1 // SPDX-License-Identifier: GPL-2.0 1 // SPDX-License-Identifier: GPL-2.0 2 /* 2 /* 3 * Copyright (C) 2007 Oracle. All rights rese 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 4 */ 5 5 6 #include <linux/blkdev.h> 6 #include <linux/blkdev.h> 7 #include <linux/module.h> 7 #include <linux/module.h> 8 #include <linux/fs.h> 8 #include <linux/fs.h> 9 #include <linux/pagemap.h> 9 #include <linux/pagemap.h> 10 #include <linux/highmem.h> 10 #include <linux/highmem.h> 11 #include <linux/time.h> 11 #include <linux/time.h> 12 #include <linux/init.h> 12 #include <linux/init.h> 13 #include <linux/seq_file.h> 13 #include <linux/seq_file.h> 14 #include <linux/string.h> 14 #include <linux/string.h> 15 #include <linux/backing-dev.h> 15 #include <linux/backing-dev.h> 16 #include <linux/mount.h> 16 #include <linux/mount.h> 17 #include <linux/writeback.h> 17 #include <linux/writeback.h> 18 #include <linux/statfs.h> 18 #include <linux/statfs.h> 19 #include <linux/compat.h> 19 #include <linux/compat.h> 20 #include <linux/parser.h> 20 #include <linux/parser.h> 21 #include <linux/ctype.h> 21 #include <linux/ctype.h> 22 #include <linux/namei.h> 22 #include <linux/namei.h> 23 #include <linux/miscdevice.h> 23 #include <linux/miscdevice.h> 24 #include <linux/magic.h> 24 #include <linux/magic.h> 25 #include <linux/slab.h> 25 #include <linux/slab.h> >> 26 #include <linux/cleancache.h> 26 #include <linux/ratelimit.h> 27 #include <linux/ratelimit.h> 27 #include <linux/crc32c.h> 28 #include <linux/crc32c.h> 28 #include <linux/btrfs.h> 29 #include <linux/btrfs.h> 29 #include <linux/security.h> << 30 #include <linux/fs_parser.h> << 31 #include <linux/swap.h> << 32 #include "messages.h" << 33 #include "delayed-inode.h" 30 #include "delayed-inode.h" 34 #include "ctree.h" 31 #include "ctree.h" 35 #include "disk-io.h" 32 #include "disk-io.h" 36 #include "transaction.h" 33 #include "transaction.h" 37 #include "btrfs_inode.h" 34 #include "btrfs_inode.h" 38 #include "direct-io.h" !! 35 #include "print-tree.h" 39 #include "props.h" 36 #include "props.h" 40 #include "xattr.h" 37 #include "xattr.h" 41 #include "bio.h" !! 38 #include "volumes.h" 42 #include "export.h" 39 #include "export.h" 43 #include "compression.h" 40 #include "compression.h" >> 41 #include "rcu-string.h" 44 #include "dev-replace.h" 42 #include "dev-replace.h" 45 #include "free-space-cache.h" 43 #include "free-space-cache.h" 46 #include "backref.h" 44 #include "backref.h" 47 #include "space-info.h" << 48 #include "sysfs.h" << 49 #include "zoned.h" << 50 #include "tests/btrfs-tests.h" 45 #include "tests/btrfs-tests.h" 51 #include "block-group.h" !! 46 52 #include "discard.h" << 53 #include "qgroup.h" 47 #include "qgroup.h" 54 #include "raid56.h" << 55 #include "fs.h" << 56 #include "accessors.h" << 57 #include "defrag.h" << 58 #include "dir-item.h" << 59 #include "ioctl.h" << 60 #include "scrub.h" << 61 #include "verity.h" << 62 #include "super.h" << 63 #include "extent-tree.h" << 64 #define CREATE_TRACE_POINTS 48 #define CREATE_TRACE_POINTS 65 #include <trace/events/btrfs.h> 49 #include <trace/events/btrfs.h> 66 50 67 static const struct super_operations btrfs_sup 51 static const struct super_operations btrfs_super_ops; >> 52 >> 53 /* >> 54 * Types for mounting the default subvolume and a subvolume explicitly >> 55 * requested by subvol=/path. That way the callchain is straightforward and we >> 56 * don't have to play tricks with the mount options and recursive calls to >> 57 * btrfs_mount. >> 58 * >> 59 * The new btrfs_root_fs_type also servers as a tag for the bdev_holder. >> 60 */ 68 static struct file_system_type btrfs_fs_type; 61 static struct file_system_type btrfs_fs_type; >> 62 static struct file_system_type btrfs_root_fs_type; 69 63 70 static void btrfs_put_super(struct super_block !! 64 static int btrfs_remount(struct super_block *sb, int *flags, char *data); >> 65 >> 66 const char *btrfs_decode_error(int errno) 71 { 67 { 72 struct btrfs_fs_info *fs_info = btrfs_ !! 68 char *errstr = "unknown"; 73 69 74 btrfs_info(fs_info, "last unmount of f !! 70 switch (errno) { 75 close_ctree(fs_info); !! 71 case -EIO: >> 72 errstr = "IO failure"; >> 73 break; >> 74 case -ENOMEM: >> 75 errstr = "Out of memory"; >> 76 break; >> 77 case -EROFS: >> 78 errstr = "Readonly filesystem"; >> 79 break; >> 80 case -EEXIST: >> 81 errstr = "Object already exists"; >> 82 break; >> 83 case -ENOSPC: >> 84 errstr = "No space left"; >> 85 break; >> 86 case -ENOENT: >> 87 errstr = "No such entry"; >> 88 break; >> 89 } >> 90 >> 91 return errstr; 76 } 92 } 77 93 78 /* Store the mount options related information !! 94 /* 79 struct btrfs_fs_context { !! 95 * __btrfs_handle_fs_error decodes expected errors from the caller and 80 char *subvol_name; !! 96 * invokes the appropriate error response. 81 u64 subvol_objectid; !! 97 */ 82 u64 max_inline; !! 98 __cold 83 u32 commit_interval; !! 99 void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function, 84 u32 metadata_ratio; !! 100 unsigned int line, int errno, const char *fmt, ...) 85 u32 thread_pool_size; !! 101 { 86 unsigned long long mount_opt; !! 102 struct super_block *sb = fs_info->sb; 87 unsigned long compress_type:4; !! 103 #ifdef CONFIG_PRINTK 88 unsigned int compress_level; !! 104 const char *errstr; 89 refcount_t refs; !! 105 #endif >> 106 >> 107 /* >> 108 * Special case: if the error is EROFS, and we're already >> 109 * under SB_RDONLY, then it is safe here. >> 110 */ >> 111 if (errno == -EROFS && sb_rdonly(sb)) >> 112 return; >> 113 >> 114 #ifdef CONFIG_PRINTK >> 115 errstr = btrfs_decode_error(errno); >> 116 if (fmt) { >> 117 struct va_format vaf; >> 118 va_list args; >> 119 >> 120 va_start(args, fmt); >> 121 vaf.fmt = fmt; >> 122 vaf.va = &args; >> 123 >> 124 pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n", >> 125 sb->s_id, function, line, errno, errstr, &vaf); >> 126 va_end(args); >> 127 } else { >> 128 pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s\n", >> 129 sb->s_id, function, line, errno, errstr); >> 130 } >> 131 #endif >> 132 >> 133 /* >> 134 * Today we only save the error info to memory. Long term we'll >> 135 * also send it down to the disk >> 136 */ >> 137 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); >> 138 >> 139 /* Don't go through full error handling during mount */ >> 140 if (!(sb->s_flags & SB_BORN)) >> 141 return; >> 142 >> 143 if (sb_rdonly(sb)) >> 144 return; >> 145 >> 146 /* btrfs handle error by forcing the filesystem readonly */ >> 147 sb->s_flags |= SB_RDONLY; >> 148 btrfs_info(fs_info, "forced readonly"); >> 149 /* >> 150 * Note that a running device replace operation is not canceled here >> 151 * although there is no way to update the progress. It would add the >> 152 * risk of a deadlock, therefore the canceling is omitted. The only >> 153 * penalty is that some I/O remains active until the procedure >> 154 * completes. The next time when the filesystem is mounted writable >> 155 * again, the device replace operation continues. >> 156 */ >> 157 } >> 158 >> 159 #ifdef CONFIG_PRINTK >> 160 static const char * const logtypes[] = { >> 161 "emergency", >> 162 "alert", >> 163 "critical", >> 164 "error", >> 165 "warning", >> 166 "notice", >> 167 "info", >> 168 "debug", 90 }; 169 }; 91 170 >> 171 >> 172 /* >> 173 * Use one ratelimit state per log level so that a flood of less important >> 174 * messages doesn't cause more important ones to be dropped. >> 175 */ >> 176 static struct ratelimit_state printk_limits[] = { >> 177 RATELIMIT_STATE_INIT(printk_limits[0], DEFAULT_RATELIMIT_INTERVAL, 100), >> 178 RATELIMIT_STATE_INIT(printk_limits[1], DEFAULT_RATELIMIT_INTERVAL, 100), >> 179 RATELIMIT_STATE_INIT(printk_limits[2], DEFAULT_RATELIMIT_INTERVAL, 100), >> 180 RATELIMIT_STATE_INIT(printk_limits[3], DEFAULT_RATELIMIT_INTERVAL, 100), >> 181 RATELIMIT_STATE_INIT(printk_limits[4], DEFAULT_RATELIMIT_INTERVAL, 100), >> 182 RATELIMIT_STATE_INIT(printk_limits[5], DEFAULT_RATELIMIT_INTERVAL, 100), >> 183 RATELIMIT_STATE_INIT(printk_limits[6], DEFAULT_RATELIMIT_INTERVAL, 100), >> 184 RATELIMIT_STATE_INIT(printk_limits[7], DEFAULT_RATELIMIT_INTERVAL, 100), >> 185 }; >> 186 >> 187 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...) >> 188 { >> 189 char lvl[PRINTK_MAX_SINGLE_HEADER_LEN + 1] = "\0"; >> 190 struct va_format vaf; >> 191 va_list args; >> 192 int kern_level; >> 193 const char *type = logtypes[4]; >> 194 struct ratelimit_state *ratelimit = &printk_limits[4]; >> 195 >> 196 va_start(args, fmt); >> 197 >> 198 while ((kern_level = printk_get_level(fmt)) != 0) { >> 199 size_t size = printk_skip_level(fmt) - fmt; >> 200 >> 201 if (kern_level >= '' && kern_level <= '7') { >> 202 memcpy(lvl, fmt, size); >> 203 lvl[size] = '\0'; >> 204 type = logtypes[kern_level - '']; >> 205 ratelimit = &printk_limits[kern_level - '']; >> 206 } >> 207 fmt += size; >> 208 } >> 209 >> 210 vaf.fmt = fmt; >> 211 vaf.va = &args; >> 212 >> 213 if (__ratelimit(ratelimit)) >> 214 printk("%sBTRFS %s (device %s): %pV\n", lvl, type, >> 215 fs_info ? fs_info->sb->s_id : "<unknown>", &vaf); >> 216 >> 217 va_end(args); >> 218 } >> 219 #endif >> 220 >> 221 /* >> 222 * We only mark the transaction aborted and then set the file system read-only. >> 223 * This will prevent new transactions from starting or trying to join this >> 224 * one. >> 225 * >> 226 * This means that error recovery at the call site is limited to freeing >> 227 * any local memory allocations and passing the error code up without >> 228 * further cleanup. The transaction should complete as it normally would >> 229 * in the call path but will return -EIO. >> 230 * >> 231 * We'll complete the cleanup in btrfs_end_transaction and >> 232 * btrfs_commit_transaction. >> 233 */ >> 234 __cold >> 235 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans, >> 236 const char *function, >> 237 unsigned int line, int errno) >> 238 { >> 239 struct btrfs_fs_info *fs_info = trans->fs_info; >> 240 >> 241 trans->aborted = errno; >> 242 /* Nothing used. The other threads that have joined this >> 243 * transaction may be able to continue. */ >> 244 if (!trans->dirty && list_empty(&trans->new_bgs)) { >> 245 const char *errstr; >> 246 >> 247 errstr = btrfs_decode_error(errno); >> 248 btrfs_warn(fs_info, >> 249 "%s:%d: Aborting unused transaction(%s).", >> 250 function, line, errstr); >> 251 return; >> 252 } >> 253 WRITE_ONCE(trans->transaction->aborted, errno); >> 254 /* Wake up anybody who may be waiting on this transaction */ >> 255 wake_up(&fs_info->transaction_wait); >> 256 wake_up(&fs_info->transaction_blocked_wait); >> 257 __btrfs_handle_fs_error(fs_info, function, line, errno, NULL); >> 258 } >> 259 /* >> 260 * __btrfs_panic decodes unexpected, fatal errors from the caller, >> 261 * issues an alert, and either panics or BUGs, depending on mount options. >> 262 */ >> 263 __cold >> 264 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function, >> 265 unsigned int line, int errno, const char *fmt, ...) >> 266 { >> 267 char *s_id = "<unknown>"; >> 268 const char *errstr; >> 269 struct va_format vaf = { .fmt = fmt }; >> 270 va_list args; >> 271 >> 272 if (fs_info) >> 273 s_id = fs_info->sb->s_id; >> 274 >> 275 va_start(args, fmt); >> 276 vaf.va = &args; >> 277 >> 278 errstr = btrfs_decode_error(errno); >> 279 if (fs_info && (btrfs_test_opt(fs_info, PANIC_ON_FATAL_ERROR))) >> 280 panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n", >> 281 s_id, function, line, &vaf, errno, errstr); >> 282 >> 283 btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)", >> 284 function, line, &vaf, errno, errstr); >> 285 va_end(args); >> 286 /* Caller calls BUG() */ >> 287 } >> 288 >> 289 static void btrfs_put_super(struct super_block *sb) >> 290 { >> 291 close_ctree(btrfs_sb(sb)); >> 292 } >> 293 92 enum { 294 enum { 93 Opt_acl, !! 295 Opt_acl, Opt_noacl, 94 Opt_clear_cache, 296 Opt_clear_cache, 95 Opt_commit_interval, 297 Opt_commit_interval, 96 Opt_compress, 298 Opt_compress, 97 Opt_compress_force, 299 Opt_compress_force, 98 Opt_compress_force_type, 300 Opt_compress_force_type, 99 Opt_compress_type, 301 Opt_compress_type, 100 Opt_degraded, 302 Opt_degraded, 101 Opt_device, 303 Opt_device, 102 Opt_fatal_errors, 304 Opt_fatal_errors, 103 Opt_flushoncommit, !! 305 Opt_flushoncommit, Opt_noflushoncommit, >> 306 Opt_inode_cache, Opt_noinode_cache, 104 Opt_max_inline, 307 Opt_max_inline, 105 Opt_barrier, !! 308 Opt_barrier, Opt_nobarrier, 106 Opt_datacow, !! 309 Opt_datacow, Opt_nodatacow, 107 Opt_datasum, !! 310 Opt_datasum, Opt_nodatasum, 108 Opt_defrag, !! 311 Opt_defrag, Opt_nodefrag, 109 Opt_discard, !! 312 Opt_discard, Opt_nodiscard, 110 Opt_discard_mode, !! 313 Opt_nologreplay, >> 314 Opt_norecovery, 111 Opt_ratio, 315 Opt_ratio, 112 Opt_rescan_uuid_tree, 316 Opt_rescan_uuid_tree, 113 Opt_skip_balance, 317 Opt_skip_balance, 114 Opt_space_cache, !! 318 Opt_space_cache, Opt_no_space_cache, 115 Opt_space_cache_version, 319 Opt_space_cache_version, 116 Opt_ssd, !! 320 Opt_ssd, Opt_nossd, 117 Opt_ssd_spread, !! 321 Opt_ssd_spread, Opt_nossd_spread, 118 Opt_subvol, 322 Opt_subvol, 119 Opt_subvol_empty, 323 Opt_subvol_empty, 120 Opt_subvolid, 324 Opt_subvolid, 121 Opt_thread_pool, 325 Opt_thread_pool, 122 Opt_treelog, !! 326 Opt_treelog, Opt_notreelog, >> 327 Opt_usebackuproot, 123 Opt_user_subvol_rm_allowed, 328 Opt_user_subvol_rm_allowed, 124 Opt_norecovery, << 125 329 126 /* Rescue options */ !! 330 /* Deprecated options */ 127 Opt_rescue, !! 331 Opt_alloc_start, 128 Opt_usebackuproot, !! 332 Opt_recovery, 129 Opt_nologreplay, !! 333 Opt_subvolrootid, 130 334 131 /* Debugging options */ 335 /* Debugging options */ 132 Opt_enospc_debug, !! 336 Opt_check_integrity, >> 337 Opt_check_integrity_including_extent_data, >> 338 Opt_check_integrity_print_mask, >> 339 Opt_enospc_debug, Opt_noenospc_debug, 133 #ifdef CONFIG_BTRFS_DEBUG 340 #ifdef CONFIG_BTRFS_DEBUG 134 Opt_fragment, Opt_fragment_data, Opt_f !! 341 Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all, 135 #endif 342 #endif 136 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 343 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 137 Opt_ref_verify, 344 Opt_ref_verify, 138 #endif 345 #endif 139 Opt_err, 346 Opt_err, 140 }; 347 }; 141 348 142 enum { !! 349 static const match_table_t tokens = { 143 Opt_fatal_errors_panic, !! 350 {Opt_acl, "acl"}, 144 Opt_fatal_errors_bug, !! 351 {Opt_noacl, "noacl"}, 145 }; !! 352 {Opt_clear_cache, "clear_cache"}, 146 !! 353 {Opt_commit_interval, "commit=%u"}, 147 static const struct constant_table btrfs_param !! 354 {Opt_compress, "compress"}, 148 { "panic", Opt_fatal_errors_panic }, !! 355 {Opt_compress_type, "compress=%s"}, 149 { "bug", Opt_fatal_errors_bug }, !! 356 {Opt_compress_force, "compress-force"}, 150 {} !! 357 {Opt_compress_force_type, "compress-force=%s"}, 151 }; !! 358 {Opt_degraded, "degraded"}, 152 !! 359 {Opt_device, "device=%s"}, 153 enum { !! 360 {Opt_fatal_errors, "fatal_errors=%s"}, 154 Opt_discard_sync, !! 361 {Opt_flushoncommit, "flushoncommit"}, 155 Opt_discard_async, !! 362 {Opt_noflushoncommit, "noflushoncommit"}, 156 }; !! 363 {Opt_inode_cache, "inode_cache"}, 157 !! 364 {Opt_noinode_cache, "noinode_cache"}, 158 static const struct constant_table btrfs_param !! 365 {Opt_max_inline, "max_inline=%s"}, 159 { "sync", Opt_discard_sync }, !! 366 {Opt_barrier, "barrier"}, 160 { "async", Opt_discard_async }, !! 367 {Opt_nobarrier, "nobarrier"}, 161 {} !! 368 {Opt_datacow, "datacow"}, 162 }; !! 369 {Opt_nodatacow, "nodatacow"}, 163 !! 370 {Opt_datasum, "datasum"}, 164 enum { !! 371 {Opt_nodatasum, "nodatasum"}, 165 Opt_space_cache_v1, !! 372 {Opt_defrag, "autodefrag"}, 166 Opt_space_cache_v2, !! 373 {Opt_nodefrag, "noautodefrag"}, 167 }; !! 374 {Opt_discard, "discard"}, 168 !! 375 {Opt_nodiscard, "nodiscard"}, 169 static const struct constant_table btrfs_param !! 376 {Opt_nologreplay, "nologreplay"}, 170 { "v1", Opt_space_cache_v1 }, !! 377 {Opt_norecovery, "norecovery"}, 171 { "v2", Opt_space_cache_v2 }, !! 378 {Opt_ratio, "metadata_ratio=%u"}, 172 {} !! 379 {Opt_rescan_uuid_tree, "rescan_uuid_tree"}, 173 }; !! 380 {Opt_skip_balance, "skip_balance"}, 174 !! 381 {Opt_space_cache, "space_cache"}, 175 enum { !! 382 {Opt_no_space_cache, "nospace_cache"}, 176 Opt_rescue_usebackuproot, !! 383 {Opt_space_cache_version, "space_cache=%s"}, 177 Opt_rescue_nologreplay, !! 384 {Opt_ssd, "ssd"}, 178 Opt_rescue_ignorebadroots, !! 385 {Opt_nossd, "nossd"}, 179 Opt_rescue_ignoredatacsums, !! 386 {Opt_ssd_spread, "ssd_spread"}, 180 Opt_rescue_ignoremetacsums, !! 387 {Opt_nossd_spread, "nossd_spread"}, 181 Opt_rescue_ignoresuperflags, !! 388 {Opt_subvol, "subvol=%s"}, 182 Opt_rescue_parameter_all, !! 389 {Opt_subvol_empty, "subvol="}, 183 }; !! 390 {Opt_subvolid, "subvolid=%s"}, 184 !! 391 {Opt_thread_pool, "thread_pool=%u"}, 185 static const struct constant_table btrfs_param !! 392 {Opt_treelog, "treelog"}, 186 { "usebackuproot", Opt_rescue_usebacku !! 393 {Opt_notreelog, "notreelog"}, 187 { "nologreplay", Opt_rescue_nologrepla !! 394 {Opt_usebackuproot, "usebackuproot"}, 188 { "ignorebadroots", Opt_rescue_ignoreb !! 395 {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"}, 189 { "ibadroots", Opt_rescue_ignorebadroo !! 396 190 { "ignoredatacsums", Opt_rescue_ignore !! 397 /* Deprecated options */ 191 { "ignoremetacsums", Opt_rescue_ignore !! 398 {Opt_alloc_start, "alloc_start=%s"}, 192 { "ignoresuperflags", Opt_rescue_ignor !! 399 {Opt_recovery, "recovery"}, 193 { "idatacsums", Opt_rescue_ignoredatac !! 