1 // SPDX-License-Identifier: GPL-2.0-only 1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 2 /* 3 * fs/dcache.c 3 * fs/dcache.c 4 * 4 * 5 * Complete reimplementation 5 * Complete reimplementation 6 * (C) 1997 Thomas Schoebel-Theuer, 6 * (C) 1997 Thomas Schoebel-Theuer, 7 * with heavy changes by Linus Torvalds 7 * with heavy changes by Linus Torvalds 8 */ 8 */ 9 9 10 /* 10 /* 11 * Notes on the allocation strategy: 11 * Notes on the allocation strategy: 12 * 12 * 13 * The dcache is a master of the icache - when 13 * The dcache is a master of the icache - whenever a dcache entry 14 * exists, the inode will always exist. "iput( 14 * exists, the inode will always exist. "iput()" is done either when 15 * the dcache entry is deleted or garbage coll 15 * the dcache entry is deleted or garbage collected. 16 */ 16 */ 17 17 18 #include <linux/ratelimit.h> 18 #include <linux/ratelimit.h> 19 #include <linux/string.h> 19 #include <linux/string.h> 20 #include <linux/mm.h> 20 #include <linux/mm.h> 21 #include <linux/fs.h> 21 #include <linux/fs.h> 22 #include <linux/fscrypt.h> 22 #include <linux/fscrypt.h> 23 #include <linux/fsnotify.h> 23 #include <linux/fsnotify.h> 24 #include <linux/slab.h> 24 #include <linux/slab.h> 25 #include <linux/init.h> 25 #include <linux/init.h> 26 #include <linux/hash.h> 26 #include <linux/hash.h> 27 #include <linux/cache.h> 27 #include <linux/cache.h> 28 #include <linux/export.h> 28 #include <linux/export.h> 29 #include <linux/security.h> 29 #include <linux/security.h> 30 #include <linux/seqlock.h> 30 #include <linux/seqlock.h> 31 #include <linux/memblock.h> 31 #include <linux/memblock.h> 32 #include <linux/bit_spinlock.h> 32 #include <linux/bit_spinlock.h> 33 #include <linux/rculist_bl.h> 33 #include <linux/rculist_bl.h> 34 #include <linux/list_lru.h> 34 #include <linux/list_lru.h> 35 #include "internal.h" 35 #include "internal.h" 36 #include "mount.h" 36 #include "mount.h" 37 37 38 #include <asm/runtime-const.h> << 39 << 40 /* 38 /* 41 * Usage: 39 * Usage: 42 * dcache->d_inode->i_lock protects: 40 * dcache->d_inode->i_lock protects: 43 * - i_dentry, d_u.d_alias, d_inode of alias 41 * - i_dentry, d_u.d_alias, d_inode of aliases 44 * dcache_hash_bucket lock protects: 42 * dcache_hash_bucket lock protects: 45 * - the dcache hash table 43 * - the dcache hash table 46 * s_roots bl list spinlock protects: 44 * s_roots bl list spinlock protects: 47 * - the s_roots list (see __d_drop) 45 * - the s_roots list (see __d_drop) 48 * dentry->d_sb->s_dentry_lru_lock protects: 46 * dentry->d_sb->s_dentry_lru_lock protects: 49 * - the dcache lru lists and counters 47 * - the dcache lru lists and counters 50 * d_lock protects: 48 * d_lock protects: 51 * - d_flags 49 * - d_flags 52 * - d_name 50 * - d_name 53 * - d_lru 51 * - d_lru 54 * - d_count 52 * - d_count 55 * - d_unhashed() 53 * - d_unhashed() 56 * - d_parent and d_chilren !! 54 * - d_parent and d_subdirs 57 * - childrens' d_sib and d_parent !! 55 * - childrens' d_child and d_parent 58 * - d_u.d_alias, d_inode 56 * - d_u.d_alias, d_inode 59 * 57 * 60 * Ordering: 58 * Ordering: 61 * dentry->d_inode->i_lock 59 * dentry->d_inode->i_lock 62 * dentry->d_lock 60 * dentry->d_lock 63 * dentry->d_sb->s_dentry_lru_lock 61 * dentry->d_sb->s_dentry_lru_lock 64 * dcache_hash_bucket lock 62 * dcache_hash_bucket lock 65 * s_roots lock 63 * s_roots lock 66 * 64 * 67 * If there is an ancestor relationship: 65 * If there is an ancestor relationship: 68 * dentry->d_parent->...->d_parent->d_lock 66 * dentry->d_parent->...->d_parent->d_lock 69 * ... 67 * ... 70 * dentry->d_parent->d_lock 68 * dentry->d_parent->d_lock 71 * dentry->d_lock 69 * dentry->d_lock 72 * 70 * 73 * If no ancestor relationship: 71 * If no ancestor relationship: 74 * arbitrary, since it's serialized on rename_ 72 * arbitrary, since it's serialized on rename_lock 75 */ 73 */ 76 int sysctl_vfs_cache_pressure __read_mostly = 74 int sysctl_vfs_cache_pressure __read_mostly = 100; 77 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure); 75 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure); 78 76 79 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rena 77 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock); 80 78 81 EXPORT_SYMBOL(rename_lock); 79 EXPORT_SYMBOL(rename_lock); 82 80 83 static struct kmem_cache *dentry_cache __ro_af !! 81 static struct kmem_cache *dentry_cache __read_mostly; 84 82 85 const struct qstr empty_name = QSTR_INIT("", 0 83 const struct qstr empty_name = QSTR_INIT("", 0); 86 EXPORT_SYMBOL(empty_name); 84 EXPORT_SYMBOL(empty_name); 87 const struct qstr slash_name = QSTR_INIT("/", 85 const struct qstr slash_name = QSTR_INIT("/", 1); 88 EXPORT_SYMBOL(slash_name); 86 EXPORT_SYMBOL(slash_name); 89 const struct qstr dotdot_name = QSTR_INIT(".." << 90 EXPORT_SYMBOL(dotdot_name); << 91 87 92 /* 88 /* 93 * This is the single most critical data struc 89 * This is the single most critical data structure when it comes 94 * to the dcache: the hashtable for lookups. S 90 * to the dcache: the hashtable for lookups. Somebody should try 95 * to make this good - I've just made it work. 91 * to make this good - I've just made it work. 96 * 92 * 97 * This hash-function tries to avoid losing to 93 * This hash-function tries to avoid losing too many bits of hash 98 * information, yet avoid using a prime hash-s 94 * information, yet avoid using a prime hash-size or similar. 99 * << 100 * Marking the variables "used" ensures that t << 101 * optimize them away completely on architectu << 102 * constant infrastructure, this allows debugg << 103 * values. But updating these values has no ef << 104 */ 95 */ 105 96 106 static unsigned int d_hash_shift __ro_after_in !! 97 static unsigned int d_hash_shift __read_mostly; 107 98 108 static struct hlist_bl_head *dentry_hashtable !! 99 static struct hlist_bl_head *dentry_hashtable __read_mostly; 109 100 110 static inline struct hlist_bl_head *d_hash(uns !! 101 static inline struct hlist_bl_head *d_hash(unsigned int hash) 111 { 102 { 112 return runtime_const_ptr(dentry_hashta !! 103 return dentry_hashtable + (hash >> d_hash_shift); 113 runtime_const_shift_right_32(h << 114 } 104 } 115 105 116 #define IN_LOOKUP_SHIFT 10 106 #define IN_LOOKUP_SHIFT 10 117 static struct hlist_bl_head in_lookup_hashtabl 107 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT]; 118 108 119 static inline struct hlist_bl_head *in_lookup_ 109 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent, 120 unsign 110 unsigned int hash) 121 { 111 { 122 hash += (unsigned long) parent / L1_CA 112 hash += (unsigned long) parent / L1_CACHE_BYTES; 123 return in_lookup_hashtable + hash_32(h 113 return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT); 124 } 114 } 125 115 126 struct dentry_stat_t { !! 116 127 long nr_dentry; !! 117 /* Statistics gathering. */ 128 long nr_unused; !! 118 struct dentry_stat_t dentry_stat = { 129 long age_limit; /* age in seco !! 119 .age_limit = 45, 130 long want_pages; /* pages reque << 131 long nr_negative; /* # of unused << 132 long dummy; /* Reserved fo << 133 }; 120 }; 134 121 135 static DEFINE_PER_CPU(long, nr_dentry); 122 static DEFINE_PER_CPU(long, nr_dentry); 136 static DEFINE_PER_CPU(long, nr_dentry_unused); 123 static DEFINE_PER_CPU(long, nr_dentry_unused); 137 static DEFINE_PER_CPU(long, nr_dentry_negative 124 static DEFINE_PER_CPU(long, nr_dentry_negative); 138 125 139 #if defined(CONFIG_SYSCTL) && defined(CONFIG_P 126 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS) 140 /* Statistics gathering. */ << 141 static struct dentry_stat_t dentry_stat = { << 142 .age_limit = 45, << 143 }; << 144 127 145 /* 128 /* 146 * Here we resort to our own counters instead 129 * Here we resort to our own counters instead of using generic per-cpu counters 147 * for consistency with what the vfs inode cod 130 * for consistency with what the vfs inode code does. We are expected to harvest 148 * better code and performance by having our o 131 * better code and performance by having our own specialized counters. 149 * 132 * 150 * Please note that the loop is done over all 133 * Please note that the loop is done over all possible CPUs, not over all online 151 * CPUs. The reason for this is that we don't 134 * CPUs. The reason for this is that we don't want to play games with CPUs going 152 * on and off. If one of them goes off, we wil 135 * on and off. If one of them goes off, we will just keep their counters. 153 * 136 * 154 * glommer: See cffbc8a for details, and if yo 137 * glommer: See cffbc8a for details, and if you ever intend to change this, 155 * please update all vfs counters to match. 138 * please update all vfs counters to match. 156 */ 139 */ 157 static long get_nr_dentry(void) 140 static long get_nr_dentry(void) 158 { 141 { 159 int i; 142 int i; 160 long sum = 0; 143 long sum = 0; 161 for_each_possible_cpu(i) 144 for_each_possible_cpu(i) 162 sum += per_cpu(nr_dentry, i); 145 sum += per_cpu(nr_dentry, i); 163 return sum < 0 ? 0 : sum; 146 return sum < 0 ? 0 : sum; 164 } 147 } 165 148 166 static long get_nr_dentry_unused(void) 149 static long get_nr_dentry_unused(void) 167 { 150 { 168 int i; 151 int i; 169 long sum = 0; 152 long sum = 0; 170 for_each_possible_cpu(i) 153 for_each_possible_cpu(i) 171 sum += per_cpu(nr_dentry_unuse 154 sum += per_cpu(nr_dentry_unused, i); 172 return sum < 0 ? 0 : sum; 155 return sum < 0 ? 0 : sum; 173 } 156 } 174 157 175 static long get_nr_dentry_negative(void) 158 static long get_nr_dentry_negative(void) 176 { 159 { 177 int i; 160 int i; 178 long sum = 0; 161 long sum = 0; 179 162 180 for_each_possible_cpu(i) 163 for_each_possible_cpu(i) 181 sum += per_cpu(nr_dentry_negat 164 sum += per_cpu(nr_dentry_negative, i); 182 return sum < 0 ? 0 : sum; 165 return sum < 0 ? 0 : sum; 183 } 166 } 184 167 185 static int proc_nr_dentry(const struct ctl_tab !! 168 int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer, 186 size_t *lenp, loff_t !! 169 size_t *lenp, loff_t *ppos) 187 { 170 { 188 dentry_stat.nr_dentry = get_nr_dentry( 171 dentry_stat.nr_dentry = get_nr_dentry(); 189 dentry_stat.nr_unused = get_nr_dentry_ 172 dentry_stat.nr_unused = get_nr_dentry_unused(); 190 dentry_stat.nr_negative = get_nr_dentr 173 dentry_stat.nr_negative = get_nr_dentry_negative(); 191 return proc_doulongvec_minmax(table, w 174 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 192 } 175 } 193 << 194 static struct ctl_table fs_dcache_sysctls[] = << 195 { << 196 .procname = "dentry-stat << 197 .data = &dentry_stat << 198 .maxlen = 6*sizeof(lon << 199 .mode = 0444, << 200 .proc_handler = proc_nr_dent << 201 }, << 202 }; << 203 << 204 static int __init init_fs_dcache_sysctls(void) << 205 { << 206 register_sysctl_init("fs", fs_dcache_s << 207 return 0; << 208 } << 209 fs_initcall(init_fs_dcache_sysctls); << 210 #endif 176 #endif 211 177 212 /* 178 /* 213 * Compare 2 name strings, return 0 if they ma 179 * Compare 2 name strings, return 0 if they match, otherwise non-zero. 214 * The strings are both count bytes long, and 180 * The strings are both count bytes long, and count is non-zero. 215 */ 181 */ 216 #ifdef CONFIG_DCACHE_WORD_ACCESS 182 #ifdef CONFIG_DCACHE_WORD_ACCESS 217 183 218 #include <asm/word-at-a-time.h> 184 #include <asm/word-at-a-time.h> 219 /* 185 /* 220 * NOTE! 'cs' and 'scount' come from a dentry, 186 * NOTE! 'cs' and 'scount' come from a dentry, so it has a 221 * aligned allocation for this particular comp 187 * aligned allocation for this particular component. We don't 222 * strictly need the load_unaligned_zeropad() 188 * strictly need the load_unaligned_zeropad() safety, but it 223 * doesn't hurt either. 189 * doesn't hurt either. 224 * 190 * 225 * In contrast, 'ct' and 'tcount' can be from 191 * In contrast, 'ct' and 'tcount' can be from a pathname, and do 226 * need the careful unaligned handling. 192 * need the careful unaligned handling. 227 */ 193 */ 228 static inline int dentry_string_cmp(const unsi 194 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount) 229 { 195 { 230 unsigned long a,b,mask; 196 unsigned long a,b,mask; 231 197 232 for (;;) { 198 for (;;) { 233 a = read_word_at_a_time(cs); 199 a = read_word_at_a_time(cs); 234 b = load_unaligned_zeropad(ct) 200 b = load_unaligned_zeropad(ct); 235 if (tcount < sizeof(unsigned l 201 if (tcount < sizeof(unsigned long)) 236 break; 202 break; 237 if (unlikely(a != b)) 203 if (unlikely(a != b)) 238 return 1; 204 return 1; 239 cs += sizeof(unsigned long); 205 cs += sizeof(unsigned long); 240 ct += sizeof(unsigned long); 206 ct += sizeof(unsigned long); 241 tcount -= sizeof(unsigned long 207 tcount -= sizeof(unsigned long); 242 if (!tcount) 208 if (!tcount) 243 return 0; 209 return 0; 244 } 210 } 245 mask = bytemask_from_count(tcount); 211 mask = bytemask_from_count(tcount); 246 return unlikely(!!((a ^ b) & mask)); 212 return unlikely(!!((a ^ b) & mask)); 247 } 213 } 248 214 249 #else 215 #else 250 216 251 static inline int dentry_string_cmp(const unsi 217 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount) 252 { 218 { 253 do { 219 do { 254 if (*cs != *ct) 220 if (*cs != *ct) 255 return 1; 221 return 1; 256 cs++; 222 cs++; 257 ct++; 223 ct++; 258 tcount--; 224 tcount--; 259 } while (tcount); 225 } while (tcount); 260 return 0; 226 return 0; 261 } 227 } 262 228 263 #endif 229 #endif 264 230 265 static inline int dentry_cmp(const struct dent 231 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount) 266 { 232 { 267 /* 233 /* 268 * Be careful about RCU walk racing wi 234 * Be careful about RCU walk racing with rename: 269 * use 'READ_ONCE' to fetch the name p 235 * use 'READ_ONCE' to fetch the name pointer. 270 * 236 * 271 * NOTE! Even if a rename will mean th 237 * NOTE! Even if a rename will mean that the length 272 * was not loaded atomically, we don't 238 * was not loaded atomically, we don't care. The 273 * RCU walk will check the sequence co 239 * RCU walk will check the sequence count eventually, 274 * and catch it. And we won't overrun 240 * and catch it. And we won't overrun the buffer, 275 * because we're reading the name poin 241 * because we're reading the name pointer atomically, 276 * and a dentry name is guaranteed to 242 * and a dentry name is guaranteed to be properly 277 * terminated with a NUL byte. 243 * terminated with a NUL byte. 278 * 244 * 279 * End result: even if 'len' is wrong, 245 * End result: even if 'len' is wrong, we'll exit 280 * early because the data cannot match 246 * early because the data cannot match (there can 281 * be no NUL in the ct/tcount data) 247 * be no NUL in the ct/tcount data) 282 */ 248 */ 283 const unsigned char *cs = READ_ONCE(de 249 const unsigned char *cs = READ_ONCE(dentry->d_name.name); 284 250 285 return dentry_string_cmp(cs, ct, tcoun 251 return dentry_string_cmp(cs, ct, tcount); 286 } 252 } 287 253 288 struct external_name { 254 struct external_name { 289 union { 255 union { 290 atomic_t count; 256 atomic_t count; 291 struct rcu_head head; 257 struct rcu_head head; 292 } u; 258 } u; 293 unsigned char name[]; 259 unsigned char name[]; 294 }; 260 }; 295 261 296 static inline struct external_name *external_n 262 static inline struct external_name *external_name(struct dentry *dentry) 297 { 263 { 298 return container_of(dentry->d_name.nam 264 return container_of(dentry->d_name.name, struct external_name, name[0]); 299 } 265 } 300 266 301 static void __d_free(struct rcu_head *head) 267 static void __d_free(struct rcu_head *head) 302 { 268 { 303 struct dentry *dentry = container_of(h 269 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu); 304 270 305 kmem_cache_free(dentry_cache, dentry); 271 kmem_cache_free(dentry_cache, dentry); 306 } 272 } 307 273 308 static void __d_free_external(struct rcu_head 274 static void __d_free_external(struct rcu_head *head) 309 { 275 { 310 struct dentry *dentry = container_of(h 276 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu); 311 kfree(external_name(dentry)); 277 kfree(external_name(dentry)); 312 kmem_cache_free(dentry_cache, dentry); 278 kmem_cache_free(dentry_cache, dentry); 313 } 279 } 314 280 315 static inline int dname_external(const struct 281 static inline int dname_external(const struct dentry *dentry) 316 { 282 { 317 return dentry->d_name.name != dentry-> 283 return dentry->d_name.name != dentry->d_iname; 318 } 284 } 319 285 320 void take_dentry_name_snapshot(struct name_sna 286 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry) 321 { 287 { 322 spin_lock(&dentry->d_lock); 288 spin_lock(&dentry->d_lock); 323 name->name = dentry->d_name; 289 name->name = dentry->d_name; 324 if (unlikely(dname_external(dentry))) 290 if (unlikely(dname_external(dentry))) { 325 atomic_inc(&external_name(dent 291 atomic_inc(&external_name(dentry)->u.count); 326 } else { 292 } else { 327 memcpy(name->inline_name, dent 293 memcpy(name->inline_name, dentry->d_iname, 328 dentry->d_name.len + 1) 294 dentry->d_name.len + 1); 329 name->name.name = name->inline 295 name->name.name = name->inline_name; 330 } 296 } 331 spin_unlock(&dentry->d_lock); 297 spin_unlock(&dentry->d_lock); 332 } 298 } 333 EXPORT_SYMBOL(take_dentry_name_snapshot); 299 EXPORT_SYMBOL(take_dentry_name_snapshot); 334 300 335 void release_dentry_name_snapshot(struct name_ 301 void release_dentry_name_snapshot(struct name_snapshot *name) 336 { 302 { 337 if (unlikely(name->name.name != name-> 303 if (unlikely(name->name.name != name->inline_name)) { 338 struct external_name *p; 304 struct external_name *p; 339 p = container_of(name->name.na 305 p = container_of(name->name.name, struct external_name, name[0]); 340 if (unlikely(atomic_dec_and_te 306 if (unlikely(atomic_dec_and_test(&p->u.count))) 341 kfree_rcu(p, u.head); 307 kfree_rcu(p, u.head); 342 } 308 } 343 } 309 } 344 EXPORT_SYMBOL(release_dentry_name_snapshot); 310 EXPORT_SYMBOL(release_dentry_name_snapshot); 345 311 346 static inline void __d_set_inode_and_type(stru 312 static inline void __d_set_inode_and_type(struct dentry *dentry, 347 stru 313 struct inode *inode, 348 unsi 314 unsigned type_flags) 349 { 315 { 350 unsigned flags; 316 unsigned flags; 351 317 352 dentry->d_inode = inode; 318 dentry->d_inode = inode; 353 flags = READ_ONCE(dentry->d_flags); 319 flags = READ_ONCE(dentry->d_flags); 354 flags &= ~DCACHE_ENTRY_TYPE; !! 320 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU); 355 flags |= type_flags; 321 flags |= type_flags; 356 smp_store_release(&dentry->d_flags, fl 322 smp_store_release(&dentry->d_flags, flags); 357 } 323 } 358 324 359 static inline void __d_clear_type_and_inode(st 325 static inline void __d_clear_type_and_inode(struct dentry *dentry) 360 { 326 { 361 unsigned flags = READ_ONCE(dentry->d_f 327 unsigned flags = READ_ONCE(dentry->d_flags); 362 328 363 flags &= ~DCACHE_ENTRY_TYPE; !! 329 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU); 364 WRITE_ONCE(dentry->d_flags, flags); 330 WRITE_ONCE(dentry->d_flags, flags); 365 dentry->d_inode = NULL; 331 dentry->d_inode = NULL; 366 /* !! 332 if (dentry->d_flags & DCACHE_LRU_LIST) 367 * The negative counter only tracks de << 368 * d_lru is on another list. << 369 */ << 370 if ((flags & (DCACHE_LRU_LIST|DCACHE_S << 371 this_cpu_inc(nr_dentry_negativ 333 this_cpu_inc(nr_dentry_negative); 372 } 334 } 373 335 374 static void dentry_free(struct dentry *dentry) 336 static void dentry_free(struct dentry *dentry) 375 { 337 { 376 WARN_ON(!hlist_unhashed(&dentry->d_u.d 338 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias)); 377 if (unlikely(dname_external(dentry))) 339 if (unlikely(dname_external(dentry))) { 378 struct external_name *p = exte 340 struct external_name *p = external_name(dentry); 379 if (likely(atomic_dec_and_test 341 if (likely(atomic_dec_and_test(&p->u.count))) { 380 call_rcu(&dentry->d_u. 342 call_rcu(&dentry->d_u.d_rcu, __d_free_external); 381 return; 343 return; 382 } 344 } 383 } 345 } 384 /* if dentry was never visible to RCU, 346 /* if dentry was never visible to RCU, immediate free is OK */ 385 if (dentry->d_flags & DCACHE_NORCU) 347 if (dentry->d_flags & DCACHE_NORCU) 386 __d_free(&dentry->d_u.d_rcu); 348 __d_free(&dentry->d_u.d_rcu); 387 else 349 else 388 call_rcu(&dentry->d_u.d_rcu, _ 350 call_rcu(&dentry->d_u.d_rcu, __d_free); 389 } 351 } 390 352 391 /* 353 /* 392 * Release the dentry's inode, using the files 354 * Release the dentry's inode, using the filesystem 393 * d_iput() operation if defined. 355 * d_iput() operation if defined. 394 */ 356 */ 395 static void dentry_unlink_inode(struct dentry 357 static void dentry_unlink_inode(struct dentry * dentry) 396 __releases(dentry->d_lock) 358 __releases(dentry->d_lock) 397 __releases(dentry->d_inode->i_lock) 359 __releases(dentry->d_inode->i_lock) 398 { 360 { 399 struct inode *inode = dentry->d_inode; 361 struct inode *inode = dentry->d_inode; 400 362 401 raw_write_seqcount_begin(&dentry->d_se 363 raw_write_seqcount_begin(&dentry->d_seq); 402 __d_clear_type_and_inode(dentry); 364 __d_clear_type_and_inode(dentry); 403 hlist_del_init(&dentry->d_u.d_alias); 365 hlist_del_init(&dentry->d_u.d_alias); 404 raw_write_seqcount_end(&dentry->d_seq) 366 raw_write_seqcount_end(&dentry->d_seq); 405 spin_unlock(&dentry->d_lock); 367 spin_unlock(&dentry->d_lock); 406 spin_unlock(&inode->i_lock); 368 spin_unlock(&inode->i_lock); 407 if (!inode->i_nlink) 369 if (!inode->i_nlink) 408 fsnotify_inoderemove(inode); 370 fsnotify_inoderemove(inode); 409 if (dentry->d_op && dentry->d_op->d_ip 371 if (dentry->d_op && dentry->d_op->d_iput) 410 dentry->d_op->d_iput(dentry, i 372 dentry->d_op->d_iput(dentry, inode); 411 else 373 else 412 iput(inode); 374 iput(inode); 413 } 375 } 414 376 415 /* 377 /* 416 * The DCACHE_LRU_LIST bit is set whenever the 378 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry 417 * is in use - which includes both the "real" 379 * is in use - which includes both the "real" per-superblock 418 * LRU list _and_ the DCACHE_SHRINK_LIST use. 380 * LRU list _and_ the DCACHE_SHRINK_LIST use. 419 * 381 * 420 * The DCACHE_SHRINK_LIST bit is set whenever 382 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is 421 * on the shrink list (ie not on the superbloc 383 * on the shrink list (ie not on the superblock LRU list). 