const char *compress_type = b << 1478 << 1479 btrfs_info(info, "%s %s compr << 1480 btrfs_test_opt(inf << 1481 compress_type, inf << 1482 } << 1483 1761 1484 if (info->max_inline != BTRFS_DEFAULT !! 1762 /* 1485 btrfs_info(info, "max_inline !! 1763 * Setting MS_RDONLY will put the cleaner thread to 1486 } !! 1764 * sleep at the next loop if it's already active. >> 1765 * If it's already asleep, we'll leave unused block >> 1766 * groups on disk until we're mounted read-write again >> 1767 * unless we clean them up here. >> 1768 */ >> 1769 btrfs_delete_unused_bgs(fs_info); 1487 1770 1488 static int btrfs_reconfigure(struct fs_contex !! 1771 btrfs_dev_replace_suspend_for_unmount(fs_info); 1489 { !! 1772 btrfs_scrub_cancel(fs_info); 1490 struct super_block *sb = fc->root->d_ !! 1773 btrfs_pause_balance(fs_info); 1491 struct btrfs_fs_info *fs_info = btrfs !! 1774 1492 struct btrfs_fs_context *ctx = fc->fs !! 1775 ret = btrfs_commit_super(fs_info); 1493 struct btrfs_fs_context old_ctx; !! 1776 if (ret) 1494 int ret = 0; !! 1777 goto restore; 1495 bool mount_reconfigure = (fc->s_fs_in !! 1778 } else { >> 1779 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { >> 1780 btrfs_err(fs_info, >> 1781 "Remounting read-write after error is not allowed"); >> 1782 ret = -EINVAL; >> 1783 goto restore; >> 1784 } >> 1785 if (fs_info->fs_devices->rw_devices == 0) { >> 1786 ret = -EACCES; >> 1787 goto restore; >> 1788 } 1496 1789 1497 btrfs_info_to_ctx(fs_info, &old_ctx); !! 1790 if (fs_info->fs_devices->missing_devices > >> 1791 fs_info->num_tolerated_disk_barrier_failures && >> 1792 !(*flags & MS_RDONLY)) { >> 1793 btrfs_warn(fs_info, >> 1794 "too many missing devices, writeable remount is not allowed"); >> 1795 ret = -EACCES; >> 1796 goto restore; >> 1797 } 1498 1798 1499 /* !! 1799 if (btrfs_super_log_root(fs_info->super_copy) != 0) { 1500 * This is our "bind mount" trick, we !! 1800 ret = -EINVAL; 1501 * anything other than mount a differ !! 1801 goto restore; 1502 * all of the mount options should be !! 1802 } 1503 */ << 1504 if (mount_reconfigure) << 1505 ctx->mount_opt = old_ctx.moun << 1506 1803 1507 sync_filesystem(sb); !! 1804 ret = btrfs_cleanup_fs_roots(fs_info); 1508 set_bit(BTRFS_FS_STATE_REMOUNTING, &f !! 1805 if (ret) >> 1806 goto restore; 1509 1807 1510 if (!btrfs_check_options(fs_info, &ct !! 1808 /* recover relocation */ 1511 return -EINVAL; !! 1809 mutex_lock(&fs_info->cleaner_mutex); >> 1810 ret = btrfs_recover_relocation(root); >> 1811 mutex_unlock(&fs_info->cleaner_mutex); >> 1812 if (ret) >> 1813 goto restore; 1512 1814 1513 ret = btrfs_check_features(fs_info, ! !! 1815 ret = btrfs_resume_balance_async(fs_info); 1514 if (ret < 0) !! 1816 if (ret) 1515 return ret; !! 1817 goto restore; 1516 1818 1517 btrfs_ctx_to_info(fs_info, ctx); !! 1819 ret = btrfs_resume_dev_replace_async(fs_info); 1518 btrfs_remount_begin(fs_info, old_ctx. !! 1820 if (ret) { 1519 btrfs_resize_thread_pool(fs_info, fs_ !! 1821 btrfs_warn(fs_info, "failed to resume dev_replace"); 1520 old_ctx.thre !! 1822 goto restore; 1521 << 1522 if ((bool)btrfs_test_opt(fs_info, FRE << 1523 (bool)btrfs_fs_compat_ro(fs_info, << 1524 (!sb_rdonly(sb) || (fc->sb_flags << 1525 btrfs_warn(fs_info, << 1526 "remount supports changing fr << 1527 /* Make sure free space cache << 1528 if (btrfs_fs_compat_ro(fs_inf << 1529 btrfs_set_opt(fs_info << 1530 btrfs_clear_opt(fs_in << 1531 } << 1532 if (btrfs_free_space_cache_v1 << 1533 btrfs_clear_opt(fs_in << 1534 btrfs_set_opt(fs_info << 1535 } 1823 } 1536 } << 1537 1824 1538 ret = 0; !! 1825 if (!fs_info->uuid_root) { 1539 if (!sb_rdonly(sb) && (fc->sb_flags & !! 1826 btrfs_info(fs_info, "creating UUID tree"); 1540 ret = btrfs_remount_ro(fs_inf !! 1827 ret = btrfs_create_uuid_tree(fs_info); 1541 else if (sb_rdonly(sb) && !(fc->sb_fl !! 1828 if (ret) { 1542 ret = btrfs_remount_rw(fs_inf !! 1829 btrfs_warn(fs_info, 1543 if (ret) !! 1830 "failed to create the UUID tree %d", 1544 goto restore; !! 1831 ret); 1545 !! 1832 goto restore; 1546 /* !! 1833 } 1547 * If we set the mask during the para !! 1834 } 1548 * remount. Here we can set the mask !! 1835 sb->s_flags &= ~MS_RDONLY; 1549 * appropriately. << 1550 */ << 1551 if ((fc->sb_flags & SB_POSIXACL) != ( << 1552 fc->sb_flags_mask |= SB_POSIX << 1553 1836 1554 btrfs_emit_options(fs_info, &old_ctx) !! 1837 set_bit(BTRFS_FS_OPEN, &fs_info->flags); >> 1838 } >> 1839 out: 1555 wake_up_process(fs_info->transaction_ 1840 wake_up_process(fs_info->transaction_kthread); 1556 btrfs_remount_cleanup(fs_info, old_ct !! 1841 btrfs_remount_cleanup(fs_info, old_opts); 1557 btrfs_clear_oneshot_options(fs_info); << 1558 clear_bit(BTRFS_FS_STATE_REMOUNTING, << 1559 << 1560 return 0; 1842 return 0; >> 1843 1561 restore: 1844 restore: 1562 btrfs_ctx_to_info(fs_info, &old_ctx); !! 1845 /* We've hit an error - don't reset MS_RDONLY */ 1563 btrfs_remount_cleanup(fs_info, old_ct !! 1846 if (sb->s_flags & MS_RDONLY) 1564 clear_bit(BTRFS_FS_STATE_REMOUNTING, !! 1847 old_flags |= MS_RDONLY; >> 1848 sb->s_flags = old_flags; >> 1849 fs_info->mount_opt = old_opts; >> 1850 fs_info->compress_type = old_compress_type; >> 1851 fs_info->max_inline = old_max_inline; >> 1852 mutex_lock(&fs_info->chunk_mutex); >> 1853 fs_info->alloc_start = old_alloc_start; >> 1854 mutex_unlock(&fs_info->chunk_mutex); >> 1855 btrfs_resize_thread_pool(fs_info, >> 1856 old_thread_pool_size, fs_info->thread_pool_size); >> 1857 fs_info->metadata_ratio = old_metadata_ratio; >> 1858 btrfs_remount_cleanup(fs_info, old_opts); 1565 return ret; 1859 return ret; 1566 } 1860 } 1567 1861 1568 /* Used to sort the devices by max_avail(desc 1862 /* Used to sort the devices by max_avail(descending sort) */ 1569 static int btrfs_cmp_device_free_bytes(const !! 1863 static int btrfs_cmp_device_free_bytes(const void *dev_info1, >> 1864 const void *dev_info2) 1570 { 1865 { 1571 const struct btrfs_device_info *dev_i !! 1866 if (((struct btrfs_device_info *)dev_info1)->max_avail > 1572 const struct btrfs_device_info *dev_i !! 1867 ((struct btrfs_device_info *)dev_info2)->max_avail) 1573 << 1574 if (dev_info1->max_avail > dev_info2- << 1575 return -1; 1868 return -1; 1576 else if (dev_info1->max_avail < dev_i !! 1869 else if (((struct btrfs_device_info *)dev_info1)->max_avail < >> 1870 ((struct btrfs_device_info *)dev_info2)->max_avail) 1577 return 1; 1871 return 1; >> 1872 else 1578 return 0; 1873 return 0; 1579 } 1874 } 1580 1875 1581 /* 1876 /* 1582 * sort the devices by max_avail, in which ma 1877 * sort the devices by max_avail, in which max free extent size of each device 1583 * is stored.