400 {Opt_subvolrootid, "subvolrootid=%d"}, 194 { "imetacsums", Opt_rescue_ignoremetac << 195 { "isuperflags", Opt_rescue_ignoresupe << 196 { "all", Opt_rescue_parameter_all }, << 197 {} << 198 }; << 199 << 200 #ifdef CONFIG_BTRFS_DEBUG << 201 enum { << 202 Opt_fragment_parameter_data, << 203 Opt_fragment_parameter_metadata, << 204 Opt_fragment_parameter_all, << 205 }; << 206 << 207 static const struct constant_table btrfs_param << 208 { "data", Opt_fragment_parameter_data << 209 { "metadata", Opt_fragment_parameter_m << 210 { "all", Opt_fragment_parameter_all }, << 211 {} << 212 }; << 213 #endif << 214 << 215 static const struct fs_parameter_spec btrfs_fs << 216 fsparam_flag_no("acl", Opt_acl), << 217 fsparam_flag_no("autodefrag", Opt_defr << 218 fsparam_flag_no("barrier", Opt_barrier << 219 fsparam_flag("clear_cache", Opt_clear_ << 220 fsparam_u32("commit", Opt_commit_inter << 221 fsparam_flag("compress", Opt_compress) << 222 fsparam_string("compress", Opt_compres << 223 fsparam_flag("compress-force", Opt_com << 224 fsparam_string("compress-force", Opt_c << 225 fsparam_flag_no("datacow", Opt_datacow << 226 fsparam_flag_no("datasum", Opt_datasum << 227 fsparam_flag("degraded", Opt_degraded) << 228 fsparam_string("device", Opt_device), << 229 fsparam_flag_no("discard", Opt_discard << 230 fsparam_enum("discard", Opt_discard_mo << 231 fsparam_enum("fatal_errors", Opt_fatal << 232 fsparam_flag_no("flushoncommit", Opt_f << 233 fsparam_string("max_inline", Opt_max_i << 234 fsparam_u32("metadata_ratio", Opt_rati << 235 fsparam_flag("rescan_uuid_tree", Opt_r << 236 fsparam_flag("skip_balance", Opt_skip_ << 237 fsparam_flag_no("space_cache", Opt_spa << 238 fsparam_enum("space_cache", Opt_space_ << 239 fsparam_flag_no("ssd", Opt_ssd), << 240 fsparam_flag_no("ssd_spread", Opt_ssd_ << 241 fsparam_string("subvol", Opt_subvol), << 242 fsparam_flag("subvol=", Opt_subvol_emp << 243 fsparam_u64("subvolid", Opt_subvolid), << 244 fsparam_u32("thread_pool", Opt_thread_ << 245 fsparam_flag_no("treelog", Opt_treelog << 246 fsparam_flag("user_subvol_rm_allowed", << 247 << 248 /* Rescue options. */ << 249 fsparam_enum("rescue", Opt_rescue, btr << 250 /* Deprecated, with alias rescue=nolog << 251 __fsparam(NULL, "nologreplay", Opt_nol << 252 /* Deprecated, with alias rescue=useba << 253 __fsparam(NULL, "usebackuproot", Opt_u << 254 /* For compatibility only, alias for " << 255 fsparam_flag("norecovery", Opt_norecov << 256 401 257 /* Debugging options. */ !! 402 /* Debugging options */ 258 fsparam_flag_no("enospc_debug", Opt_en !! 403 {Opt_check_integrity, "check_int"}, >> 404 {Opt_check_integrity_including_extent_data, "check_int_data"}, >> 405 {Opt_check_integrity_print_mask, "check_int_print_mask=%u"}, >> 406 {Opt_enospc_debug, "enospc_debug"}, >> 407 {Opt_noenospc_debug, "noenospc_debug"}, 259 #ifdef CONFIG_BTRFS_DEBUG 408 #ifdef CONFIG_BTRFS_DEBUG 260 fsparam_enum("fragment", Opt_fragment, !! 409 {Opt_fragment_data, "fragment=data"}, >> 410 {Opt_fragment_metadata, "fragment=metadata"}, >> 411 {Opt_fragment_all, "fragment=all"}, 261 #endif 412 #endif 262 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 413 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 263 fsparam_flag("ref_verify", Opt_ref_ver !! 414 {Opt_ref_verify, "ref_verify"}, 264 #endif 415 #endif 265 {} !! 416 {Opt_err, NULL}, 266 }; 417 }; 267 418 268 /* No support for restricting writes to btrfs !! 419 /* 269 static inline blk_mode_t btrfs_open_mode(struc !! 420 * Regular mount options parser. Everything that is needed only when 270 { !! 421 * reading in a new superblock is parsed here. 271 return sb_open_mode(fc->sb_flags) & ~B !! 422 * XXX JDM: This needs to be cleaned up for remount. 272 } !! 423 */ 273 !! 424 int btrfs_parse_options(struct btrfs_fs_info *info, char *options, 274 static int btrfs_parse_param(struct fs_context !! 425 unsigned long new_flags) 275 { 426 { 276 struct btrfs_fs_context *ctx = fc->fs_ !! 427 substring_t args[MAX_OPT_ARGS]; 277 struct fs_parse_result result; !! 428 char *p, *num; 278 int opt; !! 429 u64 cache_gen; 279 !! 430 int intarg; 280 opt = fs_parse(fc, btrfs_fs_parameters !! 431 int ret = 0; 281 if (opt < 0) !! 432 char *compress_type; 282 return opt; !! 433 bool compress_force = false; 283 !! 434 enum btrfs_compression_type saved_compress_type; 284 switch (opt) { !! 435 bool saved_compress_force; 285 case Opt_degraded: !! 436 int no_compress = 0; 286 btrfs_set_opt(ctx->mount_opt, !! 437 287 break; !! 438 cache_gen = btrfs_super_cache_generation(info->super_copy); 288 case Opt_subvol_empty: !! 439 if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE)) 289 /* !! 440 btrfs_set_opt(info->mount_opt, FREE_SPACE_TREE); 290 * This exists because we used !! 441 else if (cache_gen) 291 * keeping it to maintain ABI. !! 442 btrfs_set_opt(info->mount_opt, SPACE_CACHE); 292 * empty subvol= again"). !! 443 293 */ !! 444 /* 294 break; !! 445 * Even the options are empty, we still need to do extra check 295 case Opt_subvol: !! 446 * against new flags 296 kfree(ctx->subvol_name); !! 447 */ 297 ctx->subvol_name = kstrdup(par !! 448 if (!options) 298 if (!ctx->subvol_name) !! 449 goto check; 299 return -ENOMEM; !! 450 300 break; !! 451 while ((p = strsep(&options, ",")) != NULL) { 301 case Opt_subvolid: !! 452 int token; 302 ctx->subvol_objectid = result. !! 453 if (!*p) 303 !! 454 continue; 304 /* subvolid=0 means give me th << 305 if (!ctx->subvol_objectid) << 306 ctx->subvol_objectid = << 307 break; << 308 case Opt_device: { << 309 struct btrfs_device *device; << 310 blk_mode_t mode = btrfs_open_m << 311 455 312 mutex_lock(&uuid_mutex); !! 456 token = match_token(p, tokens, args); 313 device = btrfs_scan_one_device !! 457 switch (token) { 314 mutex_unlock(&uuid_mutex); !! 458 case Opt_degraded: 315 if (IS_ERR(device)) !! 459 btrfs_info(info, "allowing degraded mounts"); 316 return PTR_ERR(device) !! 460 btrfs_set_opt(info->mount_opt, DEGRADED); 317 break; !! 461 break; 318 } !! 462 case Opt_subvol: 319 case Opt_datasum: !! 463 case Opt_subvol_empty: 320 if (result.negated) { !! 464 case Opt_subvolid: 321 btrfs_set_opt(ctx->mou !! 465 case Opt_subvolrootid: 322 } else { !! 466 case Opt_device: 323 btrfs_clear_opt(ctx->m !! 467 /* 324 btrfs_clear_opt(ctx->m !! 468 * These are parsed by btrfs_parse_subvol_options or 325 } !! 469 * btrfs_parse_device_options and can be ignored here. 326 break; !! 470 */ 327 case Opt_datacow: !! 471 break; 328 if (result.negated) { !! 472 case Opt_nodatasum: 329 btrfs_clear_opt(ctx->m !! 473 btrfs_set_and_info(info, NODATASUM, 330 btrfs_clear_opt(ctx->m !! 474 "setting nodatasum"); 331 btrfs_set_opt(ctx->mou !! 475 break; 332 btrfs_set_opt(ctx->mou !! 476 case Opt_datasum: 333 } else { !! 477 if (btrfs_test_opt(info, NODATASUM)) { 334 btrfs_clear_opt(ctx->m !! 478 if (btrfs_test_opt(info, NODATACOW)) 335 } !! 479 btrfs_info(info, 336 break; !! 480 "setting datasum, datacow enabled"); 337 case Opt_compress_force: !! 481 else 338 case Opt_compress_force_type: !! 482 btrfs_info(info, "setting datasum"); 339 btrfs_set_opt(ctx->mount_opt, !! 483 } 340 fallthrough; !! 484 btrfs_clear_opt(info->mount_opt, NODATACOW); 341 case Opt_compress: !! 485 btrfs_clear_opt(info->mount_opt, NODATASUM); 342 case Opt_compress_type: !! 486 break; 343 /* !! 487 case Opt_nodatacow: 344 * Provide the same semantics !! 488 if (!btrfs_test_opt(info, NODATACOW)) { 345 * context, specifying the "co !! 489 if (!btrfs_test_opt(info, COMPRESS) || 346 * "force-compress" without th !! 490 !btrfs_test_opt(info, FORCE_COMPRESS)) { 347 * "compress-force=[no|none]" !! 491 btrfs_info(info, 348 */ !! 492 "setting nodatacow, compression disabled"); 349 if (opt != Opt_compress_force !! 493 } else { 350 btrfs_clear_opt(ctx->m !! 494 btrfs_info(info, "setting nodatacow"); >> 495 } >> 496 } >> 497 btrfs_clear_opt(info->mount_opt, COMPRESS); >> 498 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); >> 499 btrfs_set_opt(info->mount_opt, NODATACOW); >> 500 btrfs_set_opt(info->mount_opt, NODATASUM); >> 501 break; >> 502 case Opt_datacow: >> 503 btrfs_clear_and_info(info, NODATACOW, >> 504 "setting datacow"); >> 505 break; >> 506 case Opt_compress_force: >> 507 case Opt_compress_force_type: >> 508 compress_force = true; >> 509 /* Fallthrough */ >> 510 case Opt_compress: >> 511 case Opt_compress_type: >> 512 saved_compress_type = btrfs_test_opt(info, >> 513 COMPRESS) ? >> 514 info->compress_type : BTRFS_COMPRESS_NONE; >> 515 saved_compress_force = >> 516 btrfs_test_opt(info, FORCE_COMPRESS); >> 517 if (token == Opt_compress || >> 518 token == Opt_compress_force || >> 519 strncmp(args[0].from, "zlib", 4) == 0) { >> 520 compress_type = "zlib"; >> 521 >> 522 info->compress_type = BTRFS_COMPRESS_ZLIB; >> 523 info->compress_level = BTRFS_ZLIB_DEFAULT_LEVEL; >> 524 /* >> 525 * args[0] contains uninitialized data since >> 526 * for these tokens we don't expect any >> 527 * parameter. >> 528 */ >> 529 if (token != Opt_compress && >> 530 token != Opt_compress_force) >> 531 info->compress_level = >> 532 btrfs_compress_str2level(args[0].from); >> 533 btrfs_set_opt(info->mount_opt, COMPRESS); >> 534 btrfs_clear_opt(info->mount_opt, NODATACOW); >> 535 btrfs_clear_opt(info->mount_opt, NODATASUM); >> 536 no_compress = 0; >> 537 } else if (strncmp(args[0].from, "lzo", 3) == 0) { >> 538 compress_type = "lzo"; >> 539 info->compress_type = BTRFS_COMPRESS_LZO; >> 540 btrfs_set_opt(info->mount_opt, COMPRESS); >> 541 btrfs_clear_opt(info->mount_opt, NODATACOW); >> 542 btrfs_clear_opt(info->mount_opt, NODATASUM); >> 543 btrfs_set_fs_incompat(info, COMPRESS_LZO); >> 544 no_compress = 0; >> 545 } else if (strcmp(args[0].from, "zstd") == 0) { >> 546 compress_type = "zstd"; >> 547 info->compress_type = BTRFS_COMPRESS_ZSTD; >> 548 btrfs_set_opt(info->mount_opt, COMPRESS); >> 549 btrfs_clear_opt(info->mount_opt, NODATACOW); >> 550 btrfs_clear_opt(info->mount_opt, NODATASUM); >> 551 btrfs_set_fs_incompat(info, COMPRESS_ZSTD); >> 552 no_compress = 0; >> 553 } else if (strncmp(args[0].from, "no", 2) == 0) { >> 554 compress_type = "no"; >> 555 btrfs_clear_opt(info->mount_opt, COMPRESS); >> 556 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); >> 557 compress_force = false; >> 558 no_compress++; >> 559 } else { >> 560 ret = -EINVAL; >> 561 goto out; >> 562 } 351 563 352 if (opt == Opt_compress || opt !! 564 if (compress_force) { 353 ctx->compress_type = B !! 565 btrfs_set_opt(info->mount_opt, FORCE_COMPRESS); 354 ctx->compress_level = !! 566 } else { 355 btrfs_set_opt(ctx->mou !! 567 /* 356 btrfs_clear_opt(ctx->m !! 568 * If we remount from compress-force=xxx to 357 btrfs_clear_opt(ctx->m !! 569 * compress=xxx, we need clear FORCE_COMPRESS 358 } else if (strncmp(param->stri !! 570 * flag, otherwise, there is no way for users 359 ctx->compress_type = B !! 571 * to disable forcible compression separately. 360 ctx->compress_level = !! 572 */ 361 btrfs_compress !! 573 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); 362 !! 574 } 363 btrfs_set_opt(ctx->mou !! 575 if ((btrfs_test_opt(info, COMPRESS) && 364 btrfs_clear_opt(ctx->m !! 576 (info->compress_type != saved_compress_type || 365 btrfs_clear_opt(ctx->m !! 577 compress_force != saved_compress_force)) || 366 } else if (strncmp(param->stri !! 578 (!btrfs_test_opt(info, COMPRESS) && 367 ctx->compress_type = B !! 579 no_compress == 1)) { 368 ctx->compress_level = !! 580 btrfs_info(info, "%s %s compression, level %d", 369 btrfs_set_opt(ctx->mou !! 581 (compress_force) ? "force" : "use", 370 btrfs_clear_opt(ctx->m !! 582 compress_type, info->compress_level); 371 btrfs_clear_opt(ctx->m !! 583 } 372 } else if (strncmp(param->stri !! 584 compress_force = false; 373 ctx->compress_type = B !! 585 break; 374 ctx->compress_level = !! 586 case Opt_ssd: 375 btrfs_compress !! 587 btrfs_set_and_info(info, SSD, 376 !! 588 "enabling ssd optimizations"); 377 btrfs_set_opt(ctx->mou !! 589 btrfs_clear_opt(info->mount_opt, NOSSD); 378 btrfs_clear_opt(ctx->m !! 590 break; 379 btrfs_clear_opt(ctx->m !! 591 case Opt_ssd_spread: 380 } else if (strncmp(param->stri !! 592 btrfs_set_and_info(info, SSD, 381 ctx->compress_level = !! 593 "enabling ssd optimizations"); 382 ctx->compress_type = 0 !! 594 btrfs_set_and_info(info, SSD_SPREAD, 383 btrfs_clear_opt(ctx->m !! 595 "using spread ssd allocation scheme"); 384 btrfs_clear_opt(ctx->m !! 596 btrfs_clear_opt(info->mount_opt, NOSSD); 385 } else { !! 597 break; 386 btrfs_err(NULL, "unrec !! 598 case Opt_nossd: 387 param->strin !! 599 btrfs_set_opt(info->mount_opt, NOSSD); 388 return -EINVAL; !! 600 btrfs_clear_and_info(info, SSD, 389 } !! 601 "not using ssd optimizations"); 390 break; !! 602 /* Fallthrough */ 391 case Opt_ssd: !! 603 case Opt_nossd_spread: 392 if (result.negated) { !! 604 btrfs_clear_and_info(info, SSD_SPREAD, 393 btrfs_set_opt(ctx->mou !! 605 "not using spread ssd allocation scheme"); 394 btrfs_clear_opt(ctx->m !! 606 break; 395 btrfs_clear_opt(ctx->m !! 607 case Opt_barrier: 396 } else { !! 608 btrfs_clear_and_info(info, NOBARRIER, 397 btrfs_set_opt(ctx->mou !! 609 "turning on barriers"); 398 btrfs_clear_opt(ctx->m !! 610 break; 399 } !! 611 case Opt_nobarrier: 400 break; !! 612 btrfs_set_and_info(info, NOBARRIER, 401 case Opt_ssd_spread: !! 613 "turning off barriers"); 402 if (result.negated) { !! 614 break; 403 btrfs_clear_opt(ctx->m !! 615 case Opt_thread_pool: 404 } else { !! 616 ret = match_int(&args[0], &intarg); 405 btrfs_set_opt(ctx->mou !! 617 if (ret) { 406 btrfs_set_opt(ctx->mou !! 618 goto out; 407 btrfs_clear_opt(ctx->m !! 619 } else if (intarg == 0) { 408 } !! 620 ret = -EINVAL; 409 break; !! 621 goto out; 410 case Opt_barrier: !! 622 } 411 if (result.negated) !! 623 info->thread_pool_size = intarg; 412 btrfs_set_opt(ctx->mou !! 624 break; 413 else !! 625 case Opt_max_inline: 414 btrfs_clear_opt(ctx->m !! 626 num = match_strdup(&args[0]); 415 break; !! 627 if (num) { 416 case Opt_thread_pool: !! 628 info->max_inline = memparse(num, NULL); 417 if (result.uint_32 == 0) { !! 629 kfree(num); 418 btrfs_err(NULL, "inval !! 630 419 return -EINVAL; !! 631 if (info->max_inline) { 420 } !! 632 info->max_inline = min_t(u64, 421 ctx->thread_pool_size = result !! 633 info->max_inline, 422 break; !! 634 info->sectorsize); 423 case Opt_max_inline: !! 635 } 424 ctx->max_inline = memparse(par !! 636 btrfs_info(info, "max_inline at %llu", 425 break; !! 637 info->max_inline); 426 case Opt_acl: !! 638 } else { 427 if (result.negated) { !! 639 ret = -ENOMEM; 428 fc->sb_flags &= ~SB_PO !! 640 goto out; 429 } else { !! 641 } >> 642 break; >> 643 case Opt_alloc_start: >> 644 btrfs_info(info, >> 645 "option alloc_start is obsolete, ignored"); >> 646 break; >> 647 case Opt_acl: 430 #ifdef CONFIG_BTRFS_FS_POSIX_ACL 648 #ifdef CONFIG_BTRFS_FS_POSIX_ACL 431 fc->sb_flags |= SB_POS !! 649 info->sb->s_flags |= SB_POSIXACL; >> 650 break; 432 #else 651 #else 433 btrfs_err(NULL, "suppo !! 652 btrfs_err(info, "support for ACL not compiled in!"); 434 return -EINVAL; !! 653 ret = -EINVAL; >> 654 goto out; 435 #endif 655 #endif 436 } !! 656 case Opt_noacl: 437 /* !! 657 info->sb->s_flags &= ~SB_POSIXACL; 438 * VFS limits the ability to t << 439 * despite every file system a << 440 * an oversight since we all d << 441 * remounting. So don't set t << 442 * btrfs_reconfigure and do th << 443 */ << 444 if (fc->purpose != FS_CONTEXT_ << 445 fc->sb_flags_mask |= S << 446 break; << 447 case Opt_treelog: << 448 if (result.negated) << 449 btrfs_set_opt(ctx->mou << 450 else << 451 btrfs_clear_opt(ctx->m << 452 break; << 453 case Opt_nologreplay: << 454 btrfs_warn(NULL, << 455 "'nologreplay' is deprecated, << 456 btrfs_set_opt(ctx->mount_opt, << 457 break; << 458 case Opt_norecovery: << 459 btrfs_info(NULL, << 460 "'norecovery' is for compatibility only, recom << 461 btrfs_set_opt(ctx->mount_opt, << 462 break; << 463 case Opt_flushoncommit: << 464 if (result.negated) << 465 btrfs_clear_opt(ctx->m << 466 else << 467 btrfs_set_opt(ctx->mou << 468 break; << 469 case Opt_ratio: << 470 ctx->metadata_ratio = result.u << 471 break; << 472 case Opt_discard: << 473 if (result.negated) { << 474 btrfs_clear_opt(ctx->m << 475 btrfs_clear_opt(ctx->m << 476 btrfs_set_opt(ctx->mou << 477 } else { << 478 btrfs_set_opt(ctx->mou << 479 btrfs_clear_opt(ctx->m << 480 } << 481 break; << 482 case Opt_discard_mode: << 483 switch (result.uint_32) { << 484 case Opt_discard_sync: << 485 btrfs_clear_opt(ctx->m << 486 btrfs_set_opt(ctx->mou << 487 break; << 488 case Opt_discard_async: << 489 btrfs_clear_opt(ctx->m << 490 btrfs_set_opt(ctx->mou << 491 break; 658 break; 492 default: !! 659 case Opt_notreelog: 493 btrfs_err(NULL, "unrec !! 660 btrfs_set_and_info(info, NOTREELOG, 494 param->key); !! 661 "disabling tree log"); 495 return -EINVAL; << 496 } << 497 btrfs_clear_opt(ctx->mount_opt << 498 break; << 499 case Opt_space_cache: << 500 if (result.negated) { << 501 btrfs_set_opt(ctx->mou << 502 btrfs_clear_opt(ctx->m << 503 btrfs_clear_opt(ctx->m << 504 } else { << 505 btrfs_clear_opt(ctx->m << 506 btrfs_set_opt(ctx->mou << 507 } << 508 break; << 509 case Opt_space_cache_version: << 510 switch (result.uint_32) { << 511 case Opt_space_cache_v1: << 512 btrfs_set_opt(ctx->mou << 513 btrfs_clear_opt(ctx->m << 514 break; << 515 case Opt_space_cache_v2: << 516 btrfs_clear_opt(ctx->m << 517 btrfs_set_opt(ctx->mou << 518 break; 662 break; 519 default: !! 663 case Opt_treelog: 520 btrfs_err(NULL, "unrec !! 664 btrfs_clear_and_info(info, NOTREELOG, 521 param->key); !! 665 "enabling tree log"); 522 return -EINVAL; << 523 } << 524 break; << 525 case Opt_rescan_uuid_tree: << 526 btrfs_set_opt(ctx->mount_opt, << 527 break; << 528 case Opt_clear_cache: << 529 btrfs_set_opt(ctx->mount_opt, << 530 break; << 531 case Opt_user_subvol_rm_allowed: << 532 btrfs_set_opt(ctx->mount_opt, << 533 break; << 534 case Opt_enospc_debug: << 535 if (result.negated) << 536 btrfs_clear_opt(ctx->m << 537 else << 538 btrfs_set_opt(ctx->mou << 539 break; << 540 case Opt_defrag: << 541 if (result.negated) << 542 btrfs_clear_opt(ctx->m << 543 else << 544 btrfs_set_opt(ctx->mou << 545 break; << 546 case Opt_usebackuproot: << 547 btrfs_warn(NULL, << 548 "'usebackuproot' is << 549 btrfs_set_opt(ctx->mount_opt, << 550 << 551 /* If we're loading the backup << 552 btrfs_set_opt(ctx->mount_opt, << 553 break; << 554 case Opt_skip_balance: << 555 btrfs_set_opt(ctx->mount_opt, << 556 break; << 557 case Opt_fatal_errors: << 558 switch (result.uint_32) { << 559 case Opt_fatal_errors_panic: << 560 btrfs_set_opt(ctx->mou << 561 break; 666 break; 562 case Opt_fatal_errors_bug: !! 667 case Opt_norecovery: 563 btrfs_clear_opt(ctx->m !! 668 case Opt_nologreplay: >> 669 btrfs_set_and_info(info, NOLOGREPLAY, >> 670 "disabling log replay at mount time"); 564 break; 671 break; 565 default: !! 672 case Opt_flushoncommit: 566 btrfs_err(NULL, "unrec !! 673 btrfs_set_and_info(info, FLUSHONCOMMIT, 567 param->key); !! 674 "turning on flush-on-commit"); 568 return -EINVAL; !! 675 break; 569 } !! 676 case Opt_noflushoncommit: 570 break; !! 