422 * 384 * 423 * The per-cpu "nr_dentry_unused" counters are 385 * The per-cpu "nr_dentry_unused" counters are updated with 424 * the DCACHE_LRU_LIST bit. 386 * the DCACHE_LRU_LIST bit. 425 * 387 * 426 * The per-cpu "nr_dentry_negative" counters a 388 * The per-cpu "nr_dentry_negative" counters are only updated 427 * when deleted from or added to the per-super 389 * when deleted from or added to the per-superblock LRU list, not 428 * from/to the shrink list. That is to avoid a 390 * from/to the shrink list. That is to avoid an unneeded dec/inc 429 * pair when moving from LRU to shrink list in 391 * pair when moving from LRU to shrink list in select_collect(). 430 * 392 * 431 * These helper functions make sure we always 393 * These helper functions make sure we always follow the 432 * rules. d_lock must be held by the caller. 394 * rules. d_lock must be held by the caller. 433 */ 395 */ 434 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(( 396 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x)) 435 static void d_lru_add(struct dentry *dentry) 397 static void d_lru_add(struct dentry *dentry) 436 { 398 { 437 D_FLAG_VERIFY(dentry, 0); 399 D_FLAG_VERIFY(dentry, 0); 438 dentry->d_flags |= DCACHE_LRU_LIST; 400 dentry->d_flags |= DCACHE_LRU_LIST; 439 this_cpu_inc(nr_dentry_unused); 401 this_cpu_inc(nr_dentry_unused); 440 if (d_is_negative(dentry)) 402 if (d_is_negative(dentry)) 441 this_cpu_inc(nr_dentry_negativ 403 this_cpu_inc(nr_dentry_negative); 442 WARN_ON_ONCE(!list_lru_add_obj( !! 404 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru)); 443 &dentry->d_sb->s_dentr << 444 } 405 } 445 406 446 static void d_lru_del(struct dentry *dentry) 407 static void d_lru_del(struct dentry *dentry) 447 { 408 { 448 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST) 409 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 449 dentry->d_flags &= ~DCACHE_LRU_LIST; 410 dentry->d_flags &= ~DCACHE_LRU_LIST; 450 this_cpu_dec(nr_dentry_unused); 411 this_cpu_dec(nr_dentry_unused); 451 if (d_is_negative(dentry)) 412 if (d_is_negative(dentry)) 452 this_cpu_dec(nr_dentry_negativ 413 this_cpu_dec(nr_dentry_negative); 453 WARN_ON_ONCE(!list_lru_del_obj( !! 414 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru)); 454 &dentry->d_sb->s_dentr << 455 } 415 } 456 416 457 static void d_shrink_del(struct dentry *dentry 417 static void d_shrink_del(struct dentry *dentry) 458 { 418 { 459 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LI 419 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST); 460 list_del_init(&dentry->d_lru); 420 list_del_init(&dentry->d_lru); 461 dentry->d_flags &= ~(DCACHE_SHRINK_LIS 421 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST); 462 this_cpu_dec(nr_dentry_unused); 422 this_cpu_dec(nr_dentry_unused); 463 } 423 } 464 424 465 static void d_shrink_add(struct dentry *dentry 425 static void d_shrink_add(struct dentry *dentry, struct list_head *list) 466 { 426 { 467 D_FLAG_VERIFY(dentry, 0); 427 D_FLAG_VERIFY(dentry, 0); 468 list_add(&dentry->d_lru, list); 428 list_add(&dentry->d_lru, list); 469 dentry->d_flags |= DCACHE_SHRINK_LIST 429 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST; 470 this_cpu_inc(nr_dentry_unused); 430 this_cpu_inc(nr_dentry_unused); 471 } 431 } 472 432 473 /* 433 /* 474 * These can only be called under the global L 434 * These can only be called under the global LRU lock, ie during the 475 * callback for freeing the LRU list. "isolate 435 * callback for freeing the LRU list. "isolate" removes it from the 476 * LRU lists entirely, while shrink_move moves 436 * LRU lists entirely, while shrink_move moves it to the indicated 477 * private list. 437 * private list. 478 */ 438 */ 479 static void d_lru_isolate(struct list_lru_one 439 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry) 480 { 440 { 481 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST) 441 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 482 dentry->d_flags &= ~DCACHE_LRU_LIST; 442 dentry->d_flags &= ~DCACHE_LRU_LIST; 483 this_cpu_dec(nr_dentry_unused); 443 this_cpu_dec(nr_dentry_unused); 484 if (d_is_negative(dentry)) 444 if (d_is_negative(dentry)) 485 this_cpu_dec(nr_dentry_negativ 445 this_cpu_dec(nr_dentry_negative); 486 list_lru_isolate(lru, &dentry->d_lru); 446 list_lru_isolate(lru, &dentry->d_lru); 487 } 447 } 488 448 489 static void d_lru_shrink_move(struct list_lru_ 449 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry, 490 struct list_head 450 struct list_head *list) 491 { 451 { 492 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST) 452 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 493 dentry->d_flags |= DCACHE_SHRINK_LIST; 453 dentry->d_flags |= DCACHE_SHRINK_LIST; 494 if (d_is_negative(dentry)) 454 if (d_is_negative(dentry)) 495 this_cpu_dec(nr_dentry_negativ 455 this_cpu_dec(nr_dentry_negative); 496 list_lru_isolate_move(lru, &dentry->d_ 456 list_lru_isolate_move(lru, &dentry->d_lru, list); 497 } 457 } 498 458 >> 459 /** >> 460 * d_drop - drop a dentry >> 461 * @dentry: dentry to drop >> 462 * >> 463 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't >> 464 * be found through a VFS lookup any more. Note that this is different from >> 465 * deleting the dentry - d_delete will try to mark the dentry negative if >> 466 * possible, giving a successful _negative_ lookup, while d_drop will >> 467 * just make the cache lookup fail. >> 468 * >> 469 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some >> 470 * reason (NFS timeouts or autofs deletes). >> 471 * >> 472 * __d_drop requires dentry->d_lock >> 473 * ___d_drop doesn't mark dentry as "unhashed" >> 474 * (dentry->d_hash.pprev will be LIST_POISON2, not NULL). >> 475 */ 499 static void ___d_drop(struct dentry *dentry) 476 static void ___d_drop(struct dentry *dentry) 500 { 477 { 501 struct hlist_bl_head *b; 478 struct hlist_bl_head *b; 502 /* 479 /* 503 * Hashed dentries are normally on the 480 * Hashed dentries are normally on the dentry hashtable, 504 * with the exception of those newly a 481 * with the exception of those newly allocated by 505 * d_obtain_root, which are always IS_ 482 * d_obtain_root, which are always IS_ROOT: 506 */ 483 */ 507 if (unlikely(IS_ROOT(dentry))) 484 if (unlikely(IS_ROOT(dentry))) 508 b = &dentry->d_sb->s_roots; 485 b = &dentry->d_sb->s_roots; 509 else 486 else 510 b = d_hash(dentry->d_name.hash 487 b = d_hash(dentry->d_name.hash); 511 488 512 hlist_bl_lock(b); 489 hlist_bl_lock(b); 513 __hlist_bl_del(&dentry->d_hash); 490 __hlist_bl_del(&dentry->d_hash); 514 hlist_bl_unlock(b); 491 hlist_bl_unlock(b); 515 } 492 } 516 493 517 void __d_drop(struct dentry *dentry) 494 void __d_drop(struct dentry *dentry) 518 { 495 { 519 if (!d_unhashed(dentry)) { 496 if (!d_unhashed(dentry)) { 520 ___d_drop(dentry); 497 ___d_drop(dentry); 521 dentry->d_hash.pprev = NULL; 498 dentry->d_hash.pprev = NULL; 522 write_seqcount_invalidate(&den 499 write_seqcount_invalidate(&dentry->d_seq); 523 } 500 } 524 } 501 } 525 EXPORT_SYMBOL(__d_drop); 502 EXPORT_SYMBOL(__d_drop); 526 503 527 /** << 528 * d_drop - drop a dentry << 529 * @dentry: dentry to drop << 530 * << 531 * d_drop() unhashes the entry from the parent << 532 * be found through a VFS lookup any more. Not << 533 * deleting the dentry - d_delete will try to << 534 * possible, giving a successful _negative_ lo << 535 * just make the cache lookup fail. << 536 * << 537 * d_drop() is used mainly for stuff that want << 538 * reason (NFS timeouts or autofs deletes). << 539 * << 540 * __d_drop requires dentry->d_lock << 541 * << 542 * ___d_drop doesn't mark dentry as "unhashed" << 543 * (dentry->d_hash.pprev will be LIST_POISON2, << 544 */ << 545 void d_drop(struct dentry *dentry) 504 void d_drop(struct dentry *dentry) 546 { 505 { 547 spin_lock(&dentry->d_lock); 506 spin_lock(&dentry->d_lock); 548 __d_drop(dentry); 507 __d_drop(dentry); 549 spin_unlock(&dentry->d_lock); 508 spin_unlock(&dentry->d_lock); 550 } 509 } 551 EXPORT_SYMBOL(d_drop); 510 EXPORT_SYMBOL(d_drop); 552 511 553 static inline void dentry_unlist(struct dentry !! 512 static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent) 554 { 513 { 555 struct dentry *next; 514 struct dentry *next; 556 /* 515 /* 557 * Inform d_walk() and shrink_dentry_l 516 * Inform d_walk() and shrink_dentry_list() that we are no longer 558 * attached to the dentry tree 517 * attached to the dentry tree 559 */ 518 */ 560 dentry->d_flags |= DCACHE_DENTRY_KILLE 519 dentry->d_flags |= DCACHE_DENTRY_KILLED; 561 if (unlikely(hlist_unhashed(&dentry->d !! 520 if (unlikely(list_empty(&dentry->d_child))) 562 return; 521 return; 563 __hlist_del(&dentry->d_sib); !! 522 __list_del_entry(&dentry->d_child); 564 /* 523 /* 565 * Cursors can move around the list of 524 * Cursors can move around the list of children. While we'd been 566 * a normal list member, it didn't mat !! 525 * a normal list member, it didn't matter - ->d_child.next would've 567 * been updated. However, from now on 526 * been updated. However, from now on it won't be and for the 568 * things like d_walk() it might end u 527 * things like d_walk() it might end up with a nasty surprise. 569 * Normally d_walk() doesn't care abou 528 * Normally d_walk() doesn't care about cursors moving around - 570 * ->d_lock on parent prevents that an 529 * ->d_lock on parent prevents that and since a cursor has no children 571 * of its own, we get through it witho 530 * of its own, we get through it without ever unlocking the parent. 572 * There is one exception, though - if 531 * There is one exception, though - if we ascend from a child that 573 * gets killed as soon as we unlock it 532 * gets killed as soon as we unlock it, the next sibling is found 574 * using the value left in its ->d_sib !! 533 * using the value left in its ->d_child.next. And if _that_ 575 * pointed to a cursor, and cursor got 534 * pointed to a cursor, and cursor got moved (e.g. by lseek()) 576 * before d_walk() regains parent->d_l 535 * before d_walk() regains parent->d_lock, we'll end up skipping 577 * everything the cursor had been move 536 * everything the cursor had been moved past. 578 * 537 * 579 * Solution: make sure that the pointe !! 538 * Solution: make sure that the pointer left behind in ->d_child.next 580 * points to something that won't be m 539 * points to something that won't be moving around. I.e. skip the 581 * cursors. 540 * cursors. 582 */ 541 */ 583 while (dentry->d_sib.next) { !! 542 while (dentry->d_child.next != &parent->d_subdirs) { 584 next = hlist_entry(dentry->d_s !! 543 next = list_entry(dentry->d_child.next, struct dentry, d_child); 585 if (likely(!(next->d_flags & D 544 if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR))) 586 break; 545 break; 587 dentry->d_sib.next = next->d_s !! 546 dentry->d_child.next = next->d_child.next; 588 } 547 } 589 } 548 } 590 549 591 static struct dentry *__dentry_kill(struct den !! 550 static void __dentry_kill(struct dentry *dentry) 592 { 551 { 593 struct dentry *parent = NULL; 552 struct dentry *parent = NULL; 594 bool can_free = true; 553 bool can_free = true; >> 554 if (!IS_ROOT(dentry)) >> 555 parent = dentry->d_parent; 595 556 596 /* 557 /* 597 * The dentry is now unrecoverably dea 558 * The dentry is now unrecoverably dead to the world. 598 */ 559 */ 599 lockref_mark_dead(&dentry->d_lockref); 560 lockref_mark_dead(&dentry->d_lockref); 600 561 601 /* 562 /* 602 * inform the fs via d_prune that this 563 * inform the fs via d_prune that this dentry is about to be 603 * unhashed and destroyed. 564 * unhashed and destroyed. 604 */ 565 */ 605 if (dentry->d_flags & DCACHE_OP_PRUNE) 566 if (dentry->d_flags & DCACHE_OP_PRUNE) 606 dentry->d_op->d_prune(dentry); 567 dentry->d_op->d_prune(dentry); 607 568 608 if (dentry->d_flags & DCACHE_LRU_LIST) 569 if (dentry->d_flags & DCACHE_LRU_LIST) { 609 if (!(dentry->d_flags & DCACHE 570 if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) 610 d_lru_del(dentry); 571 d_lru_del(dentry); 611 } 572 } 612 /* if it was on the hash then remove i 573 /* if it was on the hash then remove it */ 613 __d_drop(dentry); 574 __d_drop(dentry); >> 575 dentry_unlist(dentry, parent); >> 576 if (parent) >> 577 spin_unlock(&parent->d_lock); 614 if (dentry->d_inode) 578 if (dentry->d_inode) 615 dentry_unlink_inode(dentry); 579 dentry_unlink_inode(dentry); 616 else 580 else 617 spin_unlock(&dentry->d_lock); 581 spin_unlock(&dentry->d_lock); 618 this_cpu_dec(nr_dentry); 582 this_cpu_dec(nr_dentry); 619 if (dentry->d_op && dentry->d_op->d_re 583 if (dentry->d_op && dentry->d_op->d_release) 620 dentry->d_op->d_release(dentry 584 dentry->d_op->d_release(dentry); 621 585 622 cond_resched(); !! 586 spin_lock(&dentry->d_lock); 623 /* now that it's negative, ->d_parent !! 587 if (dentry->d_flags & DCACHE_SHRINK_LIST) { 624 if (!IS_ROOT(dentry)) { !! 588 dentry->d_flags |= DCACHE_MAY_FREE; 625 parent = dentry->d_parent; << 626 spin_lock(&parent->d_lock); << 627 } << 628 spin_lock_nested(&dentry->d_lock, DENT << 629 dentry_unlist(dentry); << 630 if (dentry->d_flags & DCACHE_SHRINK_LI << 631 can_free = false; 589 can_free = false; >> 590 } 632 spin_unlock(&dentry->d_lock); 591 spin_unlock(&dentry->d_lock); 633 if (likely(can_free)) 592 if (likely(can_free)) 634 dentry_free(dentry); 593 dentry_free(dentry); 635 if (parent && --parent->d_lockref.coun !! 594 cond_resched(); >> 595 } >> 596 >> 597 static struct dentry *__lock_parent(struct dentry *dentry) >> 598 { >> 599 struct dentry *parent; >> 600 rcu_read_lock(); >> 601 spin_unlock(&dentry->d_lock); >> 602 again: >> 603 parent = READ_ONCE(dentry->d_parent); >> 604 spin_lock(&parent->d_lock); >> 605 /* >> 606 * We can't blindly lock dentry until we are sure >> 607 * that we won't violate the locking order. >> 608 * Any changes of dentry->d_parent must have >> 609 * been done with parent->d_lock held, so >> 610 * spin_lock() above is enough of a barrier >> 611 * for checking if it's still our child. >> 612 */ >> 613 if (unlikely(parent != dentry->d_parent)) { 636 spin_unlock(&parent->d_lock); 614 spin_unlock(&parent->d_lock); 637 return NULL; !! 615 goto again; 638 } 616 } >> 617 rcu_read_unlock(); >> 618 if (parent != dentry) >> 619 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); >> 620 else >> 621 parent = NULL; 639 return parent; 622 return parent; 640 } 623 } 641 624 642 /* !! 625 static inline struct dentry *lock_parent(struct dentry *dentry) 643 * Lock a dentry for feeding it to __dentry_ki << 644 * Called under rcu_read_lock() and dentry->d_ << 645 * guarantees that nothing we access will be f << 646 * Note that dentry is *not* protected from co << 647 * d_delete(), etc. << 648 * << 649 * Return false if dentry is busy. Otherwise, << 650 * that dentry's inode locked. << 651 */ << 652 << 653 static bool lock_for_kill(struct dentry *dentr << 654 { 626 { 655 struct inode *inode = dentry->d_inode; !! 627 struct dentry *parent = dentry->d_parent; 656 !! 628 if (IS_ROOT(dentry)) 657 if (unlikely(dentry->d_lockref.count)) !! 629 return NULL; 658 return false; !! 630 if (likely(spin_trylock(&parent->d_lock))) 659 !! 631 return parent; 660 if (!inode || likely(spin_trylock(&ino !! 632 return __lock_parent(dentry); 661 return true; << 662 << 663 do { << 664 spin_unlock(&dentry->d_lock); << 665 spin_lock(&inode->i_lock); << 666 spin_lock(&dentry->d_lock); << 667 if (likely(inode == dentry->d_ << 668 break; << 669 spin_unlock(&inode->i_lock); << 670 inode = dentry->d_inode; << 671 } while (inode); << 672 if (likely(!dentry->d_lockref.count)) << 673 return true; << 674 if (inode) << 675 spin_unlock(&inode->i_lock); << 676 return false; << 677 } 633 } 678 634 679 /* !! 635 static inline bool retain_dentry(struct dentry *dentry) 680 * Decide if dentry is worth retaining. Usual << 681 * locked; if not locked, we are more limited << 682 * without a lock. False in this case means " << 683 * << 684 * In case we aren't locked, these predicates << 685 * sufficient that at some point after we drop << 686 * hashed and the flags had the proper value. << 687 * re-gotten a reference to the dentry and cha << 688 * we can leave the dentry around with a zero << 689 */ << 690 static inline bool retain_dentry(struct dentry << 691 { 636 { 692 unsigned int d_flags; !! 637 WARN_ON(d_in_lookup(dentry)); 693 << 694 smp_rmb(); << 695 d_flags = READ_ONCE(dentry->d_flags); << 696 638 697 // Unreachable? Nobody would be able t !! 639 /* Unreachable? Get rid of it */ 698 if (unlikely(d_unhashed(dentry))) 640 if (unlikely(d_unhashed(dentry))) 699 return false; 641 return false; 700 642 701 // Same if it's disconnected !! 643 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED)) 702 if (unlikely(d_flags & DCACHE_DISCONNE << 703 return false; 644 return false; 704 645 705 // ->d_delete() might tell us not to b !! 646 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) { 706 // ->d_lock; can't decide without it !! 647 if (dentry->d_op->d_delete(dentry)) 707 if (unlikely(d_flags & DCACHE_OP_DELET << 708 if (!locked || dentry->d_op->d << 709 return false; 648 return false; 710 } 649 } 711 !! 650 /* retain; LRU fodder */ 712 // Explicitly told not to bother !! 651 dentry->d_lockref.count--; 713 if (unlikely(d_flags & DCACHE_DONTCACH !! 652 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST))) 714 return false; << 715 << 716 // At this point it looks like we ough << 717 // need to do something - put it on LR << 718 // and mark it referenced if it was on << 719 // Unfortunately, both actions require << 720 // case we'd have to punt rather than << 721 if (unlikely(!(d_flags & DCACHE_LRU_LI << 722 if (!locked) << 723 return false; << 724 d_lru_add(dentry); 653 d_lru_add(dentry); 725 } else if (unlikely(!(d_flags & DCACHE !! 654 else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED))) 726 if (!locked) << 727 return false; << 728 dentry->d_flags |= DCACHE_REFE 655 dentry->d_flags |= DCACHE_REFERENCED; 729 } << 730 return true; 656 return true; 731 } 657 } 732 658 733 void d_mark_dontcache(struct inode *inode) !! 659 /* >> 660 * Finish off a dentry we've decided to kill. >> 661 * dentry->d_lock must be held, returns with it unlocked. >> 662 * Returns dentry requiring refcount drop, or NULL if we're done. >> 663 */ >> 664 static struct dentry *dentry_kill(struct dentry *dentry) >> 665 __releases(dentry->d_lock) 734 { 666 { 735 struct dentry *de; !! 667 struct inode *inode = dentry->d_inode; >> 668 struct dentry *parent = NULL; >> 669 >> 670 if (inode && unlikely(!spin_trylock(&inode->i_lock))) >> 671 goto slow_positive; 736 672 >> 673 if (!IS_ROOT(dentry)) { >> 674 parent = dentry->d_parent; >> 675 if (unlikely(!spin_trylock(&parent->d_lock))) { >> 676 parent = __lock_parent(dentry); >> 677 if (likely(inode || !dentry->d_inode)) >> 678 goto got_locks; >> 679 /* negative that became positive */ >> 680 if (parent) >> 681 spin_unlock(&parent->d_lock); >> 682 inode = dentry->d_inode; >> 683 goto slow_positive; >> 684 } >> 685 } >> 686 __dentry_kill(dentry); >> 687 return parent; >> 688 >> 689 slow_positive: >> 690 spin_unlock(&dentry->d_lock); 737 spin_lock(&inode->i_lock); 691 spin_lock(&inode->i_lock); 738 hlist_for_each_entry(de, &inode->i_den !! 692 spin_lock(&dentry->d_lock); 739 spin_lock(&de->d_lock); !! 693 parent = lock_parent(dentry); 740 de->d_flags |= DCACHE_DONTCACH !! 694 got_locks: 741 spin_unlock(&de->d_lock); !! 695 if (unlikely(dentry->d_lockref.count != 1)) { >> 696 dentry->d_lockref.count--; >> 697 } else if (likely(!retain_dentry(dentry))) { >> 698 __dentry_kill(dentry); >> 699 return parent; 742 } 700 } 743 inode->i_state |= I_DONTCACHE; !! 701 /* we are keeping it, after all */ 744 spin_unlock(&inode->i_lock); !! 702 if (inode) >> 703 spin_unlock(&inode->i_lock); >> 704 if (parent) >> 705 spin_unlock(&parent->d_lock); >> 706 spin_unlock(&dentry->d_lock); >> 707 return NULL; 745 } 708 } 746 EXPORT_SYMBOL(d_mark_dontcache); << 747 709 748 /* 710 /* 749 * Try to do a lockless dput(), and return whe 711 * Try to do a lockless dput(), and return whether that was successful. 750 * 712 * 751 * If unsuccessful, we return false, having al 713 * If unsuccessful, we return false, having already taken the dentry lock. 752 * In that case refcount is guaranteed to be z << 753 * decided that it's not worth keeping around. << 754 * 714 * 755 * The caller needs to hold the RCU read lock, 715 * The caller needs to hold the RCU read lock, so that the dentry is 756 * guaranteed to stay around even if the refco 716 * guaranteed to stay around even if the refcount goes down to zero! 757 */ 717 */ 758 static inline bool fast_dput(struct dentry *de 718 static inline bool fast_dput(struct dentry *dentry) 759 { 719 { 760 int ret; 720 int ret; >> 721 unsigned int d_flags; 761 722 762 /* 723 /* 763 * try to decrement the lockref optimi !! 724 * If we have a d_op->d_delete() operation, we sould not >> 725 * let the dentry count go to zero, so use "put_or_lock". >> 726 */ >> 727 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) >> 728 return lockref_put_or_lock(&dentry->d_lockref); >> 729 >> 730 /* >> 731 * .. otherwise, we can try to just decrement the >> 732 * lockref optimistically. 764 */ 733 */ 765 ret = lockref_put_return(&dentry->d_lo 734 ret = lockref_put_return(&dentry->d_lockref); 766 735 767 /* 736 /* 768 * If the lockref_put_return() failed 737 * If the lockref_put_return() failed due to the lock being held 769 * by somebody else, the fast path has 738 * by somebody else, the fast path has failed. We will need to 770 * get the lock, and then check the co 739 * get the lock, and then check the count again. 771 */ 740 */ 772 if (unlikely(ret < 0)) { 741 if (unlikely(ret < 0)) { 773 spin_lock(&dentry->d_lock); 742 spin_lock(&dentry->d_lock); 774 if (WARN_ON_ONCE(dentry->d_loc !! 