(Descending Sort) 1878 * is stored.(Descending Sort) 1584 */ 1879 */ 1585 static inline void btrfs_descending_sort_devi 1880 static inline void btrfs_descending_sort_devices( 1586 struc 1881 struct btrfs_device_info *devices, 1587 size_ 1882 size_t nr_devices) 1588 { 1883 { 1589 sort(devices, nr_devices, sizeof(stru 1884 sort(devices, nr_devices, sizeof(struct btrfs_device_info), 1590 btrfs_cmp_device_free_bytes, NUL 1885 btrfs_cmp_device_free_bytes, NULL); 1591 } 1886 } 1592 1887 1593 /* 1888 /* 1594 * The helper to calc the free space on the d 1889 * The helper to calc the free space on the devices that can be used to store 1595 * file data. 1890 * file data. 1596 */ 1891 */ 1597 static inline int btrfs_calc_avail_data_space !! 1892 static int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info, 1598 !! 1893 u64 *free_bytes) 1599 { 1894 { >> 1895 struct btrfs_root *root = fs_info->tree_root; 1600 struct btrfs_device_info *devices_inf 1896 struct btrfs_device_info *devices_info; 1601 struct btrfs_fs_devices *fs_devices = 1897 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 1602 struct btrfs_device *device; 1898 struct btrfs_device *device; >> 1899 u64 skip_space; 1603 u64 type; 1900 u64 type; 1604 u64 avail_space; 1901 u64 avail_space; >> 1902 u64 used_space; 1605 u64 min_stripe_size; 1903 u64 min_stripe_size; 1606 int num_stripes = 1; !! 1904 int min_stripes = 1, num_stripes = 1; 1607 int i = 0, nr_devices; 1905 int i = 0, nr_devices; 1608 const struct btrfs_raid_attr *rattr; !! 1906 int ret; 1609 1907 1610 /* 1908 /* 1611 * We aren't under the device list lo 1909 * We aren't under the device list lock, so this is racy-ish, but good 1612 * enough for our purposes. 1910 * enough for our purposes. 1613 */ 1911 */ 1614 nr_devices = fs_info->fs_devices->ope 1912 nr_devices = fs_info->fs_devices->open_devices; 1615 if (!nr_devices) { 1913 if (!nr_devices) { 1616 smp_mb(); 1914 smp_mb(); 1617 nr_devices = fs_info->fs_devi 1915 nr_devices = fs_info->fs_devices->open_devices; 1618 ASSERT(nr_devices); 1916 ASSERT(nr_devices); 1619 if (!nr_devices) { 1917 if (!nr_devices) { 1620 *free_bytes = 0; 1918 *free_bytes = 0; 1621 return 0; 1919 return 0; 1622 } 1920 } 1623 } 1921 } 1624 1922 1625 devices_info = kmalloc_array(nr_devic 1923 devices_info = kmalloc_array(nr_devices, sizeof(*devices_info), 1626 GFP_KERNEL); !! 1924 GFP_NOFS); 1627 if (!devices_info) 1925 if (!devices_info) 1628 return -ENOMEM; 1926 return -ENOMEM; 1629 1927 1630 /* calc min stripe number for data sp 1928 /* calc min stripe number for data space allocation */ 1631 type = btrfs_data_alloc_profile(fs_in !! 1929 type = btrfs_get_alloc_profile(root, 1); 1632 rattr = &btrfs_raid_array[btrfs_bg_fl !! 1930 if (type & BTRFS_BLOCK_GROUP_RAID0) { 1633 !! 1931 min_stripes = 2; 1634 if (type & BTRFS_BLOCK_GROUP_RAID0) << 1635 num_stripes = nr_devices; 1932 num_stripes = nr_devices; 1636 else if (type & BTRFS_BLOCK_GROUP_RAI !! 1933 } else if (type & BTRFS_BLOCK_GROUP_RAID1) { 1637 num_stripes = rattr->ncopies; !! 1934 min_stripes = 2; 1638 else if (type & BTRFS_BLOCK_GROUP_RAI !! 1935 num_stripes = 2; >> 1936 } else if (type & BTRFS_BLOCK_GROUP_RAID10) { >> 1937 min_stripes = 4; 1639 num_stripes = 4; 1938 num_stripes = 4; >> 1939 } 1640 1940 1641 /* Adjust for more than 1 stripe per !! 1941 if (type & BTRFS_BLOCK_GROUP_DUP) 1642 min_stripe_size = rattr->dev_stripes !! 1942 min_stripe_size = 2 * BTRFS_STRIPE_LEN; >> 1943 else >> 1944 min_stripe_size = BTRFS_STRIPE_LEN; 1643 1945 >> 1946 if (fs_info->alloc_start) >> 1947 mutex_lock(&fs_devices->device_list_mutex); 1644 rcu_read_lock(); 1948 rcu_read_lock(); 1645 list_for_each_entry_rcu(device, &fs_d 1949 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 1646 if (!test_bit(BTRFS_DEV_STATE !! 1950 if (!device->in_fs_metadata || !device->bdev || 1647 !! 1951 device->is_tgtdev_for_dev_replace) 1648 !device->bdev || << 1649 test_bit(BTRFS_DEV_STATE_ << 1650 continue; 1952 continue; 1651 1953 1652 if (i >= nr_devices) 1954 if (i >= nr_devices) 1653 break; 1955 break; 1654 1956 1655 avail_space = device->total_b 1957 avail_space = device->total_bytes - device->bytes_used; 1656 1958 1657 /* align with stripe_len */ 1959 /* align with stripe_len */ 1658 avail_space = rounddown(avail !! 1960 avail_space = div_u64(avail_space, BTRFS_STRIPE_LEN); >> 1961 avail_space *= BTRFS_STRIPE_LEN; 1659 1962 1660 /* 1963 /* 1661 * Ensure we have at least mi !! 1964 * In order to avoid overwriting the superblock on the drive, 1662 * reserved space on the devi !! 1965 * btrfs starts at an offset of at least 1MB when doing chunk >> 1966 * allocation. 1663 */ 1967 */ 1664 if (avail_space <= BTRFS_DEVI !! 1968 skip_space = SZ_1M; 1665 continue; !! 1969 >> 1970 /* user can set the offset in fs_info->alloc_start. */ >> 1971 if (fs_info->alloc_start && >> 1972 fs_info->alloc_start + BTRFS_STRIPE_LEN <= >> 1973 device->total_bytes) { >> 1974 rcu_read_unlock(); >> 1975 skip_space = max(fs_info->alloc_start, skip_space); 1666 1976 1667 avail_space -= BTRFS_DEVICE_R !! 1977 /* >> 1978 * btrfs can not use the free space in >> 1979 * [0, skip_space - 1], we must subtract it from the >> 1980 * total. In order to implement it, we account the used >> 1981 * space in this range first. >> 1982 */ >> 1983 ret = btrfs_account_dev_extents_size(device, 0, >> 1984 skip_space - 1, >> 1985 &used_space); >> 1986 if (ret) { >> 1987 kfree(devices_info); >> 1988 mutex_unlock(&fs_devices->device_list_mutex); >> 1989 return ret; >> 1990 } >> 1991 >> 1992 rcu_read_lock(); >> 1993 >> 1994 /* calc the free space in [0, skip_space - 1] */ >> 1995 skip_space -= used_space; >> 1996 } >> 1997 >> 1998 /* >> 1999 * we can use the free space in [0, skip_space - 1], subtract >> 2000 * it from the total. >> 2001 */ >> 2002 if (avail_space && avail_space >= skip_space) >> 2003 avail_space -= skip_space; >> 2004 else >> 2005 avail_space = 0; >> 2006 >> 2007 if (avail_space < min_stripe_size) >> 2008 continue; 1668 2009 1669 devices_info[i].dev = device; 2010 devices_info[i].dev = device; 1670 devices_info[i].max_avail = a 2011 devices_info[i].max_avail = avail_space; 1671 2012 1672 i++; 2013 i++; 1673 } 2014 } 1674 rcu_read_unlock(); 2015 rcu_read_unlock(); >> 2016 if (fs_info->alloc_start) >> 2017 mutex_unlock(&fs_devices->device_list_mutex); 1675 2018 1676 nr_devices = i; 2019 nr_devices = i; 1677 2020 1678 btrfs_descending_sort_devices(devices 2021 btrfs_descending_sort_devices(devices_info, nr_devices); 1679 2022 1680 i = nr_devices - 1; 2023 i = nr_devices - 1; 1681 avail_space = 0; 2024 avail_space = 0; 1682 while (nr_devices >= rattr->devs_min) !! 