677 btrfs_clear_and_info(info, FLUSHONCOMMIT, 571 case Opt_commit_interval: !! 678 "turning off flush-on-commit"); 572 ctx->commit_interval = result. !! 679 break; 573 if (ctx->commit_interval == 0) !! 680 case Opt_ratio: 574 ctx->commit_interval = !! 681 ret = match_int(&args[0], &intarg); 575 break; !! 682 if (ret) 576 case Opt_rescue: !! 683 goto out; 577 switch (result.uint_32) { !! 684 info->metadata_ratio = intarg; 578 case Opt_rescue_usebackuproot: !! 685 btrfs_info(info, "metadata ratio %u", 579 btrfs_set_opt(ctx->mou !! 686 info->metadata_ratio); 580 break; !! 687 break; 581 case Opt_rescue_nologreplay: !! 688 case Opt_discard: 582 btrfs_set_opt(ctx->mou !! 689 btrfs_set_and_info(info, DISCARD, 583 break; !! 690 "turning on discard"); 584 case Opt_rescue_ignorebadroots !! 691 break; 585 btrfs_set_opt(ctx->mou !! 692 case Opt_nodiscard: 586 break; !! 693 btrfs_clear_and_info(info, DISCARD, 587 case Opt_rescue_ignoredatacsum !! 694 "turning off discard"); 588 btrfs_set_opt(ctx->mou !! 695 break; 589 break; !! 696 case Opt_space_cache: 590 case Opt_rescue_ignoremetacsum !! 697 case Opt_space_cache_version: 591 btrfs_set_opt(ctx->mou !! 698 if (token == Opt_space_cache || 592 break; !! 699 strcmp(args[0].from, "v1") == 0) { 593 case Opt_rescue_ignoresuperfla !! 700 btrfs_clear_opt(info->mount_opt, 594 btrfs_set_opt(ctx->mou !! 701 FREE_SPACE_TREE); 595 break; !! 702 btrfs_set_and_info(info, SPACE_CACHE, 596 case Opt_rescue_parameter_all: !! 703 "enabling disk space caching"); 597 btrfs_set_opt(ctx->mou !! 704 } else if (strcmp(args[0].from, "v2") == 0) { 598 btrfs_set_opt(ctx->mou !! 705 btrfs_clear_opt(info->mount_opt, 599 btrfs_set_opt(ctx->mou !! 706 SPACE_CACHE); 600 btrfs_set_opt(ctx->mou !! 707 btrfs_set_and_info(info, FREE_SPACE_TREE, 601 btrfs_set_opt(ctx->mou !! 708 "enabling free space tree"); >> 709 } else { >> 710 ret = -EINVAL; >> 711 goto out; >> 712 } >> 713 break; >> 714 case Opt_rescan_uuid_tree: >> 715 btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE); >> 716 break; >> 717 case Opt_no_space_cache: >> 718 if (btrfs_test_opt(info, SPACE_CACHE)) { >> 719 btrfs_clear_and_info(info, SPACE_CACHE, >> 720 "disabling disk space caching"); >> 721 } >> 722 if (btrfs_test_opt(info, FREE_SPACE_TREE)) { >> 723 btrfs_clear_and_info(info, FREE_SPACE_TREE, >> 724 "disabling free space tree"); >> 725 } >> 726 break; >> 727 case Opt_inode_cache: >> 728 btrfs_set_pending_and_info(info, INODE_MAP_CACHE, >> 729 "enabling inode map caching"); >> 730 break; >> 731 case Opt_noinode_cache: >> 732 btrfs_clear_pending_and_info(info, INODE_MAP_CACHE, >> 733 "disabling inode map caching"); >> 734 break; >> 735 case Opt_clear_cache: >> 736 btrfs_set_and_info(info, CLEAR_CACHE, >> 737 "force clearing of disk cache"); >> 738 break; >> 739 case Opt_user_subvol_rm_allowed: >> 740 btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED); >> 741 break; >> 742 case Opt_enospc_debug: >> 743 btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG); >> 744 break; >> 745 case Opt_noenospc_debug: >> 746 btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG); >> 747 break; >> 748 case Opt_defrag: >> 749 btrfs_set_and_info(info, AUTO_DEFRAG, >> 750 "enabling auto defrag"); >> 751 break; >> 752 case Opt_nodefrag: >> 753 btrfs_clear_and_info(info, AUTO_DEFRAG, >> 754 "disabling auto defrag"); >> 755 break; >> 756 case Opt_recovery: >> 757 btrfs_warn(info, >> 758 "'recovery' is deprecated, use 'usebackuproot' instead"); >> 759 /* fall through */ >> 760 case Opt_usebackuproot: >> 761 btrfs_info(info, >> 762 "trying to use backup root at mount time"); >> 763 btrfs_set_opt(info->mount_opt, USEBACKUPROOT); >> 764 break; >> 765 case Opt_skip_balance: >> 766 btrfs_set_opt(info->mount_opt, SKIP_BALANCE); >> 767 break; >> 768 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY >> 769 case Opt_check_integrity_including_extent_data: >> 770 btrfs_info(info, >> 771 "enabling check integrity including extent data"); >> 772 btrfs_set_opt(info->mount_opt, >> 773 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA); >> 774 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY); >> 775 break; >> 776 case Opt_check_integrity: >> 777 btrfs_info(info, "enabling check integrity"); >> 778 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY); >> 779 break; >> 780 case Opt_check_integrity_print_mask: >> 781 ret = match_int(&args[0], &intarg); >> 782 if (ret) >> 783 goto out; >> 784 info->check_integrity_print_mask = intarg; >> 785 btrfs_info(info, "check_integrity_print_mask 0x%x", >> 786 info->check_integrity_print_mask); >> 787 break; >> 788 #else >> 789 case Opt_check_integrity_including_extent_data: >> 790 case Opt_check_integrity: >> 791 case Opt_check_integrity_print_mask: >> 792 btrfs_err(info, >> 793 "support for check_integrity* not compiled in!"); >> 794 ret = -EINVAL; >> 795 goto out; >> 796 #endif >> 797 case Opt_fatal_errors: >> 798 if (strcmp(args[0].from, "panic") == 0) >> 799 btrfs_set_opt(info->mount_opt, >> 800 PANIC_ON_FATAL_ERROR); >> 801 else if (strcmp(args[0].from, "bug") == 0) >> 802 btrfs_clear_opt(info->mount_opt, >> 803 PANIC_ON_FATAL_ERROR); >> 804 else { >> 805 ret = -EINVAL; >> 806 goto out; >> 807 } >> 808 break; >> 809 case Opt_commit_interval: >> 810 intarg = 0; >> 811 ret = match_int(&args[0], &intarg); >> 812 if (ret) >> 813 goto out; >> 814 if (intarg == 0) { >> 815 btrfs_info(info, >> 816 "using default commit interval %us", >> 817 BTRFS_DEFAULT_COMMIT_INTERVAL); >> 818 intarg = BTRFS_DEFAULT_COMMIT_INTERVAL; >> 819 } else if (intarg > 300) { >> 820 btrfs_warn(info, "excessive commit interval %d", >> 821 intarg); >> 822 } >> 823 info->commit_interval = intarg; 602 break; 824 break; 603 default: << 604 btrfs_info(NULL, "unre << 605 param->key) << 606 return -EINVAL; << 607 } << 608 break; << 609 #ifdef CONFIG_BTRFS_DEBUG 825 #ifdef CONFIG_BTRFS_DEBUG 610 case Opt_fragment: !! 826 case Opt_fragment_all: 611 switch (result.uint_32) { !! 827 btrfs_info(info, "fragmenting all space"); 612 case Opt_fragment_parameter_al !! 828 btrfs_set_opt(info->mount_opt, FRAGMENT_DATA); 613 btrfs_set_opt(ctx->mou !! 829 btrfs_set_opt(info->mount_opt, FRAGMENT_METADATA); 614 btrfs_set_opt(ctx->mou << 615 break; 830 break; 616 case Opt_fragment_parameter_me !! 831 case Opt_fragment_metadata: 617 btrfs_set_opt(ctx->mou !! 832 btrfs_info(info, "fragmenting metadata"); >> 833 btrfs_set_opt(info->mount_opt, >> 834 FRAGMENT_METADATA); 618 break; 835 break; 619 case Opt_fragment_parameter_da !! 836 case Opt_fragment_data: 620 btrfs_set_opt(ctx->mou !! 837 btrfs_info(info, "fragmenting data"); >> 838 btrfs_set_opt(info->mount_opt, FRAGMENT_DATA); 621 break; 839 break; 622 default: << 623 btrfs_info(NULL, "unre << 624 param->key) << 625 return -EINVAL; << 626 } << 627 break; << 628 #endif 840 #endif 629 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 841 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 630 case Opt_ref_verify: !! 842 case Opt_ref_verify: 631 btrfs_set_opt(ctx->mount_opt, !! 843 btrfs_info(info, "doing ref verification"); 632 break; !! 844 btrfs_set_opt(info->mount_opt, REF_VERIFY); >> 845 break; 633 #endif 846 #endif 634 default: !! 847 case Opt_err: 635 btrfs_err(NULL, "unrecognized !! 848 btrfs_info(info, "unrecognized mount option '%s'", p); 636 return -EINVAL; !! 849 ret = -EINVAL; >> 850 goto out; >> 851 default: >> 852 break; >> 853 } >> 854 } >> 855 check: >> 856 /* >> 857 * Extra check for current option against current flag >> 858 */ >> 859 if (btrfs_test_opt(info, NOLOGREPLAY) && !(new_flags & SB_RDONLY)) { >> 860 btrfs_err(info, >> 861 "nologreplay must be used with ro mount option"); >> 862 ret = -EINVAL; 637 } 863 } >> 864 out: >> 865 if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) && >> 866 !btrfs_test_opt(info, FREE_SPACE_TREE) && >> 867 !btrfs_test_opt(info, CLEAR_CACHE)) { >> 868 btrfs_err(info, "cannot disable free space tree"); >> 869 ret = -EINVAL; 638 870 639 return 0; !! 871 } >> 872 if (!ret && btrfs_test_opt(info, SPACE_CACHE)) >> 873 btrfs_info(info, "disk space caching is enabled"); >> 874 if (!ret && btrfs_test_opt(info, FREE_SPACE_TREE)) >> 875 btrfs_info(info, "using free space tree"); >> 876 return ret; 640 } 877 } 641 878 642 /* 879 /* 643 * Some options only have meaning at mount tim !! 880 * Parse mount options that are required early in the mount process. 644 * remounts, or be displayed. Clear these at t !! 881 * 645 * paths. !! 882 * All other options will be parsed on much later in the mount process and >> 883 * only when we need to allocate a new super block. 646 */ 884 */ 647 static void btrfs_clear_oneshot_options(struct !! 885 static int btrfs_parse_device_options(const char *options, fmode_t flags, >> 886 void *holder) 648 { 887 { 649 btrfs_clear_opt(fs_info->mount_opt, US !! 888 substring_t args[MAX_OPT_ARGS]; 650 btrfs_clear_opt(fs_info->mount_opt, CL !! 889 char *device_name, *opts, *orig, *p; 651 btrfs_clear_opt(fs_info->mount_opt, NO !! 890 struct btrfs_device *device = NULL; 652 } !! 891 int error = 0; 653 892 654 static bool check_ro_option(const struct btrfs !! 893 lockdep_assert_held(&uuid_mutex); 655 unsigned long long << 656 const char *opt_na << 657 { << 658 if (mount_opt & opt) { << 659 btrfs_err(fs_info, "%s must be << 660 opt_name); << 661 return true; << 662 } << 663 return false; << 664 } << 665 894 666 bool btrfs_check_options(const struct btrfs_fs !! 895 if (!options) 667 unsigned long long *m !! 896 return 0; 668 unsigned long flags) << 669 { << 670 bool ret = true; << 671 897 672 if (!(flags & SB_RDONLY) && !! 898 /* 673 (check_ro_option(info, *mount_opt, !! 899 * strsep changes the string, duplicate it because btrfs_parse_options 674 check_ro_option(info, *mount_opt, !! 900 * gets called later 675 check_ro_option(info, *mount_opt, !! 901 */ 676 check_ro_option(info, *mount_opt, !! 902 opts = kstrdup(options, GFP_KERNEL); 677 check_ro_option(info, *mount_opt, !! 903 if (!opts) 678 ret = false; !! 904 return -ENOMEM; >> 905 orig = opts; 679 906 680 if (btrfs_fs_compat_ro(info, FREE_SPAC !! 907 while ((p = strsep(&opts, ",")) != NULL) { 681 !btrfs_raw_test_opt(*mount_opt, FR !! 908 int token; 682 !btrfs_raw_test_opt(*mount_opt, CL !! 909 683 btrfs_err(info, "cannot disabl !! 910 if (!*p) 684 ret = false; !! 911 continue; 685 } !! 912 686 if (btrfs_fs_compat_ro(info, BLOCK_GRO !! 913 token = match_token(p, tokens, args); 687 !btrfs_raw_test_opt(*mount_opt, F !! 914 if (token == Opt_device) { 688 btrfs_err(info, "cannot disabl !! 915 device_name = match_strdup(&args[0]); 689 ret = false; !! 916 if (!device_name) { 690 } !! 917 error = -ENOMEM; 691 !! 918 goto out; 692 if (btrfs_check_mountopts_zoned(info, !! 919 } 693 ret = false; !! 920 device = btrfs_scan_one_device(device_name, flags, 694 !! 921 holder); 695 if (!test_bit(BTRFS_FS_STATE_REMOUNTIN !! 922 kfree(device_name); 696 if (btrfs_raw_test_opt(*mount_ !! 923 if (IS_ERR(device)) { 697 btrfs_info(info, "disk !! 924 error = PTR_ERR(device); 698 btrfs_warn(info, !! 925 goto out; 699 "space cache v1 is being deprecated and will b !! 926 } 700 } 927 } 701 if (btrfs_raw_test_opt(*mount_ << 702 btrfs_info(info, "usin << 703 } 928 } 704 929 705 return ret; !! 930 out: >> 931 kfree(orig); >> 932 return error; 706 } 933 } 707 934 708 /* 935 /* 709 * This is subtle, we only call this during op !! 936 * Parse mount options that are related to subvolume id 710 * the mount options with the on-disk settings << 711 * effect we would do this on mount and remoun << 712 * only do this on the initial mount. << 713 * 937 * 714 * This isn't a change in behavior, because we !! 938 * The value is later passed to mount_subvol() 715 * file system to set the current mount option << 716 * options to disable these features and then << 717 * settings, because mounting without these fe << 718 * settings, so this being called on re-mount << 719 */ 939 */ 720 void btrfs_set_free_space_cache_settings(struc !! 940 static int btrfs_parse_subvol_options(const char *options, char **subvol_name, >> 941 u64 *subvol_objectid) 721 { 942 { 722 if (fs_info->sectorsize < PAGE_SIZE) { !! 943 substring_t args[MAX_OPT_ARGS]; 723 btrfs_clear_opt(fs_info->mount !! 944 char *opts, *orig, *p; 724 if (!btrfs_test_opt(fs_info, F !! 945 int error = 0; 725 btrfs_info(fs_info, !! 946 u64 subvolid; 726 "forcing fr !! 947 727 fs_info->se !! 948 if (!options) 728 btrfs_set_opt(fs_info- !! 949 return 0; 729 } << 730 } << 731 950 732 /* 951 /* 733 * At this point our mount options are !! 952 * strsep changes the string, duplicate it because 734 * these settings if we don't have any !! 953 * btrfs_parse_device_options gets called later 735 */ 954 */ 736 if (btrfs_test_opt(fs_info, FREE_SPACE !! 955 opts = kstrdup(options, GFP_KERNEL); 737 return; !! 956 if (!opts) 738 !! 957 return -ENOMEM; 739 if (btrfs_is_zoned(fs_info) && !! 958 orig = opts; 740 btrfs_free_space_cache_v1_active(f << 741 btrfs_info(fs_info, "zoned: cl << 742 btrfs_set_super_cache_generati << 743 return; << 744 } << 745 959 746 if (btrfs_test_opt(fs_info, SPACE_CACH !! 960 while ((p = strsep(&opts, ",")) != NULL) { 747 return; !! 961 int token; >> 962 if (!*p) >> 963 continue; 748 964 749 if (btrfs_test_opt(fs_info, NOSPACECAC !! 965 token = match_token(p, tokens, args); 750 return; !! 966 switch (token) { >> 967 case Opt_subvol: >> 968 kfree(*subvol_name); >> 969 *subvol_name = match_strdup(&args[0]); >> 970 if (!*subvol_name) { >> 971 error = -ENOMEM; >> 972 goto out; >> 973 } >> 974 break; >> 975 case Opt_subvolid: >> 976 error = match_u64(&args[0], &subvolid); >> 977 if (error) >> 978 goto out; 751 979 752 /* !! 980 /* we want the original fs_tree */ 753 * At this point we don't have explici !! 981 if (subvolid == 0) 754 * them ourselves based on the state o !! 982 subvolid = BTRFS_FS_TREE_OBJECTID; 755 */ << 756 if (btrfs_fs_compat_ro(fs_info, FREE_S << 757 btrfs_set_opt(fs_info->mount_o << 758 else if (btrfs_free_space_cache_v1_act << 759 btrfs_set_opt(fs_info->mount_o << 760 } << 761 983 762 static void set_device_specific_options(struct !! 984 *subvol_objectid = subvolid; 763 { !! 985 break; 764 if (!btrfs_test_opt(fs_info, NOSSD) && !! 986 case Opt_subvolrootid: 765 !fs_info->fs_devices->rotating) !! 987 pr_warn("BTRFS: 'subvolrootid' mount option is deprecated and has no effect\n"); 766 btrfs_set_opt(fs_info->mount_o !! 988 break; >> 989 default: >> 990 break; >> 991 } >> 992 } 767 993 768 /* !! 994 out: 769 * For devices supporting discard turn !! 995 kfree(orig); 770 * unless it's already set or disabled !! 996 return error; 771 * nodiscard for the same mount. << 772 * << 773 * The zoned mode piggy backs on the d << 774 * resetting a zone. There is no reaso << 775 * fast enough. So, do not enable asyn << 776 */ << 777 if (!(btrfs_test_opt(fs_info, DISCARD_ << 778 btrfs_test_opt(fs_info, DISCARD_ << 779 btrfs_test_opt(fs_info, NODISCAR << 780 fs_info->fs_devices->discardable & << 781 !btrfs_is_zoned(fs_info)) << 782 btrfs_set_opt(fs_info->mount_o << 783 } 997 } 784 998 785 char *btrfs_get_subvol_name_from_objectid(stru !! 999 static char *get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info, 786 u64 !! 1000 u64 subvol_objectid) 787 { 1001 { 788 struct btrfs_root *root = fs_info->tre 1002 struct btrfs_root *root = fs_info->tree_root; 789 struct btrfs_root *fs_root = NULL; !! 1003 struct btrfs_root *fs_root; 790 struct btrfs_root_ref *root_ref; 1004 struct btrfs_root_ref *root_ref; 791 struct btrfs_inode_ref *inode_ref; 1005 struct btrfs_inode_ref *inode_ref; 792 struct btrfs_key key; 1006 struct btrfs_key key; 793 struct btrfs_path *path = NULL; 1007 struct btrfs_path *path = NULL; 794 char *name = NULL, *ptr; 1008 char *name = NULL, *ptr; 795 u64 dirid; 1009 u64 dirid; 796 int len; 1010 int len; 797 int ret; 1011 int ret; 798 1012 799 path = btrfs_alloc_path(); 1013 path = btrfs_alloc_path(); 800 if (!path) { 1014 if (!path) { 801 ret = -ENOMEM; 1015 ret = -ENOMEM; 802 goto err; 1016 goto err; 803 } 1017 } >> 1018 path->leave_spinning = 1; 804 1019 805 name = kmalloc(PATH_MAX, GFP_KERNEL); 1020 name = kmalloc(PATH_MAX, GFP_KERNEL); 806 if (!name) { 1021 if (!name) { 807 ret = -ENOMEM; 1022 ret = -ENOMEM; 808 goto err; 1023 goto err; 809 } 1024 } 810 ptr = name + PATH_MAX - 1; 1025 ptr = name + PATH_MAX - 1; 811 ptr[0] = '\0'; 1026 ptr[0] = '\0'; 812 1027 813 /* 1028 /* 814 * Walk up the subvolume trees in the 1029 * Walk up the subvolume trees in the tree of tree roots by root 815 * backrefs until we hit the top-level 1030 * backrefs until we hit the top-level subvolume. 816 */ 1031 */ 817 while (subvol_objectid != BTRFS_FS_TRE 1032 while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) { 818 key.objectid = subvol_objectid 1033 key.objectid = subvol_objectid; 819 key.type = BTRFS_ROOT_BACKREF_ 1034 key.type = BTRFS_ROOT_BACKREF_KEY; 820 key.offset = (u64)-1; 1035 key.offset = (u64)-1; 821 1036 822 ret = btrfs_search_backwards(r !! 1037 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 823 if (ret < 0) { 1038 if (ret < 0) { 824 goto err; 1039 goto err; 825 } else if (ret > 0) { 1040 } else if (ret > 0) { 826 ret = -ENOENT; !! 1041 ret = btrfs_previous_item(root, path, subvol_objectid, 827 goto err; !! 1042 BTRFS_ROOT_BACKREF_KEY); >> 1043 if (ret < 0) { >> 1044 goto err; >> 1045 } else if (ret > 0) { >> 1046 ret = -ENOENT; >> 1047 goto err; >> 1048 } 828 } 1049 } 829 1050 >> 1051 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 830 subvol_objectid = key.offset; 1052 subvol_objectid = key.offset; 831 1053 832 root_ref = btrfs_item_ptr(path 1054 root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0], 833 stru 1055 struct btrfs_root_ref); 834 len = btrfs_root_ref_name_len( 1056 len = btrfs_root_ref_name_len(path->nodes[0], root_ref); 835 ptr -= len + 1; 1057 ptr -= len + 1; 836 if (ptr < name) { 1058 if (ptr < name) { 837 ret = -ENAMETOOLONG; 1059 ret = -ENAMETOOLONG; 838 goto err; 1060 goto err; 839 } 1061 } 840 read_extent_buffer(path->nodes 1062 read_extent_buffer(path->nodes[0], ptr + 1, 841 (unsigned l 1063 (unsigned long)(root_ref + 1), len); 842 ptr[0] = '/'; 1064 ptr[0] = '/'; 843 dirid = btrfs_root_ref_dirid(p 1065 dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref); 844 btrfs_release_path(path); 1066 btrfs_release_path(path); 845 1067 846 fs_root = btrfs_get_fs_root(fs !! 