1 // SPDX-License-Identifier: GPL-2.0-only 1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 2 /* 3 * fs/dax.c - Direct Access filesystem code 3 * fs/dax.c - Direct Access filesystem code 4 * Copyright (c) 2013-2014 Intel Corporation 4 * Copyright (c) 2013-2014 Intel Corporation 5 * Author: Matthew Wilcox <matthew.r.wilcox@in 5 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com> 6 * Author: Ross Zwisler <ross.zwisler@linux.in 6 * Author: Ross Zwisler <ross.zwisler@linux.intel.com> 7 */ 7 */ 8 8 9 #include <linux/atomic.h> 9 #include <linux/atomic.h> 10 #include <linux/blkdev.h> 10 #include <linux/blkdev.h> 11 #include <linux/buffer_head.h> 11 #include <linux/buffer_head.h> 12 #include <linux/dax.h> 12 #include <linux/dax.h> 13 #include <linux/fs.h> 13 #include <linux/fs.h> 14 #include <linux/highmem.h> 14 #include <linux/highmem.h> 15 #include <linux/memcontrol.h> 15 #include <linux/memcontrol.h> 16 #include <linux/mm.h> 16 #include <linux/mm.h> 17 #include <linux/mutex.h> 17 #include <linux/mutex.h> 18 #include <linux/pagevec.h> 18 #include <linux/pagevec.h> 19 #include <linux/sched.h> 19 #include <linux/sched.h> 20 #include <linux/sched/signal.h> 20 #include <linux/sched/signal.h> 21 #include <linux/uio.h> 21 #include <linux/uio.h> 22 #include <linux/vmstat.h> 22 #include <linux/vmstat.h> 23 #include <linux/pfn_t.h> 23 #include <linux/pfn_t.h> 24 #include <linux/sizes.h> 24 #include <linux/sizes.h> 25 #include <linux/mmu_notifier.h> 25 #include <linux/mmu_notifier.h> 26 #include <linux/iomap.h> 26 #include <linux/iomap.h> 27 #include <linux/rmap.h> 27 #include <linux/rmap.h> 28 #include <asm/pgalloc.h> 28 #include <asm/pgalloc.h> 29 29 30 #define CREATE_TRACE_POINTS 30 #define CREATE_TRACE_POINTS 31 #include <trace/events/fs_dax.h> 31 #include <trace/events/fs_dax.h> 32 32 33 /* We choose 4096 entries - same as per-zone p 33 /* We choose 4096 entries - same as per-zone page wait tables */ 34 #define DAX_WAIT_TABLE_BITS 12 34 #define DAX_WAIT_TABLE_BITS 12 35 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_ 35 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS) 36 36 37 /* The 'colour' (ie low bits) within a PMD of 37 /* The 'colour' (ie low bits) within a PMD of a page offset. */ 38 #define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHI 38 #define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1) 39 #define PG_PMD_NR (PMD_SIZE >> PAGE_SHIF 39 #define PG_PMD_NR (PMD_SIZE >> PAGE_SHIFT) 40 40 41 static wait_queue_head_t wait_table[DAX_WAIT_T 41 static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES]; 42 42 43 static int __init init_dax_wait_table(void) 43 static int __init init_dax_wait_table(void) 44 { 44 { 45 int i; 45 int i; 46 46 47 for (i = 0; i < DAX_WAIT_TABLE_ENTRIES 47 for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++) 48 init_waitqueue_head(wait_table 48 init_waitqueue_head(wait_table + i); 49 return 0; 49 return 0; 50 } 50 } 51 fs_initcall(init_dax_wait_table); 51 fs_initcall(init_dax_wait_table); 52 52 53 /* 53 /* 54 * DAX pagecache entries use XArray value entr 54 * DAX pagecache entries use XArray value entries so they can't be mistaken 55 * for pages. We use one bit for locking, one 55 * for pages. We use one bit for locking, one bit for the entry size (PMD) 56 * and two more to tell us if the entry is a z 56 * and two more to tell us if the entry is a zero page or an empty entry that 57 * is just used for locking. In total four sp 57 * is just used for locking. In total four special bits. 58 * 58 * 59 * If the PMD bit isn't set the entry has size 59 * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE 60 * and EMPTY bits aren't set the entry is a no 60 * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem 61 * block allocation. 61 * block allocation. 62 */ 62 */ 63 #define DAX_SHIFT (4) 63 #define DAX_SHIFT (4) 64 #define DAX_LOCKED (1UL << 0) 64 #define DAX_LOCKED (1UL << 0) 65 #define DAX_PMD (1UL << 1) 65 #define DAX_PMD (1UL << 1) 66 #define DAX_ZERO_PAGE (1UL << 2) 66 #define DAX_ZERO_PAGE (1UL << 2) 67 #define DAX_EMPTY (1UL << 3) 67 #define DAX_EMPTY (1UL << 3) 68 68 69 static unsigned long dax_to_pfn(void *entry) 69 static unsigned long dax_to_pfn(void *entry) 70 { 70 { 71 return xa_to_value(entry) >> DAX_SHIFT 71 return xa_to_value(entry) >> DAX_SHIFT; 72 } 72 } 73 73 74 static void *dax_make_entry(pfn_t pfn, unsigne 74 static void *dax_make_entry(pfn_t pfn, unsigned long flags) 75 { 75 { 76 return xa_mk_value(flags | (pfn_t_to_p 76 return xa_mk_value(flags | (pfn_t_to_pfn(pfn) << DAX_SHIFT)); 77 } 77 } 78 78 79 static bool dax_is_locked(void *entry) 79 static bool dax_is_locked(void *entry) 80 { 80 { 81 return xa_to_value(entry) & DAX_LOCKED 81 return xa_to_value(entry) & DAX_LOCKED; 82 } 82 } 83 83 84 static unsigned int dax_entry_order(void *entr 84 static unsigned int dax_entry_order(void *entry) 85 { 85 { 86 if (xa_to_value(entry) & DAX_PMD) 86 if (xa_to_value(entry) & DAX_PMD) 87 return PMD_ORDER; 87 return PMD_ORDER; 88 return 0; 88 return 0; 89 } 89 } 90 90 91 static unsigned long dax_is_pmd_entry(void *en 91 static unsigned long dax_is_pmd_entry(void *entry) 92 { 92 { 93 return xa_to_value(entry) & DAX_PMD; 93 return xa_to_value(entry) & DAX_PMD; 94 } 94 } 95 95 96 static bool dax_is_pte_entry(void *entry) 96 static bool dax_is_pte_entry(void *entry) 97 { 97 { 98 return !(xa_to_value(entry) & DAX_PMD) 98 return !(xa_to_value(entry) & DAX_PMD); 99 } 99 } 100 100 101 static int dax_is_zero_entry(void *entry) 101 static int dax_is_zero_entry(void *entry) 102 { 102 { 103 return xa_to_value(entry) & DAX_ZERO_P 103 return xa_to_value(entry) & DAX_ZERO_PAGE; 104 } 104 } 105 105 106 static int dax_is_empty_entry(void *entry) 106 static int dax_is_empty_entry(void *entry) 107 { 107 { 108 return xa_to_value(entry) & DAX_EMPTY; 108 return xa_to_value(entry) & DAX_EMPTY; 109 } 109 } 110 110 111 /* 111 /* 112 * true if the entry that was found is of a sm 112 * true if the entry that was found is of a smaller order than the entry 113 * we were looking for 113 * we were looking for 114 */ 114 */ 115 static bool dax_is_conflict(void *entry) 115 static bool dax_is_conflict(void *entry) 116 { 116 { 117 return entry == XA_RETRY_ENTRY; 117 return entry == XA_RETRY_ENTRY; 118 } 118 } 119 119 120 /* 120 /* 121 * DAX page cache entry locking 121 * DAX page cache entry locking 122 */ 122 */ 123 struct exceptional_entry_key { 123 struct exceptional_entry_key { 124 struct xarray *xa; 124 struct xarray *xa; 125 pgoff_t entry_start; 125 pgoff_t entry_start; 126 }; 126 }; 127 127 128 struct wait_exceptional_entry_queue { 128 struct wait_exceptional_entry_queue { 129 wait_queue_entry_t wait; 129 wait_queue_entry_t wait; 130 struct exceptional_entry_key key; 130 struct exceptional_entry_key key; 131 }; 131 }; 132 132 133 /** 133 /** 134 * enum dax_wake_mode: waitqueue wakeup behavi 134 * enum dax_wake_mode: waitqueue wakeup behaviour 135 * @WAKE_ALL: wake all waiters in the waitqueu 135 * @WAKE_ALL: wake all waiters in the waitqueue 136 * @WAKE_NEXT: wake only the first waiter in t 136 * @WAKE_NEXT: wake only the first waiter in the waitqueue 137 */ 137 */ 138 enum dax_wake_mode { 138 enum dax_wake_mode { 139 WAKE_ALL, 139 WAKE_ALL, 140 WAKE_NEXT, 140 WAKE_NEXT, 141 }; 141 }; 142 142 143 static wait_queue_head_t *dax_entry_waitqueue( 143 static wait_queue_head_t *dax_entry_waitqueue(struct xa_state *xas, 144 void *entry, struct exceptiona 144 void *entry, struct exceptional_entry_key *key) 145 { 145 { 146 unsigned long hash; 146 unsigned long hash; 147 unsigned long index = xas->xa_index; 147 unsigned long index = xas->xa_index; 148 148 149 /* 149 /* 150 * If 'entry' is a PMD, align the 'ind 150 * If 'entry' is a PMD, align the 'index' that we use for the wait 151 * queue to the start of that PMD. Th 151 * queue to the start of that PMD. This ensures that all offsets in 152 * the range covered by the PMD map to 152 * the range covered by the PMD map to the same bit lock. 153 */ 153 */ 154 if (dax_is_pmd_entry(entry)) 154 if (dax_is_pmd_entry(entry)) 155 index &= ~PG_PMD_COLOUR; 155 index &= ~PG_PMD_COLOUR; 156 key->xa = xas->xa; 156 key->xa = xas->xa; 157 key->entry_start = index; 157 key->entry_start = index; 158 158 159 hash = hash_long((unsigned long)xas->x 159 hash = hash_long((unsigned long)xas->xa ^ index, DAX_WAIT_TABLE_BITS); 160 return wait_table + hash; 160 return wait_table + hash; 161 } 161 } 162 162 163 static int wake_exceptional_entry_func(wait_qu 163 static int wake_exceptional_entry_func(wait_queue_entry_t *wait, 164 unsigned int mode, int sync, v 164 unsigned int mode, int sync, void *keyp) 165 { 165 { 166 struct exceptional_entry_key *key = ke 166 struct exceptional_entry_key *key = keyp; 167 struct wait_exceptional_entry_queue *e 167 struct wait_exceptional_entry_queue *ewait = 168 container_of(wait, struct wait 168 container_of(wait, struct wait_exceptional_entry_queue, wait); 169 169 170 if (key->xa != ewait->key.xa || 170 if (key->xa != ewait->key.xa || 171 key->entry_start != ewait->key.ent 171 key->entry_start != ewait->key.entry_start) 172 return 0; 172 return 0; 173 return autoremove_wake_function(wait, 173 return autoremove_wake_function(wait, mode, sync, NULL); 174 } 174 } 175 175 176 /* 176 /* 177 * @entry may no longer be the entry at the in 177 * @entry may no longer be the entry at the index in the mapping. 178 * The important information it's conveying is 178 * The important information it's conveying is whether the entry at 179 * this index used to be a PMD entry. 179 * this index used to be a PMD entry. 180 */ 180 */ 181 static void dax_wake_entry(struct xa_state *xa 181 static void dax_wake_entry(struct xa_state *xas, void *entry, 182 enum dax_wake_mode 182 enum dax_wake_mode mode) 183 { 183 { 184 struct exceptional_entry_key key; 184 struct exceptional_entry_key key; 185 wait_queue_head_t *wq; 185 wait_queue_head_t *wq; 186 186 187 wq = dax_entry_waitqueue(xas, entry, & 187 wq = dax_entry_waitqueue(xas, entry, &key); 188 188 189 /* 189 /* 190 * Checking for locked entry and prepa 190 * Checking for locked entry and prepare_to_wait_exclusive() happens 191 * under the i_pages lock, ditto for e 191 * under the i_pages lock, ditto for entry handling in our callers. 192 * So at this point all tasks that cou 192 * So at this point all tasks that could have seen our entry locked 193 * must be in the waitqueue and the fo 193 * must be in the waitqueue and the following check will see them. 194 */ 194 */ 195 if (waitqueue_active(wq)) 195 if (waitqueue_active(wq)) 196 __wake_up(wq, TASK_NORMAL, mod 196 __wake_up(wq, TASK_NORMAL, mode == WAKE_ALL ? 0 : 1, &key); 197 } 197 } 198 198 199 /* 199 /* 200 * Look up entry in page cache, wait for it to 200 * Look up entry in page cache, wait for it to become unlocked if it 201 * is a DAX entry and return it. The caller m 201 * is a DAX entry and return it. The caller must subsequently call 202 * put_unlocked_entry() if it did not lock the 202 * put_unlocked_entry() if it did not lock the entry or dax_unlock_entry() 203 * if it did. The entry returned may have a l 203 * if it did. The entry returned may have a larger order than @order. 204 * If @order is larger than the order of the e 204 * If @order is larger than the order of the entry found in i_pages, this 205 * function returns a dax_is_conflict entry. 205 * function returns a dax_is_conflict entry. 206 * 206 * 207 * Must be called with the i_pages lock held. 207 * Must be called with the i_pages lock held. 208 */ 208 */ 209 static void *get_unlocked_entry(struct xa_stat 209 static void *get_unlocked_entry(struct xa_state *xas, unsigned int order) 210 { 210 { 211 void *entry; 211 void *entry; 212 struct wait_exceptional_entry_queue ew 212 struct wait_exceptional_entry_queue ewait; 213 wait_queue_head_t *wq; 213 wait_queue_head_t *wq; 214 214 215 init_wait(&ewait.wait); 215 init_wait(&ewait.wait); 216 ewait.wait.func = wake_exceptional_ent 216 ewait.wait.func = wake_exceptional_entry_func; 217 217 218 for (;;) { 218 for (;;) { 219 entry = xas_find_conflict(xas) 219 entry = xas_find_conflict(xas); 220 if (!entry || WARN_ON_ONCE(!xa 220 if (!entry || WARN_ON_ONCE(!xa_is_value(entry))) 221 return entry; 221 return entry; 222 if (dax_entry_order(entry) < o 222 if (dax_entry_order(entry) < order) 223 return XA_RETRY_ENTRY; 223 return XA_RETRY_ENTRY; 224 if (!dax_is_locked(entry)) 224 if (!dax_is_locked(entry)) 225 return entry; 225 return entry; 226 226 227 wq = dax_entry_waitqueue(xas, 227 wq = dax_entry_waitqueue(xas, entry, &ewait.key); 228 prepare_to_wait_exclusive(wq, 228 prepare_to_wait_exclusive(wq, &ewait.wait, 229 TASK 229 TASK_UNINTERRUPTIBLE); 230 xas_unlock_irq(xas); 230 xas_unlock_irq(xas); 231 xas_reset(xas); 231 xas_reset(xas); 232 schedule(); 232 schedule(); 233 finish_wait(wq, &ewait.wait); 233 finish_wait(wq, &ewait.wait); 234 xas_lock_irq(xas); 234 xas_lock_irq(xas); 235 } 235 } 236 } 236 } 237 237 238 /* 238 /* 239 * The only thing keeping the address space ar 239 * The only thing keeping the address space around is the i_pages lock 240 * (it's cycled in clear_inode() after removin 240 * (it's cycled in clear_inode() after removing the entries from i_pages) 241 * After we call xas_unlock_irq(), we cannot t 241 * After we call xas_unlock_irq(), we cannot touch xas->xa. 242 */ 242 */ 243 static void wait_entry_unlocked(struct xa_stat 243 static void wait_entry_unlocked(struct xa_state *xas, void *entry) 244 { 244 { 245 struct wait_exceptional_entry_queue ew 245 struct wait_exceptional_entry_queue ewait; 246 wait_queue_head_t *wq; 246 wait_queue_head_t *wq; 247 247 248 init_wait(&ewait.wait); 248 init_wait(&ewait.wait); 249 ewait.wait.func = wake_exceptional_ent 249 ewait.wait.func = wake_exceptional_entry_func; 250 250 251 wq = dax_entry_waitqueue(xas, entry, & 251 wq = dax_entry_waitqueue(xas, entry, &ewait.key); 252 /* 252 /* 253 * Unlike get_unlocked_entry() there i 253 * Unlike get_unlocked_entry() there is no guarantee that this 254 * path ever successfully retrieves an 254 * path ever successfully retrieves an unlocked entry before an 255 * inode dies. Perform a non-exclusive 255 * inode dies. Perform a non-exclusive wait in case this path 256 * never successfully performs its own 256 * never successfully performs its own wake up. 257 */ 257 */ 258 prepare_to_wait(wq, &ewait.wait, TASK_ 258 prepare_to_wait(wq, &ewait.wait, TASK_UNINTERRUPTIBLE); 259 xas_unlock_irq(xas); 259 xas_unlock_irq(xas); 260 schedule(); 260 schedule(); 261 finish_wait(wq, &ewait.wait); 261 finish_wait(wq, &ewait.wait); 262 } 262 } 263 263 264 static void put_unlocked_entry(struct xa_state 264 static void put_unlocked_entry(struct xa_state *xas, void *entry, 265 enum dax_wake_m 265 enum dax_wake_mode mode) 266 { 266 { 267 if (entry && !dax_is_conflict(entry)) 267 if (entry && !dax_is_conflict(entry)) 268 dax_wake_entry(xas, entry, mod 268 dax_wake_entry(xas, entry, mode); 269 } 269 } 270 270 271 /* 271 /* 272 * We used the xa_state to get the entry, but 272 * We used the xa_state to get the entry, but then we locked the entry and 273 * dropped the xa_lock, so we know the xa_stat 273 * dropped the xa_lock, so we know the xa_state is stale and must be reset 274 * before use. 274 * before use. 275 */ 275 */ 276 static void dax_unlock_entry(struct xa_state * 276 static void dax_unlock_entry(struct xa_state *xas, void *entry) 277 { 277 { 278 void *old; 278 void *old; 279 279 280 BUG_ON(dax_is_locked(entry)); 280 BUG_ON(dax_is_locked(entry)); 281 xas_reset(xas); 281 xas_reset(xas); 282 xas_lock_irq(xas); 282 xas_lock_irq(xas); 283 old = xas_store(xas, entry); 283 old = xas_store(xas, entry); 284 xas_unlock_irq(xas); 284 xas_unlock_irq(xas); 285 BUG_ON(!dax_is_locked(old)); 285 BUG_ON(!dax_is_locked(old)); 286 dax_wake_entry(xas, entry, WAKE_NEXT); 286 dax_wake_entry(xas, entry, WAKE_NEXT); 287 } 287 } 288 288 289 /* 289 /* 290 * Return: The entry stored at this location b 290 * Return: The entry stored at this location before it was locked. 