1 // SPDX-License-Identifier: GPL-2.0-only 1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 2 /* 3 * fs/dcache.c 3 * fs/dcache.c 4 * 4 * 5 * Complete reimplementation 5 * Complete reimplementation 6 * (C) 1997 Thomas Schoebel-Theuer, 6 * (C) 1997 Thomas Schoebel-Theuer, 7 * with heavy changes by Linus Torvalds 7 * with heavy changes by Linus Torvalds 8 */ 8 */ 9 9 10 /* 10 /* 11 * Notes on the allocation strategy: 11 * Notes on the allocation strategy: 12 * 12 * 13 * The dcache is a master of the icache - when 13 * The dcache is a master of the icache - whenever a dcache entry 14 * exists, the inode will always exist. "iput( 14 * exists, the inode will always exist. "iput()" is done either when 15 * the dcache entry is deleted or garbage coll 15 * the dcache entry is deleted or garbage collected. 16 */ 16 */ 17 17 18 #include <linux/ratelimit.h> 18 #include <linux/ratelimit.h> 19 #include <linux/string.h> 19 #include <linux/string.h> 20 #include <linux/mm.h> 20 #include <linux/mm.h> 21 #include <linux/fs.h> 21 #include <linux/fs.h> 22 #include <linux/fscrypt.h> 22 #include <linux/fscrypt.h> 23 #include <linux/fsnotify.h> 23 #include <linux/fsnotify.h> 24 #include <linux/slab.h> 24 #include <linux/slab.h> 25 #include <linux/init.h> 25 #include <linux/init.h> 26 #include <linux/hash.h> 26 #include <linux/hash.h> 27 #include <linux/cache.h> 27 #include <linux/cache.h> 28 #include <linux/export.h> 28 #include <linux/export.h> 29 #include <linux/security.h> 29 #include <linux/security.h> 30 #include <linux/seqlock.h> 30 #include <linux/seqlock.h> 31 #include <linux/memblock.h> 31 #include <linux/memblock.h> 32 #include <linux/bit_spinlock.h> 32 #include <linux/bit_spinlock.h> 33 #include <linux/rculist_bl.h> 33 #include <linux/rculist_bl.h> 34 #include <linux/list_lru.h> 34 #include <linux/list_lru.h> 35 #include "internal.h" 35 #include "internal.h" 36 #include "mount.h" 36 #include "mount.h" 37 37 38 #include <asm/runtime-const.h> << 39 << 40 /* 38 /* 41 * Usage: 39 * Usage: 42 * dcache->d_inode->i_lock protects: 40 * dcache->d_inode->i_lock protects: 43 * - i_dentry, d_u.d_alias, d_inode of alias 41 * - i_dentry, d_u.d_alias, d_inode of aliases 44 * dcache_hash_bucket lock protects: 42 * dcache_hash_bucket lock protects: 45 * - the dcache hash table 43 * - the dcache hash table 46 * s_roots bl list spinlock protects: 44 * s_roots bl list spinlock protects: 47 * - the s_roots list (see __d_drop) 45 * - the s_roots list (see __d_drop) 48 * dentry->d_sb->s_dentry_lru_lock protects: 46 * dentry->d_sb->s_dentry_lru_lock protects: 49 * - the dcache lru lists and counters 47 * - the dcache lru lists and counters 50 * d_lock protects: 48 * d_lock protects: 51 * - d_flags 49 * - d_flags 52 * - d_name 50 * - d_name 53 * - d_lru 51 * - d_lru 54 * - d_count 52 * - d_count 55 * - d_unhashed() 53 * - d_unhashed() 56 * - d_parent and d_chilren !! 54 * - d_parent and d_subdirs 57 * - childrens' d_sib and d_parent !! 55 * - childrens' d_child and d_parent 58 * - d_u.d_alias, d_inode 56 * - d_u.d_alias, d_inode 59 * 57 * 60 * Ordering: 58 * Ordering: 61 * dentry->d_inode->i_lock 59 * dentry->d_inode->i_lock 62 * dentry->d_lock 60 * dentry->d_lock 63 * dentry->d_sb->s_dentry_lru_lock 61 * dentry->d_sb->s_dentry_lru_lock 64 * dcache_hash_bucket lock 62 * dcache_hash_bucket lock 65 * s_roots lock 63 * s_roots lock 66 * 64 * 67 * If there is an ancestor relationship: 65 * If there is an ancestor relationship: 68 * dentry->d_parent->...->d_parent->d_lock 66 * dentry->d_parent->...->d_parent->d_lock 69 * ... 67 * ... 70 * dentry->d_parent->d_lock 68 * dentry->d_parent->d_lock 71 * dentry->d_lock 69 * dentry->d_lock 72 * 70 * 73 * If no ancestor relationship: 71 * If no ancestor relationship: 74 * arbitrary, since it's serialized on rename_ 72 * arbitrary, since it's serialized on rename_lock 75 */ 73 */ 76 int sysctl_vfs_cache_pressure __read_mostly = 74 int sysctl_vfs_cache_pressure __read_mostly = 100; 77 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure); 75 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure); 78 76 79 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rena 77 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock); 80 78 81 EXPORT_SYMBOL(rename_lock); 79 EXPORT_SYMBOL(rename_lock); 82 80 83 static struct kmem_cache *dentry_cache __ro_af !! 81 static struct kmem_cache *dentry_cache __read_mostly; 84 82 85 const struct qstr empty_name = QSTR_INIT("", 0 83 const struct qstr empty_name = QSTR_INIT("", 0); 86 EXPORT_SYMBOL(empty_name); 84 EXPORT_SYMBOL(empty_name); 87 const struct qstr slash_name = QSTR_INIT("/", 85 const struct qstr slash_name = QSTR_INIT("/", 1); 88 EXPORT_SYMBOL(slash_name); 86 EXPORT_SYMBOL(slash_name); 89 const struct qstr dotdot_name = QSTR_INIT(".." 87 const struct qstr dotdot_name = QSTR_INIT("..", 2); 90 EXPORT_SYMBOL(dotdot_name); 88 EXPORT_SYMBOL(dotdot_name); 91 89 92 /* 90 /* 93 * This is the single most critical data struc 91 * This is the single most critical data structure when it comes 94 * to the dcache: the hashtable for lookups. S 92 * to the dcache: the hashtable for lookups. Somebody should try 95 * to make this good - I've just made it work. 93 * to make this good - I've just made it work. 96 * 94 * 97 * This hash-function tries to avoid losing to 95 * This hash-function tries to avoid losing too many bits of hash 98 * information, yet avoid using a prime hash-s 96 * information, yet avoid using a prime hash-size or similar. 99 * << 100 * Marking the variables "used" ensures that t << 101 * optimize them away completely on architectu << 102 * constant infrastructure, this allows debugg << 103 * values. But updating these values has no ef << 104 */ 97 */ 105 98 106 static unsigned int d_hash_shift __ro_after_in !! 99 static unsigned int d_hash_shift __read_mostly; 107 100 108 static struct hlist_bl_head *dentry_hashtable !! 101 static struct hlist_bl_head *dentry_hashtable __read_mostly; 109 102 110 static inline struct hlist_bl_head *d_hash(uns !! 103 static inline struct hlist_bl_head *d_hash(unsigned int hash) 111 { 104 { 112 return runtime_const_ptr(dentry_hashta !! 105 return dentry_hashtable + (hash >> d_hash_shift); 113 runtime_const_shift_right_32(h << 114 } 106 } 115 107 116 #define IN_LOOKUP_SHIFT 10 108 #define IN_LOOKUP_SHIFT 10 117 static struct hlist_bl_head in_lookup_hashtabl 109 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT]; 118 110 119 static inline struct hlist_bl_head *in_lookup_ 111 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent, 120 unsign 112 unsigned int hash) 121 { 113 { 122 hash += (unsigned long) parent / L1_CA 114 hash += (unsigned long) parent / L1_CACHE_BYTES; 123 return in_lookup_hashtable + hash_32(h 115 return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT); 124 } 116 } 125 117 126 struct dentry_stat_t { !! 118 127 long nr_dentry; !! 119 /* Statistics gathering. */ 128 long nr_unused; !! 120 struct dentry_stat_t dentry_stat = { 129 long age_limit; /* age in seco !! 121 .age_limit = 45, 130 long want_pages; /* pages reque << 131 long nr_negative; /* # of unused << 132 long dummy; /* Reserved fo << 133 }; 122 }; 134 123 135 static DEFINE_PER_CPU(long, nr_dentry); 124 static DEFINE_PER_CPU(long, nr_dentry); 136 static DEFINE_PER_CPU(long, nr_dentry_unused); 125 static DEFINE_PER_CPU(long, nr_dentry_unused); 137 static DEFINE_PER_CPU(long, nr_dentry_negative 126 static DEFINE_PER_CPU(long, nr_dentry_negative); 138 127 139 #if defined(CONFIG_SYSCTL) && defined(CONFIG_P 128 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS) 140 /* Statistics gathering. */ << 141 static struct dentry_stat_t dentry_stat = { << 142 .age_limit = 45, << 143 }; << 144 129 145 /* 130 /* 146 * Here we resort to our own counters instead 131 * Here we resort to our own counters instead of using generic per-cpu counters 147 * for consistency with what the vfs inode cod 132 * for consistency with what the vfs inode code does. We are expected to harvest 148 * better code and performance by having our o 133 * better code and performance by having our own specialized counters. 149 * 134 * 150 * Please note that the loop is done over all 135 * Please note that the loop is done over all possible CPUs, not over all online 151 * CPUs. The reason for this is that we don't 136 * CPUs. The reason for this is that we don't want to play games with CPUs going 152 * on and off. If one of them goes off, we wil 137 * on and off. If one of them goes off, we will just keep their counters. 153 * 138 * 154 * glommer: See cffbc8a for details, and if yo 139 * glommer: See cffbc8a for details, and if you ever intend to change this, 155 * please update all vfs counters to match. 140 * please update all vfs counters to match. 156 */ 141 */ 157 static long get_nr_dentry(void) 142 static long get_nr_dentry(void) 158 { 143 { 159 int i; 144 int i; 160 long sum = 0; 145 long sum = 0; 161 for_each_possible_cpu(i) 146 for_each_possible_cpu(i) 162 sum += per_cpu(nr_dentry, i); 147 sum += per_cpu(nr_dentry, i); 163 return sum < 0 ? 0 : sum; 148 return sum < 0 ? 0 : sum; 164 } 149 } 165 150 166 static long get_nr_dentry_unused(void) 151 static long get_nr_dentry_unused(void) 167 { 152 { 168 int i; 153 int i; 169 long sum = 0; 154 long sum = 0; 170 for_each_possible_cpu(i) 155 for_each_possible_cpu(i) 171 sum += per_cpu(nr_dentry_unuse 156 sum += per_cpu(nr_dentry_unused, i); 172 return sum < 0 ? 0 : sum; 157 return sum < 0 ? 0 : sum; 173 } 158 } 174 159 175 static long get_nr_dentry_negative(void) 160 static long get_nr_dentry_negative(void) 176 { 161 { 177 int i; 162 int i; 178 long sum = 0; 163 long sum = 0; 179 164 180 for_each_possible_cpu(i) 165 for_each_possible_cpu(i) 181 sum += per_cpu(nr_dentry_negat 166 sum += per_cpu(nr_dentry_negative, i); 182 return sum < 0 ? 0 : sum; 167 return sum < 0 ? 0 : sum; 183 } 168 } 184 169 185 static int proc_nr_dentry(const struct ctl_tab !! 170 int proc_nr_dentry(struct ctl_table *table, int write, void *buffer, 186 size_t *lenp, loff_t !! 171 size_t *lenp, loff_t *ppos) 187 { 172 { 188 dentry_stat.nr_dentry = get_nr_dentry( 173 dentry_stat.nr_dentry = get_nr_dentry(); 189 dentry_stat.nr_unused = get_nr_dentry_ 174 dentry_stat.nr_unused = get_nr_dentry_unused(); 190 dentry_stat.nr_negative = get_nr_dentr 175 dentry_stat.nr_negative = get_nr_dentry_negative(); 191 return proc_doulongvec_minmax(table, w 176 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 192 } 177 } 193 << 194 static struct ctl_table fs_dcache_sysctls[] = << 195 { << 196 .procname = "dentry-stat << 197 .data = &dentry_stat << 198 .maxlen = 6*sizeof(lon << 199 .mode = 0444, << 200 .proc_handler = proc_nr_dent << 201 }, << 202 }; << 203 << 204 static int __init init_fs_dcache_sysctls(void) << 205 { << 206 register_sysctl_init("fs", fs_dcache_s << 207 return 0; << 208 } << 209 fs_initcall(init_fs_dcache_sysctls); << 210 #endif 178 #endif 211 179 212 /* 180 /* 213 * Compare 2 name strings, return 0 if they ma 181 * Compare 2 name strings, return 0 if they match, otherwise non-zero. 214 * The strings are both count bytes long, and 182 * The strings are both count bytes long, and count is non-zero. 215 */ 183 */ 216 #ifdef CONFIG_DCACHE_WORD_ACCESS 184 #ifdef CONFIG_DCACHE_WORD_ACCESS 217 185 218 #include <asm/word-at-a-time.h> 186 #include <asm/word-at-a-time.h> 219 /* 187 /* 220 * NOTE! 'cs' and 'scount' come from a dentry, 188 * NOTE! 'cs' and 'scount' come from a dentry, so it has a 221 * aligned allocation for this particular comp 189 * aligned allocation for this particular component. We don't 222 * strictly need the load_unaligned_zeropad() 190 * strictly need the load_unaligned_zeropad() safety, but it 223 * doesn't hurt either. 191 * doesn't hurt either. 224 * 192 * 225 * In contrast, 'ct' and 'tcount' can be from 193 * In contrast, 'ct' and 'tcount' can be from a pathname, and do 226 * need the careful unaligned handling. 194 * need the careful unaligned handling. 227 */ 195 */ 228 static inline int dentry_string_cmp(const unsi 196 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount) 229 { 197 { 230 unsigned long a,b,mask; 198 unsigned long a,b,mask; 231 199 232 for (;;) { 200 for (;;) { 233 a = read_word_at_a_time(cs); 201 a = read_word_at_a_time(cs); 234 b = load_unaligned_zeropad(ct) 202 b = load_unaligned_zeropad(ct); 235 if (tcount < sizeof(unsigned l 203 if (tcount < sizeof(unsigned long)) 236 break; 204 break; 237 if (unlikely(a != b)) 205 if (unlikely(a != b)) 238 return 1; 206 return 1; 239 cs += sizeof(unsigned long); 207 cs += sizeof(unsigned long); 240 ct += sizeof(unsigned long); 208 ct += sizeof(unsigned long); 241 tcount -= sizeof(unsigned long 209 tcount -= sizeof(unsigned long); 242 if (!tcount) 210 if (!tcount) 243 return 0; 211 return 0; 244 } 212 } 245 mask = bytemask_from_count(tcount); 213 mask = bytemask_from_count(tcount); 246 return unlikely(!!((a ^ b) & mask)); 214 return unlikely(!!((a ^ b) & mask)); 247 } 215 } 248 216 249 #else 217 #else 250 218 251 static inline int dentry_string_cmp(const unsi 219 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount) 252 { 220 { 253 do { 221 do { 254 if (*cs != *ct) 222 if (*cs != *ct) 255 return 1; 223 return 1; 256 cs++; 224 cs++; 257 ct++; 225 ct++; 258 tcount--; 226 tcount--; 259 } while (tcount); 227 } while (tcount); 260 return 0; 228 return 0; 261 } 229 } 262 230 263 #endif 231 #endif 264 232 265 static inline int dentry_cmp(const struct dent 233 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount) 266 { 234 { 267 /* 235 /* 268 * Be careful about RCU walk racing wi 236 * Be careful about RCU walk racing with rename: 269 * use 'READ_ONCE' to fetch the name p 237 * use 'READ_ONCE' to fetch the name pointer. 270 * 238 * 271 * NOTE! Even if a rename will mean th 239 * NOTE! Even if a rename will mean that the length 272 * was not loaded atomically, we don't 240 * was not loaded atomically, we don't care. The 273 * RCU walk will check the sequence co 241 * RCU walk will check the sequence count eventually, 274 * and catch it. And we won't overrun 242 * and catch it. And we won't overrun the buffer, 275 * because we're reading the name poin 243 * because we're reading the name pointer atomically, 276 * and a dentry name is guaranteed to 244 * and a dentry name is guaranteed to be properly 277 * terminated with a NUL byte. 245 * terminated with a NUL byte. 278 * 246 * 279 * End result: even if 'len' is wrong, 247 * End result: even if 'len' is wrong, we'll exit 280 * early because the data cannot match 248 * early because the data cannot match (there can 281 * be no NUL in the ct/tcount data) 249 * be no NUL in the ct/tcount data) 282 */ 250 */ 283 const unsigned char *cs = READ_ONCE(de 251 const unsigned char *cs = READ_ONCE(dentry->d_name.name); 284 252 285 return dentry_string_cmp(cs, ct, tcoun 253 return dentry_string_cmp(cs, ct, tcount); 286 } 254 } 287 255 288 struct external_name { 256 struct external_name { 289 union { 257 union { 290 atomic_t count; 258 atomic_t count; 291 struct rcu_head head; 259 struct rcu_head head; 292 } u; 260 } u; 293 unsigned char name[]; 261 unsigned char name[]; 294 }; 262 }; 295 263 296 static inline struct external_name *external_n 264 static inline struct external_name *external_name(struct dentry *dentry) 297 { 265 { 298 return container_of(dentry->d_name.nam 266 return container_of(dentry->d_name.name, struct external_name, name[0]); 299 } 267 } 300 268 301 static void __d_free(struct rcu_head *head) 269 static void __d_free(struct rcu_head *head) 302 { 270 { 303 struct dentry *dentry = container_of(h 271 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu); 304 272 305 kmem_cache_free(dentry_cache, dentry); 273 kmem_cache_free(dentry_cache, dentry); 306 } 274 } 307 275 308 static void __d_free_external(struct rcu_head 276 static void __d_free_external(struct rcu_head *head) 309 { 277 { 310 struct dentry *dentry = container_of(h 278 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu); 311 kfree(external_name(dentry)); 279 kfree(external_name(dentry)); 312 kmem_cache_free(dentry_cache, dentry); 280 kmem_cache_free(dentry_cache, dentry); 313 } 281 } 314 282 315 static inline int dname_external(const struct 283 static inline int dname_external(const struct dentry *dentry) 316 { 284 { 317 return dentry->d_name.name != dentry-> 285 return dentry->d_name.name != dentry->d_iname; 318 } 286 } 319 287 320 void take_dentry_name_snapshot(struct name_sna 288 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry) 321 { 289 { 322 spin_lock(&dentry->d_lock); 290 spin_lock(&dentry->d_lock); 323 name->name = dentry->d_name; 291 name->name = dentry->d_name; 324 if (unlikely(dname_external(dentry))) 292 if (unlikely(dname_external(dentry))) { 325 atomic_inc(&external_name(dent 293 atomic_inc(&external_name(dentry)->u.count); 326 } else { 294 } else { 327 memcpy(name->inline_name, dent 295 memcpy(name->inline_name, dentry->d_iname, 328 dentry->d_name.len + 1) 296 dentry->d_name.len + 1); 329 name->name.name = name->inline 297 name->name.name = name->inline_name; 330 } 298 } 331 spin_unlock(&dentry->d_lock); 299 spin_unlock(&dentry->d_lock); 332 } 300 } 333 EXPORT_SYMBOL(take_dentry_name_snapshot); 301 EXPORT_SYMBOL(take_dentry_name_snapshot); 334 302 335 void release_dentry_name_snapshot(struct name_ 303 void release_dentry_name_snapshot(struct name_snapshot *name) 336 { 304 { 337 if (unlikely(name->name.name != name-> 305 if (unlikely(name->name.name != name->inline_name)) { 338 struct external_name *p; 306 struct external_name *p; 339 p = container_of(name->name.na 307 p = container_of(name->name.name, struct external_name, name[0]); 340 if (unlikely(atomic_dec_and_te 308 if (unlikely(atomic_dec_and_test(&p->u.count))) 341 kfree_rcu(p, u.head); 309 kfree_rcu(p, u.head); 342 } 310 } 343 } 311 } 344 EXPORT_SYMBOL(release_dentry_name_snapshot); 312 EXPORT_SYMBOL(release_dentry_name_snapshot); 345 313 346 static inline void __d_set_inode_and_type(stru 314 static inline void __d_set_inode_and_type(struct dentry *dentry, 347 stru 315 struct inode *inode, 348 unsi 316 unsigned type_flags) 349 { 317 { 350 unsigned flags; 318 unsigned flags; 351 319 352 dentry->d_inode = inode; 320 dentry->d_inode = inode; 353 flags = READ_ONCE(dentry->d_flags); 321 flags = READ_ONCE(dentry->d_flags); 354 flags &= ~DCACHE_ENTRY_TYPE; !! 322 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU); 355 flags |= type_flags; 323 flags |= type_flags; 356 smp_store_release(&dentry->d_flags, fl 324 smp_store_release(&dentry->d_flags, flags); 357 } 325 } 358 326 359 static inline void __d_clear_type_and_inode(st 327 static inline void __d_clear_type_and_inode(struct dentry *dentry) 360 { 328 { 361 unsigned flags = READ_ONCE(dentry->d_f 329 unsigned flags = READ_ONCE(dentry->d_flags); 362 330 363 flags &= ~DCACHE_ENTRY_TYPE; !! 331 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU); 364 WRITE_ONCE(dentry->d_flags, flags); 332 WRITE_ONCE(dentry->d_flags, flags); 365 dentry->d_inode = NULL; 333 dentry->d_inode = NULL; 366 /* !! 334 if (dentry->d_flags & DCACHE_LRU_LIST) 367 * The negative counter only tracks de << 368 * d_lru is on another list. << 369 */ << 370 if ((flags & (DCACHE_LRU_LIST|DCACHE_S << 371 this_cpu_inc(nr_dentry_negativ 335 this_cpu_inc(nr_dentry_negative); 372 } 336 } 373 337 374 static void dentry_free(struct dentry *dentry) 338 static void dentry_free(struct dentry *dentry) 375 { 339 { 376 WARN_ON(!hlist_unhashed(&dentry->d_u.d 340 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias)); 377 if (unlikely(dname_external(dentry))) 341 if (unlikely(dname_external(dentry))) { 378 struct external_name *p = exte 342 struct external_name *p = external_name(dentry); 379 if (likely(atomic_dec_and_test 343 if (likely(atomic_dec_and_test(&p->u.count))) { 380 call_rcu(&dentry->d_u. 344 call_rcu(&dentry->d_u.d_rcu, __d_free_external); 381 return; 345 return; 382 } 346 } 383 } 347 } 384 /* if dentry was never visible to RCU, 348 /* if dentry was never visible to RCU, immediate free is OK */ 385 if (dentry->d_flags & DCACHE_NORCU) 349 if (dentry->d_flags & DCACHE_NORCU) 386 __d_free(&dentry->d_u.d_rcu); 350 __d_free(&dentry->d_u.d_rcu); 387 else 351 else 388 call_rcu(&dentry->d_u.d_rcu, _ 352 call_rcu(&dentry->d_u.d_rcu, __d_free); 389 } 353 } 390 354 391 /* 355 /* 392 * Release the dentry's inode, using the files 356 * Release the dentry's inode, using the filesystem 393 * d_iput() operation if defined. 357 * d_iput() operation if defined. 394 */ 358 */ 395 static void dentry_unlink_inode(struct dentry 359 static void dentry_unlink_inode(struct dentry * dentry) 396 __releases(dentry->d_lock) 360 __releases(dentry->d_lock) 397 __releases(dentry->d_inode->i_lock) 361 __releases(dentry->d_inode->i_lock) 398 { 362 { 399 struct inode *inode = dentry->d_inode; 363 struct inode *inode = dentry->d_inode; 400 364 401 raw_write_seqcount_begin(&dentry->d_se 365 raw_write_seqcount_begin(&dentry->d_seq); 402 __d_clear_type_and_inode(dentry); 366 __d_clear_type_and_inode(dentry); 403 hlist_del_init(&dentry->d_u.d_alias); 367 hlist_del_init(&dentry->d_u.d_alias); 404 raw_write_seqcount_end(&dentry->d_seq) 368 raw_write_seqcount_end(&dentry->d_seq); 405 spin_unlock(&dentry->d_lock); 369 spin_unlock(&dentry->d_lock); 406 spin_unlock(&inode->i_lock); 370 spin_unlock(&inode->i_lock); 407 if (!inode->i_nlink) 371 if (!inode->i_nlink) 408 fsnotify_inoderemove(inode); 372 fsnotify_inoderemove(inode); 409 if (dentry->d_op && dentry->d_op->d_ip 373 if (dentry->d_op && dentry->d_op->d_iput) 410 dentry->d_op->d_iput(dentry, i 374 dentry->d_op->d_iput(dentry, inode); 411 else 375 else 412 iput(inode); 376 iput(inode); 413 } 377 } 414 378 415 /* 379 /* 416 * The DCACHE_LRU_LIST bit is set whenever the 380 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry 417 * is in use - which includes both the "real" 381 * is in use - which includes both the "real" per-superblock 418 * LRU list _and_ the DCACHE_SHRINK_LIST use. 382 * LRU list _and_ the DCACHE_SHRINK_LIST use. 419 * 383 * 420 * The DCACHE_SHRINK_LIST bit is set whenever 384 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is 421 * on the shrink list (ie not on the superbloc 385 * on the shrink list (ie not on the superblock LRU list). 422 * 386 * 423 * The per-cpu "nr_dentry_unused" counters are 387 * The per-cpu "nr_dentry_unused" counters are updated with 424 * the DCACHE_LRU_LIST bit. 388 * the DCACHE_LRU_LIST bit. 425 * 389 * 426 * The per-cpu "nr_dentry_negative" counters a 390 * The per-cpu "nr_dentry_negative" counters are only updated 427 * when deleted from or added to the per-super 391 * when deleted from or added to the per-superblock LRU list, not 428 * from/to the shrink list. That is to avoid a 392 * from/to the shrink list. That is to avoid an unneeded dec/inc 429 * pair when moving from LRU to shrink list in 393 * pair when moving from LRU to shrink list in select_collect(). 