1068 key.objectid = subvol_objectid; >> 1069 key.type = BTRFS_ROOT_ITEM_KEY; >> 1070 key.offset = (u64)-1; >> 1071 fs_root = btrfs_read_fs_root_no_name(fs_info, &key); 847 if (IS_ERR(fs_root)) { 1072 if (IS_ERR(fs_root)) { 848 ret = PTR_ERR(fs_root) 1073 ret = PTR_ERR(fs_root); 849 fs_root = NULL; << 850 goto err; 1074 goto err; 851 } 1075 } 852 1076 853 /* 1077 /* 854 * Walk up the filesystem tree 1078 * Walk up the filesystem tree by inode refs until we hit the 855 * root directory. 1079 * root directory. 856 */ 1080 */ 857 while (dirid != BTRFS_FIRST_FR 1081 while (dirid != BTRFS_FIRST_FREE_OBJECTID) { 858 key.objectid = dirid; 1082 key.objectid = dirid; 859 key.type = BTRFS_INODE 1083 key.type = BTRFS_INODE_REF_KEY; 860 key.offset = (u64)-1; 1084 key.offset = (u64)-1; 861 1085 862 ret = btrfs_search_bac !! 1086 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0); 863 if (ret < 0) { 1087 if (ret < 0) { 864 goto err; 1088 goto err; 865 } else if (ret > 0) { 1089 } else if (ret > 0) { 866 ret = -ENOENT; !! 1090 ret = btrfs_previous_item(fs_root, path, dirid, 867 goto err; !! 1091 BTRFS_INODE_REF_KEY); >> 1092 if (ret < 0) { >> 1093 goto err; >> 1094 } else if (ret > 0) { >> 1095 ret = -ENOENT; >> 1096 goto err; >> 1097 } 868 } 1098 } 869 1099 >> 1100 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 870 dirid = key.offset; 1101 dirid = key.offset; 871 1102 872 inode_ref = btrfs_item 1103 inode_ref = btrfs_item_ptr(path->nodes[0], 873 1104 path->slots[0], 874 1105 struct btrfs_inode_ref); 875 len = btrfs_inode_ref_ 1106 len = btrfs_inode_ref_name_len(path->nodes[0], 876 1107 inode_ref); 877 ptr -= len + 1; 1108 ptr -= len + 1; 878 if (ptr < name) { 1109 if (ptr < name) { 879 ret = -ENAMETO 1110 ret = -ENAMETOOLONG; 880 goto err; 1111 goto err; 881 } 1112 } 882 read_extent_buffer(pat 1113 read_extent_buffer(path->nodes[0], ptr + 1, 883 (un 1114 (unsigned long)(inode_ref + 1), len); 884 ptr[0] = '/'; 1115 ptr[0] = '/'; 885 btrfs_release_path(pat 1116 btrfs_release_path(path); 886 } 1117 } 887 btrfs_put_root(fs_root); << 888 fs_root = NULL; << 889 } 1118 } 890 1119 891 btrfs_free_path(path); 1120 btrfs_free_path(path); 892 if (ptr == name + PATH_MAX - 1) { 1121 if (ptr == name + PATH_MAX - 1) { 893 name[0] = '/'; 1122 name[0] = '/'; 894 name[1] = '\0'; 1123 name[1] = '\0'; 895 } else { 1124 } else { 896 memmove(name, ptr, name + PATH 1125 memmove(name, ptr, name + PATH_MAX - ptr); 897 } 1126 } 898 return name; 1127 return name; 899 1128 900 err: 1129 err: 901 btrfs_put_root(fs_root); << 902 btrfs_free_path(path); 1130 btrfs_free_path(path); 903 kfree(name); 1131 kfree(name); 904 return ERR_PTR(ret); 1132 return ERR_PTR(ret); 905 } 1133 } 906 1134 907 static int get_default_subvol_objectid(struct 1135 static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid) 908 { 1136 { 909 struct btrfs_root *root = fs_info->tre 1137 struct btrfs_root *root = fs_info->tree_root; 910 struct btrfs_dir_item *di; 1138 struct btrfs_dir_item *di; 911 struct btrfs_path *path; 1139 struct btrfs_path *path; 912 struct btrfs_key location; 1140 struct btrfs_key location; 913 struct fscrypt_str name = FSTR_INIT("d << 914 u64 dir_id; 1141 u64 dir_id; 915 1142 916 path = btrfs_alloc_path(); 1143 path = btrfs_alloc_path(); 917 if (!path) 1144 if (!path) 918 return -ENOMEM; 1145 return -ENOMEM; >> 1146 path->leave_spinning = 1; 919 1147 920 /* 1148 /* 921 * Find the "default" dir item which p 1149 * Find the "default" dir item which points to the root item that we 922 * will mount by default if we haven't 1150 * will mount by default if we haven't been given a specific subvolume 923 * to mount. 1151 * to mount. 924 */ 1152 */ 925 dir_id = btrfs_super_root_dir(fs_info- 1153 dir_id = btrfs_super_root_dir(fs_info->super_copy); 926 di = btrfs_lookup_dir_item(NULL, root, !! 1154 di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0); 927 if (IS_ERR(di)) { 1155 if (IS_ERR(di)) { 928 btrfs_free_path(path); 1156 btrfs_free_path(path); 929 return PTR_ERR(di); 1157 return PTR_ERR(di); 930 } 1158 } 931 if (!di) { 1159 if (!di) { 932 /* 1160 /* 933 * Ok the default dir item isn 1161 * Ok the default dir item isn't there. This is weird since 934 * it's always been there, but 1162 * it's always been there, but don't freak out, just try and 935 * mount the top-level subvolu 1163 * mount the top-level subvolume. 936 */ 1164 */ 937 btrfs_free_path(path); 1165 btrfs_free_path(path); 938 *objectid = BTRFS_FS_TREE_OBJE 1166 *objectid = BTRFS_FS_TREE_OBJECTID; 939 return 0; 1167 return 0; 940 } 1168 } 941 1169 942 btrfs_dir_item_key_to_cpu(path->nodes[ 1170 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); 943 btrfs_free_path(path); 1171 btrfs_free_path(path); 944 *objectid = location.objectid; 1172 *objectid = location.objectid; 945 return 0; 1173 return 0; 946 } 1174 } 947 1175 948 static int btrfs_fill_super(struct super_block 1176 static int btrfs_fill_super(struct super_block *sb, 949 struct btrfs_fs_de 1177 struct btrfs_fs_devices *fs_devices, 950 void *data) 1178 void *data) 951 { 1179 { 952 struct inode *inode; 1180 struct inode *inode; 953 struct btrfs_fs_info *fs_info = btrfs_ 1181 struct btrfs_fs_info *fs_info = btrfs_sb(sb); >> 1182 struct btrfs_key key; 954 int err; 1183 int err; 955 1184 956 sb->s_maxbytes = MAX_LFS_FILESIZE; 1185 sb->s_maxbytes = MAX_LFS_FILESIZE; 957 sb->s_magic = BTRFS_SUPER_MAGIC; 1186 sb->s_magic = BTRFS_SUPER_MAGIC; 958 sb->s_op = &btrfs_super_ops; 1187 sb->s_op = &btrfs_super_ops; 959 sb->s_d_op = &btrfs_dentry_operations; 1188 sb->s_d_op = &btrfs_dentry_operations; 960 sb->s_export_op = &btrfs_export_ops; 1189 sb->s_export_op = &btrfs_export_ops; 961 #ifdef CONFIG_FS_VERITY << 962 sb->s_vop = &btrfs_verityops; << 963 #endif << 964 sb->s_xattr = btrfs_xattr_handlers; 1190 sb->s_xattr = btrfs_xattr_handlers; 965 sb->s_time_gran = 1; 1191 sb->s_time_gran = 1; >> 1192 #ifdef CONFIG_BTRFS_FS_POSIX_ACL >> 1193 sb->s_flags |= SB_POSIXACL; >> 1194 #endif >> 1195 sb->s_flags |= SB_I_VERSION; 966 sb->s_iflags |= SB_I_CGROUPWB; 1196 sb->s_iflags |= SB_I_CGROUPWB; 967 1197 968 err = super_setup_bdi(sb); 1198 err = super_setup_bdi(sb); 969 if (err) { 1199 if (err) { 970 btrfs_err(fs_info, "super_setu 1200 btrfs_err(fs_info, "super_setup_bdi failed"); 971 return err; 1201 return err; 972 } 1202 } 973 1203 974 err = open_ctree(sb, fs_devices, (char 1204 err = open_ctree(sb, fs_devices, (char *)data); 975 if (err) { 1205 if (err) { 976 btrfs_err(fs_info, "open_ctree 1206 btrfs_err(fs_info, "open_ctree failed"); 977 return err; 1207 return err; 978 } 1208 } 979 1209 980 inode = btrfs_iget(BTRFS_FIRST_FREE_OB !! 1210 key.objectid = BTRFS_FIRST_FREE_OBJECTID; >> 1211 key.type = BTRFS_INODE_ITEM_KEY; >> 1212 key.offset = 0; >> 1213 inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL); 981 if (IS_ERR(inode)) { 1214 if (IS_ERR(inode)) { 982 err = PTR_ERR(inode); 1215 err = PTR_ERR(inode); 983 btrfs_handle_fs_error(fs_info, << 984 goto fail_close; 1216 goto fail_close; 985 } 1217 } 986 1218 987 sb->s_root = d_make_root(inode); 1219 sb->s_root = d_make_root(inode); 988 if (!sb->s_root) { 1220 if (!sb->s_root) { 989 err = -ENOMEM; 1221 err = -ENOMEM; 990 goto fail_close; 1222 goto fail_close; 991 } 1223 } 992 1224 >> 1225 cleancache_init_fs(sb); 993 sb->s_flags |= SB_ACTIVE; 1226 sb->s_flags |= SB_ACTIVE; 994 return 0; 1227 return 0; 995 1228 996 fail_close: 1229 fail_close: 997 close_ctree(fs_info); 1230 close_ctree(fs_info); 998 return err; 1231 return err; 999 } 1232 } 1000 1233 1001 int btrfs_sync_fs(struct super_block *sb, int 1234 int btrfs_sync_fs(struct super_block *sb, int wait) 1002 { 1235 { 1003 struct btrfs_trans_handle *trans; 1236 struct btrfs_trans_handle *trans; 1004 struct btrfs_fs_info *fs_info = btrfs 1237 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1005 struct btrfs_root *root = fs_info->tr 1238 struct btrfs_root *root = fs_info->tree_root; 1006 1239 1007 trace_btrfs_sync_fs(fs_info, wait); 1240 trace_btrfs_sync_fs(fs_info, wait); 1008 1241 1009 if (!wait) { 1242 if (!wait) { 1010 filemap_flush(fs_info->btree_ 1243 filemap_flush(fs_info->btree_inode->i_mapping); 1011 return 0; 1244 return 0; 1012 } 1245 } 1013 1246 1014 btrfs_wait_ordered_roots(fs_info, U64 !! 1247 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1); 1015 1248 1016 trans = btrfs_attach_transaction_barr 1249 trans = btrfs_attach_transaction_barrier(root); 1017 if (IS_ERR(trans)) { 1250 if (IS_ERR(trans)) { 1018 /* no transaction, don't both 1251 /* no transaction, don't bother */ 1019 if (PTR_ERR(trans) == -ENOENT 1252 if (PTR_ERR(trans) == -ENOENT) { 1020 /* 1253 /* 1021 * Exit unless we hav 1254 * Exit unless we have some pending changes 1022 * that need to go th 1255 * that need to go through commit 1023 */ 1256 */ 1024 if (!test_bit(BTRFS_F !! 1257 if (fs_info->pending_changes == 0) 1025 &fs_inf << 1026 return 0; 1258 return 0; 1027 /* 1259 /* 1028 * A non-blocking tes 1260 * A non-blocking test if the fs is frozen. We must not 1029 * start a new transa 1261 * start a new transaction here otherwise a deadlock 1030 * happens. The pendi 1262 * happens. The pending operations are delayed to the 1031 * next commit after 1263 * next commit after thawing. 1032 */ 1264 */ 1033 if (sb_start_write_tr 1265 if (sb_start_write_trylock(sb)) 1034 sb_end_write( 1266 sb_end_write(sb); 1035 else 1267 else 1036 return 0; 1268 return 0; 1037 trans = btrfs_start_t 1269 trans = btrfs_start_transaction(root, 0); 1038 } 1270 } 1039 if (IS_ERR(trans)) 1271 if (IS_ERR(trans)) 1040 return PTR_ERR(trans) 1272 return PTR_ERR(trans); 1041 } 1273 } 1042 return btrfs_commit_transaction(trans 1274 return btrfs_commit_transaction(trans); 1043 } 1275 } 1044 1276 1045 static void print_rescue_option(struct seq_fi << 1046 { << 1047 seq_printf(seq, "%s%s", (*printed) ? << 1048 *printed = true; << 1049 } << 1050 << 1051 static int btrfs_show_options(struct seq_file 1277 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry) 1052 { 1278 { 1053 struct btrfs_fs_info *info = btrfs_sb 1279 struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb); 1054 const char *compress_type; 1280 const char *compress_type; 1055 const char *subvol_name; << 1056 bool printed = false; << 1057 1281 1058 if (btrfs_test_opt(info, DEGRADED)) 1282 if (btrfs_test_opt(info, DEGRADED)) 1059 seq_puts(seq, ",degraded"); 1283 seq_puts(seq, ",degraded"); 1060 if (btrfs_test_opt(info, NODATASUM)) 1284 if (btrfs_test_opt(info, NODATASUM)) 1061 seq_puts(seq, ",nodatasum"); 1285 seq_puts(seq, ",nodatasum"); 1062 if (btrfs_test_opt(info, NODATACOW)) 1286 if (btrfs_test_opt(info, NODATACOW)) 1063 seq_puts(seq, ",nodatacow"); 1287 seq_puts(seq, ",nodatacow"); 1064 if (btrfs_test_opt(info, NOBARRIER)) 1288 if (btrfs_test_opt(info, NOBARRIER)) 1065 seq_puts(seq, ",nobarrier"); 1289 seq_puts(seq, ",nobarrier"); 1066 if (info->max_inline != BTRFS_DEFAULT 1290 if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE) 1067 seq_printf(seq, ",max_inline= 1291 seq_printf(seq, ",max_inline=%llu", info->max_inline); 1068 if (info->thread_pool_size != min_t( 1292 if (info->thread_pool_size != min_t(unsigned long, 1069 1293 num_online_cpus() + 2, 8)) 1070 seq_printf(seq, ",thread_pool 1294 seq_printf(seq, ",thread_pool=%u", info->thread_pool_size); 1071 if (btrfs_test_opt(info, COMPRESS)) { 1295 if (btrfs_test_opt(info, COMPRESS)) { 1072 compress_type = btrfs_compres 1296 compress_type = btrfs_compress_type2str(info->compress_type); 1073 if (btrfs_test_opt(info, FORC 1297 if (btrfs_test_opt(info, FORCE_COMPRESS)) 1074 seq_printf(seq, ",com 1298 seq_printf(seq, ",compress-force=%s", compress_type); 1075 else 1299 else 1076 seq_printf(seq, ",com 1300 seq_printf(seq, ",compress=%s", compress_type); 1077 if (info->compress_level) 1301 if (info->compress_level) 1078 seq_printf(seq, ":%d" 1302 seq_printf(seq, ":%d", info->compress_level); 1079 } 1303 } 1080 if (btrfs_test_opt(info, NOSSD)) 1304 if (btrfs_test_opt(info, NOSSD)) 1081 seq_puts(seq, ",nossd"); 1305 seq_puts(seq, ",nossd"); 1082 if (btrfs_test_opt(info, SSD_SPREAD)) 1306 if (btrfs_test_opt(info, SSD_SPREAD)) 1083 seq_puts(seq, ",ssd_spread"); 1307 seq_puts(seq, ",ssd_spread"); 1084 else if (btrfs_test_opt(info, SSD)) 1308 else if (btrfs_test_opt(info, SSD)) 1085 seq_puts(seq, ",ssd"); 1309 seq_puts(seq, ",ssd"); 1086 if (btrfs_test_opt(info, NOTREELOG)) 1310 if (btrfs_test_opt(info, NOTREELOG)) 1087 seq_puts(seq, ",notreelog"); 1311 seq_puts(seq, ",notreelog"); 1088 if (btrfs_test_opt(info, NOLOGREPLAY) 1312 if (btrfs_test_opt(info, NOLOGREPLAY)) 1089 print_rescue_option(seq, "nol !! 1313 seq_puts(seq, ",nologreplay"); 1090 if (btrfs_test_opt(info, USEBACKUPROO << 1091 print_rescue_option(seq, "use << 1092 if (btrfs_test_opt(info, IGNOREBADROO << 1093 print_rescue_option(seq, "ign << 1094 if (btrfs_test_opt(info, IGNOREDATACS << 1095 print_rescue_option(seq, "ign << 1096 if (btrfs_test_opt(info, IGNOREMETACS << 1097 print_rescue_option(seq, "ign << 1098 if (btrfs_test_opt(info, IGNORESUPERF << 1099 print_rescue_option(seq, "ign << 1100 if (btrfs_test_opt(info, FLUSHONCOMMI 1314 if (btrfs_test_opt(info, FLUSHONCOMMIT)) 1101 seq_puts(seq, ",flushoncommit 1315 seq_puts(seq, ",flushoncommit"); 1102 if (btrfs_test_opt(info, DISCARD_SYNC !! 1316 if (btrfs_test_opt(info, DISCARD)) 1103 seq_puts(seq, ",discard"); 1317 seq_puts(seq, ",discard"); 1104 if (btrfs_test_opt(info, DISCARD_ASYN << 1105 seq_puts(seq, ",discard=async << 1106 if (!(info->sb->s_flags & SB_POSIXACL 1318 if (!(info->sb->s_flags & SB_POSIXACL)) 1107 seq_puts(seq, ",noacl"); 1319 seq_puts(seq, ",noacl"); 1108 if (btrfs_free_space_cache_v1_active( !! 1320 if (btrfs_test_opt(info, SPACE_CACHE)) 1109 seq_puts(seq, ",space_cache") 1321 seq_puts(seq, ",space_cache"); 1110 else if (btrfs_fs_compat_ro(info, FRE !! 1322 else if (btrfs_test_opt(info, FREE_SPACE_TREE)) 1111 seq_puts(seq, ",space_cache=v 1323 seq_puts(seq, ",space_cache=v2"); 1112 else 1324 else 1113 seq_puts(seq, ",nospace_cache 1325 seq_puts(seq, ",nospace_cache"); 1114 if (btrfs_test_opt(info, RESCAN_UUID_ 1326 if (btrfs_test_opt(info, RESCAN_UUID_TREE)) 1115 seq_puts(seq, ",rescan_uuid_t 1327 seq_puts(seq, ",rescan_uuid_tree"); 1116 if (btrfs_test_opt(info, CLEAR_CACHE) 1328 if (btrfs_test_opt(info, CLEAR_CACHE)) 1117 seq_puts(seq, ",clear_cache") 1329 seq_puts(seq, ",clear_cache"); 1118 if (btrfs_test_opt(info, USER_SUBVOL_ 1330 if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED)) 1119 seq_puts(seq, ",user_subvol_r 1331 seq_puts(seq, ",user_subvol_rm_allowed"); 1120 if (btrfs_test_opt(info, ENOSPC_DEBUG 1332 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 1121 seq_puts(seq, ",enospc_debug" 1333 seq_puts(seq, ",enospc_debug"); 1122 if (btrfs_test_opt(info, AUTO_DEFRAG) 1334 if (btrfs_test_opt(info, AUTO_DEFRAG)) 1123 seq_puts(seq, ",autodefrag"); 1335 seq_puts(seq, ",autodefrag"); >> 1336 if (btrfs_test_opt(info, INODE_MAP_CACHE)) >> 1337 seq_puts(seq, ",inode_cache"); 1124 if (btrfs_test_opt(info, SKIP_BALANCE 1338 if (btrfs_test_opt(info, SKIP_BALANCE)) 1125 seq_puts(seq, ",skip_balance" 1339 seq_puts(seq, ",skip_balance"); >> 1340 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY >> 1341 if (btrfs_test_opt(info, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA)) >> 1342 seq_puts(seq, ",check_int_data"); >> 1343 else if (btrfs_test_opt(info, CHECK_INTEGRITY)) >> 1344 seq_puts(seq, ",check_int"); >> 1345 if (info->check_integrity_print_mask) >> 1346 seq_printf(seq, ",check_int_print_mask=%d", >> 1347 info->check_integrity_print_mask); >> 1348 #endif 1126 if (info->metadata_ratio) 1349 if (info->metadata_ratio) 1127 seq_printf(seq, ",metadata_ra 1350 seq_printf(seq, ",metadata_ratio=%u", info->metadata_ratio); 1128 if (btrfs_test_opt(info, PANIC_ON_FAT 1351 if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR)) 1129 seq_puts(seq, ",fatal_errors= 1352 seq_puts(seq, ",fatal_errors=panic"); 1130 if (info->commit_interval != BTRFS_DE 1353 if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL) 1131 seq_printf(seq, ",commit=%u", 1354 seq_printf(seq, ",commit=%u", info->commit_interval); 1132 #ifdef CONFIG_BTRFS_DEBUG 1355 #ifdef CONFIG_BTRFS_DEBUG 1133 if (btrfs_test_opt(info, FRAGMENT_DAT 1356 if (btrfs_test_opt(info, FRAGMENT_DATA)) 1134 seq_puts(seq, ",fragment=data 1357 seq_puts(seq, ",fragment=data"); 1135 if (btrfs_test_opt(info, FRAGMENT_MET 1358 if (btrfs_test_opt(info, FRAGMENT_METADATA)) 1136 seq_puts(seq, ",fragment=meta 1359 seq_puts(seq, ",fragment=metadata"); 1137 #endif 1360 #endif 1138 if (btrfs_test_opt(info, REF_VERIFY)) 1361 if (btrfs_test_opt(info, REF_VERIFY)) 1139 seq_puts(seq, ",ref_verify"); 1362 seq_puts(seq, ",ref_verify"); 1140 seq_printf(seq, ",subvolid=%llu", btr !! 1363 seq_printf(seq, ",subvolid=%llu", 1141 subvol_name = btrfs_get_subvol_name_f !! 1364 BTRFS_I(d_inode(dentry))->root->root_key.objectid); 1142 btrfs_root_id(BTRFS_I !! 1365 seq_puts(seq, ",subvol="); 1143 if (!IS_ERR(subvol_name)) { !! 1366 seq_dentry(seq, dentry, " \t\n\\"); 1144 seq_puts(seq, ",subvol="); << 1145 seq_escape(seq, subvol_name, << 1146 kfree(subvol_name); << 1147 } << 1148 return 0; 1367 return 0; 1149 } 1368 } 1150 1369 >> 1370 static int btrfs_test_super(struct super_block *s, void *data) >> 1371 { >> 1372 struct btrfs_fs_info *p = data; >> 1373 struct btrfs_fs_info *fs_info = btrfs_sb(s); >> 1374 >> 1375 return fs_info->fs_devices == p->fs_devices; >> 1376 } >> 1377 >> 1378 static int btrfs_set_super(struct super_block *s, void *data) >> 1379 { >> 1380 int err = set_anon_super(s, data); >> 1381 if (!err) >> 1382 s->s_fs_info = data; >> 1383 return err; >> 1384 } >> 1385 1151 /* 1386 /* 1152 * subvolumes are identified by ino 256 1387 * subvolumes are identified by ino 256 1153 */ 1388 */ 1154 static inline int is_subvolume_inode(struct i 1389 static inline int is_subvolume_inode(struct inode *inode) 1155 { 1390 { 1156 if (inode && inode->i_ino == BTRFS_FI 1391 if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) 1157 return 1; 1392 return 1; 1158 return 0; 1393 return 0; 1159 } 1394 } 1160 1395 1161 static struct dentry *mount_subvol(const char 1396 static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid, 1162 struct vfs !! 