1 // SPDX-License-Identifier: GPL-2.0 1 // SPDX-License-Identifier: GPL-2.0 2 /* 2 /* 3 * Copyright (C) 2007 Oracle. All rights rese 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 4 */ 5 5 6 #include <linux/blkdev.h> 6 #include <linux/blkdev.h> 7 #include <linux/module.h> 7 #include <linux/module.h> 8 #include <linux/fs.h> 8 #include <linux/fs.h> 9 #include <linux/pagemap.h> 9 #include <linux/pagemap.h> 10 #include <linux/highmem.h> 10 #include <linux/highmem.h> 11 #include <linux/time.h> 11 #include <linux/time.h> 12 #include <linux/init.h> 12 #include <linux/init.h> 13 #include <linux/seq_file.h> 13 #include <linux/seq_file.h> 14 #include <linux/string.h> 14 #include <linux/string.h> 15 #include <linux/backing-dev.h> 15 #include <linux/backing-dev.h> 16 #include <linux/mount.h> 16 #include <linux/mount.h> 17 #include <linux/writeback.h> 17 #include <linux/writeback.h> 18 #include <linux/statfs.h> 18 #include <linux/statfs.h> 19 #include <linux/compat.h> 19 #include <linux/compat.h> 20 #include <linux/parser.h> 20 #include <linux/parser.h> 21 #include <linux/ctype.h> 21 #include <linux/ctype.h> 22 #include <linux/namei.h> 22 #include <linux/namei.h> 23 #include <linux/miscdevice.h> 23 #include <linux/miscdevice.h> 24 #include <linux/magic.h> 24 #include <linux/magic.h> 25 #include <linux/slab.h> 25 #include <linux/slab.h> 26 #include <linux/ratelimit.h> 26 #include <linux/ratelimit.h> 27 #include <linux/crc32c.h> 27 #include <linux/crc32c.h> 28 #include <linux/btrfs.h> 28 #include <linux/btrfs.h> 29 #include <linux/security.h> << 30 #include <linux/fs_parser.h> << 31 #include <linux/swap.h> << 32 #include "messages.h" << 33 #include "delayed-inode.h" 29 #include "delayed-inode.h" 34 #include "ctree.h" 30 #include "ctree.h" 35 #include "disk-io.h" 31 #include "disk-io.h" 36 #include "transaction.h" 32 #include "transaction.h" 37 #include "btrfs_inode.h" 33 #include "btrfs_inode.h" 38 #include "direct-io.h" !! 34 #include "print-tree.h" 39 #include "props.h" 35 #include "props.h" 40 #include "xattr.h" 36 #include "xattr.h" 41 #include "bio.h" !! 37 #include "volumes.h" 42 #include "export.h" 38 #include "export.h" 43 #include "compression.h" 39 #include "compression.h" >> 40 #include "rcu-string.h" 44 #include "dev-replace.h" 41 #include "dev-replace.h" 45 #include "free-space-cache.h" 42 #include "free-space-cache.h" 46 #include "backref.h" 43 #include "backref.h" 47 #include "space-info.h" 44 #include "space-info.h" 48 #include "sysfs.h" 45 #include "sysfs.h" 49 #include "zoned.h" 46 #include "zoned.h" 50 #include "tests/btrfs-tests.h" 47 #include "tests/btrfs-tests.h" 51 #include "block-group.h" 48 #include "block-group.h" 52 #include "discard.h" 49 #include "discard.h" 53 #include "qgroup.h" 50 #include "qgroup.h" 54 #include "raid56.h" 51 #include "raid56.h" 55 #include "fs.h" << 56 #include "accessors.h" << 57 #include "defrag.h" << 58 #include "dir-item.h" << 59 #include "ioctl.h" << 60 #include "scrub.h" << 61 #include "verity.h" << 62 #include "super.h" << 63 #include "extent-tree.h" << 64 #define CREATE_TRACE_POINTS 52 #define CREATE_TRACE_POINTS 65 #include <trace/events/btrfs.h> 53 #include <trace/events/btrfs.h> 66 54 67 static const struct super_operations btrfs_sup 55 static const struct super_operations btrfs_super_ops; >> 56 >> 57 /* >> 58 * Types for mounting the default subvolume and a subvolume explicitly >> 59 * requested by subvol=/path. That way the callchain is straightforward and we >> 60 * don't have to play tricks with the mount options and recursive calls to >> 61 * btrfs_mount. >> 62 * >> 63 * The new btrfs_root_fs_type also servers as a tag for the bdev_holder. >> 64 */ 68 static struct file_system_type btrfs_fs_type; 65 static struct file_system_type btrfs_fs_type; >> 66 static struct file_system_type btrfs_root_fs_type; 69 67 70 static void btrfs_put_super(struct super_block !! 68 static int btrfs_remount(struct super_block *sb, int *flags, char *data); >> 69 >> 70 #ifdef CONFIG_PRINTK >> 71 >> 72 #define STATE_STRING_PREFACE ": state " >> 73 #define STATE_STRING_BUF_LEN (sizeof(STATE_STRING_PREFACE) + BTRFS_FS_STATE_COUNT) >> 74 >> 75 /* >> 76 * Characters to print to indicate error conditions or uncommon filesystem state. >> 77 * RO is not an error. >> 78 */ >> 79 static const char fs_state_chars[] = { >> 80 [BTRFS_FS_STATE_ERROR] = 'E', >> 81 [BTRFS_FS_STATE_REMOUNTING] = 'M', >> 82 [BTRFS_FS_STATE_RO] = 0, >> 83 [BTRFS_FS_STATE_TRANS_ABORTED] = 'A', >> 84 [BTRFS_FS_STATE_DEV_REPLACING] = 'R', >> 85 [BTRFS_FS_STATE_DUMMY_FS_INFO] = 0, >> 86 [BTRFS_FS_STATE_NO_CSUMS] = 'C', >> 87 [BTRFS_FS_STATE_LOG_CLEANUP_ERROR] = 'L', >> 88 }; >> 89 >> 90 static void btrfs_state_to_string(const struct btrfs_fs_info *info, char *buf) 71 { 91 { 72 struct btrfs_fs_info *fs_info = btrfs_ !! 92 unsigned int bit; >> 93 bool states_printed = false; >> 94 unsigned long fs_state = READ_ONCE(info->fs_state); >> 95 char *curr = buf; 73 96 74 btrfs_info(fs_info, "last unmount of f !! 97 memcpy(curr, STATE_STRING_PREFACE, sizeof(STATE_STRING_PREFACE)); 75 close_ctree(fs_info); !! 98 curr += sizeof(STATE_STRING_PREFACE) - 1; >> 99 >> 100 for_each_set_bit(bit, &fs_state, sizeof(fs_state)) { >> 101 WARN_ON_ONCE(bit >= BTRFS_FS_STATE_COUNT); >> 102 if ((bit < BTRFS_FS_STATE_COUNT) && fs_state_chars[bit]) { >> 103 *curr++ = fs_state_chars[bit]; >> 104 states_printed = true; >> 105 } >> 106 } >> 107 >> 108 /* If no states were printed, reset the buffer */ >> 109 if (!states_printed) >> 110 curr = buf; >> 111 >> 112 *curr++ = 0; >> 113 } >> 114 #endif >> 115 >> 116 /* >> 117 * Generally the error codes correspond to their respective errors, but there >> 118 * are a few special cases. >> 119 * >> 120 * EUCLEAN: Any sort of corruption that we encounter. The tree-checker for >> 121 * instance will return EUCLEAN if any of the blocks are corrupted in >> 122 * a way that is problematic. We want to reserve EUCLEAN for these >> 123 * sort of corruptions. >> 124 * >> 125 * EROFS: If we check BTRFS_FS_STATE_ERROR and fail out with a return error, we >> 126 * need to use EROFS for this case. We will have no idea of the >> 127 * original failure, that will have been reported at the time we tripped >> 128 * over the error. Each subsequent error that doesn't have any context >> 129 * of the original error should use EROFS when handling BTRFS_FS_STATE_ERROR. >> 130 */ >> 131 const char * __attribute_const__ btrfs_decode_error(int errno) >> 132 { >> 133 char *errstr = "unknown"; >> 134 >> 135 switch (errno) { >> 136 case -ENOENT: /* -2 */ >> 137 errstr = "No such entry"; >> 138 break; >> 139 case -EIO: /* -5 */ >> 140 errstr = "IO failure"; >> 141 break; >> 142 case -ENOMEM: /* -12*/ >> 143 errstr = "Out of memory"; >> 144 break; >> 145 case -EEXIST: /* -17 */ >> 146 errstr = "Object already exists"; >> 147 break; >> 148 case -ENOSPC: /* -28 */ >> 149 errstr = "No space left"; >> 150 break; >> 151 case -EROFS: /* -30 */ >> 152 errstr = "Readonly filesystem"; >> 153 break; >> 154 case -EOPNOTSUPP: /* -95 */ >> 155 errstr = "Operation not supported"; >> 156 break; >> 157 case -EUCLEAN: /* -117 */ >> 158 errstr = "Filesystem corrupted"; >> 159 break; >> 160 case -EDQUOT: /* -122 */ >> 161 errstr = "Quota exceeded"; >> 162 break; >> 163 } >> 164 >> 165 return errstr; >> 166 } >> 167 >> 168 /* >> 169 * __btrfs_handle_fs_error decodes expected errors from the caller and >> 170 * invokes the appropriate error response. >> 171 */ >> 172 __cold >> 173 void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function, >> 174 unsigned int line, int errno, const char *fmt, ...) >> 175 { >> 176 struct super_block *sb = fs_info->sb; >> 177 #ifdef CONFIG_PRINTK >> 178 char statestr[STATE_STRING_BUF_LEN]; >> 179 const char *errstr; >> 180 #endif >> 181 >> 182 /* >> 183 * Special case: if the error is EROFS, and we're already >> 184 * under SB_RDONLY, then it is safe here. >> 185 */ >> 186 if (errno == -EROFS && sb_rdonly(sb)) >> 187 return; >> 188 >> 189 #ifdef CONFIG_PRINTK >> 190 errstr = btrfs_decode_error(errno); >> 191 btrfs_state_to_string(fs_info, statestr); >> 192 if (fmt) { >> 193 struct va_format vaf; >> 194 va_list args; >> 195 >> 196 va_start(args, fmt); >> 197 vaf.fmt = fmt; >> 198 vaf.va = &args; >> 199 >> 200 pr_crit("BTRFS: error (device %s%s) in %s:%d: errno=%d %s (%pV)\n", >> 201 sb->s_id, statestr, function, line, errno, errstr, &vaf); >> 202 va_end(args); >> 203 } else { >> 204 pr_crit("BTRFS: error (device %s%s) in %s:%d: errno=%d %s\n", >> 205 sb->s_id, statestr, function, line, errno, errstr); >> 206 } >> 207 #endif >> 208 >> 209 /* >> 210 * Today we only save the error info to memory. Long term we'll >> 211 * also send it down to the disk >> 212 */ >> 213 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); >> 214 >> 215 /* Don't go through full error handling during mount */ >> 216 if (!(sb->s_flags & SB_BORN)) >> 217 return; >> 218 >> 219 if (sb_rdonly(sb)) >> 220 return; >> 221 >> 222 btrfs_discard_stop(fs_info); >> 223 >> 224 /* btrfs handle error by forcing the filesystem readonly */ >> 225 btrfs_set_sb_rdonly(sb); >> 226 btrfs_info(fs_info, "forced readonly"); >> 227 /* >> 228 * Note that a running device replace operation is not canceled here >> 229 * although there is no way to update the progress. It would add the >> 230 * risk of a deadlock, therefore the canceling is omitted. The only >> 231 * penalty is that some I/O remains active until the procedure >> 232 * completes. The next time when the filesystem is mounted writable >> 233 * again, the device replace operation continues. >> 234 */ 76 } 235 } 77 236 78 /* Store the mount options related information !! 237 #ifdef CONFIG_PRINTK 79 struct btrfs_fs_context { !! 238 static const char * const logtypes[] = { 80 char *subvol_name; !! 239 "emergency", 81 u64 subvol_objectid; !! 240 "alert", 82 u64 max_inline; !! 241 "critical", 83 u32 commit_interval; !! 242 "error", 84 u32 metadata_ratio; !! 243 "warning", 85 u32 thread_pool_size; !! 244 "notice", 86 unsigned long long mount_opt; !! 245 "info", 87 unsigned long compress_type:4; !! 246 "debug", 88 unsigned int compress_level; << 89 refcount_t refs; << 90 }; 247 }; 91 248 >> 249 >> 250 /* >> 251 * Use one ratelimit state per log level so that a flood of less important >> 252 * messages doesn't cause more important ones to be dropped. >> 253 */ >> 254 static struct ratelimit_state printk_limits[] = { >> 255 RATELIMIT_STATE_INIT(printk_limits[0], DEFAULT_RATELIMIT_INTERVAL, 100), >> 256 RATELIMIT_STATE_INIT(printk_limits[1], DEFAULT_RATELIMIT_INTERVAL, 100), >> 257 RATELIMIT_STATE_INIT(printk_limits[2], DEFAULT_RATELIMIT_INTERVAL, 100), >> 258 RATELIMIT_STATE_INIT(printk_limits[3], DEFAULT_RATELIMIT_INTERVAL, 100), >> 259 RATELIMIT_STATE_INIT(printk_limits[4], DEFAULT_RATELIMIT_INTERVAL, 100), >> 260 RATELIMIT_STATE_INIT(printk_limits[5], DEFAULT_RATELIMIT_INTERVAL, 100), >> 261 RATELIMIT_STATE_INIT(printk_limits[6], DEFAULT_RATELIMIT_INTERVAL, 100), >> 262 RATELIMIT_STATE_INIT(printk_limits[7], DEFAULT_RATELIMIT_INTERVAL, 100), >> 263 }; >> 264 >> 265 void __cold _btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...) >> 266 { >> 267 char lvl[PRINTK_MAX_SINGLE_HEADER_LEN + 1] = "\0"; >> 268 struct va_format vaf; >> 269 va_list args; >> 270 int kern_level; >> 271 const char *type = logtypes[4]; >> 272 struct ratelimit_state *ratelimit = &printk_limits[4]; >> 273 >> 274 va_start(args, fmt); >> 275 >> 276 while ((kern_level = printk_get_level(fmt)) != 0) { >> 277 size_t size = printk_skip_level(fmt) - fmt; >> 278 >> 279 if (kern_level >= '' && kern_level <= '7') { >> 280 memcpy(lvl, fmt, size); >> 281 lvl[size] = '\0'; >> 282 type = logtypes[kern_level - '']; >> 283 ratelimit = &printk_limits[kern_level - '']; >> 284 } >> 285 fmt += size; >> 286 } >> 287 >> 288 vaf.fmt = fmt; >> 289 vaf.va = &args; >> 290 >> 291 if (__ratelimit(ratelimit)) { >> 292 if (fs_info) { >> 293 char statestr[STATE_STRING_BUF_LEN]; >> 294 >> 295 btrfs_state_to_string(fs_info, statestr); >> 296 _printk("%sBTRFS %s (device %s%s): %pV\n", lvl, type, >> 297 fs_info->sb->s_id, statestr, &vaf); >> 298 } else { >> 299 _printk("%sBTRFS %s: %pV\n", lvl, type, &vaf); >> 300 } >> 301 } >> 302 >> 303 va_end(args); >> 304 } >> 305 #endif >> 306 >> 307 #if BITS_PER_LONG == 32 >> 308 void __cold btrfs_warn_32bit_limit(struct btrfs_fs_info *fs_info) >> 309 { >> 310 if (!test_and_set_bit(BTRFS_FS_32BIT_WARN, &fs_info->flags)) { >> 311 btrfs_warn(fs_info, "reaching 32bit limit for logical addresses"); >> 312 btrfs_warn(fs_info, >> 313 "due to page cache limit on 32bit systems, btrfs can't access metadata at or beyond %lluT", >> 314 BTRFS_32BIT_MAX_FILE_SIZE >> 40); >> 315 btrfs_warn(fs_info, >> 316 "please consider upgrading to 64bit kernel/hardware"); >> 317 } >> 318 } >> 319 >> 320 void __cold btrfs_err_32bit_limit(struct btrfs_fs_info *fs_info) >> 321 { >> 322 if (!test_and_set_bit(BTRFS_FS_32BIT_ERROR, &fs_info->flags)) { >> 323 btrfs_err(fs_info, "reached 32bit limit for logical addresses"); >> 324 btrfs_err(fs_info, >> 325 "due to page cache limit on 32bit systems, metadata beyond %lluT can't be accessed", >> 326 BTRFS_32BIT_MAX_FILE_SIZE >> 40); >> 327 btrfs_err(fs_info, >> 328 "please consider upgrading to 64bit kernel/hardware"); >> 329 } >> 330 } >> 331 #endif >> 332 >> 333 /* >> 334 * We only mark the transaction aborted and then set the file system read-only. >> 335 * This will prevent new transactions from starting or trying to join this >> 336 * one. >> 337 * >> 338 * This means that error recovery at the call site is limited to freeing >> 339 * any local memory allocations and passing the error code up without >> 340 * further cleanup. The transaction should complete as it normally would >> 341 * in the call path but will return -EIO. >> 342 * >> 343 * We'll complete the cleanup in btrfs_end_transaction and >> 344 * btrfs_commit_transaction. >> 345 */ >> 346 __cold >> 347 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans, >> 348 const char *function, >> 349 unsigned int line, int errno) >> 350 { >> 351 struct btrfs_fs_info *fs_info = trans->fs_info; >> 352 >> 353 WRITE_ONCE(trans->aborted, errno); >> 354 WRITE_ONCE(trans->transaction->aborted, errno); >> 355 /* Wake up anybody who may be waiting on this transaction */ >> 356 wake_up(&fs_info->transaction_wait); >> 357 wake_up(&fs_info->transaction_blocked_wait); >> 358 __btrfs_handle_fs_error(fs_info, function, line, errno, NULL); >> 359 } >> 360 /* >> 361 * __btrfs_panic decodes unexpected, fatal errors from the caller, >> 362 * issues an alert, and either panics or BUGs, depending on mount options. >> 363 */ >> 364 __cold >> 365 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function, >> 366 unsigned int line, int errno, const char *fmt, ...) >> 367 { >> 368 char *s_id = "<unknown>"; >> 369 const char *errstr; >> 370 struct va_format vaf = { .fmt = fmt }; >> 371 va_list args; >> 372 >> 373 if (fs_info) >> 374 s_id = fs_info->sb->s_id; >> 375 >> 376 va_start(args, fmt); >> 377 vaf.va = &args; >> 378 >> 379 errstr = btrfs_decode_error(errno); >> 380 if (fs_info && (btrfs_test_opt(fs_info, PANIC_ON_FATAL_ERROR))) >> 381 panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n", >> 382 s_id, function, line, &vaf, errno, errstr); >> 383 >> 384 btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)", >> 385 function, line, &vaf, errno, errstr); >> 386 va_end(args); >> 387 /* Caller calls BUG() */ >> 388 } >> 389 >> 390 static void btrfs_put_super(struct super_block *sb) >> 391 { >> 392 close_ctree(btrfs_sb(sb)); >> 393 } >> 394 92 enum { 395 enum { 93 Opt_acl, !! 396 Opt_acl, Opt_noacl, 94 Opt_clear_cache, 397 Opt_clear_cache, 95 Opt_commit_interval, 398 Opt_commit_interval, 96 Opt_compress, 399 Opt_compress, 97 Opt_compress_force, 400 Opt_compress_force, 98 Opt_compress_force_type, 401 Opt_compress_force_type, 99 Opt_compress_type, 402 Opt_compress_type, 100 Opt_degraded, 403 Opt_degraded, 101 Opt_device, 404 Opt_device, 102 Opt_fatal_errors, 405 Opt_fatal_errors, 103 Opt_flushoncommit, !! 406 Opt_flushoncommit, Opt_noflushoncommit, 104 Opt_max_inline, 407 Opt_max_inline, 105 Opt_barrier, !! 408 Opt_barrier, Opt_nobarrier, 106 Opt_datacow, !! 409 Opt_datacow, Opt_nodatacow, 107 Opt_datasum, !! 410 Opt_datasum, Opt_nodatasum, 108 Opt_defrag, !! 411 Opt_defrag, Opt_nodefrag, 109 Opt_discard, !! 412 Opt_discard, Opt_nodiscard, 110 Opt_discard_mode, 413 Opt_discard_mode, >> 414 Opt_norecovery, 111 Opt_ratio, 415 Opt_ratio, 112 Opt_rescan_uuid_tree, 416 Opt_rescan_uuid_tree, 113 Opt_skip_balance, 417 Opt_skip_balance, 114 Opt_space_cache, !! 418 Opt_space_cache, Opt_no_space_cache, 115 Opt_space_cache_version, 419 Opt_space_cache_version, 116 Opt_ssd, !! 420 Opt_ssd, Opt_nossd, 117 Opt_ssd_spread, !! 421 Opt_ssd_spread, Opt_nossd_spread, 118 Opt_subvol, 422 Opt_subvol, 119 Opt_subvol_empty, 423 Opt_subvol_empty, 120 Opt_subvolid, 424 Opt_subvolid, 121 Opt_thread_pool, 425 Opt_thread_pool, 122 Opt_treelog, !! 426 Opt_treelog, Opt_notreelog, 123 Opt_user_subvol_rm_allowed, 427 Opt_user_subvol_rm_allowed, 124 Opt_norecovery, << 125 428 126 /* Rescue options */ 429 /* Rescue options */ 127 Opt_rescue, 430 Opt_rescue, 128 Opt_usebackuproot, 431 Opt_usebackuproot, 129 Opt_nologreplay, 432 Opt_nologreplay, >> 433 Opt_ignorebadroots, >> 434 Opt_ignoredatacsums, >> 435 Opt_rescue_all, >> 436 >> 437 /* Deprecated options */ >> 438 Opt_recovery, >> 439 Opt_inode_cache, Opt_noinode_cache, 130 440 131 /* Debugging options */ 441 /* Debugging options */ 132 Opt_enospc_debug, !! 442 Opt_check_integrity, >> 443 Opt_check_integrity_including_extent_data, >> 444 Opt_check_integrity_print_mask, >> 445 Opt_enospc_debug, Opt_noenospc_debug, 133 #ifdef CONFIG_BTRFS_DEBUG 446 #ifdef CONFIG_BTRFS_DEBUG 134 Opt_fragment, Opt_fragment_data, Opt_f !! 447 Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all, 135 #endif 448 #endif 136 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 449 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 137 Opt_ref_verify, 450 Opt_ref_verify, 138 #endif 451 #endif 139 Opt_err, 452 Opt_err, 140 }; 453 }; 141 454 142 enum { !! 455 static const match_table_t tokens = { 143 Opt_fatal_errors_panic, !! 456 {Opt_acl, "acl"}, 144 Opt_fatal_errors_bug, !! 457 {Opt_noacl, "noacl"}, 145 }; !! 458 {Opt_clear_cache, "clear_cache"}, 146 !! 459 {Opt_commit_interval, "commit=%u"}, 147 static const struct constant_table btrfs_param !! 460 {Opt_compress, "compress"}, 148 { "panic", Opt_fatal_errors_panic }, !! 461 {Opt_compress_type, "compress=%s"}, 149 { "bug", Opt_fatal_errors_bug }, !! 462 {Opt_compress_force, "compress-force"}, 150 {} !! 463 {Opt_compress_force_type, "compress-force=%s"}, 151 }; !! 464 {Opt_degraded, "degraded"}, >> 465 {Opt_device, "device=%s"}, >> 466 {Opt_fatal_errors, "fatal_errors=%s"}, >> 467 {Opt_flushoncommit, "flushoncommit"}, >> 468 {Opt_noflushoncommit, "noflushoncommit"}, >> 469 {Opt_inode_cache, "inode_cache"}, >> 470 {Opt_noinode_cache, "noinode_cache"}, >> 471 {Opt_max_inline, "max_inline=%s"}, >> 472 {Opt_barrier, "barrier"}, >> 473 {Opt_nobarrier, "nobarrier"}, >> 474 {Opt_datacow, "datacow"}, >> 475 {Opt_nodatacow, "nodatacow"}, >> 476 {Opt_datasum, "datasum"}, >> 477 {Opt_nodatasum, "nodatasum"}, >> 478 {Opt_defrag, "autodefrag"}, >> 479 {Opt_nodefrag, "noautodefrag"}, >> 480 {Opt_discard, "discard"}, >> 481 {Opt_discard_mode, "discard=%s"}, >> 482 {Opt_nodiscard, "nodiscard"}, >> 483 {Opt_norecovery, "norecovery"}, >> 484 {Opt_ratio, "metadata_ratio=%u"}, >> 485 {Opt_rescan_uuid_tree, "rescan_uuid_tree"}, >> 486 {Opt_skip_balance, "skip_balance"}, >> 487 {Opt_space_cache, "space_cache"}, >> 488 {Opt_no_space_cache, "nospace_cache"}, >> 489 {Opt_space_cache_version, "space_cache=%s"}, >> 490 {Opt_ssd, "ssd"}, >> 491 {Opt_nossd, "nossd"}, >> 492 {Opt_ssd_spread, "ssd_spread"}, >> 493 {Opt_nossd_spread, "nossd_spread"}, >> 494 {Opt_subvol, "subvol=%s"}, >> 495 {Opt_subvol_empty, "subvol="}, >> 496 {Opt_subvolid, "subvolid=%s"}, >> 497 {Opt_thread_pool, "thread_pool=%u"}, >> 498 {Opt_treelog, "treelog"}, >> 499 {Opt_notreelog, "notreelog"}, >> 500 {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"}, 152 501 153 enum { !! 