1 // SPDX-License-Identifier: GPL-2.0 1 // SPDX-License-Identifier: GPL-2.0 2 /* 2 /* 3 * Copyright (C) 2007 Oracle. All rights rese 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 4 */ 5 5 6 #include <linux/blkdev.h> 6 #include <linux/blkdev.h> 7 #include <linux/module.h> 7 #include <linux/module.h> 8 #include <linux/fs.h> 8 #include <linux/fs.h> 9 #include <linux/pagemap.h> 9 #include <linux/pagemap.h> 10 #include <linux/highmem.h> 10 #include <linux/highmem.h> 11 #include <linux/time.h> 11 #include <linux/time.h> 12 #include <linux/init.h> 12 #include <linux/init.h> 13 #include <linux/seq_file.h> 13 #include <linux/seq_file.h> 14 #include <linux/string.h> 14 #include <linux/string.h> 15 #include <linux/backing-dev.h> 15 #include <linux/backing-dev.h> 16 #include <linux/mount.h> 16 #include <linux/mount.h> 17 #include <linux/writeback.h> 17 #include <linux/writeback.h> 18 #include <linux/statfs.h> 18 #include <linux/statfs.h> 19 #include <linux/compat.h> 19 #include <linux/compat.h> 20 #include <linux/parser.h> 20 #include <linux/parser.h> 21 #include <linux/ctype.h> 21 #include <linux/ctype.h> 22 #include <linux/namei.h> 22 #include <linux/namei.h> 23 #include <linux/miscdevice.h> 23 #include <linux/miscdevice.h> 24 #include <linux/magic.h> 24 #include <linux/magic.h> 25 #include <linux/slab.h> 25 #include <linux/slab.h> 26 #include <linux/ratelimit.h> 26 #include <linux/ratelimit.h> 27 #include <linux/crc32c.h> 27 #include <linux/crc32c.h> 28 #include <linux/btrfs.h> 28 #include <linux/btrfs.h> 29 #include <linux/security.h> 29 #include <linux/security.h> 30 #include <linux/fs_parser.h> 30 #include <linux/fs_parser.h> 31 #include <linux/swap.h> 31 #include <linux/swap.h> 32 #include "messages.h" 32 #include "messages.h" 33 #include "delayed-inode.h" 33 #include "delayed-inode.h" 34 #include "ctree.h" 34 #include "ctree.h" 35 #include "disk-io.h" 35 #include "disk-io.h" 36 #include "transaction.h" 36 #include "transaction.h" 37 #include "btrfs_inode.h" 37 #include "btrfs_inode.h" 38 #include "direct-io.h" 38 #include "direct-io.h" 39 #include "props.h" 39 #include "props.h" 40 #include "xattr.h" 40 #include "xattr.h" 41 #include "bio.h" 41 #include "bio.h" 42 #include "export.h" 42 #include "export.h" 43 #include "compression.h" 43 #include "compression.h" 44 #include "dev-replace.h" 44 #include "dev-replace.h" 45 #include "free-space-cache.h" 45 #include "free-space-cache.h" 46 #include "backref.h" 46 #include "backref.h" 47 #include "space-info.h" 47 #include "space-info.h" 48 #include "sysfs.h" 48 #include "sysfs.h" 49 #include "zoned.h" 49 #include "zoned.h" 50 #include "tests/btrfs-tests.h" 50 #include "tests/btrfs-tests.h" 51 #include "block-group.h" 51 #include "block-group.h" 52 #include "discard.h" 52 #include "discard.h" 53 #include "qgroup.h" 53 #include "qgroup.h" 54 #include "raid56.h" 54 #include "raid56.h" 55 #include "fs.h" 55 #include "fs.h" 56 #include "accessors.h" 56 #include "accessors.h" 57 #include "defrag.h" 57 #include "defrag.h" 58 #include "dir-item.h" 58 #include "dir-item.h" 59 #include "ioctl.h" 59 #include "ioctl.h" 60 #include "scrub.h" 60 #include "scrub.h" 61 #include "verity.h" 61 #include "verity.h" 62 #include "super.h" 62 #include "super.h" 63 #include "extent-tree.h" 63 #include "extent-tree.h" 64 #define CREATE_TRACE_POINTS 64 #define CREATE_TRACE_POINTS 65 #include <trace/events/btrfs.h> 65 #include <trace/events/btrfs.h> 66 66 67 static const struct super_operations btrfs_sup 67 static const struct super_operations btrfs_super_ops; 68 static struct file_system_type btrfs_fs_type; 68 static struct file_system_type btrfs_fs_type; 69 69 70 static void btrfs_put_super(struct super_block 70 static void btrfs_put_super(struct super_block *sb) 71 { 71 { 72 struct btrfs_fs_info *fs_info = btrfs_ 72 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 73 73 74 btrfs_info(fs_info, "last unmount of f 74 btrfs_info(fs_info, "last unmount of filesystem %pU", fs_info->fs_devices->fsid); 75 close_ctree(fs_info); 75 close_ctree(fs_info); 76 } 76 } 77 77 78 /* Store the mount options related information 78 /* Store the mount options related information. */ 79 struct btrfs_fs_context { 79 struct btrfs_fs_context { 80 char *subvol_name; 80 char *subvol_name; 81 u64 subvol_objectid; 81 u64 subvol_objectid; 82 u64 max_inline; 82 u64 max_inline; 83 u32 commit_interval; 83 u32 commit_interval; 84 u32 metadata_ratio; 84 u32 metadata_ratio; 85 u32 thread_pool_size; 85 u32 thread_pool_size; 86 unsigned long long mount_opt; 86 unsigned long long mount_opt; 87 unsigned long compress_type:4; 87 unsigned long compress_type:4; 88 unsigned int compress_level; 88 unsigned int compress_level; 89 refcount_t refs; 89 refcount_t refs; 90 }; 90 }; 91 91 92 enum { 92 enum { 93 Opt_acl, 93 Opt_acl, 94 Opt_clear_cache, 94 Opt_clear_cache, 95 Opt_commit_interval, 95 Opt_commit_interval, 96 Opt_compress, 96 Opt_compress, 97 Opt_compress_force, 97 Opt_compress_force, 98 Opt_compress_force_type, 98 Opt_compress_force_type, 99 Opt_compress_type, 99 Opt_compress_type, 100 Opt_degraded, 100 Opt_degraded, 101 Opt_device, 101 Opt_device, 102 Opt_fatal_errors, 102 Opt_fatal_errors, 103 Opt_flushoncommit, 103 Opt_flushoncommit, 104 Opt_max_inline, 104 Opt_max_inline, 105 Opt_barrier, 105 Opt_barrier, 106 Opt_datacow, 106 Opt_datacow, 107 Opt_datasum, 107 Opt_datasum, 108 Opt_defrag, 108 Opt_defrag, 109 Opt_discard, 109 Opt_discard, 110 Opt_discard_mode, 110 Opt_discard_mode, 111 Opt_ratio, 111 Opt_ratio, 112 Opt_rescan_uuid_tree, 112 Opt_rescan_uuid_tree, 113 Opt_skip_balance, 113 Opt_skip_balance, 114 Opt_space_cache, 114 Opt_space_cache, 115 Opt_space_cache_version, 115 Opt_space_cache_version, 116 Opt_ssd, 116 Opt_ssd, 117 Opt_ssd_spread, 117 Opt_ssd_spread, 118 Opt_subvol, 118 Opt_subvol, 119 Opt_subvol_empty, 119 Opt_subvol_empty, 120 Opt_subvolid, 120 Opt_subvolid, 121 Opt_thread_pool, 121 Opt_thread_pool, 122 Opt_treelog, 122 Opt_treelog, 123 Opt_user_subvol_rm_allowed, 123 Opt_user_subvol_rm_allowed, 124 Opt_norecovery, 124 Opt_norecovery, 125 125 126 /* Rescue options */ 126 /* Rescue options */ 127 Opt_rescue, 127 Opt_rescue, 128 Opt_usebackuproot, 128 Opt_usebackuproot, 129 Opt_nologreplay, 129 Opt_nologreplay, 130 130 131 /* Debugging options */ 131 /* Debugging options */ 132 Opt_enospc_debug, 132 Opt_enospc_debug, 133 #ifdef CONFIG_BTRFS_DEBUG 133 #ifdef CONFIG_BTRFS_DEBUG 134 Opt_fragment, Opt_fragment_data, Opt_f 134 Opt_fragment, Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all, 135 #endif 135 #endif 136 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 136 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 137 Opt_ref_verify, 137 Opt_ref_verify, 138 #endif 138 #endif 139 Opt_err, 139 Opt_err, 140 }; 140 }; 141 141 142 enum { 142 enum { 143 Opt_fatal_errors_panic, 143 Opt_fatal_errors_panic, 144 Opt_fatal_errors_bug, 144 Opt_fatal_errors_bug, 145 }; 145 }; 146 146 147 static const struct constant_table btrfs_param 147 static const struct constant_table btrfs_parameter_fatal_errors[] = { 148 { "panic", Opt_fatal_errors_panic }, 148 { "panic", Opt_fatal_errors_panic }, 149 { "bug", Opt_fatal_errors_bug }, 149 { "bug", Opt_fatal_errors_bug }, 150 {} 150 {} 151 }; 151 }; 152 152 153 enum { 153 enum { 154 Opt_discard_sync, 154 Opt_discard_sync, 155 Opt_discard_async, 155 Opt_discard_async, 156 }; 156 }; 157 157 158 static const struct constant_table btrfs_param 158 static const struct constant_table btrfs_parameter_discard[] = { 159 { "sync", Opt_discard_sync }, 159 { "sync", Opt_discard_sync }, 160 { "async", Opt_discard_async }, 160 { "async", Opt_discard_async }, 161 {} 161 {} 162 }; 162 }; 163 163 164 enum { 164 enum { 165 Opt_space_cache_v1, 165 Opt_space_cache_v1, 166 Opt_space_cache_v2, 166 Opt_space_cache_v2, 167 }; 167 }; 168 168 169 static const struct constant_table btrfs_param 169 static const struct constant_table btrfs_parameter_space_cache[] = { 170 { "v1", Opt_space_cache_v1 }, 170 { "v1", Opt_space_cache_v1 }, 171 { "v2", Opt_space_cache_v2 }, 171 { "v2", Opt_space_cache_v2 }, 172 {} 172 {} 173 }; 173 }; 174 174 175 enum { 175 enum { 176 Opt_rescue_usebackuproot, 176 Opt_rescue_usebackuproot, 177 Opt_rescue_nologreplay, 177 Opt_rescue_nologreplay, 178 Opt_rescue_ignorebadroots, 178 Opt_rescue_ignorebadroots, 179 Opt_rescue_ignoredatacsums, 179 Opt_rescue_ignoredatacsums, 180 Opt_rescue_ignoremetacsums, 180 Opt_rescue_ignoremetacsums, 181 Opt_rescue_ignoresuperflags, 181 Opt_rescue_ignoresuperflags, 182 Opt_rescue_parameter_all, 182 Opt_rescue_parameter_all, 183 }; 183 }; 184 184 185 static const struct constant_table btrfs_param 185 static const struct constant_table btrfs_parameter_rescue[] = { 186 { "usebackuproot", Opt_rescue_usebacku 186 { "usebackuproot", Opt_rescue_usebackuproot }, 187 { "nologreplay", Opt_rescue_nologrepla 187 { "nologreplay", Opt_rescue_nologreplay }, 188 { "ignorebadroots", Opt_rescue_ignoreb 188 { "ignorebadroots", Opt_rescue_ignorebadroots }, 189 { "ibadroots", Opt_rescue_ignorebadroo 189 { "ibadroots", Opt_rescue_ignorebadroots }, 190 { "ignoredatacsums", Opt_rescue_ignore 190 { "ignoredatacsums", Opt_rescue_ignoredatacsums }, 191 { "ignoremetacsums", Opt_rescue_ignore 191 { "ignoremetacsums", Opt_rescue_ignoremetacsums}, 192 { "ignoresuperflags", Opt_rescue_ignor 192 { "ignoresuperflags", Opt_rescue_ignoresuperflags}, 193 { "idatacsums", Opt_rescue_ignoredatac 193 { "idatacsums", Opt_rescue_ignoredatacsums }, 194 { "imetacsums", Opt_rescue_ignoremetac 194 { "imetacsums", Opt_rescue_ignoremetacsums}, 195 { "isuperflags", Opt_rescue_ignoresupe 195 { "isuperflags", Opt_rescue_ignoresuperflags}, 196 { "all", Opt_rescue_parameter_all }, 196 { "all", Opt_rescue_parameter_all }, 197 {} 197 {} 198 }; 198 }; 199 199 200 #ifdef CONFIG_BTRFS_DEBUG 200 #ifdef CONFIG_BTRFS_DEBUG 201 enum { 201 enum { 202 Opt_fragment_parameter_data, 202 Opt_fragment_parameter_data, 203 Opt_fragment_parameter_metadata, 203 Opt_fragment_parameter_metadata, 204 Opt_fragment_parameter_all, 204 Opt_fragment_parameter_all, 205 }; 205 }; 206 206 207 static const struct constant_table btrfs_param 207 static const struct constant_table btrfs_parameter_fragment[] = { 208 { "data", Opt_fragment_parameter_data 208 { "data", Opt_fragment_parameter_data }, 209 { "metadata", Opt_fragment_parameter_m 209 { "metadata", Opt_fragment_parameter_metadata }, 210 { "all", Opt_fragment_parameter_all }, 210 { "all", Opt_fragment_parameter_all }, 211 {} 211 {} 212 }; 212 }; 213 #endif 213 #endif 214 214 215 static const struct fs_parameter_spec btrfs_fs 215 static const struct fs_parameter_spec btrfs_fs_parameters[] = { 216 fsparam_flag_no("acl", Opt_acl), 216 fsparam_flag_no("acl", Opt_acl), 217 fsparam_flag_no("autodefrag", Opt_defr 217 fsparam_flag_no("autodefrag", Opt_defrag), 218 fsparam_flag_no("barrier", Opt_barrier 218 fsparam_flag_no("barrier", Opt_barrier), 219 fsparam_flag("clear_cache", Opt_clear_ 219 fsparam_flag("clear_cache", Opt_clear_cache), 220 fsparam_u32("commit", Opt_commit_inter 220 fsparam_u32("commit", Opt_commit_interval), 221 fsparam_flag("compress", Opt_compress) 221 fsparam_flag("compress", Opt_compress), 222 fsparam_string("compress", Opt_compres 222 fsparam_string("compress", Opt_compress_type), 223 fsparam_flag("compress-force", Opt_com 223 fsparam_flag("compress-force", Opt_compress_force), 224 fsparam_string("compress-force", Opt_c 224 fsparam_string("compress-force", Opt_compress_force_type), 225 fsparam_flag_no("datacow", Opt_datacow 225 fsparam_flag_no("datacow", Opt_datacow), 226 fsparam_flag_no("datasum", Opt_datasum 226 fsparam_flag_no("datasum", Opt_datasum), 227 fsparam_flag("degraded", Opt_degraded) 227 fsparam_flag("degraded", Opt_degraded), 228 fsparam_string("device", Opt_device), 228 fsparam_string("device", Opt_device), 229 fsparam_flag_no("discard", Opt_discard 229 fsparam_flag_no("discard", Opt_discard), 230 fsparam_enum("discard", Opt_discard_mo 230 fsparam_enum("discard", Opt_discard_mode, btrfs_parameter_discard), 231 fsparam_enum("fatal_errors", Opt_fatal 231 fsparam_enum("fatal_errors", Opt_fatal_errors, btrfs_parameter_fatal_errors), 232 fsparam_flag_no("flushoncommit", Opt_f 232 fsparam_flag_no("flushoncommit", Opt_flushoncommit), 233 fsparam_string("max_inline", Opt_max_i 233 fsparam_string("max_inline", Opt_max_inline), 234 fsparam_u32("metadata_ratio", Opt_rati 234 fsparam_u32("metadata_ratio", Opt_ratio), 235 fsparam_flag("rescan_uuid_tree", Opt_r 235 fsparam_flag("rescan_uuid_tree", Opt_rescan_uuid_tree), 236 fsparam_flag("skip_balance", Opt_skip_ 236 fsparam_flag("skip_balance", Opt_skip_balance), 237 fsparam_flag_no("space_cache", Opt_spa 237 fsparam_flag_no("space_cache", Opt_space_cache), 238 fsparam_enum("space_cache", Opt_space_ 238 fsparam_enum("space_cache", Opt_space_cache_version, btrfs_parameter_space_cache), 239 fsparam_flag_no("ssd", Opt_ssd), 239 fsparam_flag_no("ssd", Opt_ssd), 240 fsparam_flag_no("ssd_spread", Opt_ssd_ 240 fsparam_flag_no("ssd_spread", Opt_ssd_spread), 241 fsparam_string("subvol", Opt_subvol), 241 fsparam_string("subvol", Opt_subvol), 242 fsparam_flag("subvol=", Opt_subvol_emp 242 fsparam_flag("subvol=", Opt_subvol_empty), 243 fsparam_u64("subvolid", Opt_subvolid), 243 fsparam_u64("subvolid", Opt_subvolid), 244 fsparam_u32("thread_pool", Opt_thread_ 244 fsparam_u32("thread_pool", Opt_thread_pool), 245 fsparam_flag_no("treelog", Opt_treelog 245 fsparam_flag_no("treelog", Opt_treelog), 246 fsparam_flag("user_subvol_rm_allowed", 246 fsparam_flag("user_subvol_rm_allowed", Opt_user_subvol_rm_allowed), 247 247 248 /* Rescue options. */ 248 /* Rescue options. */ 249 fsparam_enum("rescue", Opt_rescue, btr 249 fsparam_enum("rescue", Opt_rescue, btrfs_parameter_rescue), 250 /* Deprecated, with alias rescue=nolog 250 /* Deprecated, with alias rescue=nologreplay */ 251 __fsparam(NULL, "nologreplay", Opt_nol 251 __fsparam(NULL, "nologreplay", Opt_nologreplay, fs_param_deprecated, NULL), 252 /* Deprecated, with alias rescue=useba 252 /* Deprecated, with alias rescue=usebackuproot */ 253 __fsparam(NULL, "usebackuproot", Opt_u 253 __fsparam(NULL, "usebackuproot", Opt_usebackuproot, fs_param_deprecated, NULL), 254 /* For compatibility only, alias for " 254 /* For compatibility only, alias for "rescue=nologreplay". */ 255 fsparam_flag("norecovery", Opt_norecov 255 fsparam_flag("norecovery", Opt_norecovery), 256 256 257 /* Debugging options. */ 257 /* Debugging options. */ 258 fsparam_flag_no("enospc_debug", Opt_en 258 fsparam_flag_no("enospc_debug", Opt_enospc_debug), 259 #ifdef CONFIG_BTRFS_DEBUG 259 #ifdef CONFIG_BTRFS_DEBUG 260 fsparam_enum("fragment", Opt_fragment, 260 fsparam_enum("fragment", Opt_fragment, btrfs_parameter_fragment), 261 #endif 261 #endif 262 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 262 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 263 fsparam_flag("ref_verify", Opt_ref_ver 263 fsparam_flag("ref_verify", Opt_ref_verify), 264 #endif 264 #endif 265 {} 265 {} 266 }; 266 }; 267 267 268 /* No support for restricting writes to btrfs 268 /* No support for restricting writes to btrfs devices yet... */ 269 static inline blk_mode_t btrfs_open_mode(struc 269 static inline blk_mode_t btrfs_open_mode(struct fs_context *fc) 270 { 270 { 271 return sb_open_mode(fc->sb_flags) & ~B 271 return sb_open_mode(fc->sb_flags) & ~BLK_OPEN_RESTRICT_WRITES; 272 } 272 } 273 273 274 static int btrfs_parse_param(struct fs_context 274 static int btrfs_parse_param(struct fs_context *fc, struct fs_parameter *param) 275 { 275 { 276 struct btrfs_fs_context *ctx = fc->fs_ 276 struct btrfs_fs_context *ctx = fc->fs_private; 277 struct fs_parse_result result; 277 struct fs_parse_result result; 278 int opt; 278 int opt; 279 279 280 opt = fs_parse(fc, btrfs_fs_parameters 280 opt = fs_parse(fc, btrfs_fs_parameters, param, &result); 281 if (opt < 0) 281 if (opt < 0) 282 return opt; 282 return opt; 283 283 284 switch (opt) { 284 switch (opt) { 285 case Opt_degraded: 285 case Opt_degraded: 286 btrfs_set_opt(ctx->mount_opt, 286 btrfs_set_opt(ctx->mount_opt, DEGRADED); 287 break; 287 break; 288 case Opt_subvol_empty: 288 case Opt_subvol_empty: 289 /* 289 /* 290 * This exists because we used 290 * This exists because we used to allow it on accident, so we're 291 * keeping it to maintain ABI. 291 * keeping it to maintain ABI. See 37becec95ac3 ("Btrfs: allow 292 * empty subvol= again"). 292 * empty subvol= again"). 293 */ 293 */ 294 break; 294 break; 295 case Opt_subvol: 295 case Opt_subvol: 296 kfree(ctx->subvol_name); 296 kfree(ctx->subvol_name); 297 ctx->subvol_name = kstrdup(par 297 ctx->subvol_name = kstrdup(param->string, GFP_KERNEL); 298 if (!ctx->subvol_name) 298 if (!ctx->subvol_name) 299 return -ENOMEM; 299 return -ENOMEM; 300 break; 300 break; 301 case Opt_subvolid: 301 case Opt_subvolid: 302 ctx->subvol_objectid = result. 302 ctx->subvol_objectid = result.uint_64; 303 303 304 /* subvolid=0 means give me th 304 /* subvolid=0 means give me the original fs_tree. */ 305 if (!ctx->subvol_objectid) 305 if (!ctx->subvol_objectid) 306 ctx->subvol_objectid = 306 ctx->subvol_objectid = BTRFS_FS_TREE_OBJECTID; 307 break; 307 break; 308 case Opt_device: { 308 case Opt_device: { 309 struct btrfs_device *device; 309 struct btrfs_device *device; 310 blk_mode_t mode = btrfs_open_m 310 blk_mode_t mode = btrfs_open_mode(fc); 311 311 312 mutex_lock(&uuid_mutex); 312 mutex_lock(&uuid_mutex); 313 device = btrfs_scan_one_device 313 device = btrfs_scan_one_device(param->string, mode, false); 314 mutex_unlock(&uuid_mutex); 314 mutex_unlock(&uuid_mutex); 315 if (IS_ERR(device)) 315 if (IS_ERR(device)) 316 return PTR_ERR(device) 316 return PTR_ERR(device); 317 break; 317 break; 318 } 318 } 319 case Opt_datasum: 319 case Opt_datasum: 320 if (result.negated) { 320 if (result.negated) { 321 btrfs_set_opt(ctx->mou 321 btrfs_set_opt(ctx->mount_opt, NODATASUM); 322 } else { 322 } else { 323 btrfs_clear_opt(ctx->m 323 btrfs_clear_opt(ctx->mount_opt, NODATACOW); 324 btrfs_clear_opt(ctx->m 324 btrfs_clear_opt(ctx->mount_opt, NODATASUM); 325 } 325 } 326 break; 326 break; 327 case Opt_datacow: 327 case Opt_datacow: 328 if (result.negated) { 328 if (result.negated) { 329 btrfs_clear_opt(ctx->m 329 btrfs_clear_opt(ctx->mount_opt, COMPRESS); 330 btrfs_clear_opt(ctx->m 330 btrfs_clear_opt(ctx->mount_opt, FORCE_COMPRESS); 331 btrfs_set_opt(ctx->mou 331 btrfs_set_opt(ctx->mount_opt, NODATACOW); 332 btrfs_set_opt(ctx->mou 332 btrfs_set_opt(ctx->mount_opt, NODATASUM); 333 } else { 333 } else { 334 btrfs_clear_opt(ctx->m 334 btrfs_clear_opt(ctx->mount_opt, NODATACOW); 335 } 335 } 336 break; 336 break; 337 case Opt_compress_force: 337 case Opt_compress_force: 338 case Opt_compress_force_type: 338 case Opt_compress_force_type: 339 btrfs_set_opt(ctx->mount_opt, 339 btrfs_set_opt(ctx->mount_opt, FORCE_COMPRESS); 340 fallthrough; 340 fallthrough; 341 case Opt_compress: 341 case Opt_compress: 342 case Opt_compress_type: 342 case Opt_compress_type: 343 /* 343 /* 344 * Provide the same semantics 344 * Provide the same semantics as older kernels that don't use fs 345 * context, specifying the "co 345 * context, specifying the "compress" option clears 346 * "force-compress" without th 346 * "force-compress" without the need to pass 347 * "compress-force=[no|none]" 347 * "compress-force=[no|none]" before specifying "compress". 