1397 const char *device_name, struct vfsmount *mnt) 1163 { 1398 { 1164 struct dentry *root; 1399 struct dentry *root; 1165 int ret; 1400 int ret; 1166 1401 1167 if (!subvol_name) { 1402 if (!subvol_name) { 1168 if (!subvol_objectid) { 1403 if (!subvol_objectid) { 1169 ret = get_default_sub 1404 ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb), 1170 1405 &subvol_objectid); 1171 if (ret) { 1406 if (ret) { 1172 root = ERR_PT 1407 root = ERR_PTR(ret); 1173 goto out; 1408 goto out; 1174 } 1409 } 1175 } 1410 } 1176 subvol_name = btrfs_get_subvo !! 1411 subvol_name = get_subvol_name_from_objectid(btrfs_sb(mnt->mnt_sb), 1177 btrfs !! 1412 subvol_objectid); 1178 if (IS_ERR(subvol_name)) { 1413 if (IS_ERR(subvol_name)) { 1179 root = ERR_CAST(subvo 1414 root = ERR_CAST(subvol_name); 1180 subvol_name = NULL; 1415 subvol_name = NULL; 1181 goto out; 1416 goto out; 1182 } 1417 } 1183 1418 1184 } 1419 } 1185 1420 1186 root = mount_subtree(mnt, subvol_name 1421 root = mount_subtree(mnt, subvol_name); 1187 /* mount_subtree() drops our referenc 1422 /* mount_subtree() drops our reference on the vfsmount. */ 1188 mnt = NULL; 1423 mnt = NULL; 1189 1424 1190 if (!IS_ERR(root)) { 1425 if (!IS_ERR(root)) { 1191 struct super_block *s = root- 1426 struct super_block *s = root->d_sb; 1192 struct btrfs_fs_info *fs_info 1427 struct btrfs_fs_info *fs_info = btrfs_sb(s); 1193 struct inode *root_inode = d_ 1428 struct inode *root_inode = d_inode(root); 1194 u64 root_objectid = btrfs_roo !! 1429 u64 root_objectid = BTRFS_I(root_inode)->root->root_key.objectid; 1195 1430 1196 ret = 0; 1431 ret = 0; 1197 if (!is_subvolume_inode(root_ 1432 if (!is_subvolume_inode(root_inode)) { 1198 btrfs_err(fs_info, "' 1433 btrfs_err(fs_info, "'%s' is not a valid subvolume", 1199 subvol_name); 1434 subvol_name); 1200 ret = -EINVAL; 1435 ret = -EINVAL; 1201 } 1436 } 1202 if (subvol_objectid && root_o 1437 if (subvol_objectid && root_objectid != subvol_objectid) { 1203 /* 1438 /* 1204 * This will also cat 1439 * This will also catch a race condition where a 1205 * subvolume which wa 1440 * subvolume which was passed by ID is renamed and 1206 * another subvolume 1441 * another subvolume is renamed over the old location. 1207 */ 1442 */ 1208 btrfs_err(fs_info, 1443 btrfs_err(fs_info, 1209 "subvol '%s 1444 "subvol '%s' does not match subvolid %llu", 1210 subvol_name 1445 subvol_name, subvol_objectid); 1211 ret = -EINVAL; 1446 ret = -EINVAL; 1212 } 1447 } 1213 if (ret) { 1448 if (ret) { 1214 dput(root); 1449 dput(root); 1215 root = ERR_PTR(ret); 1450 root = ERR_PTR(ret); 1216 deactivate_locked_sup 1451 deactivate_locked_super(s); 1217 } 1452 } 1218 } 1453 } 1219 1454 1220 out: 1455 out: 1221 mntput(mnt); 1456 mntput(mnt); 1222 kfree(subvol_name); 1457 kfree(subvol_name); 1223 return root; 1458 return root; 1224 } 1459 } 1225 1460 >> 1461 /* >> 1462 * Find a superblock for the given device / mount point. >> 1463 * >> 1464 * Note: This is based on mount_bdev from fs/super.c with a few additions >> 1465 * for multiple device setup. Make sure to keep it in sync. >> 1466 */ >> 1467 static struct dentry *btrfs_mount_root(struct file_system_type *fs_type, >> 1468 int flags, const char *device_name, void *data) >> 1469 { >> 1470 struct block_device *bdev = NULL; >> 1471 struct super_block *s; >> 1472 struct btrfs_device *device = NULL; >> 1473 struct btrfs_fs_devices *fs_devices = NULL; >> 1474 struct btrfs_fs_info *fs_info = NULL; >> 1475 void *new_sec_opts = NULL; >> 1476 fmode_t mode = FMODE_READ; >> 1477 int error = 0; >> 1478 >> 1479 if (!(flags & SB_RDONLY)) >> 1480 mode |= FMODE_WRITE; >> 1481 >> 1482 if (data) { >> 1483 error = security_sb_eat_lsm_opts(data, &new_sec_opts); >> 1484 if (error) >> 1485 return ERR_PTR(error); >> 1486 } >> 1487 >> 1488 /* >> 1489 * Setup a dummy root and fs_info for test/set super. This is because >> 1490 * we don't actually fill this stuff out until open_ctree, but we need >> 1491 * it for searching for existing supers, so this lets us do that and >> 1492 * then open_ctree will properly initialize everything later. >> 1493 */ >> 1494 fs_info = kvzalloc(sizeof(struct btrfs_fs_info), GFP_KERNEL); >> 1495 if (!fs_info) { >> 1496 error = -ENOMEM; >> 1497 goto error_sec_opts; >> 1498 } >> 1499 >> 1500 fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL); >> 1501 fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL); >> 1502 if (!fs_info->super_copy || !fs_info->super_for_commit) { >> 1503 error = -ENOMEM; >> 1504 goto error_fs_info; >> 1505 } >> 1506 >> 1507 mutex_lock(&uuid_mutex); >> 1508 error = btrfs_parse_device_options(data, mode, fs_type); >> 1509 if (error) { >> 1510 mutex_unlock(&uuid_mutex); >> 1511 goto error_fs_info; >> 1512 } >> 1513 >> 1514 device = btrfs_scan_one_device(device_name, mode, fs_type); >> 1515 if (IS_ERR(device)) { >> 1516 mutex_unlock(&uuid_mutex); >> 1517 error = PTR_ERR(device); >> 1518 goto error_fs_info; >> 1519 } >> 1520 >> 1521 fs_devices = device->fs_devices; >> 1522 fs_info->fs_devices = fs_devices; >> 1523 >> 1524 error = btrfs_open_devices(fs_devices, mode, fs_type); >> 1525 mutex_unlock(&uuid_mutex); >> 1526 if (error) >> 1527 goto error_fs_info; >> 1528 >> 1529 if (!(flags & SB_RDONLY) && fs_devices->rw_devices == 0) { >> 1530 error = -EACCES; >> 1531 goto error_close_devices; >> 1532 } >> 1533 >> 1534 bdev = fs_devices->latest_bdev; >> 1535 s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | SB_NOSEC, >> 1536 fs_info); >> 1537 if (IS_ERR(s)) { >> 1538 error = PTR_ERR(s); >> 1539 goto error_close_devices; >> 1540 } >> 1541 >> 1542 if (s->s_root) { >> 1543 btrfs_close_devices(fs_devices); >> 1544 free_fs_info(fs_info); >> 1545 if ((flags ^ s->s_flags) & SB_RDONLY) >> 1546 error = -EBUSY; >> 1547 } else { >> 1548 snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev); >> 1549 btrfs_sb(s)->bdev_holder = fs_type; >> 1550 error = btrfs_fill_super(s, fs_devices, data); >> 1551 } >> 1552 if (!error) >> 1553 error = security_sb_set_mnt_opts(s, new_sec_opts, 0, NULL); >> 1554 security_free_mnt_opts(&new_sec_opts); >> 1555 if (error) { >> 1556 deactivate_locked_super(s); >> 1557 return ERR_PTR(error); >> 1558 } >> 1559 >> 1560 return dget(s->s_root); >> 1561 >> 1562 error_close_devices: >> 1563 btrfs_close_devices(fs_devices); >> 1564 error_fs_info: >> 1565 free_fs_info(fs_info); >> 1566 error_sec_opts: >> 1567 security_free_mnt_opts(&new_sec_opts); >> 1568 return ERR_PTR(error); >> 1569 } >> 1570 >> 1571 /* >> 1572 * Mount function which is called by VFS layer. >> 1573 * >> 1574 * In order to allow mounting a subvolume directly, btrfs uses mount_subtree() >> 1575 * which needs vfsmount* of device's root (/). This means device's root has to >> 1576 * be mounted internally in any case. >> 1577 * >> 1578 * Operation flow: >> 1579 * 1. Parse subvol id related options for later use in mount_subvol(). >> 1580 * >> 1581 * 2. Mount device's root (/) by calling vfs_kern_mount(). >> 1582 * >> 1583 * NOTE: vfs_kern_mount() is used by VFS to call btrfs_mount() in the >> 1584 * first place. In order to avoid calling btrfs_mount() again, we use >> 1585 * different file_system_type which is not registered to VFS by >> 1586 * register_filesystem() (btrfs_root_fs_type). As a result, >> 1587 * btrfs_mount_root() is called. The return value will be used by >> 1588 * mount_subtree() in mount_subvol(). >> 1589 * >> 1590 * 3. Call mount_subvol() to get the dentry of subvolume. Since there is >> 1591 * "btrfs subvolume set-default", mount_subvol() is called always. >> 1592 */ >> 1593 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags, >> 1594 const char *device_name, void *data) >> 1595 { >> 1596 struct vfsmount *mnt_root; >> 1597 struct dentry *root; >> 1598 fmode_t mode = FMODE_READ; >> 1599 char *subvol_name = NULL; >> 1600 u64 subvol_objectid = 0; >> 1601 int error = 0; >> 1602 >> 1603 if (!(flags & SB_RDONLY)) >> 1604 mode |= FMODE_WRITE; >> 1605 >> 1606 error = btrfs_parse_subvol_options(data, &subvol_name, >> 1607 &subvol_objectid); >> 1608 if (error) { >> 1609 kfree(subvol_name); >> 1610 return ERR_PTR(error); >> 1611 } >> 1612 >> 1613 /* mount device's root (/) */ >> 1614 mnt_root = vfs_kern_mount(&btrfs_root_fs_type, flags, device_name, data); >> 1615 if (PTR_ERR_OR_ZERO(mnt_root) == -EBUSY) { >> 1616 if (flags & SB_RDONLY) { >> 1617 mnt_root = vfs_kern_mount(&btrfs_root_fs_type, >> 1618 flags & ~SB_RDONLY, device_name, data); >> 1619 } else { >> 1620 mnt_root = vfs_kern_mount(&btrfs_root_fs_type, >> 1621 flags | SB_RDONLY, device_name, data); >> 1622 if (IS_ERR(mnt_root)) { >> 1623 root = ERR_CAST(mnt_root); >> 1624 kfree(subvol_name); >> 1625 goto out; >> 1626 } >> 1627 >> 1628 down_write(&mnt_root->mnt_sb->s_umount); >> 1629 error = btrfs_remount(mnt_root->mnt_sb, &flags, NULL); >> 1630 up_write(&mnt_root->mnt_sb->s_umount); >> 1631 if (error < 0) { >> 1632 root = ERR_PTR(error); >> 1633 mntput(mnt_root); >> 1634 kfree(subvol_name); >> 1635 goto out; >> 1636 } >> 1637 } >> 1638 } >> 1639 if (IS_ERR(mnt_root)) { >> 1640 root = ERR_CAST(mnt_root); >> 1641 kfree(subvol_name); >> 1642 goto out; >> 1643 } >> 1644 >> 1645 /* mount_subvol() will free subvol_name and mnt_root */ >> 1646 root = mount_subvol(subvol_name, subvol_objectid, device_name, mnt_root); >> 1647 >> 1648 out: >> 1649 return root; >> 1650 } >> 1651 1226 static void btrfs_resize_thread_pool(struct b 1652 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info, 1227 u32 new_ 1653 u32 new_pool_size, u32 old_pool_size) 1228 { 1654 { 1229 if (new_pool_size == old_pool_size) 1655 if (new_pool_size == old_pool_size) 1230 return; 1656 return; 1231 1657 1232 fs_info->thread_pool_size = new_pool_ 1658 fs_info->thread_pool_size = new_pool_size; 1233 1659 1234 btrfs_info(fs_info, "resize thread po 1660 btrfs_info(fs_info, "resize thread pool %d -> %d", 1235 old_pool_size, new_pool_size); 1661 old_pool_size, new_pool_size); 1236 1662 1237 btrfs_workqueue_set_max(fs_info->work 1663 btrfs_workqueue_set_max(fs_info->workers, new_pool_size); 1238 btrfs_workqueue_set_max(fs_info->dela 1664 btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size); >> 1665 btrfs_workqueue_set_max(fs_info->submit_workers, new_pool_size); 1239 btrfs_workqueue_set_max(fs_info->cach 1666 btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size); 1240 workqueue_set_max_active(fs_info->end !! 1667 btrfs_workqueue_set_max(fs_info->endio_workers, new_pool_size); 1241 workqueue_set_max_active(fs_info->end !! 1668 btrfs_workqueue_set_max(fs_info->endio_meta_workers, new_pool_size); >> 1669 btrfs_workqueue_set_max(fs_info->endio_meta_write_workers, >> 1670 new_pool_size); 1242 btrfs_workqueue_set_max(fs_info->endi 1671 btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size); 1243 btrfs_workqueue_set_max(fs_info->endi 1672 btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size); 1244 btrfs_workqueue_set_max(fs_info->dela 1673 btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size); >> 1674 btrfs_workqueue_set_max(fs_info->readahead_workers, new_pool_size); >> 1675 btrfs_workqueue_set_max(fs_info->scrub_wr_completion_workers, >> 1676 new_pool_size); >> 1677 } >> 1678 >> 1679 static inline void btrfs_remount_prepare(struct btrfs_fs_info *fs_info) >> 1680 { >> 1681 set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); 1245 } 1682 } 1246 1683 1247 static inline void btrfs_remount_begin(struct 1684 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info, 1248 unsign !! 1685 unsigned long old_opts, int flags) 1249 { 1686 { 1250 if (btrfs_raw_test_opt(old_opts, AUTO 1687 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) && 1251 (!btrfs_raw_test_opt(fs_info->mou 1688 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || 1252 (flags & SB_RDONLY))) { 1689 (flags & SB_RDONLY))) { 1253 /* wait for any defraggers to 1690 /* wait for any defraggers to finish */ 1254 wait_event(fs_info->transacti 1691 wait_event(fs_info->transaction_wait, 1255 (atomic_read(&fs_i 1692 (atomic_read(&fs_info->defrag_running) == 0)); 1256 if (flags & SB_RDONLY) 1693 if (flags & SB_RDONLY) 1257 sync_filesystem(fs_in 1694 sync_filesystem(fs_info->sb); 1258 } 1695 } 1259 } 1696 } 1260 1697 1261 static inline void btrfs_remount_cleanup(stru 1698 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info, 1262 unsi !! 1699 unsigned long old_opts) 1263 { 1700 { 1264 const bool cache_opt = btrfs_test_opt << 1265 << 1266 /* 1701 /* 1267 * We need to cleanup all defragable 1702 * We need to cleanup all defragable inodes if the autodefragment is 1268 * close or the filesystem is read on 1703 * close or the filesystem is read only. 1269 */ 1704 */ 1270 if (btrfs_raw_test_opt(old_opts, AUTO 1705 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) && 1271 (!btrfs_raw_test_opt(fs_info->mou 1706 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || sb_rdonly(fs_info->sb))) { 1272 btrfs_cleanup_defrag_inodes(f 1707 btrfs_cleanup_defrag_inodes(fs_info); 1273 } 1708 } 1274 1709 1275 /* If we toggled discard async */ !! 1710 clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); 1276 if (!btrfs_raw_test_opt(old_opts, DIS << 1277 btrfs_test_opt(fs_info, DISCARD_A << 1278 btrfs_discard_resume(fs_info) << 1279 else if (btrfs_raw_test_opt(old_opts, << 1280 !btrfs_test_opt(fs_info, DIS << 1281 btrfs_discard_cleanup(fs_info << 1282 << 1283 /* If we toggled space cache */ << 1284 if (cache_opt != btrfs_free_space_cac << 1285 btrfs_set_free_space_cache_v1 << 1286 } 1711 } 1287 1712 1288 static int btrfs_remount_rw(struct btrfs_fs_i !! 1713 static int btrfs_remount(struct super_block *sb, int *flags, char *data) 1289 { 1714 { >> 1715 struct btrfs_fs_info *fs_info = btrfs_sb(sb); >> 1716 struct btrfs_root *root = fs_info->tree_root; >> 1717 unsigned old_flags = sb->s_flags; >> 1718 unsigned long old_opts = fs_info->mount_opt; >> 1719 unsigned long old_compress_type = fs_info->compress_type; >> 1720 u64 old_max_inline = fs_info->max_inline; >> 1721 u32 old_thread_pool_size = fs_info->thread_pool_size; >> 1722 u32 old_metadata_ratio = fs_info->metadata_ratio; 1290 int ret; 1723 int ret; 1291 1724 1292 if (BTRFS_FS_ERROR(fs_info)) { !! 1725 sync_filesystem(sb); 1293 btrfs_err(fs_info, !! 1726 btrfs_remount_prepare(fs_info); 1294 "remounting read-wr << 1295 return -EINVAL; << 1296 } << 1297 << 1298 if (fs_info->fs_devices->rw_devices = << 1299 return -EACCES; << 1300 1727 1301 if (!btrfs_check_rw_degradable(fs_inf !! 1728 if (data) { 1302 btrfs_warn(fs_info, !! 1729 void *new_sec_opts = NULL; 1303 "too many missing << 1304 return -EACCES; << 1305 } << 1306 1730 1307 if (btrfs_super_log_root(fs_info->sup !! 1731 ret = security_sb_eat_lsm_opts(data, &new_sec_opts); 1308 btrfs_warn(fs_info, !! 1732 if (!ret) 1309 "mount required to !! 1733 ret = security_sb_remount(sb, new_sec_opts); 1310 return -EINVAL; !! 1734 security_free_mnt_opts(&new_sec_opts); >> 1735 if (ret) >> 1736 goto restore; 1311 } 1737 } 1312 1738 1313 /* !! 1739 ret = btrfs_parse_options(fs_info, data, *flags); 1314 * NOTE: when remounting with a chang << 1315 * anywhere above this point, as we a << 1316 * until we pass the above checks. << 1317 */ << 1318 ret = btrfs_start_pre_rw_mount(fs_inf << 1319 if (ret) 1740 if (ret) 1320 return ret; !! 1741 goto restore; 1321 << 1322 btrfs_clear_sb_rdonly(fs_info->sb); << 1323 << 1324 set_bit(BTRFS_FS_OPEN, &fs_info->flag << 1325 << 1326 /* << 1327 * If we've gone from readonly -> rea << 1328 * sync/async discard lists in the ri << 1329 */ << 1330 btrfs_discard_resume(fs_info); << 1331 << 1332 return 0; << 1333 } << 1334 << 1335 static int btrfs_remount_ro(struct btrfs_fs_i << 1336 { << 1337 /* << 1338 * This also happens on 'umount -rf' << 1339 * filesystem is busy. << 1340 */ << 1341 cancel_work_sync(&fs_info->async_recl << 1342 cancel_work_sync(&fs_info->async_data << 1343 << 1344 btrfs_discard_cleanup(fs_info); << 1345 << 1346 /* Wait for the uuid_scan task to fin << 1347 down(&fs_info->uuid_tree_rescan_sem); << 1348 /* Avoid complains from lockdep et al << 1349 up(&fs_info->uuid_tree_rescan_sem); << 1350 << 1351 btrfs_set_sb_rdonly(fs_info->sb); << 1352 << 1353 /* << 1354 * Setting SB_RDONLY will put the cle << 1355 * loop if it's already active. If i << 1356 * unused block groups on disk until << 1357 * unless we clean them up here. << 1358 */ << 1359 btrfs_delete_unused_bgs(fs_info); << 1360 << 1361 /* << 1362 * The cleaner task could be already << 1363 * BTRFS_FS_STATE_RO (and SB_RDONLY i << 1364 * sure that after we finish the remo << 1365 * btrfs_commit_super(), the cleaner << 1366 * - either because it was dropping a << 1367 * or deleting an unused block grou << 1368 * group from the list of unused bl << 1369 * in the previous call to btrfs_de << 1370 */ << 1371 wait_on_bit(&fs_info->flags, BTRFS_FS << 1372 1742 1373 /* !! 1743 btrfs_remount_begin(fs_info, old_opts, *flags); 1374 * We've set the superblock to RO mod !! 1744 btrfs_resize_thread_pool(fs_info, 1375 * cleaner task sleep without running !! 1745 fs_info->thread_pool_size, old_thread_pool_size); 1376 * through all the delayed iputs here << 1377 * without remounting RW we don't end << 1378 * with a non-empty list of delayed i << 1379 */ << 1380 btrfs_run_delayed_iputs(fs_info); << 1381 1746 1382 btrfs_dev_replace_suspend_for_unmount !! 1747 if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb)) 1383 btrfs_scrub_cancel(fs_info); !! 1748 goto out; 1384 btrfs_pause_balance(fs_info); << 1385 1749 1386 /* !! 1750 if (*flags & SB_RDONLY) { 1387 * Pause the qgroup rescan worker if !! 1751 /* 1388 * be still running after we are in R !! 1752 * this also happens on 'umount -rf' or on shutdown, when 1389 * we unmount, it might have left a t !! 1753 * the filesystem is busy. 1390 * the transaction and/or crash. !! 1754 */ 1391 */ !! 1755 cancel_work_sync(&fs_info->async_reclaim_work); 1392 btrfs_qgroup_wait_for_completion(fs_i << 1393 1756 1394 return btrfs_commit_super(fs_info); !! 1757 /* wait for the uuid_scan task to finish */ 1395 } !! 1758 down(&fs_info->uuid_tree_rescan_sem); >> 1759 /* avoid complains from lockdep et al. */ >> 1760 up(&fs_info->uuid_tree_rescan_sem); 1396 1761 1397 static void btrfs_ctx_to_info(struct btrfs_fs !! 