743 if (dentry->d_lockref.count > 1) { >> 744 dentry->d_lockref.count--; 775 spin_unlock(&dentry->d 745 spin_unlock(&dentry->d_lock); 776 return true; 746 return true; 777 } 747 } 778 dentry->d_lockref.count--; !! 748 return false; 779 goto locked; << 780 } 749 } 781 750 782 /* 751 /* 783 * If we weren't the last ref, we're d 752 * If we weren't the last ref, we're done. 784 */ 753 */ 785 if (ret) 754 if (ret) 786 return true; 755 return true; 787 756 788 /* 757 /* 789 * Can we decide that decrement of ref !! 758 * Careful, careful. The reference count went down 790 * taking the lock? There's a very co !! 759 * to zero, but we don't hold the dentry lock, so 791 * dentry looks like it ought to be re !! 760 * somebody else could get it again, and do another 792 * to do. !! 761 * dput(), and we need to not race with that. >> 762 * >> 763 * However, there is a very special and common case >> 764 * where we don't care, because there is nothing to >> 765 * do: the dentry is still hashed, it does not have >> 766 * a 'delete' op, and it's referenced and already on >> 767 * the LRU list. >> 768 * >> 769 * NOTE! Since we aren't locked, these values are >> 770 * not "stable". However, it is sufficient that at >> 771 * some point after we dropped the reference the >> 772 * dentry was hashed and the flags had the proper >> 773 * value. Other dentry users may have re-gotten >> 774 * a reference to the dentry and change that, but >> 775 * our work is done - we can leave the dentry >> 776 * around with a zero refcount. 793 */ 777 */ 794 if (retain_dentry(dentry, false)) !! 778 smp_rmb(); >> 779 d_flags = READ_ONCE(dentry->d_flags); >> 780 d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED; >> 781 >> 782 /* Nothing to do? Dropping the reference was all we needed? */ >> 783 if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry)) 795 return true; 784 return true; 796 785 797 /* 786 /* 798 * Either not worth retaining or we ca !! 787 * Not the fast normal case? Get the lock. We've already decremented 799 * Get the lock, then. We've already !! 788 * the refcount, but we'll need to re-check the situation after 800 * but we'll need to re-check the situ !! 789 * getting the lock. 801 */ 790 */ 802 spin_lock(&dentry->d_lock); 791 spin_lock(&dentry->d_lock); 803 792 804 /* 793 /* 805 * Did somebody else grab a reference 794 * Did somebody else grab a reference to it in the meantime, and 806 * we're no longer the last user after 795 * we're no longer the last user after all? Alternatively, somebody 807 * else could have killed it and marke 796 * else could have killed it and marked it dead. Either way, we 808 * don't need to do anything else. 797 * don't need to do anything else. 809 */ 798 */ 810 locked: !! 799 if (dentry->d_lockref.count) { 811 if (dentry->d_lockref.count || retain_ << 812 spin_unlock(&dentry->d_lock); 800 spin_unlock(&dentry->d_lock); 813 return true; 801 return true; 814 } 802 } >> 803 >> 804 /* >> 805 * Re-get the reference we optimistically dropped. We hold the >> 806 * lock, and we just tested that it was zero, so we can just >> 807 * set it to 1. >> 808 */ >> 809 dentry->d_lockref.count = 1; 815 return false; 810 return false; 816 } 811 } 817 812 818 813 819 /* 814 /* 820 * This is dput 815 * This is dput 821 * 816 * 822 * This is complicated by the fact that we do 817 * This is complicated by the fact that we do not want to put 823 * dentries that are no longer on any hash cha 818 * dentries that are no longer on any hash chain on the unused 824 * list: we'd much rather just get rid of them 819 * list: we'd much rather just get rid of them immediately. 825 * 820 * 826 * However, that implies that we have to trave 821 * However, that implies that we have to traverse the dentry 827 * tree upwards to the parents which might _al 822 * tree upwards to the parents which might _also_ now be 828 * scheduled for deletion (it may have been on 823 * scheduled for deletion (it may have been only waiting for 829 * its last child to go away). 824 * its last child to go away). 830 * 825 * 831 * This tail recursion is done by hand as we d 826 * This tail recursion is done by hand as we don't want to depend 832 * on the compiler to always get this right (g 827 * on the compiler to always get this right (gcc generally doesn't). 833 * Real recursion would eat up our stack space 828 * Real recursion would eat up our stack space. 834 */ 829 */ 835 830 836 /* 831 /* 837 * dput - release a dentry 832 * dput - release a dentry 838 * @dentry: dentry to release 833 * @dentry: dentry to release 839 * 834 * 840 * Release a dentry. This will drop the usage 835 * Release a dentry. This will drop the usage count and if appropriate 841 * call the dentry unlink method as well as re 836 * call the dentry unlink method as well as removing it from the queues and 842 * releasing its resources. If the parent dent 837 * releasing its resources. If the parent dentries were scheduled for release 843 * they too may now get deleted. 838 * they too may now get deleted. 844 */ 839 */ 845 void dput(struct dentry *dentry) 840 void dput(struct dentry *dentry) 846 { 841 { 847 if (!dentry) !! 842 while (dentry) { 848 return; !! 843 might_sleep(); 849 might_sleep(); !! 844 850 rcu_read_lock(); !! 845 rcu_read_lock(); 851 if (likely(fast_dput(dentry))) { !! 846 if (likely(fast_dput(dentry))) { 852 rcu_read_unlock(); !! 847 rcu_read_unlock(); 853 return; << 854 } << 855 while (lock_for_kill(dentry)) { << 856 rcu_read_unlock(); << 857 dentry = __dentry_kill(dentry) << 858 if (!dentry) << 859 return; 848 return; 860 if (retain_dentry(dentry, true !! 849 } >> 850 >> 851 /* Slow case: now with the dentry lock held */ >> 852 rcu_read_unlock(); >> 853 >> 854 if (likely(retain_dentry(dentry))) { 861 spin_unlock(&dentry->d 855 spin_unlock(&dentry->d_lock); 862 return; 856 return; 863 } 857 } 864 rcu_read_lock(); !! 858 >> 859 dentry = dentry_kill(dentry); 865 } 860 } 866 rcu_read_unlock(); << 867 spin_unlock(&dentry->d_lock); << 868 } 861 } 869 EXPORT_SYMBOL(dput); 862 EXPORT_SYMBOL(dput); 870 863 871 static void to_shrink_list(struct dentry *dent !! 864 static void __dput_to_list(struct dentry *dentry, struct list_head *list) 872 __must_hold(&dentry->d_lock) 865 __must_hold(&dentry->d_lock) 873 { 866 { 874 if (!(dentry->d_flags & DCACHE_SHRINK_ !! 867 if (dentry->d_flags & DCACHE_SHRINK_LIST) { >> 868 /* let the owner of the list it's on deal with it */ >> 869 --dentry->d_lockref.count; >> 870 } else { 875 if (dentry->d_flags & DCACHE_L 871 if (dentry->d_flags & DCACHE_LRU_LIST) 876 d_lru_del(dentry); 872 d_lru_del(dentry); 877 d_shrink_add(dentry, list); !! 873 if (!--dentry->d_lockref.count) >> 874 d_shrink_add(dentry, list); 878 } 875 } 879 } 876 } 880 877 881 void dput_to_list(struct dentry *dentry, struc 878 void dput_to_list(struct dentry *dentry, struct list_head *list) 882 { 879 { 883 rcu_read_lock(); 880 rcu_read_lock(); 884 if (likely(fast_dput(dentry))) { 881 if (likely(fast_dput(dentry))) { 885 rcu_read_unlock(); 882 rcu_read_unlock(); 886 return; 883 return; 887 } 884 } 888 rcu_read_unlock(); 885 rcu_read_unlock(); 889 to_shrink_list(dentry, list); !! 886 if (!retain_dentry(dentry)) >> 887 __dput_to_list(dentry, list); 890 spin_unlock(&dentry->d_lock); 888 spin_unlock(&dentry->d_lock); 891 } 889 } 892 890 >> 891 /* This must be called with d_lock held */ >> 892 static inline void __dget_dlock(struct dentry *dentry) >> 893 { >> 894 dentry->d_lockref.count++; >> 895 } >> 896 >> 897 static inline void __dget(struct dentry *dentry) >> 898 { >> 899 lockref_get(&dentry->d_lockref); >> 900 } >> 901 893 struct dentry *dget_parent(struct dentry *dent 902 struct dentry *dget_parent(struct dentry *dentry) 894 { 903 { 895 int gotref; 904 int gotref; 896 struct dentry *ret; 905 struct dentry *ret; 897 unsigned seq; 906 unsigned seq; 898 907 899 /* 908 /* 900 * Do optimistic parent lookup without 909 * Do optimistic parent lookup without any 901 * locking. 910 * locking. 902 */ 911 */ 903 rcu_read_lock(); 912 rcu_read_lock(); 904 seq = raw_seqcount_begin(&dentry->d_se 913 seq = raw_seqcount_begin(&dentry->d_seq); 905 ret = READ_ONCE(dentry->d_parent); 914 ret = READ_ONCE(dentry->d_parent); 906 gotref = lockref_get_not_zero(&ret->d_ 915 gotref = lockref_get_not_zero(&ret->d_lockref); 907 rcu_read_unlock(); 916 rcu_read_unlock(); 908 if (likely(gotref)) { 917 if (likely(gotref)) { 909 if (!read_seqcount_retry(&dent 918 if (!read_seqcount_retry(&dentry->d_seq, seq)) 910 return ret; 919 return ret; 911 dput(ret); 920 dput(ret); 912 } 921 } 913 922 914 repeat: 923 repeat: 915 /* 924 /* 916 * Don't need rcu_dereference because 925 * Don't need rcu_dereference because we re-check it was correct under 917 * the lock. 926 * the lock. 918 */ 927 */ 919 rcu_read_lock(); 928 rcu_read_lock(); 920 ret = dentry->d_parent; 929 ret = dentry->d_parent; 921 spin_lock(&ret->d_lock); 930 spin_lock(&ret->d_lock); 922 if (unlikely(ret != dentry->d_parent)) 931 if (unlikely(ret != dentry->d_parent)) { 923 spin_unlock(&ret->d_lock); 932 spin_unlock(&ret->d_lock); 924 rcu_read_unlock(); 933 rcu_read_unlock(); 925 goto repeat; 934 goto repeat; 926 } 935 } 927 rcu_read_unlock(); 936 rcu_read_unlock(); 928 BUG_ON(!ret->d_lockref.count); 937 BUG_ON(!ret->d_lockref.count); 929 ret->d_lockref.count++; 938 ret->d_lockref.count++; 930 spin_unlock(&ret->d_lock); 939 spin_unlock(&ret->d_lock); 931 return ret; 940 return ret; 932 } 941 } 933 EXPORT_SYMBOL(dget_parent); 942 EXPORT_SYMBOL(dget_parent); 934 943 935 static struct dentry * __d_find_any_alias(stru 944 static struct dentry * __d_find_any_alias(struct inode *inode) 936 { 945 { 937 struct dentry *alias; 946 struct dentry *alias; 938 947 939 if (hlist_empty(&inode->i_dentry)) 948 if (hlist_empty(&inode->i_dentry)) 940 return NULL; 949 return NULL; 941 alias = hlist_entry(inode->i_dentry.fi 950 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias); 942 lockref_get(&alias->d_lockref); !! 951 __dget(alias); 943 return alias; 952 return alias; 944 } 953 } 945 954 946 /** 955 /** 947 * d_find_any_alias - find any alias for a giv 956 * d_find_any_alias - find any alias for a given inode 948 * @inode: inode to find an alias for 957 * @inode: inode to find an alias for 949 * 958 * 950 * If any aliases exist for the given inode, t 959 * If any aliases exist for the given inode, take and return a 951 * reference for one of them. If no aliases e 960 * reference for one of them. If no aliases exist, return %NULL. 952 */ 961 */ 953 struct dentry *d_find_any_alias(struct inode * 962 struct dentry *d_find_any_alias(struct inode *inode) 954 { 963 { 955 struct dentry *de; 964 struct dentry *de; 956 965 957 spin_lock(&inode->i_lock); 966 spin_lock(&inode->i_lock); 958 de = __d_find_any_alias(inode); 967 de = __d_find_any_alias(inode); 959 spin_unlock(&inode->i_lock); 968 spin_unlock(&inode->i_lock); 960 return de; 969 return de; 961 } 970 } 962 EXPORT_SYMBOL(d_find_any_alias); 971 EXPORT_SYMBOL(d_find_any_alias); 963 972 >> 973 /** >> 974 * d_find_alias - grab a hashed alias of inode >> 975 * @inode: inode in question >> 976 * >> 977 * If inode has a hashed alias, or is a directory and has any alias, >> 978 * acquire the reference to alias and return it. Otherwise return NULL. >> 979 * Notice that if inode is a directory there can be only one alias and >> 980 * it can be unhashed only if it has no children, or if it is the root >> 981 * of a filesystem, or if the directory was renamed and d_revalidate >> 982 * was the first vfs operation to notice. >> 983 * >> 984 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer >> 985 * any other hashed alias over that one. >> 986 */ 964 static struct dentry *__d_find_alias(struct in 987 static struct dentry *__d_find_alias(struct inode *inode) 965 { 988 { 966 struct dentry *alias; 989 struct dentry *alias; 967 990 968 if (S_ISDIR(inode->i_mode)) 991 if (S_ISDIR(inode->i_mode)) 969 return __d_find_any_alias(inod 992 return __d_find_any_alias(inode); 970 993 971 hlist_for_each_entry(alias, &inode->i_ 994 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { 972 spin_lock(&alias->d_lock); 995 spin_lock(&alias->d_lock); 973 if (!d_unhashed(alias)) { 996 if (!d_unhashed(alias)) { 974 dget_dlock(alias); !! 997 __dget_dlock(alias); 975 spin_unlock(&alias->d_ 998 spin_unlock(&alias->d_lock); 976 return alias; 999 return alias; 977 } 1000 } 978 spin_unlock(&alias->d_lock); 1001 spin_unlock(&alias->d_lock); 979 } 1002 } 980 return NULL; 1003 return NULL; 981 } 1004 } 982 1005 983 /** << 984 * d_find_alias - grab a hashed alias of inode << 985 * @inode: inode in question << 986 * << 987 * If inode has a hashed alias, or is a direct << 988 * acquire the reference to alias and return i << 989 * Notice that if inode is a directory there c << 990 * it can be unhashed only if it has no childr << 991 * of a filesystem, or if the directory was re << 992 * was the first vfs operation to notice. << 993 * << 994 * If the inode has an IS_ROOT, DCACHE_DISCONN << 995 * any other hashed alias over that one. << 996 */ << 997 struct dentry *d_find_alias(struct inode *inod 1006 struct dentry *d_find_alias(struct inode *inode) 998 { 1007 { 999 struct dentry *de = NULL; 1008 struct dentry *de = NULL; 1000 1009 1001 if (!hlist_empty(&inode->i_dentry)) { 1010 if (!hlist_empty(&inode->i_dentry)) { 1002 spin_lock(&inode->i_lock); 1011 spin_lock(&inode->i_lock); 1003 de = __d_find_alias(inode); 1012 de = __d_find_alias(inode); 1004 spin_unlock(&inode->i_lock); 1013 spin_unlock(&inode->i_lock); 1005 } 1014 } 1006 return de; 1015 return de; 1007 } 1016 } 1008 EXPORT_SYMBOL(d_find_alias); 1017 EXPORT_SYMBOL(d_find_alias); 1009 1018 1010 /* 1019 /* 1011 * Caller MUST be holding rcu_read_lock() an << 1012 * that inode won't get freed until rcu_read << 1013 */ << 1014 struct dentry *d_find_alias_rcu(struct inode << 1015 { << 1016 struct hlist_head *l = &inode->i_dent << 1017 struct dentry *de = NULL; << 1018 << 1019 spin_lock(&inode->i_lock); << 1020 // ->i_dentry and ->i_rcu are colocat << 1021 // used without having I_FREEING set, << 1022 if (likely(!(inode->i_state & I_FREEI << 1023 if (S_ISDIR(inode->i_mode)) { << 1024 de = hlist_entry(l->f << 1025 } else { << 1026 hlist_for_each_entry( << 1027 if (!d_unhash << 1028 break << 1029 } << 1030 } << 1031 spin_unlock(&inode->i_lock); << 1032 return de; << 1033 } << 1034 << 1035 /* << 1036 * Try to kill dentries associated with 1020 * Try to kill dentries associated with this inode. 1037 * WARNING: you must own a reference to inode 1021 * WARNING: you must own a reference to inode. 1038 */ 1022 */ 1039 void d_prune_aliases(struct inode *inode) 1023 void d_prune_aliases(struct inode *inode) 1040 { 1024 { 1041 LIST_HEAD(dispose); << 1042 struct dentry *dentry; 1025 struct dentry *dentry; 1043 !! 1026 restart: 1044 spin_lock(&inode->i_lock); 1027 spin_lock(&inode->i_lock); 1045 hlist_for_each_entry(dentry, &inode-> 1028 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) { 1046 spin_lock(&dentry->d_lock); 1029 spin_lock(&dentry->d_lock); 1047 if (!dentry->d_lockref.count) !! 1030 if (!dentry->d_lockref.count) { 1048 to_shrink_list(dentry !! 1031 struct dentry *parent = lock_parent(dentry); >> 1032 if (likely(!dentry->d_lockref.count)) { >> 1033 __dentry_kill(dentry); >> 1034 dput(parent); >> 1035 goto restart; >> 1036 } >> 1037 if (parent) >> 1038 spin_unlock(&parent->d_lock); >> 1039 } 1049 spin_unlock(&dentry->d_lock); 1040 spin_unlock(&dentry->d_lock); 1050 } 1041 } 1051 spin_unlock(&inode->i_lock); 1042 spin_unlock(&inode->i_lock); 1052 shrink_dentry_list(&dispose); << 1053 } 1043 } 1054 EXPORT_SYMBOL(d_prune_aliases); 1044 EXPORT_SYMBOL(d_prune_aliases); 1055 1045 1056 static inline void shrink_kill(struct dentry !! 1046 /* >> 1047 * Lock a dentry from shrink list. >> 1048 * Called under rcu_read_lock() and dentry->d_lock; the former >> 1049 * guarantees that nothing we access will be freed under us. >> 1050 * Note that dentry is *not* protected from concurrent dentry_kill(), >> 1051 * d_delete(), etc. >> 1052 * >> 1053 * Return false if dentry has been disrupted or grabbed, leaving >> 1054 * the caller to kick it off-list. Otherwise, return true and have >> 1055 * that dentry's inode and parent both locked. >> 1056 */ >> 1057 static bool shrink_lock_dentry(struct dentry *dentry) 1057 { 1058 { 1058 do { !! 1059 struct inode *inode; 1059 rcu_read_unlock(); !! 1060 struct dentry *parent; 1060 victim = __dentry_kill(victim !! 1061 1061 rcu_read_lock(); !! 1062 if (dentry->d_lockref.count) 1062 } while (victim && lock_for_kill(vict !! 1063 return false; 1063 rcu_read_unlock(); !! 1064 1064 if (victim) !! 1065 inode = dentry->d_inode; 1065 spin_unlock(&victim->d_lock); !! 1066 if (inode && unlikely(!spin_trylock(&inode->i_lock))) { >> 1067 spin_unlock(&dentry->d_lock); >> 1068 spin_lock(&inode->i_lock); >> 1069 spin_lock(&dentry->d_lock); >> 1070 if (unlikely(dentry->d_lockref.count)) >> 1071 goto out; >> 1072 /* changed inode means that somebody had grabbed it */ >> 1073 if (unlikely(inode != dentry->d_inode)) >> 1074 goto out; >> 1075 } >> 1076 >> 1077 parent = dentry->d_parent; >> 1078 if (IS_ROOT(dentry) || likely(spin_trylock(&parent->d_lock))) >> 1079 return true; >> 1080 >> 1081 spin_unlock(&dentry->d_lock); >> 1082 spin_lock(&parent->d_lock); >> 1083 if (unlikely(parent != dentry->d_parent)) { >> 1084 spin_unlock(&parent->d_lock); >> 1085 spin_lock(&dentry->d_lock); >> 1086 goto out; >> 1087 } >> 1088 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); >> 1089 if (likely(!dentry->d_lockref.count)) >> 1090 return true; >> 1091 spin_unlock(&parent->d_lock); >> 1092 out: >> 1093 if (inode) >> 1094 spin_unlock(&inode->i_lock); >> 1095 return false; 1066 } 1096 } 1067 1097 1068 void shrink_dentry_list(struct list_head *lis 1098 void shrink_dentry_list(struct list_head *list) 1069 { 1099 { 1070 while (!list_empty(list)) { 1100 while (!list_empty(list)) { 1071 struct dentry *dentry; !! 1101 struct dentry *dentry, *parent; 1072 1102 1073 dentry = list_entry(list->pre 1103 dentry = list_entry(list->prev, struct dentry, d_lru); 1074 spin_lock(&dentry->d_lock); 1104 spin_lock(&dentry->d_lock); 1075 rcu_read_lock(); 1105 rcu_read_lock(); 1076 if (!lock_for_kill(dentry)) { !! 1106 if (!shrink_lock_dentry(dentry)) { 1077 bool can_free; !! 1107 bool can_free = false; 1078 rcu_read_unlock(); 1108 rcu_read_unlock(); 1079 d_shrink_del(dentry); 1109 d_shrink_del(dentry); 1080 can_free = dentry->d_ !! 1110 if (dentry->d_lockref.count < 0) >> 1111 can_free = dentry->d_flags & DCACHE_MAY_FREE; 1081 spin_unlock(&dentry-> 1112 spin_unlock(&dentry->d_lock); 1082 if (can_free) 1113 if (can_free) 1083 dentry_free(d 1114 dentry_free(dentry); 1084 continue; 1115 continue; 1085 } 1116 } >> 1117 rcu_read_unlock(); 1086 d_shrink_del(dentry); 1118 d_shrink_del(dentry); 1087 shrink_kill(dentry); !! 1119 parent = dentry->d_parent; >> 1120 if (parent != dentry) >> 1121 __dput_to_list(parent, list); >> 1122 __dentry_kill(dentry); 1088 } 1123 } 1089 } 1124 } 1090 1125 1091 static enum lru_status dentry_lru_isolate(str 1126 static enum lru_status dentry_lru_isolate(struct list_head *item, 1092 struct list_lru_one *lru, spi 1127 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) 1093 { 1128 { 1094 struct list_head *freeable = arg; 1129 struct list_head *freeable = arg; 1095 struct dentry *dentry = container_o 1130 struct dentry *dentry = container_of(item, struct dentry, d_lru); 1096 1131 1097 1132 1098 /* 1133 /* 1099 * we are inverting the lru lock/dent 1134 * we are inverting the lru lock/dentry->d_lock here, 1100 * so use a trylock. If we fail to ge 1135 * so use a trylock. If we fail to get the lock, just skip 1101 * it 1136 * it 1102 */ 1137 */ 1103 if (!spin_trylock(&dentry->d_lock)) 1138 if (!spin_trylock(&dentry->d_lock)) 1104 return LRU_SKIP; 1139 return LRU_SKIP; 1105 1140 1106 /* 1141 /* 1107 * Referenced dentries are still in u 1142 * Referenced dentries are still in use. If they have active 1108 * counts, just remove them from the 1143 * counts, just remove them from the LRU. Otherwise give them 1109 * another pass through the LRU. 1144 * another pass through the LRU. 1110 */ 1145 */ 1111 if (dentry->d_lockref.count) { 1146 if (dentry->d_lockref.count) { 1112 d_lru_isolate(lru, dentry); 1147 d_lru_isolate(lru, dentry); 1113 spin_unlock(&dentry->d_lock); 1148 spin_unlock(&dentry->d_lock); 1114 return LRU_REMOVED; 1149 return LRU_REMOVED; 1115 } 1150 } 1116 1151 1117 if (dentry->d_flags & DCACHE_REFERENC 1152 if (dentry->d_flags & DCACHE_REFERENCED) { 1118 dentry->d_flags &= ~DCACHE_RE 1153 dentry->d_flags &= ~DCACHE_REFERENCED; 1119 spin_unlock(&dentry->d_lock); 1154 spin_unlock(&dentry->d_lock); 1120 1155 1121 /* 1156 /* 1122 * The list move itself will 1157 * The list move itself will be made by the common LRU code. At 1123 * this point, we've dropped 1158 * this point, we've dropped the dentry->d_lock but keep the 1124 * lru lock. This is safe to 1159 * lru lock. This is safe to do, since every list movement is 1125 * protected by the lru lock 1160 * protected by the lru lock even if both locks are held. 1126 * 1161 * 1127 * This is guaranteed by the 1162 * This is guaranteed by the fact that all LRU management 1128 * functions are intermediate 1163 * functions are intermediated by the LRU API calls like 1129 * list_lru_add_obj and list_ !! 1164 * list_lru_add and list_lru_del. List movement in this file 1130 * only ever occur through th 1165 * only ever occur through this functions or through callbacks 1131 * like this one, that are ca 1166 * like this one, that are called from the LRU API. 1132 * 1167 * 1133 * The only exceptions to thi 1168 * The only exceptions to this are functions like 1134 * shrink_dentry_list, and co 1169 * shrink_dentry_list, and code that first checks for the 1135 * DCACHE_SHRINK_LIST flag. 1170 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be 1136 * operating only with stack 1171 * operating only with stack provided lists after they are 1137 * properly isolated from the 1172 * properly isolated from the main list. It is thus, always a 1138 * local access. 