430 * 394 * 431 * These helper functions make sure we always 395 * These helper functions make sure we always follow the 432 * rules. d_lock must be held by the caller. 396 * rules. d_lock must be held by the caller. 433 */ 397 */ 434 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(( 398 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x)) 435 static void d_lru_add(struct dentry *dentry) 399 static void d_lru_add(struct dentry *dentry) 436 { 400 { 437 D_FLAG_VERIFY(dentry, 0); 401 D_FLAG_VERIFY(dentry, 0); 438 dentry->d_flags |= DCACHE_LRU_LIST; 402 dentry->d_flags |= DCACHE_LRU_LIST; 439 this_cpu_inc(nr_dentry_unused); 403 this_cpu_inc(nr_dentry_unused); 440 if (d_is_negative(dentry)) 404 if (d_is_negative(dentry)) 441 this_cpu_inc(nr_dentry_negativ 405 this_cpu_inc(nr_dentry_negative); 442 WARN_ON_ONCE(!list_lru_add_obj( !! 406 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru)); 443 &dentry->d_sb->s_dentr << 444 } 407 } 445 408 446 static void d_lru_del(struct dentry *dentry) 409 static void d_lru_del(struct dentry *dentry) 447 { 410 { 448 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST) 411 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 449 dentry->d_flags &= ~DCACHE_LRU_LIST; 412 dentry->d_flags &= ~DCACHE_LRU_LIST; 450 this_cpu_dec(nr_dentry_unused); 413 this_cpu_dec(nr_dentry_unused); 451 if (d_is_negative(dentry)) 414 if (d_is_negative(dentry)) 452 this_cpu_dec(nr_dentry_negativ 415 this_cpu_dec(nr_dentry_negative); 453 WARN_ON_ONCE(!list_lru_del_obj( !! 416 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru)); 454 &dentry->d_sb->s_dentr << 455 } 417 } 456 418 457 static void d_shrink_del(struct dentry *dentry 419 static void d_shrink_del(struct dentry *dentry) 458 { 420 { 459 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LI 421 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST); 460 list_del_init(&dentry->d_lru); 422 list_del_init(&dentry->d_lru); 461 dentry->d_flags &= ~(DCACHE_SHRINK_LIS 423 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST); 462 this_cpu_dec(nr_dentry_unused); 424 this_cpu_dec(nr_dentry_unused); 463 } 425 } 464 426 465 static void d_shrink_add(struct dentry *dentry 427 static void d_shrink_add(struct dentry *dentry, struct list_head *list) 466 { 428 { 467 D_FLAG_VERIFY(dentry, 0); 429 D_FLAG_VERIFY(dentry, 0); 468 list_add(&dentry->d_lru, list); 430 list_add(&dentry->d_lru, list); 469 dentry->d_flags |= DCACHE_SHRINK_LIST 431 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST; 470 this_cpu_inc(nr_dentry_unused); 432 this_cpu_inc(nr_dentry_unused); 471 } 433 } 472 434 473 /* 435 /* 474 * These can only be called under the global L 436 * These can only be called under the global LRU lock, ie during the 475 * callback for freeing the LRU list. "isolate 437 * callback for freeing the LRU list. "isolate" removes it from the 476 * LRU lists entirely, while shrink_move moves 438 * LRU lists entirely, while shrink_move moves it to the indicated 477 * private list. 439 * private list. 478 */ 440 */ 479 static void d_lru_isolate(struct list_lru_one 441 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry) 480 { 442 { 481 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST) 443 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 482 dentry->d_flags &= ~DCACHE_LRU_LIST; 444 dentry->d_flags &= ~DCACHE_LRU_LIST; 483 this_cpu_dec(nr_dentry_unused); 445 this_cpu_dec(nr_dentry_unused); 484 if (d_is_negative(dentry)) 446 if (d_is_negative(dentry)) 485 this_cpu_dec(nr_dentry_negativ 447 this_cpu_dec(nr_dentry_negative); 486 list_lru_isolate(lru, &dentry->d_lru); 448 list_lru_isolate(lru, &dentry->d_lru); 487 } 449 } 488 450 489 static void d_lru_shrink_move(struct list_lru_ 451 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry, 490 struct list_head 452 struct list_head *list) 491 { 453 { 492 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST) 454 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 493 dentry->d_flags |= DCACHE_SHRINK_LIST; 455 dentry->d_flags |= DCACHE_SHRINK_LIST; 494 if (d_is_negative(dentry)) 456 if (d_is_negative(dentry)) 495 this_cpu_dec(nr_dentry_negativ 457 this_cpu_dec(nr_dentry_negative); 496 list_lru_isolate_move(lru, &dentry->d_ 458 list_lru_isolate_move(lru, &dentry->d_lru, list); 497 } 459 } 498 460 499 static void ___d_drop(struct dentry *dentry) 461 static void ___d_drop(struct dentry *dentry) 500 { 462 { 501 struct hlist_bl_head *b; 463 struct hlist_bl_head *b; 502 /* 464 /* 503 * Hashed dentries are normally on the 465 * Hashed dentries are normally on the dentry hashtable, 504 * with the exception of those newly a 466 * with the exception of those newly allocated by 505 * d_obtain_root, which are always IS_ 467 * d_obtain_root, which are always IS_ROOT: 506 */ 468 */ 507 if (unlikely(IS_ROOT(dentry))) 469 if (unlikely(IS_ROOT(dentry))) 508 b = &dentry->d_sb->s_roots; 470 b = &dentry->d_sb->s_roots; 509 else 471 else 510 b = d_hash(dentry->d_name.hash 472 b = d_hash(dentry->d_name.hash); 511 473 512 hlist_bl_lock(b); 474 hlist_bl_lock(b); 513 __hlist_bl_del(&dentry->d_hash); 475 __hlist_bl_del(&dentry->d_hash); 514 hlist_bl_unlock(b); 476 hlist_bl_unlock(b); 515 } 477 } 516 478 517 void __d_drop(struct dentry *dentry) 479 void __d_drop(struct dentry *dentry) 518 { 480 { 519 if (!d_unhashed(dentry)) { 481 if (!d_unhashed(dentry)) { 520 ___d_drop(dentry); 482 ___d_drop(dentry); 521 dentry->d_hash.pprev = NULL; 483 dentry->d_hash.pprev = NULL; 522 write_seqcount_invalidate(&den 484 write_seqcount_invalidate(&dentry->d_seq); 523 } 485 } 524 } 486 } 525 EXPORT_SYMBOL(__d_drop); 487 EXPORT_SYMBOL(__d_drop); 526 488 527 /** 489 /** 528 * d_drop - drop a dentry 490 * d_drop - drop a dentry 529 * @dentry: dentry to drop 491 * @dentry: dentry to drop 530 * 492 * 531 * d_drop() unhashes the entry from the parent 493 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't 532 * be found through a VFS lookup any more. Not 494 * be found through a VFS lookup any more. Note that this is different from 533 * deleting the dentry - d_delete will try to 495 * deleting the dentry - d_delete will try to mark the dentry negative if 534 * possible, giving a successful _negative_ lo 496 * possible, giving a successful _negative_ lookup, while d_drop will 535 * just make the cache lookup fail. 497 * just make the cache lookup fail. 536 * 498 * 537 * d_drop() is used mainly for stuff that want 499 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some 538 * reason (NFS timeouts or autofs deletes). 500 * reason (NFS timeouts or autofs deletes). 539 * 501 * 540 * __d_drop requires dentry->d_lock 502 * __d_drop requires dentry->d_lock 541 * 503 * 542 * ___d_drop doesn't mark dentry as "unhashed" 504 * ___d_drop doesn't mark dentry as "unhashed" 543 * (dentry->d_hash.pprev will be LIST_POISON2, 505 * (dentry->d_hash.pprev will be LIST_POISON2, not NULL). 544 */ 506 */ 545 void d_drop(struct dentry *dentry) 507 void d_drop(struct dentry *dentry) 546 { 508 { 547 spin_lock(&dentry->d_lock); 509 spin_lock(&dentry->d_lock); 548 __d_drop(dentry); 510 __d_drop(dentry); 549 spin_unlock(&dentry->d_lock); 511 spin_unlock(&dentry->d_lock); 550 } 512 } 551 EXPORT_SYMBOL(d_drop); 513 EXPORT_SYMBOL(d_drop); 552 514 553 static inline void dentry_unlist(struct dentry !! 515 static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent) 554 { 516 { 555 struct dentry *next; 517 struct dentry *next; 556 /* 518 /* 557 * Inform d_walk() and shrink_dentry_l 519 * Inform d_walk() and shrink_dentry_list() that we are no longer 558 * attached to the dentry tree 520 * attached to the dentry tree 559 */ 521 */ 560 dentry->d_flags |= DCACHE_DENTRY_KILLE 522 dentry->d_flags |= DCACHE_DENTRY_KILLED; 561 if (unlikely(hlist_unhashed(&dentry->d !! 523 if (unlikely(list_empty(&dentry->d_child))) 562 return; 524 return; 563 __hlist_del(&dentry->d_sib); !! 525 __list_del_entry(&dentry->d_child); 564 /* 526 /* 565 * Cursors can move around the list of 527 * Cursors can move around the list of children. While we'd been 566 * a normal list member, it didn't mat !! 528 * a normal list member, it didn't matter - ->d_child.next would've 567 * been updated. However, from now on 529 * been updated. However, from now on it won't be and for the 568 * things like d_walk() it might end u 530 * things like d_walk() it might end up with a nasty surprise. 569 * Normally d_walk() doesn't care abou 531 * Normally d_walk() doesn't care about cursors moving around - 570 * ->d_lock on parent prevents that an 532 * ->d_lock on parent prevents that and since a cursor has no children 571 * of its own, we get through it witho 533 * of its own, we get through it without ever unlocking the parent. 572 * There is one exception, though - if 534 * There is one exception, though - if we ascend from a child that 573 * gets killed as soon as we unlock it 535 * gets killed as soon as we unlock it, the next sibling is found 574 * using the value left in its ->d_sib !! 536 * using the value left in its ->d_child.next. And if _that_ 575 * pointed to a cursor, and cursor got 537 * pointed to a cursor, and cursor got moved (e.g. by lseek()) 576 * before d_walk() regains parent->d_l 538 * before d_walk() regains parent->d_lock, we'll end up skipping 577 * everything the cursor had been move 539 * everything the cursor had been moved past. 578 * 540 * 579 * Solution: make sure that the pointe !! 541 * Solution: make sure that the pointer left behind in ->d_child.next 580 * points to something that won't be m 542 * points to something that won't be moving around. I.e. skip the 581 * cursors. 543 * cursors. 582 */ 544 */ 583 while (dentry->d_sib.next) { !! 545 while (dentry->d_child.next != &parent->d_subdirs) { 584 next = hlist_entry(dentry->d_s !! 546 next = list_entry(dentry->d_child.next, struct dentry, d_child); 585 if (likely(!(next->d_flags & D 547 if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR))) 586 break; 548 break; 587 dentry->d_sib.next = next->d_s !! 549 dentry->d_child.next = next->d_child.next; 588 } 550 } 589 } 551 } 590 552 591 static struct dentry *__dentry_kill(struct den !! 553 static void __dentry_kill(struct dentry *dentry) 592 { 554 { 593 struct dentry *parent = NULL; 555 struct dentry *parent = NULL; 594 bool can_free = true; 556 bool can_free = true; >> 557 if (!IS_ROOT(dentry)) >> 558 parent = dentry->d_parent; 595 559 596 /* 560 /* 597 * The dentry is now unrecoverably dea 561 * The dentry is now unrecoverably dead to the world. 598 */ 562 */ 599 lockref_mark_dead(&dentry->d_lockref); 563 lockref_mark_dead(&dentry->d_lockref); 600 564 601 /* 565 /* 602 * inform the fs via d_prune that this 566 * inform the fs via d_prune that this dentry is about to be 603 * unhashed and destroyed. 567 * unhashed and destroyed. 604 */ 568 */ 605 if (dentry->d_flags & DCACHE_OP_PRUNE) 569 if (dentry->d_flags & DCACHE_OP_PRUNE) 606 dentry->d_op->d_prune(dentry); 570 dentry->d_op->d_prune(dentry); 607 571 608 if (dentry->d_flags & DCACHE_LRU_LIST) 572 if (dentry->d_flags & DCACHE_LRU_LIST) { 609 if (!(dentry->d_flags & DCACHE 573 if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) 610 d_lru_del(dentry); 574 d_lru_del(dentry); 611 } 575 } 612 /* if it was on the hash then remove i 576 /* if it was on the hash then remove it */ 613 __d_drop(dentry); 577 __d_drop(dentry); >> 578 dentry_unlist(dentry, parent); >> 579 if (parent) >> 580 spin_unlock(&parent->d_lock); 614 if (dentry->d_inode) 581 if (dentry->d_inode) 615 dentry_unlink_inode(dentry); 582 dentry_unlink_inode(dentry); 616 else 583 else 617 spin_unlock(&dentry->d_lock); 584 spin_unlock(&dentry->d_lock); 618 this_cpu_dec(nr_dentry); 585 this_cpu_dec(nr_dentry); 619 if (dentry->d_op && dentry->d_op->d_re 586 if (dentry->d_op && dentry->d_op->d_release) 620 dentry->d_op->d_release(dentry 587 dentry->d_op->d_release(dentry); 621 588 622 cond_resched(); !! 589 spin_lock(&dentry->d_lock); 623 /* now that it's negative, ->d_parent !! 590 if (dentry->d_flags & DCACHE_SHRINK_LIST) { 624 if (!IS_ROOT(dentry)) { !! 591 dentry->d_flags |= DCACHE_MAY_FREE; 625 parent = dentry->d_parent; << 626 spin_lock(&parent->d_lock); << 627 } << 628 spin_lock_nested(&dentry->d_lock, DENT << 629 dentry_unlist(dentry); << 630 if (dentry->d_flags & DCACHE_SHRINK_LI << 631 can_free = false; 592 can_free = false; >> 593 } 632 spin_unlock(&dentry->d_lock); 594 spin_unlock(&dentry->d_lock); 633 if (likely(can_free)) 595 if (likely(can_free)) 634 dentry_free(dentry); 596 dentry_free(dentry); 635 if (parent && --parent->d_lockref.coun !! 597 cond_resched(); >> 598 } >> 599 >> 600 static struct dentry *__lock_parent(struct dentry *dentry) >> 601 { >> 602 struct dentry *parent; >> 603 rcu_read_lock(); >> 604 spin_unlock(&dentry->d_lock); >> 605 again: >> 606 parent = READ_ONCE(dentry->d_parent); >> 607 spin_lock(&parent->d_lock); >> 608 /* >> 609 * We can't blindly lock dentry until we are sure >> 610 * that we won't violate the locking order. >> 611 * Any changes of dentry->d_parent must have >> 612 * been done with parent->d_lock held, so >> 613 * spin_lock() above is enough of a barrier >> 614 * for checking if it's still our child. >> 615 */ >> 616 if (unlikely(parent != dentry->d_parent)) { 636 spin_unlock(&parent->d_lock); 617 spin_unlock(&parent->d_lock); 637 return NULL; !! 618 goto again; 638 } 619 } >> 620 rcu_read_unlock(); >> 621 if (parent != dentry) >> 622 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); >> 623 else >> 624 parent = NULL; 639 return parent; 625 return parent; 640 } 626 } 641 627 642 /* !! 628 static inline struct dentry *lock_parent(struct dentry *dentry) 643 * Lock a dentry for feeding it to __dentry_ki << 644 * Called under rcu_read_lock() and dentry->d_ << 645 * guarantees that nothing we access will be f << 646 * Note that dentry is *not* protected from co << 647 * d_delete(), etc. << 648 * << 649 * Return false if dentry is busy. Otherwise, << 650 * that dentry's inode locked. << 651 */ << 652 << 653 static bool lock_for_kill(struct dentry *dentr << 654 { 629 { 655 struct inode *inode = dentry->d_inode; !! 630 struct dentry *parent = dentry->d_parent; 656 !! 631 if (IS_ROOT(dentry)) 657 if (unlikely(dentry->d_lockref.count)) !! 632 return NULL; 658 return false; !! 633 if (likely(spin_trylock(&parent->d_lock))) 659 !! 634 return parent; 660 if (!inode || likely(spin_trylock(&ino !! 635 return __lock_parent(dentry); 661 return true; << 662 << 663 do { << 664 spin_unlock(&dentry->d_lock); << 665 spin_lock(&inode->i_lock); << 666 spin_lock(&dentry->d_lock); << 667 if (likely(inode == dentry->d_ << 668 break; << 669 spin_unlock(&inode->i_lock); << 670 inode = dentry->d_inode; << 671 } while (inode); << 672 if (likely(!dentry->d_lockref.count)) << 673 return true; << 674 if (inode) << 675 spin_unlock(&inode->i_lock); << 676 return false; << 677 } 636 } 678 637 679 /* !! 638 static inline bool retain_dentry(struct dentry *dentry) 680 * Decide if dentry is worth retaining. Usual << 681 * locked; if not locked, we are more limited << 682 * without a lock. False in this case means " << 683 * << 684 * In case we aren't locked, these predicates << 685 * sufficient that at some point after we drop << 686 * hashed and the flags had the proper value. << 687 * re-gotten a reference to the dentry and cha << 688 * we can leave the dentry around with a zero << 689 */ << 690 static inline bool retain_dentry(struct dentry << 691 { 639 { 692 unsigned int d_flags; !! 640 WARN_ON(d_in_lookup(dentry)); 693 << 694 smp_rmb(); << 695 d_flags = READ_ONCE(dentry->d_flags); << 696 641 697 // Unreachable? Nobody would be able t !! 642 /* Unreachable? Get rid of it */ 698 if (unlikely(d_unhashed(dentry))) 643 if (unlikely(d_unhashed(dentry))) 699 return false; 644 return false; 700 645 701 // Same if it's disconnected !! 646 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED)) 702 if (unlikely(d_flags & DCACHE_DISCONNE << 703 return false; 647 return false; 704 648 705 // ->d_delete() might tell us not to b !! 649 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) { 706 // ->d_lock; can't decide without it !! 650 if (dentry->d_op->d_delete(dentry)) 707 if (unlikely(d_flags & DCACHE_OP_DELET << 708 if (!locked || dentry->d_op->d << 709 return false; 651 return false; 710 } 652 } 711 653 712 // Explicitly told not to bother !! 654 if (unlikely(dentry->d_flags & DCACHE_DONTCACHE)) 713 if (unlikely(d_flags & DCACHE_DONTCACH << 714 return false; 655 return false; 715 656 716 // At this point it looks like we ough !! 657 /* retain; LRU fodder */ 717 // need to do something - put it on LR !! 658 dentry->d_lockref.count--; 718 // and mark it referenced if it was on !! 659 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST))) 719 // Unfortunately, both actions require << 720 // case we'd have to punt rather than << 721 if (unlikely(!(d_flags & DCACHE_LRU_LI << 722 if (!locked) << 723 return false; << 724 d_lru_add(dentry); 660 d_lru_add(dentry); 725 } else if (unlikely(!(d_flags & DCACHE !! 661 else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED))) 726 if (!locked) << 727 return false; << 728 dentry->d_flags |= DCACHE_REFE 662 dentry->d_flags |= DCACHE_REFERENCED; 729 } << 730 return true; 663 return true; 731 } 664 } 732 665 733 void d_mark_dontcache(struct inode *inode) 666 void d_mark_dontcache(struct inode *inode) 734 { 667 { 735 struct dentry *de; 668 struct dentry *de; 736 669 737 spin_lock(&inode->i_lock); 670 spin_lock(&inode->i_lock); 738 hlist_for_each_entry(de, &inode->i_den 671 hlist_for_each_entry(de, &inode->i_dentry, d_u.d_alias) { 739 spin_lock(&de->d_lock); 672 spin_lock(&de->d_lock); 740 de->d_flags |= DCACHE_DONTCACH 673 de->d_flags |= DCACHE_DONTCACHE; 741 spin_unlock(&de->d_lock); 674 spin_unlock(&de->d_lock); 742 } 675 } 743 inode->i_state |= I_DONTCACHE; 676 inode->i_state |= I_DONTCACHE; 744 spin_unlock(&inode->i_lock); 677 spin_unlock(&inode->i_lock); 745 } 678 } 746 EXPORT_SYMBOL(d_mark_dontcache); 679 EXPORT_SYMBOL(d_mark_dontcache); 747 680 748 /* 681 /* >> 682 * Finish off a dentry we've decided to kill. >> 683 * dentry->d_lock must be held, returns with it unlocked. >> 684 * Returns dentry requiring refcount drop, or NULL if we're done. >> 685 */ >> 686 static struct dentry *dentry_kill(struct dentry *dentry) >> 687 __releases(dentry->d_lock) >> 688 { >> 689 struct inode *inode = dentry->d_inode; >> 690 struct dentry *parent = NULL; >> 691 >> 692 if (inode && unlikely(!spin_trylock(&inode->i_lock))) >> 693 goto slow_positive; >> 694 >> 695 if (!IS_ROOT(dentry)) { >> 696 parent = dentry->d_parent; >> 697 if (unlikely(!spin_trylock(&parent->d_lock))) { >> 698 parent = __lock_parent(dentry); >> 699 if (likely(inode || !dentry->d_inode)) >> 700 goto got_locks; >> 701 /* negative that became positive */ >> 702 if (parent) >> 703 spin_unlock(&parent->d_lock); >> 704 inode = dentry->d_inode; >> 705 goto slow_positive; >> 706 } >> 707 } >> 708 __dentry_kill(dentry); >> 709 return parent; >> 710 >> 711 slow_positive: >> 712 spin_unlock(&dentry->d_lock); >> 713 spin_lock(&inode->i_lock); >> 714 spin_lock(&dentry->d_lock); >> 715 parent = lock_parent(dentry); >> 716 got_locks: >> 717 if (unlikely(dentry->d_lockref.count != 1)) { >> 718 dentry->d_lockref.count--; >> 719 } else if (likely(!retain_dentry(dentry))) { >> 720 __dentry_kill(dentry); >> 721 return parent; >> 722 } >> 723 /* we are keeping it, after all */ >> 724 if (inode) >> 725 spin_unlock(&inode->i_lock); >> 726 if (parent) >> 727 spin_unlock(&parent->d_lock); >> 728 spin_unlock(&dentry->d_lock); >> 729 return NULL; >> 730 } >> 731 >> 732 /* 749 * Try to do a lockless dput(), and return whe 733 * Try to do a lockless dput(), and return whether that was successful. 750 * 734 * 751 * If unsuccessful, we return false, having al 735 * If unsuccessful, we return false, having already taken the dentry lock. 752 * In that case refcount is guaranteed to be z << 753 * decided that it's not worth keeping around. << 754 * 736 * 755 * The caller needs to hold the RCU read lock, 737 * The caller needs to hold the RCU read lock, so that the dentry is 756 * guaranteed to stay around even if the refco 738 * guaranteed to stay around even if the refcount goes down to zero! 757 */ 739 */ 758 static inline bool fast_dput(struct dentry *de 740 static inline bool fast_dput(struct dentry *dentry) 759 { 741 { 760 int ret; 742 int ret; >> 743 unsigned int d_flags; >> 744 >> 745 /* >> 746 * If we have a d_op->d_delete() operation, we sould not >> 747 * let the dentry count go to zero, so use "put_or_lock". >> 748 */ >> 749 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) >> 750 return lockref_put_or_lock(&dentry->d_lockref); 761 751 762 /* 752 /* 763 * try to decrement the lockref optimi !! 753 * .. otherwise, we can try to just decrement the >> 754 * lockref optimistically. 764 */ 755 */ 765 ret = lockref_put_return(&dentry->d_lo 756 ret = lockref_put_return(&dentry->d_lockref); 766 757 767 /* 758 /* 768 * If the lockref_put_return() failed 759 * If the lockref_put_return() failed due to the lock being held 769 * by somebody else, the fast path has 760 * by somebody else, the fast path has failed. We will need to 770 * get the lock, and then check the co 761 * get the lock, and then check the count again. 771 */ 762 */ 772 if (unlikely(ret < 0)) { 763 if (unlikely(ret < 0)) { 773 spin_lock(&dentry->d_lock); 764 spin_lock(&dentry->d_lock); 774 if (WARN_ON_ONCE(dentry->d_loc !! 765 if (dentry->d_lockref.count > 1) { >> 766 dentry->d_lockref.count--; 775 spin_unlock(&dentry->d 767 spin_unlock(&dentry->d_lock); 776 return true; 768 return true; 777 } 769 } 778 dentry->d_lockref.count--; !! 770 return false; 779 goto locked; << 780 } 771 } 781 772 782 /* 773 /* 783 * If we weren't the last ref, we're d 774 * If we weren't the last ref, we're done. 784 */ 775 */ 785 if (ret) 776 if (ret) 786 return true; 777 return true; 787 778 788 /* 779 /* 789 * Can we decide that decrement of ref !! 780 * Careful, careful. The reference count went down 790 * taking the lock? There's a very co !! 781 * to zero, but we don't hold the dentry lock, so 791 * dentry looks like it ought to be re !! 782 * somebody else could get it again, and do another 792 * to do. !! 