1762 sb->s_flags |= SB_RDONLY; 1398 { << 1399 fs_info->max_inline = ctx->max_inline << 1400 fs_info->commit_interval = ctx->commi << 1401 fs_info->metadata_ratio = ctx->metada << 1402 fs_info->thread_pool_size = ctx->thre << 1403 fs_info->mount_opt = ctx->mount_opt; << 1404 fs_info->compress_type = ctx->compres << 1405 fs_info->compress_level = ctx->compre << 1406 } << 1407 << 1408 static void btrfs_info_to_ctx(struct btrfs_fs << 1409 { << 1410 ctx->max_inline = fs_info->max_inline << 1411 ctx->commit_interval = fs_info->commi << 1412 ctx->metadata_ratio = fs_info->metada << 1413 ctx->thread_pool_size = fs_info->thre << 1414 ctx->mount_opt = fs_info->mount_opt; << 1415 ctx->compress_type = fs_info->compres << 1416 ctx->compress_level = fs_info->compre << 1417 } << 1418 << 1419 #define btrfs_info_if_set(fs_info, old_ctx, o << 1420 do { << 1421 if ((!old_ctx || !btrfs_raw_test_opt( << 1422 btrfs_raw_test_opt(fs_info->mount << 1423 btrfs_info(fs_info, fmt, ##ar << 1424 } while (0) << 1425 << 1426 #define btrfs_info_if_unset(fs_info, old_ctx, << 1427 do { << 1428 if ((old_ctx && btrfs_raw_test_opt(ol << 1429 !btrfs_raw_test_opt(fs_info->moun << 1430 btrfs_info(fs_info, fmt, ##ar << 1431 } while (0) << 1432 << 1433 static void btrfs_emit_options(struct btrfs_f << 1434 struct btrfs_f << 1435 { << 1436 btrfs_info_if_set(info, old, NODATASU << 1437 btrfs_info_if_set(info, old, DEGRADED << 1438 btrfs_info_if_set(info, old, NODATASU << 1439 btrfs_info_if_set(info, old, SSD, "en << 1440 btrfs_info_if_set(info, old, SSD_SPRE << 1441 btrfs_info_if_set(info, old, NOBARRIE << 1442 btrfs_info_if_set(info, old, NOTREELO << 1443 btrfs_info_if_set(info, old, NOLOGREP << 1444 btrfs_info_if_set(info, old, FLUSHONC << 1445 btrfs_info_if_set(info, old, DISCARD_ << 1446 btrfs_info_if_set(info, old, DISCARD_ << 1447 btrfs_info_if_set(info, old, FREE_SPA << 1448 btrfs_info_if_set(info, old, SPACE_CA << 1449 btrfs_info_if_set(info, old, CLEAR_CA << 1450 btrfs_info_if_set(info, old, AUTO_DEF << 1451 btrfs_info_if_set(info, old, FRAGMENT << 1452 btrfs_info_if_set(info, old, FRAGMENT << 1453 btrfs_info_if_set(info, old, REF_VERI << 1454 btrfs_info_if_set(info, old, USEBACKU << 1455 btrfs_info_if_set(info, old, IGNOREBA << 1456 btrfs_info_if_set(info, old, IGNOREDA << 1457 btrfs_info_if_set(info, old, IGNOREME << 1458 btrfs_info_if_set(info, old, IGNORESU << 1459 << 1460 btrfs_info_if_unset(info, old, NODATA << 1461 btrfs_info_if_unset(info, old, SSD, " << 1462 btrfs_info_if_unset(info, old, SSD_SP << 1463 btrfs_info_if_unset(info, old, NOBARR << 1464 btrfs_info_if_unset(info, old, NOTREE << 1465 btrfs_info_if_unset(info, old, SPACE_ << 1466 btrfs_info_if_unset(info, old, FREE_S << 1467 btrfs_info_if_unset(info, old, AUTO_D << 1468 btrfs_info_if_unset(info, old, COMPRE << 1469 << 1470 /* Did the compression settings chang << 1471 if (btrfs_test_opt(info, COMPRESS) && << 1472 (!old || << 1473 old->compress_type != info->comp << 1474 old->compress_level != info->com << 1475 (!btrfs_raw_test_opt(old->mount_ << 1476 btrfs_raw_test_opt(info->mount_ << 1477 const char *compress_type = b << 1478 << 1479 btrfs_info(info, "%s %s compr << 1480 btrfs_test_opt(inf << 1481 compress_type, inf << 1482 } << 1483 1763 1484 if (info->max_inline != BTRFS_DEFAULT !! 1764 /* 1485 btrfs_info(info, "max_inline !! 1765 * Setting SB_RDONLY will put the cleaner thread to 1486 } !! 1766 * sleep at the next loop if it's already active. >> 1767 * If it's already asleep, we'll leave unused block >> 1768 * groups on disk until we're mounted read-write again >> 1769 * unless we clean them up here. >> 1770 */ >> 1771 btrfs_delete_unused_bgs(fs_info); 1487 1772 1488 static int btrfs_reconfigure(struct fs_contex !! 1773 btrfs_dev_replace_suspend_for_unmount(fs_info); 1489 { !! 1774 btrfs_scrub_cancel(fs_info); 1490 struct super_block *sb = fc->root->d_ !! 1775 btrfs_pause_balance(fs_info); 1491 struct btrfs_fs_info *fs_info = btrfs !! 1776 1492 struct btrfs_fs_context *ctx = fc->fs !! 1777 ret = btrfs_commit_super(fs_info); 1493 struct btrfs_fs_context old_ctx; !! 1778 if (ret) 1494 int ret = 0; !! 1779 goto restore; 1495 bool mount_reconfigure = (fc->s_fs_in !! 1780 } else { >> 1781 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { >> 1782 btrfs_err(fs_info, >> 1783 "Remounting read-write after error is not allowed"); >> 1784 ret = -EINVAL; >> 1785 goto restore; >> 1786 } >> 1787 if (fs_info->fs_devices->rw_devices == 0) { >> 1788 ret = -EACCES; >> 1789 goto restore; >> 1790 } 1496 1791 1497 btrfs_info_to_ctx(fs_info, &old_ctx); !! 1792 if (!btrfs_check_rw_degradable(fs_info, NULL)) { >> 1793 btrfs_warn(fs_info, >> 1794 "too many missing devices, writable remount is not allowed"); >> 1795 ret = -EACCES; >> 1796 goto restore; >> 1797 } 1498 1798 1499 /* !! 1799 if (btrfs_super_log_root(fs_info->super_copy) != 0) { 1500 * This is our "bind mount" trick, we !! 1800 ret = -EINVAL; 1501 * anything other than mount a differ !! 1801 goto restore; 1502 * all of the mount options should be !! 1802 } 1503 */ << 1504 if (mount_reconfigure) << 1505 ctx->mount_opt = old_ctx.moun << 1506 1803 1507 sync_filesystem(sb); !! 1804 ret = btrfs_cleanup_fs_roots(fs_info); 1508 set_bit(BTRFS_FS_STATE_REMOUNTING, &f !! 1805 if (ret) >> 1806 goto restore; 1509 1807 1510 if (!btrfs_check_options(fs_info, &ct !! 1808 /* recover relocation */ 1511 return -EINVAL; !! 1809 mutex_lock(&fs_info->cleaner_mutex); >> 1810 ret = btrfs_recover_relocation(root); >> 1811 mutex_unlock(&fs_info->cleaner_mutex); >> 1812 if (ret) >> 1813 goto restore; 1512 1814 1513 ret = btrfs_check_features(fs_info, ! !! 1815 ret = btrfs_resume_balance_async(fs_info); 1514 if (ret < 0) !! 1816 if (ret) 1515 return ret; !! 1817 goto restore; 1516 1818 1517 btrfs_ctx_to_info(fs_info, ctx); !! 1819 ret = btrfs_resume_dev_replace_async(fs_info); 1518 btrfs_remount_begin(fs_info, old_ctx. !! 1820 if (ret) { 1519 btrfs_resize_thread_pool(fs_info, fs_ !! 1821 btrfs_warn(fs_info, "failed to resume dev_replace"); 1520 old_ctx.thre !! 1822 goto restore; 1521 << 1522 if ((bool)btrfs_test_opt(fs_info, FRE << 1523 (bool)btrfs_fs_compat_ro(fs_info, << 1524 (!sb_rdonly(sb) || (fc->sb_flags << 1525 btrfs_warn(fs_info, << 1526 "remount supports changing fr << 1527 /* Make sure free space cache << 1528 if (btrfs_fs_compat_ro(fs_inf << 1529 btrfs_set_opt(fs_info << 1530 btrfs_clear_opt(fs_in << 1531 } << 1532 if (btrfs_free_space_cache_v1 << 1533 btrfs_clear_opt(fs_in << 1534 btrfs_set_opt(fs_info << 1535 } 1823 } 1536 } << 1537 1824 1538 ret = 0; !! 1825 btrfs_qgroup_rescan_resume(fs_info); 1539 if (!sb_rdonly(sb) && (fc->sb_flags & << 1540 ret = btrfs_remount_ro(fs_inf << 1541 else if (sb_rdonly(sb) && !(fc->sb_fl << 1542 ret = btrfs_remount_rw(fs_inf << 1543 if (ret) << 1544 goto restore; << 1545 1826 1546 /* !! 1827 if (!fs_info->uuid_root) { 1547 * If we set the mask during the para !! 1828 btrfs_info(fs_info, "creating UUID tree"); 1548 * remount. Here we can set the mask !! 1829 ret = btrfs_create_uuid_tree(fs_info); 1549 * appropriately. !! 1830 if (ret) { 1550 */ !! 1831 btrfs_warn(fs_info, 1551 if ((fc->sb_flags & SB_POSIXACL) != ( !! 1832 "failed to create the UUID tree %d", 1552 fc->sb_flags_mask |= SB_POSIX !! 1833 ret); >> 1834 goto restore; >> 1835 } >> 1836 } >> 1837 sb->s_flags &= ~SB_RDONLY; 1553 1838 1554 btrfs_emit_options(fs_info, &old_ctx) !! 1839 set_bit(BTRFS_FS_OPEN, &fs_info->flags); >> 1840 } >> 1841 out: 1555 wake_up_process(fs_info->transaction_ 1842 wake_up_process(fs_info->transaction_kthread); 1556 btrfs_remount_cleanup(fs_info, old_ct !! 1843 btrfs_remount_cleanup(fs_info, old_opts); 1557 btrfs_clear_oneshot_options(fs_info); << 1558 clear_bit(BTRFS_FS_STATE_REMOUNTING, << 1559 << 1560 return 0; 1844 return 0; >> 1845 1561 restore: 1846 restore: 1562 btrfs_ctx_to_info(fs_info, &old_ctx); !! 1847 /* We've hit an error - don't reset SB_RDONLY */ 1563 btrfs_remount_cleanup(fs_info, old_ct !! 1848 if (sb_rdonly(sb)) 1564 clear_bit(BTRFS_FS_STATE_REMOUNTING, !! 1849 old_flags |= SB_RDONLY; >> 1850 sb->s_flags = old_flags; >> 1851 fs_info->mount_opt = old_opts; >> 1852 fs_info->compress_type = old_compress_type; >> 1853 fs_info->max_inline = old_max_inline; >> 1854 btrfs_resize_thread_pool(fs_info, >> 1855 old_thread_pool_size, fs_info->thread_pool_size); >> 1856 fs_info->metadata_ratio = old_metadata_ratio; >> 1857 btrfs_remount_cleanup(fs_info, old_opts); 1565 return ret; 1858 return ret; 1566 } 1859 } 1567 1860 1568 /* Used to sort the devices by max_avail(desc 1861 /* Used to sort the devices by max_avail(descending sort) */ 1569 static int btrfs_cmp_device_free_bytes(const !! 1862 static inline int btrfs_cmp_device_free_bytes(const void *dev_info1, >> 1863 const void *dev_info2) 1570 { 1864 { 1571 const struct btrfs_device_info *dev_i !! 1865 if (((struct btrfs_device_info *)dev_info1)->max_avail > 1572 const struct btrfs_device_info *dev_i !! 1866 ((struct btrfs_device_info *)dev_info2)->max_avail) 1573 << 1574 if (dev_info1->max_avail > dev_info2- << 1575 return -1; 1867 return -1; 1576 else if (dev_info1->max_avail < dev_i !! 1868 else if (((struct btrfs_device_info *)dev_info1)->max_avail < >> 1869 ((struct btrfs_device_info *)dev_info2)->max_avail) 1577 return 1; 1870 return 1; >> 1871 else 1578 return 0; 1872 return 0; 1579 } 1873 } 1580 1874 1581 /* 1875 /* 1582 * sort the devices by max_avail, in which ma 1876 * sort the devices by max_avail, in which max free extent size of each device 1583 * is stored.(Descending Sort) 1877 * is stored.(Descending Sort) 1584 */ 1878 */ 1585 static inline void btrfs_descending_sort_devi 1879 static inline void btrfs_descending_sort_devices( 1586 struc 1880 struct btrfs_device_info *devices, 1587 size_ 1881 size_t nr_devices) 1588 { 1882 { 1589 sort(devices, nr_devices, sizeof(stru 1883 sort(devices, nr_devices, sizeof(struct btrfs_device_info), 1590 btrfs_cmp_device_free_bytes, NUL 1884 btrfs_cmp_device_free_bytes, NULL); 1591 } 1885 } 1592 1886 1593 /* 1887 /* 1594 * The helper to calc the free space on the d 1888 * The helper to calc the free space on the devices that can be used to store 1595 * file data. 1889 * file data. 1596 */ 1890 */ 1597 static inline int btrfs_calc_avail_data_space 1891 static inline int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info, 1598 1892 u64 *free_bytes) 1599 { 1893 { 1600 struct btrfs_device_info *devices_inf 1894 struct btrfs_device_info *devices_info; 1601 struct btrfs_fs_devices *fs_devices = 1895 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 1602 struct btrfs_device *device; 1896 struct btrfs_device *device; >> 1897 u64 skip_space; 1603 u64 type; 1898 u64 type; 1604 u64 avail_space; 1899 u64 avail_space; 1605 u64 min_stripe_size; 1900 u64 min_stripe_size; 1606 int num_stripes = 1; !! 1901 int min_stripes = 1, num_stripes = 1; 1607 int i = 0, nr_devices; 1902 int i = 0, nr_devices; 1608 const struct btrfs_raid_attr *rattr; << 1609 1903 1610 /* 1904 /* 1611 * We aren't under the device list lo 1905 * We aren't under the device list lock, so this is racy-ish, but good 1612 * enough for our purposes. 1906 * enough for our purposes. 1613 */ 1907 */ 1614 nr_devices = fs_info->fs_devices->ope 1908 nr_devices = fs_info->fs_devices->open_devices; 1615 if (!nr_devices) { 1909 if (!nr_devices) { 1616 smp_mb(); 1910 smp_mb(); 1617 nr_devices = fs_info->fs_devi 1911 nr_devices = fs_info->fs_devices->open_devices; 1618 ASSERT(nr_devices); 1912 ASSERT(nr_devices); 1619 if (!nr_devices) { 1913 if (!nr_devices) { 1620 *free_bytes = 0; 1914 *free_bytes = 0; 1621 return 0; 1915 return 0; 1622 } 1916 } 1623 } 1917 } 1624 1918 1625 devices_info = kmalloc_array(nr_devic 1919 devices_info = kmalloc_array(nr_devices, sizeof(*devices_info), 1626 GFP_KERNEL); 1920 GFP_KERNEL); 1627 if (!devices_info) 1921 if (!devices_info) 1628 return -ENOMEM; 1922 return -ENOMEM; 1629 1923 1630 /* calc min stripe number for data sp 1924 /* calc min stripe number for data space allocation */ 1631 type = btrfs_data_alloc_profile(fs_in 1925 type = btrfs_data_alloc_profile(fs_info); 1632 rattr = &btrfs_raid_array[btrfs_bg_fl !! 1926 if (type & BTRFS_BLOCK_GROUP_RAID0) { 1633 !! 1927 min_stripes = 2; 1634 if (type & BTRFS_BLOCK_GROUP_RAID0) << 1635 num_stripes = nr_devices; 1928 num_stripes = nr_devices; 1636 else if (type & BTRFS_BLOCK_GROUP_RAI !! 1929 } else if (type & BTRFS_BLOCK_GROUP_RAID1) { 1637 num_stripes = rattr->ncopies; !! 1930 min_stripes = 2; 1638 else if (type & BTRFS_BLOCK_GROUP_RAI !! 1931 num_stripes = 2; >> 1932 } else if (type & BTRFS_BLOCK_GROUP_RAID10) { >> 1933 min_stripes = 4; 1639 num_stripes = 4; 1934 num_stripes = 4; >> 1935 } 1640 1936 1641 /* Adjust for more than 1 stripe per !! 1937 if (type & BTRFS_BLOCK_GROUP_DUP) 1642 min_stripe_size = rattr->dev_stripes !! 1938 min_stripe_size = 2 * BTRFS_STRIPE_LEN; >> 1939 else >> 1940 min_stripe_size = BTRFS_STRIPE_LEN; 1643 1941 1644 rcu_read_lock(); 1942 rcu_read_lock(); 1645 list_for_each_entry_rcu(device, &fs_d 1943 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 1646 if (!test_bit(BTRFS_DEV_STATE 1944 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 1647 1945 &device->dev_state) || 1648 !device->bdev || 1946 !device->bdev || 1649 test_bit(BTRFS_DEV_STATE_ 1947 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 1650 continue; 1948 continue; 1651 1949 1652 if (i >= nr_devices) 1950 if (i >= nr_devices) 1653 break; 1951 break; 1654 1952 1655 avail_space = device->total_b 1953 avail_space = device->total_bytes - device->bytes_used; 1656 1954 1657 /* align with stripe_len */ 1955 /* align with stripe_len */ 1658 avail_space = rounddown(avail !! 1956 avail_space = div_u64(avail_space, BTRFS_STRIPE_LEN); >> 1957 avail_space *= BTRFS_STRIPE_LEN; 1659 1958 1660 /* 1959 /* 1661 * Ensure we have at least mi !! 1960 * In order to avoid overwriting the superblock on the drive, 1662 * reserved space on the devi !! 1961 * btrfs starts at an offset of at least 1MB when doing chunk >> 1962 * allocation. 1663 */ 1963 */ 1664 if (avail_space <= BTRFS_DEVI !! 1964 skip_space = SZ_1M; 1665 continue; << 1666 1965 1667 avail_space -= BTRFS_DEVICE_R !! 1966 /* >> 1967 * we can use the free space in [0, skip_space - 1], subtract >> 1968 * it from the total. >> 1969 */ >> 1970 if (avail_space && avail_space >= skip_space) >> 1971 avail_space -= skip_space; >> 1972 else >> 1973 avail_space = 0; >> 1974 >> 1975 if (avail_space < min_stripe_size) >> 1976 continue; 1668 1977 1669 devices_info[i].dev = device; 1978 devices_info[i].dev = device; 1670 devices_info[i].max_avail = a 1979 devices_info[i].max_avail = avail_space; 1671 1980 1672 i++; 1981 i++; 1673 } 1982 } 1674 rcu_read_unlock(); 1983 rcu_read_unlock(); 1675 1984 1676 nr_devices = i; 1985 nr_devices = i; 1677 1986 1678 btrfs_descending_sort_devices(devices 1987 btrfs_descending_sort_devices(devices_info, nr_devices); 1679 1988 1680 i = nr_devices - 1; 1989 i = nr_devices - 1; 1681 avail_space = 0; 1990 avail_space = 0; 1682 while (nr_devices >= rattr->devs_min) !! 1991 while (nr_devices >= min_stripes) { 1683 num_stripes = min(num_stripes !! 1992 if (num_stripes > nr_devices) >> 1993 num_stripes = nr_devices; 1684 1994 1685 if (devices_info[i].max_avail 1995 if (devices_info[i].max_avail >= min_stripe_size) { 1686 int j; 1996 int j; 1687 u64 alloc_size; 1997 u64 alloc_size; 1688 1998 1689 avail_space += device 1999 avail_space += devices_info[i].max_avail * num_stripes; 1690 alloc_size = devices_ 2000 alloc_size = devices_info[i].max_avail; 1691 for (j = i + 1 - num_ 2001 for (j = i + 1 - num_stripes; j <= i; j++) 1692 devices_info[ 2002 devices_info[j].max_avail -= alloc_size; 1693 } 2003 } 1694 i--; 2004 i--; 1695 nr_devices--; 2005 nr_devices--; 1696 } 2006 } 1697 2007 1698 kfree(devices_info); 2008 kfree(devices_info); 1699 *free_bytes = avail_space; 2009 *free_bytes = avail_space; 1700 return 0; 2010 return 0; 1701 } 2011 } 1702 2012 1703 /* 2013 /* 1704 * Calculate numbers for 'df', pessimistic in 2014 * Calculate numbers for 'df', pessimistic in case of mixed raid profiles. 1705 * 2015 * 1706 * If there's a redundant raid level at DATA 2016 * If there's a redundant raid level at DATA block groups, use the respective 1707 * multiplier to scale the sizes. 2017 * multiplier to scale the sizes. 1708 * 2018 * 1709 * Unused device space usage is based on simu 2019 * Unused device space usage is based on simulating the chunk allocator 1710 * algorithm that respects the device sizes a 2020 * algorithm that respects the device sizes and order of allocations. This is 1711 * a close approximation of the actual use bu 2021 * a close approximation of the actual use but there are other factors that may 1712 * change the result (like a new metadata chu 2022 * change the result (like a new metadata chunk). 1713 * 2023 * 1714 * If metadata is exhausted, f_bavail will be 2024 * If metadata is exhausted, f_bavail will be 0. 1715 */ 2025 */ 1716 static int btrfs_statfs(struct dentry *dentry 2026 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf) 1717 { 2027 { 1718 struct btrfs_fs_info *fs_info = btrfs 2028 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb); 1719 struct btrfs_super_block *disk_super 2029 struct btrfs_super_block *disk_super = fs_info->super_copy; >> 2030 struct list_head *head = &fs_info->space_info; 1720 struct btrfs_space_info *found; 2031 struct btrfs_space_info *found; 1721 u64 total_used = 0; 2032 u64 total_used = 0; 1722 u64 total_free_data = 0; 2033 u64 total_free_data = 0; 1723 u64 total_free_meta = 0; 2034 u64 total_free_meta = 0; 1724 u32 bits = fs_info->sectorsize_bits; !! 2035 int bits = dentry->d_sb->s_blocksize_bits; 1725 __be32 *fsid = (__be32 *)fs_info->fs_ 2036 __be32 *fsid = (__be32 *)fs_info->fs_devices->fsid; 1726 unsigned factor = 1; 2037 unsigned factor = 1; 1727 struct btrfs_block_rsv *block_rsv = & 2038 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 1728 int ret; 2039 int ret; 1729 u64 thresh = 0; 2040 u64 thresh = 0; 1730 int mixed = 0; 2041 int mixed = 0; 1731 2042 1732 list_for_each_entry(found, &fs_info-> !! 