348 */ 348 */ 349 if (opt != Opt_compress_force 349 if (opt != Opt_compress_force && opt != Opt_compress_force_type) 350 btrfs_clear_opt(ctx->m 350 btrfs_clear_opt(ctx->mount_opt, FORCE_COMPRESS); 351 351 352 if (opt == Opt_compress || opt 352 if (opt == Opt_compress || opt == Opt_compress_force) { 353 ctx->compress_type = B 353 ctx->compress_type = BTRFS_COMPRESS_ZLIB; 354 ctx->compress_level = 354 ctx->compress_level = BTRFS_ZLIB_DEFAULT_LEVEL; 355 btrfs_set_opt(ctx->mou 355 btrfs_set_opt(ctx->mount_opt, COMPRESS); 356 btrfs_clear_opt(ctx->m 356 btrfs_clear_opt(ctx->mount_opt, NODATACOW); 357 btrfs_clear_opt(ctx->m 357 btrfs_clear_opt(ctx->mount_opt, NODATASUM); 358 } else if (strncmp(param->stri 358 } else if (strncmp(param->string, "zlib", 4) == 0) { 359 ctx->compress_type = B 359 ctx->compress_type = BTRFS_COMPRESS_ZLIB; 360 ctx->compress_level = 360 ctx->compress_level = 361 btrfs_compress 361 btrfs_compress_str2level(BTRFS_COMPRESS_ZLIB, 362 362 param->string + 4); 363 btrfs_set_opt(ctx->mou 363 btrfs_set_opt(ctx->mount_opt, COMPRESS); 364 btrfs_clear_opt(ctx->m 364 btrfs_clear_opt(ctx->mount_opt, NODATACOW); 365 btrfs_clear_opt(ctx->m 365 btrfs_clear_opt(ctx->mount_opt, NODATASUM); 366 } else if (strncmp(param->stri 366 } else if (strncmp(param->string, "lzo", 3) == 0) { 367 ctx->compress_type = B 367 ctx->compress_type = BTRFS_COMPRESS_LZO; 368 ctx->compress_level = 368 ctx->compress_level = 0; 369 btrfs_set_opt(ctx->mou 369 btrfs_set_opt(ctx->mount_opt, COMPRESS); 370 btrfs_clear_opt(ctx->m 370 btrfs_clear_opt(ctx->mount_opt, NODATACOW); 371 btrfs_clear_opt(ctx->m 371 btrfs_clear_opt(ctx->mount_opt, NODATASUM); 372 } else if (strncmp(param->stri 372 } else if (strncmp(param->string, "zstd", 4) == 0) { 373 ctx->compress_type = B 373 ctx->compress_type = BTRFS_COMPRESS_ZSTD; 374 ctx->compress_level = 374 ctx->compress_level = 375 btrfs_compress 375 btrfs_compress_str2level(BTRFS_COMPRESS_ZSTD, 376 376 param->string + 4); 377 btrfs_set_opt(ctx->mou 377 btrfs_set_opt(ctx->mount_opt, COMPRESS); 378 btrfs_clear_opt(ctx->m 378 btrfs_clear_opt(ctx->mount_opt, NODATACOW); 379 btrfs_clear_opt(ctx->m 379 btrfs_clear_opt(ctx->mount_opt, NODATASUM); 380 } else if (strncmp(param->stri 380 } else if (strncmp(param->string, "no", 2) == 0) { 381 ctx->compress_level = 381 ctx->compress_level = 0; 382 ctx->compress_type = 0 382 ctx->compress_type = 0; 383 btrfs_clear_opt(ctx->m 383 btrfs_clear_opt(ctx->mount_opt, COMPRESS); 384 btrfs_clear_opt(ctx->m 384 btrfs_clear_opt(ctx->mount_opt, FORCE_COMPRESS); 385 } else { 385 } else { 386 btrfs_err(NULL, "unrec 386 btrfs_err(NULL, "unrecognized compression value %s", 387 param->strin 387 param->string); 388 return -EINVAL; 388 return -EINVAL; 389 } 389 } 390 break; 390 break; 391 case Opt_ssd: 391 case Opt_ssd: 392 if (result.negated) { 392 if (result.negated) { 393 btrfs_set_opt(ctx->mou 393 btrfs_set_opt(ctx->mount_opt, NOSSD); 394 btrfs_clear_opt(ctx->m 394 btrfs_clear_opt(ctx->mount_opt, SSD); 395 btrfs_clear_opt(ctx->m 395 btrfs_clear_opt(ctx->mount_opt, SSD_SPREAD); 396 } else { 396 } else { 397 btrfs_set_opt(ctx->mou 397 btrfs_set_opt(ctx->mount_opt, SSD); 398 btrfs_clear_opt(ctx->m 398 btrfs_clear_opt(ctx->mount_opt, NOSSD); 399 } 399 } 400 break; 400 break; 401 case Opt_ssd_spread: 401 case Opt_ssd_spread: 402 if (result.negated) { 402 if (result.negated) { 403 btrfs_clear_opt(ctx->m 403 btrfs_clear_opt(ctx->mount_opt, SSD_SPREAD); 404 } else { 404 } else { 405 btrfs_set_opt(ctx->mou 405 btrfs_set_opt(ctx->mount_opt, SSD); 406 btrfs_set_opt(ctx->mou 406 btrfs_set_opt(ctx->mount_opt, SSD_SPREAD); 407 btrfs_clear_opt(ctx->m 407 btrfs_clear_opt(ctx->mount_opt, NOSSD); 408 } 408 } 409 break; 409 break; 410 case Opt_barrier: 410 case Opt_barrier: 411 if (result.negated) 411 if (result.negated) 412 btrfs_set_opt(ctx->mou 412 btrfs_set_opt(ctx->mount_opt, NOBARRIER); 413 else 413 else 414 btrfs_clear_opt(ctx->m 414 btrfs_clear_opt(ctx->mount_opt, NOBARRIER); 415 break; 415 break; 416 case Opt_thread_pool: 416 case Opt_thread_pool: 417 if (result.uint_32 == 0) { 417 if (result.uint_32 == 0) { 418 btrfs_err(NULL, "inval 418 btrfs_err(NULL, "invalid value 0 for thread_pool"); 419 return -EINVAL; 419 return -EINVAL; 420 } 420 } 421 ctx->thread_pool_size = result 421 ctx->thread_pool_size = result.uint_32; 422 break; 422 break; 423 case Opt_max_inline: 423 case Opt_max_inline: 424 ctx->max_inline = memparse(par 424 ctx->max_inline = memparse(param->string, NULL); 425 break; 425 break; 426 case Opt_acl: 426 case Opt_acl: 427 if (result.negated) { 427 if (result.negated) { 428 fc->sb_flags &= ~SB_PO 428 fc->sb_flags &= ~SB_POSIXACL; 429 } else { 429 } else { 430 #ifdef CONFIG_BTRFS_FS_POSIX_ACL 430 #ifdef CONFIG_BTRFS_FS_POSIX_ACL 431 fc->sb_flags |= SB_POS 431 fc->sb_flags |= SB_POSIXACL; 432 #else 432 #else 433 btrfs_err(NULL, "suppo 433 btrfs_err(NULL, "support for ACL not compiled in"); 434 return -EINVAL; 434 return -EINVAL; 435 #endif 435 #endif 436 } 436 } 437 /* 437 /* 438 * VFS limits the ability to t 438 * VFS limits the ability to toggle ACL on and off via remount, 439 * despite every file system a 439 * despite every file system allowing this. This seems to be 440 * an oversight since we all d 440 * an oversight since we all do, but it'll fail if we're 441 * remounting. So don't set t 441 * remounting. So don't set the mask here, we'll check it in 442 * btrfs_reconfigure and do th 442 * btrfs_reconfigure and do the toggling ourselves. 443 */ 443 */ 444 if (fc->purpose != FS_CONTEXT_ 444 if (fc->purpose != FS_CONTEXT_FOR_RECONFIGURE) 445 fc->sb_flags_mask |= S 445 fc->sb_flags_mask |= SB_POSIXACL; 446 break; 446 break; 447 case Opt_treelog: 447 case Opt_treelog: 448 if (result.negated) 448 if (result.negated) 449 btrfs_set_opt(ctx->mou 449 btrfs_set_opt(ctx->mount_opt, NOTREELOG); 450 else 450 else 451 btrfs_clear_opt(ctx->m 451 btrfs_clear_opt(ctx->mount_opt, NOTREELOG); 452 break; 452 break; 453 case Opt_nologreplay: 453 case Opt_nologreplay: 454 btrfs_warn(NULL, 454 btrfs_warn(NULL, 455 "'nologreplay' is deprecated, 455 "'nologreplay' is deprecated, use 'rescue=nologreplay' instead"); 456 btrfs_set_opt(ctx->mount_opt, 456 btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY); 457 break; 457 break; 458 case Opt_norecovery: 458 case Opt_norecovery: 459 btrfs_info(NULL, 459 btrfs_info(NULL, 460 "'norecovery' is for compatibility only, recom 460 "'norecovery' is for compatibility only, recommended to use 'rescue=nologreplay'"); 461 btrfs_set_opt(ctx->mount_opt, 461 btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY); 462 break; 462 break; 463 case Opt_flushoncommit: 463 case Opt_flushoncommit: 464 if (result.negated) 464 if (result.negated) 465 btrfs_clear_opt(ctx->m 465 btrfs_clear_opt(ctx->mount_opt, FLUSHONCOMMIT); 466 else 466 else 467 btrfs_set_opt(ctx->mou 467 btrfs_set_opt(ctx->mount_opt, FLUSHONCOMMIT); 468 break; 468 break; 469 case Opt_ratio: 469 case Opt_ratio: 470 ctx->metadata_ratio = result.u 470 ctx->metadata_ratio = result.uint_32; 471 break; 471 break; 472 case Opt_discard: 472 case Opt_discard: 473 if (result.negated) { 473 if (result.negated) { 474 btrfs_clear_opt(ctx->m 474 btrfs_clear_opt(ctx->mount_opt, DISCARD_SYNC); 475 btrfs_clear_opt(ctx->m 475 btrfs_clear_opt(ctx->mount_opt, DISCARD_ASYNC); 476 btrfs_set_opt(ctx->mou 476 btrfs_set_opt(ctx->mount_opt, NODISCARD); 477 } else { 477 } else { 478 btrfs_set_opt(ctx->mou 478 btrfs_set_opt(ctx->mount_opt, DISCARD_SYNC); 479 btrfs_clear_opt(ctx->m 479 btrfs_clear_opt(ctx->mount_opt, DISCARD_ASYNC); 480 } 480 } 481 break; 481 break; 482 case Opt_discard_mode: 482 case Opt_discard_mode: 483 switch (result.uint_32) { 483 switch (result.uint_32) { 484 case Opt_discard_sync: 484 case Opt_discard_sync: 485 btrfs_clear_opt(ctx->m 485 btrfs_clear_opt(ctx->mount_opt, DISCARD_ASYNC); 486 btrfs_set_opt(ctx->mou 486 btrfs_set_opt(ctx->mount_opt, DISCARD_SYNC); 487 break; 487 break; 488 case Opt_discard_async: 488 case Opt_discard_async: 489 btrfs_clear_opt(ctx->m 489 btrfs_clear_opt(ctx->mount_opt, DISCARD_SYNC); 490 btrfs_set_opt(ctx->mou 490 btrfs_set_opt(ctx->mount_opt, DISCARD_ASYNC); 491 break; 491 break; 492 default: 492 default: 493 btrfs_err(NULL, "unrec 493 btrfs_err(NULL, "unrecognized discard mode value %s", 494 param->key); 494 param->key); 495 return -EINVAL; 495 return -EINVAL; 496 } 496 } 497 btrfs_clear_opt(ctx->mount_opt 497 btrfs_clear_opt(ctx->mount_opt, NODISCARD); 498 break; 498 break; 499 case Opt_space_cache: 499 case Opt_space_cache: 500 if (result.negated) { 500 if (result.negated) { 501 btrfs_set_opt(ctx->mou 501 btrfs_set_opt(ctx->mount_opt, NOSPACECACHE); 502 btrfs_clear_opt(ctx->m 502 btrfs_clear_opt(ctx->mount_opt, SPACE_CACHE); 503 btrfs_clear_opt(ctx->m 503 btrfs_clear_opt(ctx->mount_opt, FREE_SPACE_TREE); 504 } else { 504 } else { 505 btrfs_clear_opt(ctx->m 505 btrfs_clear_opt(ctx->mount_opt, FREE_SPACE_TREE); 506 btrfs_set_opt(ctx->mou 506 btrfs_set_opt(ctx->mount_opt, SPACE_CACHE); 507 } 507 } 508 break; 508 break; 509 case Opt_space_cache_version: 509 case Opt_space_cache_version: 510 switch (result.uint_32) { 510 switch (result.uint_32) { 511 case Opt_space_cache_v1: 511 case Opt_space_cache_v1: 512 btrfs_set_opt(ctx->mou 512 btrfs_set_opt(ctx->mount_opt, SPACE_CACHE); 513 btrfs_clear_opt(ctx->m 513 btrfs_clear_opt(ctx->mount_opt, FREE_SPACE_TREE); 514 break; 514 break; 515 case Opt_space_cache_v2: 515 case Opt_space_cache_v2: 516 btrfs_clear_opt(ctx->m 516 btrfs_clear_opt(ctx->mount_opt, SPACE_CACHE); 517 btrfs_set_opt(ctx->mou 517 btrfs_set_opt(ctx->mount_opt, FREE_SPACE_TREE); 518 break; 518 break; 519 default: 519 default: 520 btrfs_err(NULL, "unrec 520 btrfs_err(NULL, "unrecognized space_cache value %s", 521 param->key); 521 param->key); 522 return -EINVAL; 522 return -EINVAL; 523 } 523 } 524 break; 524 break; 525 case Opt_rescan_uuid_tree: 525 case Opt_rescan_uuid_tree: 526 btrfs_set_opt(ctx->mount_opt, 526 btrfs_set_opt(ctx->mount_opt, RESCAN_UUID_TREE); 527 break; 527 break; 528 case Opt_clear_cache: 528 case Opt_clear_cache: 529 btrfs_set_opt(ctx->mount_opt, 529 btrfs_set_opt(ctx->mount_opt, CLEAR_CACHE); 530 break; 530 break; 531 case Opt_user_subvol_rm_allowed: 531 case Opt_user_subvol_rm_allowed: 532 btrfs_set_opt(ctx->mount_opt, 532 btrfs_set_opt(ctx->mount_opt, USER_SUBVOL_RM_ALLOWED); 533 break; 533 break; 534 case Opt_enospc_debug: 534 case Opt_enospc_debug: 535 if (result.negated) 535 if (result.negated) 536 btrfs_clear_opt(ctx->m 536 btrfs_clear_opt(ctx->mount_opt, ENOSPC_DEBUG); 537 else 537 else 538 btrfs_set_opt(ctx->mou 538 btrfs_set_opt(ctx->mount_opt, ENOSPC_DEBUG); 539 break; 539 break; 540 case Opt_defrag: 540 case Opt_defrag: 541 if (result.negated) 541 if (result.negated) 542 btrfs_clear_opt(ctx->m 542 btrfs_clear_opt(ctx->mount_opt, AUTO_DEFRAG); 543 else 543 else 544 btrfs_set_opt(ctx->mou 544 btrfs_set_opt(ctx->mount_opt, AUTO_DEFRAG); 545 break; 545 break; 546 case Opt_usebackuproot: 546 case Opt_usebackuproot: 547 btrfs_warn(NULL, 547 btrfs_warn(NULL, 548 "'usebackuproot' is 548 "'usebackuproot' is deprecated, use 'rescue=usebackuproot' instead"); 549 btrfs_set_opt(ctx->mount_opt, 549 btrfs_set_opt(ctx->mount_opt, USEBACKUPROOT); 550 550 551 /* If we're loading the backup 551 /* If we're loading the backup roots we can't trust the space cache. */ 552 btrfs_set_opt(ctx->mount_opt, 552 btrfs_set_opt(ctx->mount_opt, CLEAR_CACHE); 553 break; 553 break; 554 case Opt_skip_balance: 554 case Opt_skip_balance: 555 btrfs_set_opt(ctx->mount_opt, 555 btrfs_set_opt(ctx->mount_opt, SKIP_BALANCE); 556 break; 556 break; 557 case Opt_fatal_errors: 557 case Opt_fatal_errors: 558 switch (result.uint_32) { 558 switch (result.uint_32) { 559 case Opt_fatal_errors_panic: 559 case Opt_fatal_errors_panic: 560 btrfs_set_opt(ctx->mou 560 btrfs_set_opt(ctx->mount_opt, PANIC_ON_FATAL_ERROR); 561 break; 561 break; 562 case Opt_fatal_errors_bug: 562 case Opt_fatal_errors_bug: 563 btrfs_clear_opt(ctx->m 563 btrfs_clear_opt(ctx->mount_opt, PANIC_ON_FATAL_ERROR); 564 break; 564 break; 565 default: 565 default: 566 btrfs_err(NULL, "unrec 566 btrfs_err(NULL, "unrecognized fatal_errors value %s", 567 param->key); 567 param->key); 568 return -EINVAL; 568 return -EINVAL; 569 } 569 } 570 break; 570 break; 571 case Opt_commit_interval: 571 case Opt_commit_interval: 572 ctx->commit_interval = result. 572 ctx->commit_interval = result.uint_32; 573 if (ctx->commit_interval == 0) 573 if (ctx->commit_interval == 0) 574 ctx->commit_interval = 574 ctx->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 575 break; 575 break; 576 case Opt_rescue: 576 case Opt_rescue: 577 switch (result.uint_32) { 577 switch (result.uint_32) { 578 case Opt_rescue_usebackuproot: 578 case Opt_rescue_usebackuproot: 579 btrfs_set_opt(ctx->mou 579 btrfs_set_opt(ctx->mount_opt, USEBACKUPROOT); 580 break; 580 break; 581 case Opt_rescue_nologreplay: 581 case Opt_rescue_nologreplay: 582 btrfs_set_opt(ctx->mou 582 btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY); 583 break; 583 break; 584 case Opt_rescue_ignorebadroots 584 case Opt_rescue_ignorebadroots: 585 btrfs_set_opt(ctx->mou 585 btrfs_set_opt(ctx->mount_opt, IGNOREBADROOTS); 586 break; 586 break; 587 case Opt_rescue_ignoredatacsum 587 case Opt_rescue_ignoredatacsums: 588 btrfs_set_opt(ctx->mou 588 btrfs_set_opt(ctx->mount_opt, IGNOREDATACSUMS); 589 break; 589 break; 590 case Opt_rescue_ignoremetacsum 590 case Opt_rescue_ignoremetacsums: 591 btrfs_set_opt(ctx->mou 591 btrfs_set_opt(ctx->mount_opt, IGNOREMETACSUMS); 592 break; 592 break; 593 case Opt_rescue_ignoresuperfla 593 case Opt_rescue_ignoresuperflags: 594 btrfs_set_opt(ctx->mou 594 btrfs_set_opt(ctx->mount_opt, IGNORESUPERFLAGS); 595 break; 595 break; 596 case Opt_rescue_parameter_all: 596 case Opt_rescue_parameter_all: 597 btrfs_set_opt(ctx->mou 597 btrfs_set_opt(ctx->mount_opt, IGNOREDATACSUMS); 598 btrfs_set_opt(ctx->mou 598 btrfs_set_opt(ctx->mount_opt, IGNOREMETACSUMS); 599 btrfs_set_opt(ctx->mou 599 btrfs_set_opt(ctx->mount_opt, IGNORESUPERFLAGS); 600 btrfs_set_opt(ctx->mou 600 btrfs_set_opt(ctx->mount_opt, IGNOREBADROOTS); 601 btrfs_set_opt(ctx->mou 601 btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY); 602 break; 602 break; 603 default: 603 default: 604 btrfs_info(NULL, "unre 604 btrfs_info(NULL, "unrecognized rescue option '%s'", 605 param->key) 605 param->key); 606 return -EINVAL; 606 return -EINVAL; 607 } 607 } 608 break; 608 break; 609 #ifdef CONFIG_BTRFS_DEBUG 609 #ifdef CONFIG_BTRFS_DEBUG 610 case Opt_fragment: 610 case Opt_fragment: 611 switch (result.uint_32) { 611 switch (result.uint_32) { 612 case Opt_fragment_parameter_al 612 case Opt_fragment_parameter_all: 613 btrfs_set_opt(ctx->mou 613 btrfs_set_opt(ctx->mount_opt, FRAGMENT_DATA); 614 btrfs_set_opt(ctx->mou 614 btrfs_set_opt(ctx->mount_opt, FRAGMENT_METADATA); 615 break; 615 break; 616 case Opt_fragment_parameter_me 616 case Opt_fragment_parameter_metadata: 617 btrfs_set_opt(ctx->mou 617 btrfs_set_opt(ctx->mount_opt, FRAGMENT_METADATA); 618 break; 618 break; 619 case Opt_fragment_parameter_da 619 case Opt_fragment_parameter_data: 620 btrfs_set_opt(ctx->mou 620 btrfs_set_opt(ctx->mount_opt, FRAGMENT_DATA); 621 break; 621 break; 622 default: 622 default: 623 btrfs_info(NULL, "unre 623 btrfs_info(NULL, "unrecognized fragment option '%s'", 624 param->key) 624 param->key); 625 return -EINVAL; 625 return -EINVAL; 626 } 626 } 627 break; 627 break; 628 #endif 628 #endif 629 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 629 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 630 case Opt_ref_verify: 630 case Opt_ref_verify: 631 btrfs_set_opt(ctx->mount_opt, 631 btrfs_set_opt(ctx->mount_opt, REF_VERIFY); 632 break; 632 break; 633 #endif 633 #endif 634 default: 634 default: 635 btrfs_err(NULL, "unrecognized 635 btrfs_err(NULL, "unrecognized mount option '%s'", param->key); 636 return -EINVAL; 636 return -EINVAL; 637 } 637 } 638 638 639 return 0; 639 return 0; 640 } 640 } 641 641 642 /* 642 /* 643 * Some options only have meaning at mount tim 643 * Some options only have meaning at mount time and shouldn't persist across 644 * remounts, or be displayed. Clear these at t 644 * remounts, or be displayed. Clear these at the end of mount and remount code 645 * paths. 645 * paths. 646 */ 646 */ 647 static void btrfs_clear_oneshot_options(struct 647 static void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info) 648 { 648 { 649 btrfs_clear_opt(fs_info->mount_opt, US 649 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT); 650 btrfs_clear_opt(fs_info->mount_opt, CL 650 btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE); 651 btrfs_clear_opt(fs_info->mount_opt, NO 651 btrfs_clear_opt(fs_info->mount_opt, NOSPACECACHE); 652 } 652 } 653 653 654 static bool check_ro_option(const struct btrfs 654 static bool check_ro_option(const struct btrfs_fs_info *fs_info, 655 unsigned long long 655 unsigned long long mount_opt, unsigned long long opt, 656 const char *opt_na 656 const char *opt_name) 657 { 657 { 658 if (mount_opt & opt) { 658 if (mount_opt & opt) { 659 btrfs_err(fs_info, "%s must be 659 btrfs_err(fs_info, "%s must be used with ro mount option", 660 opt_name); 660 opt_name); 661 return true; 661 return true; 662 } 662 } 663 return false; 663 return false; 664 } 664 } 665 665 666 bool btrfs_check_options(const struct btrfs_fs 666 bool btrfs_check_options(const struct btrfs_fs_info *info, 667 unsigned long long *m 667 unsigned long long *mount_opt, 668 unsigned long flags) 668 unsigned long flags) 669 { 669 { 670 bool ret = true; 670 bool ret = true; 671 671 672 if (!(flags & SB_RDONLY) && 672 if (!