291 */ 291 */ 292 static void *dax_lock_entry(struct xa_state *x 292 static void *dax_lock_entry(struct xa_state *xas, void *entry) 293 { 293 { 294 unsigned long v = xa_to_value(entry); 294 unsigned long v = xa_to_value(entry); 295 return xas_store(xas, xa_mk_value(v | 295 return xas_store(xas, xa_mk_value(v | DAX_LOCKED)); 296 } 296 } 297 297 298 static unsigned long dax_entry_size(void *entr 298 static unsigned long dax_entry_size(void *entry) 299 { 299 { 300 if (dax_is_zero_entry(entry)) 300 if (dax_is_zero_entry(entry)) 301 return 0; 301 return 0; 302 else if (dax_is_empty_entry(entry)) 302 else if (dax_is_empty_entry(entry)) 303 return 0; 303 return 0; 304 else if (dax_is_pmd_entry(entry)) 304 else if (dax_is_pmd_entry(entry)) 305 return PMD_SIZE; 305 return PMD_SIZE; 306 else 306 else 307 return PAGE_SIZE; 307 return PAGE_SIZE; 308 } 308 } 309 309 310 static unsigned long dax_end_pfn(void *entry) 310 static unsigned long dax_end_pfn(void *entry) 311 { 311 { 312 return dax_to_pfn(entry) + dax_entry_s 312 return dax_to_pfn(entry) + dax_entry_size(entry) / PAGE_SIZE; 313 } 313 } 314 314 315 /* 315 /* 316 * Iterate through all mapped pfns represented 316 * Iterate through all mapped pfns represented by an entry, i.e. skip 317 * 'empty' and 'zero' entries. 317 * 'empty' and 'zero' entries. 318 */ 318 */ 319 #define for_each_mapped_pfn(entry, pfn) \ 319 #define for_each_mapped_pfn(entry, pfn) \ 320 for (pfn = dax_to_pfn(entry); \ 320 for (pfn = dax_to_pfn(entry); \ 321 pfn < dax_end_pfn(entr 321 pfn < dax_end_pfn(entry); pfn++) 322 322 323 static inline bool dax_page_is_shared(struct p 323 static inline bool dax_page_is_shared(struct page *page) 324 { 324 { 325 return page->mapping == PAGE_MAPPING_D 325 return page->mapping == PAGE_MAPPING_DAX_SHARED; 326 } 326 } 327 327 328 /* 328 /* 329 * Set the page->mapping with PAGE_MAPPING_DAX 329 * Set the page->mapping with PAGE_MAPPING_DAX_SHARED flag, increase the 330 * refcount. 330 * refcount. 331 */ 331 */ 332 static inline void dax_page_share_get(struct p 332 static inline void dax_page_share_get(struct page *page) 333 { 333 { 334 if (page->mapping != PAGE_MAPPING_DAX_ 334 if (page->mapping != PAGE_MAPPING_DAX_SHARED) { 335 /* 335 /* 336 * Reset the index if the page 336 * Reset the index if the page was already mapped 337 * regularly before. 337 * regularly before. 338 */ 338 */ 339 if (page->mapping) 339 if (page->mapping) 340 page->share = 1; 340 page->share = 1; 341 page->mapping = PAGE_MAPPING_D 341 page->mapping = PAGE_MAPPING_DAX_SHARED; 342 } 342 } 343 page->share++; 343 page->share++; 344 } 344 } 345 345 346 static inline unsigned long dax_page_share_put 346 static inline unsigned long dax_page_share_put(struct page *page) 347 { 347 { 348 return --page->share; 348 return --page->share; 349 } 349 } 350 350 351 /* 351 /* 352 * When it is called in dax_insert_entry(), th 352 * When it is called in dax_insert_entry(), the shared flag will indicate that 353 * whether this entry is shared by multiple fi 353 * whether this entry is shared by multiple files. If so, set the page->mapping 354 * PAGE_MAPPING_DAX_SHARED, and use page->shar 354 * PAGE_MAPPING_DAX_SHARED, and use page->share as refcount. 355 */ 355 */ 356 static void dax_associate_entry(void *entry, s 356 static void dax_associate_entry(void *entry, struct address_space *mapping, 357 struct vm_area_struct *vma, un 357 struct vm_area_struct *vma, unsigned long address, bool shared) 358 { 358 { 359 unsigned long size = dax_entry_size(en 359 unsigned long size = dax_entry_size(entry), pfn, index; 360 int i = 0; 360 int i = 0; 361 361 362 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED)) 362 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED)) 363 return; 363 return; 364 364 365 index = linear_page_index(vma, address 365 index = linear_page_index(vma, address & ~(size - 1)); 366 for_each_mapped_pfn(entry, pfn) { 366 for_each_mapped_pfn(entry, pfn) { 367 struct page *page = pfn_to_pag 367 struct page *page = pfn_to_page(pfn); 368 368 369 if (shared) { 369 if (shared) { 370 dax_page_share_get(pag 370 dax_page_share_get(page); 371 } else { 371 } else { 372 WARN_ON_ONCE(page->map 372 WARN_ON_ONCE(page->mapping); 373 page->mapping = mappin 373 page->mapping = mapping; 374 page->index = index + 374 page->index = index + i++; 375 } 375 } 376 } 376 } 377 } 377 } 378 378 379 static void dax_disassociate_entry(void *entry 379 static void dax_disassociate_entry(void *entry, struct address_space *mapping, 380 bool trunc) 380 bool trunc) 381 { 381 { 382 unsigned long pfn; 382 unsigned long pfn; 383 383 384 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED)) 384 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED)) 385 return; 385 return; 386 386 387 for_each_mapped_pfn(entry, pfn) { 387 for_each_mapped_pfn(entry, pfn) { 388 struct page *page = pfn_to_pag 388 struct page *page = pfn_to_page(pfn); 389 389 390 WARN_ON_ONCE(trunc && page_ref 390 WARN_ON_ONCE(trunc && page_ref_count(page) > 1); 391 if (dax_page_is_shared(page)) 391 if (dax_page_is_shared(page)) { 392 /* keep the shared fla 392 /* keep the shared flag if this page is still shared */ 393 if (dax_page_share_put 393 if (dax_page_share_put(page) > 0) 394 continue; 394 continue; 395 } else 395 } else 396 WARN_ON_ONCE(page->map 396 WARN_ON_ONCE(page->mapping && page->mapping != mapping); 397 page->mapping = NULL; 397 page->mapping = NULL; 398 page->index = 0; 398 page->index = 0; 399 } 399 } 400 } 400 } 401 401 402 static struct page *dax_busy_page(void *entry) 402 static struct page *dax_busy_page(void *entry) 403 { 403 { 404 unsigned long pfn; 404 unsigned long pfn; 405 405 406 for_each_mapped_pfn(entry, pfn) { 406 for_each_mapped_pfn(entry, pfn) { 407 struct page *page = pfn_to_pag 407 struct page *page = pfn_to_page(pfn); 408 408 409 if (page_ref_count(page) > 1) 409 if (page_ref_count(page) > 1) 410 return page; 410 return page; 411 } 411 } 412 return NULL; 412 return NULL; 413 } 413 } 414 414 415 /** 415 /** 416 * dax_lock_folio - Lock the DAX entry corresp 416 * dax_lock_folio - Lock the DAX entry corresponding to a folio 417 * @folio: The folio whose entry we want to lo 417 * @folio: The folio whose entry we want to lock 418 * 418 * 419 * Context: Process context. 419 * Context: Process context. 420 * Return: A cookie to pass to dax_unlock_foli 420 * Return: A cookie to pass to dax_unlock_folio() or 0 if the entry could 421 * not be locked. 421 * not be locked. 422 */ 422 */ 423 dax_entry_t dax_lock_folio(struct folio *folio 423 dax_entry_t dax_lock_folio(struct folio *folio) 424 { 424 { 425 XA_STATE(xas, NULL, 0); 425 XA_STATE(xas, NULL, 0); 426 void *entry; 426 void *entry; 427 427 428 /* Ensure folio->mapping isn't freed w 428 /* Ensure folio->mapping isn't freed while we look at it */ 429 rcu_read_lock(); 429 rcu_read_lock(); 430 for (;;) { 430 for (;;) { 431 struct address_space *mapping 431 struct address_space *mapping = READ_ONCE(folio->mapping); 432 432 433 entry = NULL; 433 entry = NULL; 434 if (!mapping || !dax_mapping(m 434 if (!mapping || !dax_mapping(mapping)) 435 break; 435 break; 436 436 437 /* 437 /* 438 * In the device-dax case ther 438 * In the device-dax case there's no need to lock, a 439 * struct dev_pagemap pin is s 439 * struct dev_pagemap pin is sufficient to keep the 440 * inode alive, and we assume 440 * inode alive, and we assume we have dev_pagemap pin 441 * otherwise we would not have 441 * otherwise we would not have a valid pfn_to_page() 442 * translation. 442 * translation. 443 */ 443 */ 444 entry = (void *)~0UL; 444 entry = (void *)~0UL; 445 if (S_ISCHR(mapping->host->i_m 445 if (S_ISCHR(mapping->host->i_mode)) 446 break; 446 break; 447 447 448 xas.xa = &mapping->i_pages; 448 xas.xa = &mapping->i_pages; 449 xas_lock_irq(&xas); 449 xas_lock_irq(&xas); 450 if (mapping != folio->mapping) 450 if (mapping != folio->mapping) { 451 xas_unlock_irq(&xas); 451 xas_unlock_irq(&xas); 452 continue; 452 continue; 453 } 453 } 454 xas_set(&xas, folio->index); 454 xas_set(&xas, folio->index); 455 entry = xas_load(&xas); 455 entry = xas_load(&xas); 456 if (dax_is_locked(entry)) { 456 if (dax_is_locked(entry)) { 457 rcu_read_unlock(); 457 rcu_read_unlock(); 458 wait_entry_unlocked(&x 458 wait_entry_unlocked(&xas, entry); 459 rcu_read_lock(); 459 rcu_read_lock(); 460 continue; 460 continue; 461 } 461 } 462 dax_lock_entry(&xas, entry); 462 dax_lock_entry(&xas, entry); 463 xas_unlock_irq(&xas); 463 xas_unlock_irq(&xas); 464 break; 464 break; 465 } 465 } 466 rcu_read_unlock(); 466 rcu_read_unlock(); 467 return (dax_entry_t)entry; 467 return (dax_entry_t)entry; 468 } 468 } 469 469 470 void dax_unlock_folio(struct folio *folio, dax 470 void dax_unlock_folio(struct folio *folio, dax_entry_t cookie) 471 { 471 { 472 struct address_space *mapping = folio- 472 struct address_space *mapping = folio->mapping; 473 XA_STATE(xas, &mapping->i_pages, folio 473 XA_STATE(xas, &mapping->i_pages, folio->index); 474 474 475 if (S_ISCHR(mapping->host->i_mode)) 475 if (S_ISCHR(mapping->host->i_mode)) 476 return; 476 return; 477 477 478 dax_unlock_entry(&xas, (void *)cookie) 478 dax_unlock_entry(&xas, (void *)cookie); 479 } 479 } 480 480 481 /* 481 /* 482 * dax_lock_mapping_entry - Lock the DAX entry 482 * dax_lock_mapping_entry - Lock the DAX entry corresponding to a mapping 483 * @mapping: the file's mapping whose entry we 483 * @mapping: the file's mapping whose entry we want to lock 484 * @index: the offset within this file 484 * @index: the offset within this file 485 * @page: output the dax page corresponding to 485 * @page: output the dax page corresponding to this dax entry 486 * 486 * 487 * Return: A cookie to pass to dax_unlock_mapp 487 * Return: A cookie to pass to dax_unlock_mapping_entry() or 0 if the entry 488 * could not be locked. 488 * could not be locked. 489 */ 489 */ 490 dax_entry_t dax_lock_mapping_entry(struct addr 490 dax_entry_t dax_lock_mapping_entry(struct address_space *mapping, pgoff_t index, 491 struct page **page) 491 struct page **page) 492 { 492 { 493 XA_STATE(xas, NULL, 0); 493 XA_STATE(xas, NULL, 0); 494 void *entry; 494 void *entry; 495 495 496 rcu_read_lock(); 496 rcu_read_lock(); 497 for (;;) { 497 for (;;) { 498 entry = NULL; 498 entry = NULL; 499 if (!dax_mapping(mapping)) 499 if (!dax_mapping(mapping)) 500 break; 500 break; 501 501 502 xas.xa = &mapping->i_pages; 502 xas.xa = &mapping->i_pages; 503 xas_lock_irq(&xas); 503 xas_lock_irq(&xas); 504 xas_set(&xas, index); 504 xas_set(&xas, index); 505 entry = xas_load(&xas); 505 entry = xas_load(&xas); 506 if (dax_is_locked(entry)) { 506 if (dax_is_locked(entry)) { 507 rcu_read_unlock(); 507 rcu_read_unlock(); 508 wait_entry_unlocked(&x 508 wait_entry_unlocked(&xas, entry); 509 rcu_read_lock(); 509 rcu_read_lock(); 510 continue; 510 continue; 511 } 511 } 512 if (!entry || 512 if (!entry || 513 dax_is_zero_entry(entry) | 513 dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) { 514 /* 514 /* 515 * Because we are look 515 * Because we are looking for entry from file's mapping 516 * and index, so the e 516 * and index, so the entry may not be inserted for now, 517 * or even a zero/empt 517 * or even a zero/empty entry. We don't think this is 518 * an error case. So, 518 * an error case. So, return a special value and do 519 * not output @page. 519 * not output @page. 520 */ 520 */ 521 entry = (void *)~0UL; 521 entry = (void *)~0UL; 522 } else { 522 } else { 523 *page = pfn_to_page(da 523 *page = pfn_to_page(dax_to_pfn(entry)); 524 dax_lock_entry(&xas, e 524 dax_lock_entry(&xas, entry); 525 } 525 } 526 xas_unlock_irq(&xas); 526 xas_unlock_irq(&xas); 527 break; 527 break; 528 } 528 } 529 rcu_read_unlock(); 529 rcu_read_unlock(); 530 return (dax_entry_t)entry; 530 return (dax_entry_t)entry; 531 } 531 } 532 532 533 void dax_unlock_mapping_entry(struct address_s 533 void dax_unlock_mapping_entry(struct address_space *mapping, pgoff_t index, 534 dax_entry_t cookie) 534 dax_entry_t cookie) 535 { 535 { 536 XA_STATE(xas, &mapping->i_pages, index 536 XA_STATE(xas, &mapping->i_pages, index); 537 537 538 if (cookie == ~0UL) 538 if (cookie == ~0UL) 539 return; 539 return; 540 540 541 dax_unlock_entry(&xas, (void *)cookie) 541 dax_unlock_entry(&xas, (void *)cookie); 542 } 542 } 543 543 544 /* 544 /* 545 * Find page cache entry at given index. If it 545 * Find page cache entry at given index. If it is a DAX entry, return it 546 * with the entry locked. If the page cache do 546 * with the entry locked. If the page cache doesn't contain an entry at 547 * that index, add a locked empty entry. 