1173 * local access. 1139 */ 1174 */ 1140 return LRU_ROTATE; 1175 return LRU_ROTATE; 1141 } 1176 } 1142 1177 1143 d_lru_shrink_move(lru, dentry, freeab 1178 d_lru_shrink_move(lru, dentry, freeable); 1144 spin_unlock(&dentry->d_lock); 1179 spin_unlock(&dentry->d_lock); 1145 1180 1146 return LRU_REMOVED; 1181 return LRU_REMOVED; 1147 } 1182 } 1148 1183 1149 /** 1184 /** 1150 * prune_dcache_sb - shrink the dcache 1185 * prune_dcache_sb - shrink the dcache 1151 * @sb: superblock 1186 * @sb: superblock 1152 * @sc: shrink control, passed to list_lru_sh 1187 * @sc: shrink control, passed to list_lru_shrink_walk() 1153 * 1188 * 1154 * Attempt to shrink the superblock dcache LR 1189 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This 1155 * is done when we need more memory and calle 1190 * is done when we need more memory and called from the superblock shrinker 1156 * function. 1191 * function. 1157 * 1192 * 1158 * This function may fail to free any resourc 1193 * This function may fail to free any resources if all the dentries are in 1159 * use. 1194 * use. 1160 */ 1195 */ 1161 long prune_dcache_sb(struct super_block *sb, 1196 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc) 1162 { 1197 { 1163 LIST_HEAD(dispose); 1198 LIST_HEAD(dispose); 1164 long freed; 1199 long freed; 1165 1200 1166 freed = list_lru_shrink_walk(&sb->s_d 1201 freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc, 1167 dentry_l 1202 dentry_lru_isolate, &dispose); 1168 shrink_dentry_list(&dispose); 1203 shrink_dentry_list(&dispose); 1169 return freed; 1204 return freed; 1170 } 1205 } 1171 1206 1172 static enum lru_status dentry_lru_isolate_shr 1207 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item, 1173 struct list_lru_one *lru, spi 1208 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) 1174 { 1209 { 1175 struct list_head *freeable = arg; 1210 struct list_head *freeable = arg; 1176 struct dentry *dentry = container_o 1211 struct dentry *dentry = container_of(item, struct dentry, d_lru); 1177 1212 1178 /* 1213 /* 1179 * we are inverting the lru lock/dent 1214 * we are inverting the lru lock/dentry->d_lock here, 1180 * so use a trylock. If we fail to ge 1215 * so use a trylock. If we fail to get the lock, just skip 1181 * it 1216 * it 1182 */ 1217 */ 1183 if (!spin_trylock(&dentry->d_lock)) 1218 if (!spin_trylock(&dentry->d_lock)) 1184 return LRU_SKIP; 1219 return LRU_SKIP; 1185 1220 1186 d_lru_shrink_move(lru, dentry, freeab 1221 d_lru_shrink_move(lru, dentry, freeable); 1187 spin_unlock(&dentry->d_lock); 1222 spin_unlock(&dentry->d_lock); 1188 1223 1189 return LRU_REMOVED; 1224 return LRU_REMOVED; 1190 } 1225 } 1191 1226 1192 1227 1193 /** 1228 /** 1194 * shrink_dcache_sb - shrink dcache for a sup 1229 * shrink_dcache_sb - shrink dcache for a superblock 1195 * @sb: superblock 1230 * @sb: superblock 1196 * 1231 * 1197 * Shrink the dcache for the specified super 1232 * Shrink the dcache for the specified super block. This is used to free 1198 * the dcache before unmounting a file system 1233 * the dcache before unmounting a file system. 1199 */ 1234 */ 1200 void shrink_dcache_sb(struct super_block *sb) 1235 void shrink_dcache_sb(struct super_block *sb) 1201 { 1236 { 1202 do { 1237 do { 1203 LIST_HEAD(dispose); 1238 LIST_HEAD(dispose); 1204 1239 1205 list_lru_walk(&sb->s_dentry_l 1240 list_lru_walk(&sb->s_dentry_lru, 1206 dentry_lru_isolate_sh 1241 dentry_lru_isolate_shrink, &dispose, 1024); 1207 shrink_dentry_list(&dispose); 1242 shrink_dentry_list(&dispose); 1208 } while (list_lru_count(&sb->s_dentry 1243 } while (list_lru_count(&sb->s_dentry_lru) > 0); 1209 } 1244 } 1210 EXPORT_SYMBOL(shrink_dcache_sb); 1245 EXPORT_SYMBOL(shrink_dcache_sb); 1211 1246 1212 /** 1247 /** 1213 * enum d_walk_ret - action to talke during t 1248 * enum d_walk_ret - action to talke during tree walk 1214 * @D_WALK_CONTINUE: contrinue walk 1249 * @D_WALK_CONTINUE: contrinue walk 1215 * @D_WALK_QUIT: quit walk 1250 * @D_WALK_QUIT: quit walk 1216 * @D_WALK_NORETRY: quit when retry is ne 1251 * @D_WALK_NORETRY: quit when retry is needed 1217 * @D_WALK_SKIP: skip this dentry and 1252 * @D_WALK_SKIP: skip this dentry and its children 1218 */ 1253 */ 1219 enum d_walk_ret { 1254 enum d_walk_ret { 1220 D_WALK_CONTINUE, 1255 D_WALK_CONTINUE, 1221 D_WALK_QUIT, 1256 D_WALK_QUIT, 1222 D_WALK_NORETRY, 1257 D_WALK_NORETRY, 1223 D_WALK_SKIP, 1258 D_WALK_SKIP, 1224 }; 1259 }; 1225 1260 1226 /** 1261 /** 1227 * d_walk - walk the dentry tree 1262 * d_walk - walk the dentry tree 1228 * @parent: start of walk 1263 * @parent: start of walk 1229 * @data: data passed to @enter() and @ 1264 * @data: data passed to @enter() and @finish() 1230 * @enter: callback when first entering 1265 * @enter: callback when first entering the dentry 1231 * 1266 * 1232 * The @enter() callbacks are called with d_l 1267 * The @enter() callbacks are called with d_lock held. 1233 */ 1268 */ 1234 static void d_walk(struct dentry *parent, voi 1269 static void d_walk(struct dentry *parent, void *data, 1235 enum d_walk_ret (*enter)(v 1270 enum d_walk_ret (*enter)(void *, struct dentry *)) 1236 { 1271 { 1237 struct dentry *this_parent, *dentry; !! 1272 struct dentry *this_parent; >> 1273 struct list_head *next; 1238 unsigned seq = 0; 1274 unsigned seq = 0; 1239 enum d_walk_ret ret; 1275 enum d_walk_ret ret; 1240 bool retry = true; 1276 bool retry = true; 1241 1277 1242 again: 1278 again: 1243 read_seqbegin_or_lock(&rename_lock, & 1279 read_seqbegin_or_lock(&rename_lock, &seq); 1244 this_parent = parent; 1280 this_parent = parent; 1245 spin_lock(&this_parent->d_lock); 1281 spin_lock(&this_parent->d_lock); 1246 1282 1247 ret = enter(data, this_parent); 1283 ret = enter(data, this_parent); 1248 switch (ret) { 1284 switch (ret) { 1249 case D_WALK_CONTINUE: 1285 case D_WALK_CONTINUE: 1250 break; 1286 break; 1251 case D_WALK_QUIT: 1287 case D_WALK_QUIT: 1252 case D_WALK_SKIP: 1288 case D_WALK_SKIP: 1253 goto out_unlock; 1289 goto out_unlock; 1254 case D_WALK_NORETRY: 1290 case D_WALK_NORETRY: 1255 retry = false; 1291 retry = false; 1256 break; 1292 break; 1257 } 1293 } 1258 repeat: 1294 repeat: 1259 dentry = d_first_child(this_parent); !! 1295 next = this_parent->d_subdirs.next; 1260 resume: 1296 resume: 1261 hlist_for_each_entry_from(dentry, d_s !! 1297 while (next != &this_parent->d_subdirs) { >> 1298 struct list_head *tmp = next; >> 1299 struct dentry *dentry = list_entry(tmp, struct dentry, d_child); >> 1300 next = tmp->next; >> 1301 1262 if (unlikely(dentry->d_flags 1302 if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR)) 1263 continue; 1303 continue; 1264 1304 1265 spin_lock_nested(&dentry->d_l 1305 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 1266 1306 1267 ret = enter(data, dentry); 1307 ret = enter(data, dentry); 1268 switch (ret) { 1308 switch (ret) { 1269 case D_WALK_CONTINUE: 1309 case D_WALK_CONTINUE: 1270 break; 1310 break; 1271 case D_WALK_QUIT: 1311 case D_WALK_QUIT: 1272 spin_unlock(&dentry-> 1312 spin_unlock(&dentry->d_lock); 1273 goto out_unlock; 1313 goto out_unlock; 1274 case D_WALK_NORETRY: 1314 case D_WALK_NORETRY: 1275 retry = false; 1315 retry = false; 1276 break; 1316 break; 1277 case D_WALK_SKIP: 1317 case D_WALK_SKIP: 1278 spin_unlock(&dentry-> 1318 spin_unlock(&dentry->d_lock); 1279 continue; 1319 continue; 1280 } 1320 } 1281 1321 1282 if (!hlist_empty(&dentry->d_c !! 1322 if (!list_empty(&dentry->d_subdirs)) { 1283 spin_unlock(&this_par 1323 spin_unlock(&this_parent->d_lock); 1284 spin_release(&dentry- 1324 spin_release(&dentry->d_lock.dep_map, _RET_IP_); 1285 this_parent = dentry; 1325 this_parent = dentry; 1286 spin_acquire(&this_pa 1326 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_); 1287 goto repeat; 1327 goto repeat; 1288 } 1328 } 1289 spin_unlock(&dentry->d_lock); 1329 spin_unlock(&dentry->d_lock); 1290 } 1330 } 1291 /* 1331 /* 1292 * All done at this level ... ascend 1332 * All done at this level ... ascend and resume the search. 1293 */ 1333 */ 1294 rcu_read_lock(); 1334 rcu_read_lock(); 1295 ascend: 1335 ascend: 1296 if (this_parent != parent) { 1336 if (this_parent != parent) { 1297 dentry = this_parent; !! 1337 struct dentry *child = this_parent; 1298 this_parent = dentry->d_paren !! 1338 this_parent = child->d_parent; 1299 1339 1300 spin_unlock(&dentry->d_lock); !! 1340 spin_unlock(&child->d_lock); 1301 spin_lock(&this_parent->d_loc 1341 spin_lock(&this_parent->d_lock); 1302 1342 1303 /* might go back up the wrong 1343 /* might go back up the wrong parent if we have had a rename. */ 1304 if (need_seqretry(&rename_loc 1344 if (need_seqretry(&rename_lock, seq)) 1305 goto rename_retry; 1345 goto rename_retry; 1306 /* go into the first sibling 1346 /* go into the first sibling still alive */ 1307 hlist_for_each_entry_continue !! 1347 do { 1308 if (likely(!(dentry-> !! 1348 next = child->d_child.next; 1309 rcu_read_unlo !! 1349 if (next == &this_parent->d_subdirs) 1310 goto resume; !! 1350 goto ascend; 1311 } !! 1351 child = list_entry(next, struct dentry, d_child); 1312 } !! 1352 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED)); 1313 goto ascend; !! 1353 rcu_read_unlock(); >> 1354 goto resume; 1314 } 1355 } 1315 if (need_seqretry(&rename_lock, seq)) 1356 if (need_seqretry(&rename_lock, seq)) 1316 goto rename_retry; 1357 goto rename_retry; 1317 rcu_read_unlock(); 1358 rcu_read_unlock(); 1318 1359 1319 out_unlock: 1360 out_unlock: 1320 spin_unlock(&this_parent->d_lock); 1361 spin_unlock(&this_parent->d_lock); 1321 done_seqretry(&rename_lock, seq); 1362 done_seqretry(&rename_lock, seq); 1322 return; 1363 return; 1323 1364 1324 rename_retry: 1365 rename_retry: 1325 spin_unlock(&this_parent->d_lock); 1366 spin_unlock(&this_parent->d_lock); 1326 rcu_read_unlock(); 1367 rcu_read_unlock(); 1327 BUG_ON(seq & 1); 1368 BUG_ON(seq & 1); 1328 if (!retry) 1369 if (!retry) 1329 return; 1370 return; 1330 seq = 1; 1371 seq = 1; 1331 goto again; 1372 goto again; 1332 } 1373 } 1333 1374 1334 struct check_mount { 1375 struct check_mount { 1335 struct vfsmount *mnt; 1376 struct vfsmount *mnt; 1336 unsigned int mounted; 1377 unsigned int mounted; 1337 }; 1378 }; 1338 1379 1339 static enum d_walk_ret path_check_mount(void 1380 static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry) 1340 { 1381 { 1341 struct check_mount *info = data; 1382 struct check_mount *info = data; 1342 struct path path = { .mnt = info->mnt 1383 struct path path = { .mnt = info->mnt, .dentry = dentry }; 1343 1384 1344 if (likely(!d_mountpoint(dentry))) 1385 if (likely(!d_mountpoint(dentry))) 1345 return D_WALK_CONTINUE; 1386 return D_WALK_CONTINUE; 1346 if (__path_is_mountpoint(&path)) { 1387 if (__path_is_mountpoint(&path)) { 1347 info->mounted = 1; 1388 info->mounted = 1; 1348 return D_WALK_QUIT; 1389 return D_WALK_QUIT; 1349 } 1390 } 1350 return D_WALK_CONTINUE; 1391 return D_WALK_CONTINUE; 1351 } 1392 } 1352 1393 1353 /** 1394 /** 1354 * path_has_submounts - check for mounts over 1395 * path_has_submounts - check for mounts over a dentry in the 1355 * current namespace. 1396 * current namespace. 1356 * @parent: path to check. 1397 * @parent: path to check. 1357 * 1398 * 1358 * Return true if the parent or its subdirect 1399 * Return true if the parent or its subdirectories contain 1359 * a mount point in the current namespace. 1400 * a mount point in the current namespace. 1360 */ 1401 */ 1361 int path_has_submounts(const struct path *par 1402 int path_has_submounts(const struct path *parent) 1362 { 1403 { 1363 struct check_mount data = { .mnt = pa 1404 struct check_mount data = { .mnt = parent->mnt, .mounted = 0 }; 1364 1405 1365 read_seqlock_excl(&mount_lock); 1406 read_seqlock_excl(&mount_lock); 1366 d_walk(parent->dentry, &data, path_ch 1407 d_walk(parent->dentry, &data, path_check_mount); 1367 read_sequnlock_excl(&mount_lock); 1408 read_sequnlock_excl(&mount_lock); 1368 1409 1369 return data.mounted; 1410 return data.mounted; 1370 } 1411 } 1371 EXPORT_SYMBOL(path_has_submounts); 1412 EXPORT_SYMBOL(path_has_submounts); 1372 1413 1373 /* 1414 /* 1374 * Called by mount code to set a mountpoint a 1415 * Called by mount code to set a mountpoint and check if the mountpoint is 1375 * reachable (e.g. NFS can unhash a directory 1416 * reachable (e.g. NFS can unhash a directory dentry and then the complete 1376 * subtree can become unreachable). 1417 * subtree can become unreachable). 1377 * 1418 * 1378 * Only one of d_invalidate() and d_set_mount 1419 * Only one of d_invalidate() and d_set_mounted() must succeed. For 1379 * this reason take rename_lock and d_lock on 1420 * this reason take rename_lock and d_lock on dentry and ancestors. 1380 */ 1421 */ 1381 int d_set_mounted(struct dentry *dentry) 1422 int d_set_mounted(struct dentry *dentry) 1382 { 1423 { 1383 struct dentry *p; 1424 struct dentry *p; 1384 int ret = -ENOENT; 1425 int ret = -ENOENT; 1385 write_seqlock(&rename_lock); 1426 write_seqlock(&rename_lock); 1386 for (p = dentry->d_parent; !IS_ROOT(p 1427 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) { 1387 /* Need exclusion wrt. d_inva 1428 /* Need exclusion wrt. d_invalidate() */ 1388 spin_lock(&p->d_lock); 1429 spin_lock(&p->d_lock); 1389 if (unlikely(d_unhashed(p))) 1430 if (unlikely(d_unhashed(p))) { 1390 spin_unlock(&p->d_loc 1431 spin_unlock(&p->d_lock); 1391 goto out; 1432 goto out; 1392 } 1433 } 1393 spin_unlock(&p->d_lock); 1434 spin_unlock(&p->d_lock); 1394 } 1435 } 1395 spin_lock(&dentry->d_lock); 1436 spin_lock(&dentry->d_lock); 1396 if (!d_unlinked(dentry)) { 1437 if (!d_unlinked(dentry)) { 1397 ret = -EBUSY; 1438 ret = -EBUSY; 1398 if (!d_mountpoint(dentry)) { 1439 if (!d_mountpoint(dentry)) { 1399 dentry->d_flags |= DC 1440 dentry->d_flags |= DCACHE_MOUNTED; 1400 ret = 0; 1441 ret = 0; 1401 } 1442 } 1402 } 1443 } 1403 spin_unlock(&dentry->d_lock); 1444 spin_unlock(&dentry->d_lock); 1404 out: 1445 out: 1405 write_sequnlock(&rename_lock); 1446 write_sequnlock(&rename_lock); 1406 return ret; 1447 return ret; 1407 } 1448 } 1408 1449 1409 /* 1450 /* 1410 * Search the dentry child list of the specif 1451 * Search the dentry child list of the specified parent, 1411 * and move any unused dentries to the end of 1452 * and move any unused dentries to the end of the unused 1412 * list for prune_dcache(). We descend to the 1453 * list for prune_dcache(). We descend to the next level 1413 * whenever the d_children list is non-empty !! 1454 * whenever the d_subdirs list is non-empty and continue 1414 * searching. 1455 * searching. 1415 * 1456 * 1416 * It returns zero iff there are no unused ch 1457 * It returns zero iff there are no unused children, 1417 * otherwise it returns the number of childr 1458 * otherwise it returns the number of children moved to 1418 * the end of the unused list. This may not b 1459 * the end of the unused list. This may not be the total 1419 * number of unused children, because select_ 1460 * number of unused children, because select_parent can 1420 * drop the lock and return early due to late 1461 * drop the lock and return early due to latency 1421 * constraints. 1462 * constraints. 1422 */ 1463 */ 1423 1464 1424 struct select_data { 1465 struct select_data { 1425 struct dentry *start; 1466 struct dentry *start; 1426 union { 1467 union { 1427 long found; 1468 long found; 1428 struct dentry *victim; 1469 struct dentry *victim; 1429 }; 1470 }; 1430 struct list_head dispose; 1471 struct list_head dispose; 1431 }; 1472 }; 1432 1473 1433 static enum d_walk_ret select_collect(void *_ 1474 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry) 1434 { 1475 { 1435 struct select_data *data = _data; 1476 struct select_data *data = _data; 1436 enum d_walk_ret ret = D_WALK_CONTINUE 1477 enum d_walk_ret ret = D_WALK_CONTINUE; 1437 1478 1438 if (data->start == dentry) 1479 if (data->start == dentry) 1439 goto out; 1480 goto out; 1440 1481 1441 if (dentry->d_flags & DCACHE_SHRINK_L 1482 if (dentry->d_flags & DCACHE_SHRINK_LIST) { 1442 data->found++; 1483 data->found++; 1443 } else if (!dentry->d_lockref.count) !! 1484 } else { 1444 to_shrink_list(dentry, &data- !! 1485 if (dentry->d_flags & DCACHE_LRU_LIST) 1445 data->found++; !! 1486 d_lru_del(dentry); 1446 } else if (dentry->d_lockref.count < !! 1487 if (!dentry->d_lockref.count) { 1447 data->found++; !! 1488 d_shrink_add(dentry, &data->dispose); >> 1489 data->found++; >> 1490 } 1448 } 1491 } 1449 /* 1492 /* 1450 * We can return to the caller if we 1493 * We can return to the caller if we have found some (this 1451 * ensures forward progress). We'll b 1494 * ensures forward progress). We'll be coming back to find 1452 * the rest. 1495 * the rest. 1453 */ 1496 */ 1454 if (!list_empty(&data->dispose)) 1497 if (!list_empty(&data->dispose)) 1455 ret = need_resched() ? D_WALK 1498 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY; 1456 out: 1499 out: 1457 return ret; 1500 return ret; 1458 } 1501 } 1459 1502 1460 static enum d_walk_ret select_collect2(void * 1503 static enum d_walk_ret select_collect2(void *_data, struct dentry *dentry) 1461 { 1504 { 1462 struct select_data *data = _data; 1505 struct select_data *data = _data; 1463 enum d_walk_ret ret = D_WALK_CONTINUE 1506 enum d_walk_ret ret = D_WALK_CONTINUE; 1464 1507 1465 if (data->start == dentry) 1508 if (data->start == dentry) 1466 goto out; 1509 goto out; 1467 1510 1468 if (!dentry->d_lockref.count) { !! 1511 if (dentry->d_flags & DCACHE_SHRINK_LIST) { 1469 if (dentry->d_flags & DCACHE_ !! 1512 if (!dentry->d_lockref.count) { 1470 rcu_read_lock(); 1513 rcu_read_lock(); 1471 data->victim = dentry 1514 data->victim = dentry; 1472 return D_WALK_QUIT; 1515 return D_WALK_QUIT; 1473 } 1516 } 1474 to_shrink_list(dentry, &data- !! 1517 } else { >> 1518 if (dentry->d_flags & DCACHE_LRU_LIST) >> 1519 d_lru_del(dentry); >> 1520 if (!dentry->d_lockref.count) >> 1521 d_shrink_add(dentry, &data->dispose); 1475 } 1522 } 1476 /* 1523 /* 1477 * We can return to the caller if we 1524 * We can return to the caller if we have found some (this 1478 * ensures forward progress). We'll b 1525 * ensures forward progress). We'll be coming back to find 1479 * the rest. 1526 * the rest. 1480 */ 1527 */ 1481 if (!list_empty(&data->dispose)) 1528 if (!list_empty(&data->dispose)) 1482 ret = need_resched() ? D_WALK 1529 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY; 1483 out: 1530 out: 1484 return ret; 1531 return ret; 1485 } 1532 } 1486 1533 1487 /** 1534 /** 1488 * shrink_dcache_parent - prune dcache 1535 * shrink_dcache_parent - prune dcache 1489 * @parent: parent of entries to prune 1536 * @parent: parent of entries to prune 1490 * 1537 * 1491 * Prune the dcache to remove unused children 1538 * Prune the dcache to remove unused children of the parent dentry. 1492 */ 1539 */ 1493 void shrink_dcache_parent(struct dentry *pare 1540 void shrink_dcache_parent(struct dentry *parent) 1494 { 1541 { 1495 for (;;) { 1542 for (;;) { 1496 struct select_data data = {.s 1543 struct select_data data = {.start = parent}; 1497 1544 1498 INIT_LIST_HEAD(&data.dispose) 1545 INIT_LIST_HEAD(&data.dispose); 1499 d_walk(parent, &data, select_ 1546 d_walk(parent, &data, select_collect); 1500 1547 1501 if (!list_empty(&data.dispose 1548 if (!list_empty(&data.dispose)) { 1502 shrink_dentry_list(&d 1549 shrink_dentry_list(&data.dispose); 1503 continue; 1550 continue; 1504 } 1551 } 1505 1552 1506 cond_resched(); 1553 cond_resched(); 1507 if (!data.found) 1554 if (!data.found) 1508 break; 1555 break; 1509 data.victim = NULL; 1556 data.victim = NULL; 1510 d_walk(parent, &data, select_ 1557 d_walk(parent, &data, select_collect2); 1511 if (data.victim) { 1558 if (data.victim) { >> 1559 struct dentry *parent; 1512 spin_lock(&data.victi 1560 spin_lock(&data.victim->d_lock); 1513 if (!lock_for_kill(da !! 1561 if (!shrink_lock_dentry(data.victim)) { 1514 spin_unlock(& 1562 spin_unlock(&data.victim->d_lock); 1515 rcu_read_unlo 1563 rcu_read_unlock(); 1516 } else { 1564 } else { 1517 shrink_kill(d !! 1565 rcu_read_unlock(); >> 1566 parent = data.victim->d_parent; >> 1567 if (parent != data.victim) >> 1568 __dput_to_list(parent, &data.dispose); >> 1569 __dentry_kill(data.victim); 1518 } 1570 } 1519 } 1571 } 1520 if (!list_empty(&data.dispose 1572 if (!list_empty(&data.dispose)) 1521 shrink_dentry_list(&d 1573 shrink_dentry_list(&data.dispose); 1522 } 1574 } 1523 } 1575 } 1524 EXPORT_SYMBOL(shrink_dcache_parent); 1576 EXPORT_SYMBOL(shrink_dcache_parent); 1525 1577 1526 static enum d_walk_ret umount_check(void *_da 1578 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry) 1527 { 1579 { 1528 /* it has busy descendents; complain 1580 /* it has busy descendents; complain about those instead */ 1529 if (!hlist_empty(&dentry->d_children) !! 1581 if (!list_empty(&dentry->d_subdirs)) 1530 return D_WALK_CONTINUE; 1582 return D_WALK_CONTINUE; 1531 1583 1532 /* root with refcount 1 is fine */ 1584 /* root with refcount 1 is fine */ 1533 if (dentry == _data && dentry->d_lock 1585 if (dentry == _data && dentry->d_lockref.count == 1) 1534 return D_WALK_CONTINUE; 1586 return D_WALK_CONTINUE; 1535 1587 1536 WARN(1, "BUG: Dentry %p{i=%lx,n=%pd} !! 1588 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} " 1537 " still in use (%d) [ 1589 " still in use (%d) [unmount of %s %s]\n", 1538 dentry, 1590 dentry, 1539 dentry->d_inode ? 1591 dentry->d_inode ? 