(flags & SB_RDONLY) && 673 (check_ro_option(info, *mount_opt, 673 (check_ro_option(info, *mount_opt, BTRFS_MOUNT_NOLOGREPLAY, "nologreplay") || 674 check_ro_option(info, *mount_opt, 674 check_ro_option(info, *mount_opt, BTRFS_MOUNT_IGNOREBADROOTS, "ignorebadroots") || 675 check_ro_option(info, *mount_opt, 675 check_ro_option(info, *mount_opt, BTRFS_MOUNT_IGNOREDATACSUMS, "ignoredatacsums") || 676 check_ro_option(info, *mount_opt, 676 check_ro_option(info, *mount_opt, BTRFS_MOUNT_IGNOREMETACSUMS, "ignoremetacsums") || 677 check_ro_option(info, *mount_opt, 677 check_ro_option(info, *mount_opt, BTRFS_MOUNT_IGNORESUPERFLAGS, "ignoresuperflags"))) 678 ret = false; 678 ret = false; 679 679 680 if (btrfs_fs_compat_ro(info, FREE_SPAC 680 if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) && 681 !btrfs_raw_test_opt(*mount_opt, FR 681 !btrfs_raw_test_opt(*mount_opt, FREE_SPACE_TREE) && 682 !btrfs_raw_test_opt(*mount_opt, CL 682 !btrfs_raw_test_opt(*mount_opt, CLEAR_CACHE)) { 683 btrfs_err(info, "cannot disabl 683 btrfs_err(info, "cannot disable free-space-tree"); 684 ret = false; 684 ret = false; 685 } 685 } 686 if (btrfs_fs_compat_ro(info, BLOCK_GRO 686 if (btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE) && 687 !btrfs_raw_test_opt(*mount_opt, F 687 !btrfs_raw_test_opt(*mount_opt, FREE_SPACE_TREE)) { 688 btrfs_err(info, "cannot disabl 688 btrfs_err(info, "cannot disable free-space-tree with block-group-tree feature"); 689 ret = false; 689 ret = false; 690 } 690 } 691 691 692 if (btrfs_check_mountopts_zoned(info, 692 if (btrfs_check_mountopts_zoned(info, mount_opt)) 693 ret = false; 693 ret = false; 694 694 695 if (!test_bit(BTRFS_FS_STATE_REMOUNTIN 695 if (!test_bit(BTRFS_FS_STATE_REMOUNTING, &info->fs_state)) { 696 if (btrfs_raw_test_opt(*mount_ 696 if (btrfs_raw_test_opt(*mount_opt, SPACE_CACHE)) { 697 btrfs_info(info, "disk 697 btrfs_info(info, "disk space caching is enabled"); 698 btrfs_warn(info, 698 btrfs_warn(info, 699 "space cache v1 is being deprecated and will b 699 "space cache v1 is being deprecated and will be removed in a future release, please use -o space_cache=v2"); 700 } 700 } 701 if (btrfs_raw_test_opt(*mount_ 701 if (btrfs_raw_test_opt(*mount_opt, FREE_SPACE_TREE)) 702 btrfs_info(info, "usin 702 btrfs_info(info, "using free-space-tree"); 703 } 703 } 704 704 705 return ret; 705 return ret; 706 } 706 } 707 707 708 /* 708 /* 709 * This is subtle, we only call this during op 709 * This is subtle, we only call this during open_ctree(). We need to pre-load 710 * the mount options with the on-disk settings 710 * the mount options with the on-disk settings. Before the new mount API took 711 * effect we would do this on mount and remoun 711 * effect we would do this on mount and remount. With the new mount API we'll 712 * only do this on the initial mount. 712 * only do this on the initial mount. 713 * 713 * 714 * This isn't a change in behavior, because we 714 * This isn't a change in behavior, because we're using the current state of the 715 * file system to set the current mount option 715 * file system to set the current mount options. If you mounted with special 716 * options to disable these features and then 716 * options to disable these features and then remounted we wouldn't revert the 717 * settings, because mounting without these fe 717 * settings, because mounting without these features cleared the on-disk 718 * settings, so this being called on re-mount 718 * settings, so this being called on re-mount is not needed. 719 */ 719 */ 720 void btrfs_set_free_space_cache_settings(struc 720 void btrfs_set_free_space_cache_settings(struct btrfs_fs_info *fs_info) 721 { 721 { 722 if (fs_info->sectorsize < PAGE_SIZE) { 722 if (fs_info->sectorsize < PAGE_SIZE) { 723 btrfs_clear_opt(fs_info->mount 723 btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE); 724 if (!btrfs_test_opt(fs_info, F 724 if (!btrfs_test_opt(fs_info, FREE_SPACE_TREE)) { 725 btrfs_info(fs_info, 725 btrfs_info(fs_info, 726 "forcing fr 726 "forcing free space tree for sector size %u with page size %lu", 727 fs_info->se 727 fs_info->sectorsize, PAGE_SIZE); 728 btrfs_set_opt(fs_info- 728 btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE); 729 } 729 } 730 } 730 } 731 731 732 /* 732 /* 733 * At this point our mount options are 733 * At this point our mount options are populated, so we only mess with 734 * these settings if we don't have any 734 * these settings if we don't have any settings already. 735 */ 735 */ 736 if (btrfs_test_opt(fs_info, FREE_SPACE 736 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE)) 737 return; 737 return; 738 738 739 if (btrfs_is_zoned(fs_info) && 739 if (btrfs_is_zoned(fs_info) && 740 btrfs_free_space_cache_v1_active(f 740 btrfs_free_space_cache_v1_active(fs_info)) { 741 btrfs_info(fs_info, "zoned: cl 741 btrfs_info(fs_info, "zoned: clearing existing space cache"); 742 btrfs_set_super_cache_generati 742 btrfs_set_super_cache_generation(fs_info->super_copy, 0); 743 return; 743 return; 744 } 744 } 745 745 746 if (btrfs_test_opt(fs_info, SPACE_CACH 746 if (btrfs_test_opt(fs_info, SPACE_CACHE)) 747 return; 747 return; 748 748 749 if (btrfs_test_opt(fs_info, NOSPACECAC 749 if (btrfs_test_opt(fs_info, NOSPACECACHE)) 750 return; 750 return; 751 751 752 /* 752 /* 753 * At this point we don't have explici 753 * At this point we don't have explicit options set by the user, set 754 * them ourselves based on the state o 754 * them ourselves based on the state of the file system. 755 */ 755 */ 756 if (btrfs_fs_compat_ro(fs_info, FREE_S 756 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) 757 btrfs_set_opt(fs_info->mount_o 757 btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE); 758 else if (btrfs_free_space_cache_v1_act 758 else if (btrfs_free_space_cache_v1_active(fs_info)) 759 btrfs_set_opt(fs_info->mount_o 759 btrfs_set_opt(fs_info->mount_opt, SPACE_CACHE); 760 } 760 } 761 761 762 static void set_device_specific_options(struct 762 static void set_device_specific_options(struct btrfs_fs_info *fs_info) 763 { 763 { 764 if (!btrfs_test_opt(fs_info, NOSSD) && 764 if (!btrfs_test_opt(fs_info, NOSSD) && 765 !fs_info->fs_devices->rotating) 765 !fs_info->fs_devices->rotating) 766 btrfs_set_opt(fs_info->mount_o 766 btrfs_set_opt(fs_info->mount_opt, SSD); 767 767 768 /* 768 /* 769 * For devices supporting discard turn 769 * For devices supporting discard turn on discard=async automatically, 770 * unless it's already set or disabled 770 * unless it's already set or disabled. This could be turned off by 771 * nodiscard for the same mount. 771 * nodiscard for the same mount. 772 * 772 * 773 * The zoned mode piggy backs on the d 773 * The zoned mode piggy backs on the discard functionality for 774 * resetting a zone. There is no reaso 774 * resetting a zone. There is no reason to delay the zone reset as it is 775 * fast enough. So, do not enable asyn 775 * fast enough. So, do not enable async discard for zoned mode. 776 */ 776 */ 777 if (!(btrfs_test_opt(fs_info, DISCARD_ 777 if (!(btrfs_test_opt(fs_info, DISCARD_SYNC) || 778 btrfs_test_opt(fs_info, DISCARD_ 778 btrfs_test_opt(fs_info, DISCARD_ASYNC) || 779 btrfs_test_opt(fs_info, NODISCAR 779 btrfs_test_opt(fs_info, NODISCARD)) && 780 fs_info->fs_devices->discardable & 780 fs_info->fs_devices->discardable && 781 !btrfs_is_zoned(fs_info)) 781 !btrfs_is_zoned(fs_info)) 782 btrfs_set_opt(fs_info->mount_o 782 btrfs_set_opt(fs_info->mount_opt, DISCARD_ASYNC); 783 } 783 } 784 784 785 char *btrfs_get_subvol_name_from_objectid(stru 785 char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info, 786 u64 786 u64 subvol_objectid) 787 { 787 { 788 struct btrfs_root *root = fs_info->tre 788 struct btrfs_root *root = fs_info->tree_root; 789 struct btrfs_root *fs_root = NULL; 789 struct btrfs_root *fs_root = NULL; 790 struct btrfs_root_ref *root_ref; 790 struct btrfs_root_ref *root_ref; 791 struct btrfs_inode_ref *inode_ref; 791 struct btrfs_inode_ref *inode_ref; 792 struct btrfs_key key; 792 struct btrfs_key key; 793 struct btrfs_path *path = NULL; 793 struct btrfs_path *path = NULL; 794 char *name = NULL, *ptr; 794 char *name = NULL, *ptr; 795 u64 dirid; 795 u64 dirid; 796 int len; 796 int len; 797 int ret; 797 int ret; 798 798 799 path = btrfs_alloc_path(); 799 path = btrfs_alloc_path(); 800 if (!path) { 800 if (!path) { 801 ret = -ENOMEM; 801 ret = -ENOMEM; 802 goto err; 802 goto err; 803 } 803 } 804 804 805 name = kmalloc(PATH_MAX, GFP_KERNEL); 805 name = kmalloc(PATH_MAX, GFP_KERNEL); 806 if (!name) { 806 if (!name) { 807 ret = -ENOMEM; 807 ret = -ENOMEM; 808 goto err; 808 goto err; 809 } 809 } 810 ptr = name + PATH_MAX - 1; 810 ptr = name + PATH_MAX - 1; 811 ptr[0] = '\0'; 811 ptr[0] = '\0'; 812 812 813 /* 813 /* 814 * Walk up the subvolume trees in the 814 * Walk up the subvolume trees in the tree of tree roots by root 815 * backrefs until we hit the top-level 815 * backrefs until we hit the top-level subvolume. 816 */ 816 */ 817 while (subvol_objectid != BTRFS_FS_TRE 817 while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) { 818 key.objectid = subvol_objectid 818 key.objectid = subvol_objectid; 819 key.type = BTRFS_ROOT_BACKREF_ 819 key.type = BTRFS_ROOT_BACKREF_KEY; 820 key.offset = (u64)-1; 820 key.offset = (u64)-1; 821 821 822 ret = btrfs_search_backwards(r 822 ret = btrfs_search_backwards(root, &key, path); 823 if (ret < 0) { 823 if (ret < 0) { 824 goto err; 824 goto err; 825 } else if (ret > 0) { 825 } else if (ret > 0) { 826 ret = -ENOENT; 826 ret = -ENOENT; 827 goto err; 827 goto err; 828 } 828 } 829 829 830 subvol_objectid = key.offset; 830 subvol_objectid = key.offset; 831 831 832 root_ref = btrfs_item_ptr(path 832 root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0], 833 stru 833 struct btrfs_root_ref); 834 len = btrfs_root_ref_name_len( 834 len = btrfs_root_ref_name_len(path->nodes[0], root_ref); 835 ptr -= len + 1; 835 ptr -= len + 1; 836 if (ptr < name) { 836 if (ptr < name) { 837 ret = -ENAMETOOLONG; 837 ret = -ENAMETOOLONG; 838 goto err; 838 goto err; 839 } 839 } 840 read_extent_buffer(path->nodes 840 read_extent_buffer(path->nodes[0], ptr + 1, 841 (unsigned l 841 (unsigned long)(root_ref + 1), len); 842 ptr[0] = '/'; 842 ptr[0] = '/'; 843 dirid = btrfs_root_ref_dirid(p 843 dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref); 844 btrfs_release_path(path); 844 btrfs_release_path(path); 845 845 846 fs_root = btrfs_get_fs_root(fs 846 fs_root = btrfs_get_fs_root(fs_info, subvol_objectid, true); 847 if (IS_ERR(fs_root)) { 847 if (IS_ERR(fs_root)) { 848 ret = PTR_ERR(fs_root) 848 ret = PTR_ERR(fs_root); 849 fs_root = NULL; 849 fs_root = NULL; 850 goto err; 850 goto err; 851 } 851 } 852 852 853 /* 853 /* 854 * Walk up the filesystem tree 854 * Walk up the filesystem tree by inode refs until we hit the 855 * root directory. 855 * root directory. 856 */ 856 */ 857 while (dirid != BTRFS_FIRST_FR 857 while (dirid != BTRFS_FIRST_FREE_OBJECTID) { 858 key.objectid = dirid; 858 key.objectid = dirid; 859 key.type = BTRFS_INODE 859 key.type = BTRFS_INODE_REF_KEY; 860 key.offset = (u64)-1; 860 key.offset = (u64)-1; 861 861 862 ret = btrfs_search_bac 862 ret = btrfs_search_backwards(fs_root, &key, path); 863 if (ret < 0) { 863 if (ret < 0) { 864 goto err; 864 goto err; 865 } else if (ret > 0) { 865 } else if (ret > 0) { 866 ret = -ENOENT; 866 ret = -ENOENT; 867 goto err; 867 goto err; 868 } 868 } 869 869 870 dirid = key.offset; 870 dirid = key.offset; 871 871 872 inode_ref = btrfs_item 872 inode_ref = btrfs_item_ptr(path->nodes[0], 873 873 path->slots[0], 874 874 struct btrfs_inode_ref); 875 len = btrfs_inode_ref_ 875 len = btrfs_inode_ref_name_len(path->nodes[0], 876 876 inode_ref); 877 ptr -= len + 1; 877 ptr -= len + 1; 878 if (ptr < name) { 878 if (ptr < name) { 879 ret = -ENAMETO 879 ret = -ENAMETOOLONG; 880 goto err; 880 goto err; 881 } 881 } 882 read_extent_buffer(pat 882 read_extent_buffer(path->nodes[0], ptr + 1, 883 (un 883 (unsigned long)(inode_ref + 1), len); 884 ptr[0] = '/'; 884 ptr[0] = '/'; 885 btrfs_release_path(pat 885 btrfs_release_path(path); 886 } 886 } 887 btrfs_put_root(fs_root); 887 btrfs_put_root(fs_root); 888 fs_root = NULL; 888 fs_root = NULL; 889 } 889 } 890 890 891 btrfs_free_path(path); 891 btrfs_free_path(path); 892 if (ptr == name + PATH_MAX - 1) { 892 if (ptr == name + PATH_MAX - 1) { 893 name[0] = '/'; 893 name[0] = '/'; 894 name[1] = '\0'; 894 name[1] = '\0'; 895 } else { 895 } else { 896 memmove(name, ptr, name + PATH 896 memmove(name, ptr, name + PATH_MAX - ptr); 897 } 897 } 898 return name; 898 return name; 899 899 900 err: 900 err: 901 btrfs_put_root(fs_root); 901 btrfs_put_root(fs_root); 902 btrfs_free_path(path); 902 btrfs_free_path(path); 903 kfree(name); 903 kfree(name); 904 return ERR_PTR(ret); 904 return ERR_PTR(ret); 905 } 905 } 906 906 907 static int get_default_subvol_objectid(struct 907 static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid) 908 { 908 { 909 struct btrfs_root *root = fs_info->tre 909 struct btrfs_root *root = fs_info->tree_root; 910 struct btrfs_dir_item *di; 910 struct btrfs_dir_item *di; 911 struct btrfs_path *path; 911 struct btrfs_path *path; 912 struct btrfs_key location; 912 struct btrfs_key location; 913 struct fscrypt_str name = FSTR_INIT("d 913 struct fscrypt_str name = FSTR_INIT("default", 7); 914 u64 dir_id; 914 u64 dir_id; 915 915 916 path = btrfs_alloc_path(); 916 path = btrfs_alloc_path(); 917 if (!path) 917 if (!path) 918 return -ENOMEM; 918 return -ENOMEM; 919 919 920 /* 920 /* 921 * Find the "default" dir item which p 921 * Find the "default" dir item which points to the root item that we 922 * will mount by default if we haven't 922 * will mount by default if we haven't been given a specific subvolume 923 * to mount. 923 * to mount. 924 */ 924 */ 925 dir_id = btrfs_super_root_dir(fs_info- 925 dir_id = btrfs_super_root_dir(fs_info->super_copy); 926 di = btrfs_lookup_dir_item(NULL, root, 926 di = btrfs_lookup_dir_item(NULL, root, path, dir_id, &name, 0); 927 if (IS_ERR(di)) { 927 if (IS_ERR(di)) { 928 btrfs_free_path(path); 928 btrfs_free_path(path); 929 return PTR_ERR(di); 929 return PTR_ERR(di); 930 } 930 } 931 if (!di) { 931 if (!di) { 932 /* 932 /* 933 * Ok the default dir item isn 933 * Ok the default dir item isn't there. This is weird since 934 * it's always been there, but 934 * it's always been there, but don't freak out, just try and 935 * mount the top-level subvolu 935 * mount the top-level subvolume. 936 */ 936 */ 937 btrfs_free_path(path); 937 btrfs_free_path(path); 938 *objectid = BTRFS_FS_TREE_OBJE 938 *objectid = BTRFS_FS_TREE_OBJECTID; 939 return 0; 939 return 0; 940 } 940 } 941 941 942 btrfs_dir_item_key_to_cpu(path->nodes[ 942 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); 943 btrfs_free_path(path); 943 btrfs_free_path(path); 944 *objectid = location.objectid; 944 *objectid = location.objectid; 945 return 0; 945 return 0; 946 } 946 } 947 947 948 static int btrfs_fill_super(struct super_block 948 static int btrfs_fill_super(struct super_block *sb, 949 struct btrfs_fs_de 949 struct btrfs_fs_devices *fs_devices, 950 void *data) 950 void *data) 951 { 951 { 952 struct inode *inode; 952 struct inode *inode; 953 struct btrfs_fs_info *fs_info = btrfs_ 953 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 954 int err; 954 int err; 955 955 956 sb->s_maxbytes = MAX_LFS_FILESIZE; 956 sb->s_maxbytes = MAX_LFS_FILESIZE; 957 sb->s_magic = BTRFS_SUPER_MAGIC; 957 sb->s_magic = BTRFS_SUPER_MAGIC; 958 sb->s_op = &btrfs_super_ops; 958 sb->s_op = &btrfs_super_ops; 959 sb->s_d_op = &btrfs_dentry_operations; 959 sb->s_d_op = &btrfs_dentry_operations; 960 sb->s_export_op = &btrfs_export_ops; 960 sb->s_export_op = &btrfs_export_ops; 961 #ifdef CONFIG_FS_VERITY 961 #ifdef CONFIG_FS_VERITY 962 sb->s_vop = &btrfs_verityops; 962 sb->s_vop = &btrfs_verityops; 963 #endif 963 #endif 964 sb->s_xattr = btrfs_xattr_handlers; 964 sb->s_xattr = btrfs_xattr_handlers; 965 sb->s_time_gran = 1; 965 sb->s_time_gran = 1; 966 sb->s_iflags |= SB_I_CGROUPWB; 966 sb->s_iflags |= SB_I_CGROUPWB; 967 967 968 err = super_setup_bdi(sb); 968 err = super_setup_bdi(sb); 969 if (err) { 969 if (err) { 970 btrfs_err(fs_info, "super_setu 970 btrfs_err(fs_info, "super_setup_bdi failed"); 971 return err; 971 return err; 972 } 972 } 973 973 974 err = open_ctree(sb, fs_devices, (char 974 err = open_ctree(sb, fs_devices, (char *)data); 975 if (err) { 975 if (err) { 976 btrfs_err(fs_info, "open_ctree 976 btrfs_err(fs_info, "open_ctree failed"); 977 return err; 977 return err; 978 } 978 } 979 979 980 inode = btrfs_iget(BTRFS_FIRST_FREE_OB 980 inode = btrfs_iget(BTRFS_FIRST_FREE_OBJECTID, fs_info->fs_root); 981 if (IS_ERR(inode)) { 981 if (IS_ERR(inode)) { 982 err = PTR_ERR(inode); 982 err = PTR_ERR(inode); 983 btrfs_handle_fs_error(fs_info, 983 btrfs_handle_fs_error(fs_info, err, NULL); 984 goto fail_close; 984 goto fail_close; 985 } 985 } 986 986 987 sb->s_root = d_make_root(inode); 987 sb->s_root = d_make_root(inode); 988 if (!sb->s_root) { 988 if (!sb->s_root) { 989 err = -ENOMEM; 989 err = -ENOMEM; 990 goto fail_close; 990 goto fail_close; 991 } 991 } 992 992 993 sb->s_flags |= SB_ACTIVE; 993 sb->s_flags |= SB_ACTIVE; 994 return 0; 994 return 0; 995 995 996 fail_close: 996 fail_close: 997 close_ctree(fs_info); 997 close_ctree(fs_info); 998 return err; 998 return err; 999 } 999 } 1000 1000 1001 int btrfs_sync_fs(struct super_block *sb, int 1001 int btrfs_sync_fs(struct super_block *sb, int wait) 1002 { 1002 { 1003 struct btrfs_trans_handle *trans; 1003 struct btrfs_trans_handle *trans; 1004 struct btrfs_fs_info *fs_info = btrfs 1004 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1005 struct btrfs_root *root = fs_info->tr 1005 struct btrfs_root *root = fs_info->tree_root; 1006 1006 1007 trace_btrfs_sync_fs(fs_info, wait); 1007 trace_btrfs_sync_fs(fs_info, wait); 1008 1008 1009 if (!wait) { 1009 if (!wait) { 1010 filemap_flush(fs_info->btree_ 1010 filemap_flush(fs_info->btree_inode->i_mapping); 1011 return 0; 1011 return 0; 1012 } 1012 } 1013 1013 1014 btrfs_wait_ordered_roots(fs_info, U64 1014 btrfs_wait_ordered_roots(fs_info, U64_MAX, NULL); 1015 1015 1016 trans = btrfs_attach_transaction_barr 1016 trans = btrfs_attach_transaction_barrier(root); 1017 if (IS_ERR(trans)) { 1017 if (IS_ERR(trans)) { 1018 /* no transaction, don't both 1018 /* no transaction, don't bother */ 1019 if (PTR_ERR(trans) == -ENOENT 1019 if (PTR_ERR(trans) == -ENOENT) { 1020 /* 1020 /* 1021 * Exit unless we hav 1021 * Exit unless we have some pending changes 1022 * that need to go th 1022 * that need to go through commit 1023 */ 1023 */ 1024 if (!test_bit(BTRFS_F 1024 if (!test_bit(BTRFS_FS_NEED_TRANS_COMMIT, 1025 &fs_inf 1025 &fs_info->flags)) 1026 return 0; 1026 return 0; 1027 /* 1027 /* 1028 * A non-blocking tes 1028 * A non-blocking test if the fs is frozen. We must not 1029 * start a new transa 1029 * start a new transaction here otherwise a deadlock 1030 * happens. The pendi 1030 * happens. The pending operations are delayed to the 1031 * next commit after 1031 * next commit after thawing. 1032 */ 1032 */ 1033 if (sb_start_write_tr 1033 if (sb_start_write_trylock(sb)) 1034 sb_end_write( 1034 sb_end_write(sb); 1035 else 1035 else 1036 return 0; 1036 return 0; 1037 trans = btrfs_start_t 1037 trans = btrfs_start_transaction(root, 0); 1038 } 1038 } 1039 if (IS_ERR(trans)) 1039 if (IS_ERR(trans)) 1040 return PTR_ERR(trans) 1040 return PTR_ERR(trans); 1041 } 1041 } 1042 return btrfs_commit_transaction(trans 1042 return btrfs_commit_transaction(trans); 1043 } 1043 } 1044 1044 1045 static void print_rescue_option(struct seq_fi 1045 static void print_rescue_option(struct seq_file *seq, const char *s, bool *printed) 1046 { 1046 { 1047 seq_printf(seq, "%s%s", (*printed) ? 