502 /* Rescue options */ 154 Opt_discard_sync, !! 503 {Opt_rescue, "rescue=%s"}, 155 Opt_discard_async, << 156 }; << 157 << 158 static const struct constant_table btrfs_param << 159 { "sync", Opt_discard_sync }, << 160 { "async", Opt_discard_async }, << 161 {} << 162 }; << 163 << 164 enum { << 165 Opt_space_cache_v1, << 166 Opt_space_cache_v2, << 167 }; << 168 << 169 static const struct constant_table btrfs_param << 170 { "v1", Opt_space_cache_v1 }, << 171 { "v2", Opt_space_cache_v2 }, << 172 {} << 173 }; << 174 << 175 enum { << 176 Opt_rescue_usebackuproot, << 177 Opt_rescue_nologreplay, << 178 Opt_rescue_ignorebadroots, << 179 Opt_rescue_ignoredatacsums, << 180 Opt_rescue_ignoremetacsums, << 181 Opt_rescue_ignoresuperflags, << 182 Opt_rescue_parameter_all, << 183 }; << 184 << 185 static const struct constant_table btrfs_param << 186 { "usebackuproot", Opt_rescue_usebacku << 187 { "nologreplay", Opt_rescue_nologrepla << 188 { "ignorebadroots", Opt_rescue_ignoreb << 189 { "ibadroots", Opt_rescue_ignorebadroo << 190 { "ignoredatacsums", Opt_rescue_ignore << 191 { "ignoremetacsums", Opt_rescue_ignore << 192 { "ignoresuperflags", Opt_rescue_ignor << 193 { "idatacsums", Opt_rescue_ignoredatac << 194 { "imetacsums", Opt_rescue_ignoremetac << 195 { "isuperflags", Opt_rescue_ignoresupe << 196 { "all", Opt_rescue_parameter_all }, << 197 {} << 198 }; << 199 << 200 #ifdef CONFIG_BTRFS_DEBUG << 201 enum { << 202 Opt_fragment_parameter_data, << 203 Opt_fragment_parameter_metadata, << 204 Opt_fragment_parameter_all, << 205 }; << 206 << 207 static const struct constant_table btrfs_param << 208 { "data", Opt_fragment_parameter_data << 209 { "metadata", Opt_fragment_parameter_m << 210 { "all", Opt_fragment_parameter_all }, << 211 {} << 212 }; << 213 #endif << 214 << 215 static const struct fs_parameter_spec btrfs_fs << 216 fsparam_flag_no("acl", Opt_acl), << 217 fsparam_flag_no("autodefrag", Opt_defr << 218 fsparam_flag_no("barrier", Opt_barrier << 219 fsparam_flag("clear_cache", Opt_clear_ << 220 fsparam_u32("commit", Opt_commit_inter << 221 fsparam_flag("compress", Opt_compress) << 222 fsparam_string("compress", Opt_compres << 223 fsparam_flag("compress-force", Opt_com << 224 fsparam_string("compress-force", Opt_c << 225 fsparam_flag_no("datacow", Opt_datacow << 226 fsparam_flag_no("datasum", Opt_datasum << 227 fsparam_flag("degraded", Opt_degraded) << 228 fsparam_string("device", Opt_device), << 229 fsparam_flag_no("discard", Opt_discard << 230 fsparam_enum("discard", Opt_discard_mo << 231 fsparam_enum("fatal_errors", Opt_fatal << 232 fsparam_flag_no("flushoncommit", Opt_f << 233 fsparam_string("max_inline", Opt_max_i << 234 fsparam_u32("metadata_ratio", Opt_rati << 235 fsparam_flag("rescan_uuid_tree", Opt_r << 236 fsparam_flag("skip_balance", Opt_skip_ << 237 fsparam_flag_no("space_cache", Opt_spa << 238 fsparam_enum("space_cache", Opt_space_ << 239 fsparam_flag_no("ssd", Opt_ssd), << 240 fsparam_flag_no("ssd_spread", Opt_ssd_ << 241 fsparam_string("subvol", Opt_subvol), << 242 fsparam_flag("subvol=", Opt_subvol_emp << 243 fsparam_u64("subvolid", Opt_subvolid), << 244 fsparam_u32("thread_pool", Opt_thread_ << 245 fsparam_flag_no("treelog", Opt_treelog << 246 fsparam_flag("user_subvol_rm_allowed", << 247 << 248 /* Rescue options. */ << 249 fsparam_enum("rescue", Opt_rescue, btr << 250 /* Deprecated, with alias rescue=nolog 504 /* Deprecated, with alias rescue=nologreplay */ 251 __fsparam(NULL, "nologreplay", Opt_nol !! 505 {Opt_nologreplay, "nologreplay"}, 252 /* Deprecated, with alias rescue=useba 506 /* Deprecated, with alias rescue=usebackuproot */ 253 __fsparam(NULL, "usebackuproot", Opt_u !! 507 {Opt_usebackuproot, "usebackuproot"}, 254 /* For compatibility only, alias for " << 255 fsparam_flag("norecovery", Opt_norecov << 256 508 257 /* Debugging options. */ !! 509 /* Deprecated options */ 258 fsparam_flag_no("enospc_debug", Opt_en !! 510 {Opt_recovery, "recovery"}, >> 511 >> 512 /* Debugging options */ >> 513 {Opt_check_integrity, "check_int"}, >> 514 {Opt_check_integrity_including_extent_data, "check_int_data"}, >> 515 {Opt_check_integrity_print_mask, "check_int_print_mask=%u"}, >> 516 {Opt_enospc_debug, "enospc_debug"}, >> 517 {Opt_noenospc_debug, "noenospc_debug"}, 259 #ifdef CONFIG_BTRFS_DEBUG 518 #ifdef CONFIG_BTRFS_DEBUG 260 fsparam_enum("fragment", Opt_fragment, !! 519 {Opt_fragment_data, "fragment=data"}, >> 520 {Opt_fragment_metadata, "fragment=metadata"}, >> 521 {Opt_fragment_all, "fragment=all"}, 261 #endif 522 #endif 262 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 523 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 263 fsparam_flag("ref_verify", Opt_ref_ver !! 524 {Opt_ref_verify, "ref_verify"}, 264 #endif 525 #endif 265 {} !! 526 {Opt_err, NULL}, >> 527 }; >> 528 >> 529 static const match_table_t rescue_tokens = { >> 530 {Opt_usebackuproot, "usebackuproot"}, >> 531 {Opt_nologreplay, "nologreplay"}, >> 532 {Opt_ignorebadroots, "ignorebadroots"}, >> 533 {Opt_ignorebadroots, "ibadroots"}, >> 534 {Opt_ignoredatacsums, "ignoredatacsums"}, >> 535 {Opt_ignoredatacsums, "idatacsums"}, >> 536 {Opt_rescue_all, "all"}, >> 537 {Opt_err, NULL}, 266 }; 538 }; 267 539 268 /* No support for restricting writes to btrfs !! 540 static bool check_ro_option(struct btrfs_fs_info *fs_info, unsigned long opt, 269 static inline blk_mode_t btrfs_open_mode(struc !! 541 const char *opt_name) 270 { 542 { 271 return sb_open_mode(fc->sb_flags) & ~B !! 543 if (fs_info->mount_opt & opt) { >> 544 btrfs_err(fs_info, "%s must be used with ro mount option", >> 545 opt_name); >> 546 return true; >> 547 } >> 548 return false; 272 } 549 } 273 550 274 static int btrfs_parse_param(struct fs_context !! 551 static int parse_rescue_options(struct btrfs_fs_info *info, const char *options) 275 { 552 { 276 struct btrfs_fs_context *ctx = fc->fs_ !! 553 char *opts; 277 struct fs_parse_result result; !! 554 char *orig; 278 int opt; !! 555 char *p; >> 556 substring_t args[MAX_OPT_ARGS]; >> 557 int ret = 0; 279 558 280 opt = fs_parse(fc, btrfs_fs_parameters !! 559 opts = kstrdup(options, GFP_KERNEL); 281 if (opt < 0) !! 560 if (!opts) 282 return opt; !! 561 return -ENOMEM; >> 562 orig = opts; 283 563 284 switch (opt) { !! 564 while ((p = strsep(&opts, ":")) != NULL) { 285 case Opt_degraded: !! 565 int token; 286 btrfs_set_opt(ctx->mount_opt, << 287 break; << 288 case Opt_subvol_empty: << 289 /* << 290 * This exists because we used << 291 * keeping it to maintain ABI. << 292 * empty subvol= again"). << 293 */ << 294 break; << 295 case Opt_subvol: << 296 kfree(ctx->subvol_name); << 297 ctx->subvol_name = kstrdup(par << 298 if (!ctx->subvol_name) << 299 return -ENOMEM; << 300 break; << 301 case Opt_subvolid: << 302 ctx->subvol_objectid = result. << 303 566 304 /* subvolid=0 means give me th !! 567 if (!*p) 305 if (!ctx->subvol_objectid) !! 568 continue; 306 ctx->subvol_objectid = !! 569 token = match_token(p, rescue_tokens, args); 307 break; !! 570 switch (token){ 308 case Opt_device: { !! 571 case Opt_usebackuproot: 309 struct btrfs_device *device; !! 572 btrfs_info(info, 310 blk_mode_t mode = btrfs_open_m !! 573 "trying to use backup root at mount time"); >> 574 btrfs_set_opt(info->mount_opt, USEBACKUPROOT); >> 575 break; >> 576 case Opt_nologreplay: >> 577 btrfs_set_and_info(info, NOLOGREPLAY, >> 578 "disabling log replay at mount time"); >> 579 break; >> 580 case Opt_ignorebadroots: >> 581 btrfs_set_and_info(info, IGNOREBADROOTS, >> 582 "ignoring bad roots"); >> 583 break; >> 584 case Opt_ignoredatacsums: >> 585 btrfs_set_and_info(info, IGNOREDATACSUMS, >> 586 "ignoring data csums"); >> 587 break; >> 588 case Opt_rescue_all: >> 589 btrfs_info(info, "enabling all of the rescue options"); >> 590 btrfs_set_and_info(info, IGNOREDATACSUMS, >> 591 "ignoring data csums"); >> 592 btrfs_set_and_info(info, IGNOREBADROOTS, >> 593 "ignoring bad roots"); >> 594 btrfs_set_and_info(info, NOLOGREPLAY, >> 595 "disabling log replay at mount time"); >> 596 break; >> 597 case Opt_err: >> 598 btrfs_info(info, "unrecognized rescue option '%s'", p); >> 599 ret = -EINVAL; >> 600 goto out; >> 601 default: >> 602 break; >> 603 } 311 604 312 mutex_lock(&uuid_mutex); << 313 device = btrfs_scan_one_device << 314 mutex_unlock(&uuid_mutex); << 315 if (IS_ERR(device)) << 316 return PTR_ERR(device) << 317 break; << 318 } 605 } 319 case Opt_datasum: !! 606 out: 320 if (result.negated) { !! 607 kfree(orig); 321 btrfs_set_opt(ctx->mou !! 608 return ret; 322 } else { !! 609 } 323 btrfs_clear_opt(ctx->m << 324 btrfs_clear_opt(ctx->m << 325 } << 326 break; << 327 case Opt_datacow: << 328 if (result.negated) { << 329 btrfs_clear_opt(ctx->m << 330 btrfs_clear_opt(ctx->m << 331 btrfs_set_opt(ctx->mou << 332 btrfs_set_opt(ctx->mou << 333 } else { << 334 btrfs_clear_opt(ctx->m << 335 } << 336 break; << 337 case Opt_compress_force: << 338 case Opt_compress_force_type: << 339 btrfs_set_opt(ctx->mount_opt, << 340 fallthrough; << 341 case Opt_compress: << 342 case Opt_compress_type: << 343 /* << 344 * Provide the same semantics << 345 * context, specifying the "co << 346 * "force-compress" without th << 347 * "compress-force=[no|none]" << 348 */ << 349 if (opt != Opt_compress_force << 350 btrfs_clear_opt(ctx->m << 351 610 352 if (opt == Opt_compress || opt !! 611 /* 353 ctx->compress_type = B !! 612 * Regular mount options parser. Everything that is needed only when 354 ctx->compress_level = !! 613 * reading in a new superblock is parsed here. 355 btrfs_set_opt(ctx->mou !! 614 * XXX JDM: This needs to be cleaned up for remount. 356 btrfs_clear_opt(ctx->m !! 615 */ 357 btrfs_clear_opt(ctx->m !! 616 int btrfs_parse_options(struct btrfs_fs_info *info, char *options, 358 } else if (strncmp(param->stri !! 617 unsigned long new_flags) 359 ctx->compress_type = B !! 618 { 360 ctx->compress_level = !! 619 substring_t args[MAX_OPT_ARGS]; 361 btrfs_compress !! 620 char *p, *num; 362 !! 621 int intarg; 363 btrfs_set_opt(ctx->mou !! 622 int ret = 0; 364 btrfs_clear_opt(ctx->m !! 623 char *compress_type; 365 btrfs_clear_opt(ctx->m !! 624 bool compress_force = false; 366 } else if (strncmp(param->stri !! 625 enum btrfs_compression_type saved_compress_type; 367 ctx->compress_type = B !! 626 int saved_compress_level; 368 ctx->compress_level = !! 627 bool saved_compress_force; 369 btrfs_set_opt(ctx->mou !! 628 int no_compress = 0; 370 btrfs_clear_opt(ctx->m !! 629 const bool remounting = test_bit(BTRFS_FS_STATE_REMOUNTING, &info->fs_state); 371 btrfs_clear_opt(ctx->m !! 630 372 } else if (strncmp(param->stri !! 631 if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE)) 373 ctx->compress_type = B !! 632 btrfs_set_opt(info->mount_opt, FREE_SPACE_TREE); 374 ctx->compress_level = !! 633 else if (btrfs_free_space_cache_v1_active(info)) { 375 btrfs_compress !! 634 if (btrfs_is_zoned(info)) { 376 !! 635 btrfs_info(info, 377 btrfs_set_opt(ctx->mou !! 636 "zoned: clearing existing space cache"); 378 btrfs_clear_opt(ctx->m !! 637 btrfs_set_super_cache_generation(info->super_copy, 0); 379 btrfs_clear_opt(ctx->m << 380 } else if (strncmp(param->stri << 381 ctx->compress_level = << 382 ctx->compress_type = 0 << 383 btrfs_clear_opt(ctx->m << 384 btrfs_clear_opt(ctx->m << 385 } else { << 386 btrfs_err(NULL, "unrec << 387 param->strin << 388 return -EINVAL; << 389 } << 390 break; << 391 case Opt_ssd: << 392 if (result.negated) { << 393 btrfs_set_opt(ctx->mou << 394 btrfs_clear_opt(ctx->m << 395 btrfs_clear_opt(ctx->m << 396 } else { << 397 btrfs_set_opt(ctx->mou << 398 btrfs_clear_opt(ctx->m << 399 } << 400 break; << 401 case Opt_ssd_spread: << 402 if (result.negated) { << 403 btrfs_clear_opt(ctx->m << 404 } else { 638 } else { 405 btrfs_set_opt(ctx->mou !! 639 btrfs_set_opt(info->mount_opt, SPACE_CACHE); 406 btrfs_set_opt(ctx->mou << 407 btrfs_clear_opt(ctx->m << 408 } << 409 break; << 410 case Opt_barrier: << 411 if (result.negated) << 412 btrfs_set_opt(ctx->mou << 413 else << 414 btrfs_clear_opt(ctx->m << 415 break; << 416 case Opt_thread_pool: << 417 if (result.uint_32 == 0) { << 418 btrfs_err(NULL, "inval << 419 return -EINVAL; << 420 } 640 } 421 ctx->thread_pool_size = result !! 641 } 422 break; !! 642 423 case Opt_max_inline: !! 643 /* 424 ctx->max_inline = memparse(par !! 644 * Even the options are empty, we still need to do extra check 425 break; !! 645 * against new flags 426 case Opt_acl: !! 646 */ 427 if (result.negated) { !! 647 if (!options) 428 fc->sb_flags &= ~SB_PO !! 648 goto check; 429 } else { !! 649 >> 650 while ((p = strsep(&options, ",")) != NULL) { >> 651 int token; >> 652 if (!*p) >> 653 continue; >> 654 >> 655 token = match_token(p, tokens, args); >> 656 switch (token) { >> 657 case Opt_degraded: >> 658 btrfs_info(info, "allowing degraded mounts"); >> 659 btrfs_set_opt(info->mount_opt, DEGRADED); >> 660 break; >> 661 case Opt_subvol: >> 662 case Opt_subvol_empty: >> 663 case Opt_subvolid: >> 664 case Opt_device: >> 665 /* >> 666 * These are parsed by btrfs_parse_subvol_options or >> 667 * btrfs_parse_device_options and can be ignored here. >> 668 */ >> 669 break; >> 670 case Opt_nodatasum: >> 671 btrfs_set_and_info(info, NODATASUM, >> 672 "setting nodatasum"); >> 673 break; >> 674 case Opt_datasum: >> 675 if (btrfs_test_opt(info, NODATASUM)) { >> 676 if (btrfs_test_opt(info, NODATACOW)) >> 677 btrfs_info(info, >> 678 "setting datasum, datacow enabled"); >> 679 else >> 680 btrfs_info(info, "setting datasum"); >> 681 } >> 682 btrfs_clear_opt(info->mount_opt, NODATACOW); >> 683 btrfs_clear_opt(info->mount_opt, NODATASUM); >> 684 break; >> 685 case Opt_nodatacow: >> 686 if (!btrfs_test_opt(info, NODATACOW)) { >> 687 if (!btrfs_test_opt(info, COMPRESS) || >> 688 !btrfs_test_opt(info, FORCE_COMPRESS)) { >> 689 btrfs_info(info, >> 690 "setting nodatacow, compression disabled"); >> 691 } else { >> 692 btrfs_info(info, "setting nodatacow"); >> 693 } >> 694 } >> 695 btrfs_clear_opt(info->mount_opt, COMPRESS); >> 696 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); >> 697 btrfs_set_opt(info->mount_opt, NODATACOW); >> 698 btrfs_set_opt(info->mount_opt, NODATASUM); >> 699 break; >> 700 case Opt_datacow: >> 701 btrfs_clear_and_info(info, NODATACOW, >> 702 "setting datacow"); >> 703 break; >> 704 case Opt_compress_force: >> 705 case Opt_compress_force_type: >> 706 compress_force = true; >> 707 fallthrough; >> 708 case Opt_compress: >> 709 case Opt_compress_type: >> 710 saved_compress_type = btrfs_test_opt(info, >> 711 COMPRESS) ? >> 712 info->compress_type : BTRFS_COMPRESS_NONE; >> 713 saved_compress_force = >> 714 btrfs_test_opt(info, FORCE_COMPRESS); >> 715 saved_compress_level = info->compress_level; >> 716 if (token == Opt_compress || >> 717 token == Opt_compress_force || >> 718 strncmp(args[0].from, "zlib", 4) == 0) { >> 719 compress_type = "zlib"; >> 720 >> 721 info->compress_type = BTRFS_COMPRESS_ZLIB; >> 722 info->compress_level = BTRFS_ZLIB_DEFAULT_LEVEL; >> 723 /* >> 724 * args[0] contains uninitialized data since >> 725 * for these tokens we don't expect any >> 726 * parameter. >> 727 */ >> 728 if (token != Opt_compress && >> 729 token != Opt_compress_force) >> 730 info->compress_level = >> 731 btrfs_compress_str2level( >> 732 BTRFS_COMPRESS_ZLIB, >> 733 args[0].from + 4); >> 734 btrfs_set_opt(info->mount_opt, COMPRESS); >> 735 btrfs_clear_opt(info->mount_opt, NODATACOW); >> 736 btrfs_clear_opt(info->mount_opt, NODATASUM); >> 737 no_compress = 0; >> 738 } else if (strncmp(args[0].from, "lzo", 3) == 0) { >> 739 compress_type = "lzo"; >> 740 info->compress_type = BTRFS_COMPRESS_LZO; >> 741 info->compress_level = 0; >> 742 btrfs_set_opt(info->mount_opt, COMPRESS); >> 743 btrfs_clear_opt(info->mount_opt, NODATACOW); >> 744 btrfs_clear_opt(info->mount_opt, NODATASUM); >> 745 btrfs_set_fs_incompat(info, COMPRESS_LZO); >> 746 no_compress = 0; >> 747 } else if (strncmp(args[0].from, "zstd", 4) == 0) { >> 748 compress_type = "zstd"; >> 749 info->compress_type = BTRFS_COMPRESS_ZSTD; >> 750 info->compress_level = >> 751 btrfs_compress_str2level( >> 752 BTRFS_COMPRESS_ZSTD, >> 753 args[0].from + 4); >> 754 btrfs_set_opt(info->mount_opt, COMPRESS); >> 755 btrfs_clear_opt(info->mount_opt, NODATACOW); >> 756 btrfs_clear_opt(info->mount_opt, NODATASUM); >> 757 btrfs_set_fs_incompat(info, COMPRESS_ZSTD); >> 758 no_compress = 0; >> 759 } else if (strncmp(args[0].from, "no", 2) == 0) { >> 760 compress_type = "no"; >> 761 info->compress_level = 0; >> 762 info->compress_type = 0; >> 763 btrfs_clear_opt(info->mount_opt, COMPRESS); >> 764 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); >> 765 compress_force = false; >> 766 no_compress++; >> 767 } else { >> 768 btrfs_err(info, "unrecognized compression value %s", >> 769 args[0].from); >> 770 ret = -EINVAL; >> 771 goto out; >> 772 } >> 773 >> 774 if (compress_force) { >> 775 btrfs_set_opt(info->mount_opt, FORCE_COMPRESS); >> 776 } else { >> 777 /* >> 778 * If we remount from compress-force=xxx to >> 779 * compress=xxx, we need clear FORCE_COMPRESS >> 780 * flag, otherwise, there is no way for users >> 781 * to disable forcible compression separately. >> 782 */ >> 783 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); >> 784 } >> 785 if (no_compress == 1) { >> 786 btrfs_info(info, "use no compression"); >> 787 } else if ((info->compress_type != saved_compress_type) || >> 788 (compress_force != saved_compress_force) || >> 789 (info->compress_level != saved_compress_level)) { >> 790 btrfs_info(info, "%s %s compression, level %d", >> 791 (compress_force) ? "force" : "use", >> 792 compress_type, info->compress_level); >> 793 } >> 794 compress_force = false; >> 795 break; >> 796 case Opt_ssd: >> 797 btrfs_set_and_info(info, SSD, >> 798 "enabling ssd optimizations"); >> 799 btrfs_clear_opt(info->mount_opt, NOSSD); >> 800 break; >> 801 case Opt_ssd_spread: >> 802 btrfs_set_and_info(info, SSD, >> 803 "enabling ssd optimizations"); >> 804 btrfs_set_and_info(info, SSD_SPREAD, >> 805 "using spread ssd allocation scheme"); >> 806 btrfs_clear_opt(info->mount_opt, NOSSD); >> 807 break; >> 808 case Opt_nossd: >> 809 btrfs_set_opt(info->mount_opt, NOSSD); >> 810 btrfs_clear_and_info(info, SSD, >> 811 "not using ssd optimizations"); >> 812 fallthrough; >> 813 case Opt_nossd_spread: >> 814 btrfs_clear_and_info(info, SSD_SPREAD, >> 815 "not using spread ssd allocation scheme"); >> 816 break; >> 817 case Opt_barrier: >> 818 btrfs_clear_and_info(info, NOBARRIER, >> 819 "turning on barriers"); >> 820 break; >> 821 case Opt_nobarrier: >> 822 btrfs_set_and_info(info, NOBARRIER, >> 823 "turning off barriers"); >> 824 break; >> 825 case Opt_thread_pool: >> 826 ret = match_int(&args[0], &intarg); >> 827 if (ret) { >> 828 btrfs_err(info, "unrecognized thread_pool value %s", >> 829 args[0].from); >> 830 goto out; >> 831 } else if (intarg == 0) { >> 832 btrfs_err(info, "invalid value 0 for thread_pool"); >> 833 ret = -EINVAL; >> 834 goto out; >> 835 } >> 836 info->thread_pool_size = intarg; >> 837 break; >> 838 case Opt_max_inline: >> 839 num = match_strdup(&args[0]); >> 840 if (num) { >> 841 info->max_inline = memparse(num, NULL); >> 842 kfree(num); >> 843 >> 844 if (info->max_inline) { >> 845 info->max_inline = min_t(u64, >> 846 info->max_inline, >> 847 info->sectorsize); >> 848 } >> 849 btrfs_info(info, "max_inline at %llu", >> 850 info->max_inline); >> 851 } else { >> 852 ret = -ENOMEM; >> 853 goto out; >> 854 } >> 855 break; >> 856 case Opt_acl: 430 #ifdef CONFIG_BTRFS_FS_POSIX_ACL 857 #ifdef CONFIG_BTRFS_FS_POSIX_ACL 431 fc->sb_flags |= SB_POS !! 858 info->sb->s_flags |= SB_POSIXACL; >> 859 break; 432 #else 860 #else 433 btrfs_err(NULL, "suppo !! 861 btrfs_err(info, "support for ACL not compiled in!"); 434 return -EINVAL; !! 862 ret = -EINVAL; >> 863 goto out; 435 #endif 864 #endif 436 } !! 865 case Opt_noacl: 437 /* !! 866 info->sb->s_flags &= ~SB_POSIXACL; 438 * VFS limits the ability to t !! 