2025 while (nr_devices >= min_stripes) { 1683 num_stripes = min(num_stripes !! 2026 if (num_stripes > nr_devices) >> 2027 num_stripes = nr_devices; 1684 2028 1685 if (devices_info[i].max_avail 2029 if (devices_info[i].max_avail >= min_stripe_size) { 1686 int j; 2030 int j; 1687 u64 alloc_size; 2031 u64 alloc_size; 1688 2032 1689 avail_space += device 2033 avail_space += devices_info[i].max_avail * num_stripes; 1690 alloc_size = devices_ 2034 alloc_size = devices_info[i].max_avail; 1691 for (j = i + 1 - num_ 2035 for (j = i + 1 - num_stripes; j <= i; j++) 1692 devices_info[ 2036 devices_info[j].max_avail -= alloc_size; 1693 } 2037 } 1694 i--; 2038 i--; 1695 nr_devices--; 2039 nr_devices--; 1696 } 2040 } 1697 2041 1698 kfree(devices_info); 2042 kfree(devices_info); 1699 *free_bytes = avail_space; 2043 *free_bytes = avail_space; 1700 return 0; 2044 return 0; 1701 } 2045 } 1702 2046 1703 /* 2047 /* 1704 * Calculate numbers for 'df', pessimistic in 2048 * Calculate numbers for 'df', pessimistic in case of mixed raid profiles. 1705 * 2049 * 1706 * If there's a redundant raid level at DATA 2050 * If there's a redundant raid level at DATA block groups, use the respective 1707 * multiplier to scale the sizes. 2051 * multiplier to scale the sizes. 1708 * 2052 * 1709 * Unused device space usage is based on simu 2053 * Unused device space usage is based on simulating the chunk allocator 1710 * algorithm that respects the device sizes a !! 2054 * algorithm that respects the device sizes, order of allocations and the 1711 * a close approximation of the actual use bu !! 2055 * 'alloc_start' value, this is a close approximation of the actual use but 1712 * change the result (like a new metadata chu !! 2056 * there are other factors that may change the result (like a new metadata >> 2057 * chunk). 1713 * 2058 * 1714 * If metadata is exhausted, f_bavail will be 2059 * If metadata is exhausted, f_bavail will be 0. 1715 */ 2060 */ 1716 static int btrfs_statfs(struct dentry *dentry 2061 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf) 1717 { 2062 { 1718 struct btrfs_fs_info *fs_info = btrfs 2063 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb); 1719 struct btrfs_super_block *disk_super 2064 struct btrfs_super_block *disk_super = fs_info->super_copy; >> 2065 struct list_head *head = &fs_info->space_info; 1720 struct btrfs_space_info *found; 2066 struct btrfs_space_info *found; 1721 u64 total_used = 0; 2067 u64 total_used = 0; 1722 u64 total_free_data = 0; 2068 u64 total_free_data = 0; 1723 u64 total_free_meta = 0; 2069 u64 total_free_meta = 0; 1724 u32 bits = fs_info->sectorsize_bits; !! 2070 int bits = dentry->d_sb->s_blocksize_bits; 1725 __be32 *fsid = (__be32 *)fs_info->fs_ !! 2071 __be32 *fsid = (__be32 *)fs_info->fsid; 1726 unsigned factor = 1; 2072 unsigned factor = 1; 1727 struct btrfs_block_rsv *block_rsv = & 2073 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 1728 int ret; 2074 int ret; 1729 u64 thresh = 0; 2075 u64 thresh = 0; 1730 int mixed = 0; 2076 int mixed = 0; 1731 2077 1732 list_for_each_entry(found, &fs_info-> !! 2078 rcu_read_lock(); >> 2079 list_for_each_entry_rcu(found, head, list) { 1733 if (found->flags & BTRFS_BLOC 2080 if (found->flags & BTRFS_BLOCK_GROUP_DATA) { 1734 int i; 2081 int i; 1735 2082 1736 total_free_data += fo 2083 total_free_data += found->disk_total - found->disk_used; 1737 total_free_data -= 2084 total_free_data -= 1738 btrfs_account 2085 btrfs_account_ro_block_groups_free_space(found); 1739 2086 1740 for (i = 0; i < BTRFS 2087 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 1741 if (!list_emp !! 2088 if (!list_empty(&found->block_groups[i])) { 1742 facto !! 2089 switch (i) { 1743 !! 2090 case BTRFS_RAID_DUP: >> 2091 case BTRFS_RAID_RAID1: >> 2092 case BTRFS_RAID_RAID10: >> 2093 factor = 2; >> 2094 } >> 2095 } 1744 } 2096 } 1745 } 2097 } 1746 2098 1747 /* 2099 /* 1748 * Metadata in mixed block gr !! 2100 * Metadata in mixed block goup profiles are accounted in data 1749 */ 2101 */ 1750 if (!mixed && found->flags & 2102 if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) { 1751 if (found->flags & BT 2103 if (found->flags & BTRFS_BLOCK_GROUP_DATA) 1752 mixed = 1; 2104 mixed = 1; 1753 else 2105 else 1754 total_free_me 2106 total_free_meta += found->disk_total - 1755 found 2107 found->disk_used; 1756 } 2108 } 1757 2109 1758 total_used += found->disk_use 2110 total_used += found->disk_used; 1759 } 2111 } 1760 2112 >> 2113 rcu_read_unlock(); >> 2114 1761 buf->f_blocks = div_u64(btrfs_super_t 2115 buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor); 1762 buf->f_blocks >>= bits; 2116 buf->f_blocks >>= bits; 1763 buf->f_bfree = buf->f_blocks - (div_u 2117 buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits); 1764 2118 1765 /* Account global block reserve as us 2119 /* Account global block reserve as used, it's in logical size already */ 1766 spin_lock(&block_rsv->lock); 2120 spin_lock(&block_rsv->lock); 1767 /* Mixed block groups accounting is n 2121 /* Mixed block groups accounting is not byte-accurate, avoid overflow */ 1768 if (buf->f_bfree >= block_rsv->size > 2122 if (buf->f_bfree >= block_rsv->size >> bits) 1769 buf->f_bfree -= block_rsv->si 2123 buf->f_bfree -= block_rsv->size >> bits; 1770 else 2124 else 1771 buf->f_bfree = 0; 2125 buf->f_bfree = 0; 1772 spin_unlock(&block_rsv->lock); 2126 spin_unlock(&block_rsv->lock); 1773 2127 1774 buf->f_bavail = div_u64(total_free_da 2128 buf->f_bavail = div_u64(total_free_data, factor); 1775 ret = btrfs_calc_avail_data_space(fs_ 2129 ret = btrfs_calc_avail_data_space(fs_info, &total_free_data); 1776 if (ret) 2130 if (ret) 1777 return ret; 2131 return ret; 1778 buf->f_bavail += div_u64(total_free_d 2132 buf->f_bavail += div_u64(total_free_data, factor); 1779 buf->f_bavail = buf->f_bavail >> bits 2133 buf->f_bavail = buf->f_bavail >> bits; 1780 2134 1781 /* 2135 /* 1782 * We calculate the remaining metadat 2136 * We calculate the remaining metadata space minus global reserve. If 1783 * this is (supposedly) smaller than 2137 * this is (supposedly) smaller than zero, there's no space. But this 1784 * does not hold in practice, the exh 2138 * does not hold in practice, the exhausted state happens where's still 1785 * some positive delta. So we apply s 2139 * some positive delta. So we apply some guesswork and compare the 1786 * delta to a 4M threshold. (Practic 2140 * delta to a 4M threshold. (Practically observed delta was ~2M.) 1787 * 2141 * 1788 * We probably cannot calculate the e 2142 * We probably cannot calculate the exact threshold value because this 1789 * depends on the internal reservatio 2143 * depends on the internal reservations requested by various 1790 * operations, so some operations tha 2144 * operations, so some operations that consume a few metadata will 1791 * succeed even if the Avail is zero. 2145 * succeed even if the Avail is zero. But this is better than the other 1792 * way around. 