1540 dentry->d_inode->i_ino 1592 dentry->d_inode->i_ino : 0UL, 1541 dentry, 1593 dentry, 1542 dentry->d_lockref.coun 1594 dentry->d_lockref.count, 1543 dentry->d_sb->s_type-> 1595 dentry->d_sb->s_type->name, 1544 dentry->d_sb->s_id); 1596 dentry->d_sb->s_id); >> 1597 WARN_ON(1); 1545 return D_WALK_CONTINUE; 1598 return D_WALK_CONTINUE; 1546 } 1599 } 1547 1600 1548 static void do_one_tree(struct dentry *dentry 1601 static void do_one_tree(struct dentry *dentry) 1549 { 1602 { 1550 shrink_dcache_parent(dentry); 1603 shrink_dcache_parent(dentry); 1551 d_walk(dentry, dentry, umount_check); 1604 d_walk(dentry, dentry, umount_check); 1552 d_drop(dentry); 1605 d_drop(dentry); 1553 dput(dentry); 1606 dput(dentry); 1554 } 1607 } 1555 1608 1556 /* 1609 /* 1557 * destroy the dentries attached to a superbl 1610 * destroy the dentries attached to a superblock on unmounting 1558 */ 1611 */ 1559 void shrink_dcache_for_umount(struct super_bl 1612 void shrink_dcache_for_umount(struct super_block *sb) 1560 { 1613 { 1561 struct dentry *dentry; 1614 struct dentry *dentry; 1562 1615 1563 rwsem_assert_held_write(&sb->s_umount !! 1616 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked"); 1564 1617 1565 dentry = sb->s_root; 1618 dentry = sb->s_root; 1566 sb->s_root = NULL; 1619 sb->s_root = NULL; 1567 do_one_tree(dentry); 1620 do_one_tree(dentry); 1568 1621 1569 while (!hlist_bl_empty(&sb->s_roots)) 1622 while (!hlist_bl_empty(&sb->s_roots)) { 1570 dentry = dget(hlist_bl_entry( 1623 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash)); 1571 do_one_tree(dentry); 1624 do_one_tree(dentry); 1572 } 1625 } 1573 } 1626 } 1574 1627 1575 static enum d_walk_ret find_submount(void *_d 1628 static enum d_walk_ret find_submount(void *_data, struct dentry *dentry) 1576 { 1629 { 1577 struct dentry **victim = _data; 1630 struct dentry **victim = _data; 1578 if (d_mountpoint(dentry)) { 1631 if (d_mountpoint(dentry)) { 1579 *victim = dget_dlock(dentry); !! 1632 __dget_dlock(dentry); >> 1633 *victim = dentry; 1580 return D_WALK_QUIT; 1634 return D_WALK_QUIT; 1581 } 1635 } 1582 return D_WALK_CONTINUE; 1636 return D_WALK_CONTINUE; 1583 } 1637 } 1584 1638 1585 /** 1639 /** 1586 * d_invalidate - detach submounts, prune dca 1640 * d_invalidate - detach submounts, prune dcache, and drop 1587 * @dentry: dentry to invalidate (aka detach, 1641 * @dentry: dentry to invalidate (aka detach, prune and drop) 1588 */ 1642 */ 1589 void d_invalidate(struct dentry *dentry) 1643 void d_invalidate(struct dentry *dentry) 1590 { 1644 { 1591 bool had_submounts = false; 1645 bool had_submounts = false; 1592 spin_lock(&dentry->d_lock); 1646 spin_lock(&dentry->d_lock); 1593 if (d_unhashed(dentry)) { 1647 if (d_unhashed(dentry)) { 1594 spin_unlock(&dentry->d_lock); 1648 spin_unlock(&dentry->d_lock); 1595 return; 1649 return; 1596 } 1650 } 1597 __d_drop(dentry); 1651 __d_drop(dentry); 1598 spin_unlock(&dentry->d_lock); 1652 spin_unlock(&dentry->d_lock); 1599 1653 1600 /* Negative dentries can be dropped w 1654 /* Negative dentries can be dropped without further checks */ 1601 if (!dentry->d_inode) 1655 if (!dentry->d_inode) 1602 return; 1656 return; 1603 1657 1604 shrink_dcache_parent(dentry); 1658 shrink_dcache_parent(dentry); 1605 for (;;) { 1659 for (;;) { 1606 struct dentry *victim = NULL; 1660 struct dentry *victim = NULL; 1607 d_walk(dentry, &victim, find_ 1661 d_walk(dentry, &victim, find_submount); 1608 if (!victim) { 1662 if (!victim) { 1609 if (had_submounts) 1663 if (had_submounts) 1610 shrink_dcache 1664 shrink_dcache_parent(dentry); 1611 return; 1665 return; 1612 } 1666 } 1613 had_submounts = true; 1667 had_submounts = true; 1614 detach_mounts(victim); 1668 detach_mounts(victim); 1615 dput(victim); 1669 dput(victim); 1616 } 1670 } 1617 } 1671 } 1618 EXPORT_SYMBOL(d_invalidate); 1672 EXPORT_SYMBOL(d_invalidate); 1619 1673 1620 /** 1674 /** 1621 * __d_alloc - allocate a dcache ent 1675 * __d_alloc - allocate a dcache entry 1622 * @sb: filesystem it will belong to 1676 * @sb: filesystem it will belong to 1623 * @name: qstr of the name 1677 * @name: qstr of the name 1624 * 1678 * 1625 * Allocates a dentry. It returns %NULL if th 1679 * Allocates a dentry. It returns %NULL if there is insufficient memory 1626 * available. On a success the dentry is retu 1680 * available. On a success the dentry is returned. The name passed in is 1627 * copied and the copy passed in may be reuse 1681 * copied and the copy passed in may be reused after this call. 1628 */ 1682 */ 1629 1683 1630 static struct dentry *__d_alloc(struct super_ 1684 static struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name) 1631 { 1685 { 1632 struct dentry *dentry; 1686 struct dentry *dentry; 1633 char *dname; 1687 char *dname; 1634 int err; 1688 int err; 1635 1689 1636 dentry = kmem_cache_alloc_lru(dentry_ !! 1690 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL); 1637 GFP_KER << 1638 if (!dentry) 1691 if (!dentry) 1639 return NULL; 1692 return NULL; 1640 1693 1641 /* 1694 /* 1642 * We guarantee that the inline name 1695 * We guarantee that the inline name is always NUL-terminated. 1643 * This way the memcpy() done by the 1696 * This way the memcpy() done by the name switching in rename 1644 * will still always have a NUL at th 1697 * will still always have a NUL at the end, even if we might 1645 * be overwriting an internal NUL cha 1698 * be overwriting an internal NUL character 1646 */ 1699 */ 1647 dentry->d_iname[DNAME_INLINE_LEN-1] = 1700 dentry->d_iname[DNAME_INLINE_LEN-1] = 0; 1648 if (unlikely(!name)) { 1701 if (unlikely(!name)) { 1649 name = &slash_name; 1702 name = &slash_name; 1650 dname = dentry->d_iname; 1703 dname = dentry->d_iname; 1651 } else if (name->len > DNAME_INLINE_L 1704 } else if (name->len > DNAME_INLINE_LEN-1) { 1652 size_t size = offsetof(struct 1705 size_t size = offsetof(struct external_name, name[1]); 1653 struct external_name *p = kma 1706 struct external_name *p = kmalloc(size + name->len, 1654 1707 GFP_KERNEL_ACCOUNT | 1655 1708 __GFP_RECLAIMABLE); 1656 if (!p) { 1709 if (!p) { 1657 kmem_cache_free(dentr 1710 kmem_cache_free(dentry_cache, dentry); 1658 return NULL; 1711 return NULL; 1659 } 1712 } 1660 atomic_set(&p->u.count, 1); 1713 atomic_set(&p->u.count, 1); 1661 dname = p->name; 1714 dname = p->name; 1662 } else { 1715 } else { 1663 dname = dentry->d_iname; 1716 dname = dentry->d_iname; 1664 } 1717 } 1665 1718 1666 dentry->d_name.len = name->len; 1719 dentry->d_name.len = name->len; 1667 dentry->d_name.hash = name->hash; 1720 dentry->d_name.hash = name->hash; 1668 memcpy(dname, name->name, name->len); 1721 memcpy(dname, name->name, name->len); 1669 dname[name->len] = 0; 1722 dname[name->len] = 0; 1670 1723 1671 /* Make sure we always see the termin 1724 /* Make sure we always see the terminating NUL character */ 1672 smp_store_release(&dentry->d_name.nam 1725 smp_store_release(&dentry->d_name.name, dname); /* ^^^ */ 1673 1726 1674 dentry->d_lockref.count = 1; 1727 dentry->d_lockref.count = 1; 1675 dentry->d_flags = 0; 1728 dentry->d_flags = 0; 1676 spin_lock_init(&dentry->d_lock); 1729 spin_lock_init(&dentry->d_lock); 1677 seqcount_spinlock_init(&dentry->d_seq !! 1730 seqcount_init(&dentry->d_seq); 1678 dentry->d_inode = NULL; 1731 dentry->d_inode = NULL; 1679 dentry->d_parent = dentry; 1732 dentry->d_parent = dentry; 1680 dentry->d_sb = sb; 1733 dentry->d_sb = sb; 1681 dentry->d_op = NULL; 1734 dentry->d_op = NULL; 1682 dentry->d_fsdata = NULL; 1735 dentry->d_fsdata = NULL; 1683 INIT_HLIST_BL_NODE(&dentry->d_hash); 1736 INIT_HLIST_BL_NODE(&dentry->d_hash); 1684 INIT_LIST_HEAD(&dentry->d_lru); 1737 INIT_LIST_HEAD(&dentry->d_lru); 1685 INIT_HLIST_HEAD(&dentry->d_children); !! 1738 INIT_LIST_HEAD(&dentry->d_subdirs); 1686 INIT_HLIST_NODE(&dentry->d_u.d_alias) 1739 INIT_HLIST_NODE(&dentry->d_u.d_alias); 1687 INIT_HLIST_NODE(&dentry->d_sib); !! 1740 INIT_LIST_HEAD(&dentry->d_child); 1688 d_set_d_op(dentry, dentry->d_sb->s_d_ 1741 d_set_d_op(dentry, dentry->d_sb->s_d_op); 1689 1742 1690 if (dentry->d_op && dentry->d_op->d_i 1743 if (dentry->d_op && dentry->d_op->d_init) { 1691 err = dentry->d_op->d_init(de 1744 err = dentry->d_op->d_init(dentry); 1692 if (err) { 1745 if (err) { 1693 if (dname_external(de 1746 if (dname_external(dentry)) 1694 kfree(externa 1747 kfree(external_name(dentry)); 1695 kmem_cache_free(dentr 1748 kmem_cache_free(dentry_cache, dentry); 1696 return NULL; 1749 return NULL; 1697 } 1750 } 1698 } 1751 } 1699 1752 1700 this_cpu_inc(nr_dentry); 1753 this_cpu_inc(nr_dentry); 1701 1754 1702 return dentry; 1755 return dentry; 1703 } 1756 } 1704 1757 1705 /** 1758 /** 1706 * d_alloc - allocate a dcache ent 1759 * d_alloc - allocate a dcache entry 1707 * @parent: parent of entry to allocate 1760 * @parent: parent of entry to allocate 1708 * @name: qstr of the name 1761 * @name: qstr of the name 1709 * 1762 * 1710 * Allocates a dentry. It returns %NULL if th 1763 * Allocates a dentry. It returns %NULL if there is insufficient memory 1711 * available. On a success the dentry is retu 1764 * available. On a success the dentry is returned. The name passed in is 1712 * copied and the copy passed in may be reuse 1765 * copied and the copy passed in may be reused after this call. 1713 */ 1766 */ 1714 struct dentry *d_alloc(struct dentry * parent 1767 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name) 1715 { 1768 { 1716 struct dentry *dentry = __d_alloc(par 1769 struct dentry *dentry = __d_alloc(parent->d_sb, name); 1717 if (!dentry) 1770 if (!dentry) 1718 return NULL; 1771 return NULL; 1719 spin_lock(&parent->d_lock); 1772 spin_lock(&parent->d_lock); 1720 /* 1773 /* 1721 * don't need child lock because it i 1774 * don't need child lock because it is not subject 1722 * to concurrency here 1775 * to concurrency here 1723 */ 1776 */ 1724 dentry->d_parent = dget_dlock(parent) !! 1777 __dget_dlock(parent); 1725 hlist_add_head(&dentry->d_sib, &paren !! 1778 dentry->d_parent = parent; >> 1779 list_add(&dentry->d_child, &parent->d_subdirs); 1726 spin_unlock(&parent->d_lock); 1780 spin_unlock(&parent->d_lock); 1727 1781 1728 return dentry; 1782 return dentry; 1729 } 1783 } 1730 EXPORT_SYMBOL(d_alloc); 1784 EXPORT_SYMBOL(d_alloc); 1731 1785 1732 struct dentry *d_alloc_anon(struct super_bloc 1786 struct dentry *d_alloc_anon(struct super_block *sb) 1733 { 1787 { 1734 return __d_alloc(sb, NULL); 1788 return __d_alloc(sb, NULL); 1735 } 1789 } 1736 EXPORT_SYMBOL(d_alloc_anon); 1790 EXPORT_SYMBOL(d_alloc_anon); 1737 1791 1738 struct dentry *d_alloc_cursor(struct dentry * 1792 struct dentry *d_alloc_cursor(struct dentry * parent) 1739 { 1793 { 1740 struct dentry *dentry = d_alloc_anon( 1794 struct dentry *dentry = d_alloc_anon(parent->d_sb); 1741 if (dentry) { 1795 if (dentry) { 1742 dentry->d_flags |= DCACHE_DEN 1796 dentry->d_flags |= DCACHE_DENTRY_CURSOR; 1743 dentry->d_parent = dget(paren 1797 dentry->d_parent = dget(parent); 1744 } 1798 } 1745 return dentry; 1799 return dentry; 1746 } 1800 } 1747 1801 1748 /** 1802 /** 1749 * d_alloc_pseudo - allocate a dentry (for lo 1803 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems) 1750 * @sb: the superblock 1804 * @sb: the superblock 1751 * @name: qstr of the name 1805 * @name: qstr of the name 1752 * 1806 * 1753 * For a filesystem that just pins its dentri 1807 * For a filesystem that just pins its dentries in memory and never 1754 * performs lookups at all, return an unhashe 1808 * performs lookups at all, return an unhashed IS_ROOT dentry. 1755 * This is used for pipes, sockets et.al. - t 1809 * This is used for pipes, sockets et.al. - the stuff that should 1756 * never be anyone's children or parents. Un 1810 * never be anyone's children or parents. Unlike all other 1757 * dentries, these will not have RCU delay be 1811 * dentries, these will not have RCU delay between dropping the 1758 * last reference and freeing them. 1812 * last reference and freeing them. 1759 * 1813 * 1760 * The only user is alloc_file_pseudo() and t 1814 * The only user is alloc_file_pseudo() and that's what should 1761 * be considered a public interface. Don't u 1815 * be considered a public interface. Don't use directly. 1762 */ 1816 */ 1763 struct dentry *d_alloc_pseudo(struct super_bl 1817 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name) 1764 { 1818 { 1765 static const struct dentry_operations << 1766 .d_dname = simple_dname << 1767 }; << 1768 struct dentry *dentry = __d_alloc(sb, 1819 struct dentry *dentry = __d_alloc(sb, name); 1769 if (likely(dentry)) { !! 1820 if (likely(dentry)) 1770 dentry->d_flags |= DCACHE_NOR 1821 dentry->d_flags |= DCACHE_NORCU; 1771 if (!sb->s_d_op) << 1772 d_set_d_op(dentry, &a << 1773 } << 1774 return dentry; 1822 return dentry; 1775 } 1823 } 1776 1824 1777 struct dentry *d_alloc_name(struct dentry *pa 1825 struct dentry *d_alloc_name(struct dentry *parent, const char *name) 1778 { 1826 { 1779 struct qstr q; 1827 struct qstr q; 1780 1828 1781 q.name = name; 1829 q.name = name; 1782 q.hash_len = hashlen_string(parent, n 1830 q.hash_len = hashlen_string(parent, name); 1783 return d_alloc(parent, &q); 1831 return d_alloc(parent, &q); 1784 } 1832 } 1785 EXPORT_SYMBOL(d_alloc_name); 1833 EXPORT_SYMBOL(d_alloc_name); 1786 1834 1787 void d_set_d_op(struct dentry *dentry, const 1835 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op) 1788 { 1836 { 1789 WARN_ON_ONCE(dentry->d_op); 1837 WARN_ON_ONCE(dentry->d_op); 1790 WARN_ON_ONCE(dentry->d_flags & (DCACH 1838 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH | 1791 DCACHE_OP_COM 1839 DCACHE_OP_COMPARE | 1792 DCACHE_OP_REV 1840 DCACHE_OP_REVALIDATE | 1793 DCACHE_OP_WEA 1841 DCACHE_OP_WEAK_REVALIDATE | 1794 DCACHE_OP_DEL 1842 DCACHE_OP_DELETE | 1795 DCACHE_OP_REA 1843 DCACHE_OP_REAL)); 1796 dentry->d_op = op; 1844 dentry->d_op = op; 1797 if (!op) 1845 if (!op) 1798 return; 1846 return; 1799 if (op->d_hash) 1847 if (op->d_hash) 1800 dentry->d_flags |= DCACHE_OP_ 1848 dentry->d_flags |= DCACHE_OP_HASH; 1801 if (op->d_compare) 1849 if (op->d_compare) 1802 dentry->d_flags |= DCACHE_OP_ 1850 dentry->d_flags |= DCACHE_OP_COMPARE; 1803 if (op->d_revalidate) 1851 if (op->d_revalidate) 1804 dentry->d_flags |= DCACHE_OP_ 1852 dentry->d_flags |= DCACHE_OP_REVALIDATE; 1805 if (op->d_weak_revalidate) 1853 if (op->d_weak_revalidate) 1806 dentry->d_flags |= DCACHE_OP_ 1854 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE; 1807 if (op->d_delete) 1855 if (op->d_delete) 1808 dentry->d_flags |= DCACHE_OP_ 1856 dentry->d_flags |= DCACHE_OP_DELETE; 1809 if (op->d_prune) 1857 if (op->d_prune) 1810 dentry->d_flags |= DCACHE_OP_ 1858 dentry->d_flags |= DCACHE_OP_PRUNE; 1811 if (op->d_real) 1859 if (op->d_real) 1812 dentry->d_flags |= DCACHE_OP_ 1860 dentry->d_flags |= DCACHE_OP_REAL; 1813 1861 1814 } 1862 } 1815 EXPORT_SYMBOL(d_set_d_op); 1863 EXPORT_SYMBOL(d_set_d_op); 1816 1864 >> 1865 >> 1866 /* >> 1867 * d_set_fallthru - Mark a dentry as falling through to a lower layer >> 1868 * @dentry - The dentry to mark >> 1869 * >> 1870 * Mark a dentry as falling through to the lower layer (as set with >> 1871 * d_pin_lower()). This flag may be recorded on the medium. >> 1872 */ >> 1873 void d_set_fallthru(struct dentry *dentry) >> 1874 { >> 1875 spin_lock(&dentry->d_lock); >> 1876 dentry->d_flags |= DCACHE_FALLTHRU; >> 1877 spin_unlock(&dentry->d_lock); >> 1878 } >> 1879 EXPORT_SYMBOL(d_set_fallthru); >> 1880 1817 static unsigned d_flags_for_inode(struct inod 1881 static unsigned d_flags_for_inode(struct inode *inode) 1818 { 1882 { 1819 unsigned add_flags = DCACHE_REGULAR_T 1883 unsigned add_flags = DCACHE_REGULAR_TYPE; 1820 1884 1821 if (!inode) 1885 if (!inode) 1822 return DCACHE_MISS_TYPE; 1886 return DCACHE_MISS_TYPE; 1823 1887 1824 if (S_ISDIR(inode->i_mode)) { 1888 if (S_ISDIR(inode->i_mode)) { 1825 add_flags = DCACHE_DIRECTORY_ 1889 add_flags = DCACHE_DIRECTORY_TYPE; 1826 if (unlikely(!(inode->i_opfla 1890 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) { 1827 if (unlikely(!inode-> 1891 if (unlikely(!inode->i_op->lookup)) 1828 add_flags = D 1892 add_flags = DCACHE_AUTODIR_TYPE; 1829 else 1893 else 1830 inode->i_opfl 1894 inode->i_opflags |= IOP_LOOKUP; 1831 } 1895 } 1832 goto type_determined; 1896 goto type_determined; 1833 } 1897 } 1834 1898 1835 if (unlikely(!(inode->i_opflags & IOP 1899 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) { 1836 if (unlikely(inode->i_op->get 1900 if (unlikely(inode->i_op->get_link)) { 1837 add_flags = DCACHE_SY 1901 add_flags = DCACHE_SYMLINK_TYPE; 1838 goto type_determined; 1902 goto type_determined; 1839 } 1903 } 1840 inode->i_opflags |= IOP_NOFOL 1904 inode->i_opflags |= IOP_NOFOLLOW; 1841 } 1905 } 1842 1906 1843 if (unlikely(!S_ISREG(inode->i_mode)) 1907 if (unlikely(!S_ISREG(inode->i_mode))) 1844 add_flags = DCACHE_SPECIAL_TY 1908 add_flags = DCACHE_SPECIAL_TYPE; 1845 1909 1846 type_determined: 1910 type_determined: 1847 if (unlikely(IS_AUTOMOUNT(inode))) 1911 if (unlikely(IS_AUTOMOUNT(inode))) 1848 add_flags |= DCACHE_NEED_AUTO 1912 add_flags |= DCACHE_NEED_AUTOMOUNT; 1849 return add_flags; 1913 return add_flags; 1850 } 1914 } 1851 1915 1852 static void __d_instantiate(struct dentry *de 1916 static void __d_instantiate(struct dentry *dentry, struct inode *inode) 1853 { 1917 { 1854 unsigned add_flags = d_flags_for_inod 1918 unsigned add_flags = d_flags_for_inode(inode); 1855 WARN_ON(d_in_lookup(dentry)); 1919 WARN_ON(d_in_lookup(dentry)); 1856 1920 1857 spin_lock(&dentry->d_lock); 1921 spin_lock(&dentry->d_lock); 1858 /* 1922 /* 1859 * The negative counter only tracks d !! 1923 * Decrement negative dentry count if it was in the LRU list. 1860 * d_lru is on another list. << 1861 */ 1924 */ 1862 if ((dentry->d_flags & !! 1925 if (dentry->d_flags & DCACHE_LRU_LIST) 1863 (DCACHE_LRU_LIST|DCACHE_SHRINK_L << 1864 this_cpu_dec(nr_dentry_negati 1926 this_cpu_dec(nr_dentry_negative); 1865 hlist_add_head(&dentry->d_u.d_alias, 1927 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry); 1866 raw_write_seqcount_begin(&dentry->d_s 1928 raw_write_seqcount_begin(&dentry->d_seq); 1867 __d_set_inode_and_type(dentry, inode, 1929 __d_set_inode_and_type(dentry, inode, add_flags); 1868 raw_write_seqcount_end(&dentry->d_seq 1930 raw_write_seqcount_end(&dentry->d_seq); 1869 fsnotify_update_flags(dentry); 1931 fsnotify_update_flags(dentry); 1870 spin_unlock(&dentry->d_lock); 1932 spin_unlock(&dentry->d_lock); 1871 } 1933 } 1872 1934 1873 /** 1935 /** 1874 * d_instantiate - fill in inode information 1936 * d_instantiate - fill in inode information for a dentry 1875 * @entry: dentry to complete 1937 * @entry: dentry to complete 1876 * @inode: inode to attach to this dentry 1938 * @inode: inode to attach to this dentry 1877 * 1939 * 1878 * Fill in inode information in the entry. 1940 * Fill in inode information in the entry. 1879 * 1941 * 1880 * This turns negative dentries into producti 1942 * This turns negative dentries into productive full members 1881 * of society. 1943 * of society. 1882 * 1944 * 1883 * NOTE! This assumes that the inode count ha 1945 * NOTE! This assumes that the inode count has been incremented 1884 * (or otherwise set) by the caller to indica 1946 * (or otherwise set) by the caller to indicate that it is now 1885 * in use by the dcache. 1947 * in use by the dcache. 1886 */ 1948 */ 1887 1949 1888 void d_instantiate(struct dentry *entry, stru 1950 void d_instantiate(struct dentry *entry, struct inode * inode) 1889 { 1951 { 1890 BUG_ON(!hlist_unhashed(&entry->d_u.d_ 1952 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias)); 1891 if (inode) { 1953 if (inode) { 1892 security_d_instantiate(entry, 1954 security_d_instantiate(entry, inode); 1893 spin_lock(&inode->i_lock); 1955 spin_lock(&inode->i_lock); 1894 __d_instantiate(entry, inode) 1956 __d_instantiate(entry, inode); 1895 spin_unlock(&inode->i_lock); 1957 spin_unlock(&inode->i_lock); 1896 } 1958 } 1897 } 1959 } 1898 EXPORT_SYMBOL(d_instantiate); 1960 EXPORT_SYMBOL(d_instantiate); 1899 1961 1900 /* 1962 /* 1901 * This should be equivalent to d_instantiate 1963 * This should be equivalent to d_instantiate() + unlock_new_inode(), 1902 * with lockdep-related part of unlock_new_in 1964 * with lockdep-related part of unlock_new_inode() done before 1903 * anything else. Use that instead of open-c 1965 * anything else. Use that instead of open-coding d_instantiate()/ 1904 * unlock_new_inode() combinations. 1966 * unlock_new_inode() combinations. 1905 */ 1967 */ 1906 void d_instantiate_new(struct dentry *entry, 1968 void d_instantiate_new(struct dentry *entry, struct inode *inode) 1907 { 1969 { 1908 BUG_ON(!hlist_unhashed(&entry->d_u.d_ 1970 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias)); 1909 BUG_ON(!inode); 1971 BUG_ON(!inode); 1910 lockdep_annotate_inode_mutex_key(inod 1972 lockdep_annotate_inode_mutex_key(inode); 1911 security_d_instantiate(entry, inode); 1973 security_d_instantiate(entry, inode); 1912 spin_lock(&inode->i_lock); 1974 spin_lock(&inode->i_lock); 1913 __d_instantiate(entry, inode); 1975 __d_instantiate(entry, inode); 1914 WARN_ON(!(inode->i_state & I_NEW)); 1976 WARN_ON(!(inode->i_state & I_NEW)); 1915 inode->i_state &= ~I_NEW & ~I_CREATIN 1977 inode->i_state &= ~I_NEW & ~I_CREATING; 1916 /* << 1917 * Pairs with the barrier in prepare_ << 1918 * ___wait_var_event() either sees th << 1919 * waitqueue_active() check in wake_u << 1920 */ << 1921 smp_mb(); 1978 smp_mb(); 1922 inode_wake_up_bit(inode, __I_NEW); !! 