547 * that index, add a locked empty entry. 548 * 548 * 549 * When requesting an entry with size DAX_PMD, 549 * When requesting an entry with size DAX_PMD, grab_mapping_entry() will 550 * either return that locked entry or will ret 550 * either return that locked entry or will return VM_FAULT_FALLBACK. 551 * This will happen if there are any PTE entri 551 * This will happen if there are any PTE entries within the PMD range 552 * that we are requesting. 552 * that we are requesting. 553 * 553 * 554 * We always favor PTE entries over PMD entrie 554 * We always favor PTE entries over PMD entries. There isn't a flow where we 555 * evict PTE entries in order to 'upgrade' the 555 * evict PTE entries in order to 'upgrade' them to a PMD entry. A PMD 556 * insertion will fail if it finds any PTE ent 556 * insertion will fail if it finds any PTE entries already in the tree, and a 557 * PTE insertion will cause an existing PMD en 557 * PTE insertion will cause an existing PMD entry to be unmapped and 558 * downgraded to PTE entries. This happens fo 558 * downgraded to PTE entries. This happens for both PMD zero pages as 559 * well as PMD empty entries. 559 * well as PMD empty entries. 560 * 560 * 561 * The exception to this downgrade path is for 561 * The exception to this downgrade path is for PMD entries that have 562 * real storage backing them. We will leave t 562 * real storage backing them. We will leave these real PMD entries in 563 * the tree, and PTE writes will simply dirty 563 * the tree, and PTE writes will simply dirty the entire PMD entry. 564 * 564 * 565 * Note: Unlike filemap_fault() we don't honor 565 * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For 566 * persistent memory the benefit is doubtful. 566 * persistent memory the benefit is doubtful. We can add that later if we can 567 * show it helps. 567 * show it helps. 568 * 568 * 569 * On error, this function does not return an 569 * On error, this function does not return an ERR_PTR. Instead it returns 570 * a VM_FAULT code, encoded as an xarray inter 570 * a VM_FAULT code, encoded as an xarray internal entry. The ERR_PTR values 571 * overlap with xarray value entries. 571 * overlap with xarray value entries. 572 */ 572 */ 573 static void *grab_mapping_entry(struct xa_stat 573 static void *grab_mapping_entry(struct xa_state *xas, 574 struct address_space *mapping, 574 struct address_space *mapping, unsigned int order) 575 { 575 { 576 unsigned long index = xas->xa_index; 576 unsigned long index = xas->xa_index; 577 bool pmd_downgrade; /* splitting P 577 bool pmd_downgrade; /* splitting PMD entry into PTE entries? */ 578 void *entry; 578 void *entry; 579 579 580 retry: 580 retry: 581 pmd_downgrade = false; 581 pmd_downgrade = false; 582 xas_lock_irq(xas); 582 xas_lock_irq(xas); 583 entry = get_unlocked_entry(xas, order) 583 entry = get_unlocked_entry(xas, order); 584 584 585 if (entry) { 585 if (entry) { 586 if (dax_is_conflict(entry)) 586 if (dax_is_conflict(entry)) 587 goto fallback; 587 goto fallback; 588 if (!xa_is_value(entry)) { 588 if (!xa_is_value(entry)) { 589 xas_set_err(xas, -EIO) 589 xas_set_err(xas, -EIO); 590 goto out_unlock; 590 goto out_unlock; 591 } 591 } 592 592 593 if (order == 0) { 593 if (order == 0) { 594 if (dax_is_pmd_entry(e 594 if (dax_is_pmd_entry(entry) && 595 (dax_is_zero_entry 595 (dax_is_zero_entry(entry) || 596 dax_is_empty_entr 596 dax_is_empty_entry(entry))) { 597 pmd_downgrade 597 pmd_downgrade = true; 598 } 598 } 599 } 599 } 600 } 600 } 601 601 602 if (pmd_downgrade) { 602 if (pmd_downgrade) { 603 /* 603 /* 604 * Make sure 'entry' remains v 604 * Make sure 'entry' remains valid while we drop 605 * the i_pages lock. 605 * the i_pages lock. 606 */ 606 */ 607 dax_lock_entry(xas, entry); 607 dax_lock_entry(xas, entry); 608 608 609 /* 609 /* 610 * Besides huge zero pages the 610 * Besides huge zero pages the only other thing that gets 611 * downgraded are empty entrie 611 * downgraded are empty entries which don't need to be 612 * unmapped. 612 * unmapped. 613 */ 613 */ 614 if (dax_is_zero_entry(entry)) 614 if (dax_is_zero_entry(entry)) { 615 xas_unlock_irq(xas); 615 xas_unlock_irq(xas); 616 unmap_mapping_pages(ma 616 unmap_mapping_pages(mapping, 617 xas->x 617 xas->xa_index & ~PG_PMD_COLOUR, 618 PG_PMD 618 PG_PMD_NR, false); 619 xas_reset(xas); 619 xas_reset(xas); 620 xas_lock_irq(xas); 620 xas_lock_irq(xas); 621 } 621 } 622 622 623 dax_disassociate_entry(entry, 623 dax_disassociate_entry(entry, mapping, false); 624 xas_store(xas, NULL); /* und 624 xas_store(xas, NULL); /* undo the PMD join */ 625 dax_wake_entry(xas, entry, WAK 625 dax_wake_entry(xas, entry, WAKE_ALL); 626 mapping->nrpages -= PG_PMD_NR; 626 mapping->nrpages -= PG_PMD_NR; 627 entry = NULL; 627 entry = NULL; 628 xas_set(xas, index); 628 xas_set(xas, index); 629 } 629 } 630 630 631 if (entry) { 631 if (entry) { 632 dax_lock_entry(xas, entry); 632 dax_lock_entry(xas, entry); 633 } else { 633 } else { 634 unsigned long flags = DAX_EMPT 634 unsigned long flags = DAX_EMPTY; 635 635 636 if (order > 0) 636 if (order > 0) 637 flags |= DAX_PMD; 637 flags |= DAX_PMD; 638 entry = dax_make_entry(pfn_to_ 638 entry = dax_make_entry(pfn_to_pfn_t(0), flags); 639 dax_lock_entry(xas, entry); 639 dax_lock_entry(xas, entry); 640 if (xas_error(xas)) 640 if (xas_error(xas)) 641 goto out_unlock; 641 goto out_unlock; 642 mapping->nrpages += 1UL << ord 642 mapping->nrpages += 1UL << order; 643 } 643 } 644 644 645 out_unlock: 645 out_unlock: 646 xas_unlock_irq(xas); 646 xas_unlock_irq(xas); 647 if (xas_nomem(xas, mapping_gfp_mask(ma 647 if (xas_nomem(xas, mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM)) 648 goto retry; 648 goto retry; 649 if (xas->xa_node == XA_ERROR(-ENOMEM)) 649 if (xas->xa_node == XA_ERROR(-ENOMEM)) 650 return xa_mk_internal(VM_FAULT 650 return xa_mk_internal(VM_FAULT_OOM); 651 if (xas_error(xas)) 651 if (xas_error(xas)) 652 return xa_mk_internal(VM_FAULT 652 return xa_mk_internal(VM_FAULT_SIGBUS); 653 return entry; 653 return entry; 654 fallback: 654 fallback: 655 xas_unlock_irq(xas); 655 xas_unlock_irq(xas); 656 return xa_mk_internal(VM_FAULT_FALLBAC 656 return xa_mk_internal(VM_FAULT_FALLBACK); 657 } 657 } 658 658 659 /** 659 /** 660 * dax_layout_busy_page_range - find first pin 660 * dax_layout_busy_page_range - find first pinned page in @mapping 661 * @mapping: address space to scan for a page 661 * @mapping: address space to scan for a page with ref count > 1 662 * @start: Starting offset. Page containing 's 662 * @start: Starting offset. Page containing 'start' is included. 663 * @end: End offset. Page containing 'end' is 663 * @end: End offset. Page containing 'end' is included. If 'end' is LLONG_MAX, 664 * pages from 'start' till the end of fi 664 * pages from 'start' till the end of file are included. 665 * 665 * 666 * DAX requires ZONE_DEVICE mapped pages. Thes 666 * DAX requires ZONE_DEVICE mapped pages. These pages are never 667 * 'onlined' to the page allocator so they are 667 * 'onlined' to the page allocator so they are considered idle when 668 * page->count == 1. A filesystem uses this in 668 * page->count == 1. A filesystem uses this interface to determine if 669 * any page in the mapping is busy, i.e. for D 669 * any page in the mapping is busy, i.e. for DMA, or other 670 * get_user_pages() usages. 670 * get_user_pages() usages. 671 * 671 * 672 * It is expected that the filesystem is holdi 672 * It is expected that the filesystem is holding locks to block the 673 * establishment of new mappings in this addre 673 * establishment of new mappings in this address_space. I.e. it expects 674 * to be able to run unmap_mapping_range() and 674 * to be able to run unmap_mapping_range() and subsequently not race 675 * mapping_mapped() becoming true. 675 * mapping_mapped() becoming true. 676 */ 676 */ 677 struct page *dax_layout_busy_page_range(struct 677 struct page *dax_layout_busy_page_range(struct address_space *mapping, 678 loff_t 678 loff_t start, loff_t end) 679 { 679 { 680 void *entry; 680 void *entry; 681 unsigned int scanned = 0; 681 unsigned int scanned = 0; 682 struct page *page = NULL; 682 struct page *page = NULL; 683 pgoff_t start_idx = start >> PAGE_SHIF 683 pgoff_t start_idx = start >> PAGE_SHIFT; 684 pgoff_t end_idx; 684 pgoff_t end_idx; 685 XA_STATE(xas, &mapping->i_pages, start 685 XA_STATE(xas, &mapping->i_pages, start_idx); 686 686 687 /* 687 /* 688 * In the 'limited' case get_user_page 688 * In the 'limited' case get_user_pages() for dax is disabled. 689 */ 689 */ 690 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED)) 690 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED)) 691 return NULL; 691 return NULL; 692 692 693 if (!dax_mapping(mapping) || !mapping_ 693 if (!dax_mapping(mapping) || !mapping_mapped(mapping)) 694 return NULL; 694 return NULL; 695 695 696 /* If end == LLONG_MAX, all pages from 696 /* If end == LLONG_MAX, all pages from start to till end of file */ 697 if (end == LLONG_MAX) 697 if (end == LLONG_MAX) 698 end_idx = ULONG_MAX; 698 end_idx = ULONG_MAX; 699 else 699 else 700 end_idx = end >> PAGE_SHIFT; 700 end_idx = end >> PAGE_SHIFT; 701 /* 701 /* 702 * If we race get_user_pages_fast() he 702 * If we race get_user_pages_fast() here either we'll see the 703 * elevated page count in the iteratio 703 * elevated page count in the iteration and wait, or 704 * get_user_pages_fast() will see that 704 * get_user_pages_fast() will see that the page it took a reference 705 * against is no longer mapped in the 705 * against is no longer mapped in the page tables and bail to the 706 * get_user_pages() slow path. The sl 706 * get_user_pages() slow path. The slow path is protected by 707 * pte_lock() and pmd_lock(). New refe 707 * pte_lock() and pmd_lock(). New references are not taken without 708 * holding those locks, and unmap_mapp 708 * holding those locks, and unmap_mapping_pages() will not zero the 709 * pte or pmd without holding the resp 709 * pte or pmd without holding the respective lock, so we are 710 * guaranteed to either see new refere 710 * guaranteed to either see new references or prevent new 711 * references from being established. 711 * references from being established. 712 */ 712 */ 713 unmap_mapping_pages(mapping, start_idx 713 unmap_mapping_pages(mapping, start_idx, end_idx - start_idx + 1, 0); 714 714 715 xas_lock_irq(&xas); 715 xas_lock_irq(&xas); 716 xas_for_each(&xas, entry, end_idx) { 716 xas_for_each(&xas, entry, end_idx) { 717 if (WARN_ON_ONCE(!xa_is_value( 717 if (WARN_ON_ONCE(!xa_is_value(entry))) 718 continue; 718 continue; 719 if (unlikely(dax_is_locked(ent 719 if (unlikely(dax_is_locked(entry))) 720 entry = get_unlocked_e 720 entry = get_unlocked_entry(&xas, 0); 721 if (entry) 721 if (entry) 722 page = dax_busy_page(e 722 page = dax_busy_page(entry); 723 put_unlocked_entry(&xas, entry 723 put_unlocked_entry(&xas, entry, WAKE_NEXT); 724 if (page) 724 if (page) 725 break; 725 break; 726 if (++scanned % XA_CHECK_SCHED 726 if (++scanned % XA_CHECK_SCHED) 727 continue; 727 continue; 728 728 729 xas_pause(&xas); 729 xas_pause(&xas); 730 xas_unlock_irq(&xas); 730 xas_unlock_irq(&xas); 731 cond_resched(); 731 cond_resched(); 732 xas_lock_irq(&xas); 732 xas_lock_irq(&xas); 733 } 733 } 734 xas_unlock_irq(&xas); 734 xas_unlock_irq(&xas); 735 return page; 735 return page; 736 } 736 } 737 EXPORT_SYMBOL_GPL(dax_layout_busy_page_range); 737 EXPORT_SYMBOL_GPL(dax_layout_busy_page_range); 738 738 739 struct page *dax_layout_busy_page(struct addre 739 struct page *dax_layout_busy_page(struct address_space *mapping) 740 { 740 { 741 return dax_layout_busy_page_range(mapp 741 return dax_layout_busy_page_range(mapping, 0, LLONG_MAX); 742 } 742 } 743 EXPORT_SYMBOL_GPL(dax_layout_busy_page); 743 EXPORT_SYMBOL_GPL(dax_layout_busy_page); 744 744 745 static int __dax_invalidate_entry(struct addre 745 static int __dax_invalidate_entry(struct address_space *mapping, 746 pgof 746 pgoff_t index, bool trunc) 747 { 747 { 748 XA_STATE(xas, &mapping->i_pages, index 748 XA_STATE(xas, &mapping->i_pages, index); 749 int ret = 0; 749 int ret = 0; 750 void *entry; 750 void *entry; 751 751 752 xas_lock_irq(&xas); 752 xas_lock_irq(&xas); 753 entry = get_unlocked_entry(&xas, 0); 753 entry = get_unlocked_entry(&xas, 0); 754 if (!entry || WARN_ON_ONCE(!xa_is_valu 754 if (!entry || WARN_ON_ONCE(!xa_is_value(entry))) 755 goto out; 755 goto out; 756 if (!trunc && 756 if (!trunc && 757 (xas_get_mark(&xas, PAGECACHE_TAG_ 757 (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY) || 758 xas_get_mark(&xas, PAGECACHE_TAG_ 758 xas_get_mark(&xas, PAGECACHE_TAG_TOWRITE))) 759 goto out; 759 goto out; 760 dax_disassociate_entry(entry, mapping, 760 dax_disassociate_entry(entry, mapping, trunc); 761 xas_store(&xas, NULL); 761 xas_store(&xas, NULL); 762 mapping->nrpages -= 1UL << dax_entry_o 762 mapping->nrpages -= 1UL << dax_entry_order(entry); 763 ret = 1; 763 ret = 1; 764 out: 764 out: 765 put_unlocked_entry(&xas, entry, WAKE_A 765 put_unlocked_entry(&xas, entry, WAKE_ALL); 766 xas_unlock_irq(&xas); 766 xas_unlock_irq(&xas); 767 return ret; 767 return ret; 768 } 768 } 769 769 770 static int __dax_clear_dirty_range(struct addr 770 static int __dax_clear_dirty_range(struct address_space *mapping, 771 pgoff_t start, pgoff_t end) 771 pgoff_t start, pgoff_t end) 772 { 772 { 773 XA_STATE(xas, &mapping->i_pages, start 773 XA_STATE(xas, &mapping->i_pages, start); 774 unsigned int scanned = 0; 774 unsigned int scanned = 0; 775 void *entry; 775 void *entry; 776 776 777 xas_lock_irq(&xas); 777 xas_lock_irq(&xas); 778 xas_for_each(&xas, entry, end) { 778 xas_for_each(&xas, entry, end) { 779 entry = get_unlocked_entry(&xa 779 entry = get_unlocked_entry(&xas, 0); 780 xas_clear_mark(&xas, PAGECACHE 780 xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY); 781 xas_clear_mark(&xas, PAGECACHE 781 xas_clear_mark(&xas, PAGECACHE_TAG_TOWRITE); 782 put_unlocked_entry(&xas, entry 782 put_unlocked_entry(&xas, entry, WAKE_NEXT); 783 783 784 if (++scanned % XA_CHECK_SCHED 784 if (++scanned % XA_CHECK_SCHED) 785 continue; 785 continue; 786 786 787 xas_pause(&xas); 787 xas_pause(&xas); 788 xas_unlock_irq(&xas); 788 xas_unlock_irq(&xas); 789 cond_resched(); 789 cond_resched(); 790 xas_lock_irq(&xas); 790 xas_lock_irq(&xas); 791 } 791 } 792 xas_unlock_irq(&xas); 792 xas_unlock_irq(&xas); 793 793 794 return 0; 794 return 0; 795 } 795 } 796 796 797 /* 797 /* 798 * Delete DAX entry at @index from @mapping. 