2146 * way around. 1793 */ 2147 */ 1794 thresh = SZ_4M; !! 2148 thresh = 4 * 1024 * 1024; 1795 2149 1796 /* !! 2150 if (!mixed && total_free_meta - thresh < block_rsv->size) 1797 * We only want to claim there's no a << 1798 * allocate chunks for our metadata p << 1799 * not fit in the free metadata space << 1800 * still can allocate chunks and thus << 1801 * calculated f_bavail. << 1802 */ << 1803 if (!mixed && block_rsv->space_info-> << 1804 (total_free_meta < thresh || tota << 1805 buf->f_bavail = 0; 2151 buf->f_bavail = 0; 1806 2152 1807 buf->f_type = BTRFS_SUPER_MAGIC; 2153 buf->f_type = BTRFS_SUPER_MAGIC; 1808 buf->f_bsize = fs_info->sectorsize; !! 2154 buf->f_bsize = dentry->d_sb->s_blocksize; 1809 buf->f_namelen = BTRFS_NAME_LEN; 2155 buf->f_namelen = BTRFS_NAME_LEN; 1810 2156 1811 /* We treat it as constant endianness 2157 /* We treat it as constant endianness (it doesn't matter _which_) 1812 because we want the fsid to come o 2158 because we want the fsid to come out the same whether mounted 1813 on a big-endian or little-endian h 2159 on a big-endian or little-endian host */ 1814 buf->f_fsid.val[0] = be32_to_cpu(fsid 2160 buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]); 1815 buf->f_fsid.val[1] = be32_to_cpu(fsid 2161 buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]); 1816 /* Mask in the root object ID too, to 2162 /* Mask in the root object ID too, to disambiguate subvols */ 1817 buf->f_fsid.val[0] ^= btrfs_root_id(B !! 2163 buf->f_fsid.val[0] ^= BTRFS_I(d_inode(dentry))->root->objectid >> 32; 1818 buf->f_fsid.val[1] ^= btrfs_root_id(B !! 2164 buf->f_fsid.val[1] ^= BTRFS_I(d_inode(dentry))->root->objectid; 1819 2165 1820 return 0; 2166 return 0; 1821 } 2167 } 1822 2168 1823 static int btrfs_fc_test_super(struct super_b << 1824 { << 1825 struct btrfs_fs_info *p = fc->s_fs_in << 1826 struct btrfs_fs_info *fs_info = btrfs << 1827 << 1828 return fs_info->fs_devices == p->fs_d << 1829 } << 1830 << 1831 static int btrfs_get_tree_super(struct fs_con << 1832 { << 1833 struct btrfs_fs_info *fs_info = fc->s << 1834 struct btrfs_fs_context *ctx = fc->fs << 1835 struct btrfs_fs_devices *fs_devices = << 1836 struct block_device *bdev; << 1837 struct btrfs_device *device; << 1838 struct super_block *sb; << 1839 blk_mode_t mode = btrfs_open_mode(fc) << 1840 int ret; << 1841 << 1842 btrfs_ctx_to_info(fs_info, ctx); << 1843 mutex_lock(&uuid_mutex); << 1844 << 1845 /* << 1846 * With 'true' passed to btrfs_scan_o << 1847 * either a valid device or an error. << 1848 */ << 1849 device = btrfs_scan_one_device(fc->so << 1850 ASSERT(device != NULL); << 1851 if (IS_ERR(device)) { << 1852 mutex_unlock(&uuid_mutex); << 1853 return PTR_ERR(device); << 1854 } << 1855 << 1856 fs_devices = device->fs_devices; << 1857 fs_info->fs_devices = fs_devices; << 1858 << 1859 ret = btrfs_open_devices(fs_devices, << 1860 mutex_unlock(&uuid_mutex); << 1861 if (ret) << 1862 return ret; << 1863 << 1864 if (!(fc->sb_flags & SB_RDONLY) && fs << 1865 ret = -EACCES; << 1866 goto error; << 1867 } << 1868 << 1869 bdev = fs_devices->latest_dev->bdev; << 1870 << 1871 /* << 1872 * From now on the error handling is << 1873 * << 1874 * If successful, this will transfer << 1875 * and fc->s_fs_info will be NULL. H << 1876 * super, we'll still have fc->s_fs_i << 1877 * completely out it'll be cleaned up << 1878 * otherwise it's tied to the lifetim << 1879 */ << 1880 sb = sget_fc(fc, btrfs_fc_test_super, << 1881 if (IS_ERR(sb)) { << 1882 ret = PTR_ERR(sb); << 1883 goto error; << 1884 } << 1885 << 1886 set_device_specific_options(fs_info); << 1887 << 1888 if (sb->s_root) { << 1889 btrfs_close_devices(fs_device << 1890 if ((fc->sb_flags ^ sb->s_fla << 1891 ret = -EBUSY; << 1892 } else { << 1893 snprintf(sb->s_id, sizeof(sb- << 1894 shrinker_debugfs_rename(sb->s << 1895 btrfs_sb(sb)->bdev_holder = & << 1896 ret = btrfs_fill_super(sb, fs << 1897 } << 1898 << 1899 if (ret) { << 1900 deactivate_locked_super(sb); << 1901 return ret; << 1902 } << 1903 << 1904 btrfs_clear_oneshot_options(fs_info); << 1905 << 1906 fc->root = dget(sb->s_root); << 1907 return 0; << 1908 << 1909 error: << 1910 btrfs_close_devices(fs_devices); << 1911 return ret; << 1912 } << 1913 << 1914 /* << 1915 * Ever since commit 0723a0473fb4 ("btrfs: al << 1916 * with different ro/rw options") the followi << 1917 * << 1918 * (i) mount /dev/sda3 -o subvol=foo,r << 1919 * (ii) mount /dev/sda3 -o subvol=bar,r << 1920 * << 1921 * which looks nice and innocent but is actua << 1922 * a long comment. << 1923 * << 1924 * On another filesystem a subvolume mount is << 1925 * << 1926 * (iii) # create rw superblock + initia << 1927 * mount -t xfs /dev/sdb /opt/ << 1928 * << 1929 * # create ro bind mount << 1930 * mount --bind -o ro /opt/foo /mn << 1931 * << 1932 * # unmount initial mount << 1933 * umount /opt << 1934 * << 1935 * Of course, there's some special subvolume << 1936 * sb->s_root dentry is really swapped after << 1937 * it's very close and will help us understan << 1938 * << 1939 * The old mount API didn't cleanly distingui << 1940 * and a superblock being made ro. The only << 1941 * either object was by passing ms_rdonly. If << 1942 * mount(2) such as: << 1943 * << 1944 * mount("/dev/sdb", "/mnt", "xfs", ms_r << 1945 * << 1946 * the MS_RDONLY flag being specified had two << 1947 * << 1948 * (1) MNT_READONLY was raised -> the resulti << 1949 * @mnt->mnt_flags |= MNT_READONLY raised << 1950 * << 1951 * (2) MS_RDONLY was passed to the filesystem << 1952 * made the superblock ro. Note, how SB_R << 1953 * ms_rdonly and is raised whenever MS_RD << 1954 * << 1955 * Creating a subtree mount via (iii) ends up << 1956 * subtree mounted ro. << 1957 * << 1958 * But consider the effect on the old mount A << 1959 * which combines the distinct step in (iii) << 1960 * << 1961 * By issuing (i) both the mount and the supe << 1962 * is issued the superblock is ro and thus ev << 1963 * rw it wouldn't help. Hence, btrfs needed t << 1964 * to rw for (ii) which it did using an inter << 1965 * << 1966 * IOW, subvolume mounting was inherently com << 1967 * MS_RDONLY in mount(2). Note, this ambiguit << 1968 * "ro" to MS_RDONLY. IOW, in both (i) and (i << 1969 * passed by mount(8) to mount(2). << 1970 * << 1971 * Enter the new mount API. The new mount API << 1972 * and making a superblock ro. << 1973 * << 1974 * (3) To turn a mount ro the MOUNT_ATTR_ONLY << 1975 * fsmount() or mount_setattr() this is a << 1976 * specific mount or mount tree that is n << 1977 * << 1978 * (4) To turn a superblock ro the "ro" flag << 1979 * fsconfig(FSCONFIG_SET_FLAG, "ro"). Thi << 1980 * in fc->sb_flags. << 1981 * << 1982 * But, currently the util-linux mount comman << 1983 * API and is still setting fsconfig(FSCONFIG << 1984 * btrfs or not, setting the whole super bloc << 1985 * work with different options work we need t << 1986 */ << 1987 static struct vfsmount *btrfs_reconfigure_for << 1988 { << 1989 struct vfsmount *mnt; << 1990 int ret; << 1991 const bool ro2rw = !