1047 seq_printf(seq, "%s%s", (*printed) ? ":" : ",rescue=", s); 1048 *printed = true; 1048 *printed = true; 1049 } 1049 } 1050 1050 1051 static int btrfs_show_options(struct seq_file 1051 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry) 1052 { 1052 { 1053 struct btrfs_fs_info *info = btrfs_sb 1053 struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb); 1054 const char *compress_type; 1054 const char *compress_type; 1055 const char *subvol_name; 1055 const char *subvol_name; 1056 bool printed = false; 1056 bool printed = false; 1057 1057 1058 if (btrfs_test_opt(info, DEGRADED)) 1058 if (btrfs_test_opt(info, DEGRADED)) 1059 seq_puts(seq, ",degraded"); 1059 seq_puts(seq, ",degraded"); 1060 if (btrfs_test_opt(info, NODATASUM)) 1060 if (btrfs_test_opt(info, NODATASUM)) 1061 seq_puts(seq, ",nodatasum"); 1061 seq_puts(seq, ",nodatasum"); 1062 if (btrfs_test_opt(info, NODATACOW)) 1062 if (btrfs_test_opt(info, NODATACOW)) 1063 seq_puts(seq, ",nodatacow"); 1063 seq_puts(seq, ",nodatacow"); 1064 if (btrfs_test_opt(info, NOBARRIER)) 1064 if (btrfs_test_opt(info, NOBARRIER)) 1065 seq_puts(seq, ",nobarrier"); 1065 seq_puts(seq, ",nobarrier"); 1066 if (info->max_inline != BTRFS_DEFAULT 1066 if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE) 1067 seq_printf(seq, ",max_inline= 1067 seq_printf(seq, ",max_inline=%llu", info->max_inline); 1068 if (info->thread_pool_size != min_t( 1068 if (info->thread_pool_size != min_t(unsigned long, 1069 1069 num_online_cpus() + 2, 8)) 1070 seq_printf(seq, ",thread_pool 1070 seq_printf(seq, ",thread_pool=%u", info->thread_pool_size); 1071 if (btrfs_test_opt(info, COMPRESS)) { 1071 if (btrfs_test_opt(info, COMPRESS)) { 1072 compress_type = btrfs_compres 1072 compress_type = btrfs_compress_type2str(info->compress_type); 1073 if (btrfs_test_opt(info, FORC 1073 if (btrfs_test_opt(info, FORCE_COMPRESS)) 1074 seq_printf(seq, ",com 1074 seq_printf(seq, ",compress-force=%s", compress_type); 1075 else 1075 else 1076 seq_printf(seq, ",com 1076 seq_printf(seq, ",compress=%s", compress_type); 1077 if (info->compress_level) 1077 if (info->compress_level) 1078 seq_printf(seq, ":%d" 1078 seq_printf(seq, ":%d", info->compress_level); 1079 } 1079 } 1080 if (btrfs_test_opt(info, NOSSD)) 1080 if (btrfs_test_opt(info, NOSSD)) 1081 seq_puts(seq, ",nossd"); 1081 seq_puts(seq, ",nossd"); 1082 if (btrfs_test_opt(info, SSD_SPREAD)) 1082 if (btrfs_test_opt(info, SSD_SPREAD)) 1083 seq_puts(seq, ",ssd_spread"); 1083 seq_puts(seq, ",ssd_spread"); 1084 else if (btrfs_test_opt(info, SSD)) 1084 else if (btrfs_test_opt(info, SSD)) 1085 seq_puts(seq, ",ssd"); 1085 seq_puts(seq, ",ssd"); 1086 if (btrfs_test_opt(info, NOTREELOG)) 1086 if (btrfs_test_opt(info, NOTREELOG)) 1087 seq_puts(seq, ",notreelog"); 1087 seq_puts(seq, ",notreelog"); 1088 if (btrfs_test_opt(info, NOLOGREPLAY) 1088 if (btrfs_test_opt(info, NOLOGREPLAY)) 1089 print_rescue_option(seq, "nol 1089 print_rescue_option(seq, "nologreplay", &printed); 1090 if (btrfs_test_opt(info, USEBACKUPROO 1090 if (btrfs_test_opt(info, USEBACKUPROOT)) 1091 print_rescue_option(seq, "use 1091 print_rescue_option(seq, "usebackuproot", &printed); 1092 if (btrfs_test_opt(info, IGNOREBADROO 1092 if (btrfs_test_opt(info, IGNOREBADROOTS)) 1093 print_rescue_option(seq, "ign 1093 print_rescue_option(seq, "ignorebadroots", &printed); 1094 if (btrfs_test_opt(info, IGNOREDATACS 1094 if (btrfs_test_opt(info, IGNOREDATACSUMS)) 1095 print_rescue_option(seq, "ign 1095 print_rescue_option(seq, "ignoredatacsums", &printed); 1096 if (btrfs_test_opt(info, IGNOREMETACS 1096 if (btrfs_test_opt(info, IGNOREMETACSUMS)) 1097 print_rescue_option(seq, "ign 1097 print_rescue_option(seq, "ignoremetacsums", &printed); 1098 if (btrfs_test_opt(info, IGNORESUPERF 1098 if (btrfs_test_opt(info, IGNORESUPERFLAGS)) 1099 print_rescue_option(seq, "ign 1099 print_rescue_option(seq, "ignoresuperflags", &printed); 1100 if (btrfs_test_opt(info, FLUSHONCOMMI 1100 if (btrfs_test_opt(info, FLUSHONCOMMIT)) 1101 seq_puts(seq, ",flushoncommit 1101 seq_puts(seq, ",flushoncommit"); 1102 if (btrfs_test_opt(info, DISCARD_SYNC 1102 if (btrfs_test_opt(info, DISCARD_SYNC)) 1103 seq_puts(seq, ",discard"); 1103 seq_puts(seq, ",discard"); 1104 if (btrfs_test_opt(info, DISCARD_ASYN 1104 if (btrfs_test_opt(info, DISCARD_ASYNC)) 1105 seq_puts(seq, ",discard=async 1105 seq_puts(seq, ",discard=async"); 1106 if (!(info->sb->s_flags & SB_POSIXACL 1106 if (!(info->sb->s_flags & SB_POSIXACL)) 1107 seq_puts(seq, ",noacl"); 1107 seq_puts(seq, ",noacl"); 1108 if (btrfs_free_space_cache_v1_active( 1108 if (btrfs_free_space_cache_v1_active(info)) 1109 seq_puts(seq, ",space_cache") 1109 seq_puts(seq, ",space_cache"); 1110 else if (btrfs_fs_compat_ro(info, FRE 1110 else if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE)) 1111 seq_puts(seq, ",space_cache=v 1111 seq_puts(seq, ",space_cache=v2"); 1112 else 1112 else 1113 seq_puts(seq, ",nospace_cache 1113 seq_puts(seq, ",nospace_cache"); 1114 if (btrfs_test_opt(info, RESCAN_UUID_ 1114 if (btrfs_test_opt(info, RESCAN_UUID_TREE)) 1115 seq_puts(seq, ",rescan_uuid_t 1115 seq_puts(seq, ",rescan_uuid_tree"); 1116 if (btrfs_test_opt(info, CLEAR_CACHE) 1116 if (btrfs_test_opt(info, CLEAR_CACHE)) 1117 seq_puts(seq, ",clear_cache") 1117 seq_puts(seq, ",clear_cache"); 1118 if (btrfs_test_opt(info, USER_SUBVOL_ 1118 if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED)) 1119 seq_puts(seq, ",user_subvol_r 1119 seq_puts(seq, ",user_subvol_rm_allowed"); 1120 if (btrfs_test_opt(info, ENOSPC_DEBUG 1120 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 1121 seq_puts(seq, ",enospc_debug" 1121 seq_puts(seq, ",enospc_debug"); 1122 if (btrfs_test_opt(info, AUTO_DEFRAG) 1122 if (btrfs_test_opt(info, AUTO_DEFRAG)) 1123 seq_puts(seq, ",autodefrag"); 1123 seq_puts(seq, ",autodefrag"); 1124 if (btrfs_test_opt(info, SKIP_BALANCE 1124 if (btrfs_test_opt(info, SKIP_BALANCE)) 1125 seq_puts(seq, ",skip_balance" 1125 seq_puts(seq, ",skip_balance"); 1126 if (info->metadata_ratio) 1126 if (info->metadata_ratio) 1127 seq_printf(seq, ",metadata_ra 1127 seq_printf(seq, ",metadata_ratio=%u", info->metadata_ratio); 1128 if (btrfs_test_opt(info, PANIC_ON_FAT 1128 if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR)) 1129 seq_puts(seq, ",fatal_errors= 1129 seq_puts(seq, ",fatal_errors=panic"); 1130 if (info->commit_interval != BTRFS_DE 1130 if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL) 1131 seq_printf(seq, ",commit=%u", 1131 seq_printf(seq, ",commit=%u", info->commit_interval); 1132 #ifdef CONFIG_BTRFS_DEBUG 1132 #ifdef CONFIG_BTRFS_DEBUG 1133 if (btrfs_test_opt(info, FRAGMENT_DAT 1133 if (btrfs_test_opt(info, FRAGMENT_DATA)) 1134 seq_puts(seq, ",fragment=data 1134 seq_puts(seq, ",fragment=data"); 1135 if (btrfs_test_opt(info, FRAGMENT_MET 1135 if (btrfs_test_opt(info, FRAGMENT_METADATA)) 1136 seq_puts(seq, ",fragment=meta 1136 seq_puts(seq, ",fragment=metadata"); 1137 #endif 1137 #endif 1138 if (btrfs_test_opt(info, REF_VERIFY)) 1138 if (btrfs_test_opt(info, REF_VERIFY)) 1139 seq_puts(seq, ",ref_verify"); 1139 seq_puts(seq, ",ref_verify"); 1140 seq_printf(seq, ",subvolid=%llu", btr 1140 seq_printf(seq, ",subvolid=%llu", btrfs_root_id(BTRFS_I(d_inode(dentry))->root)); 1141 subvol_name = btrfs_get_subvol_name_f 1141 subvol_name = btrfs_get_subvol_name_from_objectid(info, 1142 btrfs_root_id(BTRFS_I 1142 btrfs_root_id(BTRFS_I(d_inode(dentry))->root)); 1143 if (!IS_ERR(subvol_name)) { 1143 if (!IS_ERR(subvol_name)) { 1144 seq_puts(seq, ",subvol="); 1144 seq_puts(seq, ",subvol="); 1145 seq_escape(seq, subvol_name, 1145 seq_escape(seq, subvol_name, " \t\n\\"); 1146 kfree(subvol_name); 1146 kfree(subvol_name); 1147 } 1147 } 1148 return 0; 1148 return 0; 1149 } 1149 } 1150 1150 1151 /* 1151 /* 1152 * subvolumes are identified by ino 256 1152 * subvolumes are identified by ino 256 1153 */ 1153 */ 1154 static inline int is_subvolume_inode(struct i 1154 static inline int is_subvolume_inode(struct inode *inode) 1155 { 1155 { 1156 if (inode && inode->i_ino == BTRFS_FI 1156 if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) 1157 return 1; 1157 return 1; 1158 return 0; 1158 return 0; 1159 } 1159 } 1160 1160 1161 static struct dentry *mount_subvol(const char 1161 static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid, 1162 struct vfs 1162 struct vfsmount *mnt) 1163 { 1163 { 1164 struct dentry *root; 1164 struct dentry *root; 1165 int ret; 1165 int ret; 1166 1166 1167 if (!subvol_name) { 1167 if (!subvol_name) { 1168 if (!subvol_objectid) { 1168 if (!subvol_objectid) { 1169 ret = get_default_sub 1169 ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb), 1170 1170 &subvol_objectid); 1171 if (ret) { 1171 if (ret) { 1172 root = ERR_PT 1172 root = ERR_PTR(ret); 1173 goto out; 1173 goto out; 1174 } 1174 } 1175 } 1175 } 1176 subvol_name = btrfs_get_subvo 1176 subvol_name = btrfs_get_subvol_name_from_objectid( 1177 btrfs 1177 btrfs_sb(mnt->mnt_sb), subvol_objectid); 1178 if (IS_ERR(subvol_name)) { 1178 if (IS_ERR(subvol_name)) { 1179 root = ERR_CAST(subvo 1179 root = ERR_CAST(subvol_name); 1180 subvol_name = NULL; 1180 subvol_name = NULL; 1181 goto out; 1181 goto out; 1182 } 1182 } 1183 1183 1184 } 1184 } 1185 1185 1186 root = mount_subtree(mnt, subvol_name 1186 root = mount_subtree(mnt, subvol_name); 1187 /* mount_subtree() drops our referenc 1187 /* mount_subtree() drops our reference on the vfsmount. */ 1188 mnt = NULL; 1188 mnt = NULL; 1189 1189 1190 if (!IS_ERR(root)) { 1190 if (!IS_ERR(root)) { 1191 struct super_block *s = root- 1191 struct super_block *s = root->d_sb; 1192 struct btrfs_fs_info *fs_info 1192 struct btrfs_fs_info *fs_info = btrfs_sb(s); 1193 struct inode *root_inode = d_ 1193 struct inode *root_inode = d_inode(root); 1194 u64 root_objectid = btrfs_roo 1194 u64 root_objectid = btrfs_root_id(BTRFS_I(root_inode)->root); 1195 1195 1196 ret = 0; 1196 ret = 0; 1197 if (!is_subvolume_inode(root_ 1197 if (!is_subvolume_inode(root_inode)) { 1198 btrfs_err(fs_info, "' 1198 btrfs_err(fs_info, "'%s' is not a valid subvolume", 1199 subvol_name); 1199 subvol_name); 1200 ret = -EINVAL; 1200 ret = -EINVAL; 1201 } 1201 } 1202 if (subvol_objectid && root_o 1202 if (subvol_objectid && root_objectid != subvol_objectid) { 1203 /* 1203 /* 1204 * This will also cat 1204 * This will also catch a race condition where a 1205 * subvolume which wa 1205 * subvolume which was passed by ID is renamed and 1206 * another subvolume 1206 * another subvolume is renamed over the old location. 1207 */ 1207 */ 1208 btrfs_err(fs_info, 1208 btrfs_err(fs_info, 1209 "subvol '%s 1209 "subvol '%s' does not match subvolid %llu", 1210 subvol_name 1210 subvol_name, subvol_objectid); 1211 ret = -EINVAL; 1211 ret = -EINVAL; 1212 } 1212 } 1213 if (ret) { 1213 if (ret) { 1214 dput(root); 1214 dput(root); 1215 root = ERR_PTR(ret); 1215 root = ERR_PTR(ret); 1216 deactivate_locked_sup 1216 deactivate_locked_super(s); 1217 } 1217 } 1218 } 1218 } 1219 1219 1220 out: 1220 out: 1221 mntput(mnt); 1221 mntput(mnt); 1222 kfree(subvol_name); 1222 kfree(subvol_name); 1223 return root; 1223 return root; 1224 } 1224 } 1225 1225 1226 static void btrfs_resize_thread_pool(struct b 1226 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info, 1227 u32 new_ 1227 u32 new_pool_size, u32 old_pool_size) 1228 { 1228 { 1229 if (new_pool_size == old_pool_size) 1229 if (new_pool_size == old_pool_size) 1230 return; 1230 return; 1231 1231 1232 fs_info->thread_pool_size = new_pool_ 1232 fs_info->thread_pool_size = new_pool_size; 1233 1233 1234 btrfs_info(fs_info, "resize thread po 1234 btrfs_info(fs_info, "resize thread pool %d -> %d", 1235 old_pool_size, new_pool_size); 1235 old_pool_size, new_pool_size); 1236 1236 1237 btrfs_workqueue_set_max(fs_info->work 1237 btrfs_workqueue_set_max(fs_info->workers, new_pool_size); 1238 btrfs_workqueue_set_max(fs_info->dela 1238 btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size); 1239 btrfs_workqueue_set_max(fs_info->cach 1239 btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size); 1240 workqueue_set_max_active(fs_info->end 1240 workqueue_set_max_active(fs_info->endio_workers, new_pool_size); 1241 workqueue_set_max_active(fs_info->end 1241 workqueue_set_max_active(fs_info->endio_meta_workers, new_pool_size); 1242 btrfs_workqueue_set_max(fs_info->endi 1242 btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size); 1243 btrfs_workqueue_set_max(fs_info->endi 1243 btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size); 1244 btrfs_workqueue_set_max(fs_info->dela 1244 btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size); 1245 } 1245 } 1246 1246 1247 static inline void btrfs_remount_begin(struct 1247 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info, 1248 unsign 1248 unsigned long long old_opts, int flags) 1249 { 1249 { 1250 if (btrfs_raw_test_opt(old_opts, AUTO 1250 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) && 1251 (!btrfs_raw_test_opt(fs_info->mou 1251 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || 1252 (flags & SB_RDONLY))) { 1252 (flags & SB_RDONLY))) { 1253 /* wait for any defraggers to 1253 /* wait for any defraggers to finish */ 1254 wait_event(fs_info->transacti 1254 wait_event(fs_info->transaction_wait, 1255 (atomic_read(&fs_i 1255 (atomic_read(&fs_info->defrag_running) == 0)); 1256 if (flags & SB_RDONLY) 1256 if (flags & SB_RDONLY) 1257 sync_filesystem(fs_in 1257 sync_filesystem(fs_info->sb); 1258 } 1258 } 1259 } 1259 } 1260 1260 1261 static inline void btrfs_remount_cleanup(stru 1261 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info, 1262 unsi 1262 unsigned long long old_opts) 1263 { 1263 { 1264 const bool cache_opt = btrfs_test_opt 1264 const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE); 1265 1265 1266 /* 1266 /* 1267 * We need to cleanup all defragable 1267 * We need to cleanup all defragable inodes if the autodefragment is 1268 * close or the filesystem is read on 1268 * close or the filesystem is read only. 1269 */ 1269 */ 1270 if (btrfs_raw_test_opt(old_opts, AUTO 1270 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) && 1271 (!btrfs_raw_test_opt(fs_info->mou 1271 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || sb_rdonly(fs_info->sb))) { 1272 btrfs_cleanup_defrag_inodes(f 1272 btrfs_cleanup_defrag_inodes(fs_info); 1273 } 1273 } 1274 1274 1275 /* If we toggled discard async */ 1275 /* If we toggled discard async */ 1276 if (!btrfs_raw_test_opt(old_opts, DIS 1276 if (!btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) && 1277 btrfs_test_opt(fs_info, DISCARD_A 1277 btrfs_test_opt(fs_info, DISCARD_ASYNC)) 1278 btrfs_discard_resume(fs_info) 1278 btrfs_discard_resume(fs_info); 1279 else if (btrfs_raw_test_opt(old_opts, 1279 else if (btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) && 1280 !btrfs_test_opt(fs_info, DIS 1280 !btrfs_test_opt(fs_info, DISCARD_ASYNC)) 1281 btrfs_discard_cleanup(fs_info 1281 btrfs_discard_cleanup(fs_info); 1282 1282 1283 /* If we toggled space cache */ 1283 /* If we toggled space cache */ 1284 if (cache_opt != btrfs_free_space_cac 1284 if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) 1285 btrfs_set_free_space_cache_v1 1285 btrfs_set_free_space_cache_v1_active(fs_info, cache_opt); 1286 } 1286 } 1287 1287 1288 static int btrfs_remount_rw(struct btrfs_fs_i 1288 static int btrfs_remount_rw(struct btrfs_fs_info *fs_info) 1289 { 1289 { 1290 int ret; 1290 int ret; 1291 1291 1292 if (BTRFS_FS_ERROR(fs_info)) { 1292 if (BTRFS_FS_ERROR(fs_info)) { 1293 btrfs_err(fs_info, 1293 btrfs_err(fs_info, 1294 "remounting read-wr 1294 "remounting read-write after error is not allowed"); 1295 return -EINVAL; 1295 return -EINVAL; 1296 } 1296 } 1297 1297 1298 if (fs_info->fs_devices->rw_devices = 1298 if (fs_info->fs_devices->rw_devices == 0) 1299 return -EACCES; 1299 return -EACCES; 1300 1300 1301 if (!btrfs_check_rw_degradable(fs_inf 1301 if (!btrfs_check_rw_degradable(fs_info, NULL)) { 1302 btrfs_warn(fs_info, 1302 btrfs_warn(fs_info, 1303 "too many missing 1303 "too many missing devices, writable remount is not allowed"); 1304 return -EACCES; 1304 return -EACCES; 1305 } 1305 } 1306 1306 1307 if (btrfs_super_log_root(fs_info->sup 1307 if (btrfs_super_log_root(fs_info->super_copy) != 0) { 1308 btrfs_warn(fs_info, 1308 btrfs_warn(fs_info, 1309 "mount required to 1309 "mount required to replay tree-log, cannot remount read-write"); 1310 return -EINVAL; 1310 return -EINVAL; 1311 } 1311 } 1312 1312 1313 /* 1313 /* 1314 * NOTE: when remounting with a chang 1314 * NOTE: when remounting with a change that does writes, don't put it 1315 * anywhere above this point, as we a 1315 * anywhere above this point, as we are not sure to be safe to write 1316 * until we pass the above checks. 1316 * until we pass the above checks. 1317 */ 1317 */ 1318 ret = btrfs_start_pre_rw_mount(fs_inf 1318 ret = btrfs_start_pre_rw_mount(fs_info); 1319 if (ret) 1319 if (ret) 1320 return ret; 1320 return ret; 1321 1321 1322 btrfs_clear_sb_rdonly(fs_info->sb); 1322 btrfs_clear_sb_rdonly(fs_info->sb); 1323 1323 1324 set_bit(BTRFS_FS_OPEN, &fs_info->flag 1324 set_bit(BTRFS_FS_OPEN, &fs_info->flags); 1325 1325 1326 /* 1326 /* 1327 * If we've gone from readonly -> rea 1327 * If we've gone from readonly -> read-write, we need to get our 1328 * sync/async discard lists in the ri 1328 * sync/async discard lists in the right state. 1329 */ 1329 */ 1330 btrfs_discard_resume(fs_info); 1330 btrfs_discard_resume(fs_info); 1331 1331 1332 return 0; 1332 return 0; 1333 } 1333 } 1334 1334 1335 static int btrfs_remount_ro(struct btrfs_fs_i 1335 static int btrfs_remount_ro(struct btrfs_fs_info *fs_info) 1336 { 1336 { 1337 /* 1337 /* 1338 * This also happens on 'umount -rf' 1338 * This also happens on 'umount -rf' or on shutdown, when the 1339 * filesystem is busy. 1339 * filesystem is busy. 1340 */ 1340 */ 1341 cancel_work_sync(&fs_info->async_recl 1341 cancel_work_sync(&fs_info->async_reclaim_work); 1342 cancel_work_sync(&fs_info->async_data 1342 cancel_work_sync(&fs_info->async_data_reclaim_work); 1343 1343 1344 btrfs_discard_cleanup(fs_info); 1344 btrfs_discard_cleanup(fs_info); 1345 1345 1346 /* Wait for the uuid_scan task to fin 1346 /* Wait for the uuid_scan task to finish */ 1347 down(&fs_info->uuid_tree_rescan_sem); 1347 down(&fs_info->uuid_tree_rescan_sem); 1348 /* Avoid complains from lockdep et al 1348 /* Avoid complains from lockdep et al. */ 1349 up(&fs_info->uuid_tree_rescan_sem); 1349 up(&fs_info->uuid_tree_rescan_sem); 1350 1350 1351 btrfs_set_sb_rdonly(fs_info->sb); 1351 btrfs_set_sb_rdonly(fs_info->sb); 1352 1352 1353 /* 1353 /* 1354 * Setting SB_RDONLY will put the cle 1354 * Setting SB_RDONLY will put the cleaner thread to sleep at the next 1355 * loop if it's already active. If i 1355 * loop if it's already active. If it's already asleep, we'll leave 1356 * unused block groups on disk until 1356 * unused block groups on disk until we're mounted read-write again 1357 * unless we clean them up here. 1357 * unless we clean them up here. 1358 */ 1358 */ 1359 btrfs_delete_unused_bgs(fs_info); 1359 btrfs_delete_unused_bgs(fs_info); 1360 1360 1361 /* 1361 /* 1362 * The cleaner task could be already 1362 * The cleaner task could be already running before we set the flag 1363 * BTRFS_FS_STATE_RO (and SB_RDONLY i 1363 * BTRFS_FS_STATE_RO (and SB_RDONLY in the superblock). We must make 1364 * sure that after we finish the remo 1364 * sure that after we finish the remount, i.e. after we call 1365 * btrfs_commit_super(), the cleaner 1365 * btrfs_commit_super(), the cleaner can no longer start a transaction 1366 * - either because it was dropping a 1366 * - either because it was dropping a dead root, running delayed iputs 1367 * or deleting an unused block grou 1367 * or deleting an unused block group (the cleaner picked a block 1368 * group from the list of unused bl 1368 * group from the list of unused block groups before we were able to 1369 * in the previous call to btrfs_de 1369 * in the previous call to btrfs_delete_unused_bgs()). 