783 * dput(), and we need to not race with that. >> 784 * >> 785 * However, there is a very special and common case >> 786 * where we don't care, because there is nothing to >> 787 * do: the dentry is still hashed, it does not have >> 788 * a 'delete' op, and it's referenced and already on >> 789 * the LRU list. >> 790 * >> 791 * NOTE! Since we aren't locked, these values are >> 792 * not "stable". However, it is sufficient that at >> 793 * some point after we dropped the reference the >> 794 * dentry was hashed and the flags had the proper >> 795 * value. Other dentry users may have re-gotten >> 796 * a reference to the dentry and change that, but >> 797 * our work is done - we can leave the dentry >> 798 * around with a zero refcount. >> 799 * >> 800 * Nevertheless, there are two cases that we should kill >> 801 * the dentry anyway. >> 802 * 1. free disconnected dentries as soon as their refcount >> 803 * reached zero. >> 804 * 2. free dentries if they should not be cached. 793 */ 805 */ 794 if (retain_dentry(dentry, false)) !! 806 smp_rmb(); >> 807 d_flags = READ_ONCE(dentry->d_flags); >> 808 d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | >> 809 DCACHE_DISCONNECTED | DCACHE_DONTCACHE; >> 810 >> 811 /* Nothing to do? Dropping the reference was all we needed? */ >> 812 if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry)) 795 return true; 813 return true; 796 814 797 /* 815 /* 798 * Either not worth retaining or we ca !! 816 * Not the fast normal case? Get the lock. We've already decremented 799 * Get the lock, then. We've already !! 817 * the refcount, but we'll need to re-check the situation after 800 * but we'll need to re-check the situ !! 818 * getting the lock. 801 */ 819 */ 802 spin_lock(&dentry->d_lock); 820 spin_lock(&dentry->d_lock); 803 821 804 /* 822 /* 805 * Did somebody else grab a reference 823 * Did somebody else grab a reference to it in the meantime, and 806 * we're no longer the last user after 824 * we're no longer the last user after all? Alternatively, somebody 807 * else could have killed it and marke 825 * else could have killed it and marked it dead. Either way, we 808 * don't need to do anything else. 826 * don't need to do anything else. 809 */ 827 */ 810 locked: !! 828 if (dentry->d_lockref.count) { 811 if (dentry->d_lockref.count || retain_ << 812 spin_unlock(&dentry->d_lock); 829 spin_unlock(&dentry->d_lock); 813 return true; 830 return true; 814 } 831 } >> 832 >> 833 /* >> 834 * Re-get the reference we optimistically dropped. We hold the >> 835 * lock, and we just tested that it was zero, so we can just >> 836 * set it to 1. >> 837 */ >> 838 dentry->d_lockref.count = 1; 815 return false; 839 return false; 816 } 840 } 817 841 818 842 819 /* 843 /* 820 * This is dput 844 * This is dput 821 * 845 * 822 * This is complicated by the fact that we do 846 * This is complicated by the fact that we do not want to put 823 * dentries that are no longer on any hash cha 847 * dentries that are no longer on any hash chain on the unused 824 * list: we'd much rather just get rid of them 848 * list: we'd much rather just get rid of them immediately. 825 * 849 * 826 * However, that implies that we have to trave 850 * However, that implies that we have to traverse the dentry 827 * tree upwards to the parents which might _al 851 * tree upwards to the parents which might _also_ now be 828 * scheduled for deletion (it may have been on 852 * scheduled for deletion (it may have been only waiting for 829 * its last child to go away). 853 * its last child to go away). 830 * 854 * 831 * This tail recursion is done by hand as we d 855 * This tail recursion is done by hand as we don't want to depend 832 * on the compiler to always get this right (g 856 * on the compiler to always get this right (gcc generally doesn't). 833 * Real recursion would eat up our stack space 857 * Real recursion would eat up our stack space. 834 */ 858 */ 835 859 836 /* 860 /* 837 * dput - release a dentry 861 * dput - release a dentry 838 * @dentry: dentry to release 862 * @dentry: dentry to release 839 * 863 * 840 * Release a dentry. This will drop the usage 864 * Release a dentry. This will drop the usage count and if appropriate 841 * call the dentry unlink method as well as re 865 * call the dentry unlink method as well as removing it from the queues and 842 * releasing its resources. If the parent dent 866 * releasing its resources. If the parent dentries were scheduled for release 843 * they too may now get deleted. 867 * they too may now get deleted. 844 */ 868 */ 845 void dput(struct dentry *dentry) 869 void dput(struct dentry *dentry) 846 { 870 { 847 if (!dentry) !! 871 while (dentry) { 848 return; !! 872 might_sleep(); 849 might_sleep(); !! 873 850 rcu_read_lock(); !! 874 rcu_read_lock(); 851 if (likely(fast_dput(dentry))) { !! 875 if (likely(fast_dput(dentry))) { 852 rcu_read_unlock(); !! 876 rcu_read_unlock(); 853 return; << 854 } << 855 while (lock_for_kill(dentry)) { << 856 rcu_read_unlock(); << 857 dentry = __dentry_kill(dentry) << 858 if (!dentry) << 859 return; 877 return; 860 if (retain_dentry(dentry, true !! 878 } >> 879 >> 880 /* Slow case: now with the dentry lock held */ >> 881 rcu_read_unlock(); >> 882 >> 883 if (likely(retain_dentry(dentry))) { 861 spin_unlock(&dentry->d 884 spin_unlock(&dentry->d_lock); 862 return; 885 return; 863 } 886 } 864 rcu_read_lock(); !! 887 >> 888 dentry = dentry_kill(dentry); 865 } 889 } 866 rcu_read_unlock(); << 867 spin_unlock(&dentry->d_lock); << 868 } 890 } 869 EXPORT_SYMBOL(dput); 891 EXPORT_SYMBOL(dput); 870 892 871 static void to_shrink_list(struct dentry *dent !! 893 static void __dput_to_list(struct dentry *dentry, struct list_head *list) 872 __must_hold(&dentry->d_lock) 894 __must_hold(&dentry->d_lock) 873 { 895 { 874 if (!(dentry->d_flags & DCACHE_SHRINK_ !! 896 if (dentry->d_flags & DCACHE_SHRINK_LIST) { >> 897 /* let the owner of the list it's on deal with it */ >> 898 --dentry->d_lockref.count; >> 899 } else { 875 if (dentry->d_flags & DCACHE_L 900 if (dentry->d_flags & DCACHE_LRU_LIST) 876 d_lru_del(dentry); 901 d_lru_del(dentry); 877 d_shrink_add(dentry, list); !! 902 if (!--dentry->d_lockref.count) >> 903 d_shrink_add(dentry, list); 878 } 904 } 879 } 905 } 880 906 881 void dput_to_list(struct dentry *dentry, struc 907 void dput_to_list(struct dentry *dentry, struct list_head *list) 882 { 908 { 883 rcu_read_lock(); 909 rcu_read_lock(); 884 if (likely(fast_dput(dentry))) { 910 if (likely(fast_dput(dentry))) { 885 rcu_read_unlock(); 911 rcu_read_unlock(); 886 return; 912 return; 887 } 913 } 888 rcu_read_unlock(); 914 rcu_read_unlock(); 889 to_shrink_list(dentry, list); !! 915 if (!retain_dentry(dentry)) >> 916 __dput_to_list(dentry, list); 890 spin_unlock(&dentry->d_lock); 917 spin_unlock(&dentry->d_lock); 891 } 918 } 892 919 >> 920 /* This must be called with d_lock held */ >> 921 static inline void __dget_dlock(struct dentry *dentry) >> 922 { >> 923 dentry->d_lockref.count++; >> 924 } >> 925 >> 926 static inline void __dget(struct dentry *dentry) >> 927 { >> 928 lockref_get(&dentry->d_lockref); >> 929 } >> 930 893 struct dentry *dget_parent(struct dentry *dent 931 struct dentry *dget_parent(struct dentry *dentry) 894 { 932 { 895 int gotref; 933 int gotref; 896 struct dentry *ret; 934 struct dentry *ret; 897 unsigned seq; 935 unsigned seq; 898 936 899 /* 937 /* 900 * Do optimistic parent lookup without 938 * Do optimistic parent lookup without any 901 * locking. 939 * locking. 902 */ 940 */ 903 rcu_read_lock(); 941 rcu_read_lock(); 904 seq = raw_seqcount_begin(&dentry->d_se 942 seq = raw_seqcount_begin(&dentry->d_seq); 905 ret = READ_ONCE(dentry->d_parent); 943 ret = READ_ONCE(dentry->d_parent); 906 gotref = lockref_get_not_zero(&ret->d_ 944 gotref = lockref_get_not_zero(&ret->d_lockref); 907 rcu_read_unlock(); 945 rcu_read_unlock(); 908 if (likely(gotref)) { 946 if (likely(gotref)) { 909 if (!read_seqcount_retry(&dent 947 if (!read_seqcount_retry(&dentry->d_seq, seq)) 910 return ret; 948 return ret; 911 dput(ret); 949 dput(ret); 912 } 950 } 913 951 914 repeat: 952 repeat: 915 /* 953 /* 916 * Don't need rcu_dereference because 954 * Don't need rcu_dereference because we re-check it was correct under 917 * the lock. 955 * the lock. 918 */ 956 */ 919 rcu_read_lock(); 957 rcu_read_lock(); 920 ret = dentry->d_parent; 958 ret = dentry->d_parent; 921 spin_lock(&ret->d_lock); 959 spin_lock(&ret->d_lock); 922 if (unlikely(ret != dentry->d_parent)) 960 if (unlikely(ret != dentry->d_parent)) { 923 spin_unlock(&ret->d_lock); 961 spin_unlock(&ret->d_lock); 924 rcu_read_unlock(); 962 rcu_read_unlock(); 925 goto repeat; 963 goto repeat; 926 } 964 } 927 rcu_read_unlock(); 965 rcu_read_unlock(); 928 BUG_ON(!ret->d_lockref.count); 966 BUG_ON(!ret->d_lockref.count); 929 ret->d_lockref.count++; 967 ret->d_lockref.count++; 930 spin_unlock(&ret->d_lock); 968 spin_unlock(&ret->d_lock); 931 return ret; 969 return ret; 932 } 970 } 933 EXPORT_SYMBOL(dget_parent); 971 EXPORT_SYMBOL(dget_parent); 934 972 935 static struct dentry * __d_find_any_alias(stru 973 static struct dentry * __d_find_any_alias(struct inode *inode) 936 { 974 { 937 struct dentry *alias; 975 struct dentry *alias; 938 976 939 if (hlist_empty(&inode->i_dentry)) 977 if (hlist_empty(&inode->i_dentry)) 940 return NULL; 978 return NULL; 941 alias = hlist_entry(inode->i_dentry.fi 979 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias); 942 lockref_get(&alias->d_lockref); !! 980 __dget(alias); 943 return alias; 981 return alias; 944 } 982 } 945 983 946 /** 984 /** 947 * d_find_any_alias - find any alias for a giv 985 * d_find_any_alias - find any alias for a given inode 948 * @inode: inode to find an alias for 986 * @inode: inode to find an alias for 949 * 987 * 950 * If any aliases exist for the given inode, t 988 * If any aliases exist for the given inode, take and return a 951 * reference for one of them. If no aliases e 989 * reference for one of them. If no aliases exist, return %NULL. 952 */ 990 */ 953 struct dentry *d_find_any_alias(struct inode * 991 struct dentry *d_find_any_alias(struct inode *inode) 954 { 992 { 955 struct dentry *de; 993 struct dentry *de; 956 994 957 spin_lock(&inode->i_lock); 995 spin_lock(&inode->i_lock); 958 de = __d_find_any_alias(inode); 996 de = __d_find_any_alias(inode); 959 spin_unlock(&inode->i_lock); 997 spin_unlock(&inode->i_lock); 960 return de; 998 return de; 961 } 999 } 962 EXPORT_SYMBOL(d_find_any_alias); 1000 EXPORT_SYMBOL(d_find_any_alias); 963 1001 964 static struct dentry *__d_find_alias(struct in 1002 static struct dentry *__d_find_alias(struct inode *inode) 965 { 1003 { 966 struct dentry *alias; 1004 struct dentry *alias; 967 1005 968 if (S_ISDIR(inode->i_mode)) 1006 if (S_ISDIR(inode->i_mode)) 969 return __d_find_any_alias(inod 1007 return __d_find_any_alias(inode); 970 1008 971 hlist_for_each_entry(alias, &inode->i_ 1009 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { 972 spin_lock(&alias->d_lock); 1010 spin_lock(&alias->d_lock); 973 if (!d_unhashed(alias)) { 1011 if (!d_unhashed(alias)) { 974 dget_dlock(alias); !! 1012 __dget_dlock(alias); 975 spin_unlock(&alias->d_ 1013 spin_unlock(&alias->d_lock); 976 return alias; 1014 return alias; 977 } 1015 } 978 spin_unlock(&alias->d_lock); 1016 spin_unlock(&alias->d_lock); 979 } 1017 } 980 return NULL; 1018 return NULL; 981 } 1019 } 982 1020 983 /** 1021 /** 984 * d_find_alias - grab a hashed alias of inode 1022 * d_find_alias - grab a hashed alias of inode 985 * @inode: inode in question 1023 * @inode: inode in question 986 * 1024 * 987 * If inode has a hashed alias, or is a direct 1025 * If inode has a hashed alias, or is a directory and has any alias, 988 * acquire the reference to alias and return i 1026 * acquire the reference to alias and return it. Otherwise return NULL. 989 * Notice that if inode is a directory there c 1027 * Notice that if inode is a directory there can be only one alias and 990 * it can be unhashed only if it has no childr 1028 * it can be unhashed only if it has no children, or if it is the root 991 * of a filesystem, or if the directory was re 1029 * of a filesystem, or if the directory was renamed and d_revalidate 992 * was the first vfs operation to notice. 1030 * was the first vfs operation to notice. 993 * 1031 * 994 * If the inode has an IS_ROOT, DCACHE_DISCONN 1032 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer 995 * any other hashed alias over that one. 1033 * any other hashed alias over that one. 996 */ 1034 */ 997 struct dentry *d_find_alias(struct inode *inod 1035 struct dentry *d_find_alias(struct inode *inode) 998 { 1036 { 999 struct dentry *de = NULL; 1037 struct dentry *de = NULL; 1000 1038 1001 if (!hlist_empty(&inode->i_dentry)) { 1039 if (!hlist_empty(&inode->i_dentry)) { 1002 spin_lock(&inode->i_lock); 1040 spin_lock(&inode->i_lock); 1003 de = __d_find_alias(inode); 1041 de = __d_find_alias(inode); 1004 spin_unlock(&inode->i_lock); 1042 spin_unlock(&inode->i_lock); 1005 } 1043 } 1006 return de; 1044 return de; 1007 } 1045 } 1008 EXPORT_SYMBOL(d_find_alias); 1046 EXPORT_SYMBOL(d_find_alias); 1009 1047 1010 /* 1048 /* 1011 * Caller MUST be holding rcu_read_lock() an 1049 * Caller MUST be holding rcu_read_lock() and be guaranteed 1012 * that inode won't get freed until rcu_read 1050 * that inode won't get freed until rcu_read_unlock(). 1013 */ 1051 */ 1014 struct dentry *d_find_alias_rcu(struct inode 1052 struct dentry *d_find_alias_rcu(struct inode *inode) 1015 { 1053 { 1016 struct hlist_head *l = &inode->i_dent 1054 struct hlist_head *l = &inode->i_dentry; 1017 struct dentry *de = NULL; 1055 struct dentry *de = NULL; 1018 1056 1019 spin_lock(&inode->i_lock); 1057 spin_lock(&inode->i_lock); 1020 // ->i_dentry and ->i_rcu are colocat 1058 // ->i_dentry and ->i_rcu are colocated, but the latter won't be 1021 // used without having I_FREEING set, 1059 // used without having I_FREEING set, which means no aliases left 1022 if (likely(!(inode->i_state & I_FREEI 1060 if (likely(!(inode->i_state & I_FREEING) && !hlist_empty(l))) { 1023 if (S_ISDIR(inode->i_mode)) { 1061 if (S_ISDIR(inode->i_mode)) { 1024 de = hlist_entry(l->f 1062 de = hlist_entry(l->first, struct dentry, d_u.d_alias); 1025 } else { 1063 } else { 1026 hlist_for_each_entry( 1064 hlist_for_each_entry(de, l, d_u.d_alias) 1027 if (!d_unhash 1065 if (!d_unhashed(de)) 1028 break 1066 break; 1029 } 1067 } 1030 } 1068 } 1031 spin_unlock(&inode->i_lock); 1069 spin_unlock(&inode->i_lock); 1032 return de; 1070 return de; 1033 } 1071 } 1034 1072 1035 /* 1073 /* 1036 * Try to kill dentries associated with 1074 * Try to kill dentries associated with this inode. 1037 * WARNING: you must own a reference to inode 1075 * WARNING: you must own a reference to inode. 1038 */ 1076 */ 1039 void d_prune_aliases(struct inode *inode) 1077 void d_prune_aliases(struct inode *inode) 1040 { 1078 { 1041 LIST_HEAD(dispose); << 1042 struct dentry *dentry; 1079 struct dentry *dentry; 1043 !! 1080 restart: 1044 spin_lock(&inode->i_lock); 1081 spin_lock(&inode->i_lock); 1045 hlist_for_each_entry(dentry, &inode-> 1082 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) { 1046 spin_lock(&dentry->d_lock); 1083 spin_lock(&dentry->d_lock); 1047 if (!dentry->d_lockref.count) !! 1084 if (!dentry->d_lockref.count) { 1048 to_shrink_list(dentry !! 1085 struct dentry *parent = lock_parent(dentry); >> 1086 if (likely(!dentry->d_lockref.count)) { >> 1087 __dentry_kill(dentry); >> 1088 dput(parent); >> 1089 goto restart; >> 1090 } >> 1091 if (parent) >> 1092 spin_unlock(&parent->d_lock); >> 1093 } 1049 spin_unlock(&dentry->d_lock); 1094 spin_unlock(&dentry->d_lock); 1050 } 1095 } 1051 spin_unlock(&inode->i_lock); 1096 spin_unlock(&inode->i_lock); 1052 shrink_dentry_list(&dispose); << 1053 } 1097 } 1054 EXPORT_SYMBOL(d_prune_aliases); 1098 EXPORT_SYMBOL(d_prune_aliases); 1055 1099 1056 static inline void shrink_kill(struct dentry !! 1100 /* >> 1101 * Lock a dentry from shrink list. >> 1102 * Called under rcu_read_lock() and dentry->d_lock; the former >> 1103 * guarantees that nothing we access will be freed under us. >> 1104 * Note that dentry is *not* protected from concurrent dentry_kill(), >> 1105 * d_delete(), etc. >> 1106 * >> 1107 * Return false if dentry has been disrupted or grabbed, leaving >> 1108 * the caller to kick it off-list. Otherwise, return true and have >> 1109 * that dentry's inode and parent both locked. >> 1110 */ >> 1111 static bool shrink_lock_dentry(struct dentry *dentry) 1057 { 1112 { 1058 do { !! 1113 struct inode *inode; 1059 rcu_read_unlock(); !! 1114 struct dentry *parent; 1060 victim = __dentry_kill(victim !! 1115 1061 rcu_read_lock(); !! 1116 if (dentry->d_lockref.count) 1062 } while (victim && lock_for_kill(vict !! 1117 return false; 1063 rcu_read_unlock(); !! 1118 1064 if (victim) !! 1119 inode = dentry->d_inode; 1065 spin_unlock(&victim->d_lock); !! 1120 if (inode && unlikely(!spin_trylock(&inode->i_lock))) { >> 1121 spin_unlock(&dentry->d_lock); >> 1122 spin_lock(&inode->i_lock); >> 1123 spin_lock(&dentry->d_lock); >> 1124 if (unlikely(dentry->d_lockref.count)) >> 1125 goto out; >> 1126 /* changed inode means that somebody had grabbed it */ >> 1127 if (unlikely(inode != dentry->d_inode)) >> 1128 goto out; >> 1129 } >> 1130 >> 1131 parent = dentry->d_parent; >> 1132 if (IS_ROOT(dentry) || likely(spin_trylock(&parent->d_lock))) >> 1133 return true; >> 1134 >> 1135 spin_unlock(&dentry->d_lock); >> 1136 spin_lock(&parent->d_lock); >> 1137 if (unlikely(parent != dentry->d_parent)) { >> 1138 spin_unlock(&parent->d_lock); >> 1139 spin_lock(&dentry->d_lock); >> 1140 goto out; >> 1141 } >> 1142 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); >> 1143 if (likely(!dentry->d_lockref.count)) >> 1144 return true; >> 1145 spin_unlock(&parent->d_lock); >> 1146 out: >> 1147 if (inode) >> 1148 spin_unlock(&inode->i_lock); >> 1149 return false; 1066 } 1150 } 1067 1151 1068 void shrink_dentry_list(struct list_head *lis 1152 void shrink_dentry_list(struct list_head *list) 1069 { 1153 { 1070 while (!list_empty(list)) { 1154 while (!list_empty(list)) { 1071 struct dentry *dentry; !! 1155 struct dentry *dentry, *parent; 1072 1156 1073 dentry = list_entry(list->pre 1157 dentry = list_entry(list->prev, struct dentry, d_lru); 1074 spin_lock(&dentry->d_lock); 1158 spin_lock(&dentry->d_lock); 1075 rcu_read_lock(); 1159 rcu_read_lock(); 1076 if (!lock_for_kill(dentry)) { !! 1160 if (!shrink_lock_dentry(dentry)) { 1077 bool can_free; !! 1161 bool can_free = false; 1078 rcu_read_unlock(); 1162 rcu_read_unlock(); 1079 d_shrink_del(dentry); 1163 d_shrink_del(dentry); 1080 can_free = dentry->d_ !! 1164 if (dentry->d_lockref.count < 0) >> 1165 can_free = dentry->d_flags & DCACHE_MAY_FREE; 1081 spin_unlock(&dentry-> 1166 spin_unlock(&dentry->d_lock); 1082 if (can_free) 1167 if (can_free) 1083 dentry_free(d 1168 dentry_free(dentry); 1084 continue; 1169 continue; 1085 } 1170 } >> 1171 rcu_read_unlock(); 1086 d_shrink_del(dentry); 1172 d_shrink_del(dentry); 1087 shrink_kill(dentry); !! 1173 parent = dentry->d_parent; >> 1174 if (parent != dentry) >> 1175 __dput_to_list(parent, list); >> 1176 __dentry_kill(dentry); 1088 } 1177 } 1089 } 1178 } 1090 1179 1091 static enum lru_status dentry_lru_isolate(str 1180 static enum lru_status dentry_lru_isolate(struct list_head *item, 1092 struct list_lru_one *lru, spi 1181 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) 1093 { 1182 { 1094 struct list_head *freeable = arg; 1183 struct list_head *freeable = arg; 1095 struct dentry *dentry = container_o 1184 struct dentry *dentry = container_of(item, struct dentry, d_lru); 1096 1185 1097 1186 1098 /* 1187 /* 1099 * we are inverting the lru lock/dent 1188 * we are inverting the lru lock/dentry->d_lock here, 1100 * so use a trylock. If we fail to ge 1189 * so use a trylock. If we fail to get the lock, just skip 1101 * it 1190 * it 1102 */ 1191 */ 1103 if (!spin_trylock(&dentry->d_lock)) 1192 if (!spin_trylock(&dentry->d_lock)) 1104 return LRU_SKIP; 1193 return LRU_SKIP; 1105 1194 1106 /* 1195 /* 1107 * Referenced dentries are still in u 1196 * Referenced dentries are still in use. If they have active 1108 * counts, just remove them from the 1197 * counts, just remove them from the LRU. Otherwise give them 1109 * another pass through the LRU. 1198 * another pass through the LRU. 1110 */ 1199 */ 1111 if (dentry->d_lockref.count) { 1200 if (dentry->d_lockref.count) { 1112 d_lru_isolate(lru, dentry); 1201 d_lru_isolate(lru, dentry); 1113 spin_unlock(&dentry->d_lock); 1202 spin_unlock(&dentry->d_lock); 1114 return LRU_REMOVED; 1203 return LRU_REMOVED; 1115 } 1204 } 1116 1205 1117 if (dentry->d_flags & DCACHE_REFERENC 1206 if (dentry->d_flags & DCACHE_REFERENCED) { 1118 dentry->d_flags &= ~DCACHE_RE 1207 dentry->d_flags &= ~DCACHE_REFERENCED; 1119 spin_unlock(&dentry->d_lock); 1208 spin_unlock(&dentry->d_lock); 1120 1209 1121 /* 1210 /* 1122 * The list move itself will 1211 * The list move itself will be made by the common LRU code. At 1123 * this point, we've dropped 1212 * this point, we've dropped the dentry->d_lock but keep the 1124 * lru lock. This is safe to 1213 * lru lock. This is safe to do, since every list movement is 1125 * protected by the lru lock 1214 * protected by the lru lock even if both locks are held. 1126 * 1215 * 1127 * This is guaranteed by the 1216 * This is guaranteed by the fact that all LRU management 1128 * functions are intermediate 1217 * functions are intermediated by the LRU API calls like 1129 * list_lru_add_obj and list_ !! 1218 * list_lru_add and list_lru_del. List movement in this file 1130 * only ever occur through th 1219 * only ever occur through this functions or through callbacks 1131 * like this one, that are ca 1220 * like this one, that are called from the LRU API. 1132 * 1221 * 1133 * The only exceptions to thi 1222 * The only exceptions to this are functions like 1134 * shrink_dentry_list, and co 1223 * shrink_dentry_list, and code that first checks for the 1135 * DCACHE_SHRINK_LIST flag. 1224 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be 1136 * operating only with stack 1225 * operating only with stack provided lists after they are 1137 * properly isolated from the 1226 * properly isolated from the main list. It is thus, always a 1138 * local access. 1227 * local access. 1139 */ 1228 */ 1140 return LRU_ROTATE; 1229 return LRU_ROTATE; 1141 } 1230 } 1142 1231 1143 d_lru_shrink_move(lru, dentry, freeab 1232 d_lru_shrink_move(lru, dentry, freeable); 1144 spin_unlock(&dentry->d_lock); 1233 spin_unlock(&dentry->d_lock); 1145 1234 1146 return LRU_REMOVED; 1235 return LRU_REMOVED; 1147 } 1236 } 1148 1237 1149 /** 1238 /** 1150 * prune_dcache_sb - shrink the dcache 1239 * prune_dcache_sb - shrink the dcache 1151 * @sb: superblock 1240 * @sb: superblock 1152 * @sc: shrink control, passed to list_lru_sh 1241 * @sc: shrink control, passed to list_lru_shrink_walk() 1153 * 1242 * 1154 * Attempt to shrink the superblock dcache LR 1243 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This 1155 * is done when we need more memory and calle 1244 * is done when we need more memory and called from the superblock shrinker 1156 * function. 