1979 wake_up_bit(&inode->i_state, __I_NEW); 1923 spin_unlock(&inode->i_lock); 1980 spin_unlock(&inode->i_lock); 1924 } 1981 } 1925 EXPORT_SYMBOL(d_instantiate_new); 1982 EXPORT_SYMBOL(d_instantiate_new); 1926 1983 1927 struct dentry *d_make_root(struct inode *root 1984 struct dentry *d_make_root(struct inode *root_inode) 1928 { 1985 { 1929 struct dentry *res = NULL; 1986 struct dentry *res = NULL; 1930 1987 1931 if (root_inode) { 1988 if (root_inode) { 1932 res = d_alloc_anon(root_inode 1989 res = d_alloc_anon(root_inode->i_sb); 1933 if (res) 1990 if (res) 1934 d_instantiate(res, ro 1991 d_instantiate(res, root_inode); 1935 else 1992 else 1936 iput(root_inode); 1993 iput(root_inode); 1937 } 1994 } 1938 return res; 1995 return res; 1939 } 1996 } 1940 EXPORT_SYMBOL(d_make_root); 1997 EXPORT_SYMBOL(d_make_root); 1941 1998 >> 1999 static struct dentry *__d_instantiate_anon(struct dentry *dentry, >> 2000 struct inode *inode, >> 2001 bool disconnected) >> 2002 { >> 2003 struct dentry *res; >> 2004 unsigned add_flags; >> 2005 >> 2006 security_d_instantiate(dentry, inode); >> 2007 spin_lock(&inode->i_lock); >> 2008 res = __d_find_any_alias(inode); >> 2009 if (res) { >> 2010 spin_unlock(&inode->i_lock); >> 2011 dput(dentry); >> 2012 goto out_iput; >> 2013 } >> 2014 >> 2015 /* attach a disconnected dentry */ >> 2016 add_flags = d_flags_for_inode(inode); >> 2017 >> 2018 if (disconnected) >> 2019 add_flags |= DCACHE_DISCONNECTED; >> 2020 >> 2021 spin_lock(&dentry->d_lock); >> 2022 __d_set_inode_and_type(dentry, inode, add_flags); >> 2023 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry); >> 2024 if (!disconnected) { >> 2025 hlist_bl_lock(&dentry->d_sb->s_roots); >> 2026 hlist_bl_add_head(&dentry->d_hash, &dentry->d_sb->s_roots); >> 2027 hlist_bl_unlock(&dentry->d_sb->s_roots); >> 2028 } >> 2029 spin_unlock(&dentry->d_lock); >> 2030 spin_unlock(&inode->i_lock); >> 2031 >> 2032 return dentry; >> 2033 >> 2034 out_iput: >> 2035 iput(inode); >> 2036 return res; >> 2037 } >> 2038 >> 2039 struct dentry *d_instantiate_anon(struct dentry *dentry, struct inode *inode) >> 2040 { >> 2041 return __d_instantiate_anon(dentry, inode, true); >> 2042 } >> 2043 EXPORT_SYMBOL(d_instantiate_anon); >> 2044 1942 static struct dentry *__d_obtain_alias(struct 2045 static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected) 1943 { 2046 { 1944 struct super_block *sb; !! 2047 struct dentry *tmp; 1945 struct dentry *new, *res; !! 2048 struct dentry *res; 1946 2049 1947 if (!inode) 2050 if (!inode) 1948 return ERR_PTR(-ESTALE); 2051 return ERR_PTR(-ESTALE); 1949 if (IS_ERR(inode)) 2052 if (IS_ERR(inode)) 1950 return ERR_CAST(inode); 2053 return ERR_CAST(inode); 1951 2054 1952 sb = inode->i_sb; !! 2055 res = d_find_any_alias(inode); 1953 << 1954 res = d_find_any_alias(inode); /* exi << 1955 if (res) 2056 if (res) 1956 goto out; !! 2057 goto out_iput; 1957 2058 1958 new = d_alloc_anon(sb); !! 2059 tmp = d_alloc_anon(inode->i_sb); 1959 if (!new) { !! 2060 if (!tmp) { 1960 res = ERR_PTR(-ENOMEM); 2061 res = ERR_PTR(-ENOMEM); 1961 goto out; !! 2062 goto out_iput; 1962 } 2063 } 1963 2064 1964 security_d_instantiate(new, inode); !! 2065 return __d_instantiate_anon(tmp, inode, disconnected); 1965 spin_lock(&inode->i_lock); << 1966 res = __d_find_any_alias(inode); /* r << 1967 if (likely(!res)) { /* still no alias << 1968 unsigned add_flags = d_flags_ << 1969 << 1970 if (disconnected) << 1971 add_flags |= DCACHE_D << 1972 2066 1973 spin_lock(&new->d_lock); !! 2067 out_iput: 1974 __d_set_inode_and_type(new, i << 1975 hlist_add_head(&new->d_u.d_al << 1976 if (!disconnected) { << 1977 hlist_bl_lock(&sb->s_ << 1978 hlist_bl_add_head(&ne << 1979 hlist_bl_unlock(&sb-> << 1980 } << 1981 spin_unlock(&new->d_lock); << 1982 spin_unlock(&inode->i_lock); << 1983 inode = NULL; /* consumed by << 1984 res = new; << 1985 } else { << 1986 spin_unlock(&inode->i_lock); << 1987 dput(new); << 1988 } << 1989 << 1990 out: << 1991 iput(inode); 2068 iput(inode); 1992 return res; 2069 return res; 1993 } 2070 } 1994 2071 1995 /** 2072 /** 1996 * d_obtain_alias - find or allocate a DISCON 2073 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode 1997 * @inode: inode to allocate the dentry for 2074 * @inode: inode to allocate the dentry for 1998 * 2075 * 1999 * Obtain a dentry for an inode resulting fro 2076 * Obtain a dentry for an inode resulting from NFS filehandle conversion or 2000 * similar open by handle operations. The re 2077 * similar open by handle operations. The returned dentry may be anonymous, 2001 * or may have a full name (if the inode was 2078 * or may have a full name (if the inode was already in the cache). 2002 * 2079 * 2003 * When called on a directory inode, we must 2080 * When called on a directory inode, we must ensure that the inode only ever 2004 * has one dentry. If a dentry is found, tha 2081 * has one dentry. If a dentry is found, that is returned instead of 2005 * allocating a new one. 2082 * allocating a new one. 2006 * 2083 * 2007 * On successful return, the reference to the 2084 * On successful return, the reference to the inode has been transferred 2008 * to the dentry. In case of an error the re 2085 * to the dentry. In case of an error the reference on the inode is released. 2009 * To make it easier to use in export operati 2086 * To make it easier to use in export operations a %NULL or IS_ERR inode may 2010 * be passed in and the error will be propaga 2087 * be passed in and the error will be propagated to the return value, 2011 * with a %NULL @inode replaced by ERR_PTR(-E 2088 * with a %NULL @inode replaced by ERR_PTR(-ESTALE). 2012 */ 2089 */ 2013 struct dentry *d_obtain_alias(struct inode *i 2090 struct dentry *d_obtain_alias(struct inode *inode) 2014 { 2091 { 2015 return __d_obtain_alias(inode, true); 2092 return __d_obtain_alias(inode, true); 2016 } 2093 } 2017 EXPORT_SYMBOL(d_obtain_alias); 2094 EXPORT_SYMBOL(d_obtain_alias); 2018 2095 2019 /** 2096 /** 2020 * d_obtain_root - find or allocate a dentry 2097 * d_obtain_root - find or allocate a dentry for a given inode 2021 * @inode: inode to allocate the dentry for 2098 * @inode: inode to allocate the dentry for 2022 * 2099 * 2023 * Obtain an IS_ROOT dentry for the root of a 2100 * Obtain an IS_ROOT dentry for the root of a filesystem. 2024 * 2101 * 2025 * We must ensure that directory inodes only 2102 * We must ensure that directory inodes only ever have one dentry. If a 2026 * dentry is found, that is returned instead 2103 * dentry is found, that is returned instead of allocating a new one. 2027 * 2104 * 2028 * On successful return, the reference to the 2105 * On successful return, the reference to the inode has been transferred 2029 * to the dentry. In case of an error the re 2106 * to the dentry. In case of an error the reference on the inode is 2030 * released. A %NULL or IS_ERR inode may be 2107 * released. A %NULL or IS_ERR inode may be passed in and will be the 2031 * error will be propagate to the return valu 2108 * error will be propagate to the return value, with a %NULL @inode 2032 * replaced by ERR_PTR(-ESTALE). 2109 * replaced by ERR_PTR(-ESTALE). 2033 */ 2110 */ 2034 struct dentry *d_obtain_root(struct inode *in 2111 struct dentry *d_obtain_root(struct inode *inode) 2035 { 2112 { 2036 return __d_obtain_alias(inode, false) 2113 return __d_obtain_alias(inode, false); 2037 } 2114 } 2038 EXPORT_SYMBOL(d_obtain_root); 2115 EXPORT_SYMBOL(d_obtain_root); 2039 2116 2040 /** 2117 /** 2041 * d_add_ci - lookup or allocate new dentry w 2118 * d_add_ci - lookup or allocate new dentry with case-exact name 2042 * @inode: the inode case-insensitive lookup 2119 * @inode: the inode case-insensitive lookup has found 2043 * @dentry: the negative dentry that was pass 2120 * @dentry: the negative dentry that was passed to the parent's lookup func 2044 * @name: the case-exact name to be associa 2121 * @name: the case-exact name to be associated with the returned dentry 2045 * 2122 * 2046 * This is to avoid filling the dcache with c 2123 * This is to avoid filling the dcache with case-insensitive names to the 2047 * same inode, only the actual correct case i 2124 * same inode, only the actual correct case is stored in the dcache for 2048 * case-insensitive filesystems. 2125 * case-insensitive filesystems. 2049 * 2126 * 2050 * For a case-insensitive lookup match and if !! 2127 * For a case-insensitive lookup match and if the the case-exact dentry 2051 * already exists in the dcache, use it and r !! 2128 * already exists in in the dcache, use it and return it. 2052 * 2129 * 2053 * If no entry exists with the exact case nam 2130 * If no entry exists with the exact case name, allocate new dentry with 2054 * the exact case, and return the spliced ent 2131 * the exact case, and return the spliced entry. 2055 */ 2132 */ 2056 struct dentry *d_add_ci(struct dentry *dentry 2133 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode, 2057 struct qstr *name) 2134 struct qstr *name) 2058 { 2135 { 2059 struct dentry *found, *res; 2136 struct dentry *found, *res; 2060 2137 2061 /* 2138 /* 2062 * First check if a dentry matching t 2139 * First check if a dentry matching the name already exists, 2063 * if not go ahead and create it now. 2140 * if not go ahead and create it now. 2064 */ 2141 */ 2065 found = d_hash_and_lookup(dentry->d_p 2142 found = d_hash_and_lookup(dentry->d_parent, name); 2066 if (found) { 2143 if (found) { 2067 iput(inode); 2144 iput(inode); 2068 return found; 2145 return found; 2069 } 2146 } 2070 if (d_in_lookup(dentry)) { 2147 if (d_in_lookup(dentry)) { 2071 found = d_alloc_parallel(dent 2148 found = d_alloc_parallel(dentry->d_parent, name, 2072 dentr 2149 dentry->d_wait); 2073 if (IS_ERR(found) || !d_in_lo 2150 if (IS_ERR(found) || !d_in_lookup(found)) { 2074 iput(inode); 2151 iput(inode); 2075 return found; 2152 return found; 2076 } 2153 } 2077 } else { 2154 } else { 2078 found = d_alloc(dentry->d_par 2155 found = d_alloc(dentry->d_parent, name); 2079 if (!found) { 2156 if (!found) { 2080 iput(inode); 2157 iput(inode); 2081 return ERR_PTR(-ENOME 2158 return ERR_PTR(-ENOMEM); 2082 } 2159 } 2083 } 2160 } 2084 res = d_splice_alias(inode, found); 2161 res = d_splice_alias(inode, found); 2085 if (res) { 2162 if (res) { 2086 d_lookup_done(found); << 2087 dput(found); 2163 dput(found); 2088 return res; 2164 return res; 2089 } 2165 } 2090 return found; 2166 return found; 2091 } 2167 } 2092 EXPORT_SYMBOL(d_add_ci); 2168 EXPORT_SYMBOL(d_add_ci); 2093 2169 2094 /** !! 2170 2095 * d_same_name - compare dentry name with cas !! 2171 static inline bool d_same_name(const struct dentry *dentry, 2096 * @parent: parent dentry !! 2172 const struct dentry *parent, 2097 * @dentry: the negative dentry that was pass !! 2173 const struct qstr *name) 2098 * @name: the case-exact name to be associa << 2099 * << 2100 * Return: true if names are same, or false << 2101 */ << 2102 bool d_same_name(const struct dentry *dentry, << 2103 const struct qstr *name) << 2104 { 2174 { 2105 if (likely(!(parent->d_flags & DCACHE 2175 if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) { 2106 if (dentry->d_name.len != nam 2176 if (dentry->d_name.len != name->len) 2107 return false; 2177 return false; 2108 return dentry_cmp(dentry, nam 2178 return dentry_cmp(dentry, name->name, name->len) == 0; 2109 } 2179 } 2110 return parent->d_op->d_compare(dentry 2180 return parent->d_op->d_compare(dentry, 2111 dentry 2181 dentry->d_name.len, dentry->d_name.name, 2112 name) 2182 name) == 0; 2113 } 2183 } 2114 EXPORT_SYMBOL_GPL(d_same_name); << 2115 << 2116 /* << 2117 * This is __d_lookup_rcu() when the parent d << 2118 * DCACHE_OP_COMPARE, which makes things much << 2119 */ << 2120 static noinline struct dentry *__d_lookup_rcu << 2121 const struct dentry *parent, << 2122 const struct qstr *name, << 2123 unsigned *seqp) << 2124 { << 2125 u64 hashlen = name->hash_len; << 2126 struct hlist_bl_head *b = d_hash(hash << 2127 struct hlist_bl_node *node; << 2128 struct dentry *dentry; << 2129 << 2130 hlist_bl_for_each_entry_rcu(dentry, n << 2131 int tlen; << 2132 const char *tname; << 2133 unsigned seq; << 2134 << 2135 seqretry: << 2136 seq = raw_seqcount_begin(&den << 2137 if (dentry->d_parent != paren << 2138 continue; << 2139 if (d_unhashed(dentry)) << 2140 continue; << 2141 if (dentry->d_name.hash != ha << 2142 continue; << 2143 tlen = dentry->d_name.len; << 2144 tname = dentry->d_name.name; << 2145 /* we want a consistent (name << 2146 if (read_seqcount_retry(&dent << 2147 cpu_relax(); << 2148 goto seqretry; << 2149 } << 2150 if (parent->d_op->d_compare(d << 2151 continue; << 2152 *seqp = seq; << 2153 return dentry; << 2154 } << 2155 return NULL; << 2156 } << 2157 2184 2158 /** 2185 /** 2159 * __d_lookup_rcu - search for a dentry (racy 2186 * __d_lookup_rcu - search for a dentry (racy, store-free) 2160 * @parent: parent dentry 2187 * @parent: parent dentry 2161 * @name: qstr of name we wish to find 2188 * @name: qstr of name we wish to find 2162 * @seqp: returns d_seq value at the point wh 2189 * @seqp: returns d_seq value at the point where the dentry was found 2163 * Returns: dentry, or NULL 2190 * Returns: dentry, or NULL 2164 * 2191 * 2165 * __d_lookup_rcu is the dcache lookup functi 2192 * __d_lookup_rcu is the dcache lookup function for rcu-walk name 2166 * resolution (store-free path walking) desig 2193 * resolution (store-free path walking) design described in 2167 * Documentation/filesystems/path-lookup.txt. 2194 * Documentation/filesystems/path-lookup.txt. 2168 * 2195 * 2169 * This is not to be used outside core vfs. 2196 * This is not to be used outside core vfs. 2170 * 2197 * 2171 * __d_lookup_rcu must only be used in rcu-wa 2198 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock 2172 * held, and rcu_read_lock held. The returned 2199 * held, and rcu_read_lock held. The returned dentry must not be stored into 2173 * without taking d_lock and checking d_seq s 2200 * without taking d_lock and checking d_seq sequence count against @seq 2174 * returned here. 2201 * returned here. 2175 * 2202 * >> 2203 * A refcount may be taken on the found dentry with the d_rcu_to_refcount >> 2204 * function. >> 2205 * 2176 * Alternatively, __d_lookup_rcu may be calle 2206 * Alternatively, __d_lookup_rcu may be called again to look up the child of 2177 * the returned dentry, so long as its parent 2207 * the returned dentry, so long as its parent's seqlock is checked after the 2178 * child is looked up. Thus, an interlocking 2208 * child is looked up. Thus, an interlocking stepping of sequence lock checks 2179 * is formed, giving integrity down the path 2209 * is formed, giving integrity down the path walk. 2180 * 2210 * 2181 * NOTE! The caller *has* to check the result 2211 * NOTE! The caller *has* to check the resulting dentry against the sequence 2182 * number we've returned before using any of 2212 * number we've returned before using any of the resulting dentry state! 2183 */ 2213 */ 2184 struct dentry *__d_lookup_rcu(const struct de 2214 struct dentry *__d_lookup_rcu(const struct dentry *parent, 2185 const struct 2215 const struct qstr *name, 2186 unsigned *seq 2216 unsigned *seqp) 2187 { 2217 { 2188 u64 hashlen = name->hash_len; 2218 u64 hashlen = name->hash_len; 2189 const unsigned char *str = name->name 2219 const unsigned char *str = name->name; 2190 struct hlist_bl_head *b = d_hash(hash !! 2220 struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen)); 2191 struct hlist_bl_node *node; 2221 struct hlist_bl_node *node; 2192 struct dentry *dentry; 2222 struct dentry *dentry; 2193 2223 2194 /* 2224 /* 2195 * Note: There is significant duplica 2225 * Note: There is significant duplication with __d_lookup_rcu which is 2196 * required to prevent single threade 2226 * required to prevent single threaded performance regressions 2197 * especially on architectures where 2227 * especially on architectures where smp_rmb (in seqcounts) are costly. 2198 * Keep the two functions in sync. 2228 * Keep the two functions in sync. 2199 */ 2229 */ 2200 2230 2201 if (unlikely(parent->d_flags & DCACHE << 2202 return __d_lookup_rcu_op_comp << 2203 << 2204 /* 2231 /* 2205 * The hash list is protected using R 2232 * The hash list is protected using RCU. 2206 * 2233 * 2207 * Carefully use d_seq when comparing 2234 * Carefully use d_seq when comparing a candidate dentry, to avoid 2208 * races with d_move(). 2235 * races with d_move(). 2209 * 2236 * 2210 * It is possible that concurrent ren 2237 * It is possible that concurrent renames can mess up our list 2211 * walk here and result in missing ou 2238 * walk here and result in missing our dentry, resulting in the 2212 * false-negative result. d_lookup() 2239 * false-negative result. d_lookup() protects against concurrent 2213 * renames using rename_lock seqlock. 2240 * renames using rename_lock seqlock. 2214 * 2241 * 2215 * See Documentation/filesystems/path 2242 * See Documentation/filesystems/path-lookup.txt for more details. 2216 */ 2243 */ 2217 hlist_bl_for_each_entry_rcu(dentry, n 2244 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { 2218 unsigned seq; 2245 unsigned seq; 2219 2246 >> 2247 seqretry: 2220 /* 2248 /* 2221 * The dentry sequence count 2249 * The dentry sequence count protects us from concurrent 2222 * renames, and thus protects 2250 * renames, and thus protects parent and name fields. 2223 * 2251 * 2224 * The caller must perform a 2252 * The caller must perform a seqcount check in order 2225 * to do anything useful with 2253 * to do anything useful with the returned dentry. 2226 * 2254 * 2227 * NOTE! We do a "raw" seqcou 2255 * NOTE! We do a "raw" seqcount_begin here. That means that 2228 * we don't wait for the sequ 2256 * we don't wait for the sequence count to stabilize if it 2229 * is in the middle of a sequ 2257 * is in the middle of a sequence change. If we do the slow 2230 * dentry compare, we will do 2258 * dentry compare, we will do seqretries until it is stable, 2231 * and if we end up with a su 2259 * and if we end up with a successful lookup, we actually 2232 * want to exit RCU lookup an 2260 * want to exit RCU lookup anyway. 2233 * 2261 * 2234 * Note that raw_seqcount_beg 2262 * Note that raw_seqcount_begin still *does* smp_rmb(), so 2235 * we are still guaranteed NU 2263 * we are still guaranteed NUL-termination of ->d_name.name. 2236 */ 2264 */ 2237 seq = raw_seqcount_begin(&den 2265 seq = raw_seqcount_begin(&dentry->d_seq); 2238 if (dentry->d_parent != paren 2266 if (dentry->d_parent != parent) 2239 continue; 2267 continue; 2240 if (d_unhashed(dentry)) 2268 if (d_unhashed(dentry)) 2241 continue; 2269 continue; 2242 if (dentry->d_name.hash_len ! !! 2270 2243 continue; !! 2271 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) { 2244 if (dentry_cmp(dentry, str, h !! 2272 int tlen; 2245 continue; !! 2273 const char *tname; >> 2274 if (dentry->d_name.hash != hashlen_hash(hashlen)) >> 2275 continue; >> 2276 tlen = dentry->d_name.len; >> 2277 tname = dentry->d_name.name; >> 2278 /* we want a consistent (name,len) pair */ >> 2279 if (read_seqcount_retry(&dentry->d_seq, seq)) { >> 2280 cpu_relax(); >> 2281 goto seqretry; >> 2282 } >> 2283 if (parent->d_op->d_compare(dentry, >> 2284 tlen, tname, name) != 0) >> 2285 continue; >> 2286 } else { >> 2287 if (dentry->d_name.hash_len != hashlen) >> 2288 continue; >> 2289 if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0) >> 2290 continue; >> 2291 } 2246 *seqp = seq; 2292 *seqp = seq; 2247 return dentry; 2293 return dentry; 2248 } 2294 } 2249 return NULL; 2295 return NULL; 2250 } 2296 } 2251 2297 2252 /** 2298 /** 2253 * d_lookup - search for a dentry 2299 * d_lookup - search for a dentry 2254 * @parent: parent dentry 2300 * @parent: parent dentry 2255 * @name: qstr of name we wish to find 2301 * @name: qstr of name we wish to find 2256 * Returns: dentry, or NULL 2302 * Returns: dentry, or NULL 2257 * 2303 * 2258 * d_lookup searches the children of the pare 2304 * d_lookup searches the children of the parent dentry for the name in 2259 * question. If the dentry is found its refer 2305 * question. If the dentry is found its reference count is incremented and the 2260 * dentry is returned. The caller must use dp 2306 * dentry is returned. The caller must use dput to free the entry when it has 2261 * finished using it. %NULL is returned if th 2307 * finished using it. %NULL is returned if the dentry does not exist. 2262 */ 2308 */ 2263 struct dentry *d_lookup(const struct dentry * 2309 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name) 2264 { 2310 { 2265 struct dentry *dentry; 2311 struct dentry *dentry; 2266 unsigned seq; 2312 unsigned seq; 2267 2313 2268 do { 2314 do { 2269 seq = read_seqbegin(&rename_l 2315 seq = read_seqbegin(&rename_lock); 2270 dentry = __d_lookup(parent, n 2316 dentry = __d_lookup(parent, name); 2271 if (dentry) 2317 if (dentry) 2272 break; 2318 break; 2273 } while (read_seqretry(&rename_lock, 2319 } while (read_seqretry(&rename_lock, seq)); 2274 return dentry; 2320 return dentry; 2275 } 2321 } 2276 EXPORT_SYMBOL(d_lookup); 2322 EXPORT_SYMBOL(d_lookup); 2277 2323 2278 /** 2324 /** 2279 * __d_lookup - search for a dentry (racy) 2325 * __d_lookup - search for a dentry (racy) 2280 * @parent: parent dentry 2326 * @parent: parent dentry 2281 * @name: qstr of name we wish to find 2327 * @name: qstr of name we wish to find 2282 * Returns: dentry, or NULL 2328 * Returns: dentry, or NULL 2283 * 2329 * 2284 * __d_lookup is like d_lookup, however it ma 2330 * __d_lookup is like d_lookup, however it may (rarely) return a 2285 * false-negative result due to unrelated ren 2331 * false-negative result due to unrelated rename activity. 2286 * 2332 * 2287 * __d_lookup is slightly faster by avoiding 2333 * __d_lookup is slightly faster by avoiding rename_lock read seqlock, 2288 * however it must be used carefully, eg. wit 2334 * however it must be used carefully, eg. with a following d_lookup in 2289 * the case of failure. 2335 * the case of failure. 2290 * 2336 * 2291 * __d_lookup callers must be commented. 2337 * __d_lookup callers must be commented. 2292 */ 2338 */ 2293 struct dentry *__d_lookup(const struct dentry 2339 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name) 2294 { 2340 { 2295 unsigned int hash = name->hash; 2341 unsigned int hash = name->hash; 2296 struct hlist_bl_head *b = d_hash(hash 2342 struct hlist_bl_head *b = d_hash(hash); 2297 struct hlist_bl_node *node; 2343 struct hlist_bl_node *node; 2298 struct dentry *found = NULL; 2344 struct dentry *found = NULL; 2299 struct dentry *dentry; 2345 struct dentry *dentry; 2300 2346 2301 /* 2347 /* 2302 * Note: There is significant duplica 2348 * Note: There is significant duplication with __d_lookup_rcu which is 2303 * required to prevent single threade 2349 * required to prevent single threaded performance regressions 2304 * especially on architectures where 2350 * especially on architectures where smp_rmb (in seqcounts) are costly. 