(fc->sb_flags & S << 1992 << 1993 /* << 1994 * We got an EBUSY because our SB_RDO << 1995 * super block, so invert our setting << 1996 * can get our vfsmount. << 1997 */ << 1998 if (ro2rw) << 1999 fc->sb_flags |= SB_RDONLY; << 2000 else << 2001 fc->sb_flags &= ~SB_RDONLY; << 2002 << 2003 mnt = fc_mount(fc); << 2004 if (IS_ERR(mnt)) << 2005 return mnt; << 2006 << 2007 if (!ro2rw) << 2008 return mnt; << 2009 << 2010 /* We need to convert to rw, call rec << 2011 fc->sb_flags &= ~SB_RDONLY; << 2012 down_write(&mnt->mnt_sb->s_umount); << 2013 ret = btrfs_reconfigure(fc); << 2014 up_write(&mnt->mnt_sb->s_umount); << 2015 if (ret) { << 2016 mntput(mnt); << 2017 return ERR_PTR(ret); << 2018 } << 2019 return mnt; << 2020 } << 2021 << 2022 static int btrfs_get_tree_subvol(struct fs_co << 2023 { << 2024 struct btrfs_fs_info *fs_info = NULL; << 2025 struct btrfs_fs_context *ctx = fc->fs << 2026 struct fs_context *dup_fc; << 2027 struct dentry *dentry; << 2028 struct vfsmount *mnt; << 2029 << 2030 /* << 2031 * Setup a dummy root and fs_info for << 2032 * we don't actually fill this stuff << 2033 * then open_ctree will properly init << 2034 * settings later. btrfs_init_fs_inf << 2035 * of the fs_info (locks and such) to << 2036 * superblock with our given fs_devic << 2037 */ << 2038 fs_info = kvzalloc(sizeof(struct btrf << 2039 if (!fs_info) << 2040 return -ENOMEM; << 2041 << 2042 fs_info->super_copy = kzalloc(BTRFS_S << 2043 fs_info->super_for_commit = kzalloc(B << 2044 if (!fs_info->super_copy || !fs_info- << 2045 btrfs_free_fs_info(fs_info); << 2046 return -ENOMEM; << 2047 } << 2048 btrfs_init_fs_info(fs_info); << 2049 << 2050 dup_fc = vfs_dup_fs_context(fc); << 2051 if (IS_ERR(dup_fc)) { << 2052 btrfs_free_fs_info(fs_info); << 2053 return PTR_ERR(dup_fc); << 2054 } << 2055 << 2056 /* << 2057 * When we do the sget_fc this gets t << 2058 * need to set it on the dup_fc as th << 2059 */ << 2060 dup_fc->s_fs_info = fs_info; << 2061 << 2062 /* << 2063 * We'll do the security settings in << 2064 * loop, they were duplicated into du << 2065 * here. << 2066 */ << 2067 security_free_mnt_opts(&fc->security) << 2068 fc->security = NULL; << 2069 << 2070 mnt = fc_mount(dup_fc); << 2071 if (PTR_ERR_OR_ZERO(mnt) == -EBUSY) << 2072 mnt = btrfs_reconfigure_for_m << 2073 put_fs_context(dup_fc); << 2074 if (IS_ERR(mnt)) << 2075 return PTR_ERR(mnt); << 2076 << 2077 /* << 2078 * This free's ->subvol_name, because << 2079 * allocate a buffer to hold the subv << 2080 * reference to it here. << 2081 */ << 2082 dentry = mount_subvol(ctx->subvol_nam << 2083 ctx->subvol_name = NULL; << 2084 if (IS_ERR(dentry)) << 2085 return PTR_ERR(dentry); << 2086 << 2087 fc->root = dentry; << 2088 return 0; << 2089 } << 2090 << 2091 static int btrfs_get_tree(struct fs_context * << 2092 { << 2093 /* << 2094 * Since we use mount_subtree to moun << 2095 * have to do mounts in two steps. << 2096 * << 2097 * First pass through we call btrfs_g << 2098 * wrapper around fc_mount() to call << 2099 * we'll call btrfs_get_tree_super(). << 2100 * everything to open the devices and << 2101 * with a fully constructed vfsmount << 2102 * from there we can do our mount_sub << 2103 * whichever subvol we're mounting an << 2104 * appropriate dentry for the subvol. << 2105 */ << 2106 if (fc->s_fs_info) << 2107 return btrfs_get_tree_super(f << 2108 return btrfs_get_tree_subvol(fc); << 2109 } << 2110 << 2111 static void btrfs_kill_super(struct super_blo 2169 static void btrfs_kill_super(struct super_block *sb) 2112 { 2170 { 2113 struct btrfs_fs_info *fs_info = btrfs 2171 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2114 kill_anon_super(sb); 2172 kill_anon_super(sb); 2115 btrfs_free_fs_info(fs_info); !! 2173 free_fs_info(fs_info); 2116 } << 2117 << 2118 static void btrfs_free_fs_context(struct fs_c << 2119 { << 2120 struct btrfs_fs_context *ctx = fc->fs << 2121 struct btrfs_fs_info *fs_info = fc->s << 2122 << 2123 if (fs_info) << 2124 btrfs_free_fs_info(fs_info); << 2125 << 2126 if (ctx && refcount_dec_and_test(&ctx << 2127 kfree(ctx->subvol_name); << 2128 kfree(ctx); << 2129 } << 2130 } << 2131 << 2132 static int btrfs_dup_fs_context(struct fs_con << 2133 { << 2134 struct btrfs_fs_context *ctx = src_fc << 2135 << 2136 /* << 2137 * Give a ref to our ctx to this dup, << 2138 * our original fc so we can have the << 2139 * << 2140 * We unset ->source in the original << 2141 * mounting, and then once we free th << 2142 * need to make sure we're only point << 2143 */ << 2144 refcount_inc(&ctx->refs); << 2145 fc->fs_private = ctx; << 2146 fc->source = src_fc->source; << 2147 src_fc->source = NULL; << 2148 return 0; << 2149 } << 2150 << 2151 static const struct fs_context_operations btr << 2152 .parse_param = btrfs_parse_param, << 2153 .reconfigure = btrfs_reconfigure, << 2154 .get_tree = btrfs_get_tree, << 2155 .dup = btrfs_dup_fs_contex << 2156 .free = btrfs_free_fs_conte << 2157 }; << 2158 << 2159 static int btrfs_init_fs_context(struct fs_co << 2160 { << 2161 struct btrfs_fs_context *ctx; << 2162 << 2163 ctx = kzalloc(sizeof(struct btrfs_fs_ << 2164 if (!ctx) << 2165 return -ENOMEM; << 2166 << 2167 refcount_set(&ctx->refs, 1); << 2168 fc->fs_private = ctx; << 2169 fc->ops = &btrfs_fs_context_ops; << 2170 << 2171 if (fc->purpose == FS_CONTEXT_FOR_REC << 2172 btrfs_info_to_ctx(btrfs_sb(fc << 2173 } else { << 2174 ctx->thread_pool_size = << 2175 min_t(unsigned long, << 2176 ctx->max_inline = BTRFS_DEFAU << 2177 ctx->commit_interval = BTRFS_ << 2178 } << 2179 << 2180 #ifdef CONFIG_BTRFS_FS_POSIX_ACL << 2181 fc->sb_flags |= SB_POSIXACL; << 2182 #endif << 2183 fc->sb_flags |= SB_I_VERSION; << 2184 << 2185 return 0; << 2186 } 2174 } 2187 2175 2188 static struct file_system_type btrfs_fs_type 2176 static struct file_system_type btrfs_fs_type = { 2189 .owner = THIS_MODULE !! 