867 break; 439 * despite every file system a !! 868 case Opt_notreelog: 440 * an oversight since we all d !! 869 btrfs_set_and_info(info, NOTREELOG, 441 * remounting. So don't set t !! 870 "disabling tree log"); 442 * btrfs_reconfigure and do th !! 871 break; 443 */ !! 872 case Opt_treelog: 444 if (fc->purpose != FS_CONTEXT_ !! 873 btrfs_clear_and_info(info, NOTREELOG, 445 fc->sb_flags_mask |= S !! 874 "enabling tree log"); 446 break; !! 875 break; 447 case Opt_treelog: !! 876 case Opt_norecovery: 448 if (result.negated) !! 877 case Opt_nologreplay: 449 btrfs_set_opt(ctx->mou !! 878 btrfs_warn(info, 450 else << 451 btrfs_clear_opt(ctx->m << 452 break; << 453 case Opt_nologreplay: << 454 btrfs_warn(NULL, << 455 "'nologreplay' is deprecated, 879 "'nologreplay' is deprecated, use 'rescue=nologreplay' instead"); 456 btrfs_set_opt(ctx->mount_opt, !! 880 btrfs_set_and_info(info, NOLOGREPLAY, 457 break; !! 881 "disabling log replay at mount time"); 458 case Opt_norecovery: << 459 btrfs_info(NULL, << 460 "'norecovery' is for compatibility only, recom << 461 btrfs_set_opt(ctx->mount_opt, << 462 break; << 463 case Opt_flushoncommit: << 464 if (result.negated) << 465 btrfs_clear_opt(ctx->m << 466 else << 467 btrfs_set_opt(ctx->mou << 468 break; << 469 case Opt_ratio: << 470 ctx->metadata_ratio = result.u << 471 break; << 472 case Opt_discard: << 473 if (result.negated) { << 474 btrfs_clear_opt(ctx->m << 475 btrfs_clear_opt(ctx->m << 476 btrfs_set_opt(ctx->mou << 477 } else { << 478 btrfs_set_opt(ctx->mou << 479 btrfs_clear_opt(ctx->m << 480 } << 481 break; << 482 case Opt_discard_mode: << 483 switch (result.uint_32) { << 484 case Opt_discard_sync: << 485 btrfs_clear_opt(ctx->m << 486 btrfs_set_opt(ctx->mou << 487 break; << 488 case Opt_discard_async: << 489 btrfs_clear_opt(ctx->m << 490 btrfs_set_opt(ctx->mou << 491 break; 882 break; 492 default: !! 883 case Opt_flushoncommit: 493 btrfs_err(NULL, "unrec !! 884 btrfs_set_and_info(info, FLUSHONCOMMIT, 494 param->key); !! 885 "turning on flush-on-commit"); 495 return -EINVAL; << 496 } << 497 btrfs_clear_opt(ctx->mount_opt << 498 break; << 499 case Opt_space_cache: << 500 if (result.negated) { << 501 btrfs_set_opt(ctx->mou << 502 btrfs_clear_opt(ctx->m << 503 btrfs_clear_opt(ctx->m << 504 } else { << 505 btrfs_clear_opt(ctx->m << 506 btrfs_set_opt(ctx->mou << 507 } << 508 break; << 509 case Opt_space_cache_version: << 510 switch (result.uint_32) { << 511 case Opt_space_cache_v1: << 512 btrfs_set_opt(ctx->mou << 513 btrfs_clear_opt(ctx->m << 514 break; << 515 case Opt_space_cache_v2: << 516 btrfs_clear_opt(ctx->m << 517 btrfs_set_opt(ctx->mou << 518 break; 886 break; 519 default: !! 887 case Opt_noflushoncommit: 520 btrfs_err(NULL, "unrec !! 888 btrfs_clear_and_info(info, FLUSHONCOMMIT, 521 param->key); !! 889 "turning off flush-on-commit"); 522 return -EINVAL; << 523 } << 524 break; << 525 case Opt_rescan_uuid_tree: << 526 btrfs_set_opt(ctx->mount_opt, << 527 break; << 528 case Opt_clear_cache: << 529 btrfs_set_opt(ctx->mount_opt, << 530 break; << 531 case Opt_user_subvol_rm_allowed: << 532 btrfs_set_opt(ctx->mount_opt, << 533 break; << 534 case Opt_enospc_debug: << 535 if (result.negated) << 536 btrfs_clear_opt(ctx->m << 537 else << 538 btrfs_set_opt(ctx->mou << 539 break; << 540 case Opt_defrag: << 541 if (result.negated) << 542 btrfs_clear_opt(ctx->m << 543 else << 544 btrfs_set_opt(ctx->mou << 545 break; << 546 case Opt_usebackuproot: << 547 btrfs_warn(NULL, << 548 "'usebackuproot' is << 549 btrfs_set_opt(ctx->mount_opt, << 550 << 551 /* If we're loading the backup << 552 btrfs_set_opt(ctx->mount_opt, << 553 break; << 554 case Opt_skip_balance: << 555 btrfs_set_opt(ctx->mount_opt, << 556 break; << 557 case Opt_fatal_errors: << 558 switch (result.uint_32) { << 559 case Opt_fatal_errors_panic: << 560 btrfs_set_opt(ctx->mou << 561 break; 890 break; 562 case Opt_fatal_errors_bug: !! 891 case Opt_ratio: 563 btrfs_clear_opt(ctx->m !! 892 ret = match_int(&args[0], &intarg); >> 893 if (ret) { >> 894 btrfs_err(info, "unrecognized metadata_ratio value %s", >> 895 args[0].from); >> 896 goto out; >> 897 } >> 898 info->metadata_ratio = intarg; >> 899 btrfs_info(info, "metadata ratio %u", >> 900 info->metadata_ratio); 564 break; 901 break; 565 default: !! 902 case Opt_discard: 566 btrfs_err(NULL, "unrec !! 903 case Opt_discard_mode: 567 param->key); !! 904 if (token == Opt_discard || 568 return -EINVAL; !! 905 strcmp(args[0].from, "sync") == 0) { 569 } !! 906 btrfs_clear_opt(info->mount_opt, DISCARD_ASYNC); 570 break; !! 907 btrfs_set_and_info(info, DISCARD_SYNC, 571 case Opt_commit_interval: !! 908 "turning on sync discard"); 572 ctx->commit_interval = result. !! 909 } else if (strcmp(args[0].from, "async") == 0) { 573 if (ctx->commit_interval == 0) !! 910 btrfs_clear_opt(info->mount_opt, DISCARD_SYNC); 574 ctx->commit_interval = !! 911 btrfs_set_and_info(info, DISCARD_ASYNC, 575 break; !! 912 "turning on async discard"); 576 case Opt_rescue: !! 913 } else { 577 switch (result.uint_32) { !! 914 btrfs_err(info, "unrecognized discard mode value %s", 578 case Opt_rescue_usebackuproot: !! 915 args[0].from); 579 btrfs_set_opt(ctx->mou !! 916 ret = -EINVAL; 580 break; !! 917 goto out; 581 case Opt_rescue_nologreplay: !! 918 } 582 btrfs_set_opt(ctx->mou !! 919 break; 583 break; !! 920 case Opt_nodiscard: 584 case Opt_rescue_ignorebadroots !! 921 btrfs_clear_and_info(info, DISCARD_SYNC, 585 btrfs_set_opt(ctx->mou !! 922 "turning off discard"); 586 break; !! 923 btrfs_clear_and_info(info, DISCARD_ASYNC, 587 case Opt_rescue_ignoredatacsum !! 924 "turning off async discard"); 588 btrfs_set_opt(ctx->mou !! 925 break; 589 break; !! 926 case Opt_space_cache: 590 case Opt_rescue_ignoremetacsum !! 927 case Opt_space_cache_version: 591 btrfs_set_opt(ctx->mou !! 928 /* 592 break; !! 929 * We already set FREE_SPACE_TREE above because we have 593 case Opt_rescue_ignoresuperfla !! 930 * compat_ro(FREE_SPACE_TREE) set, and we aren't going 594 btrfs_set_opt(ctx->mou !! 931 * to allow v1 to be set for extent tree v2, simply 595 break; !! 932 * ignore this setting if we're extent tree v2. 596 case Opt_rescue_parameter_all: !! 933 */ 597 btrfs_set_opt(ctx->mou !! 934 if (btrfs_fs_incompat(info, EXTENT_TREE_V2)) 598 btrfs_set_opt(ctx->mou !! 935 break; 599 btrfs_set_opt(ctx->mou !! 936 if (token == Opt_space_cache || 600 btrfs_set_opt(ctx->mou !! 937 strcmp(args[0].from, "v1") == 0) { 601 btrfs_set_opt(ctx->mou !! 938 btrfs_clear_opt(info->mount_opt, >> 939 FREE_SPACE_TREE); >> 940 btrfs_set_and_info(info, SPACE_CACHE, >> 941 "enabling disk space caching"); >> 942 } else if (strcmp(args[0].from, "v2") == 0) { >> 943 btrfs_clear_opt(info->mount_opt, >> 944 SPACE_CACHE); >> 945 btrfs_set_and_info(info, FREE_SPACE_TREE, >> 946 "enabling free space tree"); >> 947 } else { >> 948 btrfs_err(info, "unrecognized space_cache value %s", >> 949 args[0].from); >> 950 ret = -EINVAL; >> 951 goto out; >> 952 } >> 953 break; >> 954 case Opt_rescan_uuid_tree: >> 955 btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE); >> 956 break; >> 957 case Opt_no_space_cache: >> 958 /* >> 959 * We cannot operate without the free space tree with >> 960 * extent tree v2, ignore this option. >> 961 */ >> 962 if (btrfs_fs_incompat(info, EXTENT_TREE_V2)) >> 963 break; >> 964 if (btrfs_test_opt(info, SPACE_CACHE)) { >> 965 btrfs_clear_and_info(info, SPACE_CACHE, >> 966 "disabling disk space caching"); >> 967 } >> 968 if (btrfs_test_opt(info, FREE_SPACE_TREE)) { >> 969 btrfs_clear_and_info(info, FREE_SPACE_TREE, >> 970 "disabling free space tree"); >> 971 } >> 972 break; >> 973 case Opt_inode_cache: >> 974 case Opt_noinode_cache: >> 975 btrfs_warn(info, >> 976 "the 'inode_cache' option is deprecated and has no effect since 5.11"); >> 977 break; >> 978 case Opt_clear_cache: >> 979 /* >> 980 * We cannot clear the free space tree with extent tree >> 981 * v2, ignore this option. >> 982 */ >> 983 if (btrfs_fs_incompat(info, EXTENT_TREE_V2)) >> 984 break; >> 985 btrfs_set_and_info(info, CLEAR_CACHE, >> 986 "force clearing of disk cache"); >> 987 break; >> 988 case Opt_user_subvol_rm_allowed: >> 989 btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED); >> 990 break; >> 991 case Opt_enospc_debug: >> 992 btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG); >> 993 break; >> 994 case Opt_noenospc_debug: >> 995 btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG); >> 996 break; >> 997 case Opt_defrag: >> 998 btrfs_set_and_info(info, AUTO_DEFRAG, >> 999 "enabling auto defrag"); >> 1000 break; >> 1001 case Opt_nodefrag: >> 1002 btrfs_clear_and_info(info, AUTO_DEFRAG, >> 1003 "disabling auto defrag"); >> 1004 break; >> 1005 case Opt_recovery: >> 1006 case Opt_usebackuproot: >> 1007 btrfs_warn(info, >> 1008 "'%s' is deprecated, use 'rescue=usebackuproot' instead", >> 1009 token == Opt_recovery ? "recovery" : >> 1010 "usebackuproot"); >> 1011 btrfs_info(info, >> 1012 "trying to use backup root at mount time"); >> 1013 btrfs_set_opt(info->mount_opt, USEBACKUPROOT); >> 1014 break; >> 1015 case Opt_skip_balance: >> 1016 btrfs_set_opt(info->mount_opt, SKIP_BALANCE); >> 1017 break; >> 1018 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY >> 1019 case Opt_check_integrity_including_extent_data: >> 1020 btrfs_info(info, >> 1021 "enabling check integrity including extent data"); >> 1022 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY_DATA); >> 1023 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY); >> 1024 break; >> 1025 case Opt_check_integrity: >> 1026 btrfs_info(info, "enabling check integrity"); >> 1027 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY); >> 1028 break; >> 1029 case Opt_check_integrity_print_mask: >> 1030 ret = match_int(&args[0], &intarg); >> 1031 if (ret) { >> 1032 btrfs_err(info, >> 1033 "unrecognized check_integrity_print_mask value %s", >> 1034 args[0].from); >> 1035 goto out; >> 1036 } >> 1037 info->check_integrity_print_mask = intarg; >> 1038 btrfs_info(info, "check_integrity_print_mask 0x%x", >> 1039 info->check_integrity_print_mask); >> 1040 break; >> 1041 #else >> 1042 case Opt_check_integrity_including_extent_data: >> 1043 case Opt_check_integrity: >> 1044 case Opt_check_integrity_print_mask: >> 1045 btrfs_err(info, >> 1046 "support for check_integrity* not compiled in!"); >> 1047 ret = -EINVAL; >> 1048 goto out; >> 1049 #endif >> 1050 case Opt_fatal_errors: >> 1051 if (strcmp(args[0].from, "panic") == 0) { >> 1052 btrfs_set_opt(info->mount_opt, >> 1053 PANIC_ON_FATAL_ERROR); >> 1054 } else if (strcmp(args[0].from, "bug") == 0) { >> 1055 btrfs_clear_opt(info->mount_opt, >> 1056 PANIC_ON_FATAL_ERROR); >> 1057 } else { >> 1058 btrfs_err(info, "unrecognized fatal_errors value %s", >> 1059 args[0].from); >> 1060 ret = -EINVAL; >> 1061 goto out; >> 1062 } >> 1063 break; >> 1064 case Opt_commit_interval: >> 1065 intarg = 0; >> 1066 ret = match_int(&args[0], &intarg); >> 1067 if (ret) { >> 1068 btrfs_err(info, "unrecognized commit_interval value %s", >> 1069 args[0].from); >> 1070 ret = -EINVAL; >> 1071 goto out; >> 1072 } >> 1073 if (intarg == 0) { >> 1074 btrfs_info(info, >> 1075 "using default commit interval %us", >> 1076 BTRFS_DEFAULT_COMMIT_INTERVAL); >> 1077 intarg = BTRFS_DEFAULT_COMMIT_INTERVAL; >> 1078 } else if (intarg > 300) { >> 1079 btrfs_warn(info, "excessive commit interval %d", >> 1080 intarg); >> 1081 } >> 1082 info->commit_interval = intarg; >> 1083 break; >> 1084 case Opt_rescue: >> 1085 ret = parse_rescue_options(info, args[0].from); >> 1086 if (ret < 0) { >> 1087 btrfs_err(info, "unrecognized rescue value %s", >> 1088 args[0].from); >> 1089 goto out; >> 1090 } 602 break; 1091 break; 603 default: << 604 btrfs_info(NULL, "unre << 605 param->key) << 606 return -EINVAL; << 607 } << 608 break; << 609 #ifdef CONFIG_BTRFS_DEBUG 1092 #ifdef CONFIG_BTRFS_DEBUG 610 case Opt_fragment: !! 1093 case Opt_fragment_all: 611 switch (result.uint_32) { !! 1094 btrfs_info(info, "fragmenting all space"); 612 case Opt_fragment_parameter_al !! 1095 btrfs_set_opt(info->mount_opt, FRAGMENT_DATA); 613 btrfs_set_opt(ctx->mou !! 1096 btrfs_set_opt(info->mount_opt, FRAGMENT_METADATA); 614 btrfs_set_opt(ctx->mou << 615 break; 1097 break; 616 case Opt_fragment_parameter_me !! 1098 case Opt_fragment_metadata: 617 btrfs_set_opt(ctx->mou !! 1099 btrfs_info(info, "fragmenting metadata"); >> 1100 btrfs_set_opt(info->mount_opt, >> 1101 FRAGMENT_METADATA); 618 break; 1102 break; 619 case Opt_fragment_parameter_da !! 1103 case Opt_fragment_data: 620 btrfs_set_opt(ctx->mou !! 1104 btrfs_info(info, "fragmenting data"); >> 1105 btrfs_set_opt(info->mount_opt, FRAGMENT_DATA); 621 break; 1106 break; 622 default: << 623 btrfs_info(NULL, "unre << 624 param->key) << 625 return -EINVAL; << 626 } << 627 break; << 628 #endif 1107 #endif 629 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 1108 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 630 case Opt_ref_verify: !! 1109 case Opt_ref_verify: 631 btrfs_set_opt(ctx->mount_opt, !! 1110 btrfs_info(info, "doing ref verification"); 632 break; !! 1111 btrfs_set_opt(info->mount_opt, REF_VERIFY); >> 1112 break; 633 #endif 1113 #endif 634 default: !! 1114 case Opt_err: 635 btrfs_err(NULL, "unrecognized !! 1115 btrfs_err(info, "unrecognized mount option '%s'", p); 636 return -EINVAL; !! 1116 ret = -EINVAL; >> 1117 goto out; >> 1118 default: >> 1119 break; >> 1120 } 637 } 1121 } >> 1122 check: >> 1123 /* We're read-only, don't have to check. */ >> 1124 if (new_flags & SB_RDONLY) >> 1125 goto out; 638 1126 639 return 0; !! 1127 if (check_ro_option(info, BTRFS_MOUNT_NOLOGREPLAY, "nologreplay") || >> 1128 check_ro_option(info, BTRFS_MOUNT_IGNOREBADROOTS, "ignorebadroots") || >> 1129 check_ro_option(info, BTRFS_MOUNT_IGNOREDATACSUMS, "ignoredatacsums")) >> 1130 ret = -EINVAL; >> 1131 out: >> 1132 if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) && >> 1133 !btrfs_test_opt(info, FREE_SPACE_TREE) && >> 1134 !btrfs_test_opt(info, CLEAR_CACHE)) { >> 1135 btrfs_err(info, "cannot disable free space tree"); >> 1136 ret = -EINVAL; >> 1137 >> 1138 } >> 1139 if (!ret) >> 1140 ret = btrfs_check_mountopts_zoned(info); >> 1141 if (!ret && !remounting) { >> 1142 if (btrfs_test_opt(info, SPACE_CACHE)) >> 1143 btrfs_info(info, "disk space caching is enabled"); >> 1144 if (btrfs_test_opt(info, FREE_SPACE_TREE)) >> 1145 btrfs_info(info, "using free space tree"); >> 1146 } >> 1147 return ret; 640 } 1148 } 641 1149 642 /* 1150 /* 643 * Some options only have meaning at mount tim !! 1151 * Parse mount options that are required early in the mount process. 644 * remounts, or be displayed. Clear these at t !! 1152 * 645 * paths. !! 1153 * All other options will be parsed on much later in the mount process and >> 1154 * only when we need to allocate a new super block. 646 */ 1155 */ 647 static void btrfs_clear_oneshot_options(struct !! 1156 static int btrfs_parse_device_options(const char *options, fmode_t flags, >> 1157 void *holder) 648 { 1158 { 649 btrfs_clear_opt(fs_info->mount_opt, US !! 1159 substring_t args[MAX_OPT_ARGS]; 650 btrfs_clear_opt(fs_info->mount_opt, CL !! 1160 char *device_name, *opts, *orig, *p; 651 btrfs_clear_opt(fs_info->mount_opt, NO !! 1161 struct btrfs_device *device = NULL; 652 } !! 1162 int error = 0; 653 1163 654 static bool check_ro_option(const struct btrfs !! 1164 lockdep_assert_held(&uuid_mutex); 655 unsigned long long << 656 const char *opt_na << 657 { << 658 if (mount_opt & opt) { << 659 btrfs_err(fs_info, "%s must be << 660 opt_name); << 661 return true; << 662 } << 663 return false; << 664 } << 665 1165 666 bool btrfs_check_options(const struct btrfs_fs !! 1166 if (!options) 667 unsigned long long *m !! 1167 return 0; 668 unsigned long flags) << 669 { << 670 bool ret = true; << 671 << 672 if (!(flags & SB_RDONLY) && << 673 (check_ro_option(info, *mount_opt, << 674 check_ro_option(info, *mount_opt, << 675 check_ro_option(info, *mount_opt, << 676 check_ro_option(info, *mount_opt, << 677 check_ro_option(info, *mount_opt, << 678 ret = false; << 679 1168 680 if (btrfs_fs_compat_ro(info, FREE_SPAC !! 1169 /* 681 !btrfs_raw_test_opt(*mount_opt, FR !! 1170 * strsep changes the string, duplicate it because btrfs_parse_options 682 !btrfs_raw_test_opt(*mount_opt, CL !! 1171 * gets called later 683 btrfs_err(info, "cannot disabl !! 1172 */ 684 ret = false; !! 1173 opts = kstrdup(options, GFP_KERNEL); 685 } !! 1174 if (!opts) 686 if (btrfs_fs_compat_ro(info, BLOCK_GRO !! 1175 return -ENOMEM; 687 !btrfs_raw_test_opt(*mount_opt, F !! 1176 orig = opts; 688 btrfs_err(info, "cannot disabl << 689 ret = false; << 690 } << 691 1177 692 if (btrfs_check_mountopts_zoned(info, !! 1178 while ((p = strsep(&opts, ",")) != NULL) { 693 ret = false; !! 1179 int token; 694 1180 695 if (!test_bit(BTRFS_FS_STATE_REMOUNTIN !! 1181 if (!*p) 696 if (btrfs_raw_test_opt(*mount_ !! 1182 continue; 697 btrfs_info(info, "disk !! 1183 698 btrfs_warn(info, !! 1184 token = match_token(p, tokens, args); 699 "space cache v1 is being deprecated and will b !! 1185 if (token == Opt_device) { >> 1186 device_name = match_strdup(&args[0]); >> 1187 if (!device_name) { >> 1188 error = -ENOMEM; >> 1189 goto out; >> 1190 } >> 1191 device = btrfs_scan_one_device(device_name, flags, >> 1192 holder); >> 1193 kfree(device_name); >> 1194 if (IS_ERR(device)) { >> 1195 error = PTR_ERR(device); >> 1196 goto out; >> 1197 } 700 } 1198 } 701 if (btrfs_raw_test_opt(*mount_ << 702 btrfs_info(info, "usin << 703 } 1199 } 704 1200 705 return ret; !! 1201 out: >> 1202 kfree(orig); >> 1203 return error; 706 } 1204 } 707 1205 708 /* 1206 /* 709 * This is subtle, we only call this during op !! 1207 * Parse mount options that are related to subvolume id 710 * the mount options with the on-disk settings << 711 * effect we would do this on mount and remoun << 712 * only do this on the initial mount. << 713 * 1208 * 714 * This isn't a change in behavior, because we !! 1209 * The value is later passed to mount_subvol() 715 * file system to set the current mount option << 716 * options to disable these features and then << 717 * settings, because mounting without these fe << 718 * settings, so this being called on re-mount << 719 */ 1210 */ 720 void btrfs_set_free_space_cache_settings(struc !! 1211 static int btrfs_parse_subvol_options(const char *options, char **subvol_name, >> 1212 u64 *subvol_objectid) 721 { 1213 { 722 if (fs_info->sectorsize < PAGE_SIZE) { !! 1214 substring_t args[MAX_OPT_ARGS]; 723 btrfs_clear_opt(fs_info->mount !! 1215 char *opts, *orig, *p; 724 if (!btrfs_test_opt(fs_info, F !! 1216 int error = 0; 725 btrfs_info(fs_info, !! 1217 u64 subvolid; 726 "forcing fr !! 1218 727 fs_info->se !! 1219 if (!options) 728 btrfs_set_opt(fs_info- !! 1220 return 0; 729 } << 730 } << 731 1221 732 /* 1222 /* 733 * At this point our mount options are !! 1223 * strsep changes the string, duplicate it because 734 * these settings if we don't have any !! 1224 * btrfs_parse_device_options gets called later 735 */ 1225 */ 736 if (btrfs_test_opt(fs_info, FREE_SPACE !! 1226 opts = kstrdup(options, GFP_KERNEL); 737 return; !! 1227 if (!opts) 738 !! 1228 return -ENOMEM; 739 if (btrfs_is_zoned(fs_info) && !! 1229 orig = opts; 740 btrfs_free_space_cache_v1_active(f << 741 btrfs_info(fs_info, "zoned: cl << 742 btrfs_set_super_cache_generati << 743 return; << 744 } << 745 1230 746 if (btrfs_test_opt(fs_info, SPACE_CACH !! 1231 while ((p = strsep(&opts, ",")) != NULL) { 747 return; !! 1232 int token; >> 1233 if (!*p) >> 1234 continue; 748 1235 749 if (btrfs_test_opt(fs_info, NOSPACECAC !! 1236 token = match_token(p, tokens, args); 750 return; !! 1237 switch (token) { >> 1238 case Opt_subvol: >> 1239 kfree(*subvol_name); >> 1240 *subvol_name = match_strdup(&args[0]); >> 1241 if (!*subvol_name) { >> 1242 error = -ENOMEM; >> 1243 goto out; >> 1244 } >> 1245 break; >> 1246 case Opt_subvolid: >> 1247 error = match_u64(&args[0], &subvolid); >> 1248 if (error) >> 1249 goto out; 751 1250 752 /* !! 1251 /* we want the original fs_tree */ 753 * At this point we don't have explici !! 