798 * Delete DAX entry at @index from @mapping. Wait for it 799 * to be unlocked before deleting it. 799 * to be unlocked before deleting it. 800 */ 800 */ 801 int dax_delete_mapping_entry(struct address_sp 801 int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index) 802 { 802 { 803 int ret = __dax_invalidate_entry(mappi 803 int ret = __dax_invalidate_entry(mapping, index, true); 804 804 805 /* 805 /* 806 * This gets called from truncate / pu 806 * This gets called from truncate / punch_hole path. As such, the caller 807 * must hold locks protecting against 807 * must hold locks protecting against concurrent modifications of the 808 * page cache (usually fs-private i_mm 808 * page cache (usually fs-private i_mmap_sem for writing). Since the 809 * caller has seen a DAX entry for thi 809 * caller has seen a DAX entry for this index, we better find it 810 * at that index as well... 810 * at that index as well... 811 */ 811 */ 812 WARN_ON_ONCE(!ret); 812 WARN_ON_ONCE(!ret); 813 return ret; 813 return ret; 814 } 814 } 815 815 816 /* 816 /* 817 * Invalidate DAX entry if it is clean. 817 * Invalidate DAX entry if it is clean. 818 */ 818 */ 819 int dax_invalidate_mapping_entry_sync(struct a 819 int dax_invalidate_mapping_entry_sync(struct address_space *mapping, 820 pgoff_t 820 pgoff_t index) 821 { 821 { 822 return __dax_invalidate_entry(mapping, 822 return __dax_invalidate_entry(mapping, index, false); 823 } 823 } 824 824 825 static pgoff_t dax_iomap_pgoff(const struct io 825 static pgoff_t dax_iomap_pgoff(const struct iomap *iomap, loff_t pos) 826 { 826 { 827 return PHYS_PFN(iomap->addr + (pos & P 827 return PHYS_PFN(iomap->addr + (pos & PAGE_MASK) - iomap->offset); 828 } 828 } 829 829 830 static int copy_cow_page_dax(struct vm_fault * 830 static int copy_cow_page_dax(struct vm_fault *vmf, const struct iomap_iter *iter) 831 { 831 { 832 pgoff_t pgoff = dax_iomap_pgoff(&iter- 832 pgoff_t pgoff = dax_iomap_pgoff(&iter->iomap, iter->pos); 833 void *vto, *kaddr; 833 void *vto, *kaddr; 834 long rc; 834 long rc; 835 int id; 835 int id; 836 836 837 id = dax_read_lock(); 837 id = dax_read_lock(); 838 rc = dax_direct_access(iter->iomap.dax 838 rc = dax_direct_access(iter->iomap.dax_dev, pgoff, 1, DAX_ACCESS, 839 &kaddr, NULL); 839 &kaddr, NULL); 840 if (rc < 0) { 840 if (rc < 0) { 841 dax_read_unlock(id); 841 dax_read_unlock(id); 842 return rc; 842 return rc; 843 } 843 } 844 vto = kmap_atomic(vmf->cow_page); 844 vto = kmap_atomic(vmf->cow_page); 845 copy_user_page(vto, kaddr, vmf->addres 845 copy_user_page(vto, kaddr, vmf->address, vmf->cow_page); 846 kunmap_atomic(vto); 846 kunmap_atomic(vto); 847 dax_read_unlock(id); 847 dax_read_unlock(id); 848 return 0; 848 return 0; 849 } 849 } 850 850 851 /* 851 /* 852 * MAP_SYNC on a dax mapping guarantees dirty 852 * MAP_SYNC on a dax mapping guarantees dirty metadata is 853 * flushed on write-faults (non-cow), but not 853 * flushed on write-faults (non-cow), but not read-faults. 854 */ 854 */ 855 static bool dax_fault_is_synchronous(const str 855 static bool dax_fault_is_synchronous(const struct iomap_iter *iter, 856 struct vm_area_struct *vma) 856 struct vm_area_struct *vma) 857 { 857 { 858 return (iter->flags & IOMAP_WRITE) && 858 return (iter->flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC) && 859 (iter->iomap.flags & IOMAP_F_D 859 (iter->iomap.flags & IOMAP_F_DIRTY); 860 } 860 } 861 861 862 /* 862 /* 863 * By this point grab_mapping_entry() has ensu 863 * By this point grab_mapping_entry() has ensured that we have a locked entry 864 * of the appropriate size so we don't have to 864 * of the appropriate size so we don't have to worry about downgrading PMDs to 865 * PTEs. If we happen to be trying to insert 865 * PTEs. If we happen to be trying to insert a PTE and there is a PMD 866 * already in the tree, we will skip the inser 866 * already in the tree, we will skip the insertion and just dirty the PMD as 867 * appropriate. 867 * appropriate. 868 */ 868 */ 869 static void *dax_insert_entry(struct xa_state 869 static void *dax_insert_entry(struct xa_state *xas, struct vm_fault *vmf, 870 const struct iomap_iter *iter, 870 const struct iomap_iter *iter, void *entry, pfn_t pfn, 871 unsigned long flags) 871 unsigned long flags) 872 { 872 { 873 struct address_space *mapping = vmf->v 873 struct address_space *mapping = vmf->vma->vm_file->f_mapping; 874 void *new_entry = dax_make_entry(pfn, 874 void *new_entry = dax_make_entry(pfn, flags); 875 bool write = iter->flags & IOMAP_WRITE 875 bool write = iter->flags & IOMAP_WRITE; 876 bool dirty = write && !dax_fault_is_sy 876 bool dirty = write && !dax_fault_is_synchronous(iter, vmf->vma); 877 bool shared = iter->iomap.flags & IOMA 877 bool shared = iter->iomap.flags & IOMAP_F_SHARED; 878 878 879 if (dirty) 879 if (dirty) 880 __mark_inode_dirty(mapping->ho 880 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 881 881 882 if (shared || (dax_is_zero_entry(entry 882 if (shared || (dax_is_zero_entry(entry) && !(flags & DAX_ZERO_PAGE))) { 883 unsigned long index = xas->xa_ 883 unsigned long index = xas->xa_index; 884 /* we are replacing a zero pag 884 /* we are replacing a zero page with block mapping */ 885 if (dax_is_pmd_entry(entry)) 885 if (dax_is_pmd_entry(entry)) 886 unmap_mapping_pages(ma 886 unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR, 887 PG_PMD 887 PG_PMD_NR, false); 888 else /* pte entry */ 888 else /* pte entry */ 889 unmap_mapping_pages(ma 889 unmap_mapping_pages(mapping, index, 1, false); 890 } 890 } 891 891 892 xas_reset(xas); 892 xas_reset(xas); 893 xas_lock_irq(xas); 893 xas_lock_irq(xas); 894 if (shared || dax_is_zero_entry(entry) 894 if (shared || dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) { 895 void *old; 895 void *old; 896 896 897 dax_disassociate_entry(entry, 897 dax_disassociate_entry(entry, mapping, false); 898 dax_associate_entry(new_entry, 898 dax_associate_entry(new_entry, mapping, vmf->vma, vmf->address, 899 shared); 899 shared); 900 /* 900 /* 901 * Only swap our new entry int 901 * Only swap our new entry into the page cache if the current 902 * entry is a zero page or an 902 * entry is a zero page or an empty entry. If a normal PTE or 903 * PMD entry is already in the 903 * PMD entry is already in the cache, we leave it alone. This 904 * means that if we are trying 904 * means that if we are trying to insert a PTE and the 905 * existing entry is a PMD, we 905 * existing entry is a PMD, we will just leave the PMD in the 906 * tree and dirty it if necess 906 * tree and dirty it if necessary. 907 */ 907 */ 908 old = dax_lock_entry(xas, new_ 908 old = dax_lock_entry(xas, new_entry); 909 WARN_ON_ONCE(old != xa_mk_valu 909 WARN_ON_ONCE(old != xa_mk_value(xa_to_value(entry) | 910 DAX_LO 910 DAX_LOCKED)); 911 entry = new_entry; 911 entry = new_entry; 912 } else { 912 } else { 913 xas_load(xas); /* Walk the xa 913 xas_load(xas); /* Walk the xa_state */ 914 } 914 } 915 915 916 if (dirty) 916 if (dirty) 917 xas_set_mark(xas, PAGECACHE_TA 917 xas_set_mark(xas, PAGECACHE_TAG_DIRTY); 918 918 919 if (write && shared) 919 if (write && shared) 920 xas_set_mark(xas, PAGECACHE_TA 920 xas_set_mark(xas, PAGECACHE_TAG_TOWRITE); 921 921 922 xas_unlock_irq(xas); 922 xas_unlock_irq(xas); 923 return entry; 923 return entry; 924 } 924 } 925 925 926 static int dax_writeback_one(struct xa_state * 926 static int dax_writeback_one(struct xa_state *xas, struct dax_device *dax_dev, 927 struct address_space *mapping, 927 struct address_space *mapping, void *entry) 928 { 928 { 929 unsigned long pfn, index, count, end; 929 unsigned long pfn, index, count, end; 930 long ret = 0; 930 long ret = 0; 931 struct vm_area_struct *vma; 931 struct vm_area_struct *vma; 932 932 933 /* 933 /* 934 * A page got tagged dirty in DAX mapp 934 * A page got tagged dirty in DAX mapping? Something is seriously 935 * wrong. 935 * wrong. 936 */ 936 */ 937 if (WARN_ON(!xa_is_value(entry))) 937 if (WARN_ON(!xa_is_value(entry))) 938 return -EIO; 938 return -EIO; 939 939 940 if (unlikely(dax_is_locked(entry))) { 940 if (unlikely(dax_is_locked(entry))) { 941 void *old_entry = entry; 941 void *old_entry = entry; 942 942 943 entry = get_unlocked_entry(xas 943 entry = get_unlocked_entry(xas, 0); 944 944 945 /* Entry got punched out / rea 945 /* Entry got punched out / reallocated? */ 946 if (!entry || WARN_ON_ONCE(!xa 946 if (!entry || WARN_ON_ONCE(!xa_is_value(entry))) 947 goto put_unlocked; 947 goto put_unlocked; 948 /* 948 /* 949 * Entry got reallocated elsew 949 * Entry got reallocated elsewhere? No need to writeback. 950 * We have to compare pfns as 950 * We have to compare pfns as we must not bail out due to 951 * difference in lockbit or en 951 * difference in lockbit or entry type. 952 */ 952 */ 953 if (dax_to_pfn(old_entry) != d 953 if (dax_to_pfn(old_entry) != dax_to_pfn(entry)) 954 goto put_unlocked; 954 goto put_unlocked; 955 if (WARN_ON_ONCE(dax_is_empty_ 955 if (WARN_ON_ONCE(dax_is_empty_entry(entry) || 956 dax_is 956 dax_is_zero_entry(entry))) { 957 ret = -EIO; 957 ret = -EIO; 958 goto put_unlocked; 958 goto put_unlocked; 959 } 959 } 960 960 961 /* Another fsync thread may ha 961 /* Another fsync thread may have already done this entry */ 962 if (!xas_get_mark(xas, PAGECAC 962 if (!xas_get_mark(xas, PAGECACHE_TAG_TOWRITE)) 963 goto put_unlocked; 963 goto put_unlocked; 964 } 964 } 965 965 966 /* Lock the entry to serialize with pa 966 /* Lock the entry to serialize with page faults */ 967 dax_lock_entry(xas, entry); 967 dax_lock_entry(xas, entry); 968 968 969 /* 969 /* 970 * We can clear the tag now but we hav 970 * We can clear the tag now but we have to be careful so that concurrent 971 * dax_writeback_one() calls for the s 971 * dax_writeback_one() calls for the same index cannot finish before we 972 * actually flush the caches. This is 972 * actually flush the caches. This is achieved as the calls will look 973 * at the entry only under the i_pages 973 * at the entry only under the i_pages lock and once they do that 974 * they will see the entry locked and 974 * they will see the entry locked and wait for it to unlock. 975 */ 975 */ 976 xas_clear_mark(xas, PAGECACHE_TAG_TOWR 976 xas_clear_mark(xas, PAGECACHE_TAG_TOWRITE); 977 xas_unlock_irq(xas); 977 xas_unlock_irq(xas); 978 978 979 /* 979 /* 980 * If dax_writeback_mapping_range() wa 980 * If dax_writeback_mapping_range() was given a wbc->range_start 981 * in the middle of a PMD, the 'index' 981 * in the middle of a PMD, the 'index' we use needs to be 982 * aligned to the start of the PMD. 982 * aligned to the start of the PMD. 983 * This allows us to flush for PMD_SIZ 983 * This allows us to flush for PMD_SIZE and not have to worry about 984 * partial PMD writebacks. 984 * partial PMD writebacks. 985 */ 985 */ 986 pfn = dax_to_pfn(entry); 986 pfn = dax_to_pfn(entry); 987 count = 1UL << dax_entry_order(entry); 987 count = 1UL << dax_entry_order(entry); 988 index = xas->xa_index & ~(count - 1); 988 index = xas->xa_index & ~(count - 1); 989 end = index + count - 1; 989 end = index + count - 1; 990 990 991 /* Walk all mappings of a given index 991 /* Walk all mappings of a given index of a file and writeprotect them */ 992 i_mmap_lock_read(mapping); 992 i_mmap_lock_read(mapping); 993 vma_interval_tree_foreach(vma, &mappin 993 vma_interval_tree_foreach(vma, &mapping->i_mmap, index, end) { 994 pfn_mkclean_range(pfn, count, 994 pfn_mkclean_range(pfn, count, index, vma); 995 cond_resched(); 995 cond_resched(); 996 } 996 } 997 i_mmap_unlock_read(mapping); 997 i_mmap_unlock_read(mapping); 998 998 999 dax_flush(dax_dev, page_address(pfn_to 999 dax_flush(dax_dev, page_address(pfn_to_page(pfn)), count * PAGE_SIZE); 1000 /* 1000 /* 1001 * After we have flushed the cache, w 1001 * After we have flushed the cache, we can clear the dirty tag. There 1002 * cannot be new dirty data in the pf 1002 * cannot be new dirty data in the pfn after the flush has completed as 1003 * the pfn mappings are writeprotecte 1003 * the pfn mappings are writeprotected and fault waits for mapping 1004 * entry lock. 1004 * entry lock. 1005 */ 1005 */ 1006 xas_reset(xas); 1006 xas_reset(xas); 1007 xas_lock_irq(xas); 1007 xas_lock_irq(xas); 1008 xas_store(xas, entry); 1008 xas_store(xas, entry); 1009 xas_clear_mark(xas, PAGECACHE_TAG_DIR 1009 xas_clear_mark(xas, PAGECACHE_TAG_DIRTY); 1010 dax_wake_entry(xas, entry, WAKE_NEXT) 1010 dax_wake_entry(xas, entry, WAKE_NEXT); 1011 1011 1012 trace_dax_writeback_one(mapping->host 1012 trace_dax_writeback_one(mapping->host, index, count); 1013 return ret; 1013 return ret; 1014 1014 1015 put_unlocked: 1015 put_unlocked: 1016 put_unlocked_entry(xas, entry, WAKE_N 1016 put_unlocked_entry(xas, entry, WAKE_NEXT); 1017 return ret; 1017 return ret; 1018 } 1018 } 1019 1019 1020 /* 1020 /* 1021 * Flush the mapping to the persistent domain 1021 * Flush the mapping to the persistent domain within the byte range of [start, 1022 * end]. This is required by data integrity o 1022 * end]. This is required by data integrity operations to ensure file data is 1023 * on persistent storage prior to completion 1023 * on persistent storage prior to completion of the operation. 