2043 rcu_read_lock(); >> 2044 list_for_each_entry_rcu(found, head, list) { 1733 if (found->flags & BTRFS_BLOC 2045 if (found->flags & BTRFS_BLOCK_GROUP_DATA) { 1734 int i; 2046 int i; 1735 2047 1736 total_free_data += fo 2048 total_free_data += found->disk_total - found->disk_used; 1737 total_free_data -= 2049 total_free_data -= 1738 btrfs_account 2050 btrfs_account_ro_block_groups_free_space(found); 1739 2051 1740 for (i = 0; i < BTRFS 2052 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 1741 if (!list_emp 2053 if (!list_empty(&found->block_groups[i])) 1742 facto 2054 factor = btrfs_bg_type_to_factor( 1743 2055 btrfs_raid_array[i].bg_flag); 1744 } 2056 } 1745 } 2057 } 1746 2058 1747 /* 2059 /* 1748 * Metadata in mixed block gr !! 2060 * Metadata in mixed block goup profiles are accounted in data 1749 */ 2061 */ 1750 if (!mixed && found->flags & 2062 if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) { 1751 if (found->flags & BT 2063 if (found->flags & BTRFS_BLOCK_GROUP_DATA) 1752 mixed = 1; 2064 mixed = 1; 1753 else 2065 else 1754 total_free_me 2066 total_free_meta += found->disk_total - 1755 found 2067 found->disk_used; 1756 } 2068 } 1757 2069 1758 total_used += found->disk_use 2070 total_used += found->disk_used; 1759 } 2071 } 1760 2072 >> 2073 rcu_read_unlock(); >> 2074 1761 buf->f_blocks = div_u64(btrfs_super_t 2075 buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor); 1762 buf->f_blocks >>= bits; 2076 buf->f_blocks >>= bits; 1763 buf->f_bfree = buf->f_blocks - (div_u 2077 buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits); 1764 2078 1765 /* Account global block reserve as us 2079 /* Account global block reserve as used, it's in logical size already */ 1766 spin_lock(&block_rsv->lock); 2080 spin_lock(&block_rsv->lock); 1767 /* Mixed block groups accounting is n 2081 /* Mixed block groups accounting is not byte-accurate, avoid overflow */ 1768 if (buf->f_bfree >= block_rsv->size > 2082 if (buf->f_bfree >= block_rsv->size >> bits) 1769 buf->f_bfree -= block_rsv->si 2083 buf->f_bfree -= block_rsv->size >> bits; 1770 else 2084 else 1771 buf->f_bfree = 0; 2085 buf->f_bfree = 0; 1772 spin_unlock(&block_rsv->lock); 2086 spin_unlock(&block_rsv->lock); 1773 2087 1774 buf->f_bavail = div_u64(total_free_da 2088 buf->f_bavail = div_u64(total_free_data, factor); 1775 ret = btrfs_calc_avail_data_space(fs_ 2089 ret = btrfs_calc_avail_data_space(fs_info, &total_free_data); 1776 if (ret) 2090 if (ret) 1777 return ret; 2091 return ret; 1778 buf->f_bavail += div_u64(total_free_d 2092 buf->f_bavail += div_u64(total_free_data, factor); 1779 buf->f_bavail = buf->f_bavail >> bits 2093 buf->f_bavail = buf->f_bavail >> bits; 1780 2094 1781 /* 2095 /* 1782 * We calculate the remaining metadat 2096 * We calculate the remaining metadata space minus global reserve. If 1783 * this is (supposedly) smaller than 2097 * this is (supposedly) smaller than zero, there's no space. But this 1784 * does not hold in practice, the exh 2098 * does not hold in practice, the exhausted state happens where's still 1785 * some positive delta. So we apply s 2099 * some positive delta. So we apply some guesswork and compare the 1786 * delta to a 4M threshold. (Practic 2100 * delta to a 4M threshold. (Practically observed delta was ~2M.) 1787 * 2101 * 1788 * We probably cannot calculate the e 2102 * We probably cannot calculate the exact threshold value because this 1789 * depends on the internal reservatio 2103 * depends on the internal reservations requested by various 1790 * operations, so some operations tha 2104 * operations, so some operations that consume a few metadata will 1791 * succeed even if the Avail is zero. 2105 * succeed even if the Avail is zero. But this is better than the other 1792 * way around. 2106 * way around. 1793 */ 2107 */ 1794 thresh = SZ_4M; 2108 thresh = SZ_4M; 1795 2109 1796 /* !! 2110 if (!mixed && total_free_meta - thresh < block_rsv->size) 1797 * We only want to claim there's no a << 1798 * allocate chunks for our metadata p << 1799 * not fit in the free metadata space << 1800 * still can allocate chunks and thus << 1801 * calculated f_bavail. << 1802 */ << 1803 if (!mixed && block_rsv->space_info-> << 1804 (total_free_meta < thresh || tota << 1805 buf->f_bavail = 0; 2111 buf->f_bavail = 0; 1806 2112 1807 buf->f_type = BTRFS_SUPER_MAGIC; 2113 buf->f_type = BTRFS_SUPER_MAGIC; 1808 buf->f_bsize = fs_info->sectorsize; !! 2114 buf->f_bsize = dentry->d_sb->s_blocksize; 1809 buf->f_namelen = BTRFS_NAME_LEN; 2115 buf->f_namelen = BTRFS_NAME_LEN; 1810 2116 1811 /* We treat it as constant endianness 2117 /* We treat it as constant endianness (it doesn't matter _which_) 1812 because we want the fsid to come o 2118 because we want the fsid to come out the same whether mounted 1813 on a big-endian or little-endian h 2119 on a big-endian or little-endian host */ 1814 buf->f_fsid.val[0] = be32_to_cpu(fsid 2120 buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]); 1815 buf->f_fsid.val[1] = be32_to_cpu(fsid 2121 buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]); 1816 /* Mask in the root object ID too, to 2122 /* Mask in the root object ID too, to disambiguate subvols */ 1817 buf->f_fsid.val[0] ^= btrfs_root_id(B !! 2123 buf->f_fsid.val[0] ^= 1818 buf->f_fsid.val[1] ^= btrfs_root_id(B !! 2124 BTRFS_I(d_inode(dentry))->root->root_key.objectid >> 32; >> 2125 buf->f_fsid.val[1] ^= >> 2126 BTRFS_I(d_inode(dentry))->root->root_key.objectid; 1819 2127 1820 return 0; 2128 return 0; 1821 } 2129 } 1822 2130 1823 static int btrfs_fc_test_super(struct super_b << 1824 { << 1825 struct btrfs_fs_info *p = fc->s_fs_in << 1826 struct btrfs_fs_info *fs_info = btrfs << 1827 << 1828 return fs_info->fs_devices == p->fs_d << 1829 } << 1830 << 1831 static int btrfs_get_tree_super(struct fs_con << 1832 { << 1833 struct btrfs_fs_info *fs_info = fc->s << 1834 struct btrfs_fs_context *ctx = fc->fs << 1835 struct btrfs_fs_devices *fs_devices = << 1836 struct block_device *bdev; << 1837 struct btrfs_device *device; << 1838 struct super_block *sb; << 1839 blk_mode_t mode = btrfs_open_mode(fc) << 1840 int ret; << 1841 << 1842 btrfs_ctx_to_info(fs_info, ctx); << 1843 mutex_lock(&uuid_mutex); << 1844 << 1845 /* << 1846 * With 'true' passed to btrfs_scan_o << 1847 * either a valid device or an error. << 1848 */ << 1849 device = btrfs_scan_one_device(fc->so << 1850 ASSERT(device != NULL); << 1851 if (IS_ERR(device)) { << 1852 mutex_unlock(&uuid_mutex); << 1853 return PTR_ERR(device); << 1854 } << 1855 << 1856 fs_devices = device->fs_devices; << 1857 fs_info->fs_devices = fs_devices; << 1858 << 1859 ret = btrfs_open_devices(fs_devices, << 1860 mutex_unlock(&uuid_mutex); << 1861 if (ret) << 1862 return ret; << 1863 << 1864 if (!(fc->sb_flags & SB_RDONLY) && fs << 1865 ret = -EACCES; << 1866 goto error; << 1867 } << 1868 << 1869 bdev = fs_devices->latest_dev->bdev; << 1870 << 1871 /* << 1872 * From now on the error handling is << 1873 * << 1874 * If successful, this will transfer << 1875 * and fc->s_fs_info will be NULL. H << 1876 * super, we'll still have fc->s_fs_i << 1877 * completely out it'll be cleaned up << 1878 * otherwise it's tied to the lifetim << 1879 */ << 1880 sb = sget_fc(fc, btrfs_fc_test_super, << 1881 if (IS_ERR(sb)) { << 1882 ret = PTR_ERR(sb); << 1883 goto error; << 1884 } << 1885 << 1886 set_device_specific_options(fs_info); << 1887 << 1888 if (sb->s_root) { << 1889 btrfs_close_devices(fs_device << 1890 if ((fc->sb_flags ^ sb->s_fla << 1891 ret = -EBUSY; << 1892 } else { << 1893 snprintf(sb->s_id, sizeof(sb- << 1894 shrinker_debugfs_rename(sb->s << 1895 btrfs_sb(sb)->bdev_holder = & << 1896 ret = btrfs_fill_super(sb, fs << 1897 } << 1898 << 1899 if (ret) { << 1900 deactivate_locked_super(sb); << 1901 return ret; << 1902 } << 1903 << 1904 btrfs_clear_oneshot_options(fs_info); << 1905 << 1906 fc->root = dget(sb->s_root); << 1907 return 0; << 1908 << 1909 error: << 1910 btrfs_close_devices(fs_devices); << 1911 return ret; << 1912 } << 1913 << 1914 /* << 1915 * Ever since commit 0723a0473fb4 ("btrfs: al << 1916 * with different ro/rw options") the followi << 1917 * << 1918 * (i) mount /dev/sda3 -o subvol=foo,r << 1919 * (ii) mount /dev/sda3 -o subvol=bar,r << 1920 * << 1921 * which looks nice and innocent but is actua << 1922 * a long comment. << 1923 * << 1924 * On another filesystem a subvolume mount is << 1925 * << 1926 * (iii) # create rw superblock + initia << 1927 * mount -t xfs /dev/sdb /opt/ << 1928 * << 1929 * # create ro bind mount << 1930 * mount --bind -o ro /opt/foo /mn << 1931 * << 1932 * # unmount initial mount << 1933 * umount /opt << 1934 * << 1935 * Of course, there's some special subvolume << 1936 * sb->s_root dentry is really swapped after << 1937 * it's very close and will help us understan << 1938 * << 1939 * The old mount API didn't cleanly distingui << 1940 * and a superblock being made ro. The only << 1941 * either object was by passing ms_rdonly. If << 1942 * mount(2) such as: << 1943 * << 1944 * mount("/dev/sdb", "/mnt", "xfs", ms_r << 1945 * << 1946 * the MS_RDONLY flag being specified had two << 1947 * << 1948 * (1) MNT_READONLY was raised -> the resulti << 1949 * @mnt->mnt_flags |= MNT_READONLY raised << 1950 * << 1951 * (2) MS_RDONLY was passed to the filesystem << 1952 * made the superblock ro. Note, how SB_R << 1953 * ms_rdonly and is raised whenever MS_RD << 1954 * << 1955 * Creating a subtree mount via (iii) ends up << 1956 * subtree mounted ro. << 1957 * << 1958 * But consider the effect on the old mount A << 1959 * which combines the distinct step in (iii) << 1960 * << 1961 * By issuing (i) both the mount and the supe << 1962 * is issued the superblock is ro and thus ev << 1963 * rw it wouldn't help. Hence, btrfs needed t << 1964 * to rw for (ii) which it did using an inter << 1965 * << 1966 * IOW, subvolume mounting was inherently com << 1967 * MS_RDONLY in mount(2). Note, this ambiguit << 1968 * "ro" to MS_RDONLY. IOW, in both (i) and (i << 1969 * passed by mount(8) to mount(2). << 1970 * << 1971 * Enter the new mount API. The new mount API << 1972 * and making a superblock ro. << 1973 * << 1974 * (3) To turn a mount ro the MOUNT_ATTR_ONLY << 1975 * fsmount() or mount_setattr() this is a << 1976 * specific mount or mount tree that is n << 1977 * << 1978 * (4) To turn a superblock ro the "ro" flag << 1979 * fsconfig(FSCONFIG_SET_FLAG, "ro"). Thi << 1980 * in fc->sb_flags. << 1981 * << 1982 * But, currently the util-linux mount comman << 1983 * API and is still setting fsconfig(FSCONFIG << 1984 * btrfs or not, setting the whole super bloc << 1985 * work with different options work we need t << 1986 */ << 1987 static struct vfsmount *btrfs_reconfigure_for << 1988 { << 1989 struct vfsmount *mnt; << 1990 int ret; << 1991 const bool ro2rw = !(fc->sb_flags & S << 1992 << 1993 /* << 1994 * We got an EBUSY because our SB_RDO << 1995 * super block, so invert our setting << 1996 * can get our vfsmount. << 1997 */ << 1998 if (ro2rw) << 1999 fc->sb_flags |= SB_RDONLY; << 2000 else << 2001 fc->sb_flags &= ~SB_RDONLY; << 2002 << 2003 mnt = fc_mount(fc); << 2004 if (IS_ERR(mnt)) << 2005 return mnt; << 2006 << 2007 if (!ro2rw) << 2008 return mnt; << 2009 << 2010 /* We need to convert to rw, call rec << 2011 fc->sb_flags &= ~SB_RDONLY; << 2012 down_write(&mnt->mnt_sb->s_umount); << 2013 ret = btrfs_reconfigure(fc); << 2014 up_write(&mnt->mnt_sb->s_umount); << 2015 if (ret) { << 2016 mntput(mnt); << 2017 return ERR_PTR(ret); << 2018 } << 2019 return mnt; << 2020 } << 2021 << 2022 static int btrfs_get_tree_subvol(struct fs_co << 2023 { << 2024 struct btrfs_fs_info *fs_info = NULL; << 2025 struct btrfs_fs_context *ctx = fc->fs << 2026 struct fs_context *dup_fc; << 2027 struct dentry *dentry; << 2028 struct vfsmount *mnt; << 2029 << 2030 /* << 2031 * Setup a dummy root and fs_info for << 2032 * we don't actually fill this stuff << 2033 * then open_ctree will properly init << 2034 * settings later. btrfs_init_fs_inf << 2035 * of the fs_info (locks and such) to << 2036 * superblock with our given fs_devic << 2037 */ << 2038 fs_info = kvzalloc(sizeof(struct btrf << 2039 if (!fs_info) << 2040 return -ENOMEM; << 2041 << 2042 fs_info->super_copy = kzalloc(BTRFS_S << 2043 fs_info->super_for_commit = kzalloc(B << 2044 if (!fs_info->super_copy || !fs_info- << 2045 btrfs_free_fs_info(fs_info); << 2046 return -ENOMEM; << 2047 } << 2048 btrfs_init_fs_info(fs_info); << 2049 << 2050 dup_fc = vfs_dup_fs_context(fc); << 2051 if (IS_ERR(dup_fc)) { << 2052 btrfs_free_fs_info(fs_info); << 2053 return PTR_ERR(dup_fc); << 2054 } << 2055 << 2056 /* << 2057 * When we do the sget_fc this gets t << 2058 * need to set it on the dup_fc as th << 2059 */ << 2060 dup_fc->s_fs_info = fs_info; << 2061 << 2062 /* << 2063 * We'll do the security settings in << 2064 * loop, they were duplicated into du << 2065 * here. << 2066 */ << 2067 security_free_mnt_opts(&fc->security) << 2068 fc->security = NULL; << 2069 << 2070 mnt = fc_mount(dup_fc); << 2071 if (PTR_ERR_OR_ZERO(mnt) == -EBUSY) << 2072 mnt = btrfs_reconfigure_for_m << 2073 put_fs_context(dup_fc); << 2074 if (IS_ERR(mnt)) << 2075 return PTR_ERR(mnt); << 2076 << 2077 /* << 2078 * This free's ->subvol_name, because << 2079 * allocate a buffer to hold the subv << 2080 * reference to it here. << 2081 */ << 2082 dentry = mount_subvol(ctx->subvol_nam << 2083 ctx->subvol_name = NULL; << 2084 if (IS_ERR(dentry)) << 2085 return PTR_ERR(dentry); << 2086 << 2087 fc->root = dentry; << 2088 return 0; << 2089 } << 2090 << 2091 static int btrfs_get_tree(struct fs_context * << 2092 { << 2093 /* << 2094 * Since we use mount_subtree to moun << 2095 * have to do mounts in two steps. << 2096 * << 2097 * First pass through we call btrfs_g << 2098 * wrapper around fc_mount() to call << 2099 * we'll call btrfs_get_tree_super(). << 2100 * everything to open the devices and << 2101 * with a fully constructed vfsmount << 2102 * from there we can do our mount_sub << 2103 * whichever subvol we're mounting an << 2104 * appropriate dentry for the subvol. << 2105 */ << 2106 if (fc->s_fs_info) << 2107 return btrfs_get_tree_super(f << 2108 return btrfs_get_tree_subvol(fc); << 2109 } << 2110 << 2111 static void btrfs_kill_super(struct super_blo 2131 static void btrfs_kill_super(struct super_block *sb) 2112 { 2132 { 2113 struct btrfs_fs_info *fs_info = btrfs 2133 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2114 kill_anon_super(sb); 2134 kill_anon_super(sb); 2115 btrfs_free_fs_info(fs_info); !! 2135 free_fs_info(fs_info); 2116 } 2136 } 2117 2137 2118 static void btrfs_free_fs_context(struct fs_c !! 2138 static struct file_system_type btrfs_fs_type = { 2119 { !! 2139 .owner = THIS_MODULE, 2120 struct btrfs_fs_context *ctx = fc->fs !! 2140 .name = "btrfs", 2121 struct btrfs_fs_info *fs_info = fc->s !! 2141 .mount = btrfs_mount, 2122 !! 2142 .kill_sb = btrfs_kill_super, 2123 if (fs_info) !! 2143 .fs_flags = FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA, 2124 btrfs_free_fs_info(fs_info); << 2125 << 2126 if (ctx && refcount_dec_and_test(&ctx << 2127 kfree(ctx->subvol_name); << 2128 kfree(ctx); << 2129 } << 2130 } << 2131 << 2132 static int btrfs_dup_fs_context(struct fs_con << 2133 { << 2134 struct btrfs_fs_context *ctx = src_fc << 2135 << 2136 /* << 2137 * Give a ref to our ctx to this dup, << 2138 * our original fc so we can have the << 2139 * << 2140 * We unset ->source in the original << 2141 * mounting, and then once we free th << 2142 * need to make sure we're only point << 2143 */ << 2144 refcount_inc(&ctx->refs); << 2145 fc->fs_private = ctx; << 2146 fc->source = src_fc->source; << 2147 src_fc->source = NULL; << 2148 return 0; << 2149 } << 2150 << 2151 static const struct fs_context_operations btr << 2152 .parse_param = btrfs_parse_param, << 2153 .reconfigure = btrfs_reconfigure, << 2154 .get_tree = btrfs_get_tree, << 2155 .dup = btrfs_dup_fs_contex << 2156 .free = btrfs_free_fs_conte << 2157 }; 2144 }; 2158 2145 2159 static int btrfs_init_fs_context(struct fs_co !! 2146 static struct file_system_type btrfs_root_fs_type = { 2160 { !! 2147 .owner = THIS_MODULE, 2161 struct btrfs_fs_context *ctx; !! 2148 .name = "btrfs", 2162 !! 2149 .mount = btrfs_mount_root, 2163 ctx = kzalloc(sizeof(struct btrfs_fs_ !! 2150 .kill_sb = btrfs_kill_super, 2164 if (!ctx) !! 2151 .fs_flags = FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA, 2165 return -ENOMEM; !! 2152 }; 2166 << 2167 refcount_set(&ctx->refs, 1); << 2168 fc->fs_private = ctx; << 2169 fc->ops = &btrfs_fs_context_ops; << 2170 << 2171 if (fc->purpose == FS_CONTEXT_FOR_REC << 2172 btrfs_info_to_ctx(btrfs_sb(fc << 2173 } else { << 2174 ctx->thread_pool_size = << 2175 min_t(unsigned long, << 2176 ctx->max_inline = BTRFS_DEFAU << 2177 ctx->commit_interval = BTRFS_ << 2178 } << 2179 << 2180 #ifdef CONFIG_BTRFS_FS_POSIX_ACL << 2181 fc->sb_flags |= SB_POSIXACL; << 2182 #endif << 2183 fc->sb_flags |= SB_I_VERSION; << 2184 << 2185 return 0; << 2186 } << 2187 << 2188 static struct file_system_type btrfs_fs_type << 2189 .owner = THIS_MODULE << 2190 .name = "btrfs", << 2191 .init_fs_context = btrfs_init_ << 2192 .parameters = btrfs_fs_pa << 2193 .kill_sb = btrfs_kill_ << 2194 .fs_flags = FS_REQUIRES << 2195 }; << 2196 2153 2197 MODULE_ALIAS_FS("btrfs"); 2154 MODULE_ALIAS_FS("btrfs"); 2198 2155 2199 static int btrfs_control_open(struct inode *i 2156 static int btrfs_control_open(struct inode *inode, struct file *file) 2200 { 2157 { 2201 /* 2158 /* 2202 * The control file's private_data is 2159 * The control file's private_data is used to hold the 2203 * transaction when it is started and 2160 * transaction when it is started and is used to keep 2204 * track of whether a transaction is 2161 * track of whether a transaction is already in progress. 2205 */ 2162 */ 2206 file->private_data = NULL; 2163 file->private_data = NULL; 2207 return 0; 2164 return 0; 2208 } 2165 } 2209 2166 2210 /* 2167 /* 2211 * Used by /dev/btrfs-control for devices ioc !! 2168 * used by btrfsctl to scan devices when no FS is mounted 2212 */ 2169 */ 2213 static long btrfs_control_ioctl(struct file * 2170 static long btrfs_control_ioctl(struct file *file, unsigned int cmd, 2214 unsigned long 2171 unsigned long arg) 2215 { 2172 { 2216 struct btrfs_ioctl_vol_args *vol; 2173 struct btrfs_ioctl_vol_args *vol; 2217 struct btrfs_device *device = NULL; 2174 struct btrfs_device *device = NULL; 2218 dev_t devt = 0; << 2219 int ret = -ENOTTY; 2175 int ret = -ENOTTY; 2220 2176 2221 if (!capable(CAP_SYS_ADMIN)) 2177 if (!capable(CAP_SYS_ADMIN)) 2222 return -EPERM; 2178 return -EPERM; 2223 2179 2224 vol = memdup_user((void __user *)arg, 2180 vol = memdup_user((void __user *)arg, sizeof(*vol)); 2225 if (IS_ERR(vol)) 2181 if (IS_ERR(vol)) 2226 return PTR_ERR(vol); 2182 return PTR_ERR(vol); 2227 ret = btrfs_check_ioctl_vol_args_path !! 