1245 * function. 1157 * 1246 * 1158 * This function may fail to free any resourc 1247 * This function may fail to free any resources if all the dentries are in 1159 * use. 1248 * use. 1160 */ 1249 */ 1161 long prune_dcache_sb(struct super_block *sb, 1250 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc) 1162 { 1251 { 1163 LIST_HEAD(dispose); 1252 LIST_HEAD(dispose); 1164 long freed; 1253 long freed; 1165 1254 1166 freed = list_lru_shrink_walk(&sb->s_d 1255 freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc, 1167 dentry_l 1256 dentry_lru_isolate, &dispose); 1168 shrink_dentry_list(&dispose); 1257 shrink_dentry_list(&dispose); 1169 return freed; 1258 return freed; 1170 } 1259 } 1171 1260 1172 static enum lru_status dentry_lru_isolate_shr 1261 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item, 1173 struct list_lru_one *lru, spi 1262 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) 1174 { 1263 { 1175 struct list_head *freeable = arg; 1264 struct list_head *freeable = arg; 1176 struct dentry *dentry = container_o 1265 struct dentry *dentry = container_of(item, struct dentry, d_lru); 1177 1266 1178 /* 1267 /* 1179 * we are inverting the lru lock/dent 1268 * we are inverting the lru lock/dentry->d_lock here, 1180 * so use a trylock. If we fail to ge 1269 * so use a trylock. If we fail to get the lock, just skip 1181 * it 1270 * it 1182 */ 1271 */ 1183 if (!spin_trylock(&dentry->d_lock)) 1272 if (!spin_trylock(&dentry->d_lock)) 1184 return LRU_SKIP; 1273 return LRU_SKIP; 1185 1274 1186 d_lru_shrink_move(lru, dentry, freeab 1275 d_lru_shrink_move(lru, dentry, freeable); 1187 spin_unlock(&dentry->d_lock); 1276 spin_unlock(&dentry->d_lock); 1188 1277 1189 return LRU_REMOVED; 1278 return LRU_REMOVED; 1190 } 1279 } 1191 1280 1192 1281 1193 /** 1282 /** 1194 * shrink_dcache_sb - shrink dcache for a sup 1283 * shrink_dcache_sb - shrink dcache for a superblock 1195 * @sb: superblock 1284 * @sb: superblock 1196 * 1285 * 1197 * Shrink the dcache for the specified super 1286 * Shrink the dcache for the specified super block. This is used to free 1198 * the dcache before unmounting a file system 1287 * the dcache before unmounting a file system. 1199 */ 1288 */ 1200 void shrink_dcache_sb(struct super_block *sb) 1289 void shrink_dcache_sb(struct super_block *sb) 1201 { 1290 { 1202 do { 1291 do { 1203 LIST_HEAD(dispose); 1292 LIST_HEAD(dispose); 1204 1293 1205 list_lru_walk(&sb->s_dentry_l 1294 list_lru_walk(&sb->s_dentry_lru, 1206 dentry_lru_isolate_sh 1295 dentry_lru_isolate_shrink, &dispose, 1024); 1207 shrink_dentry_list(&dispose); 1296 shrink_dentry_list(&dispose); 1208 } while (list_lru_count(&sb->s_dentry 1297 } while (list_lru_count(&sb->s_dentry_lru) > 0); 1209 } 1298 } 1210 EXPORT_SYMBOL(shrink_dcache_sb); 1299 EXPORT_SYMBOL(shrink_dcache_sb); 1211 1300 1212 /** 1301 /** 1213 * enum d_walk_ret - action to talke during t 1302 * enum d_walk_ret - action to talke during tree walk 1214 * @D_WALK_CONTINUE: contrinue walk 1303 * @D_WALK_CONTINUE: contrinue walk 1215 * @D_WALK_QUIT: quit walk 1304 * @D_WALK_QUIT: quit walk 1216 * @D_WALK_NORETRY: quit when retry is ne 1305 * @D_WALK_NORETRY: quit when retry is needed 1217 * @D_WALK_SKIP: skip this dentry and 1306 * @D_WALK_SKIP: skip this dentry and its children 1218 */ 1307 */ 1219 enum d_walk_ret { 1308 enum d_walk_ret { 1220 D_WALK_CONTINUE, 1309 D_WALK_CONTINUE, 1221 D_WALK_QUIT, 1310 D_WALK_QUIT, 1222 D_WALK_NORETRY, 1311 D_WALK_NORETRY, 1223 D_WALK_SKIP, 1312 D_WALK_SKIP, 1224 }; 1313 }; 1225 1314 1226 /** 1315 /** 1227 * d_walk - walk the dentry tree 1316 * d_walk - walk the dentry tree 1228 * @parent: start of walk 1317 * @parent: start of walk 1229 * @data: data passed to @enter() and @ 1318 * @data: data passed to @enter() and @finish() 1230 * @enter: callback when first entering 1319 * @enter: callback when first entering the dentry 1231 * 1320 * 1232 * The @enter() callbacks are called with d_l 1321 * The @enter() callbacks are called with d_lock held. 1233 */ 1322 */ 1234 static void d_walk(struct dentry *parent, voi 1323 static void d_walk(struct dentry *parent, void *data, 1235 enum d_walk_ret (*enter)(v 1324 enum d_walk_ret (*enter)(void *, struct dentry *)) 1236 { 1325 { 1237 struct dentry *this_parent, *dentry; !! 1326 struct dentry *this_parent; >> 1327 struct list_head *next; 1238 unsigned seq = 0; 1328 unsigned seq = 0; 1239 enum d_walk_ret ret; 1329 enum d_walk_ret ret; 1240 bool retry = true; 1330 bool retry = true; 1241 1331 1242 again: 1332 again: 1243 read_seqbegin_or_lock(&rename_lock, & 1333 read_seqbegin_or_lock(&rename_lock, &seq); 1244 this_parent = parent; 1334 this_parent = parent; 1245 spin_lock(&this_parent->d_lock); 1335 spin_lock(&this_parent->d_lock); 1246 1336 1247 ret = enter(data, this_parent); 1337 ret = enter(data, this_parent); 1248 switch (ret) { 1338 switch (ret) { 1249 case D_WALK_CONTINUE: 1339 case D_WALK_CONTINUE: 1250 break; 1340 break; 1251 case D_WALK_QUIT: 1341 case D_WALK_QUIT: 1252 case D_WALK_SKIP: 1342 case D_WALK_SKIP: 1253 goto out_unlock; 1343 goto out_unlock; 1254 case D_WALK_NORETRY: 1344 case D_WALK_NORETRY: 1255 retry = false; 1345 retry = false; 1256 break; 1346 break; 1257 } 1347 } 1258 repeat: 1348 repeat: 1259 dentry = d_first_child(this_parent); !! 1349 next = this_parent->d_subdirs.next; 1260 resume: 1350 resume: 1261 hlist_for_each_entry_from(dentry, d_s !! 1351 while (next != &this_parent->d_subdirs) { >> 1352 struct list_head *tmp = next; >> 1353 struct dentry *dentry = list_entry(tmp, struct dentry, d_child); >> 1354 next = tmp->next; >> 1355 1262 if (unlikely(dentry->d_flags 1356 if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR)) 1263 continue; 1357 continue; 1264 1358 1265 spin_lock_nested(&dentry->d_l 1359 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 1266 1360 1267 ret = enter(data, dentry); 1361 ret = enter(data, dentry); 1268 switch (ret) { 1362 switch (ret) { 1269 case D_WALK_CONTINUE: 1363 case D_WALK_CONTINUE: 1270 break; 1364 break; 1271 case D_WALK_QUIT: 1365 case D_WALK_QUIT: 1272 spin_unlock(&dentry-> 1366 spin_unlock(&dentry->d_lock); 1273 goto out_unlock; 1367 goto out_unlock; 1274 case D_WALK_NORETRY: 1368 case D_WALK_NORETRY: 1275 retry = false; 1369 retry = false; 1276 break; 1370 break; 1277 case D_WALK_SKIP: 1371 case D_WALK_SKIP: 1278 spin_unlock(&dentry-> 1372 spin_unlock(&dentry->d_lock); 1279 continue; 1373 continue; 1280 } 1374 } 1281 1375 1282 if (!hlist_empty(&dentry->d_c !! 1376 if (!list_empty(&dentry->d_subdirs)) { 1283 spin_unlock(&this_par 1377 spin_unlock(&this_parent->d_lock); 1284 spin_release(&dentry- 1378 spin_release(&dentry->d_lock.dep_map, _RET_IP_); 1285 this_parent = dentry; 1379 this_parent = dentry; 1286 spin_acquire(&this_pa 1380 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_); 1287 goto repeat; 1381 goto repeat; 1288 } 1382 } 1289 spin_unlock(&dentry->d_lock); 1383 spin_unlock(&dentry->d_lock); 1290 } 1384 } 1291 /* 1385 /* 1292 * All done at this level ... ascend 1386 * All done at this level ... ascend and resume the search. 1293 */ 1387 */ 1294 rcu_read_lock(); 1388 rcu_read_lock(); 1295 ascend: 1389 ascend: 1296 if (this_parent != parent) { 1390 if (this_parent != parent) { 1297 dentry = this_parent; !! 1391 struct dentry *child = this_parent; 1298 this_parent = dentry->d_paren !! 1392 this_parent = child->d_parent; 1299 1393 1300 spin_unlock(&dentry->d_lock); !! 1394 spin_unlock(&child->d_lock); 1301 spin_lock(&this_parent->d_loc 1395 spin_lock(&this_parent->d_lock); 1302 1396 1303 /* might go back up the wrong 1397 /* might go back up the wrong parent if we have had a rename. */ 1304 if (need_seqretry(&rename_loc 1398 if (need_seqretry(&rename_lock, seq)) 1305 goto rename_retry; 1399 goto rename_retry; 1306 /* go into the first sibling 1400 /* go into the first sibling still alive */ 1307 hlist_for_each_entry_continue !! 1401 do { 1308 if (likely(!(dentry-> !! 1402 next = child->d_child.next; 1309 rcu_read_unlo !! 1403 if (next == &this_parent->d_subdirs) 1310 goto resume; !! 1404 goto ascend; 1311 } !! 1405 child = list_entry(next, struct dentry, d_child); 1312 } !! 1406 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED)); 1313 goto ascend; !! 1407 rcu_read_unlock(); >> 1408 goto resume; 1314 } 1409 } 1315 if (need_seqretry(&rename_lock, seq)) 1410 if (need_seqretry(&rename_lock, seq)) 1316 goto rename_retry; 1411 goto rename_retry; 1317 rcu_read_unlock(); 1412 rcu_read_unlock(); 1318 1413 1319 out_unlock: 1414 out_unlock: 1320 spin_unlock(&this_parent->d_lock); 1415 spin_unlock(&this_parent->d_lock); 1321 done_seqretry(&rename_lock, seq); 1416 done_seqretry(&rename_lock, seq); 1322 return; 1417 return; 1323 1418 1324 rename_retry: 1419 rename_retry: 1325 spin_unlock(&this_parent->d_lock); 1420 spin_unlock(&this_parent->d_lock); 1326 rcu_read_unlock(); 1421 rcu_read_unlock(); 1327 BUG_ON(seq & 1); 1422 BUG_ON(seq & 1); 1328 if (!retry) 1423 if (!retry) 1329 return; 1424 return; 1330 seq = 1; 1425 seq = 1; 1331 goto again; 1426 goto again; 1332 } 1427 } 1333 1428 1334 struct check_mount { 1429 struct check_mount { 1335 struct vfsmount *mnt; 1430 struct vfsmount *mnt; 1336 unsigned int mounted; 1431 unsigned int mounted; 1337 }; 1432 }; 1338 1433 1339 static enum d_walk_ret path_check_mount(void 1434 static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry) 1340 { 1435 { 1341 struct check_mount *info = data; 1436 struct check_mount *info = data; 1342 struct path path = { .mnt = info->mnt 1437 struct path path = { .mnt = info->mnt, .dentry = dentry }; 1343 1438 1344 if (likely(!d_mountpoint(dentry))) 1439 if (likely(!d_mountpoint(dentry))) 1345 return D_WALK_CONTINUE; 1440 return D_WALK_CONTINUE; 1346 if (__path_is_mountpoint(&path)) { 1441 if (__path_is_mountpoint(&path)) { 1347 info->mounted = 1; 1442 info->mounted = 1; 1348 return D_WALK_QUIT; 1443 return D_WALK_QUIT; 1349 } 1444 } 1350 return D_WALK_CONTINUE; 1445 return D_WALK_CONTINUE; 1351 } 1446 } 1352 1447 1353 /** 1448 /** 1354 * path_has_submounts - check for mounts over 1449 * path_has_submounts - check for mounts over a dentry in the 1355 * current namespace. 1450 * current namespace. 1356 * @parent: path to check. 1451 * @parent: path to check. 1357 * 1452 * 1358 * Return true if the parent or its subdirect 1453 * Return true if the parent or its subdirectories contain 1359 * a mount point in the current namespace. 1454 * a mount point in the current namespace. 1360 */ 1455 */ 1361 int path_has_submounts(const struct path *par 1456 int path_has_submounts(const struct path *parent) 1362 { 1457 { 1363 struct check_mount data = { .mnt = pa 1458 struct check_mount data = { .mnt = parent->mnt, .mounted = 0 }; 1364 1459 1365 read_seqlock_excl(&mount_lock); 1460 read_seqlock_excl(&mount_lock); 1366 d_walk(parent->dentry, &data, path_ch 1461 d_walk(parent->dentry, &data, path_check_mount); 1367 read_sequnlock_excl(&mount_lock); 1462 read_sequnlock_excl(&mount_lock); 1368 1463 1369 return data.mounted; 1464 return data.mounted; 1370 } 1465 } 1371 EXPORT_SYMBOL(path_has_submounts); 1466 EXPORT_SYMBOL(path_has_submounts); 1372 1467 1373 /* 1468 /* 1374 * Called by mount code to set a mountpoint a 1469 * Called by mount code to set a mountpoint and check if the mountpoint is 1375 * reachable (e.g. NFS can unhash a directory 1470 * reachable (e.g. NFS can unhash a directory dentry and then the complete 1376 * subtree can become unreachable). 1471 * subtree can become unreachable). 1377 * 1472 * 1378 * Only one of d_invalidate() and d_set_mount 1473 * Only one of d_invalidate() and d_set_mounted() must succeed. For 1379 * this reason take rename_lock and d_lock on 1474 * this reason take rename_lock and d_lock on dentry and ancestors. 1380 */ 1475 */ 1381 int d_set_mounted(struct dentry *dentry) 1476 int d_set_mounted(struct dentry *dentry) 1382 { 1477 { 1383 struct dentry *p; 1478 struct dentry *p; 1384 int ret = -ENOENT; 1479 int ret = -ENOENT; 1385 write_seqlock(&rename_lock); 1480 write_seqlock(&rename_lock); 1386 for (p = dentry->d_parent; !IS_ROOT(p 1481 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) { 1387 /* Need exclusion wrt. d_inva 1482 /* Need exclusion wrt. d_invalidate() */ 1388 spin_lock(&p->d_lock); 1483 spin_lock(&p->d_lock); 1389 if (unlikely(d_unhashed(p))) 1484 if (unlikely(d_unhashed(p))) { 1390 spin_unlock(&p->d_loc 1485 spin_unlock(&p->d_lock); 1391 goto out; 1486 goto out; 1392 } 1487 } 1393 spin_unlock(&p->d_lock); 1488 spin_unlock(&p->d_lock); 1394 } 1489 } 1395 spin_lock(&dentry->d_lock); 1490 spin_lock(&dentry->d_lock); 1396 if (!d_unlinked(dentry)) { 1491 if (!d_unlinked(dentry)) { 1397 ret = -EBUSY; 1492 ret = -EBUSY; 1398 if (!d_mountpoint(dentry)) { 1493 if (!d_mountpoint(dentry)) { 1399 dentry->d_flags |= DC 1494 dentry->d_flags |= DCACHE_MOUNTED; 1400 ret = 0; 1495 ret = 0; 1401 } 1496 } 1402 } 1497 } 1403 spin_unlock(&dentry->d_lock); 1498 spin_unlock(&dentry->d_lock); 1404 out: 1499 out: 1405 write_sequnlock(&rename_lock); 1500 write_sequnlock(&rename_lock); 1406 return ret; 1501 return ret; 1407 } 1502 } 1408 1503 1409 /* 1504 /* 1410 * Search the dentry child list of the specif 1505 * Search the dentry child list of the specified parent, 1411 * and move any unused dentries to the end of 1506 * and move any unused dentries to the end of the unused 1412 * list for prune_dcache(). We descend to the 1507 * list for prune_dcache(). We descend to the next level 1413 * whenever the d_children list is non-empty !! 1508 * whenever the d_subdirs list is non-empty and continue 1414 * searching. 1509 * searching. 1415 * 1510 * 1416 * It returns zero iff there are no unused ch 1511 * It returns zero iff there are no unused children, 1417 * otherwise it returns the number of childr 1512 * otherwise it returns the number of children moved to 1418 * the end of the unused list. This may not b 1513 * the end of the unused list. This may not be the total 1419 * number of unused children, because select_ 1514 * number of unused children, because select_parent can 1420 * drop the lock and return early due to late 1515 * drop the lock and return early due to latency 1421 * constraints. 1516 * constraints. 1422 */ 1517 */ 1423 1518 1424 struct select_data { 1519 struct select_data { 1425 struct dentry *start; 1520 struct dentry *start; 1426 union { 1521 union { 1427 long found; 1522 long found; 1428 struct dentry *victim; 1523 struct dentry *victim; 1429 }; 1524 }; 1430 struct list_head dispose; 1525 struct list_head dispose; 1431 }; 1526 }; 1432 1527 1433 static enum d_walk_ret select_collect(void *_ 1528 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry) 1434 { 1529 { 1435 struct select_data *data = _data; 1530 struct select_data *data = _data; 1436 enum d_walk_ret ret = D_WALK_CONTINUE 1531 enum d_walk_ret ret = D_WALK_CONTINUE; 1437 1532 1438 if (data->start == dentry) 1533 if (data->start == dentry) 1439 goto out; 1534 goto out; 1440 1535 1441 if (dentry->d_flags & DCACHE_SHRINK_L 1536 if (dentry->d_flags & DCACHE_SHRINK_LIST) { 1442 data->found++; 1537 data->found++; 1443 } else if (!dentry->d_lockref.count) !! 1538 } else { 1444 to_shrink_list(dentry, &data- !! 1539 if (dentry->d_flags & DCACHE_LRU_LIST) 1445 data->found++; !! 1540 d_lru_del(dentry); 1446 } else if (dentry->d_lockref.count < !! 1541 if (!dentry->d_lockref.count) { 1447 data->found++; !! 1542 d_shrink_add(dentry, &data->dispose); >> 1543 data->found++; >> 1544 } 1448 } 1545 } 1449 /* 1546 /* 1450 * We can return to the caller if we 1547 * We can return to the caller if we have found some (this 1451 * ensures forward progress). We'll b 1548 * ensures forward progress). We'll be coming back to find 1452 * the rest. 1549 * the rest. 1453 */ 1550 */ 1454 if (!list_empty(&data->dispose)) 1551 if (!list_empty(&data->dispose)) 1455 ret = need_resched() ? D_WALK 1552 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY; 1456 out: 1553 out: 1457 return ret; 1554 return ret; 1458 } 1555 } 1459 1556 1460 static enum d_walk_ret select_collect2(void * 1557 static enum d_walk_ret select_collect2(void *_data, struct dentry *dentry) 1461 { 1558 { 1462 struct select_data *data = _data; 1559 struct select_data *data = _data; 1463 enum d_walk_ret ret = D_WALK_CONTINUE 1560 enum d_walk_ret ret = D_WALK_CONTINUE; 1464 1561 1465 if (data->start == dentry) 1562 if (data->start == dentry) 1466 goto out; 1563 goto out; 1467 1564 1468 if (!dentry->d_lockref.count) { !! 1565 if (dentry->d_flags & DCACHE_SHRINK_LIST) { 1469 if (dentry->d_flags & DCACHE_ !! 1566 if (!dentry->d_lockref.count) { 1470 rcu_read_lock(); 1567 rcu_read_lock(); 1471 data->victim = dentry 1568 data->victim = dentry; 1472 return D_WALK_QUIT; 1569 return D_WALK_QUIT; 1473 } 1570 } 1474 to_shrink_list(dentry, &data- !! 1571 } else { >> 1572 if (dentry->d_flags & DCACHE_LRU_LIST) >> 1573 d_lru_del(dentry); >> 1574 if (!dentry->d_lockref.count) >> 1575 d_shrink_add(dentry, &data->dispose); 1475 } 1576 } 1476 /* 1577 /* 1477 * We can return to the caller if we 1578 * We can return to the caller if we have found some (this 1478 * ensures forward progress). We'll b 1579 * ensures forward progress). We'll be coming back to find 1479 * the rest. 1580 * the rest. 1480 */ 1581 */ 1481 if (!list_empty(&data->dispose)) 1582 if (!list_empty(&data->dispose)) 1482 ret = need_resched() ? D_WALK 1583 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY; 1483 out: 1584 out: 1484 return ret; 1585 return ret; 1485 } 1586 } 1486 1587 1487 /** 1588 /** 1488 * shrink_dcache_parent - prune dcache 1589 * shrink_dcache_parent - prune dcache 1489 * @parent: parent of entries to prune 1590 * @parent: parent of entries to prune 1490 * 1591 * 1491 * Prune the dcache to remove unused children 1592 * Prune the dcache to remove unused children of the parent dentry. 1492 */ 1593 */ 1493 void shrink_dcache_parent(struct dentry *pare 1594 void shrink_dcache_parent(struct dentry *parent) 1494 { 1595 { 1495 for (;;) { 1596 for (;;) { 1496 struct select_data data = {.s 1597 struct select_data data = {.start = parent}; 1497 1598 1498 INIT_LIST_HEAD(&data.dispose) 1599 INIT_LIST_HEAD(&data.dispose); 1499 d_walk(parent, &data, select_ 1600 d_walk(parent, &data, select_collect); 1500 1601 1501 if (!list_empty(&data.dispose 1602 if (!list_empty(&data.dispose)) { 1502 shrink_dentry_list(&d 1603 shrink_dentry_list(&data.dispose); 1503 continue; 1604 continue; 1504 } 1605 } 1505 1606 1506 cond_resched(); 1607 cond_resched(); 1507 if (!data.found) 1608 if (!data.found) 1508 break; 1609 break; 1509 data.victim = NULL; 1610 data.victim = NULL; 1510 d_walk(parent, &data, select_ 1611 d_walk(parent, &data, select_collect2); 1511 if (data.victim) { 1612 if (data.victim) { >> 1613 struct dentry *parent; 1512 spin_lock(&data.victi 1614 spin_lock(&data.victim->d_lock); 1513 if (!lock_for_kill(da !! 1615 if (!shrink_lock_dentry(data.victim)) { 1514 spin_unlock(& 1616 spin_unlock(&data.victim->d_lock); 1515 rcu_read_unlo 1617 rcu_read_unlock(); 1516 } else { 1618 } else { 1517 shrink_kill(d !! 1619 rcu_read_unlock(); >> 1620 parent = data.victim->d_parent; >> 1621 if (parent != data.victim) >> 1622 __dput_to_list(parent, &data.dispose); >> 1623 __dentry_kill(data.victim); 1518 } 1624 } 1519 } 1625 } 1520 if (!list_empty(&data.dispose 1626 if (!list_empty(&data.dispose)) 1521 shrink_dentry_list(&d 1627 shrink_dentry_list(&data.dispose); 1522 } 1628 } 1523 } 1629 } 1524 EXPORT_SYMBOL(shrink_dcache_parent); 1630 EXPORT_SYMBOL(shrink_dcache_parent); 1525 1631 1526 static enum d_walk_ret umount_check(void *_da 1632 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry) 1527 { 1633 { 1528 /* it has busy descendents; complain 1634 /* it has busy descendents; complain about those instead */ 1529 if (!hlist_empty(&dentry->d_children) !! 1635 if (!list_empty(&dentry->d_subdirs)) 1530 return D_WALK_CONTINUE; 1636 return D_WALK_CONTINUE; 1531 1637 1532 /* root with refcount 1 is fine */ 1638 /* root with refcount 1 is fine */ 1533 if (dentry == _data && dentry->d_lock 1639 if (dentry == _data && dentry->d_lockref.count == 1) 1534 return D_WALK_CONTINUE; 1640 return D_WALK_CONTINUE; 1535 1641 1536 WARN(1, "BUG: Dentry %p{i=%lx,n=%pd} !! 1642 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} " 1537 " still in use (%d) [ 1643 " still in use (%d) [unmount of %s %s]\n", 1538 dentry, 1644 dentry, 1539 dentry->d_inode ? 1645 dentry->d_inode ? 1540 dentry->d_inode->i_ino 1646 dentry->d_inode->i_ino : 0UL, 1541 dentry, 1647 dentry, 1542 dentry->d_lockref.coun 1648 dentry->d_lockref.count, 1543 dentry->d_sb->s_type-> 1649 dentry->d_sb->s_type->name, 1544 dentry->d_sb->s_id); 1650 dentry->d_sb->s_id); >> 1651 WARN_ON(1); 1545 return D_WALK_CONTINUE; 1652 return D_WALK_CONTINUE; 1546 } 1653 } 1547 1654 1548 static void do_one_tree(struct dentry *dentry 1655 static void do_one_tree(struct dentry *dentry) 1549 { 1656 { 1550 shrink_dcache_parent(dentry); 1657 shrink_dcache_parent(dentry); 1551 d_walk(dentry, dentry, umount_check); 1658 d_walk(dentry, dentry, umount_check); 1552 d_drop(dentry); 1659 d_drop(dentry); 1553 dput(dentry); 1660 dput(dentry); 1554 } 1661 } 1555 1662 1556 /* 1663 /* 1557 * destroy the dentries attached to a superbl 1664 * destroy the dentries attached to a superblock on unmounting 1558 */ 1665 */ 1559 void shrink_dcache_for_umount(struct super_bl 1666 void shrink_dcache_for_umount(struct super_block *sb) 1560 { 1667 { 1561 struct dentry *dentry; 1668 struct dentry *dentry; 1562 1669 1563 rwsem_assert_held_write(&sb->s_umount !! 1670 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked"); 1564 1671 1565 dentry = sb->s_root; 1672 dentry = sb->s_root; 1566 sb->s_root = NULL; 1673 sb->s_root = NULL; 1567 do_one_tree(dentry); 1674 do_one_tree(dentry); 1568 1675 1569 while (!hlist_bl_empty(&sb->s_roots)) 1676 while (!hlist_bl_empty(&sb->s_roots)) { 1570 dentry = dget(hlist_bl_entry( 1677 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash)); 1571 do_one_tree(dentry); 1678 do_one_tree(dentry); 1572 } 1679 } 1573 } 1680 } 1574 1681 1575 static enum d_walk_ret find_submount(void *_d 1682 static enum d_walk_ret find_submount(void *_data, struct dentry *dentry) 1576 { 1683 { 1577 struct dentry **victim = _data; 1684 struct dentry **victim = _data; 1578 if (d_mountpoint(dentry)) { 1685 if (d_mountpoint(dentry)) { 1579 *victim = dget_dlock(dentry); !! 