1252 if (subvolid == 0) 754 * them ourselves based on the state o !! 1253 subvolid = BTRFS_FS_TREE_OBJECTID; 755 */ << 756 if (btrfs_fs_compat_ro(fs_info, FREE_S << 757 btrfs_set_opt(fs_info->mount_o << 758 else if (btrfs_free_space_cache_v1_act << 759 btrfs_set_opt(fs_info->mount_o << 760 } << 761 1254 762 static void set_device_specific_options(struct !! 1255 *subvol_objectid = subvolid; 763 { !! 1256 break; 764 if (!btrfs_test_opt(fs_info, NOSSD) && !! 1257 default: 765 !fs_info->fs_devices->rotating) !! 1258 break; 766 btrfs_set_opt(fs_info->mount_o !! 1259 } >> 1260 } 767 1261 768 /* !! 1262 out: 769 * For devices supporting discard turn !! 1263 kfree(orig); 770 * unless it's already set or disabled !! 1264 return error; 771 * nodiscard for the same mount. << 772 * << 773 * The zoned mode piggy backs on the d << 774 * resetting a zone. There is no reaso << 775 * fast enough. So, do not enable asyn << 776 */ << 777 if (!(btrfs_test_opt(fs_info, DISCARD_ << 778 btrfs_test_opt(fs_info, DISCARD_ << 779 btrfs_test_opt(fs_info, NODISCAR << 780 fs_info->fs_devices->discardable & << 781 !btrfs_is_zoned(fs_info)) << 782 btrfs_set_opt(fs_info->mount_o << 783 } 1265 } 784 1266 785 char *btrfs_get_subvol_name_from_objectid(stru 1267 char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info, 786 u64 1268 u64 subvol_objectid) 787 { 1269 { 788 struct btrfs_root *root = fs_info->tre 1270 struct btrfs_root *root = fs_info->tree_root; 789 struct btrfs_root *fs_root = NULL; 1271 struct btrfs_root *fs_root = NULL; 790 struct btrfs_root_ref *root_ref; 1272 struct btrfs_root_ref *root_ref; 791 struct btrfs_inode_ref *inode_ref; 1273 struct btrfs_inode_ref *inode_ref; 792 struct btrfs_key key; 1274 struct btrfs_key key; 793 struct btrfs_path *path = NULL; 1275 struct btrfs_path *path = NULL; 794 char *name = NULL, *ptr; 1276 char *name = NULL, *ptr; 795 u64 dirid; 1277 u64 dirid; 796 int len; 1278 int len; 797 int ret; 1279 int ret; 798 1280 799 path = btrfs_alloc_path(); 1281 path = btrfs_alloc_path(); 800 if (!path) { 1282 if (!path) { 801 ret = -ENOMEM; 1283 ret = -ENOMEM; 802 goto err; 1284 goto err; 803 } 1285 } 804 1286 805 name = kmalloc(PATH_MAX, GFP_KERNEL); 1287 name = kmalloc(PATH_MAX, GFP_KERNEL); 806 if (!name) { 1288 if (!name) { 807 ret = -ENOMEM; 1289 ret = -ENOMEM; 808 goto err; 1290 goto err; 809 } 1291 } 810 ptr = name + PATH_MAX - 1; 1292 ptr = name + PATH_MAX - 1; 811 ptr[0] = '\0'; 1293 ptr[0] = '\0'; 812 1294 813 /* 1295 /* 814 * Walk up the subvolume trees in the 1296 * Walk up the subvolume trees in the tree of tree roots by root 815 * backrefs until we hit the top-level 1297 * backrefs until we hit the top-level subvolume. 816 */ 1298 */ 817 while (subvol_objectid != BTRFS_FS_TRE 1299 while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) { 818 key.objectid = subvol_objectid 1300 key.objectid = subvol_objectid; 819 key.type = BTRFS_ROOT_BACKREF_ 1301 key.type = BTRFS_ROOT_BACKREF_KEY; 820 key.offset = (u64)-1; 1302 key.offset = (u64)-1; 821 1303 822 ret = btrfs_search_backwards(r 1304 ret = btrfs_search_backwards(root, &key, path); 823 if (ret < 0) { 1305 if (ret < 0) { 824 goto err; 1306 goto err; 825 } else if (ret > 0) { 1307 } else if (ret > 0) { 826 ret = -ENOENT; 1308 ret = -ENOENT; 827 goto err; 1309 goto err; 828 } 1310 } 829 1311 830 subvol_objectid = key.offset; 1312 subvol_objectid = key.offset; 831 1313 832 root_ref = btrfs_item_ptr(path 1314 root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0], 833 stru 1315 struct btrfs_root_ref); 834 len = btrfs_root_ref_name_len( 1316 len = btrfs_root_ref_name_len(path->nodes[0], root_ref); 835 ptr -= len + 1; 1317 ptr -= len + 1; 836 if (ptr < name) { 1318 if (ptr < name) { 837 ret = -ENAMETOOLONG; 1319 ret = -ENAMETOOLONG; 838 goto err; 1320 goto err; 839 } 1321 } 840 read_extent_buffer(path->nodes 1322 read_extent_buffer(path->nodes[0], ptr + 1, 841 (unsigned l 1323 (unsigned long)(root_ref + 1), len); 842 ptr[0] = '/'; 1324 ptr[0] = '/'; 843 dirid = btrfs_root_ref_dirid(p 1325 dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref); 844 btrfs_release_path(path); 1326 btrfs_release_path(path); 845 1327 846 fs_root = btrfs_get_fs_root(fs 1328 fs_root = btrfs_get_fs_root(fs_info, subvol_objectid, true); 847 if (IS_ERR(fs_root)) { 1329 if (IS_ERR(fs_root)) { 848 ret = PTR_ERR(fs_root) 1330 ret = PTR_ERR(fs_root); 849 fs_root = NULL; 1331 fs_root = NULL; 850 goto err; 1332 goto err; 851 } 1333 } 852 1334 853 /* 1335 /* 854 * Walk up the filesystem tree 1336 * Walk up the filesystem tree by inode refs until we hit the 855 * root directory. 1337 * root directory. 856 */ 1338 */ 857 while (dirid != BTRFS_FIRST_FR 1339 while (dirid != BTRFS_FIRST_FREE_OBJECTID) { 858 key.objectid = dirid; 1340 key.objectid = dirid; 859 key.type = BTRFS_INODE 1341 key.type = BTRFS_INODE_REF_KEY; 860 key.offset = (u64)-1; 1342 key.offset = (u64)-1; 861 1343 862 ret = btrfs_search_bac 1344 ret = btrfs_search_backwards(fs_root, &key, path); 863 if (ret < 0) { 1345 if (ret < 0) { 864 goto err; 1346 goto err; 865 } else if (ret > 0) { 1347 } else if (ret > 0) { 866 ret = -ENOENT; 1348 ret = -ENOENT; 867 goto err; 1349 goto err; 868 } 1350 } 869 1351 870 dirid = key.offset; 1352 dirid = key.offset; 871 1353 872 inode_ref = btrfs_item 1354 inode_ref = btrfs_item_ptr(path->nodes[0], 873 1355 path->slots[0], 874 1356 struct btrfs_inode_ref); 875 len = btrfs_inode_ref_ 1357 len = btrfs_inode_ref_name_len(path->nodes[0], 876 1358 inode_ref); 877 ptr -= len + 1; 1359 ptr -= len + 1; 878 if (ptr < name) { 1360 if (ptr < name) { 879 ret = -ENAMETO 1361 ret = -ENAMETOOLONG; 880 goto err; 1362 goto err; 881 } 1363 } 882 read_extent_buffer(pat 1364 read_extent_buffer(path->nodes[0], ptr + 1, 883 (un 1365 (unsigned long)(inode_ref + 1), len); 884 ptr[0] = '/'; 1366 ptr[0] = '/'; 885 btrfs_release_path(pat 1367 btrfs_release_path(path); 886 } 1368 } 887 btrfs_put_root(fs_root); 1369 btrfs_put_root(fs_root); 888 fs_root = NULL; 1370 fs_root = NULL; 889 } 1371 } 890 1372 891 btrfs_free_path(path); 1373 btrfs_free_path(path); 892 if (ptr == name + PATH_MAX - 1) { 1374 if (ptr == name + PATH_MAX - 1) { 893 name[0] = '/'; 1375 name[0] = '/'; 894 name[1] = '\0'; 1376 name[1] = '\0'; 895 } else { 1377 } else { 896 memmove(name, ptr, name + PATH 1378 memmove(name, ptr, name + PATH_MAX - ptr); 897 } 1379 } 898 return name; 1380 return name; 899 1381 900 err: 1382 err: 901 btrfs_put_root(fs_root); 1383 btrfs_put_root(fs_root); 902 btrfs_free_path(path); 1384 btrfs_free_path(path); 903 kfree(name); 1385 kfree(name); 904 return ERR_PTR(ret); 1386 return ERR_PTR(ret); 905 } 1387 } 906 1388 907 static int get_default_subvol_objectid(struct 1389 static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid) 908 { 1390 { 909 struct btrfs_root *root = fs_info->tre 1391 struct btrfs_root *root = fs_info->tree_root; 910 struct btrfs_dir_item *di; 1392 struct btrfs_dir_item *di; 911 struct btrfs_path *path; 1393 struct btrfs_path *path; 912 struct btrfs_key location; 1394 struct btrfs_key location; 913 struct fscrypt_str name = FSTR_INIT("d << 914 u64 dir_id; 1395 u64 dir_id; 915 1396 916 path = btrfs_alloc_path(); 1397 path = btrfs_alloc_path(); 917 if (!path) 1398 if (!path) 918 return -ENOMEM; 1399 return -ENOMEM; 919 1400 920 /* 1401 /* 921 * Find the "default" dir item which p 1402 * Find the "default" dir item which points to the root item that we 922 * will mount by default if we haven't 1403 * will mount by default if we haven't been given a specific subvolume 923 * to mount. 1404 * to mount. 924 */ 1405 */ 925 dir_id = btrfs_super_root_dir(fs_info- 1406 dir_id = btrfs_super_root_dir(fs_info->super_copy); 926 di = btrfs_lookup_dir_item(NULL, root, !! 1407 di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0); 927 if (IS_ERR(di)) { 1408 if (IS_ERR(di)) { 928 btrfs_free_path(path); 1409 btrfs_free_path(path); 929 return PTR_ERR(di); 1410 return PTR_ERR(di); 930 } 1411 } 931 if (!di) { 1412 if (!di) { 932 /* 1413 /* 933 * Ok the default dir item isn 1414 * Ok the default dir item isn't there. This is weird since 934 * it's always been there, but 1415 * it's always been there, but don't freak out, just try and 935 * mount the top-level subvolu 1416 * mount the top-level subvolume. 936 */ 1417 */ 937 btrfs_free_path(path); 1418 btrfs_free_path(path); 938 *objectid = BTRFS_FS_TREE_OBJE 1419 *objectid = BTRFS_FS_TREE_OBJECTID; 939 return 0; 1420 return 0; 940 } 1421 } 941 1422 942 btrfs_dir_item_key_to_cpu(path->nodes[ 1423 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); 943 btrfs_free_path(path); 1424 btrfs_free_path(path); 944 *objectid = location.objectid; 1425 *objectid = location.objectid; 945 return 0; 1426 return 0; 946 } 1427 } 947 1428 948 static int btrfs_fill_super(struct super_block 1429 static int btrfs_fill_super(struct super_block *sb, 949 struct btrfs_fs_de 1430 struct btrfs_fs_devices *fs_devices, 950 void *data) 1431 void *data) 951 { 1432 { 952 struct inode *inode; 1433 struct inode *inode; 953 struct btrfs_fs_info *fs_info = btrfs_ 1434 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 954 int err; 1435 int err; 955 1436 956 sb->s_maxbytes = MAX_LFS_FILESIZE; 1437 sb->s_maxbytes = MAX_LFS_FILESIZE; 957 sb->s_magic = BTRFS_SUPER_MAGIC; 1438 sb->s_magic = BTRFS_SUPER_MAGIC; 958 sb->s_op = &btrfs_super_ops; 1439 sb->s_op = &btrfs_super_ops; 959 sb->s_d_op = &btrfs_dentry_operations; 1440 sb->s_d_op = &btrfs_dentry_operations; 960 sb->s_export_op = &btrfs_export_ops; 1441 sb->s_export_op = &btrfs_export_ops; 961 #ifdef CONFIG_FS_VERITY 1442 #ifdef CONFIG_FS_VERITY 962 sb->s_vop = &btrfs_verityops; 1443 sb->s_vop = &btrfs_verityops; 963 #endif 1444 #endif 964 sb->s_xattr = btrfs_xattr_handlers; 1445 sb->s_xattr = btrfs_xattr_handlers; 965 sb->s_time_gran = 1; 1446 sb->s_time_gran = 1; >> 1447 #ifdef CONFIG_BTRFS_FS_POSIX_ACL >> 1448 sb->s_flags |= SB_POSIXACL; >> 1449 #endif >> 1450 sb->s_flags |= SB_I_VERSION; 966 sb->s_iflags |= SB_I_CGROUPWB; 1451 sb->s_iflags |= SB_I_CGROUPWB; 967 1452 968 err = super_setup_bdi(sb); 1453 err = super_setup_bdi(sb); 969 if (err) { 1454 if (err) { 970 btrfs_err(fs_info, "super_setu 1455 btrfs_err(fs_info, "super_setup_bdi failed"); 971 return err; 1456 return err; 972 } 1457 } 973 1458 974 err = open_ctree(sb, fs_devices, (char 1459 err = open_ctree(sb, fs_devices, (char *)data); 975 if (err) { 1460 if (err) { 976 btrfs_err(fs_info, "open_ctree 1461 btrfs_err(fs_info, "open_ctree failed"); 977 return err; 1462 return err; 978 } 1463 } 979 1464 980 inode = btrfs_iget(BTRFS_FIRST_FREE_OB !! 1465 inode = btrfs_iget(sb, BTRFS_FIRST_FREE_OBJECTID, fs_info->fs_root); 981 if (IS_ERR(inode)) { 1466 if (IS_ERR(inode)) { 982 err = PTR_ERR(inode); 1467 err = PTR_ERR(inode); 983 btrfs_handle_fs_error(fs_info, << 984 goto fail_close; 1468 goto fail_close; 985 } 1469 } 986 1470 987 sb->s_root = d_make_root(inode); 1471 sb->s_root = d_make_root(inode); 988 if (!sb->s_root) { 1472 if (!sb->s_root) { 989 err = -ENOMEM; 1473 err = -ENOMEM; 990 goto fail_close; 1474 goto fail_close; 991 } 1475 } 992 1476 993 sb->s_flags |= SB_ACTIVE; 1477 sb->s_flags |= SB_ACTIVE; 994 return 0; 1478 return 0; 995 1479 996 fail_close: 1480 fail_close: 997 close_ctree(fs_info); 1481 close_ctree(fs_info); 998 return err; 1482 return err; 999 } 1483 } 1000 1484 1001 int btrfs_sync_fs(struct super_block *sb, int 1485 int btrfs_sync_fs(struct super_block *sb, int wait) 1002 { 1486 { 1003 struct btrfs_trans_handle *trans; 1487 struct btrfs_trans_handle *trans; 1004 struct btrfs_fs_info *fs_info = btrfs 1488 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1005 struct btrfs_root *root = fs_info->tr 1489 struct btrfs_root *root = fs_info->tree_root; 1006 1490 1007 trace_btrfs_sync_fs(fs_info, wait); 1491 trace_btrfs_sync_fs(fs_info, wait); 1008 1492 1009 if (!wait) { 1493 if (!wait) { 1010 filemap_flush(fs_info->btree_ 1494 filemap_flush(fs_info->btree_inode->i_mapping); 1011 return 0; 1495 return 0; 1012 } 1496 } 1013 1497 1014 btrfs_wait_ordered_roots(fs_info, U64 !! 1498 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1); 1015 1499 1016 trans = btrfs_attach_transaction_barr 1500 trans = btrfs_attach_transaction_barrier(root); 1017 if (IS_ERR(trans)) { 1501 if (IS_ERR(trans)) { 1018 /* no transaction, don't both 1502 /* no transaction, don't bother */ 1019 if (PTR_ERR(trans) == -ENOENT 1503 if (PTR_ERR(trans) == -ENOENT) { 1020 /* 1504 /* 1021 * Exit unless we hav 1505 * Exit unless we have some pending changes 1022 * that need to go th 1506 * that need to go through commit 1023 */ 1507 */ 1024 if (!test_bit(BTRFS_F !! 1508 if (fs_info->pending_changes == 0) 1025 &fs_inf << 1026 return 0; 1509 return 0; 1027 /* 1510 /* 1028 * A non-blocking tes 1511 * A non-blocking test if the fs is frozen. We must not 1029 * start a new transa 1512 * start a new transaction here otherwise a deadlock 1030 * happens. The pendi 1513 * happens. The pending operations are delayed to the 1031 * next commit after 1514 * next commit after thawing. 1032 */ 1515 */ 1033 if (sb_start_write_tr 1516 if (sb_start_write_trylock(sb)) 1034 sb_end_write( 1517 sb_end_write(sb); 1035 else 1518 else 1036 return 0; 1519 return 0; 1037 trans = btrfs_start_t 1520 trans = btrfs_start_transaction(root, 0); 1038 } 1521 } 1039 if (IS_ERR(trans)) 1522 if (IS_ERR(trans)) 1040 return PTR_ERR(trans) 1523 return PTR_ERR(trans); 1041 } 1524 } 1042 return btrfs_commit_transaction(trans 1525 return btrfs_commit_transaction(trans); 1043 } 1526 } 1044 1527 1045 static void print_rescue_option(struct seq_fi 1528 static void print_rescue_option(struct seq_file *seq, const char *s, bool *printed) 1046 { 1529 { 1047 seq_printf(seq, "%s%s", (*printed) ? 1530 seq_printf(seq, "%s%s", (*printed) ? ":" : ",rescue=", s); 1048 *printed = true; 1531 *printed = true; 1049 } 1532 } 1050 1533 1051 static int btrfs_show_options(struct seq_file 1534 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry) 1052 { 1535 { 1053 struct btrfs_fs_info *info = btrfs_sb 1536 struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb); 1054 const char *compress_type; 1537 const char *compress_type; 1055 const char *subvol_name; 1538 const char *subvol_name; 1056 bool printed = false; 1539 bool printed = false; 1057 1540 1058 if (btrfs_test_opt(info, DEGRADED)) 1541 if (btrfs_test_opt(info, DEGRADED)) 1059 seq_puts(seq, ",degraded"); 1542 seq_puts(seq, ",degraded"); 1060 if (btrfs_test_opt(info, NODATASUM)) 1543 if (btrfs_test_opt(info, NODATASUM)) 1061 seq_puts(seq, ",nodatasum"); 1544 seq_puts(seq, ",nodatasum"); 1062 if (btrfs_test_opt(info, NODATACOW)) 1545 if (btrfs_test_opt(info, NODATACOW)) 1063 seq_puts(seq, ",nodatacow"); 1546 seq_puts(seq, ",nodatacow"); 1064 if (btrfs_test_opt(info, NOBARRIER)) 1547 if (btrfs_test_opt(info, NOBARRIER)) 1065 seq_puts(seq, ",nobarrier"); 1548 seq_puts(seq, ",nobarrier"); 1066 if (info->max_inline != BTRFS_DEFAULT 1549 if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE) 1067 seq_printf(seq, ",max_inline= 1550 seq_printf(seq, ",max_inline=%llu", info->max_inline); 1068 if (info->thread_pool_size != min_t( 1551 if (info->thread_pool_size != min_t(unsigned long, 1069 1552 num_online_cpus() + 2, 8)) 1070 seq_printf(seq, ",thread_pool 1553 seq_printf(seq, ",thread_pool=%u", info->thread_pool_size); 1071 if (btrfs_test_opt(info, COMPRESS)) { 1554 if (btrfs_test_opt(info, COMPRESS)) { 1072 compress_type = btrfs_compres 1555 compress_type = btrfs_compress_type2str(info->compress_type); 1073 if (btrfs_test_opt(info, FORC 1556 if (btrfs_test_opt(info, FORCE_COMPRESS)) 1074 seq_printf(seq, ",com 1557 seq_printf(seq, ",compress-force=%s", compress_type); 1075 else 1558 else 1076 seq_printf(seq, ",com 1559 seq_printf(seq, ",compress=%s", compress_type); 1077 if (info->compress_level) 1560 if (info->compress_level) 1078 seq_printf(seq, ":%d" 1561 seq_printf(seq, ":%d", info->compress_level); 1079 } 1562 } 1080 if (btrfs_test_opt(info, NOSSD)) 1563 if (btrfs_test_opt(info, NOSSD)) 1081 seq_puts(seq, ",nossd"); 1564 seq_puts(seq, ",nossd"); 1082 if (btrfs_test_opt(info, SSD_SPREAD)) 1565 if (btrfs_test_opt(info, SSD_SPREAD)) 1083 seq_puts(seq, ",ssd_spread"); 1566 seq_puts(seq, ",ssd_spread"); 1084 else if (btrfs_test_opt(info, SSD)) 1567 else if (btrfs_test_opt(info, SSD)) 1085 seq_puts(seq, ",ssd"); 1568 seq_puts(seq, ",ssd"); 1086 if (btrfs_test_opt(info, NOTREELOG)) 1569 if (btrfs_test_opt(info, NOTREELOG)) 1087 seq_puts(seq, ",notreelog"); 1570 seq_puts(seq, ",notreelog"); 1088 if (btrfs_test_opt(info, NOLOGREPLAY) 1571 if (btrfs_test_opt(info, NOLOGREPLAY)) 1089 print_rescue_option(seq, "nol 1572 print_rescue_option(seq, "nologreplay", &printed); 1090 if (btrfs_test_opt(info, USEBACKUPROO 1573 if (btrfs_test_opt(info, USEBACKUPROOT)) 1091 print_rescue_option(seq, "use 1574 print_rescue_option(seq, "usebackuproot", &printed); 1092 if (btrfs_test_opt(info, IGNOREBADROO 1575 if (btrfs_test_opt(info, IGNOREBADROOTS)) 1093 print_rescue_option(seq, "ign 1576 print_rescue_option(seq, "ignorebadroots", &printed); 1094 if (btrfs_test_opt(info, IGNOREDATACS 1577 if (btrfs_test_opt(info, IGNOREDATACSUMS)) 1095 print_rescue_option(seq, "ign 1578 print_rescue_option(seq, "ignoredatacsums", &printed); 1096 if (btrfs_test_opt(info, IGNOREMETACS << 1097 print_rescue_option(seq, "ign << 1098 if (btrfs_test_opt(info, IGNORESUPERF << 1099 print_rescue_option(seq, "ign << 1100 if (btrfs_test_opt(info, FLUSHONCOMMI 1579 if (btrfs_test_opt(info, FLUSHONCOMMIT)) 1101 seq_puts(seq, ",flushoncommit 1580 seq_puts(seq, ",flushoncommit"); 1102 if (btrfs_test_opt(info, DISCARD_SYNC 1581 if (btrfs_test_opt(info, DISCARD_SYNC)) 1103 seq_puts(seq, ",discard"); 1582 seq_puts(seq, ",discard"); 1104 if (btrfs_test_opt(info, DISCARD_ASYN 1583 if (btrfs_test_opt(info, DISCARD_ASYNC)) 1105 seq_puts(seq, ",discard=async 1584 seq_puts(seq, ",discard=async"); 1106 if (!(info->sb->s_flags & SB_POSIXACL 1585 if (!(info->sb->s_flags & SB_POSIXACL)) 1107 seq_puts(seq, ",noacl"); 1586 seq_puts(seq, ",noacl"); 1108 if (btrfs_free_space_cache_v1_active( 1587 if (btrfs_free_space_cache_v1_active(info)) 1109 seq_puts(seq, ",space_cache") 1588 seq_puts(seq, ",space_cache"); 1110 else if (btrfs_fs_compat_ro(info, FRE 1589 else if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE)) 1111 seq_puts(seq, ",space_cache=v 1590 seq_puts(seq, ",space_cache=v2"); 1112 else 1591 else 1113 seq_puts(seq, ",nospace_cache 1592 seq_puts(seq, ",nospace_cache"); 1114 if (btrfs_test_opt(info, RESCAN_UUID_ 1593 if (btrfs_test_opt(info, RESCAN_UUID_TREE)) 1115 seq_puts(seq, ",rescan_uuid_t 1594 seq_puts(seq, ",rescan_uuid_tree"); 1116 if (btrfs_test_opt(info, CLEAR_CACHE) 1595 if (btrfs_test_opt(info, CLEAR_CACHE)) 1117 seq_puts(seq, ",clear_cache") 1596 seq_puts(seq, ",clear_cache"); 1118 if (btrfs_test_opt(info, USER_SUBVOL_ 1597 if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED)) 1119 seq_puts(seq, ",user_subvol_r 1598 seq_puts(seq, ",user_subvol_rm_allowed"); 1120 if (btrfs_test_opt(info, ENOSPC_DEBUG 1599 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 1121 seq_puts(seq, ",enospc_debug" 1600 seq_puts(seq, ",enospc_debug"); 1122 if (btrfs_test_opt(info, AUTO_DEFRAG) 1601 if (btrfs_test_opt(info, AUTO_DEFRAG)) 1123 seq_puts(seq, ",autodefrag"); 1602 seq_puts(seq, ",autodefrag"); 1124 if (btrfs_test_opt(info, SKIP_BALANCE 1603 if (btrfs_test_opt(info, SKIP_BALANCE)) 1125 seq_puts(seq, ",skip_balance" 1604 seq_puts(seq, ",skip_balance"); >> 1605 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY >> 1606 if (btrfs_test_opt(info, CHECK_INTEGRITY_DATA)) >> 1607 seq_puts(seq, ",check_int_data"); >> 1608 else if (btrfs_test_opt(info, CHECK_INTEGRITY)) >> 1609 seq_puts(seq, ",check_int"); >> 1610 if (info->check_integrity_print_mask) >> 1611 seq_printf(seq, ",check_int_print_mask=%d", >> 1612 info->check_integrity_print_mask); >> 1613 #endif 1126 if (info->metadata_ratio) 1614 if (info->metadata_ratio) 1127 seq_printf(seq, ",metadata_ra 1615 seq_printf(seq, ",metadata_ratio=%u", info->metadata_ratio); 1128 if (btrfs_test_opt(info, PANIC_ON_FAT 1616 if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR)) 1129 seq_puts(seq, ",fatal_errors= 1617 seq_puts(seq, ",fatal_errors=panic"); 1130 if (info->commit_interval != BTRFS_DE 1618 if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL) 1131 seq_printf(seq, ",commit=%u", 1619 seq_printf(seq, ",commit=%u", info->commit_interval); 1132 #ifdef CONFIG_BTRFS_DEBUG 1620 #ifdef CONFIG_BTRFS_DEBUG 1133 if (btrfs_test_opt(info, FRAGMENT_DAT 1621 if (btrfs_test_opt(info, FRAGMENT_DATA)) 1134 seq_puts(seq, ",fragment=data 1622 seq_puts(seq, ",fragment=data"); 1135 if (btrfs_test_opt(info, FRAGMENT_MET 1623 if (btrfs_test_opt(info, FRAGMENT_METADATA)) 1136 seq_puts(seq, ",fragment=meta 1624 seq_puts(seq, ",fragment=metadata"); 1137 #endif 1625 #endif 1138 if (btrfs_test_opt(info, REF_VERIFY)) 1626 if (btrfs_test_opt(info, REF_VERIFY)) 1139 seq_puts(seq, ",ref_verify"); 1627 seq_puts(seq, ",ref_verify"); 1140 seq_printf(seq, ",subvolid=%llu", btr !! 