1370 */ 1370 */ 1371 wait_on_bit(&fs_info->flags, BTRFS_FS 1371 wait_on_bit(&fs_info->flags, BTRFS_FS_CLEANER_RUNNING, TASK_UNINTERRUPTIBLE); 1372 1372 1373 /* 1373 /* 1374 * We've set the superblock to RO mod 1374 * We've set the superblock to RO mode, so we might have made the 1375 * cleaner task sleep without running 1375 * cleaner task sleep without running all pending delayed iputs. Go 1376 * through all the delayed iputs here 1376 * through all the delayed iputs here, so that if an unmount happens 1377 * without remounting RW we don't end 1377 * without remounting RW we don't end up at finishing close_ctree() 1378 * with a non-empty list of delayed i 1378 * with a non-empty list of delayed iputs. 1379 */ 1379 */ 1380 btrfs_run_delayed_iputs(fs_info); 1380 btrfs_run_delayed_iputs(fs_info); 1381 1381 1382 btrfs_dev_replace_suspend_for_unmount 1382 btrfs_dev_replace_suspend_for_unmount(fs_info); 1383 btrfs_scrub_cancel(fs_info); 1383 btrfs_scrub_cancel(fs_info); 1384 btrfs_pause_balance(fs_info); 1384 btrfs_pause_balance(fs_info); 1385 1385 1386 /* 1386 /* 1387 * Pause the qgroup rescan worker if 1387 * Pause the qgroup rescan worker if it is running. We don't want it to 1388 * be still running after we are in R 1388 * be still running after we are in RO mode, as after that, by the time 1389 * we unmount, it might have left a t 1389 * we unmount, it might have left a transaction open, so we would leak 1390 * the transaction and/or crash. 1390 * the transaction and/or crash. 1391 */ 1391 */ 1392 btrfs_qgroup_wait_for_completion(fs_i 1392 btrfs_qgroup_wait_for_completion(fs_info, false); 1393 1393 1394 return btrfs_commit_super(fs_info); 1394 return btrfs_commit_super(fs_info); 1395 } 1395 } 1396 1396 1397 static void btrfs_ctx_to_info(struct btrfs_fs 1397 static void btrfs_ctx_to_info(struct btrfs_fs_info *fs_info, struct btrfs_fs_context *ctx) 1398 { 1398 { 1399 fs_info->max_inline = ctx->max_inline 1399 fs_info->max_inline = ctx->max_inline; 1400 fs_info->commit_interval = ctx->commi 1400 fs_info->commit_interval = ctx->commit_interval; 1401 fs_info->metadata_ratio = ctx->metada 1401 fs_info->metadata_ratio = ctx->metadata_ratio; 1402 fs_info->thread_pool_size = ctx->thre 1402 fs_info->thread_pool_size = ctx->thread_pool_size; 1403 fs_info->mount_opt = ctx->mount_opt; 1403 fs_info->mount_opt = ctx->mount_opt; 1404 fs_info->compress_type = ctx->compres 1404 fs_info->compress_type = ctx->compress_type; 1405 fs_info->compress_level = ctx->compre 1405 fs_info->compress_level = ctx->compress_level; 1406 } 1406 } 1407 1407 1408 static void btrfs_info_to_ctx(struct btrfs_fs 1408 static void btrfs_info_to_ctx(struct btrfs_fs_info *fs_info, struct btrfs_fs_context *ctx) 1409 { 1409 { 1410 ctx->max_inline = fs_info->max_inline 1410 ctx->max_inline = fs_info->max_inline; 1411 ctx->commit_interval = fs_info->commi 1411 ctx->commit_interval = fs_info->commit_interval; 1412 ctx->metadata_ratio = fs_info->metada 1412 ctx->metadata_ratio = fs_info->metadata_ratio; 1413 ctx->thread_pool_size = fs_info->thre 1413 ctx->thread_pool_size = fs_info->thread_pool_size; 1414 ctx->mount_opt = fs_info->mount_opt; 1414 ctx->mount_opt = fs_info->mount_opt; 1415 ctx->compress_type = fs_info->compres 1415 ctx->compress_type = fs_info->compress_type; 1416 ctx->compress_level = fs_info->compre 1416 ctx->compress_level = fs_info->compress_level; 1417 } 1417 } 1418 1418 1419 #define btrfs_info_if_set(fs_info, old_ctx, o 1419 #define btrfs_info_if_set(fs_info, old_ctx, opt, fmt, args...) \ 1420 do { 1420 do { \ 1421 if ((!old_ctx || !btrfs_raw_test_opt( 1421 if ((!old_ctx || !btrfs_raw_test_opt(old_ctx->mount_opt, opt)) && \ 1422 btrfs_raw_test_opt(fs_info->mount 1422 btrfs_raw_test_opt(fs_info->mount_opt, opt)) \ 1423 btrfs_info(fs_info, fmt, ##ar 1423 btrfs_info(fs_info, fmt, ##args); \ 1424 } while (0) 1424 } while (0) 1425 1425 1426 #define btrfs_info_if_unset(fs_info, old_ctx, 1426 #define btrfs_info_if_unset(fs_info, old_ctx, opt, fmt, args...) \ 1427 do { 1427 do { \ 1428 if ((old_ctx && btrfs_raw_test_opt(ol 1428 if ((old_ctx && btrfs_raw_test_opt(old_ctx->mount_opt, opt)) && \ 1429 !btrfs_raw_test_opt(fs_info->moun 1429 !btrfs_raw_test_opt(fs_info->mount_opt, opt)) \ 1430 btrfs_info(fs_info, fmt, ##ar 1430 btrfs_info(fs_info, fmt, ##args); \ 1431 } while (0) 1431 } while (0) 1432 1432 1433 static void btrfs_emit_options(struct btrfs_f 1433 static void btrfs_emit_options(struct btrfs_fs_info *info, 1434 struct btrfs_f 1434 struct btrfs_fs_context *old) 1435 { 1435 { 1436 btrfs_info_if_set(info, old, NODATASU 1436 btrfs_info_if_set(info, old, NODATASUM, "setting nodatasum"); 1437 btrfs_info_if_set(info, old, DEGRADED 1437 btrfs_info_if_set(info, old, DEGRADED, "allowing degraded mounts"); 1438 btrfs_info_if_set(info, old, NODATASU 1438 btrfs_info_if_set(info, old, NODATASUM, "setting nodatasum"); 1439 btrfs_info_if_set(info, old, SSD, "en 1439 btrfs_info_if_set(info, old, SSD, "enabling ssd optimizations"); 1440 btrfs_info_if_set(info, old, SSD_SPRE 1440 btrfs_info_if_set(info, old, SSD_SPREAD, "using spread ssd allocation scheme"); 1441 btrfs_info_if_set(info, old, NOBARRIE 1441 btrfs_info_if_set(info, old, NOBARRIER, "turning off barriers"); 1442 btrfs_info_if_set(info, old, NOTREELO 1442 btrfs_info_if_set(info, old, NOTREELOG, "disabling tree log"); 1443 btrfs_info_if_set(info, old, NOLOGREP 1443 btrfs_info_if_set(info, old, NOLOGREPLAY, "disabling log replay at mount time"); 1444 btrfs_info_if_set(info, old, FLUSHONC 1444 btrfs_info_if_set(info, old, FLUSHONCOMMIT, "turning on flush-on-commit"); 1445 btrfs_info_if_set(info, old, DISCARD_ 1445 btrfs_info_if_set(info, old, DISCARD_SYNC, "turning on sync discard"); 1446 btrfs_info_if_set(info, old, DISCARD_ 1446 btrfs_info_if_set(info, old, DISCARD_ASYNC, "turning on async discard"); 1447 btrfs_info_if_set(info, old, FREE_SPA 1447 btrfs_info_if_set(info, old, FREE_SPACE_TREE, "enabling free space tree"); 1448 btrfs_info_if_set(info, old, SPACE_CA 1448 btrfs_info_if_set(info, old, SPACE_CACHE, "enabling disk space caching"); 1449 btrfs_info_if_set(info, old, CLEAR_CA 1449 btrfs_info_if_set(info, old, CLEAR_CACHE, "force clearing of disk cache"); 1450 btrfs_info_if_set(info, old, AUTO_DEF 1450 btrfs_info_if_set(info, old, AUTO_DEFRAG, "enabling auto defrag"); 1451 btrfs_info_if_set(info, old, FRAGMENT 1451 btrfs_info_if_set(info, old, FRAGMENT_DATA, "fragmenting data"); 1452 btrfs_info_if_set(info, old, FRAGMENT 1452 btrfs_info_if_set(info, old, FRAGMENT_METADATA, "fragmenting metadata"); 1453 btrfs_info_if_set(info, old, REF_VERI 1453 btrfs_info_if_set(info, old, REF_VERIFY, "doing ref verification"); 1454 btrfs_info_if_set(info, old, USEBACKU 1454 btrfs_info_if_set(info, old, USEBACKUPROOT, "trying to use backup root at mount time"); 1455 btrfs_info_if_set(info, old, IGNOREBA 1455 btrfs_info_if_set(info, old, IGNOREBADROOTS, "ignoring bad roots"); 1456 btrfs_info_if_set(info, old, IGNOREDA 1456 btrfs_info_if_set(info, old, IGNOREDATACSUMS, "ignoring data csums"); 1457 btrfs_info_if_set(info, old, IGNOREME 1457 btrfs_info_if_set(info, old, IGNOREMETACSUMS, "ignoring meta csums"); 1458 btrfs_info_if_set(info, old, IGNORESU 1458 btrfs_info_if_set(info, old, IGNORESUPERFLAGS, "ignoring unknown super block flags"); 1459 1459 1460 btrfs_info_if_unset(info, old, NODATA 1460 btrfs_info_if_unset(info, old, NODATACOW, "setting datacow"); 1461 btrfs_info_if_unset(info, old, SSD, " 1461 btrfs_info_if_unset(info, old, SSD, "not using ssd optimizations"); 1462 btrfs_info_if_unset(info, old, SSD_SP 1462 btrfs_info_if_unset(info, old, SSD_SPREAD, "not using spread ssd allocation scheme"); 1463 btrfs_info_if_unset(info, old, NOBARR 1463 btrfs_info_if_unset(info, old, NOBARRIER, "turning off barriers"); 1464 btrfs_info_if_unset(info, old, NOTREE 1464 btrfs_info_if_unset(info, old, NOTREELOG, "enabling tree log"); 1465 btrfs_info_if_unset(info, old, SPACE_ 1465 btrfs_info_if_unset(info, old, SPACE_CACHE, "disabling disk space caching"); 1466 btrfs_info_if_unset(info, old, FREE_S 1466 btrfs_info_if_unset(info, old, FREE_SPACE_TREE, "disabling free space tree"); 1467 btrfs_info_if_unset(info, old, AUTO_D 1467 btrfs_info_if_unset(info, old, AUTO_DEFRAG, "disabling auto defrag"); 1468 btrfs_info_if_unset(info, old, COMPRE 1468 btrfs_info_if_unset(info, old, COMPRESS, "use no compression"); 1469 1469 1470 /* Did the compression settings chang 1470 /* Did the compression settings change? */ 1471 if (btrfs_test_opt(info, COMPRESS) && 1471 if (btrfs_test_opt(info, COMPRESS) && 1472 (!old || 1472 (!old || 1473 old->compress_type != info->comp 1473 old->compress_type != info->compress_type || 1474 old->compress_level != info->com 1474 old->compress_level != info->compress_level || 1475 (!btrfs_raw_test_opt(old->mount_ 1475 (!btrfs_raw_test_opt(old->mount_opt, FORCE_COMPRESS) && 1476 btrfs_raw_test_opt(info->mount_ 1476 btrfs_raw_test_opt(info->mount_opt, FORCE_COMPRESS)))) { 1477 const char *compress_type = b 1477 const char *compress_type = btrfs_compress_type2str(info->compress_type); 1478 1478 1479 btrfs_info(info, "%s %s compr 1479 btrfs_info(info, "%s %s compression, level %d", 1480 btrfs_test_opt(inf 1480 btrfs_test_opt(info, FORCE_COMPRESS) ? "force" : "use", 1481 compress_type, inf 1481 compress_type, info->compress_level); 1482 } 1482 } 1483 1483 1484 if (info->max_inline != BTRFS_DEFAULT 1484 if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE) 1485 btrfs_info(info, "max_inline 1485 btrfs_info(info, "max_inline set to %llu", info->max_inline); 1486 } 1486 } 1487 1487 1488 static int btrfs_reconfigure(struct fs_contex 1488 static int btrfs_reconfigure(struct fs_context *fc) 1489 { 1489 { 1490 struct super_block *sb = fc->root->d_ 1490 struct super_block *sb = fc->root->d_sb; 1491 struct btrfs_fs_info *fs_info = btrfs 1491 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1492 struct btrfs_fs_context *ctx = fc->fs 1492 struct btrfs_fs_context *ctx = fc->fs_private; 1493 struct btrfs_fs_context old_ctx; 1493 struct btrfs_fs_context old_ctx; 1494 int ret = 0; 1494 int ret = 0; 1495 bool mount_reconfigure = (fc->s_fs_in 1495 bool mount_reconfigure = (fc->s_fs_info != NULL); 1496 1496 1497 btrfs_info_to_ctx(fs_info, &old_ctx); 1497 btrfs_info_to_ctx(fs_info, &old_ctx); 1498 1498 1499 /* 1499 /* 1500 * This is our "bind mount" trick, we 1500 * This is our "bind mount" trick, we don't want to allow the user to do 1501 * anything other than mount a differ 1501 * anything other than mount a different ro/rw and a different subvol, 1502 * all of the mount options should be 1502 * all of the mount options should be maintained. 1503 */ 1503 */ 1504 if (mount_reconfigure) 1504 if (mount_reconfigure) 1505 ctx->mount_opt = old_ctx.moun 1505 ctx->mount_opt = old_ctx.mount_opt; 1506 1506 1507 sync_filesystem(sb); 1507 sync_filesystem(sb); 1508 set_bit(BTRFS_FS_STATE_REMOUNTING, &f 1508 set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); 1509 1509 1510 if (!btrfs_check_options(fs_info, &ct 1510 if (!btrfs_check_options(fs_info, &ctx->mount_opt, fc->sb_flags)) 1511 return -EINVAL; 1511 return -EINVAL; 1512 1512 1513 ret = btrfs_check_features(fs_info, ! 1513 ret = btrfs_check_features(fs_info, !(fc->sb_flags & SB_RDONLY)); 1514 if (ret < 0) 1514 if (ret < 0) 1515 return ret; 1515 return ret; 1516 1516 1517 btrfs_ctx_to_info(fs_info, ctx); 1517 btrfs_ctx_to_info(fs_info, ctx); 1518 btrfs_remount_begin(fs_info, old_ctx. 1518 btrfs_remount_begin(fs_info, old_ctx.mount_opt, fc->sb_flags); 1519 btrfs_resize_thread_pool(fs_info, fs_ 1519 btrfs_resize_thread_pool(fs_info, fs_info->thread_pool_size, 1520 old_ctx.thre 1520 old_ctx.thread_pool_size); 1521 1521 1522 if ((bool)btrfs_test_opt(fs_info, FRE 1522 if ((bool)btrfs_test_opt(fs_info, FREE_SPACE_TREE) != 1523 (bool)btrfs_fs_compat_ro(fs_info, 1523 (bool)btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 1524 (!sb_rdonly(sb) || (fc->sb_flags 1524 (!sb_rdonly(sb) || (fc->sb_flags & SB_RDONLY))) { 1525 btrfs_warn(fs_info, 1525 btrfs_warn(fs_info, 1526 "remount supports changing fr 1526 "remount supports changing free space tree only from RO to RW"); 1527 /* Make sure free space cache 1527 /* Make sure free space cache options match the state on disk. */ 1528 if (btrfs_fs_compat_ro(fs_inf 1528 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 1529 btrfs_set_opt(fs_info 1529 btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE); 1530 btrfs_clear_opt(fs_in 1530 btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE); 1531 } 1531 } 1532 if (btrfs_free_space_cache_v1 1532 if (btrfs_free_space_cache_v1_active(fs_info)) { 1533 btrfs_clear_opt(fs_in 1533 btrfs_clear_opt(fs_info->mount_opt, FREE_SPACE_TREE); 1534 btrfs_set_opt(fs_info 1534 btrfs_set_opt(fs_info->mount_opt, SPACE_CACHE); 1535 } 1535 } 1536 } 1536 } 1537 1537 1538 ret = 0; 1538 ret = 0; 1539 if (!sb_rdonly(sb) && (fc->sb_flags & 1539 if (!sb_rdonly(sb) && (fc->sb_flags & SB_RDONLY)) 1540 ret = btrfs_remount_ro(fs_inf 1540 ret = btrfs_remount_ro(fs_info); 1541 else if (sb_rdonly(sb) && !(fc->sb_fl 1541 else if (sb_rdonly(sb) && !(fc->sb_flags & SB_RDONLY)) 1542 ret = btrfs_remount_rw(fs_inf 1542 ret = btrfs_remount_rw(fs_info); 1543 if (ret) 1543 if (ret) 1544 goto restore; 1544 goto restore; 1545 1545 1546 /* 1546 /* 1547 * If we set the mask during the para 1547 * If we set the mask during the parameter parsing VFS would reject the 1548 * remount. Here we can set the mask 1548 * remount. Here we can set the mask and the value will be updated 1549 * appropriately. 1549 * appropriately. 1550 */ 1550 */ 1551 if ((fc->sb_flags & SB_POSIXACL) != ( 1551 if ((fc->sb_flags & SB_POSIXACL) != (sb->s_flags & SB_POSIXACL)) 1552 fc->sb_flags_mask |= SB_POSIX 1552 fc->sb_flags_mask |= SB_POSIXACL; 1553 1553 1554 btrfs_emit_options(fs_info, &old_ctx) 1554 btrfs_emit_options(fs_info, &old_ctx); 1555 wake_up_process(fs_info->transaction_ 1555 wake_up_process(fs_info->transaction_kthread); 1556 btrfs_remount_cleanup(fs_info, old_ct 1556 btrfs_remount_cleanup(fs_info, old_ctx.mount_opt); 1557 btrfs_clear_oneshot_options(fs_info); 1557 btrfs_clear_oneshot_options(fs_info); 1558 clear_bit(BTRFS_FS_STATE_REMOUNTING, 1558 clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); 1559 1559 1560 return 0; 1560 return 0; 1561 restore: 1561 restore: 1562 btrfs_ctx_to_info(fs_info, &old_ctx); 1562 btrfs_ctx_to_info(fs_info, &old_ctx); 1563 btrfs_remount_cleanup(fs_info, old_ct 1563 btrfs_remount_cleanup(fs_info, old_ctx.mount_opt); 1564 clear_bit(BTRFS_FS_STATE_REMOUNTING, 1564 clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); 1565 return ret; 1565 return ret; 1566 } 1566 } 1567 1567 1568 /* Used to sort the devices by max_avail(desc 1568 /* Used to sort the devices by max_avail(descending sort) */ 1569 static int btrfs_cmp_device_free_bytes(const 1569 static int btrfs_cmp_device_free_bytes(const void *a, const void *b) 1570 { 1570 { 1571 const struct btrfs_device_info *dev_i 1571 const struct btrfs_device_info *dev_info1 = a; 1572 const struct btrfs_device_info *dev_i 1572 const struct btrfs_device_info *dev_info2 = b; 1573 1573 1574 if (dev_info1->max_avail > dev_info2- 1574 if (dev_info1->max_avail > dev_info2->max_avail) 1575 return -1; 1575 return -1; 1576 else if (dev_info1->max_avail < dev_i 1576 else if (dev_info1->max_avail < dev_info2->max_avail) 1577 return 1; 1577 return 1; 1578 return 0; 1578 return 0; 1579 } 1579 } 1580 1580 1581 /* 1581 /* 1582 * sort the devices by max_avail, in which ma 1582 * sort the devices by max_avail, in which max free extent size of each device 1583 * is stored.(Descending Sort) 1583 * is stored.(Descending Sort) 1584 */ 1584 */ 1585 static inline void btrfs_descending_sort_devi 1585 static inline void btrfs_descending_sort_devices( 1586 struc 1586 struct btrfs_device_info *devices, 1587 size_ 1587 size_t nr_devices) 1588 { 1588 { 1589 sort(devices, nr_devices, sizeof(stru 1589 sort(devices, nr_devices, sizeof(struct btrfs_device_info), 1590 btrfs_cmp_device_free_bytes, NUL 1590 btrfs_cmp_device_free_bytes, NULL); 1591 } 1591 } 1592 1592 1593 /* 1593 /* 1594 * The helper to calc the free space on the d 1594 * The helper to calc the free space on the devices that can be used to store 1595 * file data. 1595 * file data. 1596 */ 1596 */ 1597 static inline int btrfs_calc_avail_data_space 1597 static inline int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info, 1598 1598 u64 *free_bytes) 1599 { 1599 { 1600 struct btrfs_device_info *devices_inf 1600 struct btrfs_device_info *devices_info; 1601 struct btrfs_fs_devices *fs_devices = 1601 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 1602 struct btrfs_device *device; 1602 struct btrfs_device *device; 1603 u64 type; 1603 u64 type; 1604 u64 avail_space; 1604 u64 avail_space; 1605 u64 min_stripe_size; 1605 u64 min_stripe_size; 1606 int num_stripes = 1; 1606 int num_stripes = 1; 1607 int i = 0, nr_devices; 1607 int i = 0, nr_devices; 1608 const struct btrfs_raid_attr *rattr; 1608 const struct btrfs_raid_attr *rattr; 1609 1609 1610 /* 1610 /* 1611 * We aren't under the device list lo 1611 * We aren't under the device list lock, so this is racy-ish, but good 1612 * enough for our purposes. 1612 * enough for our purposes. 