1686 __dget_dlock(dentry); >> 1687 *victim = dentry; 1580 return D_WALK_QUIT; 1688 return D_WALK_QUIT; 1581 } 1689 } 1582 return D_WALK_CONTINUE; 1690 return D_WALK_CONTINUE; 1583 } 1691 } 1584 1692 1585 /** 1693 /** 1586 * d_invalidate - detach submounts, prune dca 1694 * d_invalidate - detach submounts, prune dcache, and drop 1587 * @dentry: dentry to invalidate (aka detach, 1695 * @dentry: dentry to invalidate (aka detach, prune and drop) 1588 */ 1696 */ 1589 void d_invalidate(struct dentry *dentry) 1697 void d_invalidate(struct dentry *dentry) 1590 { 1698 { 1591 bool had_submounts = false; 1699 bool had_submounts = false; 1592 spin_lock(&dentry->d_lock); 1700 spin_lock(&dentry->d_lock); 1593 if (d_unhashed(dentry)) { 1701 if (d_unhashed(dentry)) { 1594 spin_unlock(&dentry->d_lock); 1702 spin_unlock(&dentry->d_lock); 1595 return; 1703 return; 1596 } 1704 } 1597 __d_drop(dentry); 1705 __d_drop(dentry); 1598 spin_unlock(&dentry->d_lock); 1706 spin_unlock(&dentry->d_lock); 1599 1707 1600 /* Negative dentries can be dropped w 1708 /* Negative dentries can be dropped without further checks */ 1601 if (!dentry->d_inode) 1709 if (!dentry->d_inode) 1602 return; 1710 return; 1603 1711 1604 shrink_dcache_parent(dentry); 1712 shrink_dcache_parent(dentry); 1605 for (;;) { 1713 for (;;) { 1606 struct dentry *victim = NULL; 1714 struct dentry *victim = NULL; 1607 d_walk(dentry, &victim, find_ 1715 d_walk(dentry, &victim, find_submount); 1608 if (!victim) { 1716 if (!victim) { 1609 if (had_submounts) 1717 if (had_submounts) 1610 shrink_dcache 1718 shrink_dcache_parent(dentry); 1611 return; 1719 return; 1612 } 1720 } 1613 had_submounts = true; 1721 had_submounts = true; 1614 detach_mounts(victim); 1722 detach_mounts(victim); 1615 dput(victim); 1723 dput(victim); 1616 } 1724 } 1617 } 1725 } 1618 EXPORT_SYMBOL(d_invalidate); 1726 EXPORT_SYMBOL(d_invalidate); 1619 1727 1620 /** 1728 /** 1621 * __d_alloc - allocate a dcache ent 1729 * __d_alloc - allocate a dcache entry 1622 * @sb: filesystem it will belong to 1730 * @sb: filesystem it will belong to 1623 * @name: qstr of the name 1731 * @name: qstr of the name 1624 * 1732 * 1625 * Allocates a dentry. It returns %NULL if th 1733 * Allocates a dentry. It returns %NULL if there is insufficient memory 1626 * available. On a success the dentry is retu 1734 * available. On a success the dentry is returned. The name passed in is 1627 * copied and the copy passed in may be reuse 1735 * copied and the copy passed in may be reused after this call. 1628 */ 1736 */ 1629 1737 1630 static struct dentry *__d_alloc(struct super_ 1738 static struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name) 1631 { 1739 { 1632 struct dentry *dentry; 1740 struct dentry *dentry; 1633 char *dname; 1741 char *dname; 1634 int err; 1742 int err; 1635 1743 1636 dentry = kmem_cache_alloc_lru(dentry_ !! 1744 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL); 1637 GFP_KER << 1638 if (!dentry) 1745 if (!dentry) 1639 return NULL; 1746 return NULL; 1640 1747 1641 /* 1748 /* 1642 * We guarantee that the inline name 1749 * We guarantee that the inline name is always NUL-terminated. 1643 * This way the memcpy() done by the 1750 * This way the memcpy() done by the name switching in rename 1644 * will still always have a NUL at th 1751 * will still always have a NUL at the end, even if we might 1645 * be overwriting an internal NUL cha 1752 * be overwriting an internal NUL character 1646 */ 1753 */ 1647 dentry->d_iname[DNAME_INLINE_LEN-1] = 1754 dentry->d_iname[DNAME_INLINE_LEN-1] = 0; 1648 if (unlikely(!name)) { 1755 if (unlikely(!name)) { 1649 name = &slash_name; 1756 name = &slash_name; 1650 dname = dentry->d_iname; 1757 dname = dentry->d_iname; 1651 } else if (name->len > DNAME_INLINE_L 1758 } else if (name->len > DNAME_INLINE_LEN-1) { 1652 size_t size = offsetof(struct 1759 size_t size = offsetof(struct external_name, name[1]); 1653 struct external_name *p = kma 1760 struct external_name *p = kmalloc(size + name->len, 1654 1761 GFP_KERNEL_ACCOUNT | 1655 1762 __GFP_RECLAIMABLE); 1656 if (!p) { 1763 if (!p) { 1657 kmem_cache_free(dentr 1764 kmem_cache_free(dentry_cache, dentry); 1658 return NULL; 1765 return NULL; 1659 } 1766 } 1660 atomic_set(&p->u.count, 1); 1767 atomic_set(&p->u.count, 1); 1661 dname = p->name; 1768 dname = p->name; 1662 } else { 1769 } else { 1663 dname = dentry->d_iname; 1770 dname = dentry->d_iname; 1664 } 1771 } 1665 1772 1666 dentry->d_name.len = name->len; 1773 dentry->d_name.len = name->len; 1667 dentry->d_name.hash = name->hash; 1774 dentry->d_name.hash = name->hash; 1668 memcpy(dname, name->name, name->len); 1775 memcpy(dname, name->name, name->len); 1669 dname[name->len] = 0; 1776 dname[name->len] = 0; 1670 1777 1671 /* Make sure we always see the termin 1778 /* Make sure we always see the terminating NUL character */ 1672 smp_store_release(&dentry->d_name.nam 1779 smp_store_release(&dentry->d_name.name, dname); /* ^^^ */ 1673 1780 1674 dentry->d_lockref.count = 1; 1781 dentry->d_lockref.count = 1; 1675 dentry->d_flags = 0; 1782 dentry->d_flags = 0; 1676 spin_lock_init(&dentry->d_lock); 1783 spin_lock_init(&dentry->d_lock); 1677 seqcount_spinlock_init(&dentry->d_seq 1784 seqcount_spinlock_init(&dentry->d_seq, &dentry->d_lock); 1678 dentry->d_inode = NULL; 1785 dentry->d_inode = NULL; 1679 dentry->d_parent = dentry; 1786 dentry->d_parent = dentry; 1680 dentry->d_sb = sb; 1787 dentry->d_sb = sb; 1681 dentry->d_op = NULL; 1788 dentry->d_op = NULL; 1682 dentry->d_fsdata = NULL; 1789 dentry->d_fsdata = NULL; 1683 INIT_HLIST_BL_NODE(&dentry->d_hash); 1790 INIT_HLIST_BL_NODE(&dentry->d_hash); 1684 INIT_LIST_HEAD(&dentry->d_lru); 1791 INIT_LIST_HEAD(&dentry->d_lru); 1685 INIT_HLIST_HEAD(&dentry->d_children); !! 1792 INIT_LIST_HEAD(&dentry->d_subdirs); 1686 INIT_HLIST_NODE(&dentry->d_u.d_alias) 1793 INIT_HLIST_NODE(&dentry->d_u.d_alias); 1687 INIT_HLIST_NODE(&dentry->d_sib); !! 1794 INIT_LIST_HEAD(&dentry->d_child); 1688 d_set_d_op(dentry, dentry->d_sb->s_d_ 1795 d_set_d_op(dentry, dentry->d_sb->s_d_op); 1689 1796 1690 if (dentry->d_op && dentry->d_op->d_i 1797 if (dentry->d_op && dentry->d_op->d_init) { 1691 err = dentry->d_op->d_init(de 1798 err = dentry->d_op->d_init(dentry); 1692 if (err) { 1799 if (err) { 1693 if (dname_external(de 1800 if (dname_external(dentry)) 1694 kfree(externa 1801 kfree(external_name(dentry)); 1695 kmem_cache_free(dentr 1802 kmem_cache_free(dentry_cache, dentry); 1696 return NULL; 1803 return NULL; 1697 } 1804 } 1698 } 1805 } 1699 1806 1700 this_cpu_inc(nr_dentry); 1807 this_cpu_inc(nr_dentry); 1701 1808 1702 return dentry; 1809 return dentry; 1703 } 1810 } 1704 1811 1705 /** 1812 /** 1706 * d_alloc - allocate a dcache ent 1813 * d_alloc - allocate a dcache entry 1707 * @parent: parent of entry to allocate 1814 * @parent: parent of entry to allocate 1708 * @name: qstr of the name 1815 * @name: qstr of the name 1709 * 1816 * 1710 * Allocates a dentry. It returns %NULL if th 1817 * Allocates a dentry. It returns %NULL if there is insufficient memory 1711 * available. On a success the dentry is retu 1818 * available. On a success the dentry is returned. The name passed in is 1712 * copied and the copy passed in may be reuse 1819 * copied and the copy passed in may be reused after this call. 1713 */ 1820 */ 1714 struct dentry *d_alloc(struct dentry * parent 1821 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name) 1715 { 1822 { 1716 struct dentry *dentry = __d_alloc(par 1823 struct dentry *dentry = __d_alloc(parent->d_sb, name); 1717 if (!dentry) 1824 if (!dentry) 1718 return NULL; 1825 return NULL; 1719 spin_lock(&parent->d_lock); 1826 spin_lock(&parent->d_lock); 1720 /* 1827 /* 1721 * don't need child lock because it i 1828 * don't need child lock because it is not subject 1722 * to concurrency here 1829 * to concurrency here 1723 */ 1830 */ 1724 dentry->d_parent = dget_dlock(parent) !! 1831 __dget_dlock(parent); 1725 hlist_add_head(&dentry->d_sib, &paren !! 1832 dentry->d_parent = parent; >> 1833 list_add(&dentry->d_child, &parent->d_subdirs); 1726 spin_unlock(&parent->d_lock); 1834 spin_unlock(&parent->d_lock); 1727 1835 1728 return dentry; 1836 return dentry; 1729 } 1837 } 1730 EXPORT_SYMBOL(d_alloc); 1838 EXPORT_SYMBOL(d_alloc); 1731 1839 1732 struct dentry *d_alloc_anon(struct super_bloc 1840 struct dentry *d_alloc_anon(struct super_block *sb) 1733 { 1841 { 1734 return __d_alloc(sb, NULL); 1842 return __d_alloc(sb, NULL); 1735 } 1843 } 1736 EXPORT_SYMBOL(d_alloc_anon); 1844 EXPORT_SYMBOL(d_alloc_anon); 1737 1845 1738 struct dentry *d_alloc_cursor(struct dentry * 1846 struct dentry *d_alloc_cursor(struct dentry * parent) 1739 { 1847 { 1740 struct dentry *dentry = d_alloc_anon( 1848 struct dentry *dentry = d_alloc_anon(parent->d_sb); 1741 if (dentry) { 1849 if (dentry) { 1742 dentry->d_flags |= DCACHE_DEN 1850 dentry->d_flags |= DCACHE_DENTRY_CURSOR; 1743 dentry->d_parent = dget(paren 1851 dentry->d_parent = dget(parent); 1744 } 1852 } 1745 return dentry; 1853 return dentry; 1746 } 1854 } 1747 1855 1748 /** 1856 /** 1749 * d_alloc_pseudo - allocate a dentry (for lo 1857 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems) 1750 * @sb: the superblock 1858 * @sb: the superblock 1751 * @name: qstr of the name 1859 * @name: qstr of the name 1752 * 1860 * 1753 * For a filesystem that just pins its dentri 1861 * For a filesystem that just pins its dentries in memory and never 1754 * performs lookups at all, return an unhashe 1862 * performs lookups at all, return an unhashed IS_ROOT dentry. 1755 * This is used for pipes, sockets et.al. - t 1863 * This is used for pipes, sockets et.al. - the stuff that should 1756 * never be anyone's children or parents. Un 1864 * never be anyone's children or parents. Unlike all other 1757 * dentries, these will not have RCU delay be 1865 * dentries, these will not have RCU delay between dropping the 1758 * last reference and freeing them. 1866 * last reference and freeing them. 1759 * 1867 * 1760 * The only user is alloc_file_pseudo() and t 1868 * The only user is alloc_file_pseudo() and that's what should 1761 * be considered a public interface. Don't u 1869 * be considered a public interface. Don't use directly. 1762 */ 1870 */ 1763 struct dentry *d_alloc_pseudo(struct super_bl 1871 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name) 1764 { 1872 { 1765 static const struct dentry_operations << 1766 .d_dname = simple_dname << 1767 }; << 1768 struct dentry *dentry = __d_alloc(sb, 1873 struct dentry *dentry = __d_alloc(sb, name); 1769 if (likely(dentry)) { !! 1874 if (likely(dentry)) 1770 dentry->d_flags |= DCACHE_NOR 1875 dentry->d_flags |= DCACHE_NORCU; 1771 if (!sb->s_d_op) << 1772 d_set_d_op(dentry, &a << 1773 } << 1774 return dentry; 1876 return dentry; 1775 } 1877 } 1776 1878 1777 struct dentry *d_alloc_name(struct dentry *pa 1879 struct dentry *d_alloc_name(struct dentry *parent, const char *name) 1778 { 1880 { 1779 struct qstr q; 1881 struct qstr q; 1780 1882 1781 q.name = name; 1883 q.name = name; 1782 q.hash_len = hashlen_string(parent, n 1884 q.hash_len = hashlen_string(parent, name); 1783 return d_alloc(parent, &q); 1885 return d_alloc(parent, &q); 1784 } 1886 } 1785 EXPORT_SYMBOL(d_alloc_name); 1887 EXPORT_SYMBOL(d_alloc_name); 1786 1888 1787 void d_set_d_op(struct dentry *dentry, const 1889 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op) 1788 { 1890 { 1789 WARN_ON_ONCE(dentry->d_op); 1891 WARN_ON_ONCE(dentry->d_op); 1790 WARN_ON_ONCE(dentry->d_flags & (DCACH 1892 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH | 1791 DCACHE_OP_COM 1893 DCACHE_OP_COMPARE | 1792 DCACHE_OP_REV 1894 DCACHE_OP_REVALIDATE | 1793 DCACHE_OP_WEA 1895 DCACHE_OP_WEAK_REVALIDATE | 1794 DCACHE_OP_DEL 1896 DCACHE_OP_DELETE | 1795 DCACHE_OP_REA 1897 DCACHE_OP_REAL)); 1796 dentry->d_op = op; 1898 dentry->d_op = op; 1797 if (!op) 1899 if (!op) 1798 return; 1900 return; 1799 if (op->d_hash) 1901 if (op->d_hash) 1800 dentry->d_flags |= DCACHE_OP_ 1902 dentry->d_flags |= DCACHE_OP_HASH; 1801 if (op->d_compare) 1903 if (op->d_compare) 1802 dentry->d_flags |= DCACHE_OP_ 1904 dentry->d_flags |= DCACHE_OP_COMPARE; 1803 if (op->d_revalidate) 1905 if (op->d_revalidate) 1804 dentry->d_flags |= DCACHE_OP_ 1906 dentry->d_flags |= DCACHE_OP_REVALIDATE; 1805 if (op->d_weak_revalidate) 1907 if (op->d_weak_revalidate) 1806 dentry->d_flags |= DCACHE_OP_ 1908 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE; 1807 if (op->d_delete) 1909 if (op->d_delete) 1808 dentry->d_flags |= DCACHE_OP_ 1910 dentry->d_flags |= DCACHE_OP_DELETE; 1809 if (op->d_prune) 1911 if (op->d_prune) 1810 dentry->d_flags |= DCACHE_OP_ 1912 dentry->d_flags |= DCACHE_OP_PRUNE; 1811 if (op->d_real) 1913 if (op->d_real) 1812 dentry->d_flags |= DCACHE_OP_ 1914 dentry->d_flags |= DCACHE_OP_REAL; 1813 1915 1814 } 1916 } 1815 EXPORT_SYMBOL(d_set_d_op); 1917 EXPORT_SYMBOL(d_set_d_op); 1816 1918 >> 1919 >> 1920 /* >> 1921 * d_set_fallthru - Mark a dentry as falling through to a lower layer >> 1922 * @dentry - The dentry to mark >> 1923 * >> 1924 * Mark a dentry as falling through to the lower layer (as set with >> 1925 * d_pin_lower()). This flag may be recorded on the medium. >> 1926 */ >> 1927 void d_set_fallthru(struct dentry *dentry) >> 1928 { >> 1929 spin_lock(&dentry->d_lock); >> 1930 dentry->d_flags |= DCACHE_FALLTHRU; >> 1931 spin_unlock(&dentry->d_lock); >> 1932 } >> 1933 EXPORT_SYMBOL(d_set_fallthru); >> 1934 1817 static unsigned d_flags_for_inode(struct inod 1935 static unsigned d_flags_for_inode(struct inode *inode) 1818 { 1936 { 1819 unsigned add_flags = DCACHE_REGULAR_T 1937 unsigned add_flags = DCACHE_REGULAR_TYPE; 1820 1938 1821 if (!inode) 1939 if (!inode) 1822 return DCACHE_MISS_TYPE; 1940 return DCACHE_MISS_TYPE; 1823 1941 1824 if (S_ISDIR(inode->i_mode)) { 1942 if (S_ISDIR(inode->i_mode)) { 1825 add_flags = DCACHE_DIRECTORY_ 1943 add_flags = DCACHE_DIRECTORY_TYPE; 1826 if (unlikely(!(inode->i_opfla 1944 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) { 1827 if (unlikely(!inode-> 1945 if (unlikely(!inode->i_op->lookup)) 1828 add_flags = D 1946 add_flags = DCACHE_AUTODIR_TYPE; 1829 else 1947 else 1830 inode->i_opfl 1948 inode->i_opflags |= IOP_LOOKUP; 1831 } 1949 } 1832 goto type_determined; 1950 goto type_determined; 1833 } 1951 } 1834 1952 1835 if (unlikely(!(inode->i_opflags & IOP 1953 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) { 1836 if (unlikely(inode->i_op->get 1954 if (unlikely(inode->i_op->get_link)) { 1837 add_flags = DCACHE_SY 1955 add_flags = DCACHE_SYMLINK_TYPE; 1838 goto type_determined; 1956 goto type_determined; 1839 } 1957 } 1840 inode->i_opflags |= IOP_NOFOL 1958 inode->i_opflags |= IOP_NOFOLLOW; 1841 } 1959 } 1842 1960 1843 if (unlikely(!S_ISREG(inode->i_mode)) 1961 if (unlikely(!S_ISREG(inode->i_mode))) 1844 add_flags = DCACHE_SPECIAL_TY 1962 add_flags = DCACHE_SPECIAL_TYPE; 1845 1963 1846 type_determined: 1964 type_determined: 1847 if (unlikely(IS_AUTOMOUNT(inode))) 1965 if (unlikely(IS_AUTOMOUNT(inode))) 1848 add_flags |= DCACHE_NEED_AUTO 1966 add_flags |= DCACHE_NEED_AUTOMOUNT; 1849 return add_flags; 1967 return add_flags; 1850 } 1968 } 1851 1969 1852 static void __d_instantiate(struct dentry *de 1970 static void __d_instantiate(struct dentry *dentry, struct inode *inode) 1853 { 1971 { 1854 unsigned add_flags = d_flags_for_inod 1972 unsigned add_flags = d_flags_for_inode(inode); 1855 WARN_ON(d_in_lookup(dentry)); 1973 WARN_ON(d_in_lookup(dentry)); 1856 1974 1857 spin_lock(&dentry->d_lock); 1975 spin_lock(&dentry->d_lock); 1858 /* 1976 /* 1859 * The negative counter only tracks d !! 1977 * Decrement negative dentry count if it was in the LRU list. 1860 * d_lru is on another list. << 1861 */ 1978 */ 1862 if ((dentry->d_flags & !! 1979 if (dentry->d_flags & DCACHE_LRU_LIST) 1863 (DCACHE_LRU_LIST|DCACHE_SHRINK_L << 1864 this_cpu_dec(nr_dentry_negati 1980 this_cpu_dec(nr_dentry_negative); 1865 hlist_add_head(&dentry->d_u.d_alias, 1981 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry); 1866 raw_write_seqcount_begin(&dentry->d_s 1982 raw_write_seqcount_begin(&dentry->d_seq); 1867 __d_set_inode_and_type(dentry, inode, 1983 __d_set_inode_and_type(dentry, inode, add_flags); 1868 raw_write_seqcount_end(&dentry->d_seq 1984 raw_write_seqcount_end(&dentry->d_seq); 1869 fsnotify_update_flags(dentry); 1985 fsnotify_update_flags(dentry); 1870 spin_unlock(&dentry->d_lock); 1986 spin_unlock(&dentry->d_lock); 1871 } 1987 } 1872 1988 1873 /** 1989 /** 1874 * d_instantiate - fill in inode information 1990 * d_instantiate - fill in inode information for a dentry 1875 * @entry: dentry to complete 1991 * @entry: dentry to complete 1876 * @inode: inode to attach to this dentry 1992 * @inode: inode to attach to this dentry 1877 * 1993 * 1878 * Fill in inode information in the entry. 1994 * Fill in inode information in the entry. 1879 * 1995 * 1880 * This turns negative dentries into producti 1996 * This turns negative dentries into productive full members 1881 * of society. 1997 * of society. 1882 * 1998 * 1883 * NOTE! This assumes that the inode count ha 1999 * NOTE! This assumes that the inode count has been incremented 1884 * (or otherwise set) by the caller to indica 2000 * (or otherwise set) by the caller to indicate that it is now 1885 * in use by the dcache. 2001 * in use by the dcache. 1886 */ 2002 */ 1887 2003 1888 void d_instantiate(struct dentry *entry, stru 2004 void d_instantiate(struct dentry *entry, struct inode * inode) 1889 { 2005 { 1890 BUG_ON(!hlist_unhashed(&entry->d_u.d_ 2006 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias)); 1891 if (inode) { 2007 if (inode) { 1892 security_d_instantiate(entry, 2008 security_d_instantiate(entry, inode); 1893 spin_lock(&inode->i_lock); 2009 spin_lock(&inode->i_lock); 1894 __d_instantiate(entry, inode) 2010 __d_instantiate(entry, inode); 1895 spin_unlock(&inode->i_lock); 2011 spin_unlock(&inode->i_lock); 1896 } 2012 } 1897 } 2013 } 1898 EXPORT_SYMBOL(d_instantiate); 2014 EXPORT_SYMBOL(d_instantiate); 1899 2015 1900 /* 2016 /* 1901 * This should be equivalent to d_instantiate 2017 * This should be equivalent to d_instantiate() + unlock_new_inode(), 1902 * with lockdep-related part of unlock_new_in 2018 * with lockdep-related part of unlock_new_inode() done before 1903 * anything else. Use that instead of open-c 2019 * anything else. Use that instead of open-coding d_instantiate()/ 1904 * unlock_new_inode() combinations. 2020 * unlock_new_inode() combinations. 1905 */ 2021 */ 1906 void d_instantiate_new(struct dentry *entry, 2022 void d_instantiate_new(struct dentry *entry, struct inode *inode) 1907 { 2023 { 1908 BUG_ON(!hlist_unhashed(&entry->d_u.d_ 2024 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias)); 1909 BUG_ON(!inode); 2025 BUG_ON(!inode); 1910 lockdep_annotate_inode_mutex_key(inod 2026 lockdep_annotate_inode_mutex_key(inode); 1911 security_d_instantiate(entry, inode); 2027 security_d_instantiate(entry, inode); 1912 spin_lock(&inode->i_lock); 2028 spin_lock(&inode->i_lock); 1913 __d_instantiate(entry, inode); 2029 __d_instantiate(entry, inode); 1914 WARN_ON(!(inode->i_state & I_NEW)); 2030 WARN_ON(!(inode->i_state & I_NEW)); 1915 inode->i_state &= ~I_NEW & ~I_CREATIN 2031 inode->i_state &= ~I_NEW & ~I_CREATING; 1916 /* << 1917 * Pairs with the barrier in prepare_ << 1918 * ___wait_var_event() either sees th << 1919 * waitqueue_active() check in wake_u << 1920 */ << 1921 smp_mb(); 2032 smp_mb(); 1922 inode_wake_up_bit(inode, __I_NEW); !! 2033 wake_up_bit(&inode->i_state, __I_NEW); 1923 spin_unlock(&inode->i_lock); 2034 spin_unlock(&inode->i_lock); 1924 } 2035 } 1925 EXPORT_SYMBOL(d_instantiate_new); 2036 EXPORT_SYMBOL(d_instantiate_new); 1926 2037 1927 struct dentry *d_make_root(struct inode *root 2038 struct dentry *d_make_root(struct inode *root_inode) 1928 { 2039 { 1929 struct dentry *res = NULL; 2040 struct dentry *res = NULL; 1930 2041 1931 if (root_inode) { 2042 if (root_inode) { 1932 res = d_alloc_anon(root_inode 2043 res = d_alloc_anon(root_inode->i_sb); 1933 if (res) 2044 if (res) 1934 d_instantiate(res, ro 2045 d_instantiate(res, root_inode); 1935 else 2046 else 1936 iput(root_inode); 2047 iput(root_inode); 1937 } 2048 } 1938 return res; 2049 return res; 1939 } 2050 } 1940 EXPORT_SYMBOL(d_make_root); 2051 EXPORT_SYMBOL(d_make_root); 1941 2052 >> 2053 static struct dentry *__d_instantiate_anon(struct dentry *dentry, >> 2054 struct inode *inode, >> 2055 bool disconnected) >> 2056 { >> 2057 struct dentry *res; >> 2058 unsigned add_flags; >> 2059 >> 2060 security_d_instantiate(dentry, inode); >> 2061 spin_lock(&inode->i_lock); >> 2062 res = __d_find_any_alias(inode); >> 2063 if (res) { >> 2064 spin_unlock(&inode->i_lock); >> 2065 dput(dentry); >> 2066 goto out_iput; >> 2067 } >> 2068 >> 2069 /* attach a disconnected dentry */ >> 2070 add_flags = d_flags_for_inode(inode); >> 2071 >> 2072 if (disconnected) >> 2073 add_flags |= DCACHE_DISCONNECTED; >> 2074 >> 2075 spin_lock(&dentry->d_lock); >> 2076 __d_set_inode_and_type(dentry, inode, add_flags); >> 2077 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry); >> 2078 if (!disconnected) { >> 2079 hlist_bl_lock(&dentry->d_sb->s_roots); >> 2080 hlist_bl_add_head(&dentry->d_hash, &dentry->d_sb->s_roots); >> 2081 hlist_bl_unlock(&dentry->d_sb->s_roots); >> 2082 } >> 2083 spin_unlock(&dentry->d_lock); >> 2084 spin_unlock(&inode->i_lock); >> 2085 >> 2086 return dentry; >> 2087 >> 2088 out_iput: >> 2089 iput(inode); >> 2090 return res; >> 2091 } >> 2092 >> 2093 struct dentry *d_instantiate_anon(struct dentry *dentry, struct inode *inode) >> 2094 { >> 2095 return __d_instantiate_anon(dentry, inode, true); >> 2096 } >> 2097 EXPORT_SYMBOL(d_instantiate_anon); >> 2098 1942 static struct dentry *__d_obtain_alias(struct 2099 static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected) 1943 { 2100 { 1944 struct super_block *sb; !! 2101 struct dentry *tmp; 1945 struct dentry *new, *res; !! 2102 struct dentry *res; 1946 2103 1947 if (!inode) 2104 if (!inode) 1948 return ERR_PTR(-ESTALE); 2105 return ERR_PTR(-ESTALE); 1949 if (IS_ERR(inode)) 2106 if (IS_ERR(inode)) 1950 return ERR_CAST(inode); 2107 return ERR_CAST(inode); 1951 2108 1952 sb = inode->i_sb; !! 2109 res = d_find_any_alias(inode); 1953 << 1954 res = d_find_any_alias(inode); /* exi << 1955 if (res) 2110 if (res) 1956 goto out; !! 2111 goto out_iput; 1957 2112 1958 new = d_alloc_anon(sb); !! 2113 tmp = d_alloc_anon(inode->i_sb); 1959 if (!new) { !! 2114 if (!tmp) { 1960 res = ERR_PTR(-ENOMEM); 2115 res = ERR_PTR(-ENOMEM); 1961 goto out; !! 2116 goto out_iput; 1962 } 2117 } 1963 2118 1964 security_d_instantiate(new, inode); !! 2119 return __d_instantiate_anon(tmp, inode, disconnected); 1965 spin_lock(&inode->i_lock); << 1966 res = __d_find_any_alias(inode); /* r << 1967 if (likely(!res)) { /* still no alias << 1968 unsigned add_flags = d_flags_ << 1969 << 1970 if (disconnected) << 1971 add_flags |= DCACHE_D << 1972 2120 1973 spin_lock(&new->d_lock); !! 