2177 .owner = THIS_MODULE, 2190 .name = "btrfs", !! 2178 .name = "btrfs", 2191 .init_fs_context = btrfs_init_ !! 2179 .mount = btrfs_mount, 2192 .parameters = btrfs_fs_pa !! 2180 .kill_sb = btrfs_kill_super, 2193 .kill_sb = btrfs_kill_ !! 2181 .fs_flags = FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA, 2194 .fs_flags = FS_REQUIRES !! 2182 }; 2195 }; << 2196 << 2197 MODULE_ALIAS_FS("btrfs"); 2183 MODULE_ALIAS_FS("btrfs"); 2198 2184 2199 static int btrfs_control_open(struct inode *i 2185 static int btrfs_control_open(struct inode *inode, struct file *file) 2200 { 2186 { 2201 /* 2187 /* 2202 * The control file's private_data is 2188 * The control file's private_data is used to hold the 2203 * transaction when it is started and 2189 * transaction when it is started and is used to keep 2204 * track of whether a transaction is 2190 * track of whether a transaction is already in progress. 2205 */ 2191 */ 2206 file->private_data = NULL; 2192 file->private_data = NULL; 2207 return 0; 2193 return 0; 2208 } 2194 } 2209 2195 2210 /* 2196 /* 2211 * Used by /dev/btrfs-control for devices ioc !! 2197 * used by btrfsctl to scan devices when no FS is mounted 2212 */ 2198 */ 2213 static long btrfs_control_ioctl(struct file * 2199 static long btrfs_control_ioctl(struct file *file, unsigned int cmd, 2214 unsigned long 2200 unsigned long arg) 2215 { 2201 { 2216 struct btrfs_ioctl_vol_args *vol; 2202 struct btrfs_ioctl_vol_args *vol; 2217 struct btrfs_device *device = NULL; !! 2203 struct btrfs_fs_devices *fs_devices; 2218 dev_t devt = 0; << 2219 int ret = -ENOTTY; 2204 int ret = -ENOTTY; 2220 2205 2221 if (!capable(CAP_SYS_ADMIN)) 2206 if (!capable(CAP_SYS_ADMIN)) 2222 return -EPERM; 2207 return -EPERM; 2223 2208 2224 vol = memdup_user((void __user *)arg, 2209 vol = memdup_user((void __user *)arg, sizeof(*vol)); 2225 if (IS_ERR(vol)) 2210 if (IS_ERR(vol)) 2226 return PTR_ERR(vol); 2211 return PTR_ERR(vol); 2227 ret = btrfs_check_ioctl_vol_args_path << 2228 if (ret < 0) << 2229 goto out; << 2230 2212 2231 switch (cmd) { 2213 switch (cmd) { 2232 case BTRFS_IOC_SCAN_DEV: 2214 case BTRFS_IOC_SCAN_DEV: 2233 mutex_lock(&uuid_mutex); !! 2215 ret = btrfs_scan_one_device(vol->name, FMODE_READ, 2234 /* !! 2216 &btrfs_fs_type, &fs_devices); 2235 * Scanning outside of mount << 2236 * into 0 error code. << 2237 */ << 2238 device = btrfs_scan_one_devic << 2239 ret = PTR_ERR_OR_ZERO(device) << 2240 mutex_unlock(&uuid_mutex); << 2241 break; << 2242 case BTRFS_IOC_FORGET_DEV: << 2243 if (vol->name[0] != 0) { << 2244 ret = lookup_bdev(vol << 2245 if (ret) << 2246 break; << 2247 } << 2248 ret = btrfs_forget_devices(de << 2249 break; 2217 break; 2250 case BTRFS_IOC_DEVICES_READY: 2218 case BTRFS_IOC_DEVICES_READY: 2251 mutex_lock(&uuid_mutex); !! 2219 ret = btrfs_scan_one_device(vol->name, FMODE_READ, 2252 /* !! 2220 &btrfs_fs_type, &fs_devices); 2253 * Scanning outside of mount !! 2221 if (ret) 2254 * into 0 error code. << 2255 */ << 2256 device = btrfs_scan_one_devic << 2257 if (IS_ERR_OR_NULL(device)) { << 2258 mutex_unlock(&uuid_mu << 2259 ret = PTR_ERR(device) << 2260 break; 2222 break; 2261 } !! 2223 ret = !(fs_devices->num_devices == fs_devices->total_devices); 2262 ret = !(device->fs_devices->n << 2263 device->fs_devices->t << 2264 mutex_unlock(&uuid_mutex); << 2265 break; 2224 break; 2266 case BTRFS_IOC_GET_SUPPORTED_FEATURES 2225 case BTRFS_IOC_GET_SUPPORTED_FEATURES: 2267 ret = btrfs_ioctl_get_support 2226 ret = btrfs_ioctl_get_supported_features((void __user*)arg); 2268 break; 2227 break; 2269 } 2228 } 2270 2229 2271 out: << 2272 kfree(vol); 2230 kfree(vol); 2273 return ret; 2231 return ret; 2274 } 2232 } 2275 2233 2276 static int btrfs_freeze(struct super_block *s 2234 static int btrfs_freeze(struct super_block *sb) 2277 { 2235 { >> 2236 struct btrfs_trans_handle *trans; 2278 struct btrfs_fs_info *fs_info = btrfs 2237 struct btrfs_fs_info *fs_info = btrfs_sb(sb); >> 2238 struct btrfs_root *root = fs_info->tree_root; 2279 2239 2280 set_bit(BTRFS_FS_FROZEN, &fs_info->fl !! 2240 fs_info->fs_frozen = 1; 2281 /* 2241 /* 2282 * We don't need a barrier here, we'l 2242 * We don't need a barrier here, we'll wait for any transaction that 2283 * could be in progress on other thre 2243 * could be in progress on other threads (and do delayed iputs that 2284 * we want to avoid on a frozen files 2244 * we want to avoid on a frozen filesystem), or do the commit 2285 * ourselves. 2245 * ourselves. 2286 */ 2246 */ 2287 return btrfs_commit_current_transacti !! 2247 trans = btrfs_attach_transaction_barrier(root); 2288 } !! 2248 if (IS_ERR(trans)) { 2289 !! 2249 /* no transaction, don't bother */ 2290 static int check_dev_super(struct btrfs_devic !! 2250 if (PTR_ERR(trans) == -ENOENT) 2291 { !! 2251 return 0; 2292 struct btrfs_fs_info *fs_info = dev-> !! 2252 return PTR_ERR(trans); 2293 struct btrfs_super_block *sb; << 2294 u64 last_trans; << 2295 u16 csum_type; << 2296 int ret = 0; << 2297 << 2298 /* This should be called with fs stil << 2299 ASSERT(test_bit(BTRFS_FS_FROZEN, &fs_ << 2300 << 2301 /* Missing dev, no need to check. */ << 2302 if (!dev->bdev) << 2303 return 0; << 2304 << 2305 /* Only need to check the primary sup << 2306 sb = btrfs_read_dev_one_super(dev->bd << 2307 if (IS_ERR(sb)) << 2308 return PTR_ERR(sb); << 2309 << 2310 /* Verify the checksum. */ << 2311 csum_type = btrfs_super_csum_type(sb) << 2312 if (csum_type != btrfs_super_csum_typ << 2313 btrfs_err(fs_info, "csum type << 2314 csum_type, btrfs_su << 2315 ret = -EUCLEAN; << 2316 goto out; << 2317 } << 2318 << 2319 if (btrfs_check_super_csum(fs_info, s << 2320 btrfs_err(fs_info, "csum for << 2321 ret = -EUCLEAN; << 2322 goto out; << 2323 } << 2324 << 2325 /* Btrfs_validate_super() includes fs << 2326 ret = btrfs_validate_super(fs_info, s << 2327 if (ret < 0) << 2328 goto out; << 2329 << 2330 last_trans = btrfs_get_last_trans_com << 2331 if (btrfs_super_generation(sb) != las << 2332 btrfs_err(fs_info, "transid m << 2333 btrfs_super_generat << 2334 ret = -EUCLEAN; << 2335 goto out; << 2336 } 2253 } 2337 out: !! 2254 return btrfs_commit_transaction(trans); 2338 btrfs_release_disk_super(sb); << 2339 return ret; << 2340 } 2255 } 2341 2256 2342 static int btrfs_unfreeze(struct super_block 2257 static int btrfs_unfreeze(struct super_block *sb) 2343 { 2258 { 2344 struct btrfs_fs_info *fs_info = btrfs !! 