1613 */ 1613 */ 1614 nr_devices = fs_info->fs_devices->ope 1614 nr_devices = fs_info->fs_devices->open_devices; 1615 if (!nr_devices) { 1615 if (!nr_devices) { 1616 smp_mb(); 1616 smp_mb(); 1617 nr_devices = fs_info->fs_devi 1617 nr_devices = fs_info->fs_devices->open_devices; 1618 ASSERT(nr_devices); 1618 ASSERT(nr_devices); 1619 if (!nr_devices) { 1619 if (!nr_devices) { 1620 *free_bytes = 0; 1620 *free_bytes = 0; 1621 return 0; 1621 return 0; 1622 } 1622 } 1623 } 1623 } 1624 1624 1625 devices_info = kmalloc_array(nr_devic 1625 devices_info = kmalloc_array(nr_devices, sizeof(*devices_info), 1626 GFP_KERNEL); 1626 GFP_KERNEL); 1627 if (!devices_info) 1627 if (!devices_info) 1628 return -ENOMEM; 1628 return -ENOMEM; 1629 1629 1630 /* calc min stripe number for data sp 1630 /* calc min stripe number for data space allocation */ 1631 type = btrfs_data_alloc_profile(fs_in 1631 type = btrfs_data_alloc_profile(fs_info); 1632 rattr = &btrfs_raid_array[btrfs_bg_fl 1632 rattr = &btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)]; 1633 1633 1634 if (type & BTRFS_BLOCK_GROUP_RAID0) 1634 if (type & BTRFS_BLOCK_GROUP_RAID0) 1635 num_stripes = nr_devices; 1635 num_stripes = nr_devices; 1636 else if (type & BTRFS_BLOCK_GROUP_RAI 1636 else if (type & BTRFS_BLOCK_GROUP_RAID1_MASK) 1637 num_stripes = rattr->ncopies; 1637 num_stripes = rattr->ncopies; 1638 else if (type & BTRFS_BLOCK_GROUP_RAI 1638 else if (type & BTRFS_BLOCK_GROUP_RAID10) 1639 num_stripes = 4; 1639 num_stripes = 4; 1640 1640 1641 /* Adjust for more than 1 stripe per 1641 /* Adjust for more than 1 stripe per device */ 1642 min_stripe_size = rattr->dev_stripes 1642 min_stripe_size = rattr->dev_stripes * BTRFS_STRIPE_LEN; 1643 1643 1644 rcu_read_lock(); 1644 rcu_read_lock(); 1645 list_for_each_entry_rcu(device, &fs_d 1645 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 1646 if (!test_bit(BTRFS_DEV_STATE 1646 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 1647 1647 &device->dev_state) || 1648 !device->bdev || 1648 !device->bdev || 1649 test_bit(BTRFS_DEV_STATE_ 1649 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 1650 continue; 1650 continue; 1651 1651 1652 if (i >= nr_devices) 1652 if (i >= nr_devices) 1653 break; 1653 break; 1654 1654 1655 avail_space = device->total_b 1655 avail_space = device->total_bytes - device->bytes_used; 1656 1656 1657 /* align with stripe_len */ 1657 /* align with stripe_len */ 1658 avail_space = rounddown(avail 1658 avail_space = rounddown(avail_space, BTRFS_STRIPE_LEN); 1659 1659 1660 /* 1660 /* 1661 * Ensure we have at least mi 1661 * Ensure we have at least min_stripe_size on top of the 1662 * reserved space on the devi 1662 * reserved space on the device. 1663 */ 1663 */ 1664 if (avail_space <= BTRFS_DEVI 1664 if (avail_space <= BTRFS_DEVICE_RANGE_RESERVED + min_stripe_size) 1665 continue; 1665 continue; 1666 1666 1667 avail_space -= BTRFS_DEVICE_R 1667 avail_space -= BTRFS_DEVICE_RANGE_RESERVED; 1668 1668 1669 devices_info[i].dev = device; 1669 devices_info[i].dev = device; 1670 devices_info[i].max_avail = a 1670 devices_info[i].max_avail = avail_space; 1671 1671 1672 i++; 1672 i++; 1673 } 1673 } 1674 rcu_read_unlock(); 1674 rcu_read_unlock(); 1675 1675 1676 nr_devices = i; 1676 nr_devices = i; 1677 1677 1678 btrfs_descending_sort_devices(devices 1678 btrfs_descending_sort_devices(devices_info, nr_devices); 1679 1679 1680 i = nr_devices - 1; 1680 i = nr_devices - 1; 1681 avail_space = 0; 1681 avail_space = 0; 1682 while (nr_devices >= rattr->devs_min) 1682 while (nr_devices >= rattr->devs_min) { 1683 num_stripes = min(num_stripes 1683 num_stripes = min(num_stripes, nr_devices); 1684 1684 1685 if (devices_info[i].max_avail 1685 if (devices_info[i].max_avail >= min_stripe_size) { 1686 int j; 1686 int j; 1687 u64 alloc_size; 1687 u64 alloc_size; 1688 1688 1689 avail_space += device 1689 avail_space += devices_info[i].max_avail * num_stripes; 1690 alloc_size = devices_ 1690 alloc_size = devices_info[i].max_avail; 1691 for (j = i + 1 - num_ 1691 for (j = i + 1 - num_stripes; j <= i; j++) 1692 devices_info[ 1692 devices_info[j].max_avail -= alloc_size; 1693 } 1693 } 1694 i--; 1694 i--; 1695 nr_devices--; 1695 nr_devices--; 1696 } 1696 } 1697 1697 1698 kfree(devices_info); 1698 kfree(devices_info); 1699 *free_bytes = avail_space; 1699 *free_bytes = avail_space; 1700 return 0; 1700 return 0; 1701 } 1701 } 1702 1702 1703 /* 1703 /* 1704 * Calculate numbers for 'df', pessimistic in 1704 * Calculate numbers for 'df', pessimistic in case of mixed raid profiles. 1705 * 1705 * 1706 * If there's a redundant raid level at DATA 1706 * If there's a redundant raid level at DATA block groups, use the respective 1707 * multiplier to scale the sizes. 1707 * multiplier to scale the sizes. 1708 * 1708 * 1709 * Unused device space usage is based on simu 1709 * Unused device space usage is based on simulating the chunk allocator 1710 * algorithm that respects the device sizes a 1710 * algorithm that respects the device sizes and order of allocations. This is 1711 * a close approximation of the actual use bu 1711 * a close approximation of the actual use but there are other factors that may 1712 * change the result (like a new metadata chu 1712 * change the result (like a new metadata chunk). 1713 * 1713 * 1714 * If metadata is exhausted, f_bavail will be 1714 * If metadata is exhausted, f_bavail will be 0. 1715 */ 1715 */ 1716 static int btrfs_statfs(struct dentry *dentry 1716 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf) 1717 { 1717 { 1718 struct btrfs_fs_info *fs_info = btrfs 1718 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb); 1719 struct btrfs_super_block *disk_super 1719 struct btrfs_super_block *disk_super = fs_info->super_copy; 1720 struct btrfs_space_info *found; 1720 struct btrfs_space_info *found; 1721 u64 total_used = 0; 1721 u64 total_used = 0; 1722 u64 total_free_data = 0; 1722 u64 total_free_data = 0; 1723 u64 total_free_meta = 0; 1723 u64 total_free_meta = 0; 1724 u32 bits = fs_info->sectorsize_bits; 1724 u32 bits = fs_info->sectorsize_bits; 1725 __be32 *fsid = (__be32 *)fs_info->fs_ 1725 __be32 *fsid = (__be32 *)fs_info->fs_devices->fsid; 1726 unsigned factor = 1; 1726 unsigned factor = 1; 1727 struct btrfs_block_rsv *block_rsv = & 1727 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 1728 int ret; 1728 int ret; 1729 u64 thresh = 0; 1729 u64 thresh = 0; 1730 int mixed = 0; 1730 int mixed = 0; 1731 1731 1732 list_for_each_entry(found, &fs_info-> 1732 list_for_each_entry(found, &fs_info->space_info, list) { 1733 if (found->flags & BTRFS_BLOC 1733 if (found->flags & BTRFS_BLOCK_GROUP_DATA) { 1734 int i; 1734 int i; 1735 1735 1736 total_free_data += fo 1736 total_free_data += found->disk_total - found->disk_used; 1737 total_free_data -= 1737 total_free_data -= 1738 btrfs_account 1738 btrfs_account_ro_block_groups_free_space(found); 1739 1739 1740 for (i = 0; i < BTRFS 1740 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 1741 if (!list_emp 1741 if (!list_empty(&found->block_groups[i])) 1742 facto 1742 factor = btrfs_bg_type_to_factor( 1743 1743 btrfs_raid_array[i].bg_flag); 1744 } 1744 } 1745 } 1745 } 1746 1746 1747 /* 1747 /* 1748 * Metadata in mixed block gr 1748 * Metadata in mixed block group profiles are accounted in data 1749 */ 1749 */ 1750 if (!mixed && found->flags & 1750 if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) { 1751 if (found->flags & BT 1751 if (found->flags & BTRFS_BLOCK_GROUP_DATA) 1752 mixed = 1; 1752 mixed = 1; 1753 else 1753 else 1754 total_free_me 1754 total_free_meta += found->disk_total - 1755 found 1755 found->disk_used; 1756 } 1756 } 1757 1757 1758 total_used += found->disk_use 1758 total_used += found->disk_used; 1759 } 1759 } 1760 1760 1761 buf->f_blocks = div_u64(btrfs_super_t 1761 buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor); 1762 buf->f_blocks >>= bits; 1762 buf->f_blocks >>= bits; 1763 buf->f_bfree = buf->f_blocks - (div_u 1763 buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits); 1764 1764 1765 /* Account global block reserve as us 1765 /* Account global block reserve as used, it's in logical size already */ 1766 spin_lock(&block_rsv->lock); 1766 spin_lock(&block_rsv->lock); 1767 /* Mixed block groups accounting is n 1767 /* Mixed block groups accounting is not byte-accurate, avoid overflow */ 1768 if (buf->f_bfree >= block_rsv->size > 1768 if (buf->f_bfree >= block_rsv->size >> bits) 1769 buf->f_bfree -= block_rsv->si 1769 buf->f_bfree -= block_rsv->size >> bits; 1770 else 1770 else 1771 buf->f_bfree = 0; 1771 buf->f_bfree = 0; 1772 spin_unlock(&block_rsv->lock); 1772 spin_unlock(&block_rsv->lock); 1773 1773 1774 buf->f_bavail = div_u64(total_free_da 1774 buf->f_bavail = div_u64(total_free_data, factor); 1775 ret = btrfs_calc_avail_data_space(fs_ 1775 ret = btrfs_calc_avail_data_space(fs_info, &total_free_data); 1776 if (ret) 1776 if (ret) 1777 return ret; 1777 return ret; 1778 buf->f_bavail += div_u64(total_free_d 1778 buf->f_bavail += div_u64(total_free_data, factor); 1779 buf->f_bavail = buf->f_bavail >> bits 1779 buf->f_bavail = buf->f_bavail >> bits; 1780 1780 1781 /* 1781 /* 1782 * We calculate the remaining metadat 1782 * We calculate the remaining metadata space minus global reserve. If 1783 * this is (supposedly) smaller than 1783 * this is (supposedly) smaller than zero, there's no space. But this 1784 * does not hold in practice, the exh 1784 * does not hold in practice, the exhausted state happens where's still 1785 * some positive delta. So we apply s 1785 * some positive delta. So we apply some guesswork and compare the 1786 * delta to a 4M threshold. (Practic 1786 * delta to a 4M threshold. (Practically observed delta was ~2M.) 1787 * 1787 * 1788 * We probably cannot calculate the e 1788 * We probably cannot calculate the exact threshold value because this 1789 * depends on the internal reservatio 1789 * depends on the internal reservations requested by various 1790 * operations, so some operations tha 1790 * operations, so some operations that consume a few metadata will 1791 * succeed even if the Avail is zero. 1791 * succeed even if the Avail is zero. But this is better than the other 1792 * way around. 1792 * way around. 1793 */ 1793 */ 1794 thresh = SZ_4M; 1794 thresh = SZ_4M; 1795 1795 1796 /* 1796 /* 1797 * We only want to claim there's no a 1797 * We only want to claim there's no available space if we can no longer 1798 * allocate chunks for our metadata p 1798 * allocate chunks for our metadata profile and our global reserve will 1799 * not fit in the free metadata space 1799 * not fit in the free metadata space. If we aren't ->full then we 1800 * still can allocate chunks and thus 1800 * still can allocate chunks and thus are fine using the currently 1801 * calculated f_bavail. 1801 * calculated f_bavail. 1802 */ 1802 */ 1803 if (!mixed && block_rsv->space_info-> 1803 if (!mixed && block_rsv->space_info->full && 1804 (total_free_meta < thresh || tota 1804 (total_free_meta < thresh || total_free_meta - thresh < block_rsv->size)) 1805 buf->f_bavail = 0; 1805 buf->f_bavail = 0; 1806 1806 1807 buf->f_type = BTRFS_SUPER_MAGIC; 1807 buf->f_type = BTRFS_SUPER_MAGIC; 1808 buf->f_bsize = fs_info->sectorsize; 1808 buf->f_bsize = fs_info->sectorsize; 1809 buf->f_namelen = BTRFS_NAME_LEN; 1809 buf->f_namelen = BTRFS_NAME_LEN; 1810 1810 1811 /* We treat it as constant endianness 1811 /* We treat it as constant endianness (it doesn't matter _which_) 1812 because we want the fsid to come o 1812 because we want the fsid to come out the same whether mounted 1813 on a big-endian or little-endian h 1813 on a big-endian or little-endian host */ 1814 buf->f_fsid.val[0] = be32_to_cpu(fsid 1814 buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]); 1815 buf->f_fsid.val[1] = be32_to_cpu(fsid 1815 buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]); 1816 /* Mask in the root object ID too, to 1816 /* Mask in the root object ID too, to disambiguate subvols */ 1817 buf->f_fsid.val[0] ^= btrfs_root_id(B 1817 buf->f_fsid.val[0] ^= btrfs_root_id(BTRFS_I(d_inode(dentry))->root) >> 32; 1818 buf->f_fsid.val[1] ^= btrfs_root_id(B 1818 buf->f_fsid.val[1] ^= btrfs_root_id(BTRFS_I(d_inode(dentry))->root); 1819 1819 1820 return 0; 1820 return 0; 1821 } 1821 } 1822 1822 1823 static int btrfs_fc_test_super(struct super_b 1823 static int btrfs_fc_test_super(struct super_block *sb, struct fs_context *fc) 1824 { 1824 { 1825 struct btrfs_fs_info *p = fc->s_fs_in 1825 struct btrfs_fs_info *p = fc->s_fs_info; 1826 struct btrfs_fs_info *fs_info = btrfs 1826 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1827 1827 1828 return fs_info->fs_devices == p->fs_d 1828 return fs_info->fs_devices == p->fs_devices; 1829 } 1829 } 1830 1830 1831 static int btrfs_get_tree_super(struct fs_con 1831 static int btrfs_get_tree_super(struct fs_context *fc) 1832 { 1832 { 1833 struct btrfs_fs_info *fs_info = fc->s 1833 struct btrfs_fs_info *fs_info = fc->s_fs_info; 1834 struct btrfs_fs_context *ctx = fc->fs 1834 struct btrfs_fs_context *ctx = fc->fs_private; 1835 struct btrfs_fs_devices *fs_devices = 1835 struct btrfs_fs_devices *fs_devices = NULL; 1836 struct block_device *bdev; 1836 struct block_device *bdev; 1837 struct btrfs_device *device; 1837 struct btrfs_device *device; 1838 struct super_block *sb; 1838 struct super_block *sb; 1839 blk_mode_t mode = btrfs_open_mode(fc) 1839 blk_mode_t mode = btrfs_open_mode(fc); 1840 int ret; 1840 int ret; 1841 1841 1842 btrfs_ctx_to_info(fs_info, ctx); 1842 btrfs_ctx_to_info(fs_info, ctx); 1843 mutex_lock(&uuid_mutex); 1843 mutex_lock(&uuid_mutex); 1844 1844 1845 /* 1845 /* 1846 * With 'true' passed to btrfs_scan_o 1846 * With 'true' passed to btrfs_scan_one_device() (mount time) we expect 1847 * either a valid device or an error. 1847 * either a valid device or an error. 1848 */ 1848 */ 1849 device = btrfs_scan_one_device(fc->so 1849 device = btrfs_scan_one_device(fc->source, mode, true); 1850 ASSERT(device != NULL); 1850 ASSERT(device != NULL); 1851 if (IS_ERR(device)) { 1851 if (IS_ERR(device)) { 1852 mutex_unlock(&uuid_mutex); 1852 mutex_unlock(&uuid_mutex); 1853 return PTR_ERR(device); 1853 return PTR_ERR(device); 1854 } 1854 } 1855 1855 1856 fs_devices = device->fs_devices; 1856 fs_devices = device->fs_devices; 1857 fs_info->fs_devices = fs_devices; 1857 fs_info->fs_devices = fs_devices; 1858 1858 1859 ret = btrfs_open_devices(fs_devices, 1859 ret = btrfs_open_devices(fs_devices, mode, &btrfs_fs_type); 1860 mutex_unlock(&uuid_mutex); 1860 mutex_unlock(&uuid_mutex); 1861 if (ret) 1861 if (ret) 1862 return ret; 1862 return ret; 1863 1863 1864 if (!(fc->sb_flags & SB_RDONLY) && fs 1864 if (!(fc->sb_flags & SB_RDONLY) && fs_devices->rw_devices == 0) { 1865 ret = -EACCES; 1865 ret = -EACCES; 1866 goto error; 1866 goto error; 1867 } 1867 } 1868 1868 1869 bdev = fs_devices->latest_dev->bdev; 1869 bdev = fs_devices->latest_dev->bdev; 1870 1870 1871 /* 1871 /* 1872 * From now on the error handling is 1872 * From now on the error handling is not straightforward. 1873 * 1873 * 1874 * If successful, this will transfer 1874 * If successful, this will transfer the fs_info into the super block, 1875 * and fc->s_fs_info will be NULL. H 1875 * and fc->s_fs_info will be NULL. However if there's an existing 1876 * super, we'll still have fc->s_fs_i 1876 * super, we'll still have fc->s_fs_info populated. If we error 1877 * completely out it'll be cleaned up 1877 * completely out it'll be cleaned up when we drop the fs_context, 1878 * otherwise it's tied to the lifetim 1878 * otherwise it's tied to the lifetime of the super_block. 1879 */ 1879 */ 1880 sb = sget_fc(fc, btrfs_fc_test_super, 1880 sb = sget_fc(fc, btrfs_fc_test_super, set_anon_super_fc); 1881 if (IS_ERR(sb)) { 1881 if (IS_ERR(sb)) { 1882 ret = PTR_ERR(sb); 1882 ret = PTR_ERR(sb); 1883 goto error; 1883 goto error; 1884 } 1884 } 1885 1885 1886 set_device_specific_options(fs_info); 1886 set_device_specific_options(fs_info); 1887 1887 1888 if (sb->s_root) { 1888 if (sb->s_root) { 1889 btrfs_close_devices(fs_device 1889 btrfs_close_devices(fs_devices); 1890 if ((fc->sb_flags ^ sb->s_fla 1890 if ((fc->sb_flags ^ sb->s_flags) & SB_RDONLY) 1891 ret = -EBUSY; 1891 ret = -EBUSY; 1892 } else { 1892 } else { 1893 snprintf(sb->s_id, sizeof(sb- 1893 snprintf(sb->s_id, sizeof(sb->s_id), "%pg", bdev); 1894 shrinker_debugfs_rename(sb->s 1894 shrinker_debugfs_rename(sb->s_shrink, "sb-btrfs:%s", sb->s_id); 1895 btrfs_sb(sb)->bdev_holder = & 1895 btrfs_sb(sb)->bdev_holder = &btrfs_fs_type; 1896 ret = btrfs_fill_super(sb, fs 1896 ret = btrfs_fill_super(sb, fs_devices, NULL); 1897 } 1897 } 1898 1898 1899 if (ret) { 1899 if (ret) { 1900 deactivate_locked_super(sb); 1900 deactivate_locked_super(sb); 1901 return ret; 1901 return ret; 1902 } 1902 } 1903 1903 1904 btrfs_clear_oneshot_options(fs_info); 1904 btrfs_clear_oneshot_options(fs_info); 1905 1905 1906 fc->root = dget(sb->s_root); 1906 fc->root = dget(sb->s_root); 1907 return 0; 1907 return 0; 1908 1908 1909 error: 1909 error: 1910 btrfs_close_devices(fs_devices); 1910 btrfs_close_devices(fs_devices); 1911 return ret; 1911 return ret; 1912 } 1912 } 1913 1913 1914 /* 1914 /* 1915 * Ever since commit 0723a0473fb4 ("btrfs: al 1915 * Ever since commit 0723a0473fb4 ("btrfs: allow mounting btrfs subvolumes 1916 * with different ro/rw options") the followi 1916 * with different ro/rw options") the following works: 1917 * 1917 * 1918 * (i) mount /dev/sda3 -o subvol=foo,r 1918 * (i) mount /dev/sda3 -o subvol=foo,ro /mnt/foo 1919 * (ii) mount /dev/sda3 -o subvol=bar,r 1919 * (ii) mount /dev/sda3 -o subvol=bar,rw /mnt/bar 1920 * 1920 * 1921 * which looks nice and innocent but is actua 1921 * which looks nice and innocent but is actually pretty intricate and deserves 1922 * a long comment. 1922 * a long comment. 1923 * 1923 * 1924 * On another filesystem a subvolume mount is 1924 * On another filesystem a subvolume mount is close to something like: 1925 * 1925 * 1926 * (iii) # create rw superblock + initia 1926 * (iii) # create rw superblock + initial mount 1927 * mount -t xfs /dev/sdb /opt/ 1927 * mount -t xfs /dev/sdb /opt/ 1928 * 1928 * 1929 * # create ro bind mount 1929 * # create ro bind mount 1930 * mount --bind -o ro /opt/foo /mn 1930 * mount --bind -o ro /opt/foo /mnt/foo 1931 * 1931 * 1932 * # unmount initial mount 1932 * # unmount initial mount 1933 * umount /opt 1933 * umount /opt 1934 * 1934 * 1935 * Of course, there's some special subvolume 1935 * Of course, there's some special subvolume sauce and there's the fact that the 1936 * sb->s_root dentry is really swapped after 1936 * sb->s_root dentry is really swapped after mount_subtree(). But conceptually 1937 * it's very close and will help us understan 1937 * it's very close and will help us understand the issue. 1938 * 1938 * 1939 * The old mount API didn't cleanly distingui 1939 * The old mount API didn't cleanly distinguish between a mount being made ro 1940 * and a superblock being made ro. The only 1940 * and a superblock being made ro. The only way to change the ro state of 1941 * either object was by passing ms_rdonly. If 1941 * either object was by passing ms_rdonly. If a new mount was created via 1942 * mount(2) such as: 1942 * mount(2) such as: 1943 * 1943 * 1944 * mount("/dev/sdb", "/mnt", "xfs", ms_r 1944 * mount("/dev/sdb", "/mnt", "xfs", ms_rdonly, null); 1945 * 1945 * 1946 * the MS_RDONLY flag being specified had two 1946 * the MS_RDONLY flag being specified had two effects: 1947 * 1947 * 1948 * (1) MNT_READONLY was raised -> the resulti 1948 * (1) MNT_READONLY was raised -> the resulting mount got 1949 * @mnt->mnt_flags |= MNT_READONLY raised 1949 * @mnt->mnt_flags |= MNT_READONLY raised. 1950 * 1950 * 1951 * (2) MS_RDONLY was passed to the filesystem 1951 * (2) MS_RDONLY was passed to the filesystem's mount method and the filesystems 1952 * made the superblock ro. Note, how SB_R 1952 * made the superblock ro. Note, how SB_RDONLY has the same value as 1953 * ms_rdonly and is raised whenever MS_RD 1953 * ms_rdonly and is raised whenever MS_RDONLY is passed through mount(2). 