1628 seq_printf(seq, ",subvolid=%llu", >> 1629 BTRFS_I(d_inode(dentry))->root->root_key.objectid); 1141 subvol_name = btrfs_get_subvol_name_f 1630 subvol_name = btrfs_get_subvol_name_from_objectid(info, 1142 btrfs_root_id(BTRFS_I !! 1631 BTRFS_I(d_inode(dentry))->root->root_key.objectid); 1143 if (!IS_ERR(subvol_name)) { 1632 if (!IS_ERR(subvol_name)) { 1144 seq_puts(seq, ",subvol="); 1633 seq_puts(seq, ",subvol="); 1145 seq_escape(seq, subvol_name, 1634 seq_escape(seq, subvol_name, " \t\n\\"); 1146 kfree(subvol_name); 1635 kfree(subvol_name); 1147 } 1636 } 1148 return 0; 1637 return 0; 1149 } 1638 } 1150 1639 >> 1640 static int btrfs_test_super(struct super_block *s, void *data) >> 1641 { >> 1642 struct btrfs_fs_info *p = data; >> 1643 struct btrfs_fs_info *fs_info = btrfs_sb(s); >> 1644 >> 1645 return fs_info->fs_devices == p->fs_devices; >> 1646 } >> 1647 >> 1648 static int btrfs_set_super(struct super_block *s, void *data) >> 1649 { >> 1650 int err = set_anon_super(s, data); >> 1651 if (!err) >> 1652 s->s_fs_info = data; >> 1653 return err; >> 1654 } >> 1655 1151 /* 1656 /* 1152 * subvolumes are identified by ino 256 1657 * subvolumes are identified by ino 256 1153 */ 1658 */ 1154 static inline int is_subvolume_inode(struct i 1659 static inline int is_subvolume_inode(struct inode *inode) 1155 { 1660 { 1156 if (inode && inode->i_ino == BTRFS_FI 1661 if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) 1157 return 1; 1662 return 1; 1158 return 0; 1663 return 0; 1159 } 1664 } 1160 1665 1161 static struct dentry *mount_subvol(const char 1666 static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid, 1162 struct vfs 1667 struct vfsmount *mnt) 1163 { 1668 { 1164 struct dentry *root; 1669 struct dentry *root; 1165 int ret; 1670 int ret; 1166 1671 1167 if (!subvol_name) { 1672 if (!subvol_name) { 1168 if (!subvol_objectid) { 1673 if (!subvol_objectid) { 1169 ret = get_default_sub 1674 ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb), 1170 1675 &subvol_objectid); 1171 if (ret) { 1676 if (ret) { 1172 root = ERR_PT 1677 root = ERR_PTR(ret); 1173 goto out; 1678 goto out; 1174 } 1679 } 1175 } 1680 } 1176 subvol_name = btrfs_get_subvo 1681 subvol_name = btrfs_get_subvol_name_from_objectid( 1177 btrfs 1682 btrfs_sb(mnt->mnt_sb), subvol_objectid); 1178 if (IS_ERR(subvol_name)) { 1683 if (IS_ERR(subvol_name)) { 1179 root = ERR_CAST(subvo 1684 root = ERR_CAST(subvol_name); 1180 subvol_name = NULL; 1685 subvol_name = NULL; 1181 goto out; 1686 goto out; 1182 } 1687 } 1183 1688 1184 } 1689 } 1185 1690 1186 root = mount_subtree(mnt, subvol_name 1691 root = mount_subtree(mnt, subvol_name); 1187 /* mount_subtree() drops our referenc 1692 /* mount_subtree() drops our reference on the vfsmount. */ 1188 mnt = NULL; 1693 mnt = NULL; 1189 1694 1190 if (!IS_ERR(root)) { 1695 if (!IS_ERR(root)) { 1191 struct super_block *s = root- 1696 struct super_block *s = root->d_sb; 1192 struct btrfs_fs_info *fs_info 1697 struct btrfs_fs_info *fs_info = btrfs_sb(s); 1193 struct inode *root_inode = d_ 1698 struct inode *root_inode = d_inode(root); 1194 u64 root_objectid = btrfs_roo !! 1699 u64 root_objectid = BTRFS_I(root_inode)->root->root_key.objectid; 1195 1700 1196 ret = 0; 1701 ret = 0; 1197 if (!is_subvolume_inode(root_ 1702 if (!is_subvolume_inode(root_inode)) { 1198 btrfs_err(fs_info, "' 1703 btrfs_err(fs_info, "'%s' is not a valid subvolume", 1199 subvol_name); 1704 subvol_name); 1200 ret = -EINVAL; 1705 ret = -EINVAL; 1201 } 1706 } 1202 if (subvol_objectid && root_o 1707 if (subvol_objectid && root_objectid != subvol_objectid) { 1203 /* 1708 /* 1204 * This will also cat 1709 * This will also catch a race condition where a 1205 * subvolume which wa 1710 * subvolume which was passed by ID is renamed and 1206 * another subvolume 1711 * another subvolume is renamed over the old location. 1207 */ 1712 */ 1208 btrfs_err(fs_info, 1713 btrfs_err(fs_info, 1209 "subvol '%s 1714 "subvol '%s' does not match subvolid %llu", 1210 subvol_name 1715 subvol_name, subvol_objectid); 1211 ret = -EINVAL; 1716 ret = -EINVAL; 1212 } 1717 } 1213 if (ret) { 1718 if (ret) { 1214 dput(root); 1719 dput(root); 1215 root = ERR_PTR(ret); 1720 root = ERR_PTR(ret); 1216 deactivate_locked_sup 1721 deactivate_locked_super(s); 1217 } 1722 } 1218 } 1723 } 1219 1724 1220 out: 1725 out: 1221 mntput(mnt); 1726 mntput(mnt); 1222 kfree(subvol_name); 1727 kfree(subvol_name); 1223 return root; 1728 return root; 1224 } 1729 } 1225 1730 >> 1731 /* >> 1732 * Find a superblock for the given device / mount point. >> 1733 * >> 1734 * Note: This is based on mount_bdev from fs/super.c with a few additions >> 1735 * for multiple device setup. Make sure to keep it in sync. >> 1736 */ >> 1737 static struct dentry *btrfs_mount_root(struct file_system_type *fs_type, >> 1738 int flags, const char *device_name, void *data) >> 1739 { >> 1740 struct block_device *bdev = NULL; >> 1741 struct super_block *s; >> 1742 struct btrfs_device *device = NULL; >> 1743 struct btrfs_fs_devices *fs_devices = NULL; >> 1744 struct btrfs_fs_info *fs_info = NULL; >> 1745 void *new_sec_opts = NULL; >> 1746 fmode_t mode = FMODE_READ; >> 1747 int error = 0; >> 1748 >> 1749 if (!(flags & SB_RDONLY)) >> 1750 mode |= FMODE_WRITE; >> 1751 >> 1752 if (data) { >> 1753 error = security_sb_eat_lsm_opts(data, &new_sec_opts); >> 1754 if (error) >> 1755 return ERR_PTR(error); >> 1756 } >> 1757 >> 1758 /* >> 1759 * Setup a dummy root and fs_info for test/set super. This is because >> 1760 * we don't actually fill this stuff out until open_ctree, but we need >> 1761 * then open_ctree will properly initialize the file system specific >> 1762 * settings later. btrfs_init_fs_info initializes the static elements >> 1763 * of the fs_info (locks and such) to make cleanup easier if we find a >> 1764 * superblock with our given fs_devices later on at sget() time. >> 1765 */ >> 1766 fs_info = kvzalloc(sizeof(struct btrfs_fs_info), GFP_KERNEL); >> 1767 if (!fs_info) { >> 1768 error = -ENOMEM; >> 1769 goto error_sec_opts; >> 1770 } >> 1771 btrfs_init_fs_info(fs_info); >> 1772 >> 1773 fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL); >> 1774 fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL); >> 1775 if (!fs_info->super_copy || !fs_info->super_for_commit) { >> 1776 error = -ENOMEM; >> 1777 goto error_fs_info; >> 1778 } >> 1779 >> 1780 mutex_lock(&uuid_mutex); >> 1781 error = btrfs_parse_device_options(data, mode, fs_type); >> 1782 if (error) { >> 1783 mutex_unlock(&uuid_mutex); >> 1784 goto error_fs_info; >> 1785 } >> 1786 >> 1787 device = btrfs_scan_one_device(device_name, mode, fs_type); >> 1788 if (IS_ERR(device)) { >> 1789 mutex_unlock(&uuid_mutex); >> 1790 error = PTR_ERR(device); >> 1791 goto error_fs_info; >> 1792 } >> 1793 >> 1794 fs_devices = device->fs_devices; >> 1795 fs_info->fs_devices = fs_devices; >> 1796 >> 1797 error = btrfs_open_devices(fs_devices, mode, fs_type); >> 1798 mutex_unlock(&uuid_mutex); >> 1799 if (error) >> 1800 goto error_fs_info; >> 1801 >> 1802 if (!(flags & SB_RDONLY) && fs_devices->rw_devices == 0) { >> 1803 error = -EACCES; >> 1804 goto error_close_devices; >> 1805 } >> 1806 >> 1807 bdev = fs_devices->latest_dev->bdev; >> 1808 s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | SB_NOSEC, >> 1809 fs_info); >> 1810 if (IS_ERR(s)) { >> 1811 error = PTR_ERR(s); >> 1812 goto error_close_devices; >> 1813 } >> 1814 >> 1815 if (s->s_root) { >> 1816 btrfs_close_devices(fs_devices); >> 1817 btrfs_free_fs_info(fs_info); >> 1818 if ((flags ^ s->s_flags) & SB_RDONLY) >> 1819 error = -EBUSY; >> 1820 } else { >> 1821 snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev); >> 1822 shrinker_debugfs_rename(&s->s_shrink, "sb-%s:%s", fs_type->name, >> 1823 s->s_id); >> 1824 btrfs_sb(s)->bdev_holder = fs_type; >> 1825 if (!strstr(crc32c_impl(), "generic")) >> 1826 set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags); >> 1827 error = btrfs_fill_super(s, fs_devices, data); >> 1828 } >> 1829 if (!error) >> 1830 error = security_sb_set_mnt_opts(s, new_sec_opts, 0, NULL); >> 1831 security_free_mnt_opts(&new_sec_opts); >> 1832 if (error) { >> 1833 deactivate_locked_super(s); >> 1834 return ERR_PTR(error); >> 1835 } >> 1836 >> 1837 return dget(s->s_root); >> 1838 >> 1839 error_close_devices: >> 1840 btrfs_close_devices(fs_devices); >> 1841 error_fs_info: >> 1842 btrfs_free_fs_info(fs_info); >> 1843 error_sec_opts: >> 1844 security_free_mnt_opts(&new_sec_opts); >> 1845 return ERR_PTR(error); >> 1846 } >> 1847 >> 1848 /* >> 1849 * Mount function which is called by VFS layer. >> 1850 * >> 1851 * In order to allow mounting a subvolume directly, btrfs uses mount_subtree() >> 1852 * which needs vfsmount* of device's root (/). This means device's root has to >> 1853 * be mounted internally in any case. >> 1854 * >> 1855 * Operation flow: >> 1856 * 1. Parse subvol id related options for later use in mount_subvol(). >> 1857 * >> 1858 * 2. Mount device's root (/) by calling vfs_kern_mount(). >> 1859 * >> 1860 * NOTE: vfs_kern_mount() is used by VFS to call btrfs_mount() in the >> 1861 * first place. In order to avoid calling btrfs_mount() again, we use >> 1862 * different file_system_type which is not registered to VFS by >> 1863 * register_filesystem() (btrfs_root_fs_type). As a result, >> 1864 * btrfs_mount_root() is called. The return value will be used by >> 1865 * mount_subtree() in mount_subvol(). >> 1866 * >> 1867 * 3. Call mount_subvol() to get the dentry of subvolume. Since there is >> 1868 * "btrfs subvolume set-default", mount_subvol() is called always. >> 1869 */ >> 1870 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags, >> 1871 const char *device_name, void *data) >> 1872 { >> 1873 struct vfsmount *mnt_root; >> 1874 struct dentry *root; >> 1875 char *subvol_name = NULL; >> 1876 u64 subvol_objectid = 0; >> 1877 int error = 0; >> 1878 >> 1879 error = btrfs_parse_subvol_options(data, &subvol_name, >> 1880 &subvol_objectid); >> 1881 if (error) { >> 1882 kfree(subvol_name); >> 1883 return ERR_PTR(error); >> 1884 } >> 1885 >> 1886 /* mount device's root (/) */ >> 1887 mnt_root = vfs_kern_mount(&btrfs_root_fs_type, flags, device_name, data); >> 1888 if (PTR_ERR_OR_ZERO(mnt_root) == -EBUSY) { >> 1889 if (flags & SB_RDONLY) { >> 1890 mnt_root = vfs_kern_mount(&btrfs_root_fs_type, >> 1891 flags & ~SB_RDONLY, device_name, data); >> 1892 } else { >> 1893 mnt_root = vfs_kern_mount(&btrfs_root_fs_type, >> 1894 flags | SB_RDONLY, device_name, data); >> 1895 if (IS_ERR(mnt_root)) { >> 1896 root = ERR_CAST(mnt_root); >> 1897 kfree(subvol_name); >> 1898 goto out; >> 1899 } >> 1900 >> 1901 down_write(&mnt_root->mnt_sb->s_umount); >> 1902 error = btrfs_remount(mnt_root->mnt_sb, &flags, NULL); >> 1903 up_write(&mnt_root->mnt_sb->s_umount); >> 1904 if (error < 0) { >> 1905 root = ERR_PTR(error); >> 1906 mntput(mnt_root); >> 1907 kfree(subvol_name); >> 1908 goto out; >> 1909 } >> 1910 } >> 1911 } >> 1912 if (IS_ERR(mnt_root)) { >> 1913 root = ERR_CAST(mnt_root); >> 1914 kfree(subvol_name); >> 1915 goto out; >> 1916 } >> 1917 >> 1918 /* mount_subvol() will free subvol_name and mnt_root */ >> 1919 root = mount_subvol(subvol_name, subvol_objectid, mnt_root); >> 1920 >> 1921 out: >> 1922 return root; >> 1923 } >> 1924 1226 static void btrfs_resize_thread_pool(struct b 1925 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info, 1227 u32 new_ 1926 u32 new_pool_size, u32 old_pool_size) 1228 { 1927 { 1229 if (new_pool_size == old_pool_size) 1928 if (new_pool_size == old_pool_size) 1230 return; 1929 return; 1231 1930 1232 fs_info->thread_pool_size = new_pool_ 1931 fs_info->thread_pool_size = new_pool_size; 1233 1932 1234 btrfs_info(fs_info, "resize thread po 1933 btrfs_info(fs_info, "resize thread pool %d -> %d", 1235 old_pool_size, new_pool_size); 1934 old_pool_size, new_pool_size); 1236 1935 1237 btrfs_workqueue_set_max(fs_info->work 1936 btrfs_workqueue_set_max(fs_info->workers, new_pool_size); >> 1937 btrfs_workqueue_set_max(fs_info->hipri_workers, new_pool_size); 1238 btrfs_workqueue_set_max(fs_info->dela 1938 btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size); 1239 btrfs_workqueue_set_max(fs_info->cach 1939 btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size); 1240 workqueue_set_max_active(fs_info->end << 1241 workqueue_set_max_active(fs_info->end << 1242 btrfs_workqueue_set_max(fs_info->endi 1940 btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size); 1243 btrfs_workqueue_set_max(fs_info->endi 1941 btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size); 1244 btrfs_workqueue_set_max(fs_info->dela 1942 btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size); 1245 } 1943 } 1246 1944 1247 static inline void btrfs_remount_begin(struct 1945 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info, 1248 unsign !! 1946 unsigned long old_opts, int flags) 1249 { 1947 { 1250 if (btrfs_raw_test_opt(old_opts, AUTO 1948 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) && 1251 (!btrfs_raw_test_opt(fs_info->mou 1949 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || 1252 (flags & SB_RDONLY))) { 1950 (flags & SB_RDONLY))) { 1253 /* wait for any defraggers to 1951 /* wait for any defraggers to finish */ 1254 wait_event(fs_info->transacti 1952 wait_event(fs_info->transaction_wait, 1255 (atomic_read(&fs_i 1953 (atomic_read(&fs_info->defrag_running) == 0)); 1256 if (flags & SB_RDONLY) 1954 if (flags & SB_RDONLY) 1257 sync_filesystem(fs_in 1955 sync_filesystem(fs_info->sb); 1258 } 1956 } 1259 } 1957 } 1260 1958 1261 static inline void btrfs_remount_cleanup(stru 1959 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info, 1262 unsi !! 1960 unsigned long old_opts) 1263 { 1961 { 1264 const bool cache_opt = btrfs_test_opt 1962 const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE); 1265 1963 1266 /* 1964 /* 1267 * We need to cleanup all defragable 1965 * We need to cleanup all defragable inodes if the autodefragment is 1268 * close or the filesystem is read on 1966 * close or the filesystem is read only. 1269 */ 1967 */ 1270 if (btrfs_raw_test_opt(old_opts, AUTO 1968 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) && 1271 (!btrfs_raw_test_opt(fs_info->mou 1969 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || sb_rdonly(fs_info->sb))) { 1272 btrfs_cleanup_defrag_inodes(f 1970 btrfs_cleanup_defrag_inodes(fs_info); 1273 } 1971 } 1274 1972 1275 /* If we toggled discard async */ 1973 /* If we toggled discard async */ 1276 if (!btrfs_raw_test_opt(old_opts, DIS 1974 if (!btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) && 1277 btrfs_test_opt(fs_info, DISCARD_A 1975 btrfs_test_opt(fs_info, DISCARD_ASYNC)) 1278 btrfs_discard_resume(fs_info) 1976 btrfs_discard_resume(fs_info); 1279 else if (btrfs_raw_test_opt(old_opts, 1977 else if (btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) && 1280 !btrfs_test_opt(fs_info, DIS 1978 !btrfs_test_opt(fs_info, DISCARD_ASYNC)) 1281 btrfs_discard_cleanup(fs_info 1979 btrfs_discard_cleanup(fs_info); 1282 1980 1283 /* If we toggled space cache */ 1981 /* If we toggled space cache */ 1284 if (cache_opt != btrfs_free_space_cac 1982 if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) 1285 btrfs_set_free_space_cache_v1 1983 btrfs_set_free_space_cache_v1_active(fs_info, cache_opt); 1286 } 1984 } 1287 1985 1288 static int btrfs_remount_rw(struct btrfs_fs_i !! 1986 static int btrfs_remount(struct super_block *sb, int *flags, char *data) 1289 { 1987 { >> 1988 struct btrfs_fs_info *fs_info = btrfs_sb(sb); >> 1989 unsigned old_flags = sb->s_flags; >> 1990 unsigned long old_opts = fs_info->mount_opt; >> 1991 unsigned long old_compress_type = fs_info->compress_type; >> 1992 u64 old_max_inline = fs_info->max_inline; >> 1993 u32 old_thread_pool_size = fs_info->thread_pool_size; >> 1994 u32 old_metadata_ratio = fs_info->metadata_ratio; 1290 int ret; 1995 int ret; 1291 1996 1292 if (BTRFS_FS_ERROR(fs_info)) { !! 1997 sync_filesystem(sb); 1293 btrfs_err(fs_info, !! 1998 set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); 1294 "remounting read-wr << 1295 return -EINVAL; << 1296 } << 1297 << 1298 if (fs_info->fs_devices->rw_devices = << 1299 return -EACCES; << 1300 1999 1301 if (!btrfs_check_rw_degradable(fs_inf !! 2000 if (data) { 1302 btrfs_warn(fs_info, !! 2001 void *new_sec_opts = NULL; 1303 "too many missing << 1304 return -EACCES; << 1305 } << 1306 2002 1307 if (btrfs_super_log_root(fs_info->sup !! 2003 ret = security_sb_eat_lsm_opts(data, &new_sec_opts); 1308 btrfs_warn(fs_info, !! 2004 if (!ret) 1309 "mount required to !! 2005 ret = security_sb_remount(sb, new_sec_opts); 1310 return -EINVAL; !! 2006 security_free_mnt_opts(&new_sec_opts); >> 2007 if (ret) >> 2008 goto restore; 1311 } 2009 } 1312 2010 1313 /* !! 2011 ret = btrfs_parse_options(fs_info, data, *flags); 1314 * NOTE: when remounting with a chang << 1315 * anywhere above this point, as we a << 1316 * until we pass the above checks. << 1317 */ << 1318 ret = btrfs_start_pre_rw_mount(fs_inf << 1319 if (ret) 2012 if (ret) 1320 return ret; !! 2013 goto restore; 1321 << 1322 btrfs_clear_sb_rdonly(fs_info->sb); << 1323 << 1324 set_bit(BTRFS_FS_OPEN, &fs_info->flag << 1325 << 1326 /* << 1327 * If we've gone from readonly -> rea << 1328 * sync/async discard lists in the ri << 1329 */ << 1330 btrfs_discard_resume(fs_info); << 1331 << 1332 return 0; << 1333 } << 1334 << 1335 static int btrfs_remount_ro(struct btrfs_fs_i << 1336 { << 1337 /* << 1338 * This also happens on 'umount -rf' << 1339 * filesystem is busy. << 1340 */ << 1341 cancel_work_sync(&fs_info->async_recl << 1342 cancel_work_sync(&fs_info->async_data << 1343 2014 1344 btrfs_discard_cleanup(fs_info); !! 2015 ret = btrfs_check_features(fs_info, !(*flags & SB_RDONLY)); >> 2016 if (ret < 0) >> 2017 goto restore; 1345 2018 1346 /* Wait for the uuid_scan task to fin !! 2019 btrfs_remount_begin(fs_info, old_opts, *flags); 1347 down(&fs_info->uuid_tree_rescan_sem); !! 2020 btrfs_resize_thread_pool(fs_info, 1348 /* Avoid complains from lockdep et al !! 2021 fs_info->thread_pool_size, old_thread_pool_size); 1349 up(&fs_info->uuid_tree_rescan_sem); << 1350 2022 1351 btrfs_set_sb_rdonly(fs_info->sb); !! 2023 if ((bool)btrfs_test_opt(fs_info, FREE_SPACE_TREE) != >> 2024 (bool)btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && >> 2025 (!sb_rdonly(sb) || (*flags & SB_RDONLY))) { >> 2026 btrfs_warn(fs_info, >> 2027 "remount supports changing free space tree only from ro to rw"); >> 2028 /* Make sure free space cache options match the state on disk */ >> 2029 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { >> 2030 btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE); >> 2031 btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE); >> 2032 } >> 2033 if (btrfs_free_space_cache_v1_active(fs_info)) { >> 2034 btrfs_clear_opt(fs_info->mount_opt, FREE_SPACE_TREE); >> 2035 btrfs_set_opt(fs_info->mount_opt, SPACE_CACHE); >> 2036 } >> 2037 } 1352 2038 1353 /* !! 