2121 out_iput: 1974 __d_set_inode_and_type(new, i << 1975 hlist_add_head(&new->d_u.d_al << 1976 if (!disconnected) { << 1977 hlist_bl_lock(&sb->s_ << 1978 hlist_bl_add_head(&ne << 1979 hlist_bl_unlock(&sb-> << 1980 } << 1981 spin_unlock(&new->d_lock); << 1982 spin_unlock(&inode->i_lock); << 1983 inode = NULL; /* consumed by << 1984 res = new; << 1985 } else { << 1986 spin_unlock(&inode->i_lock); << 1987 dput(new); << 1988 } << 1989 << 1990 out: << 1991 iput(inode); 2122 iput(inode); 1992 return res; 2123 return res; 1993 } 2124 } 1994 2125 1995 /** 2126 /** 1996 * d_obtain_alias - find or allocate a DISCON 2127 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode 1997 * @inode: inode to allocate the dentry for 2128 * @inode: inode to allocate the dentry for 1998 * 2129 * 1999 * Obtain a dentry for an inode resulting fro 2130 * Obtain a dentry for an inode resulting from NFS filehandle conversion or 2000 * similar open by handle operations. The re 2131 * similar open by handle operations. The returned dentry may be anonymous, 2001 * or may have a full name (if the inode was 2132 * or may have a full name (if the inode was already in the cache). 2002 * 2133 * 2003 * When called on a directory inode, we must 2134 * When called on a directory inode, we must ensure that the inode only ever 2004 * has one dentry. If a dentry is found, tha 2135 * has one dentry. If a dentry is found, that is returned instead of 2005 * allocating a new one. 2136 * allocating a new one. 2006 * 2137 * 2007 * On successful return, the reference to the 2138 * On successful return, the reference to the inode has been transferred 2008 * to the dentry. In case of an error the re 2139 * to the dentry. In case of an error the reference on the inode is released. 2009 * To make it easier to use in export operati 2140 * To make it easier to use in export operations a %NULL or IS_ERR inode may 2010 * be passed in and the error will be propaga 2141 * be passed in and the error will be propagated to the return value, 2011 * with a %NULL @inode replaced by ERR_PTR(-E 2142 * with a %NULL @inode replaced by ERR_PTR(-ESTALE). 2012 */ 2143 */ 2013 struct dentry *d_obtain_alias(struct inode *i 2144 struct dentry *d_obtain_alias(struct inode *inode) 2014 { 2145 { 2015 return __d_obtain_alias(inode, true); 2146 return __d_obtain_alias(inode, true); 2016 } 2147 } 2017 EXPORT_SYMBOL(d_obtain_alias); 2148 EXPORT_SYMBOL(d_obtain_alias); 2018 2149 2019 /** 2150 /** 2020 * d_obtain_root - find or allocate a dentry 2151 * d_obtain_root - find or allocate a dentry for a given inode 2021 * @inode: inode to allocate the dentry for 2152 * @inode: inode to allocate the dentry for 2022 * 2153 * 2023 * Obtain an IS_ROOT dentry for the root of a 2154 * Obtain an IS_ROOT dentry for the root of a filesystem. 2024 * 2155 * 2025 * We must ensure that directory inodes only 2156 * We must ensure that directory inodes only ever have one dentry. If a 2026 * dentry is found, that is returned instead 2157 * dentry is found, that is returned instead of allocating a new one. 2027 * 2158 * 2028 * On successful return, the reference to the 2159 * On successful return, the reference to the inode has been transferred 2029 * to the dentry. In case of an error the re 2160 * to the dentry. In case of an error the reference on the inode is 2030 * released. A %NULL or IS_ERR inode may be 2161 * released. A %NULL or IS_ERR inode may be passed in and will be the 2031 * error will be propagate to the return valu 2162 * error will be propagate to the return value, with a %NULL @inode 2032 * replaced by ERR_PTR(-ESTALE). 2163 * replaced by ERR_PTR(-ESTALE). 2033 */ 2164 */ 2034 struct dentry *d_obtain_root(struct inode *in 2165 struct dentry *d_obtain_root(struct inode *inode) 2035 { 2166 { 2036 return __d_obtain_alias(inode, false) 2167 return __d_obtain_alias(inode, false); 2037 } 2168 } 2038 EXPORT_SYMBOL(d_obtain_root); 2169 EXPORT_SYMBOL(d_obtain_root); 2039 2170 2040 /** 2171 /** 2041 * d_add_ci - lookup or allocate new dentry w 2172 * d_add_ci - lookup or allocate new dentry with case-exact name 2042 * @inode: the inode case-insensitive lookup 2173 * @inode: the inode case-insensitive lookup has found 2043 * @dentry: the negative dentry that was pass 2174 * @dentry: the negative dentry that was passed to the parent's lookup func 2044 * @name: the case-exact name to be associa 2175 * @name: the case-exact name to be associated with the returned dentry 2045 * 2176 * 2046 * This is to avoid filling the dcache with c 2177 * This is to avoid filling the dcache with case-insensitive names to the 2047 * same inode, only the actual correct case i 2178 * same inode, only the actual correct case is stored in the dcache for 2048 * case-insensitive filesystems. 2179 * case-insensitive filesystems. 2049 * 2180 * 2050 * For a case-insensitive lookup match and if 2181 * For a case-insensitive lookup match and if the case-exact dentry 2051 * already exists in the dcache, use it and r 2182 * already exists in the dcache, use it and return it. 2052 * 2183 * 2053 * If no entry exists with the exact case nam 2184 * If no entry exists with the exact case name, allocate new dentry with 2054 * the exact case, and return the spliced ent 2185 * the exact case, and return the spliced entry. 2055 */ 2186 */ 2056 struct dentry *d_add_ci(struct dentry *dentry 2187 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode, 2057 struct qstr *name) 2188 struct qstr *name) 2058 { 2189 { 2059 struct dentry *found, *res; 2190 struct dentry *found, *res; 2060 2191 2061 /* 2192 /* 2062 * First check if a dentry matching t 2193 * First check if a dentry matching the name already exists, 2063 * if not go ahead and create it now. 2194 * if not go ahead and create it now. 2064 */ 2195 */ 2065 found = d_hash_and_lookup(dentry->d_p 2196 found = d_hash_and_lookup(dentry->d_parent, name); 2066 if (found) { 2197 if (found) { 2067 iput(inode); 2198 iput(inode); 2068 return found; 2199 return found; 2069 } 2200 } 2070 if (d_in_lookup(dentry)) { 2201 if (d_in_lookup(dentry)) { 2071 found = d_alloc_parallel(dent 2202 found = d_alloc_parallel(dentry->d_parent, name, 2072 dentr 2203 dentry->d_wait); 2073 if (IS_ERR(found) || !d_in_lo 2204 if (IS_ERR(found) || !d_in_lookup(found)) { 2074 iput(inode); 2205 iput(inode); 2075 return found; 2206 return found; 2076 } 2207 } 2077 } else { 2208 } else { 2078 found = d_alloc(dentry->d_par 2209 found = d_alloc(dentry->d_parent, name); 2079 if (!found) { 2210 if (!found) { 2080 iput(inode); 2211 iput(inode); 2081 return ERR_PTR(-ENOME 2212 return ERR_PTR(-ENOMEM); 2082 } 2213 } 2083 } 2214 } 2084 res = d_splice_alias(inode, found); 2215 res = d_splice_alias(inode, found); 2085 if (res) { 2216 if (res) { 2086 d_lookup_done(found); << 2087 dput(found); 2217 dput(found); 2088 return res; 2218 return res; 2089 } 2219 } 2090 return found; 2220 return found; 2091 } 2221 } 2092 EXPORT_SYMBOL(d_add_ci); 2222 EXPORT_SYMBOL(d_add_ci); 2093 2223 2094 /** !! 2224 2095 * d_same_name - compare dentry name with cas !! 2225 static inline bool d_same_name(const struct dentry *dentry, 2096 * @parent: parent dentry !! 2226 const struct dentry *parent, 2097 * @dentry: the negative dentry that was pass !! 2227 const struct qstr *name) 2098 * @name: the case-exact name to be associa << 2099 * << 2100 * Return: true if names are same, or false << 2101 */ << 2102 bool d_same_name(const struct dentry *dentry, << 2103 const struct qstr *name) << 2104 { 2228 { 2105 if (likely(!(parent->d_flags & DCACHE 2229 if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) { 2106 if (dentry->d_name.len != nam 2230 if (dentry->d_name.len != name->len) 2107 return false; 2231 return false; 2108 return dentry_cmp(dentry, nam 2232 return dentry_cmp(dentry, name->name, name->len) == 0; 2109 } 2233 } 2110 return parent->d_op->d_compare(dentry 2234 return parent->d_op->d_compare(dentry, 2111 dentry 2235 dentry->d_name.len, dentry->d_name.name, 2112 name) 2236 name) == 0; 2113 } 2237 } 2114 EXPORT_SYMBOL_GPL(d_same_name); << 2115 << 2116 /* << 2117 * This is __d_lookup_rcu() when the parent d << 2118 * DCACHE_OP_COMPARE, which makes things much << 2119 */ << 2120 static noinline struct dentry *__d_lookup_rcu << 2121 const struct dentry *parent, << 2122 const struct qstr *name, << 2123 unsigned *seqp) << 2124 { << 2125 u64 hashlen = name->hash_len; << 2126 struct hlist_bl_head *b = d_hash(hash << 2127 struct hlist_bl_node *node; << 2128 struct dentry *dentry; << 2129 << 2130 hlist_bl_for_each_entry_rcu(dentry, n << 2131 int tlen; << 2132 const char *tname; << 2133 unsigned seq; << 2134 << 2135 seqretry: << 2136 seq = raw_seqcount_begin(&den << 2137 if (dentry->d_parent != paren << 2138 continue; << 2139 if (d_unhashed(dentry)) << 2140 continue; << 2141 if (dentry->d_name.hash != ha << 2142 continue; << 2143 tlen = dentry->d_name.len; << 2144 tname = dentry->d_name.name; << 2145 /* we want a consistent (name << 2146 if (read_seqcount_retry(&dent << 2147 cpu_relax(); << 2148 goto seqretry; << 2149 } << 2150 if (parent->d_op->d_compare(d << 2151 continue; << 2152 *seqp = seq; << 2153 return dentry; << 2154 } << 2155 return NULL; << 2156 } << 2157 2238 2158 /** 2239 /** 2159 * __d_lookup_rcu - search for a dentry (racy 2240 * __d_lookup_rcu - search for a dentry (racy, store-free) 2160 * @parent: parent dentry 2241 * @parent: parent dentry 2161 * @name: qstr of name we wish to find 2242 * @name: qstr of name we wish to find 2162 * @seqp: returns d_seq value at the point wh 2243 * @seqp: returns d_seq value at the point where the dentry was found 2163 * Returns: dentry, or NULL 2244 * Returns: dentry, or NULL 2164 * 2245 * 2165 * __d_lookup_rcu is the dcache lookup functi 2246 * __d_lookup_rcu is the dcache lookup function for rcu-walk name 2166 * resolution (store-free path walking) desig 2247 * resolution (store-free path walking) design described in 2167 * Documentation/filesystems/path-lookup.txt. 2248 * Documentation/filesystems/path-lookup.txt. 2168 * 2249 * 2169 * This is not to be used outside core vfs. 2250 * This is not to be used outside core vfs. 2170 * 2251 * 2171 * __d_lookup_rcu must only be used in rcu-wa 2252 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock 2172 * held, and rcu_read_lock held. The returned 2253 * held, and rcu_read_lock held. The returned dentry must not be stored into 2173 * without taking d_lock and checking d_seq s 2254 * without taking d_lock and checking d_seq sequence count against @seq 2174 * returned here. 2255 * returned here. 2175 * 2256 * >> 2257 * A refcount may be taken on the found dentry with the d_rcu_to_refcount >> 2258 * function. >> 2259 * 2176 * Alternatively, __d_lookup_rcu may be calle 2260 * Alternatively, __d_lookup_rcu may be called again to look up the child of 2177 * the returned dentry, so long as its parent 2261 * the returned dentry, so long as its parent's seqlock is checked after the 2178 * child is looked up. Thus, an interlocking 2262 * child is looked up. Thus, an interlocking stepping of sequence lock checks 2179 * is formed, giving integrity down the path 2263 * is formed, giving integrity down the path walk. 2180 * 2264 * 2181 * NOTE! The caller *has* to check the result 2265 * NOTE! The caller *has* to check the resulting dentry against the sequence 2182 * number we've returned before using any of 2266 * number we've returned before using any of the resulting dentry state! 2183 */ 2267 */ 2184 struct dentry *__d_lookup_rcu(const struct de 2268 struct dentry *__d_lookup_rcu(const struct dentry *parent, 2185 const struct 2269 const struct qstr *name, 2186 unsigned *seq 2270 unsigned *seqp) 2187 { 2271 { 2188 u64 hashlen = name->hash_len; 2272 u64 hashlen = name->hash_len; 2189 const unsigned char *str = name->name 2273 const unsigned char *str = name->name; 2190 struct hlist_bl_head *b = d_hash(hash !! 2274 struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen)); 2191 struct hlist_bl_node *node; 2275 struct hlist_bl_node *node; 2192 struct dentry *dentry; 2276 struct dentry *dentry; 2193 2277 2194 /* 2278 /* 2195 * Note: There is significant duplica 2279 * Note: There is significant duplication with __d_lookup_rcu which is 2196 * required to prevent single threade 2280 * required to prevent single threaded performance regressions 2197 * especially on architectures where 2281 * especially on architectures where smp_rmb (in seqcounts) are costly. 2198 * Keep the two functions in sync. 2282 * Keep the two functions in sync. 2199 */ 2283 */ 2200 2284 2201 if (unlikely(parent->d_flags & DCACHE << 2202 return __d_lookup_rcu_op_comp << 2203 << 2204 /* 2285 /* 2205 * The hash list is protected using R 2286 * The hash list is protected using RCU. 2206 * 2287 * 2207 * Carefully use d_seq when comparing 2288 * Carefully use d_seq when comparing a candidate dentry, to avoid 2208 * races with d_move(). 2289 * races with d_move(). 2209 * 2290 * 2210 * It is possible that concurrent ren 2291 * It is possible that concurrent renames can mess up our list 2211 * walk here and result in missing ou 2292 * walk here and result in missing our dentry, resulting in the 2212 * false-negative result. d_lookup() 2293 * false-negative result. d_lookup() protects against concurrent 2213 * renames using rename_lock seqlock. 2294 * renames using rename_lock seqlock. 2214 * 2295 * 2215 * See Documentation/filesystems/path 2296 * See Documentation/filesystems/path-lookup.txt for more details. 2216 */ 2297 */ 2217 hlist_bl_for_each_entry_rcu(dentry, n 2298 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { 2218 unsigned seq; 2299 unsigned seq; 2219 2300 >> 2301 seqretry: 2220 /* 2302 /* 2221 * The dentry sequence count 2303 * The dentry sequence count protects us from concurrent 2222 * renames, and thus protects 2304 * renames, and thus protects parent and name fields. 2223 * 2305 * 2224 * The caller must perform a 2306 * The caller must perform a seqcount check in order 2225 * to do anything useful with 2307 * to do anything useful with the returned dentry. 2226 * 2308 * 2227 * NOTE! We do a "raw" seqcou 2309 * NOTE! We do a "raw" seqcount_begin here. That means that 2228 * we don't wait for the sequ 2310 * we don't wait for the sequence count to stabilize if it 2229 * is in the middle of a sequ 2311 * is in the middle of a sequence change. If we do the slow 2230 * dentry compare, we will do 2312 * dentry compare, we will do seqretries until it is stable, 2231 * and if we end up with a su 2313 * and if we end up with a successful lookup, we actually 2232 * want to exit RCU lookup an 2314 * want to exit RCU lookup anyway. 2233 * 2315 * 2234 * Note that raw_seqcount_beg 2316 * Note that raw_seqcount_begin still *does* smp_rmb(), so 2235 * we are still guaranteed NU 2317 * we are still guaranteed NUL-termination of ->d_name.name. 2236 */ 2318 */ 2237 seq = raw_seqcount_begin(&den 2319 seq = raw_seqcount_begin(&dentry->d_seq); 2238 if (dentry->d_parent != paren 2320 if (dentry->d_parent != parent) 2239 continue; 2321 continue; 2240 if (d_unhashed(dentry)) 2322 if (d_unhashed(dentry)) 2241 continue; 2323 continue; 2242 if (dentry->d_name.hash_len ! !! 2324 2243 continue; !! 2325 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) { 2244 if (dentry_cmp(dentry, str, h !! 2326 int tlen; 2245 continue; !! 2327 const char *tname; >> 2328 if (dentry->d_name.hash != hashlen_hash(hashlen)) >> 2329 continue; >> 2330 tlen = dentry->d_name.len; >> 2331 tname = dentry->d_name.name; >> 2332 /* we want a consistent (name,len) pair */ >> 2333 if (read_seqcount_retry(&dentry->d_seq, seq)) { >> 2334 cpu_relax(); >> 2335 goto seqretry; >> 2336 } >> 2337 if (parent->d_op->d_compare(dentry, >> 2338 tlen, tname, name) != 0) >> 2339 continue; >> 2340 } else { >> 2341 if (dentry->d_name.hash_len != hashlen) >> 2342 continue; >> 2343 if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0) >> 2344 continue; >> 2345 } 2246 *seqp = seq; 2346 *seqp = seq; 2247 return dentry; 2347 return dentry; 2248 } 2348 } 2249 return NULL; 2349 return NULL; 2250 } 2350 } 2251 2351 2252 /** 2352 /** 2253 * d_lookup - search for a dentry 2353 * d_lookup - search for a dentry 2254 * @parent: parent dentry 2354 * @parent: parent dentry 2255 * @name: qstr of name we wish to find 2355 * @name: qstr of name we wish to find 2256 * Returns: dentry, or NULL 2356 * Returns: dentry, or NULL 2257 * 2357 * 2258 * d_lookup searches the children of the pare 2358 * d_lookup searches the children of the parent dentry for the name in 2259 * question. If the dentry is found its refer 2359 * question. If the dentry is found its reference count is incremented and the 2260 * dentry is returned. The caller must use dp 2360 * dentry is returned. The caller must use dput to free the entry when it has 2261 * finished using it. %NULL is returned if th 2361 * finished using it. %NULL is returned if the dentry does not exist. 2262 */ 2362 */ 2263 struct dentry *d_lookup(const struct dentry * 2363 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name) 2264 { 2364 { 2265 struct dentry *dentry; 2365 struct dentry *dentry; 2266 unsigned seq; 2366 unsigned seq; 2267 2367 2268 do { 2368 do { 2269 seq = read_seqbegin(&rename_l 2369 seq = read_seqbegin(&rename_lock); 2270 dentry = __d_lookup(parent, n 2370 dentry = __d_lookup(parent, name); 2271 if (dentry) 2371 if (dentry) 2272 break; 2372 break; 2273 } while (read_seqretry(&rename_lock, 2373 } while (read_seqretry(&rename_lock, seq)); 2274 return dentry; 2374 return dentry; 2275 } 2375 } 2276 EXPORT_SYMBOL(d_lookup); 2376 EXPORT_SYMBOL(d_lookup); 2277 2377 2278 /** 2378 /** 2279 * __d_lookup - search for a dentry (racy) 2379 * __d_lookup - search for a dentry (racy) 2280 * @parent: parent dentry 2380 * @parent: parent dentry 2281 * @name: qstr of name we wish to find 2381 * @name: qstr of name we wish to find 2282 * Returns: dentry, or NULL 2382 * Returns: dentry, or NULL 2283 * 2383 * 2284 * __d_lookup is like d_lookup, however it ma 2384 * __d_lookup is like d_lookup, however it may (rarely) return a 2285 * false-negative result due to unrelated ren 2385 * false-negative result due to unrelated rename activity. 2286 * 2386 * 2287 * __d_lookup is slightly faster by avoiding 2387 * __d_lookup is slightly faster by avoiding rename_lock read seqlock, 2288 * however it must be used carefully, eg. wit 2388 * however it must be used carefully, eg. with a following d_lookup in 2289 * the case of failure. 2389 * the case of failure. 2290 * 2390 * 2291 * __d_lookup callers must be commented. 2391 * __d_lookup callers must be commented. 2292 */ 2392 */ 2293 struct dentry *__d_lookup(const struct dentry 2393 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name) 2294 { 2394 { 2295 unsigned int hash = name->hash; 2395 unsigned int hash = name->hash; 2296 struct hlist_bl_head *b = d_hash(hash 2396 struct hlist_bl_head *b = d_hash(hash); 2297 struct hlist_bl_node *node; 2397 struct hlist_bl_node *node; 2298 struct dentry *found = NULL; 2398 struct dentry *found = NULL; 2299 struct dentry *dentry; 2399 struct dentry *dentry; 2300 2400 2301 /* 2401 /* 2302 * Note: There is significant duplica 2402 * Note: There is significant duplication with __d_lookup_rcu which is 2303 * required to prevent single threade 2403 * required to prevent single threaded performance regressions 2304 * especially on architectures where 2404 * especially on architectures where smp_rmb (in seqcounts) are costly. 2305 * Keep the two functions in sync. 2405 * Keep the two functions in sync. 2306 */ 2406 */ 2307 2407 2308 /* 2408 /* 2309 * The hash list is protected using R 2409 * The hash list is protected using RCU. 2310 * 2410 * 2311 * Take d_lock when comparing a candi 2411 * Take d_lock when comparing a candidate dentry, to avoid races 2312 * with d_move(). 2412 * with d_move(). 2313 * 2413 * 2314 * It is possible that concurrent ren 2414 * It is possible that concurrent renames can mess up our list 2315 * walk here and result in missing ou 2415 * walk here and result in missing our dentry, resulting in the 2316 * false-negative result. d_lookup() 2416 * false-negative result. d_lookup() protects against concurrent 2317 * renames using rename_lock seqlock. 2417 * renames using rename_lock seqlock. 2318 * 2418 * 2319 * See Documentation/filesystems/path 2419 * See Documentation/filesystems/path-lookup.txt for more details. 2320 */ 2420 */ 2321 rcu_read_lock(); 2421 rcu_read_lock(); 2322 2422 2323 hlist_bl_for_each_entry_rcu(dentry, n 2423 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { 2324 2424 2325 if (dentry->d_name.hash != ha 2425 if (dentry->d_name.hash != hash) 2326 continue; 2426 continue; 2327 2427 2328 spin_lock(&dentry->d_lock); 2428 spin_lock(&dentry->d_lock); 2329 if (dentry->d_parent != paren 2429 if (dentry->d_parent != parent) 2330 goto next; 2430 goto next; 2331 if (d_unhashed(dentry)) 2431 if (d_unhashed(dentry)) 2332 goto next; 2432 goto next; 2333 2433 2334 if (!d_same_name(dentry, pare 2434 if (!d_same_name(dentry, parent, name)) 2335 goto next; 2435 goto next; 2336 2436 2337 dentry->d_lockref.count++; 2437 dentry->d_lockref.count++; 2338 found = dentry; 2438 found = dentry; 2339 spin_unlock(&dentry->d_lock); 2439 spin_unlock(&dentry->d_lock); 2340 break; 2440 break; 2341 next: 2441 next: 2342 spin_unlock(&dentry->d_lock); 2442 spin_unlock(&dentry->d_lock); 2343 } 2443 } 2344 rcu_read_unlock(); 2444 rcu_read_unlock(); 2345 2445 2346 return found; 2446 return found; 2347 } 2447 } 2348 2448 2349 /** 2449 /** 2350 * d_hash_and_lookup - hash the qstr then sea 2450 * d_hash_and_lookup - hash the qstr then search for a dentry 2351 * @dir: Directory to search in 2451 * @dir: Directory to search in 2352 * @name: qstr of name we wish to find 2452 * @name: qstr of name we wish to find 2353 * 2453 * 2354 * On lookup failure NULL is returned; on bad 2454 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error) 2355 */ 2455 */ 2356 struct dentry *d_hash_and_lookup(struct dentr 2456 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name) 2357 { 2457 { 2358 /* 2458 /* 2359 * Check for a fs-specific hash funct 2459 * Check for a fs-specific hash function. Note that we must 2360 * calculate the standard hash first, 2460 * calculate the standard hash first, as the d_op->d_hash() 2361 * routine may choose to leave the ha 2461 * routine may choose to leave the hash value unchanged. 