1954 * 1954 * 1955 * Creating a subtree mount via (iii) ends up 1955 * Creating a subtree mount via (iii) ends up leaving a rw superblock with a 1956 * subtree mounted ro. 1956 * subtree mounted ro. 1957 * 1957 * 1958 * But consider the effect on the old mount A 1958 * But consider the effect on the old mount API on btrfs subvolume mounting 1959 * which combines the distinct step in (iii) 1959 * which combines the distinct step in (iii) into a single step. 1960 * 1960 * 1961 * By issuing (i) both the mount and the supe 1961 * By issuing (i) both the mount and the superblock are turned ro. Now when (ii) 1962 * is issued the superblock is ro and thus ev 1962 * is issued the superblock is ro and thus even if the mount created for (ii) is 1963 * rw it wouldn't help. Hence, btrfs needed t 1963 * rw it wouldn't help. Hence, btrfs needed to transition the superblock from ro 1964 * to rw for (ii) which it did using an inter 1964 * to rw for (ii) which it did using an internal remount call. 1965 * 1965 * 1966 * IOW, subvolume mounting was inherently com 1966 * IOW, subvolume mounting was inherently complicated due to the ambiguity of 1967 * MS_RDONLY in mount(2). Note, this ambiguit 1967 * MS_RDONLY in mount(2). Note, this ambiguity has mount(8) always translate 1968 * "ro" to MS_RDONLY. IOW, in both (i) and (i 1968 * "ro" to MS_RDONLY. IOW, in both (i) and (ii) "ro" becomes MS_RDONLY when 1969 * passed by mount(8) to mount(2). 1969 * passed by mount(8) to mount(2). 1970 * 1970 * 1971 * Enter the new mount API. The new mount API 1971 * Enter the new mount API. The new mount API disambiguates making a mount ro 1972 * and making a superblock ro. 1972 * and making a superblock ro. 1973 * 1973 * 1974 * (3) To turn a mount ro the MOUNT_ATTR_ONLY 1974 * (3) To turn a mount ro the MOUNT_ATTR_ONLY flag can be used with either 1975 * fsmount() or mount_setattr() this is a 1975 * fsmount() or mount_setattr() this is a pure VFS level change for a 1976 * specific mount or mount tree that is n 1976 * specific mount or mount tree that is never seen by the filesystem itself. 1977 * 1977 * 1978 * (4) To turn a superblock ro the "ro" flag 1978 * (4) To turn a superblock ro the "ro" flag must be used with 1979 * fsconfig(FSCONFIG_SET_FLAG, "ro"). Thi 1979 * fsconfig(FSCONFIG_SET_FLAG, "ro"). This option is seen by the filesystem 1980 * in fc->sb_flags. 1980 * in fc->sb_flags. 1981 * 1981 * 1982 * But, currently the util-linux mount comman !! 1982 * This disambiguation has rather positive consequences. Mounting a subvolume 1983 * API and is still setting fsconfig(FSCONFIG !! 1983 * ro will not also turn the superblock ro. Only the mount for the subvolume 1984 * btrfs or not, setting the whole super bloc !! 1984 * will become ro. 1985 * work with different options work we need t !! 1985 * >> 1986 * So, if the superblock creation request comes from the new mount API the >> 1987 * caller must have explicitly done: >> 1988 * >> 1989 * fsconfig(FSCONFIG_SET_FLAG, "ro") >> 1990 * fsmount/mount_setattr(MOUNT_ATTR_RDONLY) >> 1991 * >> 1992 * IOW, at some point the caller must have explicitly turned the whole >> 1993 * superblock ro and we shouldn't just undo it like we did for the old mount >> 1994 * API. In any case, it lets us avoid the hack in the new mount API. >> 1995 * >> 1996 * Consequently, the remounting hack must only be used for requests originating >> 1997 * from the old mount API and should be marked for full deprecation so it can be >> 1998 * turned off in a couple of years. >> 1999 * >> 2000 * The new mount API has no reason to support this hack. 1986 */ 2001 */ 1987 static struct vfsmount *btrfs_reconfigure_for 2002 static struct vfsmount *btrfs_reconfigure_for_mount(struct fs_context *fc) 1988 { 2003 { 1989 struct vfsmount *mnt; 2004 struct vfsmount *mnt; 1990 int ret; 2005 int ret; 1991 const bool ro2rw = !(fc->sb_flags & S 2006 const bool ro2rw = !(fc->sb_flags & SB_RDONLY); 1992 2007 1993 /* 2008 /* 1994 * We got an EBUSY because our SB_RDO 2009 * We got an EBUSY because our SB_RDONLY flag didn't match the existing 1995 * super block, so invert our setting 2010 * super block, so invert our setting here and retry the mount so we 1996 * can get our vfsmount. 2011 * can get our vfsmount. 1997 */ 2012 */ 1998 if (ro2rw) 2013 if (ro2rw) 1999 fc->sb_flags |= SB_RDONLY; 2014 fc->sb_flags |= SB_RDONLY; 2000 else 2015 else 2001 fc->sb_flags &= ~SB_RDONLY; 2016 fc->sb_flags &= ~SB_RDONLY; 2002 2017 2003 mnt = fc_mount(fc); 2018 mnt = fc_mount(fc); 2004 if (IS_ERR(mnt)) 2019 if (IS_ERR(mnt)) 2005 return mnt; 2020 return mnt; 2006 2021 2007 if (!ro2rw) !! 2022 if (!fc->oldapi || !ro2rw) 2008 return mnt; 2023 return mnt; 2009 2024 2010 /* We need to convert to rw, call rec 2025 /* We need to convert to rw, call reconfigure. */ 2011 fc->sb_flags &= ~SB_RDONLY; 2026 fc->sb_flags &= ~SB_RDONLY; 2012 down_write(&mnt->mnt_sb->s_umount); 2027 down_write(&mnt->mnt_sb->s_umount); 2013 ret = btrfs_reconfigure(fc); 2028 ret = btrfs_reconfigure(fc); 2014 up_write(&mnt->mnt_sb->s_umount); 2029 up_write(&mnt->mnt_sb->s_umount); 2015 if (ret) { 2030 if (ret) { 2016 mntput(mnt); 2031 mntput(mnt); 2017 return ERR_PTR(ret); 2032 return ERR_PTR(ret); 2018 } 2033 } 2019 return mnt; 2034 return mnt; 2020 } 2035 } 2021 2036 2022 static int btrfs_get_tree_subvol(struct fs_co 2037 static int btrfs_get_tree_subvol(struct fs_context *fc) 2023 { 2038 { 2024 struct btrfs_fs_info *fs_info = NULL; 2039 struct btrfs_fs_info *fs_info = NULL; 2025 struct btrfs_fs_context *ctx = fc->fs 2040 struct btrfs_fs_context *ctx = fc->fs_private; 2026 struct fs_context *dup_fc; 2041 struct fs_context *dup_fc; 2027 struct dentry *dentry; 2042 struct dentry *dentry; 2028 struct vfsmount *mnt; 2043 struct vfsmount *mnt; 2029 2044 2030 /* 2045 /* 2031 * Setup a dummy root and fs_info for 2046 * Setup a dummy root and fs_info for test/set super. This is because 2032 * we don't actually fill this stuff 2047 * we don't actually fill this stuff out until open_ctree, but we need 2033 * then open_ctree will properly init 2048 * then open_ctree will properly initialize the file system specific 2034 * settings later. btrfs_init_fs_inf 2049 * settings later. btrfs_init_fs_info initializes the static elements 2035 * of the fs_info (locks and such) to 2050 * of the fs_info (locks and such) to make cleanup easier if we find a 2036 * superblock with our given fs_devic 2051 * superblock with our given fs_devices later on at sget() time. 2037 */ 2052 */ 2038 fs_info = kvzalloc(sizeof(struct btrf 2053 fs_info = kvzalloc(sizeof(struct btrfs_fs_info), GFP_KERNEL); 2039 if (!fs_info) 2054 if (!fs_info) 2040 return -ENOMEM; 2055 return -ENOMEM; 2041 2056 2042 fs_info->super_copy = kzalloc(BTRFS_S 2057 fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL); 2043 fs_info->super_for_commit = kzalloc(B 2058 fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL); 2044 if (!fs_info->super_copy || !fs_info- 2059 if (!fs_info->super_copy || !fs_info->super_for_commit) { 2045 btrfs_free_fs_info(fs_info); 2060 btrfs_free_fs_info(fs_info); 2046 return -ENOMEM; 2061 return -ENOMEM; 2047 } 2062 } 2048 btrfs_init_fs_info(fs_info); 2063 btrfs_init_fs_info(fs_info); 2049 2064 2050 dup_fc = vfs_dup_fs_context(fc); 2065 dup_fc = vfs_dup_fs_context(fc); 2051 if (IS_ERR(dup_fc)) { 2066 if (IS_ERR(dup_fc)) { 2052 btrfs_free_fs_info(fs_info); 2067 btrfs_free_fs_info(fs_info); 2053 return PTR_ERR(dup_fc); 2068 return PTR_ERR(dup_fc); 2054 } 2069 } 2055 2070 2056 /* 2071 /* 2057 * When we do the sget_fc this gets t 2072 * When we do the sget_fc this gets transferred to the sb, so we only 2058 * need to set it on the dup_fc as th 2073 * need to set it on the dup_fc as this is what creates the super block. 2059 */ 2074 */ 2060 dup_fc->s_fs_info = fs_info; 2075 dup_fc->s_fs_info = fs_info; 2061 2076 2062 /* 2077 /* 2063 * We'll do the security settings in 2078 * We'll do the security settings in our btrfs_get_tree_super() mount 2064 * loop, they were duplicated into du 2079 * loop, they were duplicated into dup_fc, we can drop the originals 2065 * here. 2080 * here. 2066 */ 2081 */ 2067 security_free_mnt_opts(&fc->security) 2082 security_free_mnt_opts(&fc->security); 2068 fc->security = NULL; 2083 fc->security = NULL; 2069 2084 2070 mnt = fc_mount(dup_fc); 2085 mnt = fc_mount(dup_fc); 2071 if (PTR_ERR_OR_ZERO(mnt) == -EBUSY) 2086 if (PTR_ERR_OR_ZERO(mnt) == -EBUSY) 2072 mnt = btrfs_reconfigure_for_m 2087 mnt = btrfs_reconfigure_for_mount(dup_fc); 2073 put_fs_context(dup_fc); 2088 put_fs_context(dup_fc); 2074 if (IS_ERR(mnt)) 2089 if (IS_ERR(mnt)) 2075 return PTR_ERR(mnt); 2090 return PTR_ERR(mnt); 2076 2091 2077 /* 2092 /* 2078 * This free's ->subvol_name, because 2093 * This free's ->subvol_name, because if it isn't set we have to 2079 * allocate a buffer to hold the subv 2094 * allocate a buffer to hold the subvol_name, so we just drop our 2080 * reference to it here. 2095 * reference to it here. 2081 */ 2096 */ 2082 dentry = mount_subvol(ctx->subvol_nam 2097 dentry = mount_subvol(ctx->subvol_name, ctx->subvol_objectid, mnt); 2083 ctx->subvol_name = NULL; 2098 ctx->subvol_name = NULL; 2084 if (IS_ERR(dentry)) 2099 if (IS_ERR(dentry)) 2085 return PTR_ERR(dentry); 2100 return PTR_ERR(dentry); 2086 2101 2087 fc->root = dentry; 2102 fc->root = dentry; 2088 return 0; 2103 return 0; 2089 } 2104 } 2090 2105 2091 static int btrfs_get_tree(struct fs_context * 2106 static int btrfs_get_tree(struct fs_context *fc) 2092 { 2107 { 2093 /* 2108 /* 2094 * Since we use mount_subtree to moun 2109 * Since we use mount_subtree to mount the default/specified subvol, we 2095 * have to do mounts in two steps. 2110 * have to do mounts in two steps. 2096 * 2111 * 2097 * First pass through we call btrfs_g 2112 * First pass through we call btrfs_get_tree_subvol(), this is just a 2098 * wrapper around fc_mount() to call 2113 * wrapper around fc_mount() to call back into here again, and this time 2099 * we'll call btrfs_get_tree_super(). 2114 * we'll call btrfs_get_tree_super(). This will do the open_ctree() and 2100 * everything to open the devices and 2115 * everything to open the devices and file system. Then we return back 2101 * with a fully constructed vfsmount 2116 * with a fully constructed vfsmount in btrfs_get_tree_subvol(), and 2102 * from there we can do our mount_sub 2117 * from there we can do our mount_subvol() call, which will lookup 2103 * whichever subvol we're mounting an 2118 * whichever subvol we're mounting and setup this fc with the 2104 * appropriate dentry for the subvol. 2119 * appropriate dentry for the subvol. 2105 */ 2120 */ 2106 if (fc->s_fs_info) 2121 if (fc->s_fs_info) 2107 return btrfs_get_tree_super(f 2122 return btrfs_get_tree_super(fc); 2108 return btrfs_get_tree_subvol(fc); 2123 return btrfs_get_tree_subvol(fc); 2109 } 2124 } 2110 2125 2111 static void btrfs_kill_super(struct super_blo 2126 static void btrfs_kill_super(struct super_block *sb) 2112 { 2127 { 2113 struct btrfs_fs_info *fs_info = btrfs 2128 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2114 kill_anon_super(sb); 2129 kill_anon_super(sb); 2115 btrfs_free_fs_info(fs_info); 2130 btrfs_free_fs_info(fs_info); 2116 } 2131 } 2117 2132 2118 static void btrfs_free_fs_context(struct fs_c 2133 static void btrfs_free_fs_context(struct fs_context *fc) 2119 { 2134 { 2120 struct btrfs_fs_context *ctx = fc->fs 2135 struct btrfs_fs_context *ctx = fc->fs_private; 2121 struct btrfs_fs_info *fs_info = fc->s 2136 struct btrfs_fs_info *fs_info = fc->s_fs_info; 2122 2137 2123 if (fs_info) 2138 if (fs_info) 2124 btrfs_free_fs_info(fs_info); 2139 btrfs_free_fs_info(fs_info); 2125 2140 2126 if (ctx && refcount_dec_and_test(&ctx 2141 if (ctx && refcount_dec_and_test(&ctx->refs)) { 2127 kfree(ctx->subvol_name); 2142 kfree(ctx->subvol_name); 2128 kfree(ctx); 2143 kfree(ctx); 2129 } 2144 } 2130 } 2145 } 2131 2146 2132 static int btrfs_dup_fs_context(struct fs_con 2147 static int btrfs_dup_fs_context(struct fs_context *fc, struct fs_context *src_fc) 2133 { 2148 { 2134 struct btrfs_fs_context *ctx = src_fc 2149 struct btrfs_fs_context *ctx = src_fc->fs_private; 2135 2150 2136 /* 2151 /* 2137 * Give a ref to our ctx to this dup, 2152 * Give a ref to our ctx to this dup, as we want to keep it around for 2138 * our original fc so we can have the 2153 * our original fc so we can have the subvolume name or objectid. 2139 * 2154 * 2140 * We unset ->source in the original 2155 * We unset ->source in the original fc because the dup needs it for 2141 * mounting, and then once we free th 2156 * mounting, and then once we free the dup it'll free ->source, so we 2142 * need to make sure we're only point 2157 * need to make sure we're only pointing to it in one fc. 2143 */ 2158 */ 2144 refcount_inc(&ctx->refs); 2159 refcount_inc(&ctx->refs); 2145 fc->fs_private = ctx; 2160 fc->fs_private = ctx; 2146 fc->source = src_fc->source; 2161 fc->source = src_fc->source; 2147 src_fc->source = NULL; 2162 src_fc->source = NULL; 2148 return 0; 2163 return 0; 2149 } 2164 } 2150 2165 2151 static const struct fs_context_operations btr 2166 static const struct fs_context_operations btrfs_fs_context_ops = { 2152 .parse_param = btrfs_parse_param, 2167 .parse_param = btrfs_parse_param, 2153 .reconfigure = btrfs_reconfigure, 2168 .reconfigure = btrfs_reconfigure, 2154 .get_tree = btrfs_get_tree, 2169 .get_tree = btrfs_get_tree, 2155 .dup = btrfs_dup_fs_contex 2170 .dup = btrfs_dup_fs_context, 2156 .free = btrfs_free_fs_conte 2171 .free = btrfs_free_fs_context, 2157 }; 2172 }; 2158 2173 2159 static int btrfs_init_fs_context(struct fs_co 2174 static int btrfs_init_fs_context(struct fs_context *fc) 2160 { 2175 { 2161 struct btrfs_fs_context *ctx; 2176 struct btrfs_fs_context *ctx; 2162 2177 2163 ctx = kzalloc(sizeof(struct btrfs_fs_ 2178 ctx = kzalloc(sizeof(struct btrfs_fs_context), GFP_KERNEL); 2164 if (!ctx) 2179 if (!ctx) 2165 return -ENOMEM; 2180 return -ENOMEM; 2166 2181 2167 refcount_set(&ctx->refs, 1); 2182 refcount_set(&ctx->refs, 1); 2168 fc->fs_private = ctx; 2183 fc->fs_private = ctx; 2169 fc->ops = &btrfs_fs_context_ops; 2184 fc->ops = &btrfs_fs_context_ops; 2170 2185 2171 if (fc->purpose == FS_CONTEXT_FOR_REC 2186 if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) { 2172 btrfs_info_to_ctx(btrfs_sb(fc 2187 btrfs_info_to_ctx(btrfs_sb(fc->root->d_sb), ctx); 2173 } else { 2188 } else { 2174 ctx->thread_pool_size = 2189 ctx->thread_pool_size = 2175 min_t(unsigned long, 2190 min_t(unsigned long, num_online_cpus() + 2, 8); 2176 ctx->max_inline = BTRFS_DEFAU 2191 ctx->max_inline = BTRFS_DEFAULT_MAX_INLINE; 2177 ctx->commit_interval = BTRFS_ 2192 ctx->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 2178 } 2193 } 2179 2194 2180 #ifdef CONFIG_BTRFS_FS_POSIX_ACL 2195 #ifdef CONFIG_BTRFS_FS_POSIX_ACL 2181 fc->sb_flags |= SB_POSIXACL; 2196 fc->sb_flags |= SB_POSIXACL; 2182 #endif 2197 #endif 2183 fc->sb_flags |= SB_I_VERSION; 2198 fc->sb_flags |= SB_I_VERSION; 2184 2199 2185 return 0; 2200 return 0; 2186 } 2201 } 2187 2202 2188 static struct file_system_type btrfs_fs_type 2203 static struct file_system_type btrfs_fs_type = { 2189 .owner = THIS_MODULE 2204 .owner = THIS_MODULE, 2190 .name = "btrfs", 2205 .name = "btrfs", 2191 .init_fs_context = btrfs_init_ 2206 .init_fs_context = btrfs_init_fs_context, 2192 .parameters = btrfs_fs_pa 2207 .parameters = btrfs_fs_parameters, 2193 .kill_sb = btrfs_kill_ 2208 .kill_sb = btrfs_kill_super, 2194 .fs_flags = FS_REQUIRES 2209 .fs_flags = FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA | FS_ALLOW_IDMAP, 2195 }; 2210 }; 2196 2211 2197 MODULE_ALIAS_FS("btrfs"); 2212 MODULE_ALIAS_FS("btrfs"); 2198 2213 2199 static int btrfs_control_open(struct inode *i 2214 static int btrfs_control_open(struct inode *inode, struct file *file) 2200 { 2215 { 2201 /* 2216 /* 2202 * The control file's private_data is 2217 * The control file's private_data is used to hold the 2203 * transaction when it is started and 2218 * transaction when it is started and is used to keep 2204 * track of whether a transaction is 2219 * track of whether a transaction is already in progress. 2205 */ 2220 */ 2206 file->private_data = NULL; 2221 file->private_data = NULL; 2207 return 0; 2222 return 0; 2208 } 2223 } 2209 2224 2210 /* 2225 /* 2211 * Used by /dev/btrfs-control for devices ioc 2226 * Used by /dev/btrfs-control for devices ioctls. 2212 */ 2227 */ 2213 static long btrfs_control_ioctl(struct file * 2228 static long btrfs_control_ioctl(struct file *file, unsigned int cmd, 2214 unsigned long 2229 unsigned long arg) 2215 { 2230 { 2216 struct btrfs_ioctl_vol_args *vol; 2231 struct btrfs_ioctl_vol_args *vol; 2217 struct btrfs_device *device = NULL; 2232 struct btrfs_device *device = NULL; 2218 dev_t devt = 0; 2233 dev_t devt = 0; 2219 int ret = -ENOTTY; 2234 int ret = -ENOTTY; 2220 2235 2221 if (!capable(CAP_SYS_ADMIN)) 2236 if (!capable(CAP_SYS_ADMIN)) 2222 return -EPERM; 2237 return -EPERM; 2223 2238 2224 vol = memdup_user((void __user *)arg, 2239 vol = memdup_user((void __user *)arg, sizeof(*vol)); 2225 if (IS_ERR(vol)) 2240 if (IS_ERR(vol)) 2226 return PTR_ERR(vol); 2241 return PTR_ERR(vol); 2227 ret = btrfs_check_ioctl_vol_args_path 2242 ret = btrfs_check_ioctl_vol_args_path(vol); 2228 if (ret < 0) 2243 if (ret < 0) 2229 goto out; 2244 goto out; 2230 2245 2231 switch (cmd) { 2246 switch (cmd) { 2232 case BTRFS_IOC_SCAN_DEV: 2247 case BTRFS_IOC_SCAN_DEV: 2233 mutex_lock(&uuid_mutex); 2248 mutex_lock(&uuid_mutex); 2234 /* 2249 /* 2235 * Scanning outside of mount 2250 * Scanning outside of mount can return NULL which would turn 2236 * into 0 error code. 2251 * into 0 error code. 2237 */ 2252 */ 2238 device = btrfs_scan_one_devic 2253 device = btrfs_scan_one_device(vol->name, BLK_OPEN_READ, false); 2239 ret = PTR_ERR_OR_ZERO(device) 2254 ret = PTR_ERR_OR_ZERO(device); 2240 mutex_unlock(&uuid_mutex); 2255 mutex_unlock(&uuid_mutex); 2241 break; 2256 break; 2242 case BTRFS_IOC_FORGET_DEV: 2257 case BTRFS_IOC_FORGET_DEV: 2243 if (vol->name[0] != 0) { 2258 if (vol->name[0] != 0) { 2244 ret = lookup_bdev(vol 2259 ret = lookup_bdev(vol->name, &devt); 2245 if (ret) 2260 if (ret) 2246 break; 2261 break; 2247 } 2262 } 2248 ret = btrfs_forget_devices(de 2263 ret = btrfs_forget_devices(devt); 2249 break; 2264 break; 2250 case BTRFS_IOC_DEVICES_READY: 2265 case BTRFS_IOC_DEVICES_READY: 2251 mutex_lock(&uuid_mutex); 2266 mutex_lock(&uuid_mutex); 2252 /* 2267 /* 2253 * Scanning outside of mount 2268 * Scanning outside of mount can return NULL which would turn 2254 * into 0 error code. 2269 * into 0 error code. 2255 */ 2270 */ 2256 device = btrfs_scan_one_devic 2271 device = btrfs_scan_one_device(vol->name, BLK_OPEN_READ, false); 2257 if (IS_ERR_OR_NULL(device)) { 2272 if (IS_ERR_OR_NULL(device)) { 2258 mutex_unlock(&uuid_mu 2273 mutex_unlock(&uuid_mutex); 2259 ret = PTR_ERR(device) 2274 ret = PTR_ERR(device); 2260 break; 2275 break; 2261 } 2276 } 2262 ret = !(device->fs_devices->n 2277 ret = !