1024 */ 1024 */ 1025 int dax_writeback_mapping_range(struct addres 1025 int dax_writeback_mapping_range(struct address_space *mapping, 1026 struct dax_device *dax_dev, s 1026 struct dax_device *dax_dev, struct writeback_control *wbc) 1027 { 1027 { 1028 XA_STATE(xas, &mapping->i_pages, wbc- 1028 XA_STATE(xas, &mapping->i_pages, wbc->range_start >> PAGE_SHIFT); 1029 struct inode *inode = mapping->host; 1029 struct inode *inode = mapping->host; 1030 pgoff_t end_index = wbc->range_end >> 1030 pgoff_t end_index = wbc->range_end >> PAGE_SHIFT; 1031 void *entry; 1031 void *entry; 1032 int ret = 0; 1032 int ret = 0; 1033 unsigned int scanned = 0; 1033 unsigned int scanned = 0; 1034 1034 1035 if (WARN_ON_ONCE(inode->i_blkbits != 1035 if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT)) 1036 return -EIO; 1036 return -EIO; 1037 1037 1038 if (mapping_empty(mapping) || wbc->sy 1038 if (mapping_empty(mapping) || wbc->sync_mode != WB_SYNC_ALL) 1039 return 0; 1039 return 0; 1040 1040 1041 trace_dax_writeback_range(inode, xas. 1041 trace_dax_writeback_range(inode, xas.xa_index, end_index); 1042 1042 1043 tag_pages_for_writeback(mapping, xas. 1043 tag_pages_for_writeback(mapping, xas.xa_index, end_index); 1044 1044 1045 xas_lock_irq(&xas); 1045 xas_lock_irq(&xas); 1046 xas_for_each_marked(&xas, entry, end_ 1046 xas_for_each_marked(&xas, entry, end_index, PAGECACHE_TAG_TOWRITE) { 1047 ret = dax_writeback_one(&xas, 1047 ret = dax_writeback_one(&xas, dax_dev, mapping, entry); 1048 if (ret < 0) { 1048 if (ret < 0) { 1049 mapping_set_error(map 1049 mapping_set_error(mapping, ret); 1050 break; 1050 break; 1051 } 1051 } 1052 if (++scanned % XA_CHECK_SCHE 1052 if (++scanned % XA_CHECK_SCHED) 1053 continue; 1053 continue; 1054 1054 1055 xas_pause(&xas); 1055 xas_pause(&xas); 1056 xas_unlock_irq(&xas); 1056 xas_unlock_irq(&xas); 1057 cond_resched(); 1057 cond_resched(); 1058 xas_lock_irq(&xas); 1058 xas_lock_irq(&xas); 1059 } 1059 } 1060 xas_unlock_irq(&xas); 1060 xas_unlock_irq(&xas); 1061 trace_dax_writeback_range_done(inode, 1061 trace_dax_writeback_range_done(inode, xas.xa_index, end_index); 1062 return ret; 1062 return ret; 1063 } 1063 } 1064 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range 1064 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range); 1065 1065 1066 static int dax_iomap_direct_access(const stru 1066 static int dax_iomap_direct_access(const struct iomap *iomap, loff_t pos, 1067 size_t size, void **kaddr, pf 1067 size_t size, void **kaddr, pfn_t *pfnp) 1068 { 1068 { 1069 pgoff_t pgoff = dax_iomap_pgoff(iomap 1069 pgoff_t pgoff = dax_iomap_pgoff(iomap, pos); 1070 int id, rc = 0; 1070 int id, rc = 0; 1071 long length; 1071 long length; 1072 1072 1073 id = dax_read_lock(); 1073 id = dax_read_lock(); 1074 length = dax_direct_access(iomap->dax 1074 length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size), 1075 DAX_ACCESS 1075 DAX_ACCESS, kaddr, pfnp); 1076 if (length < 0) { 1076 if (length < 0) { 1077 rc = length; 1077 rc = length; 1078 goto out; 1078 goto out; 1079 } 1079 } 1080 if (!pfnp) 1080 if (!pfnp) 1081 goto out_check_addr; 1081 goto out_check_addr; 1082 rc = -EINVAL; 1082 rc = -EINVAL; 1083 if (PFN_PHYS(length) < size) 1083 if (PFN_PHYS(length) < size) 1084 goto out; 1084 goto out; 1085 if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(s 1085 if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1)) 1086 goto out; 1086 goto out; 1087 /* For larger pages we need devmap */ 1087 /* For larger pages we need devmap */ 1088 if (length > 1 && !pfn_t_devmap(*pfnp 1088 if (length > 1 && !pfn_t_devmap(*pfnp)) 1089 goto out; 1089 goto out; 1090 rc = 0; 1090 rc = 0; 1091 1091 1092 out_check_addr: 1092 out_check_addr: 1093 if (!kaddr) 1093 if (!kaddr) 1094 goto out; 1094 goto out; 1095 if (!*kaddr) 1095 if (!*kaddr) 1096 rc = -EFAULT; 1096 rc = -EFAULT; 1097 out: 1097 out: 1098 dax_read_unlock(id); 1098 dax_read_unlock(id); 1099 return rc; 1099 return rc; 1100 } 1100 } 1101 1101 1102 /** 1102 /** 1103 * dax_iomap_copy_around - Prepare for an una 1103 * dax_iomap_copy_around - Prepare for an unaligned write to a shared/cow page 1104 * by copying the data before and after the r 1104 * by copying the data before and after the range to be written. 1105 * @pos: address to do copy from. 1105 * @pos: address to do copy from. 1106 * @length: size of copy operation. 1106 * @length: size of copy operation. 1107 * @align_size: aligned w.r.t align_size (eit 1107 * @align_size: aligned w.r.t align_size (either PMD_SIZE or PAGE_SIZE) 1108 * @srcmap: iomap srcmap 1108 * @srcmap: iomap srcmap 1109 * @daddr: destination address to copy t 1109 * @daddr: destination address to copy to. 1110 * 1110 * 1111 * This can be called from two places. Either 1111 * This can be called from two places. Either during DAX write fault (page 1112 * aligned), to copy the length size data to 1112 * aligned), to copy the length size data to daddr. Or, while doing normal DAX 1113 * write operation, dax_iomap_iter() might ca 1113 * write operation, dax_iomap_iter() might call this to do the copy of either 1114 * start or end unaligned address. In the lat 1114 * start or end unaligned address. In the latter case the rest of the copy of 1115 * aligned ranges is taken care by dax_iomap_ 1115 * aligned ranges is taken care by dax_iomap_iter() itself. 1116 * If the srcmap contains invalid data, such 1116 * If the srcmap contains invalid data, such as HOLE and UNWRITTEN, zero the 1117 * area to make sure no old data remains. 1117 * area to make sure no old data remains. 1118 */ 1118 */ 1119 static int dax_iomap_copy_around(loff_t pos, 1119 static int dax_iomap_copy_around(loff_t pos, uint64_t length, size_t align_size, 1120 const struct iomap *srcmap, v 1120 const struct iomap *srcmap, void *daddr) 1121 { 1121 { 1122 loff_t head_off = pos & (align_size - 1122 loff_t head_off = pos & (align_size - 1); 1123 size_t size = ALIGN(head_off + length 1123 size_t size = ALIGN(head_off + length, align_size); 1124 loff_t end = pos + length; 1124 loff_t end = pos + length; 1125 loff_t pg_end = round_up(end, align_s 1125 loff_t pg_end = round_up(end, align_size); 1126 /* copy_all is usually in page fault 1126 /* copy_all is usually in page fault case */ 1127 bool copy_all = head_off == 0 && end 1127 bool copy_all = head_off == 0 && end == pg_end; 1128 /* zero the edges if srcmap is a HOLE 1128 /* zero the edges if srcmap is a HOLE or IOMAP_UNWRITTEN */ 1129 bool zero_edge = srcmap->flags & IOMA 1129 bool zero_edge = srcmap->flags & IOMAP_F_SHARED || 1130 srcmap->type == IOMA 1130 srcmap->type == IOMAP_UNWRITTEN; 1131 void *saddr = NULL; 1131 void *saddr = NULL; 1132 int ret = 0; 1132 int ret = 0; 1133 1133 1134 if (!zero_edge) { 1134 if (!zero_edge) { 1135 ret = dax_iomap_direct_access 1135 ret = dax_iomap_direct_access(srcmap, pos, size, &saddr, NULL); 1136 if (ret) 1136 if (ret) 1137 return dax_mem2blk_er 1137 return dax_mem2blk_err(ret); 1138 } 1138 } 1139 1139 1140 if (copy_all) { 1140 if (copy_all) { 1141 if (zero_edge) 1141 if (zero_edge) 1142 memset(daddr, 0, size 1142 memset(daddr, 0, size); 1143 else 1143 else 1144 ret = copy_mc_to_kern 1144 ret = copy_mc_to_kernel(daddr, saddr, length); 1145 goto out; 1145 goto out; 1146 } 1146 } 1147 1147 1148 /* Copy the head part of the range */ 1148 /* Copy the head part of the range */ 1149 if (head_off) { 1149 if (head_off) { 1150 if (zero_edge) 1150 if (zero_edge) 1151 memset(daddr, 0, head 1151 memset(daddr, 0, head_off); 1152 else { 1152 else { 1153 ret = copy_mc_to_kern 1153 ret = copy_mc_to_kernel(daddr, saddr, head_off); 1154 if (ret) 1154 if (ret) 1155 return -EIO; 1155 return -EIO; 1156 } 1156 } 1157 } 1157 } 1158 1158 1159 /* Copy the tail part of the range */ 1159 /* Copy the tail part of the range */ 1160 if (end < pg_end) { 1160 if (end < pg_end) { 1161 loff_t tail_off = head_off + 1161 loff_t tail_off = head_off + length; 1162 loff_t tail_len = pg_end - en 1162 loff_t tail_len = pg_end - end; 1163 1163 1164 if (zero_edge) 1164 if (zero_edge) 1165 memset(daddr + tail_o 1165 memset(daddr + tail_off, 0, tail_len); 1166 else { 1166 else { 1167 ret = copy_mc_to_kern 1167 ret = copy_mc_to_kernel(daddr + tail_off, 1168 1168 saddr + tail_off, tail_len); 1169 if (ret) 1169 if (ret) 1170 return -EIO; 1170 return -EIO; 1171 } 1171 } 1172 } 1172 } 1173 out: 1173 out: 1174 if (zero_edge) 1174 if (zero_edge) 1175 dax_flush(srcmap->dax_dev, da 1175 dax_flush(srcmap->dax_dev, daddr, size); 1176 return ret ? -EIO : 0; 1176 return ret ? -EIO : 0; 1177 } 1177 } 1178 1178 1179 /* 1179 /* 1180 * The user has performed a load from a hole 1180 * The user has performed a load from a hole in the file. Allocating a new 1181 * page in the file would cause excessive sto 1181 * page in the file would cause excessive storage usage for workloads with 1182 * sparse files. Instead we insert a read-on 1182 * sparse files. Instead we insert a read-only mapping of the 4k zero page. 1183 * If this page is ever written to we will re 1183 * If this page is ever written to we will re-fault and change the mapping to 1184 * point to real DAX storage instead. 1184 * point to real DAX storage instead. 1185 */ 1185 */ 1186 static vm_fault_t dax_load_hole(struct xa_sta 1186 static vm_fault_t dax_load_hole(struct xa_state *xas, struct vm_fault *vmf, 1187 const struct iomap_iter *iter 1187 const struct iomap_iter *iter, void **entry) 1188 { 1188 { 1189 struct inode *inode = iter->inode; 1189 struct inode *inode = iter->inode; 1190 unsigned long vaddr = vmf->address; 1190 unsigned long vaddr = vmf->address; 1191 pfn_t pfn = pfn_to_pfn_t(my_zero_pfn( 1191 pfn_t pfn = pfn_to_pfn_t(my_zero_pfn(vaddr)); 1192 vm_fault_t ret; 1192 vm_fault_t ret; 1193 1193 1194 *entry = dax_insert_entry(xas, vmf, i 1194 *entry = dax_insert_entry(xas, vmf, iter, *entry, pfn, DAX_ZERO_PAGE); 1195 1195 1196 ret = vmf_insert_mixed(vmf->vma, vadd 1196 ret = vmf_insert_mixed(vmf->vma, vaddr, pfn); 1197 trace_dax_load_hole(inode, vmf, ret); 1197 trace_dax_load_hole(inode, vmf, ret); 1198 return ret; 1198 return ret; 1199 } 1199 } 1200 1200 1201 #ifdef CONFIG_FS_DAX_PMD 1201 #ifdef CONFIG_FS_DAX_PMD 1202 static vm_fault_t dax_pmd_load_hole(struct xa 1202 static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf, 1203 const struct iomap_iter *iter 1203 const struct iomap_iter *iter, void **entry) 1204 { 1204 { 1205 struct address_space *mapping = vmf-> 1205 struct address_space *mapping = vmf->vma->vm_file->f_mapping; 1206 unsigned long pmd_addr = vmf->address 1206 unsigned long pmd_addr = vmf->address & PMD_MASK; 1207 struct vm_area_struct *vma = vmf->vma 1207 struct vm_area_struct *vma = vmf->vma; 1208 struct inode *inode = mapping->host; 1208 struct inode *inode = mapping->host; 1209 pgtable_t pgtable = NULL; 1209 pgtable_t pgtable = NULL; 1210 struct folio *zero_folio; 1210 struct folio *zero_folio; 1211 spinlock_t *ptl; 1211 spinlock_t *ptl; 1212 pmd_t pmd_entry; 1212 pmd_t pmd_entry; 1213 pfn_t pfn; 1213 pfn_t pfn; 1214 1214 1215 zero_folio = mm_get_huge_zero_folio(v 1215 zero_folio = mm_get_huge_zero_folio(vmf->vma->vm_mm); 1216 1216 1217 if (unlikely(!zero_folio)) 1217 if (unlikely(!zero_folio)) 1218 goto fallback; 1218 goto fallback; 1219 1219 1220 pfn = page_to_pfn_t(&zero_folio->page 1220 pfn = page_to_pfn_t(&zero_folio->page); 1221 *entry = dax_insert_entry(xas, vmf, i 1221 *entry = dax_insert_entry(xas, vmf, iter, *entry, pfn, 1222 DAX_PMD | D 1222 DAX_PMD | DAX_ZERO_PAGE); 1223 1223 1224 if (arch_needs_pgtable_deposit()) { 1224 if (arch_needs_pgtable_deposit()) { 1225 pgtable = pte_alloc_one(vma-> 1225 pgtable = pte_alloc_one(vma->vm_mm); 1226 if (!pgtable) 1226 if (!pgtable) 1227 return VM_FAULT_OOM; 1227 return VM_FAULT_OOM; 1228 } 1228 } 1229 1229 1230 ptl = pmd_lock(vmf->vma->vm_mm, vmf-> 1230 ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd); 1231 if (!pmd_none(*(vmf->pmd))) { 1231 if (!pmd_none(*(vmf->pmd))) { 1232 spin_unlock(ptl); 1232 spin_unlock(ptl); 1233 goto fallback; 1233 goto fallback; 1234 } 1234 } 1235 1235 1236 if (pgtable) { 1236 if (pgtable) { 1237 pgtable_trans_huge_deposit(vm 1237 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable); 1238 mm_inc_nr_ptes(vma->vm_mm); 1238 mm_inc_nr_ptes(vma->vm_mm); 1239 } 1239 } 1240 pmd_entry = mk_pmd(&zero_folio->page, 1240 pmd_entry = mk_pmd(&zero_folio->page, vmf->vma->vm_page_prot); 1241 pmd_entry = pmd_mkhuge(pmd_entry); 1241 pmd_entry = pmd_mkhuge(pmd_entry); 1242 set_pmd_at(vmf->vma->vm_mm, pmd_addr, 1242 set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry); 1243 spin_unlock(ptl); 1243 spin_unlock(ptl); 1244 trace_dax_pmd_load_hole(inode, vmf, z 1244 trace_dax_pmd_load_hole(inode, vmf, zero_folio, *entry); 1245 return VM_FAULT_NOPAGE; 1245 return VM_FAULT_NOPAGE; 1246 1246 1247 fallback: 1247 fallback: 1248 if (pgtable) 1248 if (pgtable) 1249 pte_free(vma->vm_mm, pgtable) 1249 pte_free(vma->vm_mm, pgtable); 1250 trace_dax_pmd_load_hole_fallback(inod 1250 trace_dax_pmd_load_hole_fallback(inode, vmf, zero_folio, *entry); 1251 return VM_FAULT_FALLBACK; 1251 return VM_FAULT_FALLBACK; 1252 } 1252 } 1253 #else 1253 #else 1254 static vm_fault_t dax_pmd_load_hole(struct xa 1254 static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf, 1255 const struct iomap_iter *iter 1255 const struct iomap_iter *iter, void **entry) 1256 { 1256 { 1257 return VM_FAULT_FALLBACK; 1257 return VM_FAULT_FALLBACK; 1258 } 1258 } 1259 #endif /* CONFIG_FS_DAX_PMD */ 1259 #endif /* CONFIG_FS_DAX_PMD */ 1260 1260 1261 static s64 dax_unshare_iter(struct iomap_iter 1261 static s64 dax_unshare_iter(struct iomap_iter *iter) 1262 { 1262 { 1263 struct iomap *iomap = &iter->iomap; 1263 struct iomap *iomap = &iter->iomap; 1264 const struct iomap *srcmap = iomap_it 1264 const struct iomap *srcmap = iomap_iter_srcmap(iter); 1265 loff_t copy_pos = iter->pos; 1265 loff_t copy_pos = iter->pos; 1266 u64 copy_len = iomap_length(iter); 1266 u64 copy_len = iomap_length(iter); 1267 u32 mod; 1267 u32 mod; 1268 int id = 0; 1268 int id = 0; 1269 s64 ret = 0; 1269 s64 ret = 0; 1270 void *daddr = NULL, *saddr = NULL; 1270 void *daddr = NULL, *saddr = NULL; 1271 1271 1272 if (!iomap_want_unshare_iter(iter)) 1272 if (!iomap_want_unshare_iter(iter)) 1273 return iomap_length(iter); 1273 return iomap_length(iter); 1274 1274 1275 /* 1275 /* 1276 * Extend the file range to be aligne 1276 * Extend the file range to be aligned to fsblock/pagesize, because 1277 * we need to copy entire blocks, not 1277 * we need to copy entire blocks, not just the byte range specified. 