2039 if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb)) 1354 * Setting SB_RDONLY will put the cle !! 2040 goto out; 1355 * loop if it's already active. If i << 1356 * unused block groups on disk until << 1357 * unless we clean them up here. << 1358 */ << 1359 btrfs_delete_unused_bgs(fs_info); << 1360 2041 1361 /* !! 2042 if (*flags & SB_RDONLY) { 1362 * The cleaner task could be already !! 2043 /* 1363 * BTRFS_FS_STATE_RO (and SB_RDONLY i !! 2044 * this also happens on 'umount -rf' or on shutdown, when 1364 * sure that after we finish the remo !! 2045 * the filesystem is busy. 1365 * btrfs_commit_super(), the cleaner !! 2046 */ 1366 * - either because it was dropping a !! 2047 cancel_work_sync(&fs_info->async_reclaim_work); 1367 * or deleting an unused block grou !! 2048 cancel_work_sync(&fs_info->async_data_reclaim_work); 1368 * group from the list of unused bl << 1369 * in the previous call to btrfs_de << 1370 */ << 1371 wait_on_bit(&fs_info->flags, BTRFS_FS << 1372 2049 1373 /* !! 2050 btrfs_discard_cleanup(fs_info); 1374 * We've set the superblock to RO mod << 1375 * cleaner task sleep without running << 1376 * through all the delayed iputs here << 1377 * without remounting RW we don't end << 1378 * with a non-empty list of delayed i << 1379 */ << 1380 btrfs_run_delayed_iputs(fs_info); << 1381 2051 1382 btrfs_dev_replace_suspend_for_unmount !! 2052 /* wait for the uuid_scan task to finish */ 1383 btrfs_scrub_cancel(fs_info); !! 2053 down(&fs_info->uuid_tree_rescan_sem); 1384 btrfs_pause_balance(fs_info); !! 2054 /* avoid complains from lockdep et al. */ >> 2055 up(&fs_info->uuid_tree_rescan_sem); 1385 2056 1386 /* !! 2057 btrfs_set_sb_rdonly(sb); 1387 * Pause the qgroup rescan worker if << 1388 * be still running after we are in R << 1389 * we unmount, it might have left a t << 1390 * the transaction and/or crash. << 1391 */ << 1392 btrfs_qgroup_wait_for_completion(fs_i << 1393 2058 1394 return btrfs_commit_super(fs_info); !! 2059 /* 1395 } !! 2060 * Setting SB_RDONLY will put the cleaner thread to >> 2061 * sleep at the next loop if it's already active. >> 2062 * If it's already asleep, we'll leave unused block >> 2063 * groups on disk until we're mounted read-write again >> 2064 * unless we clean them up here. >> 2065 */ >> 2066 btrfs_delete_unused_bgs(fs_info); 1396 2067 1397 static void btrfs_ctx_to_info(struct btrfs_fs !! 2068 /* 1398 { !! 2069 * The cleaner task could be already running before we set the 1399 fs_info->max_inline = ctx->max_inline !! 2070 * flag BTRFS_FS_STATE_RO (and SB_RDONLY in the superblock). 1400 fs_info->commit_interval = ctx->commi !! 2071 * We must make sure that after we finish the remount, i.e. after 1401 fs_info->metadata_ratio = ctx->metada !! 2072 * we call btrfs_commit_super(), the cleaner can no longer start 1402 fs_info->thread_pool_size = ctx->thre !! 2073 * a transaction - either because it was dropping a dead root, 1403 fs_info->mount_opt = ctx->mount_opt; !! 2074 * running delayed iputs or deleting an unused block group (the 1404 fs_info->compress_type = ctx->compres !! 2075 * cleaner picked a block group from the list of unused block 1405 fs_info->compress_level = ctx->compre !! 2076 * groups before we were able to in the previous call to 1406 } !! 2077 * btrfs_delete_unused_bgs()). 1407 !! 2078 */ 1408 static void btrfs_info_to_ctx(struct btrfs_fs !! 2079 wait_on_bit(&fs_info->flags, BTRFS_FS_CLEANER_RUNNING, 1409 { !! 2080 TASK_UNINTERRUPTIBLE); 1410 ctx->max_inline = fs_info->max_inline << 1411 ctx->commit_interval = fs_info->commi << 1412 ctx->metadata_ratio = fs_info->metada << 1413 ctx->thread_pool_size = fs_info->thre << 1414 ctx->mount_opt = fs_info->mount_opt; << 1415 ctx->compress_type = fs_info->compres << 1416 ctx->compress_level = fs_info->compre << 1417 } << 1418 << 1419 #define btrfs_info_if_set(fs_info, old_ctx, o << 1420 do { << 1421 if ((!old_ctx || !btrfs_raw_test_opt( << 1422 btrfs_raw_test_opt(fs_info->mount << 1423 btrfs_info(fs_info, fmt, ##ar << 1424 } while (0) << 1425 << 1426 #define btrfs_info_if_unset(fs_info, old_ctx, << 1427 do { << 1428 if ((old_ctx && btrfs_raw_test_opt(ol << 1429 !btrfs_raw_test_opt(fs_info->moun << 1430 btrfs_info(fs_info, fmt, ##ar << 1431 } while (0) << 1432 << 1433 static void btrfs_emit_options(struct btrfs_f << 1434 struct btrfs_f << 1435 { << 1436 btrfs_info_if_set(info, old, NODATASU << 1437 btrfs_info_if_set(info, old, DEGRADED << 1438 btrfs_info_if_set(info, old, NODATASU << 1439 btrfs_info_if_set(info, old, SSD, "en << 1440 btrfs_info_if_set(info, old, SSD_SPRE << 1441 btrfs_info_if_set(info, old, NOBARRIE << 1442 btrfs_info_if_set(info, old, NOTREELO << 1443 btrfs_info_if_set(info, old, NOLOGREP << 1444 btrfs_info_if_set(info, old, FLUSHONC << 1445 btrfs_info_if_set(info, old, DISCARD_ << 1446 btrfs_info_if_set(info, old, DISCARD_ << 1447 btrfs_info_if_set(info, old, FREE_SPA << 1448 btrfs_info_if_set(info, old, SPACE_CA << 1449 btrfs_info_if_set(info, old, CLEAR_CA << 1450 btrfs_info_if_set(info, old, AUTO_DEF << 1451 btrfs_info_if_set(info, old, FRAGMENT << 1452 btrfs_info_if_set(info, old, FRAGMENT << 1453 btrfs_info_if_set(info, old, REF_VERI << 1454 btrfs_info_if_set(info, old, USEBACKU << 1455 btrfs_info_if_set(info, old, IGNOREBA << 1456 btrfs_info_if_set(info, old, IGNOREDA << 1457 btrfs_info_if_set(info, old, IGNOREME << 1458 btrfs_info_if_set(info, old, IGNORESU << 1459 << 1460 btrfs_info_if_unset(info, old, NODATA << 1461 btrfs_info_if_unset(info, old, SSD, " << 1462 btrfs_info_if_unset(info, old, SSD_SP << 1463 btrfs_info_if_unset(info, old, NOBARR << 1464 btrfs_info_if_unset(info, old, NOTREE << 1465 btrfs_info_if_unset(info, old, SPACE_ << 1466 btrfs_info_if_unset(info, old, FREE_S << 1467 btrfs_info_if_unset(info, old, AUTO_D << 1468 btrfs_info_if_unset(info, old, COMPRE << 1469 << 1470 /* Did the compression settings chang << 1471 if (btrfs_test_opt(info, COMPRESS) && << 1472 (!old || << 1473 old->compress_type != info->comp << 1474 old->compress_level != info->com << 1475 (!btrfs_raw_test_opt(old->mount_ << 1476 btrfs_raw_test_opt(info->mount_ << 1477 const char *compress_type = b << 1478 << 1479 btrfs_info(info, "%s %s compr << 1480 btrfs_test_opt(inf << 1481 compress_type, inf << 1482 } << 1483 2081 1484 if (info->max_inline != BTRFS_DEFAULT !! 2082 /* 1485 btrfs_info(info, "max_inline !! 2083 * We've set the superblock to RO mode, so we might have made 1486 } !! 2084 * the cleaner task sleep without running all pending delayed >> 2085 * iputs. Go through all the delayed iputs here, so that if an >> 2086 * unmount happens without remounting RW we don't end up at >> 2087 * finishing close_ctree() with a non-empty list of delayed >> 2088 * iputs. >> 2089 */ >> 2090 btrfs_run_delayed_iputs(fs_info); 1487 2091 1488 static int btrfs_reconfigure(struct fs_contex !! 2092 btrfs_dev_replace_suspend_for_unmount(fs_info); 1489 { !! 2093 btrfs_scrub_cancel(fs_info); 1490 struct super_block *sb = fc->root->d_ !! 2094 btrfs_pause_balance(fs_info); 1491 struct btrfs_fs_info *fs_info = btrfs << 1492 struct btrfs_fs_context *ctx = fc->fs << 1493 struct btrfs_fs_context old_ctx; << 1494 int ret = 0; << 1495 bool mount_reconfigure = (fc->s_fs_in << 1496 2095 1497 btrfs_info_to_ctx(fs_info, &old_ctx); !! 2096 /* >> 2097 * Pause the qgroup rescan worker if it is running. We don't want >> 2098 * it to be still running after we are in RO mode, as after that, >> 2099 * by the time we unmount, it might have left a transaction open, >> 2100 * so we would leak the transaction and/or crash. >> 2101 */ >> 2102 btrfs_qgroup_wait_for_completion(fs_info, false); 1498 2103 1499 /* !! 2104 ret = btrfs_commit_super(fs_info); 1500 * This is our "bind mount" trick, we !! 2105 if (ret) 1501 * anything other than mount a differ !! 2106 goto restore; 1502 * all of the mount options should be !! 2107 } else { 1503 */ !! 2108 if (BTRFS_FS_ERROR(fs_info)) { 1504 if (mount_reconfigure) !! 2109 btrfs_err(fs_info, 1505 ctx->mount_opt = old_ctx.moun !! 2110 "Remounting read-write after error is not allowed"); >> 2111 ret = -EINVAL; >> 2112 goto restore; >> 2113 } >> 2114 if (fs_info->fs_devices->rw_devices == 0) { >> 2115 ret = -EACCES; >> 2116 goto restore; >> 2117 } 1506 2118 1507 sync_filesystem(sb); !! 2119 if (!btrfs_check_rw_degradable(fs_info, NULL)) { 1508 set_bit(BTRFS_FS_STATE_REMOUNTING, &f !! 2120 btrfs_warn(fs_info, >> 2121 "too many missing devices, writable remount is not allowed"); >> 2122 ret = -EACCES; >> 2123 goto restore; >> 2124 } 1509 2125 1510 if (!btrfs_check_options(fs_info, &ct !! 2126 if (btrfs_super_log_root(fs_info->super_copy) != 0) { 1511 return -EINVAL; !! 2127 btrfs_warn(fs_info, >> 2128 "mount required to replay tree-log, cannot remount read-write"); >> 2129 ret = -EINVAL; >> 2130 goto restore; >> 2131 } 1512 2132 1513 ret = btrfs_check_features(fs_info, ! !! 2133 /* 1514 if (ret < 0) !! 2134 * NOTE: when remounting with a change that does writes, don't 1515 return ret; !! 2135 * put it anywhere above this point, as we are not sure to be >> 2136 * safe to write until we pass the above checks. >> 2137 */ >> 2138 ret = btrfs_start_pre_rw_mount(fs_info); >> 2139 if (ret) >> 2140 goto restore; 1516 2141 1517 btrfs_ctx_to_info(fs_info, ctx); !! 2142 btrfs_clear_sb_rdonly(sb); 1518 btrfs_remount_begin(fs_info, old_ctx. << 1519 btrfs_resize_thread_pool(fs_info, fs_ << 1520 old_ctx.thre << 1521 2143 1522 if ((bool)btrfs_test_opt(fs_info, FRE !! 2144 set_bit(BTRFS_FS_OPEN, &fs_info->flags); 1523 (bool)btrfs_fs_compat_ro(fs_info, << 1524 (!sb_rdonly(sb) || (fc->sb_flags << 1525 btrfs_warn(fs_info, << 1526 "remount supports changing fr << 1527 /* Make sure free space cache << 1528 if (btrfs_fs_compat_ro(fs_inf << 1529 btrfs_set_opt(fs_info << 1530 btrfs_clear_opt(fs_in << 1531 } << 1532 if (btrfs_free_space_cache_v1 << 1533 btrfs_clear_opt(fs_in << 1534 btrfs_set_opt(fs_info << 1535 } << 1536 } 2145 } 1537 !! 2146 out: 1538 ret = 0; << 1539 if (!sb_rdonly(sb) && (fc->sb_flags & << 1540 ret = btrfs_remount_ro(fs_inf << 1541 else if (sb_rdonly(sb) && !(fc->sb_fl << 1542 ret = btrfs_remount_rw(fs_inf << 1543 if (ret) << 1544 goto restore; << 1545 << 1546 /* 2147 /* 1547 * If we set the mask during the para !! 2148 * We need to set SB_I_VERSION here otherwise it'll get cleared by VFS, 1548 * remount. Here we can set the mask !! 2149 * since the absence of the flag means it can be toggled off by remount. 1549 * appropriately. << 1550 */ 2150 */ 1551 if ((fc->sb_flags & SB_POSIXACL) != ( !! 2151 *flags |= SB_I_VERSION; 1552 fc->sb_flags_mask |= SB_POSIX << 1553 2152 1554 btrfs_emit_options(fs_info, &old_ctx) << 1555 wake_up_process(fs_info->transaction_ 2153 wake_up_process(fs_info->transaction_kthread); 1556 btrfs_remount_cleanup(fs_info, old_ct !! 2154 btrfs_remount_cleanup(fs_info, old_opts); 1557 btrfs_clear_oneshot_options(fs_info); 2155 btrfs_clear_oneshot_options(fs_info); 1558 clear_bit(BTRFS_FS_STATE_REMOUNTING, 2156 clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); 1559 2157 1560 return 0; 2158 return 0; >> 2159 1561 restore: 2160 restore: 1562 btrfs_ctx_to_info(fs_info, &old_ctx); !! 2161 /* We've hit an error - don't reset SB_RDONLY */ 1563 btrfs_remount_cleanup(fs_info, old_ct !! 2162 if (sb_rdonly(sb)) >> 2163 old_flags |= SB_RDONLY; >> 2164 if (!(old_flags & SB_RDONLY)) >> 2165 clear_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state); >> 2166 sb->s_flags = old_flags; >> 2167 fs_info->mount_opt = old_opts; >> 2168 fs_info->compress_type = old_compress_type; >> 2169 fs_info->max_inline = old_max_inline; >> 2170 btrfs_resize_thread_pool(fs_info, >> 2171 old_thread_pool_size, fs_info->thread_pool_size); >> 2172 fs_info->metadata_ratio = old_metadata_ratio; >> 2173 btrfs_remount_cleanup(fs_info, old_opts); 1564 clear_bit(BTRFS_FS_STATE_REMOUNTING, 2174 clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); >> 2175 1565 return ret; 2176 return ret; 1566 } 2177 } 1567 2178 1568 /* Used to sort the devices by max_avail(desc 2179 /* Used to sort the devices by max_avail(descending sort) */ 1569 static int btrfs_cmp_device_free_bytes(const 2180 static int btrfs_cmp_device_free_bytes(const void *a, const void *b) 1570 { 2181 { 1571 const struct btrfs_device_info *dev_i 2182 const struct btrfs_device_info *dev_info1 = a; 1572 const struct btrfs_device_info *dev_i 2183 const struct btrfs_device_info *dev_info2 = b; 1573 2184 1574 if (dev_info1->max_avail > dev_info2- 2185 if (dev_info1->max_avail > dev_info2->max_avail) 1575 return -1; 2186 return -1; 1576 else if (dev_info1->max_avail < dev_i 2187 else if (dev_info1->max_avail < dev_info2->max_avail) 1577 return 1; 2188 return 1; 1578 return 0; 2189 return 0; 1579 } 2190 } 1580 2191 1581 /* 2192 /* 1582 * sort the devices by max_avail, in which ma 2193 * sort the devices by max_avail, in which max free extent size of each device 1583 * is stored.(Descending Sort) 2194 * is stored.(Descending Sort) 1584 */ 2195 */ 1585 static inline void btrfs_descending_sort_devi 2196 static inline void btrfs_descending_sort_devices( 1586 struc 2197 struct btrfs_device_info *devices, 1587 size_ 2198 size_t nr_devices) 1588 { 2199 { 1589 sort(devices, nr_devices, sizeof(stru 2200 sort(devices, nr_devices, sizeof(struct btrfs_device_info), 1590 btrfs_cmp_device_free_bytes, NUL 2201 btrfs_cmp_device_free_bytes, NULL); 1591 } 2202 } 1592 2203 1593 /* 2204 /* 1594 * The helper to calc the free space on the d 2205 * The helper to calc the free space on the devices that can be used to store 1595 * file data. 2206 * file data. 1596 */ 2207 */ 1597 static inline int btrfs_calc_avail_data_space 2208 static inline int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info, 1598 2209 u64 *free_bytes) 1599 { 2210 { 1600 struct btrfs_device_info *devices_inf 2211 struct btrfs_device_info *devices_info; 1601 struct btrfs_fs_devices *fs_devices = 2212 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 1602 struct btrfs_device *device; 2213 struct btrfs_device *device; 1603 u64 type; 2214 u64 type; 1604 u64 avail_space; 2215 u64 avail_space; 1605 u64 min_stripe_size; 2216 u64 min_stripe_size; 1606 int num_stripes = 1; 2217 int num_stripes = 1; 1607 int i = 0, nr_devices; 2218 int i = 0, nr_devices; 1608 const struct btrfs_raid_attr *rattr; 2219 const struct btrfs_raid_attr *rattr; 1609 2220 1610 /* 2221 /* 1611 * We aren't under the device list lo 2222 * We aren't under the device list lock, so this is racy-ish, but good 1612 * enough for our purposes. 2223 * enough for our purposes. 1613 */ 2224 */ 1614 nr_devices = fs_info->fs_devices->ope 2225 nr_devices = fs_info->fs_devices->open_devices; 1615 if (!nr_devices) { 2226 if (!nr_devices) { 1616 smp_mb(); 2227 smp_mb(); 1617 nr_devices = fs_info->fs_devi 2228 nr_devices = fs_info->fs_devices->open_devices; 1618 ASSERT(nr_devices); 2229 ASSERT(nr_devices); 1619 if (!nr_devices) { 2230 if (!nr_devices) { 1620 *free_bytes = 0; 2231 *free_bytes = 0; 1621 return 0; 2232 return 0; 1622 } 2233 } 1623 } 2234 } 1624 2235 1625 devices_info = kmalloc_array(nr_devic 2236 devices_info = kmalloc_array(nr_devices, sizeof(*devices_info), 1626 GFP_KERNEL); 2237 GFP_KERNEL); 1627 if (!devices_info) 2238 if (!devices_info) 1628 return -ENOMEM; 2239 return -ENOMEM; 1629 2240 1630 /* calc min stripe number for data sp 2241 /* calc min stripe number for data space allocation */ 1631 type = btrfs_data_alloc_profile(fs_in 2242 type = btrfs_data_alloc_profile(fs_info); 1632 rattr = &btrfs_raid_array[btrfs_bg_fl 2243 rattr = &btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)]; 1633 2244 1634 if (type & BTRFS_BLOCK_GROUP_RAID0) 2245 if (type & BTRFS_BLOCK_GROUP_RAID0) 1635 num_stripes = nr_devices; 2246 num_stripes = nr_devices; 1636 else if (type & BTRFS_BLOCK_GROUP_RAI 2247 else if (type & BTRFS_BLOCK_GROUP_RAID1_MASK) 1637 num_stripes = rattr->ncopies; 2248 num_stripes = rattr->ncopies; 1638 else if (type & BTRFS_BLOCK_GROUP_RAI 2249 else if (type & BTRFS_BLOCK_GROUP_RAID10) 1639 num_stripes = 4; 2250 num_stripes = 4; 1640 2251 1641 /* Adjust for more than 1 stripe per 2252 /* Adjust for more than 1 stripe per device */ 1642 min_stripe_size = rattr->dev_stripes 2253 min_stripe_size = rattr->dev_stripes * BTRFS_STRIPE_LEN; 1643 2254 1644 rcu_read_lock(); 2255 rcu_read_lock(); 1645 list_for_each_entry_rcu(device, &fs_d 2256 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 1646 if (!test_bit(BTRFS_DEV_STATE 2257 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 1647 2258 &device->dev_state) || 1648 !device->bdev || 2259 !device->bdev || 1649 test_bit(BTRFS_DEV_STATE_ 2260 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 1650 continue; 2261 continue; 1651 2262 1652 if (i >= nr_devices) 2263 if (i >= nr_devices) 1653 break; 2264 break; 1654 2265 1655 avail_space = device->total_b 2266 avail_space = device->total_bytes - device->bytes_used; 1656 2267 1657 /* align with stripe_len */ 2268 /* align with stripe_len */ 1658 avail_space = rounddown(avail 2269 avail_space = rounddown(avail_space, BTRFS_STRIPE_LEN); 1659 2270 1660 /* 2271 /* 1661 * Ensure we have at least mi 2272 * Ensure we have at least min_stripe_size on top of the 1662 * reserved space on the devi 2273 * reserved space on the device. 1663 */ 2274 */ 1664 if (avail_space <= BTRFS_DEVI 2275 if (avail_space <= BTRFS_DEVICE_RANGE_RESERVED + min_stripe_size) 1665 continue; 2276 continue; 1666 2277 1667 avail_space -= BTRFS_DEVICE_R 2278 avail_space -= BTRFS_DEVICE_RANGE_RESERVED; 1668 2279 1669 devices_info[i].dev = device; 2280 devices_info[i].dev = device; 1670 devices_info[i].max_avail = a 2281 devices_info[i].max_avail = avail_space; 1671 2282 1672 i++; 2283 i++; 1673 } 2284 } 1674 rcu_read_unlock(); 2285 rcu_read_unlock(); 1675 2286 1676 nr_devices = i; 2287 nr_devices = i; 1677 2288 1678 btrfs_descending_sort_devices(devices 2289 btrfs_descending_sort_devices(devices_info, nr_devices); 1679 2290 1680 i = nr_devices - 1; 2291 i = nr_devices - 1; 1681 avail_space = 0; 2292 avail_space = 0; 1682 while (nr_devices >= rattr->devs_min) 2293 while (nr_devices >= rattr->devs_min) { 1683 num_stripes = min(num_stripes 2294 num_stripes = min(num_stripes, nr_devices); 1684 2295 1685 if (devices_info[i].max_avail 2296 if (devices_info[i].max_avail >= min_stripe_size) { 1686 int j; 2297 int j; 1687 u64 alloc_size; 2298 u64 alloc_size; 1688 2299 1689 avail_space += device 2300 avail_space += devices_info[i].max_avail * num_stripes; 1690 alloc_size = devices_ 2301 alloc_size = devices_info[i].max_avail; 1691 for (j = i + 1 - num_ 2302 for (j = i + 1 - num_stripes; j <= i; j++) 1692 devices_info[ 2303 devices_info[j].max_avail -= alloc_size; 1693 } 2304 } 1694 i--; 2305 i--; 1695 nr_devices--; 2306 nr_devices--; 1696 } 2307 } 1697 2308 1698 kfree(devices_info); 2309 kfree(devices_info); 1699 *free_bytes = avail_space; 2310 *free_bytes = avail_space; 1700 return 0; 2311 return 0; 1701 } 2312 } 1702 2313 1703 /* 2314 /* 1704 * Calculate numbers for 'df', pessimistic in 2315 * Calculate numbers for 'df', pessimistic in case of mixed raid profiles. 1705 * 2316 * 1706 * If there's a redundant raid level at DATA 2317 * If there's a redundant raid level at DATA block groups, use the respective 1707 * multiplier to scale the sizes. 2318 * multiplier to scale the sizes. 1708 * 2319 * 1709 * Unused device space usage is based on simu 2320 * Unused device space usage is based on simulating the chunk allocator 1710 * algorithm that respects the device sizes a 2321 * algorithm that respects the device sizes and order of allocations. This is 1711 * a close approximation of the actual use bu 2322 * a close approximation of the actual use but there are other factors that may 1712 * change the result (like a new metadata chu 2323 * change the result (like a new metadata chunk). 1713 * 2324 * 1714 * If metadata is exhausted, f_bavail will be 2325 * If metadata is exhausted, f_bavail will be 0. 