(device->fs_devices->num_devices == 2263 device->fs_devices->t 2278 device->fs_devices->total_devices); 2264 mutex_unlock(&uuid_mutex); 2279 mutex_unlock(&uuid_mutex); 2265 break; 2280 break; 2266 case BTRFS_IOC_GET_SUPPORTED_FEATURES 2281 case BTRFS_IOC_GET_SUPPORTED_FEATURES: 2267 ret = btrfs_ioctl_get_support 2282 ret = btrfs_ioctl_get_supported_features((void __user*)arg); 2268 break; 2283 break; 2269 } 2284 } 2270 2285 2271 out: 2286 out: 2272 kfree(vol); 2287 kfree(vol); 2273 return ret; 2288 return ret; 2274 } 2289 } 2275 2290 2276 static int btrfs_freeze(struct super_block *s 2291 static int btrfs_freeze(struct super_block *sb) 2277 { 2292 { 2278 struct btrfs_fs_info *fs_info = btrfs 2293 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2279 2294 2280 set_bit(BTRFS_FS_FROZEN, &fs_info->fl 2295 set_bit(BTRFS_FS_FROZEN, &fs_info->flags); 2281 /* 2296 /* 2282 * We don't need a barrier here, we'l 2297 * We don't need a barrier here, we'll wait for any transaction that 2283 * could be in progress on other thre 2298 * could be in progress on other threads (and do delayed iputs that 2284 * we want to avoid on a frozen files 2299 * we want to avoid on a frozen filesystem), or do the commit 2285 * ourselves. 2300 * ourselves. 2286 */ 2301 */ 2287 return btrfs_commit_current_transacti 2302 return btrfs_commit_current_transaction(fs_info->tree_root); 2288 } 2303 } 2289 2304 2290 static int check_dev_super(struct btrfs_devic 2305 static int check_dev_super(struct btrfs_device *dev) 2291 { 2306 { 2292 struct btrfs_fs_info *fs_info = dev-> 2307 struct btrfs_fs_info *fs_info = dev->fs_info; 2293 struct btrfs_super_block *sb; 2308 struct btrfs_super_block *sb; 2294 u64 last_trans; 2309 u64 last_trans; 2295 u16 csum_type; 2310 u16 csum_type; 2296 int ret = 0; 2311 int ret = 0; 2297 2312 2298 /* This should be called with fs stil 2313 /* This should be called with fs still frozen. */ 2299 ASSERT(test_bit(BTRFS_FS_FROZEN, &fs_ 2314 ASSERT(test_bit(BTRFS_FS_FROZEN, &fs_info->flags)); 2300 2315 2301 /* Missing dev, no need to check. */ 2316 /* Missing dev, no need to check. */ 2302 if (!dev->bdev) 2317 if (!dev->bdev) 2303 return 0; 2318 return 0; 2304 2319 2305 /* Only need to check the primary sup 2320 /* Only need to check the primary super block. */ 2306 sb = btrfs_read_dev_one_super(dev->bd 2321 sb = btrfs_read_dev_one_super(dev->bdev, 0, true); 2307 if (IS_ERR(sb)) 2322 if (IS_ERR(sb)) 2308 return PTR_ERR(sb); 2323 return PTR_ERR(sb); 2309 2324 2310 /* Verify the checksum. */ 2325 /* Verify the checksum. */ 2311 csum_type = btrfs_super_csum_type(sb) 2326 csum_type = btrfs_super_csum_type(sb); 2312 if (csum_type != btrfs_super_csum_typ 2327 if (csum_type != btrfs_super_csum_type(fs_info->super_copy)) { 2313 btrfs_err(fs_info, "csum type 2328 btrfs_err(fs_info, "csum type changed, has %u expect %u", 2314 csum_type, btrfs_su 2329 csum_type, btrfs_super_csum_type(fs_info->super_copy)); 2315 ret = -EUCLEAN; 2330 ret = -EUCLEAN; 2316 goto out; 2331 goto out; 2317 } 2332 } 2318 2333 2319 if (btrfs_check_super_csum(fs_info, s 2334 if (btrfs_check_super_csum(fs_info, sb)) { 2320 btrfs_err(fs_info, "csum for 2335 btrfs_err(fs_info, "csum for on-disk super block no longer matches"); 2321 ret = -EUCLEAN; 2336 ret = -EUCLEAN; 2322 goto out; 2337 goto out; 2323 } 2338 } 2324 2339 2325 /* Btrfs_validate_super() includes fs 2340 /* Btrfs_validate_super() includes fsid check against super->fsid. */ 2326 ret = btrfs_validate_super(fs_info, s 2341 ret = btrfs_validate_super(fs_info, sb, 0); 2327 if (ret < 0) 2342 if (ret < 0) 2328 goto out; 2343 goto out; 2329 2344 2330 last_trans = btrfs_get_last_trans_com 2345 last_trans = btrfs_get_last_trans_committed(fs_info); 2331 if (btrfs_super_generation(sb) != las 2346 if (btrfs_super_generation(sb) != last_trans) { 2332 btrfs_err(fs_info, "transid m 2347 btrfs_err(fs_info, "transid mismatch, has %llu expect %llu", 2333 btrfs_super_generat 2348 btrfs_super_generation(sb), last_trans); 2334 ret = -EUCLEAN; 2349 ret = -EUCLEAN; 2335 goto out; 2350 goto out; 2336 } 2351 } 2337 out: 2352 out: 2338 btrfs_release_disk_super(sb); 2353 btrfs_release_disk_super(sb); 2339 return ret; 2354 return ret; 2340 } 2355 } 2341 2356 2342 static int btrfs_unfreeze(struct super_block 2357 static int btrfs_unfreeze(struct super_block *sb) 2343 { 2358 { 2344 struct btrfs_fs_info *fs_info = btrfs 2359 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2345 struct btrfs_device *device; 2360 struct btrfs_device *device; 2346 int ret = 0; 2361 int ret = 0; 2347 2362 2348 /* 2363 /* 2349 * Make sure the fs is not changed by 2364 * Make sure the fs is not changed by accident (like hibernation then 2350 * modified by other OS). 2365 * modified by other OS). 2351 * If we found anything wrong, we mar 2366 * If we found anything wrong, we mark the fs error immediately. 2352 * 2367 * 2353 * And since the fs is frozen, no one 2368 * And since the fs is frozen, no one can modify the fs yet, thus 2354 * we don't need to hold device_list_ 2369 * we don't need to hold device_list_mutex. 2355 */ 2370 */ 2356 list_for_each_entry(device, &fs_info- 2371 list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) { 2357 ret = check_dev_super(device) 2372 ret = check_dev_super(device); 2358 if (ret < 0) { 2373 if (ret < 0) { 2359 btrfs_handle_fs_error 2374 btrfs_handle_fs_error(fs_info, ret, 2360 "super block 2375 "super block on devid %llu got modified unexpectedly", 2361 device->devid 2376 device->devid); 2362 break; 2377 break; 2363 } 2378 } 2364 } 2379 } 2365 clear_bit(BTRFS_FS_FROZEN, &fs_info-> 2380 clear_bit(BTRFS_FS_FROZEN, &fs_info->flags); 2366 2381 2367 /* 2382 /* 2368 * We still return 0, to allow VFS la 2383 * We still return 0, to allow VFS layer to unfreeze the fs even the 2369 * above checks failed. Since the fs 2384 * above checks failed. Since the fs is either fine or read-only, we're 2370 * safe to continue, without causing 2385 * safe to continue, without causing further damage. 2371 */ 2386 */ 2372 return 0; 2387 return 0; 2373 } 2388 } 2374 2389 2375 static int btrfs_show_devname(struct seq_file 2390 static int btrfs_show_devname(struct seq_file *m, struct dentry *root) 2376 { 2391 { 2377 struct btrfs_fs_info *fs_info = btrfs 2392 struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb); 2378 2393 2379 /* 2394 /* 2380 * There should be always a valid poi 2395 * There should be always a valid pointer in latest_dev, it may be stale 2381 * for a short moment in case it's be 2396 * for a short moment in case it's being deleted but still valid until 2382 * the end of RCU grace period. 2397 * the end of RCU grace period. 2383 */ 2398 */ 2384 rcu_read_lock(); 2399 rcu_read_lock(); 2385 seq_escape(m, btrfs_dev_name(fs_info- 2400 seq_escape(m, btrfs_dev_name(fs_info->fs_devices->latest_dev), " \t\n\\"); 2386 rcu_read_unlock(); 2401 rcu_read_unlock(); 2387 2402 2388 return 0; 2403 return 0; 2389 } 2404 } 2390 2405 2391 static long btrfs_nr_cached_objects(struct su 2406 static long btrfs_nr_cached_objects(struct super_block *sb, struct shrink_control *sc) 2392 { 2407 { 2393 struct btrfs_fs_info *fs_info = btrfs 2408 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2394 const s64 nr = percpu_counter_sum_pos 2409 const s64 nr = percpu_counter_sum_positive(&fs_info->evictable_extent_maps); 2395 2410 2396 trace_btrfs_extent_map_shrinker_count 2411 trace_btrfs_extent_map_shrinker_count(fs_info, nr); 2397 2412 2398 /* 2413 /* 2399 * Only report the real number for DE 2414 * Only report the real number for DEBUG builds, as there are reports of 2400 * serious performance degradation ca 2415 * serious performance degradation caused by too frequent shrinks. 2401 */ 2416 */ 2402 if (IS_ENABLED(CONFIG_BTRFS_DEBUG)) 2417 if (IS_ENABLED(CONFIG_BTRFS_DEBUG)) 2403 return nr; 2418 return nr; 2404 return 0; 2419 return 0; 2405 } 2420 } 2406 2421 2407 static long btrfs_free_cached_objects(struct 2422 static long btrfs_free_cached_objects(struct super_block *sb, struct shrink_control *sc) 2408 { 2423 { 2409 const long nr_to_scan = min_t(unsigne 2424 const long nr_to_scan = min_t(unsigned long, LONG_MAX, sc->nr_to_scan); 2410 struct btrfs_fs_info *fs_info = btrfs 2425 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2411 2426 2412 /* 2427 /* 2413 * We may be called from any task try 2428 * We may be called from any task trying to allocate memory and we don't 2414 * want to slow it down with scanning 2429 * want to slow it down with scanning and dropping extent maps. It would 2415 * also cause heavy lock contention i 2430 * also cause heavy lock contention if many tasks concurrently enter 2416 * here. Therefore only allow kswapd 2431 * here. Therefore only allow kswapd tasks to scan and drop extent maps. 2417 */ 2432 */ 2418 if (!current_is_kswapd()) 2433 if (!current_is_kswapd()) 2419 return 0; 2434 return 0; 2420 2435 2421 return btrfs_free_extent_maps(fs_info 2436 return btrfs_free_extent_maps(fs_info, nr_to_scan); 2422 } 2437 } 2423 2438 2424 static const struct super_operations btrfs_su 2439 static const struct super_operations btrfs_super_ops = { 2425 .drop_inode = btrfs_drop_inode, 2440 .drop_inode = btrfs_drop_inode, 2426 .evict_inode = btrfs_evict_inode, 2441 .evict_inode = btrfs_evict_inode, 2427 .put_super = btrfs_put_super, 2442 .put_super = btrfs_put_super, 2428 .sync_fs = btrfs_sync_fs, 2443 .sync_fs = btrfs_sync_fs, 2429 .show_options = btrfs_show_options, 2444 .show_options = btrfs_show_options, 2430 .show_devname = btrfs_show_devname, 2445 .show_devname = btrfs_show_devname, 2431 .alloc_inode = btrfs_alloc_inode, 2446 .alloc_inode = btrfs_alloc_inode, 2432 .destroy_inode = btrfs_destroy_inode 2447 .destroy_inode = btrfs_destroy_inode, 2433 .free_inode = btrfs_free_inode, 2448 .free_inode = btrfs_free_inode, 2434 .statfs = btrfs_statfs, 2449 .statfs = btrfs_statfs, 2435 .freeze_fs = btrfs_freeze, 2450 .freeze_fs = btrfs_freeze, 2436 .unfreeze_fs = btrfs_unfreeze, 2451 .unfreeze_fs = btrfs_unfreeze, 2437 .nr_cached_objects = btrfs_nr_cached_ 2452 .nr_cached_objects = btrfs_nr_cached_objects, 2438 .free_cached_objects = btrfs_free_cac 2453 .free_cached_objects = btrfs_free_cached_objects, 2439 }; 2454 }; 2440 2455 2441 static const struct file_operations btrfs_ctl 2456 static const struct file_operations btrfs_ctl_fops = { 2442 .open = btrfs_control_open, 2457 .open = btrfs_control_open, 2443 .unlocked_ioctl = btrfs_control_ioct 2458 .unlocked_ioctl = btrfs_control_ioctl, 2444 .compat_ioctl = compat_ptr_ioctl, 2459 .compat_ioctl = compat_ptr_ioctl, 2445 .owner = THIS_MODULE, 2460 .owner = THIS_MODULE, 2446 .llseek = noop_llseek, 2461 .llseek = noop_llseek, 2447 }; 2462 }; 2448 2463 2449 static struct miscdevice btrfs_misc = { 2464 static struct miscdevice btrfs_misc = { 2450 .minor = BTRFS_MINOR, 2465 .minor = BTRFS_MINOR, 2451 .name = "btrfs-control", 2466 .name = "btrfs-control", 2452 .fops = &btrfs_ctl_fops 2467 .fops = &btrfs_ctl_fops 2453 }; 2468 }; 2454 2469 2455 MODULE_ALIAS_MISCDEV(BTRFS_MINOR); 2470 MODULE_ALIAS_MISCDEV(BTRFS_MINOR); 2456 MODULE_ALIAS("devname:btrfs-control"); 2471 MODULE_ALIAS("devname:btrfs-control"); 2457 2472 2458 static int __init btrfs_interface_init(void) 2473 static int __init btrfs_interface_init(void) 2459 { 2474 { 2460 return misc_register(&btrfs_misc); 2475 return misc_register(&btrfs_misc); 2461 } 2476 } 2462 2477 2463 static __cold void btrfs_interface_exit(void) 2478 static __cold void btrfs_interface_exit(void) 2464 { 2479 { 2465 misc_deregister(&btrfs_misc); 2480 misc_deregister(&btrfs_misc); 2466 } 2481 } 2467 2482 2468 static int __init btrfs_print_mod_info(void) 2483 static int __init btrfs_print_mod_info(void) 2469 { 2484 { 2470 static const char options[] = "" 2485 static const char options[] = "" 2471 #ifdef CONFIG_BTRFS_DEBUG 2486 #ifdef CONFIG_BTRFS_DEBUG 2472 ", debug=on" 2487 ", debug=on" 2473 #endif 2488 #endif 2474 #ifdef CONFIG_BTRFS_ASSERT 2489 #ifdef CONFIG_BTRFS_ASSERT 2475 ", assert=on" 2490 ", assert=on" 2476 #endif 2491 #endif 2477 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 2492 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 2478 ", ref-verify=on" 2493 ", ref-verify=on" 2479 #endif 2494 #endif 2480 #ifdef CONFIG_BLK_DEV_ZONED 2495 #ifdef CONFIG_BLK_DEV_ZONED 2481 ", zoned=yes" 2496 ", zoned=yes" 2482 #else 2497 #else 2483 ", zoned=no" 2498 ", zoned=no" 2484 #endif 2499 #endif 2485 #ifdef CONFIG_FS_VERITY 2500 #ifdef CONFIG_FS_VERITY 2486 ", fsverity=yes" 2501 ", fsverity=yes" 2487 #else 2502 #else 2488 ", fsverity=no" 2503 ", fsverity=no" 2489 #endif 2504 #endif 2490 ; 2505 ; 2491 pr_info("Btrfs loaded%s\n", options); 2506 pr_info("Btrfs loaded%s\n", options); 2492 return 0; 2507 return 0; 2493 } 2508 } 2494 2509 2495 static int register_btrfs(void) 2510 static int register_btrfs(void) 2496 { 2511 { 2497 return register_filesystem(&btrfs_fs_ 2512 return register_filesystem(&btrfs_fs_type); 2498 } 2513 } 2499 2514 2500 static void unregister_btrfs(void) 2515 static void unregister_btrfs(void) 2501 { 2516 { 2502 unregister_filesystem(&btrfs_fs_type) 2517 unregister_filesystem(&btrfs_fs_type); 2503 } 2518 } 2504 2519 2505 /* Helper structure for long init/exit functi 2520 /* Helper structure for long init/exit functions. */ 2506 struct init_sequence { 2521 struct init_sequence { 2507 int (*init_func)(void); 2522 int (*init_func)(void); 2508 /* Can be NULL if the init_func doesn 2523 /* Can be NULL if the init_func doesn't need cleanup. */ 2509 void (*exit_func)(void); 2524 void (*exit_func)(void); 2510 }; 2525 }; 2511 2526 2512 static const struct init_sequence mod_init_se 2527 static const struct init_sequence mod_init_seq[] = { 2513 { 2528 { 2514 .init_func = btrfs_props_init 2529 .init_func = btrfs_props_init, 2515 .exit_func = NULL, 2530 .exit_func = NULL, 2516 }, { 2531 }, { 2517 .init_func = btrfs_init_sysfs 2532 .init_func = btrfs_init_sysfs, 2518 .exit_func = btrfs_exit_sysfs 2533 .exit_func = btrfs_exit_sysfs, 2519 }, { 2534 }, { 2520 .init_func = btrfs_init_compr 2535 .init_func = btrfs_init_compress, 2521 .exit_func = btrfs_exit_compr 2536 .exit_func = btrfs_exit_compress, 2522 }, { 2537 }, { 2523 .init_func = btrfs_init_cache 2538 .init_func = btrfs_init_cachep, 2524 .exit_func = btrfs_destroy_ca 2539 .exit_func = btrfs_destroy_cachep, 2525 }, { 2540 }, { 2526 .init_func = btrfs_init_dio, 2541 .init_func = btrfs_init_dio, 2527 .exit_func = btrfs_destroy_di 2542 .exit_func = btrfs_destroy_dio, 2528 }, { 2543 }, { 2529 .init_func = btrfs_transactio 2544 .init_func = btrfs_transaction_init, 2530 .exit_func = btrfs_transactio 2545 .exit_func = btrfs_transaction_exit, 2531 }, { 2546 }, { 2532 .init_func = btrfs_ctree_init 2547 .init_func = btrfs_ctree_init, 2533 .exit_func = btrfs_ctree_exit 2548 .exit_func = btrfs_ctree_exit, 2534 }, { 2549 }, { 2535 .init_func = btrfs_free_space 2550 .init_func = btrfs_free_space_init, 2536 .exit_func = btrfs_free_space 2551 .exit_func = btrfs_free_space_exit, 2537 }, { 2552 }, { 2538 .init_func = extent_state_ini 2553 .init_func = extent_state_init_cachep, 2539 .exit_func = extent_state_fre 2554 .exit_func = extent_state_free_cachep, 2540 }, { 2555 }, { 2541 .init_func = extent_buffer_in 2556 .init_func = extent_buffer_init_cachep, 2542 .exit_func = extent_buffer_fr 2557 .exit_func = extent_buffer_free_cachep, 2543 }, { 2558 }, { 2544 .init_func = btrfs_bioset_ini 2559 .init_func = btrfs_bioset_init, 2545 .exit_func = btrfs_bioset_exi 2560 .exit_func = btrfs_bioset_exit, 2546 }, { 2561 }, { 2547 .init_func = extent_map_init, 2562 .init_func = extent_map_init, 2548 .exit_func = extent_map_exit, 2563 .exit_func = extent_map_exit, 2549 }, { 2564 }, { 2550 .init_func = ordered_data_ini 2565 .init_func = ordered_data_init, 2551 .exit_func = ordered_data_exi 2566 .exit_func = ordered_data_exit, 2552 }, { 2567 }, { 2553 .init_func = btrfs_delayed_in 2568 .init_func = btrfs_delayed_inode_init, 2554 .exit_func = btrfs_delayed_in 2569 .exit_func = btrfs_delayed_inode_exit, 2555 }, { 2570 }, { 2556 .init_func = btrfs_auto_defra 2571 .init_func = btrfs_auto_defrag_init, 2557 .exit_func = btrfs_auto_defra 2572 .exit_func = btrfs_auto_defrag_exit, 2558 }, { 2573 }, { 2559 .init_func = btrfs_delayed_re 2574 .init_func = btrfs_delayed_ref_init, 2560 .exit_func = btrfs_delayed_re 2575 .exit_func = btrfs_delayed_ref_exit, 2561 }, { 2576 }, { 2562 .init_func = btrfs_prelim_ref 2577 .init_func = btrfs_prelim_ref_init, 2563 .exit_func = btrfs_prelim_ref 2578 .exit_func = btrfs_prelim_ref_exit, 2564 }, { 2579 }, { 2565 .init_func = btrfs_interface_ 2580 .init_func = btrfs_interface_init, 2566 .exit_func = btrfs_interface_ 2581 .exit_func = btrfs_interface_exit, 2567 }, { 2582 }, { 2568 .init_func = btrfs_print_mod_ 2583 .init_func = btrfs_print_mod_info, 2569 .exit_func = NULL, 2584 .exit_func = NULL, 2570 }, { 2585 }, { 2571 .init_func = btrfs_run_sanity 2586 .init_func = btrfs_run_sanity_tests, 2572 .exit_func = NULL, 2587 .exit_func = NULL, 2573 }, { 2588 }, { 2574 .init_func = register_btrfs, 2589 .init_func = register_btrfs, 2575 .exit_func = unregister_btrfs 2590 .exit_func = unregister_btrfs, 2576 } 2591 } 2577 }; 2592 }; 2578 2593 2579 static bool mod_init_result[ARRAY_SIZE(mod_in 2594 static bool mod_init_result[ARRAY_SIZE(mod_init_seq)]; 2580 2595 2581 static __always_inline void btrfs_exit_btrfs_ 2596 static __always_inline void btrfs_exit_btrfs_fs(void) 2582 { 2597 { 2583 int i; 2598 int i; 2584 2599 2585 for (i = ARRAY_SIZE(mod_init_seq) - 1 2600 for (i = ARRAY_SIZE(mod_init_seq) - 1; i >= 0; i--) { 2586 if (!mod_init_result[i]) 2601 if (!mod_init_result[i]) 2587 continue; 2602 continue; 2588 if (mod_init_seq[i].exit_func 2603 if (mod_init_seq[i].exit_func) 2589 mod_init_seq[i].exit_ 2604 mod_init_seq[i].exit_func(); 2590 mod_init_result[i] = false; 2605 mod_init_result[i] = false; 2591 } 2606 } 2592 } 2607 } 2593 2608 2594 static void __exit exit_btrfs_fs(void) 2609 static void __exit exit_btrfs_fs(void) 2595 { 2610 { 2596 btrfs_exit_btrfs_fs(); 2611 btrfs_exit_btrfs_fs(); 2597 btrfs_cleanup_fs_uuids(); 2612 btrfs_cleanup_fs_uuids(); 2598 } 2613 } 2599 2614 2600 static int __init init_btrfs_fs(void) 2615 static int __init init_btrfs_fs(void) 2601 { 2616 { 2602 int ret; 2617 int ret; 2603 int i; 2618 int i; 2604 2619 2605 for (i = 0; i < ARRAY_SIZE(mod_init_s 2620 for (i = 0; i < ARRAY_SIZE(mod_init_seq); i++) { 2606 ASSERT(!mod_init_result[i]); 2621 ASSERT(!mod_init_result[i]); 2607 ret = mod_init_seq[i].init_fu 2622 ret = mod_init_seq[i].init_func(); 2608 if (ret < 0) { 2623 if (ret < 0) { 2609 btrfs_exit_btrfs_fs() 2624 btrfs_exit_btrfs_fs(); 2610 return ret; 2625 return ret; 2611 } 2626 } 2612 mod_init_result[i] = true; 2627 mod_init_result[i] = true; 2613 } 2628 } 2614 return 0; 2629 return 0; 2615 } 2630 } 2616 2631 2617 late_initcall(init_btrfs_fs); 2632 late_initcall(init_btrfs_fs); 2618 module_exit(exit_btrfs_fs) 2633 module_exit(exit_btrfs_fs) 2619 2634 2620 MODULE_DESCRIPTION("B-Tree File System (BTRFS 2635 MODULE_DESCRIPTION("B-Tree File System (BTRFS)"); 2621 MODULE_LICENSE("GPL"); 2636 MODULE_LICENSE("GPL"); 2622 MODULE_SOFTDEP("pre: crc32c"); 2637 MODULE_SOFTDEP("pre: crc32c"); 2623 MODULE_SOFTDEP("pre: xxhash64"); 2638 MODULE_SOFTDEP("pre: xxhash64"); 2624 MODULE_SOFTDEP("pre: sha256"); 2639 MODULE_SOFTDEP("pre: sha256"); 2625 MODULE_SOFTDEP("pre: blake2b-256"); 2640 MODULE_SOFTDEP("pre: blake2b-256"); 2626 2641
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.