1278 * Invalidate the mapping because we' 1278 * Invalidate the mapping because we're about to CoW. 1279 */ 1279 */ 1280 mod = offset_in_page(copy_pos); 1280 mod = offset_in_page(copy_pos); 1281 if (mod) { 1281 if (mod) { 1282 copy_len += mod; 1282 copy_len += mod; 1283 copy_pos -= mod; 1283 copy_pos -= mod; 1284 } 1284 } 1285 1285 1286 mod = offset_in_page(copy_pos + copy_ 1286 mod = offset_in_page(copy_pos + copy_len); 1287 if (mod) 1287 if (mod) 1288 copy_len += PAGE_SIZE - mod; 1288 copy_len += PAGE_SIZE - mod; 1289 1289 1290 invalidate_inode_pages2_range(iter->i 1290 invalidate_inode_pages2_range(iter->inode->i_mapping, 1291 copy_po 1291 copy_pos >> PAGE_SHIFT, 1292 (copy_p 1292 (copy_pos + copy_len - 1) >> PAGE_SHIFT); 1293 1293 1294 id = dax_read_lock(); 1294 id = dax_read_lock(); 1295 ret = dax_iomap_direct_access(iomap, 1295 ret = dax_iomap_direct_access(iomap, copy_pos, copy_len, &daddr, NULL); 1296 if (ret < 0) 1296 if (ret < 0) 1297 goto out_unlock; 1297 goto out_unlock; 1298 1298 1299 ret = dax_iomap_direct_access(srcmap, 1299 ret = dax_iomap_direct_access(srcmap, copy_pos, copy_len, &saddr, NULL); 1300 if (ret < 0) 1300 if (ret < 0) 1301 goto out_unlock; 1301 goto out_unlock; 1302 1302 1303 if (copy_mc_to_kernel(daddr, saddr, c 1303 if (copy_mc_to_kernel(daddr, saddr, copy_len) == 0) 1304 ret = iomap_length(iter); 1304 ret = iomap_length(iter); 1305 else 1305 else 1306 ret = -EIO; 1306 ret = -EIO; 1307 1307 1308 out_unlock: 1308 out_unlock: 1309 dax_read_unlock(id); 1309 dax_read_unlock(id); 1310 return dax_mem2blk_err(ret); 1310 return dax_mem2blk_err(ret); 1311 } 1311 } 1312 1312 1313 int dax_file_unshare(struct inode *inode, lof 1313 int dax_file_unshare(struct inode *inode, loff_t pos, loff_t len, 1314 const struct iomap_ops *ops) 1314 const struct iomap_ops *ops) 1315 { 1315 { 1316 struct iomap_iter iter = { 1316 struct iomap_iter iter = { 1317 .inode = inode, 1317 .inode = inode, 1318 .pos = pos, 1318 .pos = pos, 1319 .flags = IOMAP_WRITE 1319 .flags = IOMAP_WRITE | IOMAP_UNSHARE | IOMAP_DAX, 1320 }; 1320 }; 1321 loff_t size = i_size_read(inode); 1321 loff_t size = i_size_read(inode); 1322 int ret; 1322 int ret; 1323 1323 1324 if (pos < 0 || pos >= size) 1324 if (pos < 0 || pos >= size) 1325 return 0; 1325 return 0; 1326 1326 1327 iter.len = min(len, size - pos); 1327 iter.len = min(len, size - pos); 1328 while ((ret = iomap_iter(&iter, ops)) 1328 while ((ret = iomap_iter(&iter, ops)) > 0) 1329 iter.processed = dax_unshare_ 1329 iter.processed = dax_unshare_iter(&iter); 1330 return ret; 1330 return ret; 1331 } 1331 } 1332 EXPORT_SYMBOL_GPL(dax_file_unshare); 1332 EXPORT_SYMBOL_GPL(dax_file_unshare); 1333 1333 1334 static int dax_memzero(struct iomap_iter *ite 1334 static int dax_memzero(struct iomap_iter *iter, loff_t pos, size_t size) 1335 { 1335 { 1336 const struct iomap *iomap = &iter->io 1336 const struct iomap *iomap = &iter->iomap; 1337 const struct iomap *srcmap = iomap_it 1337 const struct iomap *srcmap = iomap_iter_srcmap(iter); 1338 unsigned offset = offset_in_page(pos) 1338 unsigned offset = offset_in_page(pos); 1339 pgoff_t pgoff = dax_iomap_pgoff(iomap 1339 pgoff_t pgoff = dax_iomap_pgoff(iomap, pos); 1340 void *kaddr; 1340 void *kaddr; 1341 long ret; 1341 long ret; 1342 1342 1343 ret = dax_direct_access(iomap->dax_de 1343 ret = dax_direct_access(iomap->dax_dev, pgoff, 1, DAX_ACCESS, &kaddr, 1344 NULL); 1344 NULL); 1345 if (ret < 0) 1345 if (ret < 0) 1346 return dax_mem2blk_err(ret); 1346 return dax_mem2blk_err(ret); 1347 1347 1348 memset(kaddr + offset, 0, size); 1348 memset(kaddr + offset, 0, size); 1349 if (iomap->flags & IOMAP_F_SHARED) 1349 if (iomap->flags & IOMAP_F_SHARED) 1350 ret = dax_iomap_copy_around(p 1350 ret = dax_iomap_copy_around(pos, size, PAGE_SIZE, srcmap, 1351 k 1351 kaddr); 1352 else 1352 else 1353 dax_flush(iomap->dax_dev, kad 1353 dax_flush(iomap->dax_dev, kaddr + offset, size); 1354 return ret; 1354 return ret; 1355 } 1355 } 1356 1356 1357 static s64 dax_zero_iter(struct iomap_iter *i 1357 static s64 dax_zero_iter(struct iomap_iter *iter, bool *did_zero) 1358 { 1358 { 1359 const struct iomap *iomap = &iter->io 1359 const struct iomap *iomap = &iter->iomap; 1360 const struct iomap *srcmap = iomap_it 1360 const struct iomap *srcmap = iomap_iter_srcmap(iter); 1361 loff_t pos = iter->pos; 1361 loff_t pos = iter->pos; 1362 u64 length = iomap_length(iter); 1362 u64 length = iomap_length(iter); 1363 s64 written = 0; 1363 s64 written = 0; 1364 1364 1365 /* already zeroed? we're done. */ 1365 /* already zeroed? we're done. */ 1366 if (srcmap->type == IOMAP_HOLE || src 1366 if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN) 1367 return length; 1367 return length; 1368 1368 1369 /* 1369 /* 1370 * invalidate the pages whose sharing 1370 * invalidate the pages whose sharing state is to be changed 1371 * because of CoW. 1371 * because of CoW. 1372 */ 1372 */ 1373 if (iomap->flags & IOMAP_F_SHARED) 1373 if (iomap->flags & IOMAP_F_SHARED) 1374 invalidate_inode_pages2_range 1374 invalidate_inode_pages2_range(iter->inode->i_mapping, 1375 1375 pos >> PAGE_SHIFT, 1376 1376 (pos + length - 1) >> PAGE_SHIFT); 1377 1377 1378 do { 1378 do { 1379 unsigned offset = offset_in_p 1379 unsigned offset = offset_in_page(pos); 1380 unsigned size = min_t(u64, PA 1380 unsigned size = min_t(u64, PAGE_SIZE - offset, length); 1381 pgoff_t pgoff = dax_iomap_pgo 1381 pgoff_t pgoff = dax_iomap_pgoff(iomap, pos); 1382 long rc; 1382 long rc; 1383 int id; 1383 int id; 1384 1384 1385 id = dax_read_lock(); 1385 id = dax_read_lock(); 1386 if (IS_ALIGNED(pos, PAGE_SIZE 1386 if (IS_ALIGNED(pos, PAGE_SIZE) && size == PAGE_SIZE) 1387 rc = dax_zero_page_ra 1387 rc = dax_zero_page_range(iomap->dax_dev, pgoff, 1); 1388 else 1388 else 1389 rc = dax_memzero(iter 1389 rc = dax_memzero(iter, pos, size); 1390 dax_read_unlock(id); 1390 dax_read_unlock(id); 1391 1391 1392 if (rc < 0) 1392 if (rc < 0) 1393 return rc; 1393 return rc; 1394 pos += size; 1394 pos += size; 1395 length -= size; 1395 length -= size; 1396 written += size; 1396 written += size; 1397 } while (length > 0); 1397 } while (length > 0); 1398 1398 1399 if (did_zero) 1399 if (did_zero) 1400 *did_zero = true; 1400 *did_zero = true; 1401 return written; 1401 return written; 1402 } 1402 } 1403 1403 1404 int dax_zero_range(struct inode *inode, loff_ 1404 int dax_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero, 1405 const struct iomap_ops *ops) 1405 const struct iomap_ops *ops) 1406 { 1406 { 1407 struct iomap_iter iter = { 1407 struct iomap_iter iter = { 1408 .inode = inode, 1408 .inode = inode, 1409 .pos = pos, 1409 .pos = pos, 1410 .len = len, 1410 .len = len, 1411 .flags = IOMAP_DAX | 1411 .flags = IOMAP_DAX | IOMAP_ZERO, 1412 }; 1412 }; 1413 int ret; 1413 int ret; 1414 1414 1415 while ((ret = iomap_iter(&iter, ops)) 1415 while ((ret = iomap_iter(&iter, ops)) > 0) 1416 iter.processed = dax_zero_ite 1416 iter.processed = dax_zero_iter(&iter, did_zero); 1417 return ret; 1417 return ret; 1418 } 1418 } 1419 EXPORT_SYMBOL_GPL(dax_zero_range); 1419 EXPORT_SYMBOL_GPL(dax_zero_range); 1420 1420 1421 int dax_truncate_page(struct inode *inode, lo 1421 int dax_truncate_page(struct inode *inode, loff_t pos, bool *did_zero, 1422 const struct iomap_ops *ops) 1422 const struct iomap_ops *ops) 1423 { 1423 { 1424 unsigned int blocksize = i_blocksize( 1424 unsigned int blocksize = i_blocksize(inode); 1425 unsigned int off = pos & (blocksize - 1425 unsigned int off = pos & (blocksize - 1); 1426 1426 1427 /* Block boundary? Nothing to do */ 1427 /* Block boundary? Nothing to do */ 1428 if (!off) 1428 if (!off) 1429 return 0; 1429 return 0; 1430 return dax_zero_range(inode, pos, blo 1430 return dax_zero_range(inode, pos, blocksize - off, did_zero, ops); 1431 } 1431 } 1432 EXPORT_SYMBOL_GPL(dax_truncate_page); 1432 EXPORT_SYMBOL_GPL(dax_truncate_page); 1433 1433 1434 static loff_t dax_iomap_iter(const struct iom 1434 static loff_t dax_iomap_iter(const struct iomap_iter *iomi, 1435 struct iov_iter *iter) 1435 struct iov_iter *iter) 1436 { 1436 { 1437 const struct iomap *iomap = &iomi->io 1437 const struct iomap *iomap = &iomi->iomap; 1438 const struct iomap *srcmap = iomap_it 1438 const struct iomap *srcmap = iomap_iter_srcmap(iomi); 1439 loff_t length = iomap_length(iomi); 1439 loff_t length = iomap_length(iomi); 1440 loff_t pos = iomi->pos; 1440 loff_t pos = iomi->pos; 1441 struct dax_device *dax_dev = iomap->d 1441 struct dax_device *dax_dev = iomap->dax_dev; 1442 loff_t end = pos + length, done = 0; 1442 loff_t end = pos + length, done = 0; 1443 bool write = iov_iter_rw(iter) == WRI 1443 bool write = iov_iter_rw(iter) == WRITE; 1444 bool cow = write && iomap->flags & IO 1444 bool cow = write && iomap->flags & IOMAP_F_SHARED; 1445 ssize_t ret = 0; 1445 ssize_t ret = 0; 1446 size_t xfer; 1446 size_t xfer; 1447 int id; 1447 int id; 1448 1448 1449 if (!write) { 1449 if (!write) { 1450 end = min(end, i_size_read(io 1450 end = min(end, i_size_read(iomi->inode)); 1451 if (pos >= end) 1451 if (pos >= end) 1452 return 0; 1452 return 0; 1453 1453 1454 if (iomap->type == IOMAP_HOLE 1454 if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN) 1455 return iov_iter_zero( 1455 return iov_iter_zero(min(length, end - pos), iter); 1456 } 1456 } 1457 1457 1458 /* 1458 /* 1459 * In DAX mode, enforce either pure o 1459 * In DAX mode, enforce either pure overwrites of written extents, or 1460 * writes to unwritten extents as par 1460 * writes to unwritten extents as part of a copy-on-write operation. 1461 */ 1461 */ 1462 if (WARN_ON_ONCE(iomap->type != IOMAP 1462 if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED && 1463 !(iomap->flags & IOMA 1463 !(iomap->flags & IOMAP_F_SHARED))) 1464 return -EIO; 1464 return -EIO; 1465 1465 1466 /* 1466 /* 1467 * Write can allocate block for an ar 1467 * Write can allocate block for an area which has a hole page mapped 1468 * into page tables. We have to tear 1468 * into page tables. We have to tear down these mappings so that data 1469 * written by write(2) is visible in 1469 * written by write(2) is visible in mmap. 1470 */ 1470 */ 1471 if (iomap->flags & IOMAP_F_NEW || cow 1471 if (iomap->flags & IOMAP_F_NEW || cow) { 1472 /* 1472 /* 1473 * Filesystem allows CoW on n 1473 * Filesystem allows CoW on non-shared extents. The src extents 1474 * may have been mmapped with 1474 * may have been mmapped with dirty mark before. To be able to 1475 * invalidate its dax entries 1475 * invalidate its dax entries, we need to clear the dirty mark 1476 * in advance. 1476 * in advance. 1477 */ 1477 */ 1478 if (cow) 1478 if (cow) 1479 __dax_clear_dirty_ran 1479 __dax_clear_dirty_range(iomi->inode->i_mapping, 1480 1480 pos >> PAGE_SHIFT, 1481 1481 (end - 1) >> PAGE_SHIFT); 1482 invalidate_inode_pages2_range 1482 invalidate_inode_pages2_range(iomi->inode->i_mapping, 1483 1483 pos >> PAGE_SHIFT, 1484 1484 (end - 1) >> PAGE_SHIFT); 1485 } 1485 } 1486 1486 1487 id = dax_read_lock(); 1487 id = dax_read_lock(); 1488 while (pos < end) { 1488 while (pos < end) { 1489 unsigned offset = pos & (PAGE 1489 unsigned offset = pos & (PAGE_SIZE - 1); 1490 const size_t size = ALIGN(len 1490 const size_t size = ALIGN(length + offset, PAGE_SIZE); 1491 pgoff_t pgoff = dax_iomap_pgo 1491 pgoff_t pgoff = dax_iomap_pgoff(iomap, pos); 1492 ssize_t map_len; 1492 ssize_t map_len; 1493 bool recovery = false; 1493 bool recovery = false; 1494 void *kaddr; 1494 void *kaddr; 1495 1495 1496 if (fatal_signal_pending(curr 1496 if (fatal_signal_pending(current)) { 1497 ret = -EINTR; 1497 ret = -EINTR; 1498 break; 1498 break; 1499 } 1499 } 1500 1500 1501 map_len = dax_direct_access(d 1501 map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), 1502 DAX_ACCESS, & 1502 DAX_ACCESS, &kaddr, NULL); 1503 if (map_len == -EHWPOISON && 1503 if (map_len == -EHWPOISON && iov_iter_rw(iter) == WRITE) { 1504 map_len = dax_direct_ 1504 map_len = dax_direct_access(dax_dev, pgoff, 1505 PHYS_ 1505 PHYS_PFN(size), DAX_RECOVERY_WRITE, 1506 &kadd 1506 &kaddr, NULL); 1507 if (map_len > 0) 1507 if (map_len > 0) 1508 recovery = tr 1508 recovery = true; 1509 } 1509 } 1510 if (map_len < 0) { 1510 if (map_len < 0) { 1511 ret = dax_mem2blk_err 1511 ret = dax_mem2blk_err(map_len); 1512 break; 1512 break; 1513 } 1513 } 1514 1514 1515 if (cow) { 1515 if (cow) { 1516 ret = dax_iomap_copy_ 1516 ret = dax_iomap_copy_around(pos, length, PAGE_SIZE, 1517 1517 srcmap, kaddr); 1518 if (ret) 1518 if (ret) 1519 break; 1519 break; 1520 } 1520 } 1521 1521 1522 map_len = PFN_PHYS(map_len); 1522 map_len = PFN_PHYS(map_len); 1523 kaddr += offset; 1523 kaddr += offset; 1524 map_len -= offset; 1524 map_len -= offset; 1525 if (map_len > end - pos) 1525 if (map_len > end - pos) 1526 map_len = end - pos; 1526 map_len = end - pos; 1527 1527 1528 if (recovery) 1528 if (recovery) 1529 xfer = dax_recovery_w 1529 xfer = dax_recovery_write(dax_dev, pgoff, kaddr, 1530 map_l 1530 map_len, iter); 1531 else if (write) 1531 else if (write) 1532 xfer = dax_copy_from_ 1532 xfer = dax_copy_from_iter(dax_dev, pgoff, kaddr, 1533 map_l 1533 map_len, iter); 1534 else 1534 else 1535 xfer = dax_copy_to_it 1535 xfer = dax_copy_to_iter(dax_dev, pgoff, kaddr, 1536 map_l 1536 map_len, iter); 1537 1537 1538 pos += xfer; 1538 pos += xfer; 1539 length -= xfer; 1539 length -= xfer; 1540 done += xfer; 1540 done += xfer; 1541 1541 1542 if (xfer == 0) 1542 if (xfer == 0) 1543 ret = -EFAULT; 1543 ret = -EFAULT; 1544 if (xfer < map_len) 1544 if (xfer < map_len) 1545 break; 1545 break; 1546 } 1546 } 1547 dax_read_unlock(id); 1547 dax_read_unlock(id); 1548 1548 1549 return done ? done : ret; 1549 return done ? done : ret; 1550 } 1550 } 1551 1551 1552 /** 1552 /** 1553 * dax_iomap_rw - Perform I/O to a DAX file 1553 * dax_iomap_rw - Perform I/O to a DAX file 1554 * @iocb: The control block for this I/ 1554 * @iocb: The control block for this I/O 1555 * @iter: The addresses to do I/O from 1555 * @iter: The addresses to do I/O from or to 1556 * @ops: iomap ops passed from the fil 1556 * @ops: iomap ops passed from the file system 1557 * 1557 * 1558 * This function performs read and write oper 1558 * This function performs read and write operations to directly mapped 1559 * persistent memory. The callers needs to t 1559 * persistent memory. The callers needs to take care of read/write exclusion 1560 * and evicting any page cache pages in the r 1560 * and evicting any page cache pages in the region under I/O. 1561 */ 1561 */ 1562 ssize_t 1562 ssize_t 1563 dax_iomap_rw(struct kiocb *iocb, struct iov_i 1563 dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter, 1564 const struct iomap_ops *ops) 1564 const struct iomap_ops *ops) 1565 { 1565 { 1566 struct iomap_iter iomi = { 1566 struct iomap_iter iomi = { 1567 .inode = iocb->ki_fi 1567 .inode = iocb->ki_filp->f_mapping->host, 1568 .pos = iocb->ki_po 1568 .pos = iocb->ki_pos, 1569 .len = iov_iter_co 1569 .len = iov_iter_count(iter), 1570 .flags = IOMAP_DAX, 