2305 * Keep the two functions in sync. 2351 * Keep the two functions in sync. 2306 */ 2352 */ 2307 2353 2308 /* 2354 /* 2309 * The hash list is protected using R 2355 * The hash list is protected using RCU. 2310 * 2356 * 2311 * Take d_lock when comparing a candi 2357 * Take d_lock when comparing a candidate dentry, to avoid races 2312 * with d_move(). 2358 * with d_move(). 2313 * 2359 * 2314 * It is possible that concurrent ren 2360 * It is possible that concurrent renames can mess up our list 2315 * walk here and result in missing ou 2361 * walk here and result in missing our dentry, resulting in the 2316 * false-negative result. d_lookup() 2362 * false-negative result. d_lookup() protects against concurrent 2317 * renames using rename_lock seqlock. 2363 * renames using rename_lock seqlock. 2318 * 2364 * 2319 * See Documentation/filesystems/path 2365 * See Documentation/filesystems/path-lookup.txt for more details. 2320 */ 2366 */ 2321 rcu_read_lock(); 2367 rcu_read_lock(); 2322 2368 2323 hlist_bl_for_each_entry_rcu(dentry, n 2369 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { 2324 2370 2325 if (dentry->d_name.hash != ha 2371 if (dentry->d_name.hash != hash) 2326 continue; 2372 continue; 2327 2373 2328 spin_lock(&dentry->d_lock); 2374 spin_lock(&dentry->d_lock); 2329 if (dentry->d_parent != paren 2375 if (dentry->d_parent != parent) 2330 goto next; 2376 goto next; 2331 if (d_unhashed(dentry)) 2377 if (d_unhashed(dentry)) 2332 goto next; 2378 goto next; 2333 2379 2334 if (!d_same_name(dentry, pare 2380 if (!d_same_name(dentry, parent, name)) 2335 goto next; 2381 goto next; 2336 2382 2337 dentry->d_lockref.count++; 2383 dentry->d_lockref.count++; 2338 found = dentry; 2384 found = dentry; 2339 spin_unlock(&dentry->d_lock); 2385 spin_unlock(&dentry->d_lock); 2340 break; 2386 break; 2341 next: 2387 next: 2342 spin_unlock(&dentry->d_lock); 2388 spin_unlock(&dentry->d_lock); 2343 } 2389 } 2344 rcu_read_unlock(); 2390 rcu_read_unlock(); 2345 2391 2346 return found; 2392 return found; 2347 } 2393 } 2348 2394 2349 /** 2395 /** 2350 * d_hash_and_lookup - hash the qstr then sea 2396 * d_hash_and_lookup - hash the qstr then search for a dentry 2351 * @dir: Directory to search in 2397 * @dir: Directory to search in 2352 * @name: qstr of name we wish to find 2398 * @name: qstr of name we wish to find 2353 * 2399 * 2354 * On lookup failure NULL is returned; on bad 2400 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error) 2355 */ 2401 */ 2356 struct dentry *d_hash_and_lookup(struct dentr 2402 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name) 2357 { 2403 { 2358 /* 2404 /* 2359 * Check for a fs-specific hash funct 2405 * Check for a fs-specific hash function. Note that we must 2360 * calculate the standard hash first, 2406 * calculate the standard hash first, as the d_op->d_hash() 2361 * routine may choose to leave the ha 2407 * routine may choose to leave the hash value unchanged. 2362 */ 2408 */ 2363 name->hash = full_name_hash(dir, name 2409 name->hash = full_name_hash(dir, name->name, name->len); 2364 if (dir->d_flags & DCACHE_OP_HASH) { 2410 if (dir->d_flags & DCACHE_OP_HASH) { 2365 int err = dir->d_op->d_hash(d 2411 int err = dir->d_op->d_hash(dir, name); 2366 if (unlikely(err < 0)) 2412 if (unlikely(err < 0)) 2367 return ERR_PTR(err); 2413 return ERR_PTR(err); 2368 } 2414 } 2369 return d_lookup(dir, name); 2415 return d_lookup(dir, name); 2370 } 2416 } 2371 EXPORT_SYMBOL(d_hash_and_lookup); 2417 EXPORT_SYMBOL(d_hash_and_lookup); 2372 2418 2373 /* 2419 /* 2374 * When a file is deleted, we have two option 2420 * When a file is deleted, we have two options: 2375 * - turn this dentry into a negative dentry 2421 * - turn this dentry into a negative dentry 2376 * - unhash this dentry and free it. 2422 * - unhash this dentry and free it. 2377 * 2423 * 2378 * Usually, we want to just turn this into 2424 * Usually, we want to just turn this into 2379 * a negative dentry, but if anybody else is 2425 * a negative dentry, but if anybody else is 2380 * currently using the dentry or the inode 2426 * currently using the dentry or the inode 2381 * we can't do that and we fall back on remov 2427 * we can't do that and we fall back on removing 2382 * it from the hash queues and waiting for 2428 * it from the hash queues and waiting for 2383 * it to be deleted later when it has no user 2429 * it to be deleted later when it has no users 2384 */ 2430 */ 2385 2431 2386 /** 2432 /** 2387 * d_delete - delete a dentry 2433 * d_delete - delete a dentry 2388 * @dentry: The dentry to delete 2434 * @dentry: The dentry to delete 2389 * 2435 * 2390 * Turn the dentry into a negative dentry if 2436 * Turn the dentry into a negative dentry if possible, otherwise 2391 * remove it from the hash queues so it can b 2437 * remove it from the hash queues so it can be deleted later 2392 */ 2438 */ 2393 2439 2394 void d_delete(struct dentry * dentry) 2440 void d_delete(struct dentry * dentry) 2395 { 2441 { 2396 struct inode *inode = dentry->d_inode 2442 struct inode *inode = dentry->d_inode; 2397 2443 2398 spin_lock(&inode->i_lock); 2444 spin_lock(&inode->i_lock); 2399 spin_lock(&dentry->d_lock); 2445 spin_lock(&dentry->d_lock); 2400 /* 2446 /* 2401 * Are we the only user? 2447 * Are we the only user? 2402 */ 2448 */ 2403 if (dentry->d_lockref.count == 1) { 2449 if (dentry->d_lockref.count == 1) { 2404 dentry->d_flags &= ~DCACHE_CA 2450 dentry->d_flags &= ~DCACHE_CANT_MOUNT; 2405 dentry_unlink_inode(dentry); 2451 dentry_unlink_inode(dentry); 2406 } else { 2452 } else { 2407 __d_drop(dentry); 2453 __d_drop(dentry); 2408 spin_unlock(&dentry->d_lock); 2454 spin_unlock(&dentry->d_lock); 2409 spin_unlock(&inode->i_lock); 2455 spin_unlock(&inode->i_lock); 2410 } 2456 } 2411 } 2457 } 2412 EXPORT_SYMBOL(d_delete); 2458 EXPORT_SYMBOL(d_delete); 2413 2459 2414 static void __d_rehash(struct dentry *entry) 2460 static void __d_rehash(struct dentry *entry) 2415 { 2461 { 2416 struct hlist_bl_head *b = d_hash(entr 2462 struct hlist_bl_head *b = d_hash(entry->d_name.hash); 2417 2463 2418 hlist_bl_lock(b); 2464 hlist_bl_lock(b); 2419 hlist_bl_add_head_rcu(&entry->d_hash, 2465 hlist_bl_add_head_rcu(&entry->d_hash, b); 2420 hlist_bl_unlock(b); 2466 hlist_bl_unlock(b); 2421 } 2467 } 2422 2468 2423 /** 2469 /** 2424 * d_rehash - add an entry back to the ha 2470 * d_rehash - add an entry back to the hash 2425 * @entry: dentry to add to the hash 2471 * @entry: dentry to add to the hash 2426 * 2472 * 2427 * Adds a dentry to the hash according to its 2473 * Adds a dentry to the hash according to its name. 2428 */ 2474 */ 2429 2475 2430 void d_rehash(struct dentry * entry) 2476 void d_rehash(struct dentry * entry) 2431 { 2477 { 2432 spin_lock(&entry->d_lock); 2478 spin_lock(&entry->d_lock); 2433 __d_rehash(entry); 2479 __d_rehash(entry); 2434 spin_unlock(&entry->d_lock); 2480 spin_unlock(&entry->d_lock); 2435 } 2481 } 2436 EXPORT_SYMBOL(d_rehash); 2482 EXPORT_SYMBOL(d_rehash); 2437 2483 2438 static inline unsigned start_dir_add(struct i 2484 static inline unsigned start_dir_add(struct inode *dir) 2439 { 2485 { 2440 preempt_disable_nested(); !! 2486 2441 for (;;) { 2487 for (;;) { 2442 unsigned n = dir->i_dir_seq; 2488 unsigned n = dir->i_dir_seq; 2443 if (!(n & 1) && cmpxchg(&dir- 2489 if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n) 2444 return n; 2490 return n; 2445 cpu_relax(); 2491 cpu_relax(); 2446 } 2492 } 2447 } 2493 } 2448 2494 2449 static inline void end_dir_add(struct inode * !! 2495 static inline void end_dir_add(struct inode *dir, unsigned n) 2450 wait_queue_hea << 2451 { 2496 { 2452 smp_store_release(&dir->i_dir_seq, n 2497 smp_store_release(&dir->i_dir_seq, n + 2); 2453 preempt_enable_nested(); << 2454 wake_up_all(d_wait); << 2455 } 2498 } 2456 2499 2457 static void d_wait_lookup(struct dentry *dent 2500 static void d_wait_lookup(struct dentry *dentry) 2458 { 2501 { 2459 if (d_in_lookup(dentry)) { 2502 if (d_in_lookup(dentry)) { 2460 DECLARE_WAITQUEUE(wait, curre 2503 DECLARE_WAITQUEUE(wait, current); 2461 add_wait_queue(dentry->d_wait 2504 add_wait_queue(dentry->d_wait, &wait); 2462 do { 2505 do { 2463 set_current_state(TAS 2506 set_current_state(TASK_UNINTERRUPTIBLE); 2464 spin_unlock(&dentry-> 2507 spin_unlock(&dentry->d_lock); 2465 schedule(); 2508 schedule(); 2466 spin_lock(&dentry->d_ 2509 spin_lock(&dentry->d_lock); 2467 } while (d_in_lookup(dentry)) 2510 } while (d_in_lookup(dentry)); 2468 } 2511 } 2469 } 2512 } 2470 2513 2471 struct dentry *d_alloc_parallel(struct dentry 2514 struct dentry *d_alloc_parallel(struct dentry *parent, 2472 const struct 2515 const struct qstr *name, 2473 wait_queue_he 2516 wait_queue_head_t *wq) 2474 { 2517 { 2475 unsigned int hash = name->hash; 2518 unsigned int hash = name->hash; 2476 struct hlist_bl_head *b = in_lookup_h 2519 struct hlist_bl_head *b = in_lookup_hash(parent, hash); 2477 struct hlist_bl_node *node; 2520 struct hlist_bl_node *node; 2478 struct dentry *new = d_alloc(parent, 2521 struct dentry *new = d_alloc(parent, name); 2479 struct dentry *dentry; 2522 struct dentry *dentry; 2480 unsigned seq, r_seq, d_seq; 2523 unsigned seq, r_seq, d_seq; 2481 2524 2482 if (unlikely(!new)) 2525 if (unlikely(!new)) 2483 return ERR_PTR(-ENOMEM); 2526 return ERR_PTR(-ENOMEM); 2484 2527 2485 retry: 2528 retry: 2486 rcu_read_lock(); 2529 rcu_read_lock(); 2487 seq = smp_load_acquire(&parent->d_ino 2530 seq = smp_load_acquire(&parent->d_inode->i_dir_seq); 2488 r_seq = read_seqbegin(&rename_lock); 2531 r_seq = read_seqbegin(&rename_lock); 2489 dentry = __d_lookup_rcu(parent, name, 2532 dentry = __d_lookup_rcu(parent, name, &d_seq); 2490 if (unlikely(dentry)) { 2533 if (unlikely(dentry)) { 2491 if (!lockref_get_not_dead(&de 2534 if (!lockref_get_not_dead(&dentry->d_lockref)) { 2492 rcu_read_unlock(); 2535 rcu_read_unlock(); 2493 goto retry; 2536 goto retry; 2494 } 2537 } 2495 if (read_seqcount_retry(&dent 2538 if (read_seqcount_retry(&dentry->d_seq, d_seq)) { 2496 rcu_read_unlock(); 2539 rcu_read_unlock(); 2497 dput(dentry); 2540 dput(dentry); 2498 goto retry; 2541 goto retry; 2499 } 2542 } 2500 rcu_read_unlock(); 2543 rcu_read_unlock(); 2501 dput(new); 2544 dput(new); 2502 return dentry; 2545 return dentry; 2503 } 2546 } 2504 if (unlikely(read_seqretry(&rename_lo 2547 if (unlikely(read_seqretry(&rename_lock, r_seq))) { 2505 rcu_read_unlock(); 2548 rcu_read_unlock(); 2506 goto retry; 2549 goto retry; 2507 } 2550 } 2508 2551 2509 if (unlikely(seq & 1)) { 2552 if (unlikely(seq & 1)) { 2510 rcu_read_unlock(); 2553 rcu_read_unlock(); 2511 goto retry; 2554 goto retry; 2512 } 2555 } 2513 2556 2514 hlist_bl_lock(b); 2557 hlist_bl_lock(b); 2515 if (unlikely(READ_ONCE(parent->d_inod 2558 if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) { 2516 hlist_bl_unlock(b); 2559 hlist_bl_unlock(b); 2517 rcu_read_unlock(); 2560 rcu_read_unlock(); 2518 goto retry; 2561 goto retry; 2519 } 2562 } 2520 /* 2563 /* 2521 * No changes for the parent since th 2564 * No changes for the parent since the beginning of d_lookup(). 2522 * Since all removals from the chain 2565 * Since all removals from the chain happen with hlist_bl_lock(), 2523 * any potential in-lookup matches ar 2566 * any potential in-lookup matches are going to stay here until 2524 * we unlock the chain. All fields a 2567 * we unlock the chain. All fields are stable in everything 2525 * we encounter. 2568 * we encounter. 2526 */ 2569 */ 2527 hlist_bl_for_each_entry(dentry, node, 2570 hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) { 2528 if (dentry->d_name.hash != ha 2571 if (dentry->d_name.hash != hash) 2529 continue; 2572 continue; 2530 if (dentry->d_parent != paren 2573 if (dentry->d_parent != parent) 2531 continue; 2574 continue; 2532 if (!d_same_name(dentry, pare 2575 if (!d_same_name(dentry, parent, name)) 2533 continue; 2576 continue; 2534 hlist_bl_unlock(b); 2577 hlist_bl_unlock(b); 2535 /* now we can try to grab a r 2578 /* now we can try to grab a reference */ 2536 if (!lockref_get_not_dead(&de 2579 if (!lockref_get_not_dead(&dentry->d_lockref)) { 2537 rcu_read_unlock(); 2580 rcu_read_unlock(); 2538 goto retry; 2581 goto retry; 2539 } 2582 } 2540 2583 2541 rcu_read_unlock(); 2584 rcu_read_unlock(); 2542 /* 2585 /* 2543 * somebody is likely to be s 2586 * somebody is likely to be still doing lookup for it; 2544 * wait for them to finish 2587 * wait for them to finish 2545 */ 2588 */ 2546 spin_lock(&dentry->d_lock); 2589 spin_lock(&dentry->d_lock); 2547 d_wait_lookup(dentry); 2590 d_wait_lookup(dentry); 2548 /* 2591 /* 2549 * it's not in-lookup anymore 2592 * it's not in-lookup anymore; in principle we should repeat 2550 * everything from dcache loo 2593 * everything from dcache lookup, but it's likely to be what 2551 * d_lookup() would've found 2594 * d_lookup() would've found anyway. If it is, just return it; 2552 * otherwise we really have t 2595 * otherwise we really have to repeat the whole thing. 2553 */ 2596 */ 2554 if (unlikely(dentry->d_name.h 2597 if (unlikely(dentry->d_name.hash != hash)) 2555 goto mismatch; 2598 goto mismatch; 2556 if (unlikely(dentry->d_parent 2599 if (unlikely(dentry->d_parent != parent)) 2557 goto mismatch; 2600 goto mismatch; 2558 if (unlikely(d_unhashed(dentr 2601 if (unlikely(d_unhashed(dentry))) 2559 goto mismatch; 2602 goto mismatch; 2560 if (unlikely(!d_same_name(den 2603 if (unlikely(!d_same_name(dentry, parent, name))) 2561 goto mismatch; 2604 goto mismatch; 2562 /* OK, it *is* a hashed match 2605 /* OK, it *is* a hashed match; return it */ 2563 spin_unlock(&dentry->d_lock); 2606 spin_unlock(&dentry->d_lock); 2564 dput(new); 2607 dput(new); 2565 return dentry; 2608 return dentry; 2566 } 2609 } 2567 rcu_read_unlock(); 2610 rcu_read_unlock(); 2568 /* we can't take ->d_lock here; it's 2611 /* we can't take ->d_lock here; it's OK, though. */ 2569 new->d_flags |= DCACHE_PAR_LOOKUP; 2612 new->d_flags |= DCACHE_PAR_LOOKUP; 2570 new->d_wait = wq; 2613 new->d_wait = wq; 2571 hlist_bl_add_head(&new->d_u.d_in_look !! 2614 hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b); 2572 hlist_bl_unlock(b); 2615 hlist_bl_unlock(b); 2573 return new; 2616 return new; 2574 mismatch: 2617 mismatch: 2575 spin_unlock(&dentry->d_lock); 2618 spin_unlock(&dentry->d_lock); 2576 dput(dentry); 2619 dput(dentry); 2577 goto retry; 2620 goto retry; 2578 } 2621 } 2579 EXPORT_SYMBOL(d_alloc_parallel); 2622 EXPORT_SYMBOL(d_alloc_parallel); 2580 2623 2581 /* !! 2624 void __d_lookup_done(struct dentry *dentry) 2582 * - Unhash the dentry << 2583 * - Retrieve and clear the waitqueue head in << 2584 * - Return the waitqueue head << 2585 */ << 2586 static wait_queue_head_t *__d_lookup_unhash(s << 2587 { 2625 { 2588 wait_queue_head_t *d_wait; !! 2626 struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent, 2589 struct hlist_bl_head *b; !! 2627 dentry->d_name.hash); 2590 << 2591 lockdep_assert_held(&dentry->d_lock); << 2592 << 2593 b = in_lookup_hash(dentry->d_parent, << 2594 hlist_bl_lock(b); 2628 hlist_bl_lock(b); 2595 dentry->d_flags &= ~DCACHE_PAR_LOOKUP 2629 dentry->d_flags &= ~DCACHE_PAR_LOOKUP; 2596 __hlist_bl_del(&dentry->d_u.d_in_look 2630 __hlist_bl_del(&dentry->d_u.d_in_lookup_hash); 2597 d_wait = dentry->d_wait; !! 2631 wake_up_all(dentry->d_wait); 2598 dentry->d_wait = NULL; 2632 dentry->d_wait = NULL; 2599 hlist_bl_unlock(b); 2633 hlist_bl_unlock(b); 2600 INIT_HLIST_NODE(&dentry->d_u.d_alias) 2634 INIT_HLIST_NODE(&dentry->d_u.d_alias); 2601 INIT_LIST_HEAD(&dentry->d_lru); 2635 INIT_LIST_HEAD(&dentry->d_lru); 2602 return d_wait; << 2603 } 2636 } 2604 !! 2637 EXPORT_SYMBOL(__d_lookup_done); 2605 void __d_lookup_unhash_wake(struct dentry *de << 2606 { << 2607 spin_lock(&dentry->d_lock); << 2608 wake_up_all(__d_lookup_unhash(dentry) << 2609 spin_unlock(&dentry->d_lock); << 2610 } << 2611 EXPORT_SYMBOL(__d_lookup_unhash_wake); << 2612 2638 2613 /* inode->i_lock held if inode is non-NULL */ 2639 /* inode->i_lock held if inode is non-NULL */ 2614 2640 2615 static inline void __d_add(struct dentry *den 2641 static inline void __d_add(struct dentry *dentry, struct inode *inode) 2616 { 2642 { 2617 wait_queue_head_t *d_wait; << 2618 struct inode *dir = NULL; 2643 struct inode *dir = NULL; 2619 unsigned n; 2644 unsigned n; 2620 spin_lock(&dentry->d_lock); 2645 spin_lock(&dentry->d_lock); 2621 if (unlikely(d_in_lookup(dentry))) { 2646 if (unlikely(d_in_lookup(dentry))) { 2622 dir = dentry->d_parent->d_ino 2647 dir = dentry->d_parent->d_inode; 2623 n = start_dir_add(dir); 2648 n = start_dir_add(dir); 2624 d_wait = __d_lookup_unhash(de !! 2649 __d_lookup_done(dentry); 2625 } 2650 } 2626 if (inode) { 2651 if (inode) { 2627 unsigned add_flags = d_flags_ 2652 unsigned add_flags = d_flags_for_inode(inode); 2628 hlist_add_head(&dentry->d_u.d 2653 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry); 2629 raw_write_seqcount_begin(&den 2654 raw_write_seqcount_begin(&dentry->d_seq); 2630 __d_set_inode_and_type(dentry 2655 __d_set_inode_and_type(dentry, inode, add_flags); 2631 raw_write_seqcount_end(&dentr 2656 raw_write_seqcount_end(&dentry->d_seq); 2632 fsnotify_update_flags(dentry) 2657 fsnotify_update_flags(dentry); 2633 } 2658 } 2634 __d_rehash(dentry); 2659 __d_rehash(dentry); 2635 if (dir) 2660 if (dir) 2636 end_dir_add(dir, n, d_wait); !! 2661 end_dir_add(dir, n); 2637 spin_unlock(&dentry->d_lock); 2662 spin_unlock(&dentry->d_lock); 2638 if (inode) 2663 if (inode) 2639 spin_unlock(&inode->i_lock); 2664 spin_unlock(&inode->i_lock); 2640 } 2665 } 2641 2666 2642 /** 2667 /** 2643 * d_add - add dentry to hash queues 2668 * d_add - add dentry to hash queues 2644 * @entry: dentry to add 2669 * @entry: dentry to add 2645 * @inode: The inode to attach to this dentry 2670 * @inode: The inode to attach to this dentry 2646 * 2671 * 2647 * This adds the entry to the hash queues and 2672 * This adds the entry to the hash queues and initializes @inode. 2648 * The entry was actually filled in earlier d 2673 * The entry was actually filled in earlier during d_alloc(). 2649 */ 2674 */ 2650 2675 2651 void d_add(struct dentry *entry, struct inode 2676 void d_add(struct dentry *entry, struct inode *inode) 2652 { 2677 { 2653 if (inode) { 2678 if (inode) { 2654 security_d_instantiate(entry, 2679 security_d_instantiate(entry, inode); 2655 spin_lock(&inode->i_lock); 2680 spin_lock(&inode->i_lock); 2656 } 2681 } 2657 __d_add(entry, inode); 2682 __d_add(entry, inode); 2658 } 2683 } 2659 EXPORT_SYMBOL(d_add); 2684 EXPORT_SYMBOL(d_add); 2660 2685 2661 /** 2686 /** 2662 * d_exact_alias - find and hash an exact unh 2687 * d_exact_alias - find and hash an exact unhashed alias 2663 * @entry: dentry to add 2688 * @entry: dentry to add 2664 * @inode: The inode to go with this dentry 2689 * @inode: The inode to go with this dentry 2665 * 2690 * 2666 * If an unhashed dentry with the same name/p 2691 * If an unhashed dentry with the same name/parent and desired 2667 * inode already exists, hash and return it. 2692 * inode already exists, hash and return it. Otherwise, return 2668 * NULL. 2693 * NULL. 2669 * 2694 * 2670 * Parent directory should be locked. 2695 * Parent directory should be locked. 2671 */ 2696 */ 2672 struct dentry *d_exact_alias(struct dentry *e 2697 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode) 2673 { 2698 { 2674 struct dentry *alias; 2699 struct dentry *alias; 2675 unsigned int hash = entry->d_name.has 2700 unsigned int hash = entry->d_name.hash; 2676 2701 2677 spin_lock(&inode->i_lock); 2702 spin_lock(&inode->i_lock); 2678 hlist_for_each_entry(alias, &inode->i 2703 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { 2679 /* 2704 /* 2680 * Don't need alias->d_lock h 2705 * Don't need alias->d_lock here, because aliases with 2681 * d_parent == entry->d_paren 2706 * d_parent == entry->d_parent are not subject to name or 2682 * parent changes, because th 2707 * parent changes, because the parent inode i_mutex is held. 2683 */ 2708 */ 2684 if (alias->d_name.hash != has 2709 if (alias->d_name.hash != hash) 2685 continue; 2710 continue; 2686 if (alias->d_parent != entry- 2711 if (alias->d_parent != entry->d_parent) 2687 continue; 2712 continue; 2688 if (!d_same_name(alias, entry 2713 if (!d_same_name(alias, entry->d_parent, &entry->d_name)) 2689 continue; 2714 continue; 2690 spin_lock(&alias->d_lock); 2715 spin_lock(&alias->d_lock); 2691 if (!d_unhashed(alias)) { 2716 if (!d_unhashed(alias)) { 2692 spin_unlock(&alias->d 2717 spin_unlock(&alias->d_lock); 2693 alias = NULL; 2718 alias = NULL; 2694 } else { 2719 } else { 2695 dget_dlock(alias); !! 2720 __dget_dlock(alias); 2696 __d_rehash(alias); 2721 __d_rehash(alias); 2697 spin_unlock(&alias->d 2722 spin_unlock(&alias->d_lock); 2698 } 2723 } 2699 spin_unlock(&inode->i_lock); 2724 spin_unlock(&inode->i_lock); 2700 return alias; 2725 return alias; 2701 } 2726 } 2702 spin_unlock(&inode->i_lock); 2727 spin_unlock(&inode->i_lock); 2703 return NULL; 2728 return NULL; 2704 } 2729 } 2705 EXPORT_SYMBOL(d_exact_alias); 2730 EXPORT_SYMBOL(d_exact_alias); 2706 2731 2707 static void swap_names(struct dentry *dentry, 2732 static void swap_names(struct dentry *dentry, struct dentry *target) 2708 { 2733 { 2709 if (unlikely(dname_external(target))) 2734 if (unlikely(dname_external(target))) { 2710 if (unlikely(dname_external(d 2735 if (unlikely(dname_external(dentry))) { 2711 /* 2736 /* 2712 * Both external: swa 2737 * Both external: swap the pointers 2713 */ 2738 */ 2714 swap(target->d_name.n 2739 swap(target->d_name.name, dentry->d_name.name); 2715 } else { 2740 } else { 2716 /* 2741 /* 2717 * dentry:internal, t 2742 * dentry:internal, target:external. Steal target's 2718 * storage and make t 2743 * storage and make target internal. 