1715 */ 2326 */ 1716 static int btrfs_statfs(struct dentry *dentry 2327 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf) 1717 { 2328 { 1718 struct btrfs_fs_info *fs_info = btrfs 2329 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb); 1719 struct btrfs_super_block *disk_super 2330 struct btrfs_super_block *disk_super = fs_info->super_copy; 1720 struct btrfs_space_info *found; 2331 struct btrfs_space_info *found; 1721 u64 total_used = 0; 2332 u64 total_used = 0; 1722 u64 total_free_data = 0; 2333 u64 total_free_data = 0; 1723 u64 total_free_meta = 0; 2334 u64 total_free_meta = 0; 1724 u32 bits = fs_info->sectorsize_bits; 2335 u32 bits = fs_info->sectorsize_bits; 1725 __be32 *fsid = (__be32 *)fs_info->fs_ 2336 __be32 *fsid = (__be32 *)fs_info->fs_devices->fsid; 1726 unsigned factor = 1; 2337 unsigned factor = 1; 1727 struct btrfs_block_rsv *block_rsv = & 2338 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 1728 int ret; 2339 int ret; 1729 u64 thresh = 0; 2340 u64 thresh = 0; 1730 int mixed = 0; 2341 int mixed = 0; 1731 2342 1732 list_for_each_entry(found, &fs_info-> 2343 list_for_each_entry(found, &fs_info->space_info, list) { 1733 if (found->flags & BTRFS_BLOC 2344 if (found->flags & BTRFS_BLOCK_GROUP_DATA) { 1734 int i; 2345 int i; 1735 2346 1736 total_free_data += fo 2347 total_free_data += found->disk_total - found->disk_used; 1737 total_free_data -= 2348 total_free_data -= 1738 btrfs_account 2349 btrfs_account_ro_block_groups_free_space(found); 1739 2350 1740 for (i = 0; i < BTRFS 2351 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 1741 if (!list_emp 2352 if (!list_empty(&found->block_groups[i])) 1742 facto 2353 factor = btrfs_bg_type_to_factor( 1743 2354 btrfs_raid_array[i].bg_flag); 1744 } 2355 } 1745 } 2356 } 1746 2357 1747 /* 2358 /* 1748 * Metadata in mixed block gr !! 2359 * Metadata in mixed block goup profiles are accounted in data 1749 */ 2360 */ 1750 if (!mixed && found->flags & 2361 if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) { 1751 if (found->flags & BT 2362 if (found->flags & BTRFS_BLOCK_GROUP_DATA) 1752 mixed = 1; 2363 mixed = 1; 1753 else 2364 else 1754 total_free_me 2365 total_free_meta += found->disk_total - 1755 found 2366 found->disk_used; 1756 } 2367 } 1757 2368 1758 total_used += found->disk_use 2369 total_used += found->disk_used; 1759 } 2370 } 1760 2371 1761 buf->f_blocks = div_u64(btrfs_super_t 2372 buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor); 1762 buf->f_blocks >>= bits; 2373 buf->f_blocks >>= bits; 1763 buf->f_bfree = buf->f_blocks - (div_u 2374 buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits); 1764 2375 1765 /* Account global block reserve as us 2376 /* Account global block reserve as used, it's in logical size already */ 1766 spin_lock(&block_rsv->lock); 2377 spin_lock(&block_rsv->lock); 1767 /* Mixed block groups accounting is n 2378 /* Mixed block groups accounting is not byte-accurate, avoid overflow */ 1768 if (buf->f_bfree >= block_rsv->size > 2379 if (buf->f_bfree >= block_rsv->size >> bits) 1769 buf->f_bfree -= block_rsv->si 2380 buf->f_bfree -= block_rsv->size >> bits; 1770 else 2381 else 1771 buf->f_bfree = 0; 2382 buf->f_bfree = 0; 1772 spin_unlock(&block_rsv->lock); 2383 spin_unlock(&block_rsv->lock); 1773 2384 1774 buf->f_bavail = div_u64(total_free_da 2385 buf->f_bavail = div_u64(total_free_data, factor); 1775 ret = btrfs_calc_avail_data_space(fs_ 2386 ret = btrfs_calc_avail_data_space(fs_info, &total_free_data); 1776 if (ret) 2387 if (ret) 1777 return ret; 2388 return ret; 1778 buf->f_bavail += div_u64(total_free_d 2389 buf->f_bavail += div_u64(total_free_data, factor); 1779 buf->f_bavail = buf->f_bavail >> bits 2390 buf->f_bavail = buf->f_bavail >> bits; 1780 2391 1781 /* 2392 /* 1782 * We calculate the remaining metadat 2393 * We calculate the remaining metadata space minus global reserve. If 1783 * this is (supposedly) smaller than 2394 * this is (supposedly) smaller than zero, there's no space. But this 1784 * does not hold in practice, the exh 2395 * does not hold in practice, the exhausted state happens where's still 1785 * some positive delta. So we apply s 2396 * some positive delta. So we apply some guesswork and compare the 1786 * delta to a 4M threshold. (Practic 2397 * delta to a 4M threshold. (Practically observed delta was ~2M.) 1787 * 2398 * 1788 * We probably cannot calculate the e 2399 * We probably cannot calculate the exact threshold value because this 1789 * depends on the internal reservatio 2400 * depends on the internal reservations requested by various 1790 * operations, so some operations tha 2401 * operations, so some operations that consume a few metadata will 1791 * succeed even if the Avail is zero. 2402 * succeed even if the Avail is zero. But this is better than the other 1792 * way around. 2403 * way around. 1793 */ 2404 */ 1794 thresh = SZ_4M; 2405 thresh = SZ_4M; 1795 2406 1796 /* 2407 /* 1797 * We only want to claim there's no a 2408 * We only want to claim there's no available space if we can no longer 1798 * allocate chunks for our metadata p 2409 * allocate chunks for our metadata profile and our global reserve will 1799 * not fit in the free metadata space 2410 * not fit in the free metadata space. If we aren't ->full then we 1800 * still can allocate chunks and thus 2411 * still can allocate chunks and thus are fine using the currently 1801 * calculated f_bavail. 2412 * calculated f_bavail. 1802 */ 2413 */ 1803 if (!mixed && block_rsv->space_info-> 2414 if (!mixed && block_rsv->space_info->full && 1804 (total_free_meta < thresh || tota !! 2415 total_free_meta - thresh < block_rsv->size) 1805 buf->f_bavail = 0; 2416 buf->f_bavail = 0; 1806 2417 1807 buf->f_type = BTRFS_SUPER_MAGIC; 2418 buf->f_type = BTRFS_SUPER_MAGIC; 1808 buf->f_bsize = fs_info->sectorsize; !! 2419 buf->f_bsize = dentry->d_sb->s_blocksize; 1809 buf->f_namelen = BTRFS_NAME_LEN; 2420 buf->f_namelen = BTRFS_NAME_LEN; 1810 2421 1811 /* We treat it as constant endianness 2422 /* We treat it as constant endianness (it doesn't matter _which_) 1812 because we want the fsid to come o 2423 because we want the fsid to come out the same whether mounted 1813 on a big-endian or little-endian h 2424 on a big-endian or little-endian host */ 1814 buf->f_fsid.val[0] = be32_to_cpu(fsid 2425 buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]); 1815 buf->f_fsid.val[1] = be32_to_cpu(fsid 2426 buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]); 1816 /* Mask in the root object ID too, to 2427 /* Mask in the root object ID too, to disambiguate subvols */ 1817 buf->f_fsid.val[0] ^= btrfs_root_id(B !! 2428 buf->f_fsid.val[0] ^= 1818 buf->f_fsid.val[1] ^= btrfs_root_id(B !! 2429 BTRFS_I(d_inode(dentry))->root->root_key.objectid >> 32; >> 2430 buf->f_fsid.val[1] ^= >> 2431 BTRFS_I(d_inode(dentry))->root->root_key.objectid; 1819 2432 1820 return 0; 2433 return 0; 1821 } 2434 } 1822 2435 1823 static int btrfs_fc_test_super(struct super_b << 1824 { << 1825 struct btrfs_fs_info *p = fc->s_fs_in << 1826 struct btrfs_fs_info *fs_info = btrfs << 1827 << 1828 return fs_info->fs_devices == p->fs_d << 1829 } << 1830 << 1831 static int btrfs_get_tree_super(struct fs_con << 1832 { << 1833 struct btrfs_fs_info *fs_info = fc->s << 1834 struct btrfs_fs_context *ctx = fc->fs << 1835 struct btrfs_fs_devices *fs_devices = << 1836 struct block_device *bdev; << 1837 struct btrfs_device *device; << 1838 struct super_block *sb; << 1839 blk_mode_t mode = btrfs_open_mode(fc) << 1840 int ret; << 1841 << 1842 btrfs_ctx_to_info(fs_info, ctx); << 1843 mutex_lock(&uuid_mutex); << 1844 << 1845 /* << 1846 * With 'true' passed to btrfs_scan_o << 1847 * either a valid device or an error. << 1848 */ << 1849 device = btrfs_scan_one_device(fc->so << 1850 ASSERT(device != NULL); << 1851 if (IS_ERR(device)) { << 1852 mutex_unlock(&uuid_mutex); << 1853 return PTR_ERR(device); << 1854 } << 1855 << 1856 fs_devices = device->fs_devices; << 1857 fs_info->fs_devices = fs_devices; << 1858 << 1859 ret = btrfs_open_devices(fs_devices, << 1860 mutex_unlock(&uuid_mutex); << 1861 if (ret) << 1862 return ret; << 1863 << 1864 if (!(fc->sb_flags & SB_RDONLY) && fs << 1865 ret = -EACCES; << 1866 goto error; << 1867 } << 1868 << 1869 bdev = fs_devices->latest_dev->bdev; << 1870 << 1871 /* << 1872 * From now on the error handling is << 1873 * << 1874 * If successful, this will transfer << 1875 * and fc->s_fs_info will be NULL. H << 1876 * super, we'll still have fc->s_fs_i << 1877 * completely out it'll be cleaned up << 1878 * otherwise it's tied to the lifetim << 1879 */ << 1880 sb = sget_fc(fc, btrfs_fc_test_super, << 1881 if (IS_ERR(sb)) { << 1882 ret = PTR_ERR(sb); << 1883 goto error; << 1884 } << 1885 << 1886 set_device_specific_options(fs_info); << 1887 << 1888 if (sb->s_root) { << 1889 btrfs_close_devices(fs_device << 1890 if ((fc->sb_flags ^ sb->s_fla << 1891 ret = -EBUSY; << 1892 } else { << 1893 snprintf(sb->s_id, sizeof(sb- << 1894 shrinker_debugfs_rename(sb->s << 1895 btrfs_sb(sb)->bdev_holder = & << 1896 ret = btrfs_fill_super(sb, fs << 1897 } << 1898 << 1899 if (ret) { << 1900 deactivate_locked_super(sb); << 1901 return ret; << 1902 } << 1903 << 1904 btrfs_clear_oneshot_options(fs_info); << 1905 << 1906 fc->root = dget(sb->s_root); << 1907 return 0; << 1908 << 1909 error: << 1910 btrfs_close_devices(fs_devices); << 1911 return ret; << 1912 } << 1913 << 1914 /* << 1915 * Ever since commit 0723a0473fb4 ("btrfs: al << 1916 * with different ro/rw options") the followi << 1917 * << 1918 * (i) mount /dev/sda3 -o subvol=foo,r << 1919 * (ii) mount /dev/sda3 -o subvol=bar,r << 1920 * << 1921 * which looks nice and innocent but is actua << 1922 * a long comment. << 1923 * << 1924 * On another filesystem a subvolume mount is << 1925 * << 1926 * (iii) # create rw superblock + initia << 1927 * mount -t xfs /dev/sdb /opt/ << 1928 * << 1929 * # create ro bind mount << 1930 * mount --bind -o ro /opt/foo /mn << 1931 * << 1932 * # unmount initial mount << 1933 * umount /opt << 1934 * << 1935 * Of course, there's some special subvolume << 1936 * sb->s_root dentry is really swapped after << 1937 * it's very close and will help us understan << 1938 * << 1939 * The old mount API didn't cleanly distingui << 1940 * and a superblock being made ro. The only << 1941 * either object was by passing ms_rdonly. If << 1942 * mount(2) such as: << 1943 * << 1944 * mount("/dev/sdb", "/mnt", "xfs", ms_r << 1945 * << 1946 * the MS_RDONLY flag being specified had two << 1947 * << 1948 * (1) MNT_READONLY was raised -> the resulti << 1949 * @mnt->mnt_flags |= MNT_READONLY raised << 1950 * << 1951 * (2) MS_RDONLY was passed to the filesystem << 1952 * made the superblock ro. Note, how SB_R << 1953 * ms_rdonly and is raised whenever MS_RD << 1954 * << 1955 * Creating a subtree mount via (iii) ends up << 1956 * subtree mounted ro. << 1957 * << 1958 * But consider the effect on the old mount A << 1959 * which combines the distinct step in (iii) << 1960 * << 1961 * By issuing (i) both the mount and the supe << 1962 * is issued the superblock is ro and thus ev << 1963 * rw it wouldn't help. Hence, btrfs needed t << 1964 * to rw for (ii) which it did using an inter << 1965 * << 1966 * IOW, subvolume mounting was inherently com << 1967 * MS_RDONLY in mount(2). Note, this ambiguit << 1968 * "ro" to MS_RDONLY. IOW, in both (i) and (i << 1969 * passed by mount(8) to mount(2). << 1970 * << 1971 * Enter the new mount API. The new mount API << 1972 * and making a superblock ro. << 1973 * << 1974 * (3) To turn a mount ro the MOUNT_ATTR_ONLY << 1975 * fsmount() or mount_setattr() this is a << 1976 * specific mount or mount tree that is n << 1977 * << 1978 * (4) To turn a superblock ro the "ro" flag << 1979 * fsconfig(FSCONFIG_SET_FLAG, "ro"). Thi << 1980 * in fc->sb_flags. << 1981 * << 1982 * But, currently the util-linux mount comman << 1983 * API and is still setting fsconfig(FSCONFIG << 1984 * btrfs or not, setting the whole super bloc << 1985 * work with different options work we need t << 1986 */ << 1987 static struct vfsmount *btrfs_reconfigure_for << 1988 { << 1989 struct vfsmount *mnt; << 1990 int ret; << 1991 const bool ro2rw = !(fc->sb_flags & S << 1992 << 1993 /* << 1994 * We got an EBUSY because our SB_RDO << 1995 * super block, so invert our setting << 1996 * can get our vfsmount. << 1997 */ << 1998 if (ro2rw) << 1999 fc->sb_flags |= SB_RDONLY; << 2000 else << 2001 fc->sb_flags &= ~SB_RDONLY; << 2002 << 2003 mnt = fc_mount(fc); << 2004 if (IS_ERR(mnt)) << 2005 return mnt; << 2006 << 2007 if (!ro2rw) << 2008 return mnt; << 2009 << 2010 /* We need to convert to rw, call rec << 2011 fc->sb_flags &= ~SB_RDONLY; << 2012 down_write(&mnt->mnt_sb->s_umount); << 2013 ret = btrfs_reconfigure(fc); << 2014 up_write(&mnt->mnt_sb->s_umount); << 2015 if (ret) { << 2016 mntput(mnt); << 2017 return ERR_PTR(ret); << 2018 } << 2019 return mnt; << 2020 } << 2021 << 2022 static int btrfs_get_tree_subvol(struct fs_co << 2023 { << 2024 struct btrfs_fs_info *fs_info = NULL; << 2025 struct btrfs_fs_context *ctx = fc->fs << 2026 struct fs_context *dup_fc; << 2027 struct dentry *dentry; << 2028 struct vfsmount *mnt; << 2029 << 2030 /* << 2031 * Setup a dummy root and fs_info for << 2032 * we don't actually fill this stuff << 2033 * then open_ctree will properly init << 2034 * settings later. btrfs_init_fs_inf << 2035 * of the fs_info (locks and such) to << 2036 * superblock with our given fs_devic << 2037 */ << 2038 fs_info = kvzalloc(sizeof(struct btrf << 2039 if (!fs_info) << 2040 return -ENOMEM; << 2041 << 2042 fs_info->super_copy = kzalloc(BTRFS_S << 2043 fs_info->super_for_commit = kzalloc(B << 2044 if (!fs_info->super_copy || !fs_info- << 2045 btrfs_free_fs_info(fs_info); << 2046 return -ENOMEM; << 2047 } << 2048 btrfs_init_fs_info(fs_info); << 2049 << 2050 dup_fc = vfs_dup_fs_context(fc); << 2051 if (IS_ERR(dup_fc)) { << 2052 btrfs_free_fs_info(fs_info); << 2053 return PTR_ERR(dup_fc); << 2054 } << 2055 << 2056 /* << 2057 * When we do the sget_fc this gets t << 2058 * need to set it on the dup_fc as th << 2059 */ << 2060 dup_fc->s_fs_info = fs_info; << 2061 << 2062 /* << 2063 * We'll do the security settings in << 2064 * loop, they were duplicated into du << 2065 * here. << 2066 */ << 2067 security_free_mnt_opts(&fc->security) << 2068 fc->security = NULL; << 2069 << 2070 mnt = fc_mount(dup_fc); << 2071 if (PTR_ERR_OR_ZERO(mnt) == -EBUSY) << 2072 mnt = btrfs_reconfigure_for_m << 2073 put_fs_context(dup_fc); << 2074 if (IS_ERR(mnt)) << 2075 return PTR_ERR(mnt); << 2076 << 2077 /* << 2078 * This free's ->subvol_name, because << 2079 * allocate a buffer to hold the subv << 2080 * reference to it here. << 2081 */ << 2082 dentry = mount_subvol(ctx->subvol_nam << 2083 ctx->subvol_name = NULL; << 2084 if (IS_ERR(dentry)) << 2085 return PTR_ERR(dentry); << 2086 << 2087 fc->root = dentry; << 2088 return 0; << 2089 } << 2090 << 2091 static int btrfs_get_tree(struct fs_context * << 2092 { << 2093 /* << 2094 * Since we use mount_subtree to moun << 2095 * have to do mounts in two steps. << 2096 * << 2097 * First pass through we call btrfs_g << 2098 * wrapper around fc_mount() to call << 2099 * we'll call btrfs_get_tree_super(). << 2100 * everything to open the devices and << 2101 * with a fully constructed vfsmount << 2102 * from there we can do our mount_sub << 2103 * whichever subvol we're mounting an << 2104 * appropriate dentry for the subvol. << 2105 */ << 2106 if (fc->s_fs_info) << 2107 return btrfs_get_tree_super(f << 2108 return btrfs_get_tree_subvol(fc); << 2109 } << 2110 << 2111 static void btrfs_kill_super(struct super_blo 2436 static void btrfs_kill_super(struct super_block *sb) 2112 { 2437 { 2113 struct btrfs_fs_info *fs_info = btrfs 2438 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2114 kill_anon_super(sb); 2439 kill_anon_super(sb); 2115 btrfs_free_fs_info(fs_info); 2440 btrfs_free_fs_info(fs_info); 2116 } 2441 } 2117 2442 2118 static void btrfs_free_fs_context(struct fs_c !! 2443 static struct file_system_type btrfs_fs_type = { 2119 { !! 2444 .owner = THIS_MODULE, 2120 struct btrfs_fs_context *ctx = fc->fs !! 2445 .name = "btrfs", 2121 struct btrfs_fs_info *fs_info = fc->s !! 2446 .mount = btrfs_mount, 2122 !! 2447 .kill_sb = btrfs_kill_super, 2123 if (fs_info) !! 2448 .fs_flags = FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA, 2124 btrfs_free_fs_info(fs_info); << 2125 << 2126 if (ctx && refcount_dec_and_test(&ctx << 2127 kfree(ctx->subvol_name); << 2128 kfree(ctx); << 2129 } << 2130 } << 2131 << 2132 static int btrfs_dup_fs_context(struct fs_con << 2133 { << 2134 struct btrfs_fs_context *ctx = src_fc << 2135 << 2136 /* << 2137 * Give a ref to our ctx to this dup, << 2138 * our original fc so we can have the << 2139 * << 2140 * We unset ->source in the original << 2141 * mounting, and then once we free th << 2142 * need to make sure we're only point << 2143 */ << 2144 refcount_inc(&ctx->refs); << 2145 fc->fs_private = ctx; << 2146 fc->source = src_fc->source; << 2147 src_fc->source = NULL; << 2148 return 0; << 2149 } << 2150 << 2151 static const struct fs_context_operations btr << 2152 .parse_param = btrfs_parse_param, << 2153 .reconfigure = btrfs_reconfigure, << 2154 .get_tree = btrfs_get_tree, << 2155 .dup = btrfs_dup_fs_contex << 2156 .free = btrfs_free_fs_conte << 2157 }; 2449 }; 2158 2450 2159 static int btrfs_init_fs_context(struct fs_co !! 2451 static struct file_system_type btrfs_root_fs_type = { 2160 { !! 2452 .owner = THIS_MODULE, 2161 struct btrfs_fs_context *ctx; !! 2453 .name = "btrfs", 2162 !! 2454 .mount = btrfs_mount_root, 2163 ctx = kzalloc(sizeof(struct btrfs_fs_ !! 2455 .kill_sb = btrfs_kill_super, 2164 if (!ctx) !! 2456 .fs_flags = FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA | FS_ALLOW_IDMAP, 2165 return -ENOMEM; !! 2457 }; 2166 << 2167 refcount_set(&ctx->refs, 1); << 2168 fc->fs_private = ctx; << 2169 fc->ops = &btrfs_fs_context_ops; << 2170 << 2171 if (fc->purpose == FS_CONTEXT_FOR_REC << 2172 btrfs_info_to_ctx(btrfs_sb(fc << 2173 } else { << 2174 ctx->thread_pool_size = << 2175 min_t(unsigned long, << 2176 ctx->max_inline = BTRFS_DEFAU << 2177 ctx->commit_interval = BTRFS_ << 2178 } << 2179 << 2180 #ifdef CONFIG_BTRFS_FS_POSIX_ACL << 2181 fc->sb_flags |= SB_POSIXACL; << 2182 #endif << 2183 fc->sb_flags |= SB_I_VERSION; << 2184 << 2185 return 0; << 2186 } << 2187 << 2188 static struct file_system_type btrfs_fs_type << 2189 .owner = THIS_MODULE << 2190 .name = "btrfs", << 2191 .init_fs_context = btrfs_init_ << 2192 .parameters = btrfs_fs_pa << 2193 .kill_sb = btrfs_kill_ << 2194 .fs_flags = FS_REQUIRES << 2195 }; << 2196 2458 2197 MODULE_ALIAS_FS("btrfs"); 2459 MODULE_ALIAS_FS("btrfs"); 2198 2460 2199 static int btrfs_control_open(struct inode *i 2461 static int btrfs_control_open(struct inode *inode, struct file *file) 2200 { 2462 { 2201 /* 2463 /* 2202 * The control file's private_data is 2464 * The control file's private_data is used to hold the 2203 * transaction when it is started and 2465 * transaction when it is started and is used to keep 2204 * track of whether a transaction is 2466 * track of whether a transaction is already in progress. 2205 */ 2467 */ 2206 file->private_data = NULL; 2468 file->private_data = NULL; 2207 return 0; 2469 return 0; 2208 } 2470 } 2209 2471 2210 /* 2472 /* 2211 * Used by /dev/btrfs-control for devices ioc 2473 * Used by /dev/btrfs-control for devices ioctls. 2212 */ 2474 */ 2213 static long btrfs_control_ioctl(struct file * 2475 static long btrfs_control_ioctl(struct file *file, unsigned int cmd, 2214 unsigned long 2476 unsigned long arg) 2215 { 2477 { 2216 struct btrfs_ioctl_vol_args *vol; 2478 struct btrfs_ioctl_vol_args *vol; 2217 struct btrfs_device *device = NULL; 2479 struct btrfs_device *device = NULL; 2218 dev_t devt = 0; 2480 dev_t devt = 0; 2219 int ret = -ENOTTY; 2481 int ret = -ENOTTY; 2220 2482 2221 if (!capable(CAP_SYS_ADMIN)) 2483 if (!capable(CAP_SYS_ADMIN)) 2222 return -EPERM; 2484 return -EPERM; 2223 2485 2224 vol = memdup_user((void __user *)arg, 2486 vol = memdup_user((void __user *)arg, sizeof(*vol)); 2225 if (IS_ERR(vol)) 2487 if (IS_ERR(vol)) 2226 return PTR_ERR(vol); 2488 return PTR_ERR(vol); 2227 ret = btrfs_check_ioctl_vol_args_path !! 