2259 btrfs_sb(sb)->fs_frozen = 0; 2345 struct btrfs_device *device; << 2346 int ret = 0; << 2347 << 2348 /* << 2349 * Make sure the fs is not changed by << 2350 * modified by other OS). << 2351 * If we found anything wrong, we mar << 2352 * << 2353 * And since the fs is frozen, no one << 2354 * we don't need to hold device_list_ << 2355 */ << 2356 list_for_each_entry(device, &fs_info- << 2357 ret = check_dev_super(device) << 2358 if (ret < 0) { << 2359 btrfs_handle_fs_error << 2360 "super block << 2361 device->devid << 2362 break; << 2363 } << 2364 } << 2365 clear_bit(BTRFS_FS_FROZEN, &fs_info-> << 2366 << 2367 /* << 2368 * We still return 0, to allow VFS la << 2369 * above checks failed. Since the fs << 2370 * safe to continue, without causing << 2371 */ << 2372 return 0; 2260 return 0; 2373 } 2261 } 2374 2262 2375 static int btrfs_show_devname(struct seq_file 2263 static int btrfs_show_devname(struct seq_file *m, struct dentry *root) 2376 { 2264 { 2377 struct btrfs_fs_info *fs_info = btrfs 2265 struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb); 2378 !! 2266 struct btrfs_fs_devices *cur_devices; 2379 /* !! 2267 struct btrfs_device *dev, *first_dev = NULL; 2380 * There should be always a valid poi !! 2268 struct list_head *head; 2381 * for a short moment in case it's be !! 2269 struct rcu_string *name; 2382 * the end of RCU grace period. !! 2270 2383 */ !! 2271 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2384 rcu_read_lock(); !! 2272 cur_devices = fs_info->fs_devices; 2385 seq_escape(m, btrfs_dev_name(fs_info- !! 2273 while (cur_devices) { 2386 rcu_read_unlock(); !! 2274 head = &cur_devices->devices; 2387 !! 2275 list_for_each_entry(dev, head, dev_list) { 2388 return 0; !! 2276 if (dev->missing) 2389 } !! 2277 continue; 2390 !! 2278 if (!dev->name) 2391 static long btrfs_nr_cached_objects(struct su !! 2279 continue; 2392 { !! 2280 if (!first_dev || dev->devid < first_dev->devid) 2393 struct btrfs_fs_info *fs_info = btrfs !! 2281 first_dev = dev; 2394 const s64 nr = percpu_counter_sum_pos !! 2282 } 2395 !! 2283 cur_devices = cur_devices->seed; 2396 trace_btrfs_extent_map_shrinker_count !! 2284 } 2397 !! 2285 2398 /* !! 2286 if (first_dev) { 2399 * Only report the real number for DE !! 2287 rcu_read_lock(); 2400 * serious performance degradation ca !! 2288 name = rcu_dereference(first_dev->name); 2401 */ !! 2289 seq_escape(m, name->str, " \t\n\\"); 2402 if (IS_ENABLED(CONFIG_BTRFS_DEBUG)) !! 2290 rcu_read_unlock(); 2403 return nr; !! 2291 } else { >> 2292 WARN_ON(1); >> 2293 } >> 2294 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2404 return 0; 2295 return 0; 2405 } 2296 } 2406 2297 2407 static long btrfs_free_cached_objects(struct << 2408 { << 2409 const long nr_to_scan = min_t(unsigne << 2410 struct btrfs_fs_info *fs_info = btrfs << 2411 << 2412 /* << 2413 * We may be called from any task try << 2414 * want to slow it down with scanning << 2415 * also cause heavy lock contention i << 2416 * here. Therefore only allow kswapd << 2417 */ << 2418 if (!current_is_kswapd()) << 2419 return 0; << 2420 << 2421 return btrfs_free_extent_maps(fs_info << 2422 } << 2423 << 2424 static const struct super_operations btrfs_su 2298 static const struct super_operations btrfs_super_ops = { 2425 .drop_inode = btrfs_drop_inode, 2299 .drop_inode = btrfs_drop_inode, 2426 .evict_inode = btrfs_evict_inode, 2300 .evict_inode = btrfs_evict_inode, 2427 .put_super = btrfs_put_super, 2301 .put_super = btrfs_put_super, 2428 .sync_fs = btrfs_sync_fs, 2302 .sync_fs = btrfs_sync_fs, 2429 .show_options = btrfs_show_options, 2303 .show_options = btrfs_show_options, 2430 .show_devname = btrfs_show_devname, 2304 .show_devname = btrfs_show_devname, >> 2305 .write_inode = btrfs_write_inode, 2431 .alloc_inode = btrfs_alloc_inode, 2306 .alloc_inode = btrfs_alloc_inode, 2432 .destroy_inode = btrfs_destroy_inode 2307 .destroy_inode = btrfs_destroy_inode, 2433 .free_inode = btrfs_free_inode, << 2434 .statfs = btrfs_statfs, 2308 .statfs = btrfs_statfs, >> 2309 .remount_fs = btrfs_remount, 2435 .freeze_fs = btrfs_freeze, 2310 .freeze_fs = btrfs_freeze, 2436 .unfreeze_fs = btrfs_unfreeze, 2311 .unfreeze_fs = btrfs_unfreeze, 2437 .nr_cached_objects = btrfs_nr_cached_ << 2438 .free_cached_objects = btrfs_free_cac << 2439 }; 2312 }; 2440 2313 2441 static const struct file_operations btrfs_ctl 2314 static const struct file_operations btrfs_ctl_fops = { 2442 .open = btrfs_control_open, 2315 .open = btrfs_control_open, 2443 .unlocked_ioctl = btrfs_control_ioct 2316 .unlocked_ioctl = btrfs_control_ioctl, 2444 .compat_ioctl = compat_ptr_ioctl, !! 2317 .compat_ioctl = btrfs_control_ioctl, 2445 .owner = THIS_MODULE, 2318 .owner = THIS_MODULE, 2446 .llseek = noop_llseek, 2319 .llseek = noop_llseek, 2447 }; 2320 }; 2448 2321 2449 static struct miscdevice btrfs_misc = { 2322 static struct miscdevice btrfs_misc = { 2450 .minor = BTRFS_MINOR, 2323 .minor = BTRFS_MINOR, 2451 .name = "btrfs-control", 2324 .name = "btrfs-control", 2452 .fops = &btrfs_ctl_fops 2325 .fops = &btrfs_ctl_fops 2453 }; 2326 }; 2454 2327 2455 MODULE_ALIAS_MISCDEV(BTRFS_MINOR); 2328 MODULE_ALIAS_MISCDEV(BTRFS_MINOR); 2456 MODULE_ALIAS("devname:btrfs-control"); 2329 MODULE_ALIAS("devname:btrfs-control"); 2457 2330 2458 static int __init btrfs_interface_init(void) !! 2331 static int btrfs_interface_init(void) 2459 { 2332 { 2460 return misc_register(&btrfs_misc); 2333 return misc_register(&btrfs_misc); 2461 } 2334 } 2462 2335 2463 static __cold void btrfs_interface_exit(void) !! 2336 static void btrfs_interface_exit(void) 2464 { 2337 { 2465 misc_deregister(&btrfs_misc); 2338 misc_deregister(&btrfs_misc); 2466 } 2339 } 2467 2340 2468 static int __init btrfs_print_mod_info(void) !! 2341 static void btrfs_print_mod_info(void) 2469 { 2342 { 2470 static const char options[] = "" !! 2343 pr_info("Btrfs loaded, crc32c=%s" 2471 #ifdef CONFIG_BTRFS_DEBUG 2344 #ifdef CONFIG_BTRFS_DEBUG 2472 ", debug=on" 2345 ", debug=on" 2473 #endif 2346 #endif 2474 #ifdef CONFIG_BTRFS_ASSERT 2347 #ifdef CONFIG_BTRFS_ASSERT 2475 ", assert=on" 2348 ", assert=on" 2476 #endif 2349 #endif 2477 #ifdef CONFIG_BTRFS_FS_REF_VERIFY !! 2350 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2478 ", ref-verify=on" !! 2351 ", integrity-checker=on" 2479 #endif 2352 #endif 2480 #ifdef CONFIG_BLK_DEV_ZONED !! 2353 "\n", 2481 ", zoned=yes" !! 2354 btrfs_crc32c_impl()); 2482 #else << 2483 ", zoned=no" << 2484 #endif << 2485 #ifdef CONFIG_FS_VERITY << 2486 ", fsverity=yes" << 2487 #else << 2488 ", fsverity=no" << 2489 #endif << 2490 ; << 2491 pr_info("Btrfs loaded%s\n", options); << 2492 return 0; << 2493 } 2355 } 2494 2356 2495 static int register_btrfs(void) !! 