1570 .flags = IOMAP_DAX, 1571 }; 1571 }; 1572 loff_t done = 0; 1572 loff_t done = 0; 1573 int ret; 1573 int ret; 1574 1574 1575 if (!iomi.len) 1575 if (!iomi.len) 1576 return 0; 1576 return 0; 1577 1577 1578 if (iov_iter_rw(iter) == WRITE) { 1578 if (iov_iter_rw(iter) == WRITE) { 1579 lockdep_assert_held_write(&io 1579 lockdep_assert_held_write(&iomi.inode->i_rwsem); 1580 iomi.flags |= IOMAP_WRITE; 1580 iomi.flags |= IOMAP_WRITE; 1581 } else { 1581 } else { 1582 lockdep_assert_held(&iomi.ino 1582 lockdep_assert_held(&iomi.inode->i_rwsem); 1583 } 1583 } 1584 1584 1585 if (iocb->ki_flags & IOCB_NOWAIT) 1585 if (iocb->ki_flags & IOCB_NOWAIT) 1586 iomi.flags |= IOMAP_NOWAIT; 1586 iomi.flags |= IOMAP_NOWAIT; 1587 1587 1588 while ((ret = iomap_iter(&iomi, ops)) 1588 while ((ret = iomap_iter(&iomi, ops)) > 0) 1589 iomi.processed = dax_iomap_it 1589 iomi.processed = dax_iomap_iter(&iomi, iter); 1590 1590 1591 done = iomi.pos - iocb->ki_pos; 1591 done = iomi.pos - iocb->ki_pos; 1592 iocb->ki_pos = iomi.pos; 1592 iocb->ki_pos = iomi.pos; 1593 return done ? done : ret; 1593 return done ? done : ret; 1594 } 1594 } 1595 EXPORT_SYMBOL_GPL(dax_iomap_rw); 1595 EXPORT_SYMBOL_GPL(dax_iomap_rw); 1596 1596 1597 static vm_fault_t dax_fault_return(int error) 1597 static vm_fault_t dax_fault_return(int error) 1598 { 1598 { 1599 if (error == 0) 1599 if (error == 0) 1600 return VM_FAULT_NOPAGE; 1600 return VM_FAULT_NOPAGE; 1601 return vmf_error(error); 1601 return vmf_error(error); 1602 } 1602 } 1603 1603 1604 /* 1604 /* 1605 * When handling a synchronous page fault and 1605 * When handling a synchronous page fault and the inode need a fsync, we can 1606 * insert the PTE/PMD into page tables only a 1606 * insert the PTE/PMD into page tables only after that fsync happened. Skip 1607 * insertion for now and return the pfn so th 1607 * insertion for now and return the pfn so that caller can insert it after the 1608 * fsync is done. 1608 * fsync is done. 1609 */ 1609 */ 1610 static vm_fault_t dax_fault_synchronous_pfnp( 1610 static vm_fault_t dax_fault_synchronous_pfnp(pfn_t *pfnp, pfn_t pfn) 1611 { 1611 { 1612 if (WARN_ON_ONCE(!pfnp)) 1612 if (WARN_ON_ONCE(!pfnp)) 1613 return VM_FAULT_SIGBUS; 1613 return VM_FAULT_SIGBUS; 1614 *pfnp = pfn; 1614 *pfnp = pfn; 1615 return VM_FAULT_NEEDDSYNC; 1615 return VM_FAULT_NEEDDSYNC; 1616 } 1616 } 1617 1617 1618 static vm_fault_t dax_fault_cow_page(struct v 1618 static vm_fault_t dax_fault_cow_page(struct vm_fault *vmf, 1619 const struct iomap_iter *iter 1619 const struct iomap_iter *iter) 1620 { 1620 { 1621 vm_fault_t ret; 1621 vm_fault_t ret; 1622 int error = 0; 1622 int error = 0; 1623 1623 1624 switch (iter->iomap.type) { 1624 switch (iter->iomap.type) { 1625 case IOMAP_HOLE: 1625 case IOMAP_HOLE: 1626 case IOMAP_UNWRITTEN: 1626 case IOMAP_UNWRITTEN: 1627 clear_user_highpage(vmf->cow_ 1627 clear_user_highpage(vmf->cow_page, vmf->address); 1628 break; 1628 break; 1629 case IOMAP_MAPPED: 1629 case IOMAP_MAPPED: 1630 error = copy_cow_page_dax(vmf 1630 error = copy_cow_page_dax(vmf, iter); 1631 break; 1631 break; 1632 default: 1632 default: 1633 WARN_ON_ONCE(1); 1633 WARN_ON_ONCE(1); 1634 error = -EIO; 1634 error = -EIO; 1635 break; 1635 break; 1636 } 1636 } 1637 1637 1638 if (error) 1638 if (error) 1639 return dax_fault_return(error 1639 return dax_fault_return(error); 1640 1640 1641 __SetPageUptodate(vmf->cow_page); 1641 __SetPageUptodate(vmf->cow_page); 1642 ret = finish_fault(vmf); 1642 ret = finish_fault(vmf); 1643 if (!ret) 1643 if (!ret) 1644 return VM_FAULT_DONE_COW; 1644 return VM_FAULT_DONE_COW; 1645 return ret; 1645 return ret; 1646 } 1646 } 1647 1647 1648 /** 1648 /** 1649 * dax_fault_iter - Common actor to handle pf 1649 * dax_fault_iter - Common actor to handle pfn insertion in PTE/PMD fault. 1650 * @vmf: vm fault instance 1650 * @vmf: vm fault instance 1651 * @iter: iomap iter 1651 * @iter: iomap iter 1652 * @pfnp: pfn to be returned 1652 * @pfnp: pfn to be returned 1653 * @xas: the dax mapping tree of a fil 1653 * @xas: the dax mapping tree of a file 1654 * @entry: an unlocked dax entry to be i 1654 * @entry: an unlocked dax entry to be inserted 1655 * @pmd: distinguish whether it is a p 1655 * @pmd: distinguish whether it is a pmd fault 1656 */ 1656 */ 1657 static vm_fault_t dax_fault_iter(struct vm_fa 1657 static vm_fault_t dax_fault_iter(struct vm_fault *vmf, 1658 const struct iomap_iter *iter 1658 const struct iomap_iter *iter, pfn_t *pfnp, 1659 struct xa_state *xas, void ** 1659 struct xa_state *xas, void **entry, bool pmd) 1660 { 1660 { 1661 const struct iomap *iomap = &iter->io 1661 const struct iomap *iomap = &iter->iomap; 1662 const struct iomap *srcmap = iomap_it 1662 const struct iomap *srcmap = iomap_iter_srcmap(iter); 1663 size_t size = pmd ? PMD_SIZE : PAGE_S 1663 size_t size = pmd ? PMD_SIZE : PAGE_SIZE; 1664 loff_t pos = (loff_t)xas->xa_index << 1664 loff_t pos = (loff_t)xas->xa_index << PAGE_SHIFT; 1665 bool write = iter->flags & IOMAP_WRIT 1665 bool write = iter->flags & IOMAP_WRITE; 1666 unsigned long entry_flags = pmd ? DAX 1666 unsigned long entry_flags = pmd ? DAX_PMD : 0; 1667 int err = 0; 1667 int err = 0; 1668 pfn_t pfn; 1668 pfn_t pfn; 1669 void *kaddr; 1669 void *kaddr; 1670 1670 1671 if (!pmd && vmf->cow_page) 1671 if (!pmd && vmf->cow_page) 1672 return dax_fault_cow_page(vmf 1672 return dax_fault_cow_page(vmf, iter); 1673 1673 1674 /* if we are reading UNWRITTEN and HO 1674 /* if we are reading UNWRITTEN and HOLE, return a hole. */ 1675 if (!write && 1675 if (!write && 1676 (iomap->type == IOMAP_UNWRITTEN | 1676 (iomap->type == IOMAP_UNWRITTEN || iomap->type == IOMAP_HOLE)) { 1677 if (!pmd) 1677 if (!pmd) 1678 return dax_load_hole( 1678 return dax_load_hole(xas, vmf, iter, entry); 1679 return dax_pmd_load_hole(xas, 1679 return dax_pmd_load_hole(xas, vmf, iter, entry); 1680 } 1680 } 1681 1681 1682 if (iomap->type != IOMAP_MAPPED && !( 1682 if (iomap->type != IOMAP_MAPPED && !(iomap->flags & IOMAP_F_SHARED)) { 1683 WARN_ON_ONCE(1); 1683 WARN_ON_ONCE(1); 1684 return pmd ? VM_FAULT_FALLBAC 1684 return pmd ? VM_FAULT_FALLBACK : VM_FAULT_SIGBUS; 1685 } 1685 } 1686 1686 1687 err = dax_iomap_direct_access(iomap, 1687 err = dax_iomap_direct_access(iomap, pos, size, &kaddr, &pfn); 1688 if (err) 1688 if (err) 1689 return pmd ? VM_FAULT_FALLBAC 1689 return pmd ? VM_FAULT_FALLBACK : dax_fault_return(err); 1690 1690 1691 *entry = dax_insert_entry(xas, vmf, i 1691 *entry = dax_insert_entry(xas, vmf, iter, *entry, pfn, entry_flags); 1692 1692 1693 if (write && iomap->flags & IOMAP_F_S 1693 if (write && iomap->flags & IOMAP_F_SHARED) { 1694 err = dax_iomap_copy_around(p 1694 err = dax_iomap_copy_around(pos, size, size, srcmap, kaddr); 1695 if (err) 1695 if (err) 1696 return dax_fault_retu 1696 return dax_fault_return(err); 1697 } 1697 } 1698 1698 1699 if (dax_fault_is_synchronous(iter, vm 1699 if (dax_fault_is_synchronous(iter, vmf->vma)) 1700 return dax_fault_synchronous_ 1700 return dax_fault_synchronous_pfnp(pfnp, pfn); 1701 1701 1702 /* insert PMD pfn */ 1702 /* insert PMD pfn */ 1703 if (pmd) 1703 if (pmd) 1704 return vmf_insert_pfn_pmd(vmf 1704 return vmf_insert_pfn_pmd(vmf, pfn, write); 1705 1705 1706 /* insert PTE pfn */ 1706 /* insert PTE pfn */ 1707 if (write) 1707 if (write) 1708 return vmf_insert_mixed_mkwri 1708 return vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn); 1709 return vmf_insert_mixed(vmf->vma, vmf 1709 return vmf_insert_mixed(vmf->vma, vmf->address, pfn); 1710 } 1710 } 1711 1711 1712 static vm_fault_t dax_iomap_pte_fault(struct 1712 static vm_fault_t dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp, 1713 int *iomap_err 1713 int *iomap_errp, const struct iomap_ops *ops) 1714 { 1714 { 1715 struct address_space *mapping = vmf-> 1715 struct address_space *mapping = vmf->vma->vm_file->f_mapping; 1716 XA_STATE(xas, &mapping->i_pages, vmf- 1716 XA_STATE(xas, &mapping->i_pages, vmf->pgoff); 1717 struct iomap_iter iter = { 1717 struct iomap_iter iter = { 1718 .inode = mapping->ho 1718 .inode = mapping->host, 1719 .pos = (loff_t)vmf 1719 .pos = (loff_t)vmf->pgoff << PAGE_SHIFT, 1720 .len = PAGE_SIZE, 1720 .len = PAGE_SIZE, 1721 .flags = IOMAP_DAX | 1721 .flags = IOMAP_DAX | IOMAP_FAULT, 1722 }; 1722 }; 1723 vm_fault_t ret = 0; 1723 vm_fault_t ret = 0; 1724 void *entry; 1724 void *entry; 1725 int error; 1725 int error; 1726 1726 1727 trace_dax_pte_fault(iter.inode, vmf, 1727 trace_dax_pte_fault(iter.inode, vmf, ret); 1728 /* 1728 /* 1729 * Check whether offset isn't beyond 1729 * Check whether offset isn't beyond end of file now. Caller is supposed 1730 * to hold locks serializing us with 1730 * to hold locks serializing us with truncate / punch hole so this is 1731 * a reliable test. 1731 * a reliable test. 1732 */ 1732 */ 1733 if (iter.pos >= i_size_read(iter.inod 1733 if (iter.pos >= i_size_read(iter.inode)) { 1734 ret = VM_FAULT_SIGBUS; 1734 ret = VM_FAULT_SIGBUS; 1735 goto out; 1735 goto out; 1736 } 1736 } 1737 1737 1738 if ((vmf->flags & FAULT_FLAG_WRITE) & 1738 if ((vmf->flags & FAULT_FLAG_WRITE) && !vmf->cow_page) 1739 iter.flags |= IOMAP_WRITE; 1739 iter.flags |= IOMAP_WRITE; 1740 1740 1741 entry = grab_mapping_entry(&xas, mapp 1741 entry = grab_mapping_entry(&xas, mapping, 0); 1742 if (xa_is_internal(entry)) { 1742 if (xa_is_internal(entry)) { 1743 ret = xa_to_internal(entry); 1743 ret = xa_to_internal(entry); 1744 goto out; 1744 goto out; 1745 } 1745 } 1746 1746 1747 /* 1747 /* 1748 * It is possible, particularly with 1748 * It is possible, particularly with mixed reads & writes to private 1749 * mappings, that we have raced with 1749 * mappings, that we have raced with a PMD fault that overlaps with 1750 * the PTE we need to set up. If so 1750 * the PTE we need to set up. If so just return and the fault will be 1751 * retried. 1751 * retried. 1752 */ 1752 */ 1753 if (pmd_trans_huge(*vmf->pmd) || pmd_ 1753 if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) { 1754 ret = VM_FAULT_NOPAGE; 1754 ret = VM_FAULT_NOPAGE; 1755 goto unlock_entry; 1755 goto unlock_entry; 1756 } 1756 } 1757 1757 1758 while ((error = iomap_iter(&iter, ops 1758 while ((error = iomap_iter(&iter, ops)) > 0) { 1759 if (WARN_ON_ONCE(iomap_length 1759 if (WARN_ON_ONCE(iomap_length(&iter) < PAGE_SIZE)) { 1760 iter.processed = -EIO 1760 iter.processed = -EIO; /* fs corruption? */ 1761 continue; 1761 continue; 1762 } 1762 } 1763 1763 1764 ret = dax_fault_iter(vmf, &it 1764 ret = dax_fault_iter(vmf, &iter, pfnp, &xas, &entry, false); 1765 if (ret != VM_FAULT_SIGBUS && 1765 if (ret != VM_FAULT_SIGBUS && 1766 (iter.iomap.flags & IOMAP 1766 (iter.iomap.flags & IOMAP_F_NEW)) { 1767 count_vm_event(PGMAJF 1767 count_vm_event(PGMAJFAULT); 1768 count_memcg_event_mm( 1768 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT); 1769 ret |= VM_FAULT_MAJOR 1769 ret |= VM_FAULT_MAJOR; 1770 } 1770 } 1771 1771 1772 if (!(ret & VM_FAULT_ERROR)) 1772 if (!(ret & VM_FAULT_ERROR)) 1773 iter.processed = PAGE 1773 iter.processed = PAGE_SIZE; 1774 } 1774 } 1775 1775 1776 if (iomap_errp) 1776 if (iomap_errp) 1777 *iomap_errp = error; 1777 *iomap_errp = error; 1778 if (!ret && error) 1778 if (!ret && error) 1779 ret = dax_fault_return(error) 1779 ret = dax_fault_return(error); 1780 1780 1781 unlock_entry: 1781 unlock_entry: 1782 dax_unlock_entry(&xas, entry); 1782 dax_unlock_entry(&xas, entry); 1783 out: 1783 out: 1784 trace_dax_pte_fault_done(iter.inode, 1784 trace_dax_pte_fault_done(iter.inode, vmf, ret); 1785 return ret; 1785 return ret; 1786 } 1786 } 1787 1787 1788 #ifdef CONFIG_FS_DAX_PMD 1788 #ifdef CONFIG_FS_DAX_PMD 1789 static bool dax_fault_check_fallback(struct v 1789 static bool dax_fault_check_fallback(struct vm_fault *vmf, struct xa_state *xas, 1790 pgoff_t max_pgoff) 1790 pgoff_t max_pgoff) 1791 { 1791 { 1792 unsigned long pmd_addr = vmf->address 1792 unsigned long pmd_addr = vmf->address & PMD_MASK; 1793 bool write = vmf->flags & FAULT_FLAG_ 1793 bool write = vmf->flags & FAULT_FLAG_WRITE; 1794 1794 1795 /* 1795 /* 1796 * Make sure that the faulting addres 1796 * Make sure that the faulting address's PMD offset (color) matches 1797 * the PMD offset from the start of t 1797 * the PMD offset from the start of the file. This is necessary so 1798 * that a PMD range in the page table 1798 * that a PMD range in the page table overlaps exactly with a PMD 1799 * range in the page cache. 1799 * range in the page cache. 1800 */ 1800 */ 1801 if ((vmf->pgoff & PG_PMD_COLOUR) != 1801 if ((vmf->pgoff & PG_PMD_COLOUR) != 1802 ((vmf->address >> PAGE_SHIFT) & P 1802 ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR)) 1803 return true; 1803 return true; 1804 1804 1805 /* Fall back to PTEs if we're going t 1805 /* Fall back to PTEs if we're going to COW */ 1806 if (write && !(vmf->vma->vm_flags & V 1806 if (write && !(vmf->vma->vm_flags & VM_SHARED)) 1807 return true; 1807 return true; 1808 1808 1809 /* If the PMD would extend outside th 1809 /* If the PMD would extend outside the VMA */ 1810 if (pmd_addr < vmf->vma->vm_start) 1810 if (pmd_addr < vmf->vma->vm_start) 1811 return true; 1811 return true; 1812 if ((pmd_addr + PMD_SIZE) > vmf->vma- 1812 if ((pmd_addr + PMD_SIZE) > vmf->vma->vm_end) 1813 return true; 1813 return true; 1814 1814 1815 /* If the PMD would extend beyond the 1815 /* If the PMD would extend beyond the file size */ 1816 if ((xas->xa_index | PG_PMD_COLOUR) > 1816 if ((xas->xa_index | PG_PMD_COLOUR) >= max_pgoff) 1817 return true; 1817 return true; 1818 1818 1819 return false; 1819 return false; 1820 } 1820 } 1821 1821 1822 static vm_fault_t dax_iomap_pmd_fault(struct 1822 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp, 1823 const struct i 1823 const struct iomap_ops *ops) 1824 { 1824 { 1825 struct address_space *mapping = vmf-> 1825 struct address_space *mapping = vmf->vma->vm_file->f_mapping; 1826 XA_STATE_ORDER(xas, &mapping->i_pages 1826 XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, PMD_ORDER); 1827 struct iomap_iter iter = { 1827 struct iomap_iter iter = { 1828 .inode = mapping->ho 1828 .inode = mapping->host, 1829 .len = PMD_SIZE, 1829 .len = PMD_SIZE, 1830 .flags = IOMAP_DAX | 1830 .flags = IOMAP_DAX | IOMAP_FAULT, 1831 }; 1831 }; 1832 vm_fault_t ret = VM_FAULT_FALLBACK; 1832 vm_fault_t ret = VM_FAULT_FALLBACK; 1833 pgoff_t max_pgoff; 1833 pgoff_t max_pgoff; 1834 void *entry; 1834 void *entry; 1835 1835 1836 if (vmf->flags & FAULT_FLAG_WRITE) 1836 if (vmf->flags & FAULT_FLAG_WRITE) 1837 iter.flags |= IOMAP_WRITE; 1837 iter.flags |= IOMAP_WRITE; 1838 1838 1839 /* 1839 /* 1840 * Check whether offset isn't beyond 1840 * Check whether offset isn't beyond end of file now. Caller is 1841 * supposed to hold locks serializing 1841 * supposed to hold locks serializing us with truncate / punch hole so 1842 * this is a reliable test. 1842 * this is a reliable test. 1843 */ 1843 */ 1844 max_pgoff = DIV_ROUND_UP(i_size_read( 1844 max_pgoff = DIV_ROUND_UP(i_size_read(iter.inode), PAGE_SIZE); 1845 1845 1846 trace_dax_pmd_fault(iter.inode, vmf, 1846 trace_dax_pmd_fault(iter.inode, vmf, max_pgoff, 0); 1847 1847 1848 if (xas.xa_index >= max_pgoff) { 1848 if (xas.xa_index >= max_pgoff) { 1849 ret = VM_FAULT_SIGBUS; 1849 ret = VM_FAULT_SIGBUS; 1850 goto out; 1850 goto out; 1851 } 1851 } 1852 1852 1853 if (dax_fault_check_fallback(vmf, &xa 1853 if (dax_fault_check_fallback(vmf, &xas, max_pgoff)) 1854 goto fallback; 1854 goto fallback; 1855 1855 1856 /* 1856 /* 1857 * grab_mapping_entry() will make sur 1857 * grab_mapping_entry() will make sure we get an empty PMD entry, 1858 * a zero PMD entry or a DAX PMD. If 1858 * a zero PMD entry or a DAX PMD. If it can't (because a PTE 1859 * entry is already in the array, for 1859 * entry is already in the array, for instance), it will return 1860 * VM_FAULT_FALLBACK. 