2183 vol->name[BTRFS_PATH_NAME_MAX] = '\0'; 2228 if (ret < 0) << 2229 goto out; << 2230 2184 2231 switch (cmd) { 2185 switch (cmd) { 2232 case BTRFS_IOC_SCAN_DEV: 2186 case BTRFS_IOC_SCAN_DEV: 2233 mutex_lock(&uuid_mutex); 2187 mutex_lock(&uuid_mutex); 2234 /* !! 2188 device = btrfs_scan_one_device(vol->name, FMODE_READ, 2235 * Scanning outside of mount !! 2189 &btrfs_root_fs_type); 2236 * into 0 error code. << 2237 */ << 2238 device = btrfs_scan_one_devic << 2239 ret = PTR_ERR_OR_ZERO(device) 2190 ret = PTR_ERR_OR_ZERO(device); 2240 mutex_unlock(&uuid_mutex); 2191 mutex_unlock(&uuid_mutex); 2241 break; 2192 break; 2242 case BTRFS_IOC_FORGET_DEV: << 2243 if (vol->name[0] != 0) { << 2244 ret = lookup_bdev(vol << 2245 if (ret) << 2246 break; << 2247 } << 2248 ret = btrfs_forget_devices(de << 2249 break; << 2250 case BTRFS_IOC_DEVICES_READY: 2193 case BTRFS_IOC_DEVICES_READY: 2251 mutex_lock(&uuid_mutex); 2194 mutex_lock(&uuid_mutex); 2252 /* !! 2195 device = btrfs_scan_one_device(vol->name, FMODE_READ, 2253 * Scanning outside of mount !! 2196 &btrfs_root_fs_type); 2254 * into 0 error code. !! 2197 if (IS_ERR(device)) { 2255 */ << 2256 device = btrfs_scan_one_devic << 2257 if (IS_ERR_OR_NULL(device)) { << 2258 mutex_unlock(&uuid_mu 2198 mutex_unlock(&uuid_mutex); 2259 ret = PTR_ERR(device) 2199 ret = PTR_ERR(device); 2260 break; 2200 break; 2261 } 2201 } 2262 ret = !(device->fs_devices->n 2202 ret = !(device->fs_devices->num_devices == 2263 device->fs_devices->t 2203 device->fs_devices->total_devices); 2264 mutex_unlock(&uuid_mutex); 2204 mutex_unlock(&uuid_mutex); 2265 break; 2205 break; 2266 case BTRFS_IOC_GET_SUPPORTED_FEATURES 2206 case BTRFS_IOC_GET_SUPPORTED_FEATURES: 2267 ret = btrfs_ioctl_get_support 2207 ret = btrfs_ioctl_get_supported_features((void __user*)arg); 2268 break; 2208 break; 2269 } 2209 } 2270 2210 2271 out: << 2272 kfree(vol); 2211 kfree(vol); 2273 return ret; 2212 return ret; 2274 } 2213 } 2275 2214 2276 static int btrfs_freeze(struct super_block *s 2215 static int btrfs_freeze(struct super_block *sb) 2277 { 2216 { >> 2217 struct btrfs_trans_handle *trans; 2278 struct btrfs_fs_info *fs_info = btrfs 2218 struct btrfs_fs_info *fs_info = btrfs_sb(sb); >> 2219 struct btrfs_root *root = fs_info->tree_root; 2279 2220 2280 set_bit(BTRFS_FS_FROZEN, &fs_info->fl 2221 set_bit(BTRFS_FS_FROZEN, &fs_info->flags); 2281 /* 2222 /* 2282 * We don't need a barrier here, we'l 2223 * We don't need a barrier here, we'll wait for any transaction that 2283 * could be in progress on other thre 2224 * could be in progress on other threads (and do delayed iputs that 2284 * we want to avoid on a frozen files 2225 * we want to avoid on a frozen filesystem), or do the commit 2285 * ourselves. 2226 * ourselves. 2286 */ 2227 */ 2287 return btrfs_commit_current_transacti !! 2228 trans = btrfs_attach_transaction_barrier(root); 2288 } !! 2229 if (IS_ERR(trans)) { 2289 !! 2230 /* no transaction, don't bother */ 2290 static int check_dev_super(struct btrfs_devic !! 2231 if (PTR_ERR(trans) == -ENOENT) 2291 { !! 2232 return 0; 2292 struct btrfs_fs_info *fs_info = dev-> !! 2233 return PTR_ERR(trans); 2293 struct btrfs_super_block *sb; << 2294 u64 last_trans; << 2295 u16 csum_type; << 2296 int ret = 0; << 2297 << 2298 /* This should be called with fs stil << 2299 ASSERT(test_bit(BTRFS_FS_FROZEN, &fs_ << 2300 << 2301 /* Missing dev, no need to check. */ << 2302 if (!dev->bdev) << 2303 return 0; << 2304 << 2305 /* Only need to check the primary sup << 2306 sb = btrfs_read_dev_one_super(dev->bd << 2307 if (IS_ERR(sb)) << 2308 return PTR_ERR(sb); << 2309 << 2310 /* Verify the checksum. */ << 2311 csum_type = btrfs_super_csum_type(sb) << 2312 if (csum_type != btrfs_super_csum_typ << 2313 btrfs_err(fs_info, "csum type << 2314 csum_type, btrfs_su << 2315 ret = -EUCLEAN; << 2316 goto out; << 2317 } << 2318 << 2319 if (btrfs_check_super_csum(fs_info, s << 2320 btrfs_err(fs_info, "csum for << 2321 ret = -EUCLEAN; << 2322 goto out; << 2323 } << 2324 << 2325 /* Btrfs_validate_super() includes fs << 2326 ret = btrfs_validate_super(fs_info, s << 2327 if (ret < 0) << 2328 goto out; << 2329 << 2330 last_trans = btrfs_get_last_trans_com << 2331 if (btrfs_super_generation(sb) != las << 2332 btrfs_err(fs_info, "transid m << 2333 btrfs_super_generat << 2334 ret = -EUCLEAN; << 2335 goto out; << 2336 } 2234 } 2337 out: !! 2235 return btrfs_commit_transaction(trans); 2338 btrfs_release_disk_super(sb); << 2339 return ret; << 2340 } 2236 } 2341 2237 2342 static int btrfs_unfreeze(struct super_block 2238 static int btrfs_unfreeze(struct super_block *sb) 2343 { 2239 { 2344 struct btrfs_fs_info *fs_info = btrfs 2240 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2345 struct btrfs_device *device; << 2346 int ret = 0; << 2347 2241 2348 /* << 2349 * Make sure the fs is not changed by << 2350 * modified by other OS). << 2351 * If we found anything wrong, we mar << 2352 * << 2353 * And since the fs is frozen, no one << 2354 * we don't need to hold device_list_ << 2355 */ << 2356 list_for_each_entry(device, &fs_info- << 2357 ret = check_dev_super(device) << 2358 if (ret < 0) { << 2359 btrfs_handle_fs_error << 2360 "super block << 2361 device->devid << 2362 break; << 2363 } << 2364 } << 2365 clear_bit(BTRFS_FS_FROZEN, &fs_info-> 2242 clear_bit(BTRFS_FS_FROZEN, &fs_info->flags); 2366 << 2367 /* << 2368 * We still return 0, to allow VFS la << 2369 * above checks failed. Since the fs << 2370 * safe to continue, without causing << 2371 */ << 2372 return 0; 2243 return 0; 2373 } 2244 } 2374 2245 2375 static int btrfs_show_devname(struct seq_file 2246 static int btrfs_show_devname(struct seq_file *m, struct dentry *root) 2376 { 2247 { 2377 struct btrfs_fs_info *fs_info = btrfs 2248 struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb); >> 2249 struct btrfs_fs_devices *cur_devices; >> 2250 struct btrfs_device *dev, *first_dev = NULL; >> 2251 struct list_head *head; 2378 2252 2379 /* 2253 /* 2380 * There should be always a valid poi !! 2254 * Lightweight locking of the devices. We should not need 2381 * for a short moment in case it's be !! 2255 * device_list_mutex here as we only read the device data and the list 2382 * the end of RCU grace period. !! 2256 * is protected by RCU. Even if a device is deleted during the list >> 2257 * traversals, we'll get valid data, the freeing callback will wait at >> 2258 * least until the rcu_read_unlock. 2383 */ 2259 */ 2384 rcu_read_lock(); 2260 rcu_read_lock(); 2385 seq_escape(m, btrfs_dev_name(fs_info- !! 2261 cur_devices = fs_info->fs_devices; 2386 rcu_read_unlock(); !! 2262 while (cur_devices) { 2387 !! 2263 head = &cur_devices->devices; 2388 return 0; !! 2264 list_for_each_entry_rcu(dev, head, dev_list) { 2389 } !! 2265 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 2390 !! 2266 continue; 2391 static long btrfs_nr_cached_objects(struct su !! 2267 if (!dev->name) 2392 { !! 2268 continue; 2393 struct btrfs_fs_info *fs_info = btrfs !! 2269 if (!first_dev || dev->devid < first_dev->devid) 2394 const s64 nr = percpu_counter_sum_pos !! 2270 first_dev = dev; 2395 !! 2271 } 2396 trace_btrfs_extent_map_shrinker_count !! 2272 cur_devices = cur_devices->seed; >> 2273 } 2397 2274 2398 /* !! 2275 if (first_dev) 2399 * Only report the real number for DE !! 2276 seq_escape(m, rcu_str_deref(first_dev->name), " \t\n\\"); 2400 * serious performance degradation ca !! 2277 else 2401 */ !! 2278 WARN_ON(1); 2402 if (IS_ENABLED(CONFIG_BTRFS_DEBUG)) !! 2279 rcu_read_unlock(); 2403 return nr; << 2404 return 0; 2280 return 0; 2405 } 2281 } 2406 2282 2407 static long btrfs_free_cached_objects(struct << 2408 { << 2409 const long nr_to_scan = min_t(unsigne << 2410 struct btrfs_fs_info *fs_info = btrfs << 2411 << 2412 /* << 2413 * We may be called from any task try << 2414 * want to slow it down with scanning << 2415 * also cause heavy lock contention i << 2416 * here. Therefore only allow kswapd << 2417 */ << 2418 if (!current_is_kswapd()) << 2419 return 0; << 2420 << 2421 return btrfs_free_extent_maps(fs_info << 2422 } << 2423 << 2424 static const struct super_operations btrfs_su 2283 static const struct super_operations btrfs_super_ops = { 2425 .drop_inode = btrfs_drop_inode, 2284 .drop_inode = btrfs_drop_inode, 2426 .evict_inode = btrfs_evict_inode, 2285 .evict_inode = btrfs_evict_inode, 2427 .put_super = btrfs_put_super, 2286 .put_super = btrfs_put_super, 2428 .sync_fs = btrfs_sync_fs, 2287 .sync_fs = btrfs_sync_fs, 2429 .show_options = btrfs_show_options, 2288 .show_options = btrfs_show_options, 2430 .show_devname = btrfs_show_devname, 2289 .show_devname = btrfs_show_devname, 2431 .alloc_inode = btrfs_alloc_inode, 2290 .alloc_inode = btrfs_alloc_inode, 2432 .destroy_inode = btrfs_destroy_inode 2291 .destroy_inode = btrfs_destroy_inode, 2433 .free_inode = btrfs_free_inode, << 2434 .statfs = btrfs_statfs, 2292 .statfs = btrfs_statfs, >> 2293 .remount_fs = btrfs_remount, 2435 .freeze_fs = btrfs_freeze, 2294 .freeze_fs = btrfs_freeze, 2436 .unfreeze_fs = btrfs_unfreeze, 2295 .unfreeze_fs = btrfs_unfreeze, 2437 .nr_cached_objects = btrfs_nr_cached_ << 2438 .free_cached_objects = btrfs_free_cac << 2439 }; 2296 }; 2440 2297 2441 static const struct file_operations btrfs_ctl 2298 static const struct file_operations btrfs_ctl_fops = { 2442 .open = btrfs_control_open, 2299 .open = btrfs_control_open, 2443 .unlocked_ioctl = btrfs_control_ioct 2300 .unlocked_ioctl = btrfs_control_ioctl, 2444 .compat_ioctl = compat_ptr_ioctl, !! 2301 .compat_ioctl = btrfs_control_ioctl, 2445 .owner = THIS_MODULE, 2302 .owner = THIS_MODULE, 2446 .llseek = noop_llseek, 2303 .llseek = noop_llseek, 2447 }; 2304 }; 2448 2305 2449 static struct miscdevice btrfs_misc = { 2306 static struct miscdevice btrfs_misc = { 2450 .minor = BTRFS_MINOR, 2307 .minor = BTRFS_MINOR, 2451 .name = "btrfs-control", 2308 .name = "btrfs-control", 2452 .fops = &btrfs_ctl_fops 2309 .fops = &btrfs_ctl_fops 2453 }; 2310 }; 2454 2311 2455 MODULE_ALIAS_MISCDEV(BTRFS_MINOR); 2312 MODULE_ALIAS_MISCDEV(BTRFS_MINOR); 2456 MODULE_ALIAS("devname:btrfs-control"); 2313 MODULE_ALIAS("devname:btrfs-control"); 2457 2314 2458 static int __init btrfs_interface_init(void) 2315 static int __init btrfs_interface_init(void) 2459 { 2316 { 2460 return misc_register(&btrfs_misc); 2317 return misc_register(&btrfs_misc); 2461 } 2318 } 2462 2319 2463 static __cold void btrfs_interface_exit(void) 2320 static __cold void btrfs_interface_exit(void) 2464 { 2321 { 2465 misc_deregister(&btrfs_misc); 2322 misc_deregister(&btrfs_misc); 2466 } 2323 } 2467 2324 2468 static int __init btrfs_print_mod_info(void) !! 2325 static void __init btrfs_print_mod_info(void) 2469 { 2326 { 2470 static const char options[] = "" 2327 static const char options[] = "" 2471 #ifdef CONFIG_BTRFS_DEBUG 2328 #ifdef CONFIG_BTRFS_DEBUG 2472 ", debug=on" 2329 ", debug=on" 2473 #endif 2330 #endif 2474 #ifdef CONFIG_BTRFS_ASSERT 2331 #ifdef CONFIG_BTRFS_ASSERT 2475 ", assert=on" 2332 ", assert=on" 2476 #endif 2333 #endif >> 2334 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY >> 2335 ", integrity-checker=on" >> 2336 #endif 2477 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 2337 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 2478 ", ref-verify=on" 2338 ", ref-verify=on" 2479 #endif 2339 #endif 2480 #ifdef CONFIG_BLK_DEV_ZONED << 2481 ", zoned=yes" << 2482 #else << 2483 ", zoned=no" << 2484 #endif << 2485 #ifdef CONFIG_FS_VERITY << 2486 ", fsverity=yes" << 2487 #else << 2488 ", fsverity=no" << 2489 #endif << 2490 ; 2340 ; 2491 pr_info("Btrfs loaded%s\n", options); !! 2341 pr_info("Btrfs loaded, crc32c=%s%s\n", crc32c_impl(), options); 2492 return 0; << 2493 } 2342 } 2494 2343 2495 static int register_btrfs(void) !! 2344 static int __init init_btrfs_fs(void) 2496 { 2345 { 2497 return register_filesystem(&btrfs_fs_ !! 2346 int err; 2498 } << 2499 2347 2500 static void unregister_btrfs(void) !! 2348 btrfs_props_init(); 2501 { << 2502 unregister_filesystem(&btrfs_fs_type) << 2503 } << 2504 2349 2505 /* Helper structure for long init/exit functi !! 2350 err = btrfs_init_sysfs(); 2506 struct init_sequence { !! 2351 if (err) 2507 int (*init_func)(void); !! 2352 return err; 2508 /* Can be NULL if the init_func doesn << 2509 void (*exit_func)(void); << 2510 }; << 2511 2353 2512 static const struct init_sequence mod_init_se !! 2354 btrfs_init_compress(); 2513 { << 2514 .init_func = btrfs_props_init << 2515 .exit_func = NULL, << 2516 }, { << 2517 .init_func = btrfs_init_sysfs << 2518 .exit_func = btrfs_exit_sysfs << 2519 }, { << 2520 .init_func = btrfs_init_compr << 2521 .exit_func = btrfs_exit_compr << 2522 }, { << 2523 .init_func = btrfs_init_cache << 2524 .exit_func = btrfs_destroy_ca << 2525 }, { << 2526 .init_func = btrfs_init_dio, << 2527 .exit_func = btrfs_destroy_di << 2528 }, { << 2529 .init_func = btrfs_transactio << 2530 .exit_func = btrfs_transactio << 2531 }, { << 2532 .init_func = btrfs_ctree_init << 2533 .exit_func = btrfs_ctree_exit << 2534 }, { << 2535 .init_func = btrfs_free_space << 2536 .exit_func = btrfs_free_space << 2537 }, { << 2538 .init_func = extent_state_ini << 2539 .exit_func = extent_state_fre << 2540 }, { << 2541 .init_func = extent_buffer_in << 2542 .exit_func = extent_buffer_fr << 2543 }, { << 2544 .init_func = btrfs_bioset_ini << 2545 .exit_func = btrfs_bioset_exi << 2546 }, { << 2547 .init_func = extent_map_init, << 2548 .exit_func = extent_map_exit, << 2549 }, { << 2550 .init_func = ordered_data_ini << 2551 .exit_func = ordered_data_exi << 2552 }, { << 2553 .init_func = btrfs_delayed_in << 2554 .exit_func = btrfs_delayed_in << 2555 }, { << 2556 .init_func = btrfs_auto_defra << 2557 .exit_func = btrfs_auto_defra << 2558 }, { << 2559 .init_func = btrfs_delayed_re << 2560 .exit_func = btrfs_delayed_re << 2561 }, { << 2562 .init_func = btrfs_prelim_ref << 2563 .exit_func = btrfs_prelim_ref << 2564 }, { << 2565 .init_func = btrfs_interface_ << 2566 .exit_func = btrfs_interface_ << 2567 }, { << 2568 .init_func = btrfs_print_mod_ << 2569 .exit_func = NULL, << 2570 }, { << 2571 .init_func = btrfs_run_sanity << 2572 .exit_func = NULL, << 2573 }, { << 2574 .init_func = register_btrfs, << 2575 .exit_func = unregister_btrfs << 2576 } << 2577 }; << 2578 2355 2579 static bool mod_init_result[ARRAY_SIZE(mod_in !! 2356 err = btrfs_init_cachep(); >> 2357 if (err) >> 2358 goto free_compress; 2580 2359 2581 static __always_inline void btrfs_exit_btrfs_ !! 2360 err = extent_io_init(); 2582 { !! 2361 if (err) 2583 int i; !! 2362 goto free_cachep; 2584 2363 2585 for (i = ARRAY_SIZE(mod_init_seq) - 1 !! 2364 err = extent_map_init(); 2586 if (!mod_init_result[i]) !! 2365 if (err) 2587 continue; !! 2366 goto free_extent_io; 2588 if (mod_init_seq[i].exit_func !! 2367 2589 mod_init_seq[i].exit_ !! 2368 err = ordered_data_init(); 2590 mod_init_result[i] = false; !! 2369 if (err) 2591 } !! 2370 goto free_extent_map; >> 2371 >> 2372 err = btrfs_delayed_inode_init(); >> 2373 if (err) >> 2374 goto free_ordered_data; >> 2375 >> 2376 err = btrfs_auto_defrag_init(); >> 2377 if (err) >> 2378 goto free_delayed_inode; >> 2379 >> 2380 err = btrfs_delayed_ref_init(); >> 2381 if (err) >> 2382 goto free_auto_defrag; >> 2383 >> 2384 err = btrfs_prelim_ref_init(); >> 2385 if (err) >> 2386 goto free_delayed_ref; >> 2387 >> 2388 err = btrfs_end_io_wq_init(); >> 2389 if (err) >> 2390 goto free_prelim_ref; >> 2391 >> 2392 err = btrfs_interface_init(); >> 2393 if (err) >> 2394 goto free_end_io_wq; >> 2395 >> 2396 btrfs_init_lockdep(); >> 2397 >> 2398 btrfs_print_mod_info(); >> 2399 >> 2400 err = btrfs_run_sanity_tests(); >> 2401 if (err) >> 2402 goto unregister_ioctl; >> 2403 >> 2404 err = register_filesystem(&btrfs_fs_type); >> 2405 if (err) >> 2406 goto unregister_ioctl; >> 2407 >> 2408 return 0; >> 2409 >> 2410 unregister_ioctl: >> 2411 btrfs_interface_exit(); >> 2412 free_end_io_wq: >> 2413 btrfs_end_io_wq_exit(); >> 2414 free_prelim_ref: >> 2415 btrfs_prelim_ref_exit(); >> 2416 free_delayed_ref: >> 2417 btrfs_delayed_ref_exit(); >> 2418 free_auto_defrag: >> 2419 btrfs_auto_defrag_exit(); >> 2420 free_delayed_inode: >> 2421 btrfs_delayed_inode_exit(); >> 2422 free_ordered_data: >> 2423 ordered_data_exit(); >> 2424 free_extent_map: >> 2425 extent_map_exit(); >> 2426 free_extent_io: >> 2427 extent_io_exit(); >> 2428 free_cachep: >> 2429 btrfs_destroy_cachep(); >> 2430 free_compress: >> 2431 btrfs_exit_compress(); >> 2432 btrfs_exit_sysfs(); >> 2433 >> 2434 return err; 2592 } 2435 } 2593 2436 2594 static void __exit exit_btrfs_fs(void) 2437 static void __exit exit_btrfs_fs(void) 2595 { 2438 { 2596 btrfs_exit_btrfs_fs(); !! 2439 btrfs_destroy_cachep(); >> 2440 btrfs_delayed_ref_exit(); >> 2441 btrfs_auto_defrag_exit(); >> 2442 btrfs_delayed_inode_exit(); >> 2443 btrfs_prelim_ref_exit(); >> 2444 ordered_data_exit(); >> 2445 extent_map_exit(); >> 2446 extent_io_exit(); >> 2447 btrfs_interface_exit(); >> 2448 btrfs_end_io_wq_exit(); >> 2449 unregister_filesystem(&btrfs_fs_type); >> 2450 btrfs_exit_sysfs(); 2597 btrfs_cleanup_fs_uuids(); 2451 btrfs_cleanup_fs_uuids(); 2598 } !! 2452 btrfs_exit_compress(); 2599 << 2600 static int __init init_btrfs_fs(void) << 2601 { << 2602 int ret; << 2603 int i; << 2604 << 2605 for (i = 0; i < ARRAY_SIZE(mod_init_s << 2606 ASSERT(!mod_init_result[i]); << 2607 ret = mod_init_seq[i].init_fu << 2608 if (ret < 0) { << 2609 btrfs_exit_btrfs_fs() << 2610 return ret; << 2611 } << 2612 mod_init_result[i] = true; << 2613 } << 2614 return 0; << 2615 } 2453 } 2616 2454 2617 late_initcall(init_btrfs_fs); 2455 late_initcall(init_btrfs_fs); 2618 module_exit(exit_btrfs_fs) 2456 module_exit(exit_btrfs_fs) 2619 2457 2620 MODULE_DESCRIPTION("B-Tree File System (BTRFS << 2621 MODULE_LICENSE("GPL"); 2458 MODULE_LICENSE("GPL"); 2622 MODULE_SOFTDEP("pre: crc32c"); << 2623 MODULE_SOFTDEP("pre: xxhash64"); << 2624 MODULE_SOFTDEP("pre: sha256"); << 2625 MODULE_SOFTDEP("pre: blake2b-256"); << 2626 2459
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.