2357 static int __init init_btrfs_fs(void) 2496 { 2358 { 2497 return register_filesystem(&btrfs_fs_ !! 2359 int err; 2498 } << 2499 2360 2500 static void unregister_btrfs(void) !! 2361 err = btrfs_hash_init(); 2501 { !! 2362 if (err) 2502 unregister_filesystem(&btrfs_fs_type) !! 2363 return err; 2503 } << 2504 2364 2505 /* Helper structure for long init/exit functi !! 2365 btrfs_props_init(); 2506 struct init_sequence { << 2507 int (*init_func)(void); << 2508 /* Can be NULL if the init_func doesn << 2509 void (*exit_func)(void); << 2510 }; << 2511 2366 2512 static const struct init_sequence mod_init_se !! 2367 err = btrfs_init_sysfs(); 2513 { !! 2368 if (err) 2514 .init_func = btrfs_props_init !! 2369 goto free_hash; 2515 .exit_func = NULL, << 2516 }, { << 2517 .init_func = btrfs_init_sysfs << 2518 .exit_func = btrfs_exit_sysfs << 2519 }, { << 2520 .init_func = btrfs_init_compr << 2521 .exit_func = btrfs_exit_compr << 2522 }, { << 2523 .init_func = btrfs_init_cache << 2524 .exit_func = btrfs_destroy_ca << 2525 }, { << 2526 .init_func = btrfs_init_dio, << 2527 .exit_func = btrfs_destroy_di << 2528 }, { << 2529 .init_func = btrfs_transactio << 2530 .exit_func = btrfs_transactio << 2531 }, { << 2532 .init_func = btrfs_ctree_init << 2533 .exit_func = btrfs_ctree_exit << 2534 }, { << 2535 .init_func = btrfs_free_space << 2536 .exit_func = btrfs_free_space << 2537 }, { << 2538 .init_func = extent_state_ini << 2539 .exit_func = extent_state_fre << 2540 }, { << 2541 .init_func = extent_buffer_in << 2542 .exit_func = extent_buffer_fr << 2543 }, { << 2544 .init_func = btrfs_bioset_ini << 2545 .exit_func = btrfs_bioset_exi << 2546 }, { << 2547 .init_func = extent_map_init, << 2548 .exit_func = extent_map_exit, << 2549 }, { << 2550 .init_func = ordered_data_ini << 2551 .exit_func = ordered_data_exi << 2552 }, { << 2553 .init_func = btrfs_delayed_in << 2554 .exit_func = btrfs_delayed_in << 2555 }, { << 2556 .init_func = btrfs_auto_defra << 2557 .exit_func = btrfs_auto_defra << 2558 }, { << 2559 .init_func = btrfs_delayed_re << 2560 .exit_func = btrfs_delayed_re << 2561 }, { << 2562 .init_func = btrfs_prelim_ref << 2563 .exit_func = btrfs_prelim_ref << 2564 }, { << 2565 .init_func = btrfs_interface_ << 2566 .exit_func = btrfs_interface_ << 2567 }, { << 2568 .init_func = btrfs_print_mod_ << 2569 .exit_func = NULL, << 2570 }, { << 2571 .init_func = btrfs_run_sanity << 2572 .exit_func = NULL, << 2573 }, { << 2574 .init_func = register_btrfs, << 2575 .exit_func = unregister_btrfs << 2576 } << 2577 }; << 2578 2370 2579 static bool mod_init_result[ARRAY_SIZE(mod_in !! 2371 btrfs_init_compress(); 2580 2372 2581 static __always_inline void btrfs_exit_btrfs_ !! 2373 err = btrfs_init_cachep(); 2582 { !! 2374 if (err) 2583 int i; !! 2375 goto free_compress; 2584 2376 2585 for (i = ARRAY_SIZE(mod_init_seq) - 1 !! 2377 err = extent_io_init(); 2586 if (!mod_init_result[i]) !! 2378 if (err) 2587 continue; !! 2379 goto free_cachep; 2588 if (mod_init_seq[i].exit_func !! 2380 2589 mod_init_seq[i].exit_ !! 2381 err = extent_map_init(); 2590 mod_init_result[i] = false; !! 2382 if (err) 2591 } !! 2383 goto free_extent_io; >> 2384 >> 2385 err = ordered_data_init(); >> 2386 if (err) >> 2387 goto free_extent_map; >> 2388 >> 2389 err = btrfs_delayed_inode_init(); >> 2390 if (err) >> 2391 goto free_ordered_data; >> 2392 >> 2393 err = btrfs_auto_defrag_init(); >> 2394 if (err) >> 2395 goto free_delayed_inode; >> 2396 >> 2397 err = btrfs_delayed_ref_init(); >> 2398 if (err) >> 2399 goto free_auto_defrag; >> 2400 >> 2401 err = btrfs_prelim_ref_init(); >> 2402 if (err) >> 2403 goto free_delayed_ref; >> 2404 >> 2405 err = btrfs_end_io_wq_init(); >> 2406 if (err) >> 2407 goto free_prelim_ref; >> 2408 >> 2409 err = btrfs_interface_init(); >> 2410 if (err) >> 2411 goto free_end_io_wq; >> 2412 >> 2413 btrfs_init_lockdep(); >> 2414 >> 2415 btrfs_print_mod_info(); >> 2416 >> 2417 err = btrfs_run_sanity_tests(); >> 2418 if (err) >> 2419 goto unregister_ioctl; >> 2420 >> 2421 err = register_filesystem(&btrfs_fs_type); >> 2422 if (err) >> 2423 goto unregister_ioctl; >> 2424 >> 2425 return 0; >> 2426 >> 2427 unregister_ioctl: >> 2428 btrfs_interface_exit(); >> 2429 free_end_io_wq: >> 2430 btrfs_end_io_wq_exit(); >> 2431 free_prelim_ref: >> 2432 btrfs_prelim_ref_exit(); >> 2433 free_delayed_ref: >> 2434 btrfs_delayed_ref_exit(); >> 2435 free_auto_defrag: >> 2436 btrfs_auto_defrag_exit(); >> 2437 free_delayed_inode: >> 2438 btrfs_delayed_inode_exit(); >> 2439 free_ordered_data: >> 2440 ordered_data_exit(); >> 2441 free_extent_map: >> 2442 extent_map_exit(); >> 2443 free_extent_io: >> 2444 extent_io_exit(); >> 2445 free_cachep: >> 2446 btrfs_destroy_cachep(); >> 2447 free_compress: >> 2448 btrfs_exit_compress(); >> 2449 btrfs_exit_sysfs(); >> 2450 free_hash: >> 2451 btrfs_hash_exit(); >> 2452 return err; 2592 } 2453 } 2593 2454 2594 static void __exit exit_btrfs_fs(void) 2455 static void __exit exit_btrfs_fs(void) 2595 { 2456 { 2596 btrfs_exit_btrfs_fs(); !! 2457 btrfs_destroy_cachep(); >> 2458 btrfs_delayed_ref_exit(); >> 2459 btrfs_auto_defrag_exit(); >> 2460 btrfs_delayed_inode_exit(); >> 2461 btrfs_prelim_ref_exit(); >> 2462 ordered_data_exit(); >> 2463 extent_map_exit(); >> 2464 extent_io_exit(); >> 2465 btrfs_interface_exit(); >> 2466 btrfs_end_io_wq_exit(); >> 2467 unregister_filesystem(&btrfs_fs_type); >> 2468 btrfs_exit_sysfs(); 2597 btrfs_cleanup_fs_uuids(); 2469 btrfs_cleanup_fs_uuids(); 2598 } !! 2470 btrfs_exit_compress(); 2599 !! 2471 btrfs_hash_exit(); 2600 static int __init init_btrfs_fs(void) << 2601 { << 2602 int ret; << 2603 int i; << 2604 << 2605 for (i = 0; i < ARRAY_SIZE(mod_init_s << 2606 ASSERT(!mod_init_result[i]); << 2607 ret = mod_init_seq[i].init_fu << 2608 if (ret < 0) { << 2609 btrfs_exit_btrfs_fs() << 2610 return ret; << 2611 } << 2612 mod_init_result[i] = true; << 2613 } << 2614 return 0; << 2615 } 2472 } 2616 2473 2617 late_initcall(init_btrfs_fs); 2474 late_initcall(init_btrfs_fs); 2618 module_exit(exit_btrfs_fs) 2475 module_exit(exit_btrfs_fs) 2619 2476 2620 MODULE_DESCRIPTION("B-Tree File System (BTRFS << 2621 MODULE_LICENSE("GPL"); 2477 MODULE_LICENSE("GPL"); 2622 MODULE_SOFTDEP("pre: crc32c"); << 2623 MODULE_SOFTDEP("pre: xxhash64"); << 2624 MODULE_SOFTDEP("pre: sha256"); << 2625 MODULE_SOFTDEP("pre: blake2b-256"); << 2626 2478
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.