1860 * VM_FAULT_FALLBACK. 1861 */ 1861 */ 1862 entry = grab_mapping_entry(&xas, mapp 1862 entry = grab_mapping_entry(&xas, mapping, PMD_ORDER); 1863 if (xa_is_internal(entry)) { 1863 if (xa_is_internal(entry)) { 1864 ret = xa_to_internal(entry); 1864 ret = xa_to_internal(entry); 1865 goto fallback; 1865 goto fallback; 1866 } 1866 } 1867 1867 1868 /* 1868 /* 1869 * It is possible, particularly with 1869 * It is possible, particularly with mixed reads & writes to private 1870 * mappings, that we have raced with 1870 * mappings, that we have raced with a PTE fault that overlaps with 1871 * the PMD we need to set up. If so 1871 * the PMD we need to set up. If so just return and the fault will be 1872 * retried. 1872 * retried. 1873 */ 1873 */ 1874 if (!pmd_none(*vmf->pmd) && !pmd_tran 1874 if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) && 1875 !pmd_devmap(*vmf->pmd 1875 !pmd_devmap(*vmf->pmd)) { 1876 ret = 0; 1876 ret = 0; 1877 goto unlock_entry; 1877 goto unlock_entry; 1878 } 1878 } 1879 1879 1880 iter.pos = (loff_t)xas.xa_index << PA 1880 iter.pos = (loff_t)xas.xa_index << PAGE_SHIFT; 1881 while (iomap_iter(&iter, ops) > 0) { 1881 while (iomap_iter(&iter, ops) > 0) { 1882 if (iomap_length(&iter) < PMD 1882 if (iomap_length(&iter) < PMD_SIZE) 1883 continue; /* actually 1883 continue; /* actually breaks out of the loop */ 1884 1884 1885 ret = dax_fault_iter(vmf, &it 1885 ret = dax_fault_iter(vmf, &iter, pfnp, &xas, &entry, true); 1886 if (ret != VM_FAULT_FALLBACK) 1886 if (ret != VM_FAULT_FALLBACK) 1887 iter.processed = PMD_ 1887 iter.processed = PMD_SIZE; 1888 } 1888 } 1889 1889 1890 unlock_entry: 1890 unlock_entry: 1891 dax_unlock_entry(&xas, entry); 1891 dax_unlock_entry(&xas, entry); 1892 fallback: 1892 fallback: 1893 if (ret == VM_FAULT_FALLBACK) { 1893 if (ret == VM_FAULT_FALLBACK) { 1894 split_huge_pmd(vmf->vma, vmf- 1894 split_huge_pmd(vmf->vma, vmf->pmd, vmf->address); 1895 count_vm_event(THP_FAULT_FALL 1895 count_vm_event(THP_FAULT_FALLBACK); 1896 } 1896 } 1897 out: 1897 out: 1898 trace_dax_pmd_fault_done(iter.inode, 1898 trace_dax_pmd_fault_done(iter.inode, vmf, max_pgoff, ret); 1899 return ret; 1899 return ret; 1900 } 1900 } 1901 #else 1901 #else 1902 static vm_fault_t dax_iomap_pmd_fault(struct 1902 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp, 1903 const struct i 1903 const struct iomap_ops *ops) 1904 { 1904 { 1905 return VM_FAULT_FALLBACK; 1905 return VM_FAULT_FALLBACK; 1906 } 1906 } 1907 #endif /* CONFIG_FS_DAX_PMD */ 1907 #endif /* CONFIG_FS_DAX_PMD */ 1908 1908 1909 /** 1909 /** 1910 * dax_iomap_fault - handle a page fault on a 1910 * dax_iomap_fault - handle a page fault on a DAX file 1911 * @vmf: The description of the fault 1911 * @vmf: The description of the fault 1912 * @order: Order of the page to fault in 1912 * @order: Order of the page to fault in 1913 * @pfnp: PFN to insert for synchronous fault 1913 * @pfnp: PFN to insert for synchronous faults if fsync is required 1914 * @iomap_errp: Storage for detailed error co 1914 * @iomap_errp: Storage for detailed error code in case of error 1915 * @ops: Iomap ops passed from the file syste 1915 * @ops: Iomap ops passed from the file system 1916 * 1916 * 1917 * When a page fault occurs, filesystems may 1917 * When a page fault occurs, filesystems may call this helper in 1918 * their fault handler for DAX files. dax_iom 1918 * their fault handler for DAX files. dax_iomap_fault() assumes the caller 1919 * has done all the necessary locking for pag 1919 * has done all the necessary locking for page fault to proceed 1920 * successfully. 1920 * successfully. 1921 */ 1921 */ 1922 vm_fault_t dax_iomap_fault(struct vm_fault *v 1922 vm_fault_t dax_iomap_fault(struct vm_fault *vmf, unsigned int order, 1923 pfn_t *pfnp, int *iomap_e 1923 pfn_t *pfnp, int *iomap_errp, const struct iomap_ops *ops) 1924 { 1924 { 1925 if (order == 0) 1925 if (order == 0) 1926 return dax_iomap_pte_fault(vm 1926 return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops); 1927 else if (order == PMD_ORDER) 1927 else if (order == PMD_ORDER) 1928 return dax_iomap_pmd_fault(vm 1928 return dax_iomap_pmd_fault(vmf, pfnp, ops); 1929 else 1929 else 1930 return VM_FAULT_FALLBACK; 1930 return VM_FAULT_FALLBACK; 1931 } 1931 } 1932 EXPORT_SYMBOL_GPL(dax_iomap_fault); 1932 EXPORT_SYMBOL_GPL(dax_iomap_fault); 1933 1933 1934 /* 1934 /* 1935 * dax_insert_pfn_mkwrite - insert PTE or PMD 1935 * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables 1936 * @vmf: The description of the fault 1936 * @vmf: The description of the fault 1937 * @pfn: PFN to insert 1937 * @pfn: PFN to insert 1938 * @order: Order of entry to insert. 1938 * @order: Order of entry to insert. 1939 * 1939 * 1940 * This function inserts a writeable PTE or P 1940 * This function inserts a writeable PTE or PMD entry into the page tables 1941 * for an mmaped DAX file. It also marks the 1941 * for an mmaped DAX file. It also marks the page cache entry as dirty. 1942 */ 1942 */ 1943 static vm_fault_t 1943 static vm_fault_t 1944 dax_insert_pfn_mkwrite(struct vm_fault *vmf, 1944 dax_insert_pfn_mkwrite(struct vm_fault *vmf, pfn_t pfn, unsigned int order) 1945 { 1945 { 1946 struct address_space *mapping = vmf-> 1946 struct address_space *mapping = vmf->vma->vm_file->f_mapping; 1947 XA_STATE_ORDER(xas, &mapping->i_pages 1947 XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, order); 1948 void *entry; 1948 void *entry; 1949 vm_fault_t ret; 1949 vm_fault_t ret; 1950 1950 1951 xas_lock_irq(&xas); 1951 xas_lock_irq(&xas); 1952 entry = get_unlocked_entry(&xas, orde 1952 entry = get_unlocked_entry(&xas, order); 1953 /* Did we race with someone splitting 1953 /* Did we race with someone splitting entry or so? */ 1954 if (!entry || dax_is_conflict(entry) 1954 if (!entry || dax_is_conflict(entry) || 1955 (order == 0 && !dax_is_pte_entry( 1955 (order == 0 && !dax_is_pte_entry(entry))) { 1956 put_unlocked_entry(&xas, entr 1956 put_unlocked_entry(&xas, entry, WAKE_NEXT); 1957 xas_unlock_irq(&xas); 1957 xas_unlock_irq(&xas); 1958 trace_dax_insert_pfn_mkwrite_ 1958 trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf, 1959 1959 VM_FAULT_NOPAGE); 1960 return VM_FAULT_NOPAGE; 1960 return VM_FAULT_NOPAGE; 1961 } 1961 } 1962 xas_set_mark(&xas, PAGECACHE_TAG_DIRT 1962 xas_set_mark(&xas, PAGECACHE_TAG_DIRTY); 1963 dax_lock_entry(&xas, entry); 1963 dax_lock_entry(&xas, entry); 1964 xas_unlock_irq(&xas); 1964 xas_unlock_irq(&xas); 1965 if (order == 0) 1965 if (order == 0) 1966 ret = vmf_insert_mixed_mkwrit 1966 ret = vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn); 1967 #ifdef CONFIG_FS_DAX_PMD 1967 #ifdef CONFIG_FS_DAX_PMD 1968 else if (order == PMD_ORDER) 1968 else if (order == PMD_ORDER) 1969 ret = vmf_insert_pfn_pmd(vmf, 1969 ret = vmf_insert_pfn_pmd(vmf, pfn, FAULT_FLAG_WRITE); 1970 #endif 1970 #endif 1971 else 1971 else 1972 ret = VM_FAULT_FALLBACK; 1972 ret = VM_FAULT_FALLBACK; 1973 dax_unlock_entry(&xas, entry); 1973 dax_unlock_entry(&xas, entry); 1974 trace_dax_insert_pfn_mkwrite(mapping- 1974 trace_dax_insert_pfn_mkwrite(mapping->host, vmf, ret); 1975 return ret; 1975 return ret; 1976 } 1976 } 1977 1977 1978 /** 1978 /** 1979 * dax_finish_sync_fault - finish synchronous 1979 * dax_finish_sync_fault - finish synchronous page fault 1980 * @vmf: The description of the fault 1980 * @vmf: The description of the fault 1981 * @order: Order of entry to be inserted 1981 * @order: Order of entry to be inserted 1982 * @pfn: PFN to insert 1982 * @pfn: PFN to insert 1983 * 1983 * 1984 * This function ensures that the file range 1984 * This function ensures that the file range touched by the page fault is 1985 * stored persistently on the media and handl 1985 * stored persistently on the media and handles inserting of appropriate page 1986 * table entry. 1986 * table entry. 1987 */ 1987 */ 1988 vm_fault_t dax_finish_sync_fault(struct vm_fa 1988 vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf, unsigned int order, 1989 pfn_t pfn) 1989 pfn_t pfn) 1990 { 1990 { 1991 int err; 1991 int err; 1992 loff_t start = ((loff_t)vmf->pgoff) < 1992 loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT; 1993 size_t len = PAGE_SIZE << order; 1993 size_t len = PAGE_SIZE << order; 1994 1994 1995 err = vfs_fsync_range(vmf->vma->vm_fi 1995 err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1); 1996 if (err) 1996 if (err) 1997 return VM_FAULT_SIGBUS; 1997 return VM_FAULT_SIGBUS; 1998 return dax_insert_pfn_mkwrite(vmf, pf 1998 return dax_insert_pfn_mkwrite(vmf, pfn, order); 1999 } 1999 } 2000 EXPORT_SYMBOL_GPL(dax_finish_sync_fault); 2000 EXPORT_SYMBOL_GPL(dax_finish_sync_fault); 2001 2001 2002 static loff_t dax_range_compare_iter(struct i 2002 static loff_t dax_range_compare_iter(struct iomap_iter *it_src, 2003 struct iomap_iter *it_dest, u 2003 struct iomap_iter *it_dest, u64 len, bool *same) 2004 { 2004 { 2005 const struct iomap *smap = &it_src->i 2005 const struct iomap *smap = &it_src->iomap; 2006 const struct iomap *dmap = &it_dest-> 2006 const struct iomap *dmap = &it_dest->iomap; 2007 loff_t pos1 = it_src->pos, pos2 = it_ 2007 loff_t pos1 = it_src->pos, pos2 = it_dest->pos; 2008 void *saddr, *daddr; 2008 void *saddr, *daddr; 2009 int id, ret; 2009 int id, ret; 2010 2010 2011 len = min(len, min(smap->length, dmap 2011 len = min(len, min(smap->length, dmap->length)); 2012 2012 2013 if (smap->type == IOMAP_HOLE && dmap- 2013 if (smap->type == IOMAP_HOLE && dmap->type == IOMAP_HOLE) { 2014 *same = true; 2014 *same = true; 2015 return len; 2015 return len; 2016 } 2016 } 2017 2017 2018 if (smap->type == IOMAP_HOLE || dmap- 2018 if (smap->type == IOMAP_HOLE || dmap->type == IOMAP_HOLE) { 2019 *same = false; 2019 *same = false; 2020 return 0; 2020 return 0; 2021 } 2021 } 2022 2022 2023 id = dax_read_lock(); 2023 id = dax_read_lock(); 2024 ret = dax_iomap_direct_access(smap, p 2024 ret = dax_iomap_direct_access(smap, pos1, ALIGN(pos1 + len, PAGE_SIZE), 2025 &saddr, 2025 &saddr, NULL); 2026 if (ret < 0) 2026 if (ret < 0) 2027 goto out_unlock; 2027 goto out_unlock; 2028 2028 2029 ret = dax_iomap_direct_access(dmap, p 2029 ret = dax_iomap_direct_access(dmap, pos2, ALIGN(pos2 + len, PAGE_SIZE), 2030 &daddr, 2030 &daddr, NULL); 2031 if (ret < 0) 2031 if (ret < 0) 2032 goto out_unlock; 2032 goto out_unlock; 2033 2033 2034 *same = !memcmp(saddr, daddr, len); 2034 *same = !memcmp(saddr, daddr, len); 2035 if (!*same) 2035 if (!*same) 2036 len = 0; 2036 len = 0; 2037 dax_read_unlock(id); 2037 dax_read_unlock(id); 2038 return len; 2038 return len; 2039 2039 2040 out_unlock: 2040 out_unlock: 2041 dax_read_unlock(id); 2041 dax_read_unlock(id); 2042 return -EIO; 2042 return -EIO; 2043 } 2043 } 2044 2044 2045 int dax_dedupe_file_range_compare(struct inod 2045 int dax_dedupe_file_range_compare(struct inode *src, loff_t srcoff, 2046 struct inode *dst, loff_t dst 2046 struct inode *dst, loff_t dstoff, loff_t len, bool *same, 2047 const struct iomap_ops *ops) 2047 const struct iomap_ops *ops) 2048 { 2048 { 2049 struct iomap_iter src_iter = { 2049 struct iomap_iter src_iter = { 2050 .inode = src, 2050 .inode = src, 2051 .pos = srcoff, 2051 .pos = srcoff, 2052 .len = len, 2052 .len = len, 2053 .flags = IOMAP_DAX, 2053 .flags = IOMAP_DAX, 2054 }; 2054 }; 2055 struct iomap_iter dst_iter = { 2055 struct iomap_iter dst_iter = { 2056 .inode = dst, 2056 .inode = dst, 2057 .pos = dstoff, 2057 .pos = dstoff, 2058 .len = len, 2058 .len = len, 2059 .flags = IOMAP_DAX, 2059 .flags = IOMAP_DAX, 2060 }; 2060 }; 2061 int ret, compared = 0; 2061 int ret, compared = 0; 2062 2062 2063 while ((ret = iomap_iter(&src_iter, o 2063 while ((ret = iomap_iter(&src_iter, ops)) > 0 && 2064 (ret = iomap_iter(&dst_iter, o 2064 (ret = iomap_iter(&dst_iter, ops)) > 0) { 2065 compared = dax_range_compare_ 2065 compared = dax_range_compare_iter(&src_iter, &dst_iter, 2066 min(src_iter. 2066 min(src_iter.len, dst_iter.len), same); 2067 if (compared < 0) 2067 if (compared < 0) 2068 return ret; 2068 return ret; 2069 src_iter.processed = dst_iter 2069 src_iter.processed = dst_iter.processed = compared; 2070 } 2070 } 2071 return ret; 2071 return ret; 2072 } 2072 } 2073 2073 2074 int dax_remap_file_range_prep(struct file *fi 2074 int dax_remap_file_range_prep(struct file *file_in, loff_t pos_in, 2075 struct file *fi 2075 struct file *file_out, loff_t pos_out, 2076 loff_t *len, un 2076 loff_t *len, unsigned int remap_flags, 2077 const struct io 2077 const struct iomap_ops *ops) 2078 { 2078 { 2079 return __generic_remap_file_range_pre 2079 return __generic_remap_file_range_prep(file_in, pos_in, file_out, 2080 2080 pos_out, len, remap_flags, ops); 2081 } 2081 } 2082 EXPORT_SYMBOL_GPL(dax_remap_file_range_prep); 2082 EXPORT_SYMBOL_GPL(dax_remap_file_range_prep); 2083 2083
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.