2489 vol->name[BTRFS_PATH_NAME_MAX] = '\0'; 2228 if (ret < 0) << 2229 goto out; << 2230 2490 2231 switch (cmd) { 2491 switch (cmd) { 2232 case BTRFS_IOC_SCAN_DEV: 2492 case BTRFS_IOC_SCAN_DEV: 2233 mutex_lock(&uuid_mutex); 2493 mutex_lock(&uuid_mutex); 2234 /* !! 2494 device = btrfs_scan_one_device(vol->name, FMODE_READ, 2235 * Scanning outside of mount !! 2495 &btrfs_root_fs_type); 2236 * into 0 error code. << 2237 */ << 2238 device = btrfs_scan_one_devic << 2239 ret = PTR_ERR_OR_ZERO(device) 2496 ret = PTR_ERR_OR_ZERO(device); 2240 mutex_unlock(&uuid_mutex); 2497 mutex_unlock(&uuid_mutex); 2241 break; 2498 break; 2242 case BTRFS_IOC_FORGET_DEV: 2499 case BTRFS_IOC_FORGET_DEV: 2243 if (vol->name[0] != 0) { 2500 if (vol->name[0] != 0) { 2244 ret = lookup_bdev(vol 2501 ret = lookup_bdev(vol->name, &devt); 2245 if (ret) 2502 if (ret) 2246 break; 2503 break; 2247 } 2504 } 2248 ret = btrfs_forget_devices(de 2505 ret = btrfs_forget_devices(devt); 2249 break; 2506 break; 2250 case BTRFS_IOC_DEVICES_READY: 2507 case BTRFS_IOC_DEVICES_READY: 2251 mutex_lock(&uuid_mutex); 2508 mutex_lock(&uuid_mutex); 2252 /* !! 2509 device = btrfs_scan_one_device(vol->name, FMODE_READ, 2253 * Scanning outside of mount !! 2510 &btrfs_root_fs_type); 2254 * into 0 error code. !! 2511 if (IS_ERR(device)) { 2255 */ << 2256 device = btrfs_scan_one_devic << 2257 if (IS_ERR_OR_NULL(device)) { << 2258 mutex_unlock(&uuid_mu 2512 mutex_unlock(&uuid_mutex); 2259 ret = PTR_ERR(device) 2513 ret = PTR_ERR(device); 2260 break; 2514 break; 2261 } 2515 } 2262 ret = !(device->fs_devices->n 2516 ret = !(device->fs_devices->num_devices == 2263 device->fs_devices->t 2517 device->fs_devices->total_devices); 2264 mutex_unlock(&uuid_mutex); 2518 mutex_unlock(&uuid_mutex); 2265 break; 2519 break; 2266 case BTRFS_IOC_GET_SUPPORTED_FEATURES 2520 case BTRFS_IOC_GET_SUPPORTED_FEATURES: 2267 ret = btrfs_ioctl_get_support 2521 ret = btrfs_ioctl_get_supported_features((void __user*)arg); 2268 break; 2522 break; 2269 } 2523 } 2270 2524 2271 out: << 2272 kfree(vol); 2525 kfree(vol); 2273 return ret; 2526 return ret; 2274 } 2527 } 2275 2528 2276 static int btrfs_freeze(struct super_block *s 2529 static int btrfs_freeze(struct super_block *sb) 2277 { 2530 { >> 2531 struct btrfs_trans_handle *trans; 2278 struct btrfs_fs_info *fs_info = btrfs 2532 struct btrfs_fs_info *fs_info = btrfs_sb(sb); >> 2533 struct btrfs_root *root = fs_info->tree_root; 2279 2534 2280 set_bit(BTRFS_FS_FROZEN, &fs_info->fl 2535 set_bit(BTRFS_FS_FROZEN, &fs_info->flags); 2281 /* 2536 /* 2282 * We don't need a barrier here, we'l 2537 * We don't need a barrier here, we'll wait for any transaction that 2283 * could be in progress on other thre 2538 * could be in progress on other threads (and do delayed iputs that 2284 * we want to avoid on a frozen files 2539 * we want to avoid on a frozen filesystem), or do the commit 2285 * ourselves. 2540 * ourselves. 2286 */ 2541 */ 2287 return btrfs_commit_current_transacti !! 2542 trans = btrfs_attach_transaction_barrier(root); >> 2543 if (IS_ERR(trans)) { >> 2544 /* no transaction, don't bother */ >> 2545 if (PTR_ERR(trans) == -ENOENT) >> 2546 return 0; >> 2547 return PTR_ERR(trans); >> 2548 } >> 2549 return btrfs_commit_transaction(trans); 2288 } 2550 } 2289 2551 2290 static int check_dev_super(struct btrfs_devic 2552 static int check_dev_super(struct btrfs_device *dev) 2291 { 2553 { 2292 struct btrfs_fs_info *fs_info = dev-> 2554 struct btrfs_fs_info *fs_info = dev->fs_info; 2293 struct btrfs_super_block *sb; 2555 struct btrfs_super_block *sb; 2294 u64 last_trans; << 2295 u16 csum_type; 2556 u16 csum_type; 2296 int ret = 0; 2557 int ret = 0; 2297 2558 2298 /* This should be called with fs stil 2559 /* This should be called with fs still frozen. */ 2299 ASSERT(test_bit(BTRFS_FS_FROZEN, &fs_ 2560 ASSERT(test_bit(BTRFS_FS_FROZEN, &fs_info->flags)); 2300 2561 2301 /* Missing dev, no need to check. */ 2562 /* Missing dev, no need to check. */ 2302 if (!dev->bdev) 2563 if (!dev->bdev) 2303 return 0; 2564 return 0; 2304 2565 2305 /* Only need to check the primary sup 2566 /* Only need to check the primary super block. */ 2306 sb = btrfs_read_dev_one_super(dev->bd 2567 sb = btrfs_read_dev_one_super(dev->bdev, 0, true); 2307 if (IS_ERR(sb)) 2568 if (IS_ERR(sb)) 2308 return PTR_ERR(sb); 2569 return PTR_ERR(sb); 2309 2570 2310 /* Verify the checksum. */ 2571 /* Verify the checksum. */ 2311 csum_type = btrfs_super_csum_type(sb) 2572 csum_type = btrfs_super_csum_type(sb); 2312 if (csum_type != btrfs_super_csum_typ 2573 if (csum_type != btrfs_super_csum_type(fs_info->super_copy)) { 2313 btrfs_err(fs_info, "csum type 2574 btrfs_err(fs_info, "csum type changed, has %u expect %u", 2314 csum_type, btrfs_su 2575 csum_type, btrfs_super_csum_type(fs_info->super_copy)); 2315 ret = -EUCLEAN; 2576 ret = -EUCLEAN; 2316 goto out; 2577 goto out; 2317 } 2578 } 2318 2579 2319 if (btrfs_check_super_csum(fs_info, s 2580 if (btrfs_check_super_csum(fs_info, sb)) { 2320 btrfs_err(fs_info, "csum for 2581 btrfs_err(fs_info, "csum for on-disk super block no longer matches"); 2321 ret = -EUCLEAN; 2582 ret = -EUCLEAN; 2322 goto out; 2583 goto out; 2323 } 2584 } 2324 2585 2325 /* Btrfs_validate_super() includes fs 2586 /* Btrfs_validate_super() includes fsid check against super->fsid. */ 2326 ret = btrfs_validate_super(fs_info, s 2587 ret = btrfs_validate_super(fs_info, sb, 0); 2327 if (ret < 0) 2588 if (ret < 0) 2328 goto out; 2589 goto out; 2329 2590 2330 last_trans = btrfs_get_last_trans_com !! 2591 if (btrfs_super_generation(sb) != fs_info->last_trans_committed) { 2331 if (btrfs_super_generation(sb) != las << 2332 btrfs_err(fs_info, "transid m 2592 btrfs_err(fs_info, "transid mismatch, has %llu expect %llu", 2333 btrfs_super_generat !! 2593 btrfs_super_generation(sb), >> 2594 fs_info->last_trans_committed); 2334 ret = -EUCLEAN; 2595 ret = -EUCLEAN; 2335 goto out; 2596 goto out; 2336 } 2597 } 2337 out: 2598 out: 2338 btrfs_release_disk_super(sb); 2599 btrfs_release_disk_super(sb); 2339 return ret; 2600 return ret; 2340 } 2601 } 2341 2602 2342 static int btrfs_unfreeze(struct super_block 2603 static int btrfs_unfreeze(struct super_block *sb) 2343 { 2604 { 2344 struct btrfs_fs_info *fs_info = btrfs 2605 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2345 struct btrfs_device *device; 2606 struct btrfs_device *device; 2346 int ret = 0; 2607 int ret = 0; 2347 2608 2348 /* 2609 /* 2349 * Make sure the fs is not changed by 2610 * Make sure the fs is not changed by accident (like hibernation then 2350 * modified by other OS). 2611 * modified by other OS). 2351 * If we found anything wrong, we mar 2612 * If we found anything wrong, we mark the fs error immediately. 2352 * 2613 * 2353 * And since the fs is frozen, no one 2614 * And since the fs is frozen, no one can modify the fs yet, thus 2354 * we don't need to hold device_list_ 2615 * we don't need to hold device_list_mutex. 2355 */ 2616 */ 2356 list_for_each_entry(device, &fs_info- 2617 list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) { 2357 ret = check_dev_super(device) 2618 ret = check_dev_super(device); 2358 if (ret < 0) { 2619 if (ret < 0) { 2359 btrfs_handle_fs_error 2620 btrfs_handle_fs_error(fs_info, ret, 2360 "super block 2621 "super block on devid %llu got modified unexpectedly", 2361 device->devid 2622 device->devid); 2362 break; 2623 break; 2363 } 2624 } 2364 } 2625 } 2365 clear_bit(BTRFS_FS_FROZEN, &fs_info-> 2626 clear_bit(BTRFS_FS_FROZEN, &fs_info->flags); 2366 2627 2367 /* 2628 /* 2368 * We still return 0, to allow VFS la 2629 * We still return 0, to allow VFS layer to unfreeze the fs even the 2369 * above checks failed. Since the fs 2630 * above checks failed. Since the fs is either fine or read-only, we're 2370 * safe to continue, without causing 2631 * safe to continue, without causing further damage. 2371 */ 2632 */ 2372 return 0; 2633 return 0; 2373 } 2634 } 2374 2635 2375 static int btrfs_show_devname(struct seq_file 2636 static int btrfs_show_devname(struct seq_file *m, struct dentry *root) 2376 { 2637 { 2377 struct btrfs_fs_info *fs_info = btrfs 2638 struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb); 2378 2639 2379 /* 2640 /* 2380 * There should be always a valid poi 2641 * There should be always a valid pointer in latest_dev, it may be stale 2381 * for a short moment in case it's be 2642 * for a short moment in case it's being deleted but still valid until 2382 * the end of RCU grace period. 2643 * the end of RCU grace period. 2383 */ 2644 */ 2384 rcu_read_lock(); 2645 rcu_read_lock(); 2385 seq_escape(m, btrfs_dev_name(fs_info- !! 2646 seq_escape(m, rcu_str_deref(fs_info->fs_devices->latest_dev->name), " \t\n\\"); 2386 rcu_read_unlock(); 2647 rcu_read_unlock(); 2387 2648 2388 return 0; 2649 return 0; 2389 } 2650 } 2390 2651 2391 static long btrfs_nr_cached_objects(struct su << 2392 { << 2393 struct btrfs_fs_info *fs_info = btrfs << 2394 const s64 nr = percpu_counter_sum_pos << 2395 << 2396 trace_btrfs_extent_map_shrinker_count << 2397 << 2398 /* << 2399 * Only report the real number for DE << 2400 * serious performance degradation ca << 2401 */ << 2402 if (IS_ENABLED(CONFIG_BTRFS_DEBUG)) << 2403 return nr; << 2404 return 0; << 2405 } << 2406 << 2407 static long btrfs_free_cached_objects(struct << 2408 { << 2409 const long nr_to_scan = min_t(unsigne << 2410 struct btrfs_fs_info *fs_info = btrfs << 2411 << 2412 /* << 2413 * We may be called from any task try << 2414 * want to slow it down with scanning << 2415 * also cause heavy lock contention i << 2416 * here. Therefore only allow kswapd << 2417 */ << 2418 if (!current_is_kswapd()) << 2419 return 0; << 2420 << 2421 return btrfs_free_extent_maps(fs_info << 2422 } << 2423 << 2424 static const struct super_operations btrfs_su 2652 static const struct super_operations btrfs_super_ops = { 2425 .drop_inode = btrfs_drop_inode, 2653 .drop_inode = btrfs_drop_inode, 2426 .evict_inode = btrfs_evict_inode, 2654 .evict_inode = btrfs_evict_inode, 2427 .put_super = btrfs_put_super, 2655 .put_super = btrfs_put_super, 2428 .sync_fs = btrfs_sync_fs, 2656 .sync_fs = btrfs_sync_fs, 2429 .show_options = btrfs_show_options, 2657 .show_options = btrfs_show_options, 2430 .show_devname = btrfs_show_devname, 2658 .show_devname = btrfs_show_devname, 2431 .alloc_inode = btrfs_alloc_inode, 2659 .alloc_inode = btrfs_alloc_inode, 2432 .destroy_inode = btrfs_destroy_inode 2660 .destroy_inode = btrfs_destroy_inode, 2433 .free_inode = btrfs_free_inode, 2661 .free_inode = btrfs_free_inode, 2434 .statfs = btrfs_statfs, 2662 .statfs = btrfs_statfs, >> 2663 .remount_fs = btrfs_remount, 2435 .freeze_fs = btrfs_freeze, 2664 .freeze_fs = btrfs_freeze, 2436 .unfreeze_fs = btrfs_unfreeze, 2665 .unfreeze_fs = btrfs_unfreeze, 2437 .nr_cached_objects = btrfs_nr_cached_ << 2438 .free_cached_objects = btrfs_free_cac << 2439 }; 2666 }; 2440 2667 2441 static const struct file_operations btrfs_ctl 2668 static const struct file_operations btrfs_ctl_fops = { 2442 .open = btrfs_control_open, 2669 .open = btrfs_control_open, 2443 .unlocked_ioctl = btrfs_control_ioct 2670 .unlocked_ioctl = btrfs_control_ioctl, 2444 .compat_ioctl = compat_ptr_ioctl, 2671 .compat_ioctl = compat_ptr_ioctl, 2445 .owner = THIS_MODULE, 2672 .owner = THIS_MODULE, 2446 .llseek = noop_llseek, 2673 .llseek = noop_llseek, 2447 }; 2674 }; 2448 2675 2449 static struct miscdevice btrfs_misc = { 2676 static struct miscdevice btrfs_misc = { 2450 .minor = BTRFS_MINOR, 2677 .minor = BTRFS_MINOR, 2451 .name = "btrfs-control", 2678 .name = "btrfs-control", 2452 .fops = &btrfs_ctl_fops 2679 .fops = &btrfs_ctl_fops 2453 }; 2680 }; 2454 2681 2455 MODULE_ALIAS_MISCDEV(BTRFS_MINOR); 2682 MODULE_ALIAS_MISCDEV(BTRFS_MINOR); 2456 MODULE_ALIAS("devname:btrfs-control"); 2683 MODULE_ALIAS("devname:btrfs-control"); 2457 2684 2458 static int __init btrfs_interface_init(void) 2685 static int __init btrfs_interface_init(void) 2459 { 2686 { 2460 return misc_register(&btrfs_misc); 2687 return misc_register(&btrfs_misc); 2461 } 2688 } 2462 2689 2463 static __cold void btrfs_interface_exit(void) 2690 static __cold void btrfs_interface_exit(void) 2464 { 2691 { 2465 misc_deregister(&btrfs_misc); 2692 misc_deregister(&btrfs_misc); 2466 } 2693 } 2467 2694 2468 static int __init btrfs_print_mod_info(void) !! 2695 static void __init btrfs_print_mod_info(void) 2469 { 2696 { 2470 static const char options[] = "" 2697 static const char options[] = "" 2471 #ifdef CONFIG_BTRFS_DEBUG 2698 #ifdef CONFIG_BTRFS_DEBUG 2472 ", debug=on" 2699 ", debug=on" 2473 #endif 2700 #endif 2474 #ifdef CONFIG_BTRFS_ASSERT 2701 #ifdef CONFIG_BTRFS_ASSERT 2475 ", assert=on" 2702 ", assert=on" 2476 #endif 2703 #endif >> 2704 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY >> 2705 ", integrity-checker=on" >> 2706 #endif 2477 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 2707 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 2478 ", ref-verify=on" 2708 ", ref-verify=on" 2479 #endif 2709 #endif 2480 #ifdef CONFIG_BLK_DEV_ZONED 2710 #ifdef CONFIG_BLK_DEV_ZONED 2481 ", zoned=yes" 2711 ", zoned=yes" 2482 #else 2712 #else 2483 ", zoned=no" 2713 ", zoned=no" 2484 #endif 2714 #endif 2485 #ifdef CONFIG_FS_VERITY 2715 #ifdef CONFIG_FS_VERITY 2486 ", fsverity=yes" 2716 ", fsverity=yes" 2487 #else 2717 #else 2488 ", fsverity=no" 2718 ", fsverity=no" 2489 #endif 2719 #endif 2490 ; 2720 ; 2491 pr_info("Btrfs loaded%s\n", options); !! 2721 pr_info("Btrfs loaded, crc32c=%s%s\n", crc32c_impl(), options); 2492 return 0; << 2493 } 2722 } 2494 2723 2495 static int register_btrfs(void) !! 2724 static int __init init_btrfs_fs(void) 2496 { 2725 { 2497 return register_filesystem(&btrfs_fs_ !! 2726 int err; 2498 } << 2499 2727 2500 static void unregister_btrfs(void) !! 2728 btrfs_props_init(); 2501 { << 2502 unregister_filesystem(&btrfs_fs_type) << 2503 } << 2504 2729 2505 /* Helper structure for long init/exit functi !! 2730 err = btrfs_init_sysfs(); 2506 struct init_sequence { !! 2731 if (err) 2507 int (*init_func)(void); !! 2732 return err; 2508 /* Can be NULL if the init_func doesn << 2509 void (*exit_func)(void); << 2510 }; << 2511 2733 2512 static const struct init_sequence mod_init_se !! 2734 btrfs_init_compress(); 2513 { << 2514 .init_func = btrfs_props_init << 2515 .exit_func = NULL, << 2516 }, { << 2517 .init_func = btrfs_init_sysfs << 2518 .exit_func = btrfs_exit_sysfs << 2519 }, { << 2520 .init_func = btrfs_init_compr << 2521 .exit_func = btrfs_exit_compr << 2522 }, { << 2523 .init_func = btrfs_init_cache << 2524 .exit_func = btrfs_destroy_ca << 2525 }, { << 2526 .init_func = btrfs_init_dio, << 2527 .exit_func = btrfs_destroy_di << 2528 }, { << 2529 .init_func = btrfs_transactio << 2530 .exit_func = btrfs_transactio << 2531 }, { << 2532 .init_func = btrfs_ctree_init << 2533 .exit_func = btrfs_ctree_exit << 2534 }, { << 2535 .init_func = btrfs_free_space << 2536 .exit_func = btrfs_free_space << 2537 }, { << 2538 .init_func = extent_state_ini << 2539 .exit_func = extent_state_fre << 2540 }, { << 2541 .init_func = extent_buffer_in << 2542 .exit_func = extent_buffer_fr << 2543 }, { << 2544 .init_func = btrfs_bioset_ini << 2545 .exit_func = btrfs_bioset_exi << 2546 }, { << 2547 .init_func = extent_map_init, << 2548 .exit_func = extent_map_exit, << 2549 }, { << 2550 .init_func = ordered_data_ini << 2551 .exit_func = ordered_data_exi << 2552 }, { << 2553 .init_func = btrfs_delayed_in << 2554 .exit_func = btrfs_delayed_in << 2555 }, { << 2556 .init_func = btrfs_auto_defra << 2557 .exit_func = btrfs_auto_defra << 2558 }, { << 2559 .init_func = btrfs_delayed_re << 2560 .exit_func = btrfs_delayed_re << 2561 }, { << 2562 .init_func = btrfs_prelim_ref << 2563 .exit_func = btrfs_prelim_ref << 2564 }, { << 2565 .init_func = btrfs_interface_ << 2566 .exit_func = btrfs_interface_ << 2567 }, { << 2568 .init_func = btrfs_print_mod_ << 2569 .exit_func = NULL, << 2570 }, { << 2571 .init_func = btrfs_run_sanity << 2572 .exit_func = NULL, << 2573 }, { << 2574 .init_func = register_btrfs, << 2575 .exit_func = unregister_btrfs << 2576 } << 2577 }; << 2578 2735 2579 static bool mod_init_result[ARRAY_SIZE(mod_in !! 2736 err = btrfs_init_cachep(); >> 2737 if (err) >> 2738 goto free_compress; 2580 2739 2581 static __always_inline void btrfs_exit_btrfs_ !! 2740 err = extent_io_init(); 2582 { !! 2741 if (err) 2583 int i; !! 2742 goto free_cachep; 2584 2743 2585 for (i = ARRAY_SIZE(mod_init_seq) - 1 !! 2744 err = extent_state_cache_init(); 2586 if (!mod_init_result[i]) !! 2745 if (err) 2587 continue; !! 2746 goto free_extent_io; 2588 if (mod_init_seq[i].exit_func !! 2747 2589 mod_init_seq[i].exit_ !! 2748 err = extent_map_init(); 2590 mod_init_result[i] = false; !! 2749 if (err) 2591 } !! 2750 goto free_extent_state_cache; >> 2751 >> 2752 err = ordered_data_init(); >> 2753 if (err) >> 2754 goto free_extent_map; >> 2755 >> 2756 err = btrfs_delayed_inode_init(); >> 2757 if (err) >> 2758 goto free_ordered_data; >> 2759 >> 2760 err = btrfs_auto_defrag_init(); >> 2761 if (err) >> 2762 goto free_delayed_inode; >> 2763 >> 2764 err = btrfs_delayed_ref_init(); >> 2765 if (err) >> 2766 goto free_auto_defrag; >> 2767 >> 2768 err = btrfs_prelim_ref_init(); >> 2769 if (err) >> 2770 goto free_delayed_ref; >> 2771 >> 2772 err = btrfs_interface_init(); >> 2773 if (err) >> 2774 goto free_prelim_ref; >> 2775 >> 2776 btrfs_print_mod_info(); >> 2777 >> 2778 err = btrfs_run_sanity_tests(); >> 2779 if (err) >> 2780 goto unregister_ioctl; >> 2781 >> 2782 err = register_filesystem(&btrfs_fs_type); >> 2783 if (err) >> 2784 goto unregister_ioctl; >> 2785 >> 2786 return 0; >> 2787 >> 2788 unregister_ioctl: >> 2789 btrfs_interface_exit(); >> 2790 free_prelim_ref: >> 2791 btrfs_prelim_ref_exit(); >> 2792 free_delayed_ref: >> 2793 btrfs_delayed_ref_exit(); >> 2794 free_auto_defrag: >> 2795 btrfs_auto_defrag_exit(); >> 2796 free_delayed_inode: >> 2797 btrfs_delayed_inode_exit(); >> 2798 free_ordered_data: >> 2799 ordered_data_exit(); >> 2800 free_extent_map: >> 2801 extent_map_exit(); >> 2802 free_extent_state_cache: >> 2803 extent_state_cache_exit(); >> 2804 free_extent_io: >> 2805 extent_io_exit(); >> 2806 free_cachep: >> 2807 btrfs_destroy_cachep(); >> 2808 free_compress: >> 2809 btrfs_exit_compress(); >> 2810 btrfs_exit_sysfs(); >> 2811 >> 2812 return err; 2592 } 2813 } 2593 2814 2594 static void __exit exit_btrfs_fs(void) 2815 static void __exit exit_btrfs_fs(void) 2595 { 2816 { 2596 btrfs_exit_btrfs_fs(); !! 2817 btrfs_destroy_cachep(); >> 2818 btrfs_delayed_ref_exit(); >> 2819 btrfs_auto_defrag_exit(); >> 2820 btrfs_delayed_inode_exit(); >> 2821 btrfs_prelim_ref_exit(); >> 2822 ordered_data_exit(); >> 2823 extent_map_exit(); >> 2824 extent_state_cache_exit(); >> 2825 extent_io_exit(); >> 2826 btrfs_interface_exit(); >> 2827 unregister_filesystem(&btrfs_fs_type); >> 2828 btrfs_exit_sysfs(); 2597 btrfs_cleanup_fs_uuids(); 2829 btrfs_cleanup_fs_uuids(); 2598 } !! 2830 btrfs_exit_compress(); 2599 << 2600 static int __init init_btrfs_fs(void) << 2601 { << 2602 int ret; << 2603 int i; << 2604 << 2605 for (i = 0; i < ARRAY_SIZE(mod_init_s << 2606 ASSERT(!mod_init_result[i]); << 2607 ret = mod_init_seq[i].init_fu << 2608 if (ret < 0) { << 2609 btrfs_exit_btrfs_fs() << 2610 return ret; << 2611 } << 2612 mod_init_result[i] = true; << 2613 } << 2614 return 0; << 2615 } 2831 } 2616 2832 2617 late_initcall(init_btrfs_fs); 2833 late_initcall(init_btrfs_fs); 2618 module_exit(exit_btrfs_fs) 2834 module_exit(exit_btrfs_fs) 2619 2835 2620 MODULE_DESCRIPTION("B-Tree File System (BTRFS << 2621 MODULE_LICENSE("GPL"); 2836 MODULE_LICENSE("GPL"); 2622 MODULE_SOFTDEP("pre: crc32c"); 2837 MODULE_SOFTDEP("pre: crc32c"); 2623 MODULE_SOFTDEP("pre: xxhash64"); 2838 MODULE_SOFTDEP("pre: xxhash64"); 2624 MODULE_SOFTDEP("pre: sha256"); 2839 MODULE_SOFTDEP("pre: sha256"); 2625 MODULE_SOFTDEP("pre: blake2b-256"); 2840 MODULE_SOFTDEP("pre: blake2b-256"); 2626 2841
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.