2362 */ 2462 */ 2363 name->hash = full_name_hash(dir, name 2463 name->hash = full_name_hash(dir, name->name, name->len); 2364 if (dir->d_flags & DCACHE_OP_HASH) { 2464 if (dir->d_flags & DCACHE_OP_HASH) { 2365 int err = dir->d_op->d_hash(d 2465 int err = dir->d_op->d_hash(dir, name); 2366 if (unlikely(err < 0)) 2466 if (unlikely(err < 0)) 2367 return ERR_PTR(err); 2467 return ERR_PTR(err); 2368 } 2468 } 2369 return d_lookup(dir, name); 2469 return d_lookup(dir, name); 2370 } 2470 } 2371 EXPORT_SYMBOL(d_hash_and_lookup); 2471 EXPORT_SYMBOL(d_hash_and_lookup); 2372 2472 2373 /* 2473 /* 2374 * When a file is deleted, we have two option 2474 * When a file is deleted, we have two options: 2375 * - turn this dentry into a negative dentry 2475 * - turn this dentry into a negative dentry 2376 * - unhash this dentry and free it. 2476 * - unhash this dentry and free it. 2377 * 2477 * 2378 * Usually, we want to just turn this into 2478 * Usually, we want to just turn this into 2379 * a negative dentry, but if anybody else is 2479 * a negative dentry, but if anybody else is 2380 * currently using the dentry or the inode 2480 * currently using the dentry or the inode 2381 * we can't do that and we fall back on remov 2481 * we can't do that and we fall back on removing 2382 * it from the hash queues and waiting for 2482 * it from the hash queues and waiting for 2383 * it to be deleted later when it has no user 2483 * it to be deleted later when it has no users 2384 */ 2484 */ 2385 2485 2386 /** 2486 /** 2387 * d_delete - delete a dentry 2487 * d_delete - delete a dentry 2388 * @dentry: The dentry to delete 2488 * @dentry: The dentry to delete 2389 * 2489 * 2390 * Turn the dentry into a negative dentry if 2490 * Turn the dentry into a negative dentry if possible, otherwise 2391 * remove it from the hash queues so it can b 2491 * remove it from the hash queues so it can be deleted later 2392 */ 2492 */ 2393 2493 2394 void d_delete(struct dentry * dentry) 2494 void d_delete(struct dentry * dentry) 2395 { 2495 { 2396 struct inode *inode = dentry->d_inode 2496 struct inode *inode = dentry->d_inode; 2397 2497 2398 spin_lock(&inode->i_lock); 2498 spin_lock(&inode->i_lock); 2399 spin_lock(&dentry->d_lock); 2499 spin_lock(&dentry->d_lock); 2400 /* 2500 /* 2401 * Are we the only user? 2501 * Are we the only user? 2402 */ 2502 */ 2403 if (dentry->d_lockref.count == 1) { 2503 if (dentry->d_lockref.count == 1) { 2404 dentry->d_flags &= ~DCACHE_CA 2504 dentry->d_flags &= ~DCACHE_CANT_MOUNT; 2405 dentry_unlink_inode(dentry); 2505 dentry_unlink_inode(dentry); 2406 } else { 2506 } else { 2407 __d_drop(dentry); 2507 __d_drop(dentry); 2408 spin_unlock(&dentry->d_lock); 2508 spin_unlock(&dentry->d_lock); 2409 spin_unlock(&inode->i_lock); 2509 spin_unlock(&inode->i_lock); 2410 } 2510 } 2411 } 2511 } 2412 EXPORT_SYMBOL(d_delete); 2512 EXPORT_SYMBOL(d_delete); 2413 2513 2414 static void __d_rehash(struct dentry *entry) 2514 static void __d_rehash(struct dentry *entry) 2415 { 2515 { 2416 struct hlist_bl_head *b = d_hash(entr 2516 struct hlist_bl_head *b = d_hash(entry->d_name.hash); 2417 2517 2418 hlist_bl_lock(b); 2518 hlist_bl_lock(b); 2419 hlist_bl_add_head_rcu(&entry->d_hash, 2519 hlist_bl_add_head_rcu(&entry->d_hash, b); 2420 hlist_bl_unlock(b); 2520 hlist_bl_unlock(b); 2421 } 2521 } 2422 2522 2423 /** 2523 /** 2424 * d_rehash - add an entry back to the ha 2524 * d_rehash - add an entry back to the hash 2425 * @entry: dentry to add to the hash 2525 * @entry: dentry to add to the hash 2426 * 2526 * 2427 * Adds a dentry to the hash according to its 2527 * Adds a dentry to the hash according to its name. 2428 */ 2528 */ 2429 2529 2430 void d_rehash(struct dentry * entry) 2530 void d_rehash(struct dentry * entry) 2431 { 2531 { 2432 spin_lock(&entry->d_lock); 2532 spin_lock(&entry->d_lock); 2433 __d_rehash(entry); 2533 __d_rehash(entry); 2434 spin_unlock(&entry->d_lock); 2534 spin_unlock(&entry->d_lock); 2435 } 2535 } 2436 EXPORT_SYMBOL(d_rehash); 2536 EXPORT_SYMBOL(d_rehash); 2437 2537 2438 static inline unsigned start_dir_add(struct i 2538 static inline unsigned start_dir_add(struct inode *dir) 2439 { 2539 { 2440 preempt_disable_nested(); !! 2540 2441 for (;;) { 2541 for (;;) { 2442 unsigned n = dir->i_dir_seq; 2542 unsigned n = dir->i_dir_seq; 2443 if (!(n & 1) && cmpxchg(&dir- 2543 if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n) 2444 return n; 2544 return n; 2445 cpu_relax(); 2545 cpu_relax(); 2446 } 2546 } 2447 } 2547 } 2448 2548 2449 static inline void end_dir_add(struct inode * !! 2549 static inline void end_dir_add(struct inode *dir, unsigned n) 2450 wait_queue_hea << 2451 { 2550 { 2452 smp_store_release(&dir->i_dir_seq, n 2551 smp_store_release(&dir->i_dir_seq, n + 2); 2453 preempt_enable_nested(); << 2454 wake_up_all(d_wait); << 2455 } 2552 } 2456 2553 2457 static void d_wait_lookup(struct dentry *dent 2554 static void d_wait_lookup(struct dentry *dentry) 2458 { 2555 { 2459 if (d_in_lookup(dentry)) { 2556 if (d_in_lookup(dentry)) { 2460 DECLARE_WAITQUEUE(wait, curre 2557 DECLARE_WAITQUEUE(wait, current); 2461 add_wait_queue(dentry->d_wait 2558 add_wait_queue(dentry->d_wait, &wait); 2462 do { 2559 do { 2463 set_current_state(TAS 2560 set_current_state(TASK_UNINTERRUPTIBLE); 2464 spin_unlock(&dentry-> 2561 spin_unlock(&dentry->d_lock); 2465 schedule(); 2562 schedule(); 2466 spin_lock(&dentry->d_ 2563 spin_lock(&dentry->d_lock); 2467 } while (d_in_lookup(dentry)) 2564 } while (d_in_lookup(dentry)); 2468 } 2565 } 2469 } 2566 } 2470 2567 2471 struct dentry *d_alloc_parallel(struct dentry 2568 struct dentry *d_alloc_parallel(struct dentry *parent, 2472 const struct 2569 const struct qstr *name, 2473 wait_queue_he 2570 wait_queue_head_t *wq) 2474 { 2571 { 2475 unsigned int hash = name->hash; 2572 unsigned int hash = name->hash; 2476 struct hlist_bl_head *b = in_lookup_h 2573 struct hlist_bl_head *b = in_lookup_hash(parent, hash); 2477 struct hlist_bl_node *node; 2574 struct hlist_bl_node *node; 2478 struct dentry *new = d_alloc(parent, 2575 struct dentry *new = d_alloc(parent, name); 2479 struct dentry *dentry; 2576 struct dentry *dentry; 2480 unsigned seq, r_seq, d_seq; 2577 unsigned seq, r_seq, d_seq; 2481 2578 2482 if (unlikely(!new)) 2579 if (unlikely(!new)) 2483 return ERR_PTR(-ENOMEM); 2580 return ERR_PTR(-ENOMEM); 2484 2581 2485 retry: 2582 retry: 2486 rcu_read_lock(); 2583 rcu_read_lock(); 2487 seq = smp_load_acquire(&parent->d_ino 2584 seq = smp_load_acquire(&parent->d_inode->i_dir_seq); 2488 r_seq = read_seqbegin(&rename_lock); 2585 r_seq = read_seqbegin(&rename_lock); 2489 dentry = __d_lookup_rcu(parent, name, 2586 dentry = __d_lookup_rcu(parent, name, &d_seq); 2490 if (unlikely(dentry)) { 2587 if (unlikely(dentry)) { 2491 if (!lockref_get_not_dead(&de 2588 if (!lockref_get_not_dead(&dentry->d_lockref)) { 2492 rcu_read_unlock(); 2589 rcu_read_unlock(); 2493 goto retry; 2590 goto retry; 2494 } 2591 } 2495 if (read_seqcount_retry(&dent 2592 if (read_seqcount_retry(&dentry->d_seq, d_seq)) { 2496 rcu_read_unlock(); 2593 rcu_read_unlock(); 2497 dput(dentry); 2594 dput(dentry); 2498 goto retry; 2595 goto retry; 2499 } 2596 } 2500 rcu_read_unlock(); 2597 rcu_read_unlock(); 2501 dput(new); 2598 dput(new); 2502 return dentry; 2599 return dentry; 2503 } 2600 } 2504 if (unlikely(read_seqretry(&rename_lo 2601 if (unlikely(read_seqretry(&rename_lock, r_seq))) { 2505 rcu_read_unlock(); 2602 rcu_read_unlock(); 2506 goto retry; 2603 goto retry; 2507 } 2604 } 2508 2605 2509 if (unlikely(seq & 1)) { 2606 if (unlikely(seq & 1)) { 2510 rcu_read_unlock(); 2607 rcu_read_unlock(); 2511 goto retry; 2608 goto retry; 2512 } 2609 } 2513 2610 2514 hlist_bl_lock(b); 2611 hlist_bl_lock(b); 2515 if (unlikely(READ_ONCE(parent->d_inod 2612 if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) { 2516 hlist_bl_unlock(b); 2613 hlist_bl_unlock(b); 2517 rcu_read_unlock(); 2614 rcu_read_unlock(); 2518 goto retry; 2615 goto retry; 2519 } 2616 } 2520 /* 2617 /* 2521 * No changes for the parent since th 2618 * No changes for the parent since the beginning of d_lookup(). 2522 * Since all removals from the chain 2619 * Since all removals from the chain happen with hlist_bl_lock(), 2523 * any potential in-lookup matches ar 2620 * any potential in-lookup matches are going to stay here until 2524 * we unlock the chain. All fields a 2621 * we unlock the chain. All fields are stable in everything 2525 * we encounter. 2622 * we encounter. 2526 */ 2623 */ 2527 hlist_bl_for_each_entry(dentry, node, 2624 hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) { 2528 if (dentry->d_name.hash != ha 2625 if (dentry->d_name.hash != hash) 2529 continue; 2626 continue; 2530 if (dentry->d_parent != paren 2627 if (dentry->d_parent != parent) 2531 continue; 2628 continue; 2532 if (!d_same_name(dentry, pare 2629 if (!d_same_name(dentry, parent, name)) 2533 continue; 2630 continue; 2534 hlist_bl_unlock(b); 2631 hlist_bl_unlock(b); 2535 /* now we can try to grab a r 2632 /* now we can try to grab a reference */ 2536 if (!lockref_get_not_dead(&de 2633 if (!lockref_get_not_dead(&dentry->d_lockref)) { 2537 rcu_read_unlock(); 2634 rcu_read_unlock(); 2538 goto retry; 2635 goto retry; 2539 } 2636 } 2540 2637 2541 rcu_read_unlock(); 2638 rcu_read_unlock(); 2542 /* 2639 /* 2543 * somebody is likely to be s 2640 * somebody is likely to be still doing lookup for it; 2544 * wait for them to finish 2641 * wait for them to finish 2545 */ 2642 */ 2546 spin_lock(&dentry->d_lock); 2643 spin_lock(&dentry->d_lock); 2547 d_wait_lookup(dentry); 2644 d_wait_lookup(dentry); 2548 /* 2645 /* 2549 * it's not in-lookup anymore 2646 * it's not in-lookup anymore; in principle we should repeat 2550 * everything from dcache loo 2647 * everything from dcache lookup, but it's likely to be what 2551 * d_lookup() would've found 2648 * d_lookup() would've found anyway. If it is, just return it; 2552 * otherwise we really have t 2649 * otherwise we really have to repeat the whole thing. 2553 */ 2650 */ 2554 if (unlikely(dentry->d_name.h 2651 if (unlikely(dentry->d_name.hash != hash)) 2555 goto mismatch; 2652 goto mismatch; 2556 if (unlikely(dentry->d_parent 2653 if (unlikely(dentry->d_parent != parent)) 2557 goto mismatch; 2654 goto mismatch; 2558 if (unlikely(d_unhashed(dentr 2655 if (unlikely(d_unhashed(dentry))) 2559 goto mismatch; 2656 goto mismatch; 2560 if (unlikely(!d_same_name(den 2657 if (unlikely(!d_same_name(dentry, parent, name))) 2561 goto mismatch; 2658 goto mismatch; 2562 /* OK, it *is* a hashed match 2659 /* OK, it *is* a hashed match; return it */ 2563 spin_unlock(&dentry->d_lock); 2660 spin_unlock(&dentry->d_lock); 2564 dput(new); 2661 dput(new); 2565 return dentry; 2662 return dentry; 2566 } 2663 } 2567 rcu_read_unlock(); 2664 rcu_read_unlock(); 2568 /* we can't take ->d_lock here; it's 2665 /* we can't take ->d_lock here; it's OK, though. */ 2569 new->d_flags |= DCACHE_PAR_LOOKUP; 2666 new->d_flags |= DCACHE_PAR_LOOKUP; 2570 new->d_wait = wq; 2667 new->d_wait = wq; 2571 hlist_bl_add_head(&new->d_u.d_in_look !! 2668 hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b); 2572 hlist_bl_unlock(b); 2669 hlist_bl_unlock(b); 2573 return new; 2670 return new; 2574 mismatch: 2671 mismatch: 2575 spin_unlock(&dentry->d_lock); 2672 spin_unlock(&dentry->d_lock); 2576 dput(dentry); 2673 dput(dentry); 2577 goto retry; 2674 goto retry; 2578 } 2675 } 2579 EXPORT_SYMBOL(d_alloc_parallel); 2676 EXPORT_SYMBOL(d_alloc_parallel); 2580 2677 2581 /* !! 2678 void __d_lookup_done(struct dentry *dentry) 2582 * - Unhash the dentry << 2583 * - Retrieve and clear the waitqueue head in << 2584 * - Return the waitqueue head << 2585 */ << 2586 static wait_queue_head_t *__d_lookup_unhash(s << 2587 { 2679 { 2588 wait_queue_head_t *d_wait; !! 2680 struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent, 2589 struct hlist_bl_head *b; !! 2681 dentry->d_name.hash); 2590 << 2591 lockdep_assert_held(&dentry->d_lock); << 2592 << 2593 b = in_lookup_hash(dentry->d_parent, << 2594 hlist_bl_lock(b); 2682 hlist_bl_lock(b); 2595 dentry->d_flags &= ~DCACHE_PAR_LOOKUP 2683 dentry->d_flags &= ~DCACHE_PAR_LOOKUP; 2596 __hlist_bl_del(&dentry->d_u.d_in_look 2684 __hlist_bl_del(&dentry->d_u.d_in_lookup_hash); 2597 d_wait = dentry->d_wait; !! 2685 wake_up_all(dentry->d_wait); 2598 dentry->d_wait = NULL; 2686 dentry->d_wait = NULL; 2599 hlist_bl_unlock(b); 2687 hlist_bl_unlock(b); 2600 INIT_HLIST_NODE(&dentry->d_u.d_alias) 2688 INIT_HLIST_NODE(&dentry->d_u.d_alias); 2601 INIT_LIST_HEAD(&dentry->d_lru); 2689 INIT_LIST_HEAD(&dentry->d_lru); 2602 return d_wait; << 2603 } 2690 } 2604 !! 2691 EXPORT_SYMBOL(__d_lookup_done); 2605 void __d_lookup_unhash_wake(struct dentry *de << 2606 { << 2607 spin_lock(&dentry->d_lock); << 2608 wake_up_all(__d_lookup_unhash(dentry) << 2609 spin_unlock(&dentry->d_lock); << 2610 } << 2611 EXPORT_SYMBOL(__d_lookup_unhash_wake); << 2612 2692 2613 /* inode->i_lock held if inode is non-NULL */ 2693 /* inode->i_lock held if inode is non-NULL */ 2614 2694 2615 static inline void __d_add(struct dentry *den 2695 static inline void __d_add(struct dentry *dentry, struct inode *inode) 2616 { 2696 { 2617 wait_queue_head_t *d_wait; << 2618 struct inode *dir = NULL; 2697 struct inode *dir = NULL; 2619 unsigned n; 2698 unsigned n; 2620 spin_lock(&dentry->d_lock); 2699 spin_lock(&dentry->d_lock); 2621 if (unlikely(d_in_lookup(dentry))) { 2700 if (unlikely(d_in_lookup(dentry))) { 2622 dir = dentry->d_parent->d_ino 2701 dir = dentry->d_parent->d_inode; 2623 n = start_dir_add(dir); 2702 n = start_dir_add(dir); 2624 d_wait = __d_lookup_unhash(de !! 2703 __d_lookup_done(dentry); 2625 } 2704 } 2626 if (inode) { 2705 if (inode) { 2627 unsigned add_flags = d_flags_ 2706 unsigned add_flags = d_flags_for_inode(inode); 2628 hlist_add_head(&dentry->d_u.d 2707 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry); 2629 raw_write_seqcount_begin(&den 2708 raw_write_seqcount_begin(&dentry->d_seq); 2630 __d_set_inode_and_type(dentry 2709 __d_set_inode_and_type(dentry, inode, add_flags); 2631 raw_write_seqcount_end(&dentr 2710 raw_write_seqcount_end(&dentry->d_seq); 2632 fsnotify_update_flags(dentry) 2711 fsnotify_update_flags(dentry); 2633 } 2712 } 2634 __d_rehash(dentry); 2713 __d_rehash(dentry); 2635 if (dir) 2714 if (dir) 2636 end_dir_add(dir, n, d_wait); !! 2715 end_dir_add(dir, n); 2637 spin_unlock(&dentry->d_lock); 2716 spin_unlock(&dentry->d_lock); 2638 if (inode) 2717 if (inode) 2639 spin_unlock(&inode->i_lock); 2718 spin_unlock(&inode->i_lock); 2640 } 2719 } 2641 2720 2642 /** 2721 /** 2643 * d_add - add dentry to hash queues 2722 * d_add - add dentry to hash queues 2644 * @entry: dentry to add 2723 * @entry: dentry to add 2645 * @inode: The inode to attach to this dentry 2724 * @inode: The inode to attach to this dentry 2646 * 2725 * 2647 * This adds the entry to the hash queues and 2726 * This adds the entry to the hash queues and initializes @inode. 2648 * The entry was actually filled in earlier d 2727 * The entry was actually filled in earlier during d_alloc(). 2649 */ 2728 */ 2650 2729 2651 void d_add(struct dentry *entry, struct inode 2730 void d_add(struct dentry *entry, struct inode *inode) 2652 { 2731 { 2653 if (inode) { 2732 if (inode) { 2654 security_d_instantiate(entry, 2733 security_d_instantiate(entry, inode); 2655 spin_lock(&inode->i_lock); 2734 spin_lock(&inode->i_lock); 2656 } 2735 } 2657 __d_add(entry, inode); 2736 __d_add(entry, inode); 2658 } 2737 } 2659 EXPORT_SYMBOL(d_add); 2738 EXPORT_SYMBOL(d_add); 2660 2739 2661 /** 2740 /** 2662 * d_exact_alias - find and hash an exact unh 2741 * d_exact_alias - find and hash an exact unhashed alias 2663 * @entry: dentry to add 2742 * @entry: dentry to add 2664 * @inode: The inode to go with this dentry 2743 * @inode: The inode to go with this dentry 2665 * 2744 * 2666 * If an unhashed dentry with the same name/p 2745 * If an unhashed dentry with the same name/parent and desired 2667 * inode already exists, hash and return it. 2746 * inode already exists, hash and return it. Otherwise, return 2668 * NULL. 2747 * NULL. 2669 * 2748 * 2670 * Parent directory should be locked. 2749 * Parent directory should be locked. 2671 */ 2750 */ 2672 struct dentry *d_exact_alias(struct dentry *e 2751 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode) 2673 { 2752 { 2674 struct dentry *alias; 2753 struct dentry *alias; 2675 unsigned int hash = entry->d_name.has 2754 unsigned int hash = entry->d_name.hash; 2676 2755 2677 spin_lock(&inode->i_lock); 2756 spin_lock(&inode->i_lock); 2678 hlist_for_each_entry(alias, &inode->i 2757 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { 2679 /* 2758 /* 2680 * Don't need alias->d_lock h 2759 * Don't need alias->d_lock here, because aliases with 2681 * d_parent == entry->d_paren 2760 * d_parent == entry->d_parent are not subject to name or 2682 * parent changes, because th 2761 * parent changes, because the parent inode i_mutex is held. 2683 */ 2762 */ 2684 if (alias->d_name.hash != has 2763 if (alias->d_name.hash != hash) 2685 continue; 2764 continue; 2686 if (alias->d_parent != entry- 2765 if (alias->d_parent != entry->d_parent) 2687 continue; 2766 continue; 2688 if (!d_same_name(alias, entry 2767 if (!d_same_name(alias, entry->d_parent, &entry->d_name)) 2689 continue; 2768 continue; 2690 spin_lock(&alias->d_lock); 2769 spin_lock(&alias->d_lock); 2691 if (!d_unhashed(alias)) { 2770 if (!d_unhashed(alias)) { 2692 spin_unlock(&alias->d 2771 spin_unlock(&alias->d_lock); 2693 alias = NULL; 2772 alias = NULL; 2694 } else { 2773 } else { 2695 dget_dlock(alias); !! 2774 __dget_dlock(alias); 2696 __d_rehash(alias); 2775 __d_rehash(alias); 2697 spin_unlock(&alias->d 2776 spin_unlock(&alias->d_lock); 2698 } 2777 } 2699 spin_unlock(&inode->i_lock); 2778 spin_unlock(&inode->i_lock); 2700 return alias; 2779 return alias; 2701 } 2780 } 2702 spin_unlock(&inode->i_lock); 2781 spin_unlock(&inode->i_lock); 2703 return NULL; 2782 return NULL; 2704 } 2783 } 2705 EXPORT_SYMBOL(d_exact_alias); 2784 EXPORT_SYMBOL(d_exact_alias); 2706 2785 2707 static void swap_names(struct dentry *dentry, 2786 static void swap_names(struct dentry *dentry, struct dentry *target) 2708 { 2787 { 2709 if (unlikely(dname_external(target))) 2788 if (unlikely(dname_external(target))) { 2710 if (unlikely(dname_external(d 2789 if (unlikely(dname_external(dentry))) { 2711 /* 2790 /* 2712 * Both external: swa 2791 * Both external: swap the pointers 2713 */ 2792 */ 2714 swap(target->d_name.n 2793 swap(target->d_name.name, dentry->d_name.name); 2715 } else { 2794 } else { 2716 /* 2795 /* 2717 * dentry:internal, t 2796 * dentry:internal, target:external. Steal target's 2718 * storage and make t 2797 * storage and make target internal. 2719 */ 2798 */ 2720 memcpy(target->d_inam 2799 memcpy(target->d_iname, dentry->d_name.name, 2721 dentr 2800 dentry->d_name.len + 1); 2722 dentry->d_name.name = 2801 dentry->d_name.name = target->d_name.name; 2723 target->d_name.name = 2802 target->d_name.name = target->d_iname; 2724 } 2803 } 2725 } else { 2804 } else { 2726 if (unlikely(dname_external(d 2805 if (unlikely(dname_external(dentry))) { 2727 /* 2806 /* 2728 * dentry:external, t 2807 * dentry:external, target:internal. Give dentry's 2729 * storage to target 2808 * storage to target and make dentry internal 2730 */ 2809 */ 2731 memcpy(dentry->d_inam 2810 memcpy(dentry->d_iname, target->d_name.name, 2732 targe 2811 target->d_name.len + 1); 2733 target->d_name.name = 2812 target->d_name.name = dentry->d_name.name; 2734 dentry->d_name.name = 2813 dentry->d_name.name = dentry->d_iname; 2735 } else { 2814 } else { 2736 /* 2815 /* 2737 * Both are internal. 2816 * Both are internal. 2738 */ 2817 */ 2739 unsigned int i; 2818 unsigned int i; 2740 BUILD_BUG_ON(!IS_ALIG 2819 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long))); 2741 for (i = 0; i < DNAME 2820 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) { 2742 swap(((long * 2821 swap(((long *) &dentry->d_iname)[i], 2743 ((long * 2822 ((long *) &target->d_iname)[i]); 2744 } 2823 } 2745 } 2824 } 2746 } 2825 } 2747 swap(dentry->d_name.hash_len, target- 2826 swap(dentry->d_name.hash_len, target->d_name.hash_len); 2748 } 2827 } 2749 2828 2750 static void copy_name(struct dentry *dentry, 2829 static void copy_name(struct dentry *dentry, struct dentry *target) 2751 { 2830 { 2752 struct external_name *old_name = NULL 2831 struct external_name *old_name = NULL; 2753 if (unlikely(dname_external(dentry))) 2832 if (unlikely(dname_external(dentry))) 2754 old_name = external_name(dent 2833 old_name = external_name(dentry); 2755 if (unlikely(dname_external(target))) 2834 if (unlikely(dname_external(target))) { 2756 atomic_inc(&external_name(tar 2835 atomic_inc(&external_name(target)->u.count); 2757 dentry->d_name = target->d_na 2836 dentry->d_name = target->d_name; 2758 } else { 2837 } else { 2759 memcpy(dentry->d_iname, targe 2838 memcpy(dentry->d_iname, target->d_name.name, 2760 target->d_nam 2839 target->d_name.len + 1); 2761 dentry->d_name.name = dentry- 2840 dentry->d_name.name = dentry->d_iname; 2762 dentry->d_name.hash_len = tar 2841 dentry->d_name.hash_len = target->d_name.hash_len; 2763 } 2842 } 2764 if (old_name && likely(atomic_dec_and 2843 if (old_name && likely(atomic_dec_and_test(&old_name->u.count))) 2765 kfree_rcu(old_name, u.head); 2844 kfree_rcu(old_name, u.head); 2766 } 2845 } 2767 2846 2768 /* 2847 /* 2769 * __d_move - move a dentry 2848 * __d_move - move a dentry 2770 * @dentry: entry to move 2849 * @dentry: entry to move 2771 * @target: new dentry 2850 * @target: new dentry 2772 * @exchange: exchange the two dentries 2851 * @exchange: exchange the two dentries 2773 * 2852 * 2774 * Update the dcache to reflect the move of a 2853 * Update the dcache to reflect the move of a file name. Negative 2775 * dcache entries should not be moved in this 2854 * dcache entries should not be moved in this way. Caller must hold 2776 * rename_lock, the i_mutex of the source and 2855 * rename_lock, the i_mutex of the source and target directories, 2777 * and the sb->s_vfs_rename_mutex if they dif 2856 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename(). 2778 */ 2857 */ 2779 static void __d_move(struct dentry *dentry, s 2858 static void __d_move(struct dentry *dentry, struct dentry *target, 2780 bool exchange) 2859 bool exchange) 2781 { 2860 { 2782 struct dentry *old_parent, *p; 2861 struct dentry *old_parent, *p; 2783 wait_queue_head_t *d_wait; << 2784 struct inode *dir = NULL; 2862 struct inode *dir = NULL; 2785 unsigned n; 2863 unsigned n; 2786 2864 2787 WARN_ON(!dentry->d_inode); 2865 WARN_ON(!dentry->d_inode); 2788 if (WARN_ON(dentry == target)) 2866 if (WARN_ON(dentry == target)) 2789 return; 2867 return; 2790 2868 2791 BUG_ON(d_ancestor(target, dentry)); 2869 BUG_ON(d_ancestor(target, dentry)); 2792 old_parent = dentry->d_parent; 2870 old_parent = dentry->d_parent; 2793 p = d_ancestor(old_parent, target); 2871 p = d_ancestor(old_parent, target); 2794 if (IS_ROOT(dentry)) { 2872 if (IS_ROOT(dentry)) { 2795 BUG_ON(p); 2873 BUG_ON(p); 2796 spin_lock(&target->d_parent-> 2874 spin_lock(&target->d_parent->d_lock); 2797 } else if (!p) { 2875 } else if (!p) { 2798 /* target is not a descendent 2876 /* target is not a descendent of dentry->d_parent */ 2799 spin_lock(&target->d_parent-> 2877 spin_lock(&target->d_parent->d_lock); 2800 spin_lock_nested(&old_parent- 2878 spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED); 2801 } else { 2879 } else { 2802 BUG_ON(p == dentry); 2880 BUG_ON(p == dentry); 2803 spin_lock(&old_parent->d_lock 2881 spin_lock(&old_parent->d_lock); 2804 if (p != target) 2882 if (p != target) 2805 spin_lock_nested(&tar 2883 spin_lock_nested(&target->d_parent->d_lock, 2806 DENTR 2884 DENTRY_D_LOCK_NESTED); 2807 } 2885 } 2808 spin_lock_nested(&dentry->d_lock, 2); 2886 spin_lock_nested(&dentry->d_lock, 2); 2809 spin_lock_nested(&target->d_lock, 3); 2887 spin_lock_nested(&target->d_lock, 3); 2810 2888 2811 if (unlikely(d_in_lookup(target))) { 2889 if (unlikely(d_in_lookup(target))) { 2812 dir = target->d_parent->d_ino 2890 dir = target->d_parent->d_inode; 2813 n = start_dir_add(dir); 2891 n = start_dir_add(dir); 2814 d_wait = __d_lookup_unhash(ta !! 2892 __d_lookup_done(target); 2815 } 2893 } 2816 2894 2817 write_seqcount_begin(&dentry->d_seq); 2895 write_seqcount_begin(&dentry->d_seq); 2818 write_seqcount_begin_nested(&target-> 2896 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED); 2819 2897 2820 /* unhash both */ 2898 /* unhash both */ 2821 if (!d_unhashed(dentry)) 2899 if (!d_unhashed(dentry)) 2822 ___d_drop(dentry); 2900 ___d_drop(dentry); 2823 if (!d_unhashed(target)) 2901 if (!d_unhashed(target)) 2824 ___d_drop(target); 2902 ___d_drop(target); 2825 2903 2826 /* ... and switch them in the tree */ 2904 /* ... and switch them in the tree */ 2827 dentry->d_parent = target->d_parent; 2905 dentry->d_parent = target->d_parent; 2828 if (!exchange) { 2906 if (!exchange) { 2829 copy_name(dentry, target); 2907 copy_name(dentry, target); 2830 target->d_hash.pprev = NULL; 2908 target->d_hash.pprev = NULL; 2831 dentry->d_parent->d_lockref.c 2909 dentry->d_parent->d_lockref.count++; 2832 if (dentry != old_parent) /* 2910 if (dentry != old_parent) /* wasn't IS_ROOT */ 2833 WARN_ON(!--old_parent 2911 WARN_ON(!--old_parent->d_lockref.count); 2834 } else { 2912 } else { 2835 target->d_parent = old_parent 2913 target->d_parent = old_parent; 2836 swap_names(dentry, target); 2914 swap_names(dentry, target); 2837 if (!hlist_unhashed(&target-> !! 2915 list_move(&target->d_child, &target->d_parent->d_subdirs); 2838 __hlist_del(&target-> << 2839 hlist_add_head(&target->d_sib << 2840 __d_rehash(target); 2916 __d_rehash(target); 2841 fsnotify_update_flags(target) 2917 fsnotify_update_flags(target); 2842 } 2918 } 2843 if (!hlist_unhashed(&dentry->d_sib)) !! 2919 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs); 2844 __hlist_del(&dentry->d_sib); << 2845 hlist_add_head(&dentry->d_sib, &dentr << 2846 __d_rehash(dentry); 2920 __d_rehash(dentry); 2847 fsnotify_update_flags(dentry); 2921 fsnotify_update_flags(dentry); 2848 fscrypt_handle_d_move(dentry); 2922 fscrypt_handle_d_move(dentry); 2849 2923 2850 write_seqcount_end(&target->d_seq); 2924 write_seqcount_end(&target->d_seq); 2851 write_seqcount_end(&dentry->d_seq); 2925 write_seqcount_end(&dentry->d_seq); 2852 2926 2853 if (dir) 2927 if (dir) 2854 end_dir_add(dir, n, d_wait); !! 2928 end_dir_add(dir, n); 2855 2929 2856 if (dentry->d_parent != old_parent) 2930 if (dentry->d_parent != old_parent) 2857 spin_unlock(&dentry->d_parent 2931 spin_unlock(&dentry->d_parent->d_lock); 2858 if (dentry != old_parent) 2932 if (dentry != old_parent) 2859 spin_unlock(&old_parent->d_lo 2933 spin_unlock(&old_parent->d_lock); 2860 spin_unlock(&target->d_lock); 2934 spin_unlock(&target->d_lock); 2861 spin_unlock(&dentry->d_lock); 2935 spin_unlock(&dentry->d_lock); 2862 } 2936 } 2863 2937 2864 /* 2938 /* 2865 * d_move - move a dentry 2939 * d_move - move a dentry 2866 * @dentry: entry to move 2940 * @dentry: entry to move 2867 * @target: new dentry 2941 * @target: new dentry 2868 * 2942 * 2869 * Update the dcache to reflect the move of a 2943 * Update the dcache to reflect the move of a file name. Negative 2870 * dcache entries should not be moved in this 2944 * dcache entries should not be moved in this way. See the locking 2871 * requirements for __d_move. 2945 * requirements for __d_move. 2872 */ 2946 */ 2873 void d_move(struct dentry *dentry, struct den 2947 void d_move(struct dentry *dentry, struct dentry *target) 2874 { 2948 { 2875 write_seqlock(&rename_lock); 2949 write_seqlock(&rename_lock); 2876 __d_move(dentry, target, false); 2950 __d_move(dentry, target, false); 2877 write_sequnlock(&rename_lock); 2951 write_sequnlock(&rename_lock); 2878 } 2952 } 2879 EXPORT_SYMBOL(d_move); 2953 EXPORT_SYMBOL(d_move); 2880 2954 2881 /* 2955 /* 2882 * d_exchange - exchange two dentries 2956 * d_exchange - exchange two dentries 2883 * @dentry1: first dentry 2957 * @dentry1: first dentry 2884 * @dentry2: second dentry 2958 * @dentry2: second dentry 2885 */ 2959 */ 2886 void d_exchange(struct dentry *dentry1, struc 2960 void d_exchange(struct dentry *dentry1, struct dentry *dentry2) 2887 { 2961 { 2888 write_seqlock(&rename_lock); 2962 write_seqlock(&rename_lock); 2889 2963 2890 WARN_ON(!dentry1->d_inode); 2964 WARN_ON(!dentry1->d_inode); 2891 WARN_ON(!dentry2->d_inode); 2965 WARN_ON(!dentry2->d_inode); 2892 WARN_ON(IS_ROOT(dentry1)); 2966 WARN_ON(IS_ROOT(dentry1)); 2893 WARN_ON(IS_ROOT(dentry2)); 2967 WARN_ON(IS_ROOT(dentry2)); 2894 2968 2895 __d_move(dentry1, dentry2, true); 2969 __d_move(dentry1, dentry2, true); 2896 2970 2897 write_sequnlock(&rename_lock); 2971 write_sequnlock(&rename_lock); 2898 } 2972 } 2899 2973 2900 /** 2974 /** 2901 * d_ancestor - search for an ancestor 2975 * d_ancestor - search for an ancestor 2902 * @p1: ancestor dentry 2976 * @p1: ancestor dentry 2903 * @p2: child dentry 2977 * @p2: child dentry 2904 * 2978 * 2905 * Returns the ancestor dentry of p2 which is 2979 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is 2906 * an ancestor of p2, else NULL. 2980 * an ancestor of p2, else NULL. 2907 */ 2981 */ 2908 struct dentry *d_ancestor(struct dentry *p1, 2982 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2) 2909 { 2983 { 2910 struct dentry *p; 2984 struct dentry *p; 2911 2985 2912 for (p = p2; !IS_ROOT(p); p = p->d_pa 2986 for (p = p2; !IS_ROOT(p); p = p->d_parent) { 2913 if (p->d_parent == p1) 2987 if (p->d_parent == p1) 2914 return p; 2988 return p; 2915 } 2989 } 2916 return NULL; 2990 return NULL; 2917 } 2991 } 2918 2992 2919 /* 2993 /* 2920 * This helper attempts to cope with remotely 2994 * This helper attempts to cope with remotely renamed directories 2921 * 2995 * 2922 * It assumes that the caller is already hold 2996 * It assumes that the caller is already holding 2923 * dentry->d_parent->d_inode->i_mutex, and re 2997 * dentry->d_parent->d_inode->i_mutex, and rename_lock 2924 * 2998 * 2925 * Note: If ever the locking in lock_rename() 2999 * Note: If ever the locking in lock_rename() changes, then please 2926 * remember to update this too... 3000 * remember to update this too... 2927 */ 3001 */ 2928 static int __d_unalias(struct dentry *dentry, !! 3002 static int __d_unalias(struct inode *inode, >> 3003 struct dentry *dentry, struct dentry *alias) 2929 { 3004 { 2930 struct mutex *m1 = NULL; 3005 struct mutex *m1 = NULL; 2931 struct rw_semaphore *m2 = NULL; 3006 struct rw_semaphore *m2 = NULL; 2932 int ret = -ESTALE; 3007 int ret = -ESTALE; 2933 3008 2934 /* If alias and dentry share a parent 3009 /* If alias and dentry share a parent, then no extra locks required */ 2935 if (alias->d_parent == dentry->d_pare 3010 if (alias->d_parent == dentry->d_parent) 2936 goto out_unalias; 3011 goto out_unalias; 2937 3012 2938 /* See lock_rename() */ 3013 /* See lock_rename() */ 2939 if (!mutex_trylock(&dentry->d_sb->s_v 3014 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex)) 2940 goto out_err; 3015 goto out_err; 2941 m1 = &dentry->d_sb->s_vfs_rename_mute 3016 m1 = &dentry->d_sb->s_vfs_rename_mutex; 2942 if (!inode_trylock_shared(alias->d_pa 3017 if (!inode_trylock_shared(alias->d_parent->d_inode)) 2943 goto out_err; 3018 goto out_err; 2944 m2 = &alias->d_parent->d_inode->i_rws 3019 m2 = &alias->d_parent->d_inode->i_rwsem; 2945 out_unalias: 3020 out_unalias: 2946 __d_move(alias, dentry, false); 3021 __d_move(alias, dentry, false); 2947 ret = 0; 3022 ret = 0; 2948 out_err: 3023 out_err: 2949 if (m2) 3024 if (m2) 2950 up_read(m2); 3025 up_read(m2); 2951 if (m1) 3026 if (m1) 2952 mutex_unlock(m1); 3027 mutex_unlock(m1); 2953 return ret; 3028 return ret; 2954 } 3029 } 2955 3030 2956 /** 3031 /** 2957 * d_splice_alias - splice a disconnected den 3032 * d_splice_alias - splice a disconnected dentry into the tree if one exists 2958 * @inode: the inode which may have a discon 3033 * @inode: the inode which may have a disconnected dentry 2959 * @dentry: a negative dentry which we want t 3034 * @dentry: a negative dentry which we want to point to the inode. 2960 * 3035 * 2961 * If inode is a directory and has an IS_ROOT 3036 * If inode is a directory and has an IS_ROOT alias, then d_move that in 2962 * place of the given dentry and return it, e 3037 * place of the given dentry and return it, else simply d_add the inode 2963 * to the dentry and return NULL. 3038 * to the dentry and return NULL. 2964 * 3039 * 2965 * If a non-IS_ROOT directory is found, the f 3040 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and 2966 * we should error out: directories can't hav 3041 * we should error out: directories can't have multiple aliases. 2967 * 3042 * 2968 * This is needed in the lookup routine of an 3043 * This is needed in the lookup routine of any filesystem that is exportable 2969 * (via knfsd) so that we can build dcache pa 3044 * (via knfsd) so that we can build dcache paths to directories effectively. 2970 * 3045 * 2971 * If a dentry was found and moved, then it i 3046 * If a dentry was found and moved, then it is returned. Otherwise NULL 2972 * is returned. This matches the expected re 3047 * is returned. This matches the expected return value of ->lookup. 2973 * 3048 * 2974 * Cluster filesystems may call this function 3049 * Cluster filesystems may call this function with a negative, hashed dentry. 2975 * In that case, we know that the inode will 3050 * In that case, we know that the inode will be a regular file, and also this 2976 * will only occur during atomic_open. So we 3051 * will only occur during atomic_open. So we need to check for the dentry 2977 * being already hashed only in the final cas 3052 * being already hashed only in the final case. 2978 */ 3053 */ 2979 struct dentry *d_splice_alias(struct inode *i 3054 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry) 2980 { 3055 { 2981 if (IS_ERR(inode)) 3056 if (IS_ERR(inode)) 2982 return ERR_CAST(inode); 3057 return ERR_CAST(inode); 2983 3058 2984 BUG_ON(!d_unhashed(dentry)); 3059 BUG_ON(!d_unhashed(dentry)); 2985 3060 2986 if (!inode) 3061 if (!inode) 2987 goto out; 3062 goto out; 2988 3063 2989 security_d_instantiate(dentry, inode) 3064 security_d_instantiate(dentry, inode); 2990 spin_lock(&inode->i_lock); 3065 spin_lock(&inode->i_lock); 2991 if (S_ISDIR(inode->i_mode)) { 3066 if (S_ISDIR(inode->i_mode)) { 2992 struct dentry *new = __d_find 3067 struct dentry *new = __d_find_any_alias(inode); 2993 if (unlikely(new)) { 3068 if (unlikely(new)) { 2994 /* The reference to n 3069 /* The reference to new ensures it remains an alias */ 2995 spin_unlock(&inode->i 3070 spin_unlock(&inode->i_lock); 2996 write_seqlock(&rename 3071 write_seqlock(&rename_lock); 2997 if (unlikely(d_ancest 3072 if (unlikely(d_ancestor(new, dentry))) { 2998 write_sequnlo 3073 write_sequnlock(&rename_lock); 2999 dput(new); 3074 dput(new); 3000 new = ERR_PTR 3075 new = ERR_PTR(-ELOOP); 3001 pr_warn_ratel 3076 pr_warn_ratelimited( 3002 "VFS: 3077 "VFS: Lookup of '%s' in %s %s" 3003 " wou 3078 " would have caused loop\n", 3004 dentr 3079 dentry->d_name.name, 3005 inode 3080 inode->i_sb->s_type->name, 3006 inode 3081 inode->i_sb->s_id); 3007 } else if (!IS_ROOT(n 3082 } else if (!IS_ROOT(new)) { 3008 struct dentry 3083 struct dentry *old_parent = dget(new->d_parent); 3009 int err = __d !! 3084 int err = __d_unalias(inode, dentry, new); 3010 write_sequnlo 3085 write_sequnlock(&rename_lock); 3011 if (err) { 3086 if (err) { 3012 dput( 3087 dput(new); 3013 new = 3088 new = ERR_PTR(err); 3014 } 3089 } 3015 dput(old_pare 3090 dput(old_parent); 3016 } else { 3091 } else { 3017 __d_move(new, 3092 __d_move(new, dentry, false); 3018 write_sequnlo 3093 write_sequnlock(&rename_lock); 3019 } 3094 } 3020 iput(inode); 3095 iput(inode); 3021 return new; 3096 return new; 3022 } 3097 } 3023 } 3098 } 3024 out: 3099 out: 3025 __d_add(dentry, inode); 3100 __d_add(dentry, inode); 3026 return NULL; 3101 return NULL; 3027 } 3102 } 3028 EXPORT_SYMBOL(d_splice_alias); 3103 EXPORT_SYMBOL(d_splice_alias); 3029 3104 3030 /* 3105 /* 3031 * Test whether new_dentry is a subdirectory 3106 * Test whether new_dentry is a subdirectory of old_dentry. 3032 * 3107 * 3033 * Trivially implemented using the dcache str 3108 * Trivially implemented using the dcache structure 3034 */ 3109 */ 3035 3110 3036 /** 3111 /** 3037 * is_subdir - is new dentry a subdirectory o 3112 * is_subdir - is new dentry a subdirectory of old_dentry 3038 * @new_dentry: new dentry 3113 * @new_dentry: new dentry 3039 * @old_dentry: old dentry 3114 * @old_dentry: old dentry 3040 * 3115 * 3041 * Returns true if new_dentry is a subdirecto 3116 * Returns true if new_dentry is a subdirectory of the parent (at any depth). 3042 * Returns false otherwise. 3117 * Returns false otherwise. 3043 * Caller must ensure that "new_dentry" is pi 3118 * Caller must ensure that "new_dentry" is pinned before calling is_subdir() 3044 */ 3119 */ 3045 3120 3046 bool is_subdir(struct dentry *new_dentry, str 3121 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry) 3047 { 3122 { 3048 bool subdir; !! 3123 bool result; 3049 unsigned seq; 3124 unsigned seq; 3050 3125 3051 if (new_dentry == old_dentry) 3126 if (new_dentry == old_dentry) 3052 return true; 3127 return true; 3053 3128 3054 /* Access d_parent under rcu as d_mov !! 3129 do { 3055 rcu_read_lock(); !! 3130 /* for restarting inner loop in case of seq retry */ 3056 seq = read_seqbegin(&rename_lock); !! 3131 seq = read_seqbegin(&rename_lock); 3057 subdir = d_ancestor(old_dentry, new_d !! 3132 /* 3058 /* Try lockless once... */ !! 3133 * Need rcu_readlock to protect against the d_parent trashing 3059 if (read_seqretry(&rename_lock, seq)) !! 3134 * due to d_move 3060 /* ...else acquire lock for p !! 3135 */ 3061 read_seqlock_excl(&rename_loc !! 3136 rcu_read_lock(); 3062 subdir = d_ancestor(old_dentr !! 3137 if (d_ancestor(old_dentry, new_dentry)) 3063 read_sequnlock_excl(&rename_l !! 3138 result = true; 3064 } !! 3139 else 3065 rcu_read_unlock(); !! 3140 result = false; 3066 return subdir; !! 3141 rcu_read_unlock(); >> 3142 } while (read_seqretry(&rename_lock, seq)); >> 3143 >> 3144 return result; 3067 } 3145 } 3068 EXPORT_SYMBOL(is_subdir); 3146 EXPORT_SYMBOL(is_subdir); 3069 3147 3070 static enum d_walk_ret d_genocide_kill(void * 3148 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry) 3071 { 3149 { 3072 struct dentry *root = data; 3150 struct dentry *root = data; 3073 if (dentry != root) { 3151 if (dentry != root) { 3074 if (d_unhashed(dentry) || !de 3152 if (d_unhashed(dentry) || !dentry->d_inode) 3075 return D_WALK_SKIP; 3153 return D_WALK_SKIP; 3076 3154 3077 if (!(dentry->d_flags & DCACH 3155 if (!(dentry->d_flags & DCACHE_GENOCIDE)) { 3078 dentry->d_flags |= DC 3156 dentry->d_flags |= DCACHE_GENOCIDE; 3079 dentry->d_lockref.cou 3157 dentry->d_lockref.count--; 3080 } 3158 } 3081 } 3159 } 3082 return D_WALK_CONTINUE; 3160 return D_WALK_CONTINUE; 3083 } 3161 } 3084 3162 3085 void d_genocide(struct dentry *parent) 3163 void d_genocide(struct dentry *parent) 3086 { 3164 { 3087 d_walk(parent, parent, d_genocide_kil 3165 d_walk(parent, parent, d_genocide_kill); 3088 } 3166 } 3089 3167 3090 void d_mark_tmpfile(struct file *file, struct !! 3168 EXPORT_SYMBOL(d_genocide); 3091 { << 3092 struct dentry *dentry = file->f_path. << 3093 3169 >> 3170 void d_tmpfile(struct dentry *dentry, struct inode *inode) >> 3171 { >> 3172 inode_dec_link_count(inode); 3094 BUG_ON(dentry->d_name.name != dentry- 3173 BUG_ON(dentry->d_name.name != dentry->d_iname || 3095 !hlist_unhashed(&dentry->d_u. 3174 !hlist_unhashed(&dentry->d_u.d_alias) || 3096 !d_unlinked(dentry)); 3175 !d_unlinked(dentry)); 3097 spin_lock(&dentry->d_parent->d_lock); 3176 spin_lock(&dentry->d_parent->d_lock); 3098 spin_lock_nested(&dentry->d_lock, DEN 3177 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 3099 dentry->d_name.len = sprintf(dentry-> 3178 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu", 3100 (unsigned lon 3179 (unsigned long long)inode->i_ino); 3101 spin_unlock(&dentry->d_lock); 3180 spin_unlock(&dentry->d_lock); 3102 spin_unlock(&dentry->d_parent->d_lock 3181 spin_unlock(&dentry->d_parent->d_lock); 3103 } << 3104 EXPORT_SYMBOL(d_mark_tmpfile); << 3105 << 3106 void d_tmpfile(struct file *file, struct inod << 3107 { << 3108 struct dentry *dentry = file->f_path. << 3109 << 3110 inode_dec_link_count(inode); << 3111 d_mark_tmpfile(file, inode); << 3112 d_instantiate(dentry, inode); 3182 d_instantiate(dentry, inode); 3113 } 3183 } 3114 EXPORT_SYMBOL(d_tmpfile); 3184 EXPORT_SYMBOL(d_tmpfile); 3115 3185 3116 /* << 3117 * Obtain inode number of the parent dentry. << 3118 */ << 3119 ino_t d_parent_ino(struct dentry *dentry) << 3120 { << 3121 struct dentry *parent; << 3122 struct inode *iparent; << 3123 unsigned seq; << 3124 ino_t ret; << 3125 << 3126 scoped_guard(rcu) { << 3127 seq = raw_seqcount_begin(&den << 3128 parent = READ_ONCE(dentry->d_ << 3129 iparent = d_inode_rcu(parent) << 3130 if (likely(iparent)) { << 3131 ret = iparent->i_ino; << 3132 if (!read_seqcount_re << 3133 return ret; << 3134 } << 3135 } << 3136 << 3137 spin_lock(&dentry->d_lock); << 3138 ret = dentry->d_parent->d_inode->i_in << 3139 spin_unlock(&dentry->d_lock); << 3140 return ret; << 3141 } << 3142 EXPORT_SYMBOL(d_parent_ino); << 3143 << 3144 static __initdata unsigned long dhash_entries 3186 static __initdata unsigned long dhash_entries; 3145 static int __init set_dhash_entries(char *str 3187 static int __init set_dhash_entries(char *str) 3146 { 3188 { 3147 if (!str) 3189 if (!str) 3148 return 0; 3190 return 0; 3149 dhash_entries = simple_strtoul(str, & 3191 dhash_entries = simple_strtoul(str, &str, 0); 3150 return 1; 3192 return 1; 3151 } 3193 } 3152 __setup("dhash_entries=", set_dhash_entries); 3194 __setup("dhash_entries=", set_dhash_entries); 3153 3195 3154 static void __init dcache_init_early(void) 3196 static void __init dcache_init_early(void) 3155 { 3197 { 3156 /* If hashes are distributed across N 3198 /* If hashes are distributed across NUMA nodes, defer 3157 * hash allocation until vmalloc spac 3199 * hash allocation until vmalloc space is available. 3158 */ 3200 */ 3159 if (hashdist) 3201 if (hashdist) 3160 return; 3202 return; 3161 3203 3162 dentry_hashtable = 3204 dentry_hashtable = 3163 alloc_large_system_hash("Dent 3205 alloc_large_system_hash("Dentry cache", 3164 sizeo 3206 sizeof(struct hlist_bl_head), 3165 dhash 3207 dhash_entries, 3166 13, 3208 13, 3167 HASH_ 3209 HASH_EARLY | HASH_ZERO, 3168 &d_ha 3210 &d_hash_shift, 3169 NULL, 3211 NULL, 3170 0, 3212 0, 3171 0); 3213 0); 3172 d_hash_shift = 32 - d_hash_shift; 3214 d_hash_shift = 32 - d_hash_shift; 3173 << 3174 runtime_const_init(shift, d_hash_shif << 3175 runtime_const_init(ptr, dentry_hashta << 3176 } 3215 } 3177 3216 3178 static void __init dcache_init(void) 3217 static void __init dcache_init(void) 3179 { 3218 { 3180 /* 3219 /* 3181 * A constructor could be added for s 3220 * A constructor could be added for stable state like the lists, 3182 * but it is probably not worth it be 3221 * but it is probably not worth it because of the cache nature 3183 * of the dcache. 3222 * of the dcache. 3184 */ 3223 */ 3185 dentry_cache = KMEM_CACHE_USERCOPY(de 3224 dentry_cache = KMEM_CACHE_USERCOPY(dentry, 3186 SLAB_RECLAIM_ACCOUNT|SLAB_PAN !! 3225 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT, 3187 d_iname); 3226 d_iname); 3188 3227 3189 /* Hash may have been set up in dcach 3228 /* Hash may have been set up in dcache_init_early */ 3190 if (!hashdist) 3229 if (!hashdist) 3191 return; 3230 return; 3192 3231 3193 dentry_hashtable = 3232 dentry_hashtable = 3194 alloc_large_system_hash("Dent 3233 alloc_large_system_hash("Dentry cache", 3195 sizeo 3234 sizeof(struct hlist_bl_head), 3196 dhash 3235 dhash_entries, 3197 13, 3236 13, 3198 HASH_ 3237 HASH_ZERO, 3199 &d_ha 3238 &d_hash_shift, 3200 NULL, 3239 NULL, 3201 0, 3240 0, 3202 0); 3241 0); 3203 d_hash_shift = 32 - d_hash_shift; 3242 d_hash_shift = 32 - d_hash_shift; 3204 << 3205 runtime_const_init(shift, d_hash_shif << 3206 runtime_const_init(ptr, dentry_hashta << 3207 } 3243 } 3208 3244 3209 /* SLAB cache for __getname() consumers */ 3245 /* SLAB cache for __getname() consumers */ 3210 struct kmem_cache *names_cachep __ro_after_in !! 3246 struct kmem_cache *names_cachep __read_mostly; 3211 EXPORT_SYMBOL(names_cachep); 3247 EXPORT_SYMBOL(names_cachep); 3212 3248 3213 void __init vfs_caches_init_early(void) 3249 void __init vfs_caches_init_early(void) 3214 { 3250 { 3215 int i; 3251 int i; 3216 3252 3217 for (i = 0; i < ARRAY_SIZE(in_lookup_ 3253 for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++) 3218 INIT_HLIST_BL_HEAD(&in_lookup 3254 INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]); 3219 3255 3220 dcache_init_early(); 3256 dcache_init_early(); 3221 inode_init_early(); 3257 inode_init_early(); 3222 } 3258 } 3223 3259 3224 void __init vfs_caches_init(void) 3260 void __init vfs_caches_init(void) 3225 { 3261 { 3226 names_cachep = kmem_cache_create_user 3262 names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0, 3227 SLAB_HWCACHE_ALIGN|SL 3263 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL); 3228 3264 3229 dcache_init(); 3265 dcache_init(); 3230 inode_init(); 3266 inode_init(); 3231 files_init(); 3267 files_init(); 3232 files_maxfiles_init(); 3268 files_maxfiles_init(); 3233 mnt_init(); 3269 mnt_init(); 3234 bdev_cache_init(); 3270 bdev_cache_init(); 3235 chrdev_init(); 3271 chrdev_init(); 3236 } 3272 } 3237 3273
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.