2719 */ 2744 */ 2720 memcpy(target->d_inam 2745 memcpy(target->d_iname, dentry->d_name.name, 2721 dentr 2746 dentry->d_name.len + 1); 2722 dentry->d_name.name = 2747 dentry->d_name.name = target->d_name.name; 2723 target->d_name.name = 2748 target->d_name.name = target->d_iname; 2724 } 2749 } 2725 } else { 2750 } else { 2726 if (unlikely(dname_external(d 2751 if (unlikely(dname_external(dentry))) { 2727 /* 2752 /* 2728 * dentry:external, t 2753 * dentry:external, target:internal. Give dentry's 2729 * storage to target 2754 * storage to target and make dentry internal 2730 */ 2755 */ 2731 memcpy(dentry->d_inam 2756 memcpy(dentry->d_iname, target->d_name.name, 2732 targe 2757 target->d_name.len + 1); 2733 target->d_name.name = 2758 target->d_name.name = dentry->d_name.name; 2734 dentry->d_name.name = 2759 dentry->d_name.name = dentry->d_iname; 2735 } else { 2760 } else { 2736 /* 2761 /* 2737 * Both are internal. 2762 * Both are internal. 2738 */ 2763 */ 2739 unsigned int i; 2764 unsigned int i; 2740 BUILD_BUG_ON(!IS_ALIG 2765 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long))); 2741 for (i = 0; i < DNAME 2766 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) { 2742 swap(((long * 2767 swap(((long *) &dentry->d_iname)[i], 2743 ((long * 2768 ((long *) &target->d_iname)[i]); 2744 } 2769 } 2745 } 2770 } 2746 } 2771 } 2747 swap(dentry->d_name.hash_len, target- 2772 swap(dentry->d_name.hash_len, target->d_name.hash_len); 2748 } 2773 } 2749 2774 2750 static void copy_name(struct dentry *dentry, 2775 static void copy_name(struct dentry *dentry, struct dentry *target) 2751 { 2776 { 2752 struct external_name *old_name = NULL 2777 struct external_name *old_name = NULL; 2753 if (unlikely(dname_external(dentry))) 2778 if (unlikely(dname_external(dentry))) 2754 old_name = external_name(dent 2779 old_name = external_name(dentry); 2755 if (unlikely(dname_external(target))) 2780 if (unlikely(dname_external(target))) { 2756 atomic_inc(&external_name(tar 2781 atomic_inc(&external_name(target)->u.count); 2757 dentry->d_name = target->d_na 2782 dentry->d_name = target->d_name; 2758 } else { 2783 } else { 2759 memcpy(dentry->d_iname, targe 2784 memcpy(dentry->d_iname, target->d_name.name, 2760 target->d_nam 2785 target->d_name.len + 1); 2761 dentry->d_name.name = dentry- 2786 dentry->d_name.name = dentry->d_iname; 2762 dentry->d_name.hash_len = tar 2787 dentry->d_name.hash_len = target->d_name.hash_len; 2763 } 2788 } 2764 if (old_name && likely(atomic_dec_and 2789 if (old_name && likely(atomic_dec_and_test(&old_name->u.count))) 2765 kfree_rcu(old_name, u.head); 2790 kfree_rcu(old_name, u.head); 2766 } 2791 } 2767 2792 2768 /* 2793 /* 2769 * __d_move - move a dentry 2794 * __d_move - move a dentry 2770 * @dentry: entry to move 2795 * @dentry: entry to move 2771 * @target: new dentry 2796 * @target: new dentry 2772 * @exchange: exchange the two dentries 2797 * @exchange: exchange the two dentries 2773 * 2798 * 2774 * Update the dcache to reflect the move of a 2799 * Update the dcache to reflect the move of a file name. Negative 2775 * dcache entries should not be moved in this 2800 * dcache entries should not be moved in this way. Caller must hold 2776 * rename_lock, the i_mutex of the source and 2801 * rename_lock, the i_mutex of the source and target directories, 2777 * and the sb->s_vfs_rename_mutex if they dif 2802 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename(). 2778 */ 2803 */ 2779 static void __d_move(struct dentry *dentry, s 2804 static void __d_move(struct dentry *dentry, struct dentry *target, 2780 bool exchange) 2805 bool exchange) 2781 { 2806 { 2782 struct dentry *old_parent, *p; 2807 struct dentry *old_parent, *p; 2783 wait_queue_head_t *d_wait; << 2784 struct inode *dir = NULL; 2808 struct inode *dir = NULL; 2785 unsigned n; 2809 unsigned n; 2786 2810 2787 WARN_ON(!dentry->d_inode); 2811 WARN_ON(!dentry->d_inode); 2788 if (WARN_ON(dentry == target)) 2812 if (WARN_ON(dentry == target)) 2789 return; 2813 return; 2790 2814 2791 BUG_ON(d_ancestor(target, dentry)); 2815 BUG_ON(d_ancestor(target, dentry)); 2792 old_parent = dentry->d_parent; 2816 old_parent = dentry->d_parent; 2793 p = d_ancestor(old_parent, target); 2817 p = d_ancestor(old_parent, target); 2794 if (IS_ROOT(dentry)) { 2818 if (IS_ROOT(dentry)) { 2795 BUG_ON(p); 2819 BUG_ON(p); 2796 spin_lock(&target->d_parent-> 2820 spin_lock(&target->d_parent->d_lock); 2797 } else if (!p) { 2821 } else if (!p) { 2798 /* target is not a descendent 2822 /* target is not a descendent of dentry->d_parent */ 2799 spin_lock(&target->d_parent-> 2823 spin_lock(&target->d_parent->d_lock); 2800 spin_lock_nested(&old_parent- 2824 spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED); 2801 } else { 2825 } else { 2802 BUG_ON(p == dentry); 2826 BUG_ON(p == dentry); 2803 spin_lock(&old_parent->d_lock 2827 spin_lock(&old_parent->d_lock); 2804 if (p != target) 2828 if (p != target) 2805 spin_lock_nested(&tar 2829 spin_lock_nested(&target->d_parent->d_lock, 2806 DENTR 2830 DENTRY_D_LOCK_NESTED); 2807 } 2831 } 2808 spin_lock_nested(&dentry->d_lock, 2); 2832 spin_lock_nested(&dentry->d_lock, 2); 2809 spin_lock_nested(&target->d_lock, 3); 2833 spin_lock_nested(&target->d_lock, 3); 2810 2834 2811 if (unlikely(d_in_lookup(target))) { 2835 if (unlikely(d_in_lookup(target))) { 2812 dir = target->d_parent->d_ino 2836 dir = target->d_parent->d_inode; 2813 n = start_dir_add(dir); 2837 n = start_dir_add(dir); 2814 d_wait = __d_lookup_unhash(ta !! 2838 __d_lookup_done(target); 2815 } 2839 } 2816 2840 2817 write_seqcount_begin(&dentry->d_seq); 2841 write_seqcount_begin(&dentry->d_seq); 2818 write_seqcount_begin_nested(&target-> 2842 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED); 2819 2843 2820 /* unhash both */ 2844 /* unhash both */ 2821 if (!d_unhashed(dentry)) 2845 if (!d_unhashed(dentry)) 2822 ___d_drop(dentry); 2846 ___d_drop(dentry); 2823 if (!d_unhashed(target)) 2847 if (!d_unhashed(target)) 2824 ___d_drop(target); 2848 ___d_drop(target); 2825 2849 2826 /* ... and switch them in the tree */ 2850 /* ... and switch them in the tree */ 2827 dentry->d_parent = target->d_parent; 2851 dentry->d_parent = target->d_parent; 2828 if (!exchange) { 2852 if (!exchange) { 2829 copy_name(dentry, target); 2853 copy_name(dentry, target); 2830 target->d_hash.pprev = NULL; 2854 target->d_hash.pprev = NULL; 2831 dentry->d_parent->d_lockref.c 2855 dentry->d_parent->d_lockref.count++; 2832 if (dentry != old_parent) /* 2856 if (dentry != old_parent) /* wasn't IS_ROOT */ 2833 WARN_ON(!--old_parent 2857 WARN_ON(!--old_parent->d_lockref.count); 2834 } else { 2858 } else { 2835 target->d_parent = old_parent 2859 target->d_parent = old_parent; 2836 swap_names(dentry, target); 2860 swap_names(dentry, target); 2837 if (!hlist_unhashed(&target-> !! 2861 list_move(&target->d_child, &target->d_parent->d_subdirs); 2838 __hlist_del(&target-> << 2839 hlist_add_head(&target->d_sib << 2840 __d_rehash(target); 2862 __d_rehash(target); 2841 fsnotify_update_flags(target) 2863 fsnotify_update_flags(target); 2842 } 2864 } 2843 if (!hlist_unhashed(&dentry->d_sib)) !! 2865 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs); 2844 __hlist_del(&dentry->d_sib); << 2845 hlist_add_head(&dentry->d_sib, &dentr << 2846 __d_rehash(dentry); 2866 __d_rehash(dentry); 2847 fsnotify_update_flags(dentry); 2867 fsnotify_update_flags(dentry); 2848 fscrypt_handle_d_move(dentry); 2868 fscrypt_handle_d_move(dentry); 2849 2869 2850 write_seqcount_end(&target->d_seq); 2870 write_seqcount_end(&target->d_seq); 2851 write_seqcount_end(&dentry->d_seq); 2871 write_seqcount_end(&dentry->d_seq); 2852 2872 2853 if (dir) 2873 if (dir) 2854 end_dir_add(dir, n, d_wait); !! 2874 end_dir_add(dir, n); 2855 2875 2856 if (dentry->d_parent != old_parent) 2876 if (dentry->d_parent != old_parent) 2857 spin_unlock(&dentry->d_parent 2877 spin_unlock(&dentry->d_parent->d_lock); 2858 if (dentry != old_parent) 2878 if (dentry != old_parent) 2859 spin_unlock(&old_parent->d_lo 2879 spin_unlock(&old_parent->d_lock); 2860 spin_unlock(&target->d_lock); 2880 spin_unlock(&target->d_lock); 2861 spin_unlock(&dentry->d_lock); 2881 spin_unlock(&dentry->d_lock); 2862 } 2882 } 2863 2883 2864 /* 2884 /* 2865 * d_move - move a dentry 2885 * d_move - move a dentry 2866 * @dentry: entry to move 2886 * @dentry: entry to move 2867 * @target: new dentry 2887 * @target: new dentry 2868 * 2888 * 2869 * Update the dcache to reflect the move of a 2889 * Update the dcache to reflect the move of a file name. Negative 2870 * dcache entries should not be moved in this 2890 * dcache entries should not be moved in this way. See the locking 2871 * requirements for __d_move. 2891 * requirements for __d_move. 2872 */ 2892 */ 2873 void d_move(struct dentry *dentry, struct den 2893 void d_move(struct dentry *dentry, struct dentry *target) 2874 { 2894 { 2875 write_seqlock(&rename_lock); 2895 write_seqlock(&rename_lock); 2876 __d_move(dentry, target, false); 2896 __d_move(dentry, target, false); 2877 write_sequnlock(&rename_lock); 2897 write_sequnlock(&rename_lock); 2878 } 2898 } 2879 EXPORT_SYMBOL(d_move); 2899 EXPORT_SYMBOL(d_move); 2880 2900 2881 /* 2901 /* 2882 * d_exchange - exchange two dentries 2902 * d_exchange - exchange two dentries 2883 * @dentry1: first dentry 2903 * @dentry1: first dentry 2884 * @dentry2: second dentry 2904 * @dentry2: second dentry 2885 */ 2905 */ 2886 void d_exchange(struct dentry *dentry1, struc 2906 void d_exchange(struct dentry *dentry1, struct dentry *dentry2) 2887 { 2907 { 2888 write_seqlock(&rename_lock); 2908 write_seqlock(&rename_lock); 2889 2909 2890 WARN_ON(!dentry1->d_inode); 2910 WARN_ON(!dentry1->d_inode); 2891 WARN_ON(!dentry2->d_inode); 2911 WARN_ON(!dentry2->d_inode); 2892 WARN_ON(IS_ROOT(dentry1)); 2912 WARN_ON(IS_ROOT(dentry1)); 2893 WARN_ON(IS_ROOT(dentry2)); 2913 WARN_ON(IS_ROOT(dentry2)); 2894 2914 2895 __d_move(dentry1, dentry2, true); 2915 __d_move(dentry1, dentry2, true); 2896 2916 2897 write_sequnlock(&rename_lock); 2917 write_sequnlock(&rename_lock); 2898 } 2918 } 2899 2919 2900 /** 2920 /** 2901 * d_ancestor - search for an ancestor 2921 * d_ancestor - search for an ancestor 2902 * @p1: ancestor dentry 2922 * @p1: ancestor dentry 2903 * @p2: child dentry 2923 * @p2: child dentry 2904 * 2924 * 2905 * Returns the ancestor dentry of p2 which is 2925 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is 2906 * an ancestor of p2, else NULL. 2926 * an ancestor of p2, else NULL. 2907 */ 2927 */ 2908 struct dentry *d_ancestor(struct dentry *p1, 2928 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2) 2909 { 2929 { 2910 struct dentry *p; 2930 struct dentry *p; 2911 2931 2912 for (p = p2; !IS_ROOT(p); p = p->d_pa 2932 for (p = p2; !IS_ROOT(p); p = p->d_parent) { 2913 if (p->d_parent == p1) 2933 if (p->d_parent == p1) 2914 return p; 2934 return p; 2915 } 2935 } 2916 return NULL; 2936 return NULL; 2917 } 2937 } 2918 2938 2919 /* 2939 /* 2920 * This helper attempts to cope with remotely 2940 * This helper attempts to cope with remotely renamed directories 2921 * 2941 * 2922 * It assumes that the caller is already hold 2942 * It assumes that the caller is already holding 2923 * dentry->d_parent->d_inode->i_mutex, and re 2943 * dentry->d_parent->d_inode->i_mutex, and rename_lock 2924 * 2944 * 2925 * Note: If ever the locking in lock_rename() 2945 * Note: If ever the locking in lock_rename() changes, then please 2926 * remember to update this too... 2946 * remember to update this too... 2927 */ 2947 */ 2928 static int __d_unalias(struct dentry *dentry, !! 2948 static int __d_unalias(struct inode *inode, >> 2949 struct dentry *dentry, struct dentry *alias) 2929 { 2950 { 2930 struct mutex *m1 = NULL; 2951 struct mutex *m1 = NULL; 2931 struct rw_semaphore *m2 = NULL; 2952 struct rw_semaphore *m2 = NULL; 2932 int ret = -ESTALE; 2953 int ret = -ESTALE; 2933 2954 2934 /* If alias and dentry share a parent 2955 /* If alias and dentry share a parent, then no extra locks required */ 2935 if (alias->d_parent == dentry->d_pare 2956 if (alias->d_parent == dentry->d_parent) 2936 goto out_unalias; 2957 goto out_unalias; 2937 2958 2938 /* See lock_rename() */ 2959 /* See lock_rename() */ 2939 if (!mutex_trylock(&dentry->d_sb->s_v 2960 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex)) 2940 goto out_err; 2961 goto out_err; 2941 m1 = &dentry->d_sb->s_vfs_rename_mute 2962 m1 = &dentry->d_sb->s_vfs_rename_mutex; 2942 if (!inode_trylock_shared(alias->d_pa 2963 if (!inode_trylock_shared(alias->d_parent->d_inode)) 2943 goto out_err; 2964 goto out_err; 2944 m2 = &alias->d_parent->d_inode->i_rws 2965 m2 = &alias->d_parent->d_inode->i_rwsem; 2945 out_unalias: 2966 out_unalias: 2946 __d_move(alias, dentry, false); 2967 __d_move(alias, dentry, false); 2947 ret = 0; 2968 ret = 0; 2948 out_err: 2969 out_err: 2949 if (m2) 2970 if (m2) 2950 up_read(m2); 2971 up_read(m2); 2951 if (m1) 2972 if (m1) 2952 mutex_unlock(m1); 2973 mutex_unlock(m1); 2953 return ret; 2974 return ret; 2954 } 2975 } 2955 2976 2956 /** 2977 /** 2957 * d_splice_alias - splice a disconnected den 2978 * d_splice_alias - splice a disconnected dentry into the tree if one exists 2958 * @inode: the inode which may have a discon 2979 * @inode: the inode which may have a disconnected dentry 2959 * @dentry: a negative dentry which we want t 2980 * @dentry: a negative dentry which we want to point to the inode. 2960 * 2981 * 2961 * If inode is a directory and has an IS_ROOT 2982 * If inode is a directory and has an IS_ROOT alias, then d_move that in 2962 * place of the given dentry and return it, e 2983 * place of the given dentry and return it, else simply d_add the inode 2963 * to the dentry and return NULL. 2984 * to the dentry and return NULL. 2964 * 2985 * 2965 * If a non-IS_ROOT directory is found, the f 2986 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and 2966 * we should error out: directories can't hav 2987 * we should error out: directories can't have multiple aliases. 2967 * 2988 * 2968 * This is needed in the lookup routine of an 2989 * This is needed in the lookup routine of any filesystem that is exportable 2969 * (via knfsd) so that we can build dcache pa 2990 * (via knfsd) so that we can build dcache paths to directories effectively. 2970 * 2991 * 2971 * If a dentry was found and moved, then it i 2992 * If a dentry was found and moved, then it is returned. Otherwise NULL 2972 * is returned. This matches the expected re 2993 * is returned. This matches the expected return value of ->lookup. 2973 * 2994 * 2974 * Cluster filesystems may call this function 2995 * Cluster filesystems may call this function with a negative, hashed dentry. 2975 * In that case, we know that the inode will 2996 * In that case, we know that the inode will be a regular file, and also this 2976 * will only occur during atomic_open. So we 2997 * will only occur during atomic_open. So we need to check for the dentry 2977 * being already hashed only in the final cas 2998 * being already hashed only in the final case. 2978 */ 2999 */ 2979 struct dentry *d_splice_alias(struct inode *i 3000 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry) 2980 { 3001 { 2981 if (IS_ERR(inode)) 3002 if (IS_ERR(inode)) 2982 return ERR_CAST(inode); 3003 return ERR_CAST(inode); 2983 3004 2984 BUG_ON(!d_unhashed(dentry)); 3005 BUG_ON(!d_unhashed(dentry)); 2985 3006 2986 if (!inode) 3007 if (!inode) 2987 goto out; 3008 goto out; 2988 3009 2989 security_d_instantiate(dentry, inode) 3010 security_d_instantiate(dentry, inode); 2990 spin_lock(&inode->i_lock); 3011 spin_lock(&inode->i_lock); 2991 if (S_ISDIR(inode->i_mode)) { 3012 if (S_ISDIR(inode->i_mode)) { 2992 struct dentry *new = __d_find 3013 struct dentry *new = __d_find_any_alias(inode); 2993 if (unlikely(new)) { 3014 if (unlikely(new)) { 2994 /* The reference to n 3015 /* The reference to new ensures it remains an alias */ 2995 spin_unlock(&inode->i 3016 spin_unlock(&inode->i_lock); 2996 write_seqlock(&rename 3017 write_seqlock(&rename_lock); 2997 if (unlikely(d_ancest 3018 if (unlikely(d_ancestor(new, dentry))) { 2998 write_sequnlo 3019 write_sequnlock(&rename_lock); 2999 dput(new); 3020 dput(new); 3000 new = ERR_PTR 3021 new = ERR_PTR(-ELOOP); 3001 pr_warn_ratel 3022 pr_warn_ratelimited( 3002 "VFS: 3023 "VFS: Lookup of '%s' in %s %s" 3003 " wou 3024 " would have caused loop\n", 3004 dentr 3025 dentry->d_name.name, 3005 inode 3026 inode->i_sb->s_type->name, 3006 inode 3027 inode->i_sb->s_id); 3007 } else if (!IS_ROOT(n 3028 } else if (!IS_ROOT(new)) { 3008 struct dentry 3029 struct dentry *old_parent = dget(new->d_parent); 3009 int err = __d !! 3030 int err = __d_unalias(inode, dentry, new); 3010 write_sequnlo 3031 write_sequnlock(&rename_lock); 3011 if (err) { 3032 if (err) { 3012 dput( 3033 dput(new); 3013 new = 3034 new = ERR_PTR(err); 3014 } 3035 } 3015 dput(old_pare 3036 dput(old_parent); 3016 } else { 3037 } else { 3017 __d_move(new, 3038 __d_move(new, dentry, false); 3018 write_sequnlo 3039 write_sequnlock(&rename_lock); 3019 } 3040 } 3020 iput(inode); 3041 iput(inode); 3021 return new; 3042 return new; 3022 } 3043 } 3023 } 3044 } 3024 out: 3045 out: 3025 __d_add(dentry, inode); 3046 __d_add(dentry, inode); 3026 return NULL; 3047 return NULL; 3027 } 3048 } 3028 EXPORT_SYMBOL(d_splice_alias); 3049 EXPORT_SYMBOL(d_splice_alias); 3029 3050 3030 /* 3051 /* 3031 * Test whether new_dentry is a subdirectory 3052 * Test whether new_dentry is a subdirectory of old_dentry. 3032 * 3053 * 3033 * Trivially implemented using the dcache str 3054 * Trivially implemented using the dcache structure 3034 */ 3055 */ 3035 3056 3036 /** 3057 /** 3037 * is_subdir - is new dentry a subdirectory o 3058 * is_subdir - is new dentry a subdirectory of old_dentry 3038 * @new_dentry: new dentry 3059 * @new_dentry: new dentry 3039 * @old_dentry: old dentry 3060 * @old_dentry: old dentry 3040 * 3061 * 3041 * Returns true if new_dentry is a subdirecto 3062 * Returns true if new_dentry is a subdirectory of the parent (at any depth). 3042 * Returns false otherwise. 3063 * Returns false otherwise. 3043 * Caller must ensure that "new_dentry" is pi 3064 * Caller must ensure that "new_dentry" is pinned before calling is_subdir() 3044 */ 3065 */ 3045 3066 3046 bool is_subdir(struct dentry *new_dentry, str 3067 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry) 3047 { 3068 { 3048 bool subdir; !! 3069 bool result; 3049 unsigned seq; 3070 unsigned seq; 3050 3071 3051 if (new_dentry == old_dentry) 3072 if (new_dentry == old_dentry) 3052 return true; 3073 return true; 3053 3074 3054 /* Access d_parent under rcu as d_mov !! 3075 do { 3055 rcu_read_lock(); !! 3076 /* for restarting inner loop in case of seq retry */ 3056 seq = read_seqbegin(&rename_lock); !! 3077 seq = read_seqbegin(&rename_lock); 3057 subdir = d_ancestor(old_dentry, new_d !! 3078 /* 3058 /* Try lockless once... */ !! 3079 * Need rcu_readlock to protect against the d_parent trashing 3059 if (read_seqretry(&rename_lock, seq)) !! 3080 * due to d_move 3060 /* ...else acquire lock for p !! 3081 */ 3061 read_seqlock_excl(&rename_loc !! 3082 rcu_read_lock(); 3062 subdir = d_ancestor(old_dentr !! 3083 if (d_ancestor(old_dentry, new_dentry)) 3063 read_sequnlock_excl(&rename_l !! 3084 result = true; 3064 } !! 3085 else 3065 rcu_read_unlock(); !! 3086 result = false; 3066 return subdir; !! 3087 rcu_read_unlock(); >> 3088 } while (read_seqretry(&rename_lock, seq)); >> 3089 >> 3090 return result; 3067 } 3091 } 3068 EXPORT_SYMBOL(is_subdir); 3092 EXPORT_SYMBOL(is_subdir); 3069 3093 3070 static enum d_walk_ret d_genocide_kill(void * 3094 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry) 3071 { 3095 { 3072 struct dentry *root = data; 3096 struct dentry *root = data; 3073 if (dentry != root) { 3097 if (dentry != root) { 3074 if (d_unhashed(dentry) || !de 3098 if (d_unhashed(dentry) || !dentry->d_inode) 3075 return D_WALK_SKIP; 3099 return D_WALK_SKIP; 3076 3100 3077 if (!(dentry->d_flags & DCACH 3101 if (!(dentry->d_flags & DCACHE_GENOCIDE)) { 3078 dentry->d_flags |= DC 3102 dentry->d_flags |= DCACHE_GENOCIDE; 3079 dentry->d_lockref.cou 3103 dentry->d_lockref.count--; 3080 } 3104 } 3081 } 3105 } 3082 return D_WALK_CONTINUE; 3106 return D_WALK_CONTINUE; 3083 } 3107 } 3084 3108 3085 void d_genocide(struct dentry *parent) 3109 void d_genocide(struct dentry *parent) 3086 { 3110 { 3087 d_walk(parent, parent, d_genocide_kil 3111 d_walk(parent, parent, d_genocide_kill); 3088 } 3112 } 3089 3113 3090 void d_mark_tmpfile(struct file *file, struct !! 3114 EXPORT_SYMBOL(d_genocide); 3091 { << 3092 struct dentry *dentry = file->f_path. << 3093 3115 >> 3116 void d_tmpfile(struct dentry *dentry, struct inode *inode) >> 3117 { >> 3118 inode_dec_link_count(inode); 3094 BUG_ON(dentry->d_name.name != dentry- 3119 BUG_ON(dentry->d_name.name != dentry->d_iname || 3095 !hlist_unhashed(&dentry->d_u. 3120 !hlist_unhashed(&dentry->d_u.d_alias) || 3096 !d_unlinked(dentry)); 3121 !d_unlinked(dentry)); 3097 spin_lock(&dentry->d_parent->d_lock); 3122 spin_lock(&dentry->d_parent->d_lock); 3098 spin_lock_nested(&dentry->d_lock, DEN 3123 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 3099 dentry->d_name.len = sprintf(dentry-> 3124 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu", 3100 (unsigned lon 3125 (unsigned long long)inode->i_ino); 3101 spin_unlock(&dentry->d_lock); 3126 spin_unlock(&dentry->d_lock); 3102 spin_unlock(&dentry->d_parent->d_lock 3127 spin_unlock(&dentry->d_parent->d_lock); 3103 } << 3104 EXPORT_SYMBOL(d_mark_tmpfile); << 3105 << 3106 void d_tmpfile(struct file *file, struct inod << 3107 { << 3108 struct dentry *dentry = file->f_path. << 3109 << 3110 inode_dec_link_count(inode); << 3111 d_mark_tmpfile(file, inode); << 3112 d_instantiate(dentry, inode); 3128 d_instantiate(dentry, inode); 3113 } 3129 } 3114 EXPORT_SYMBOL(d_tmpfile); 3130 EXPORT_SYMBOL(d_tmpfile); 3115 3131 3116 /* << 3117 * Obtain inode number of the parent dentry. << 3118 */ << 3119 ino_t d_parent_ino(struct dentry *dentry) << 3120 { << 3121 struct dentry *parent; << 3122 struct inode *iparent; << 3123 unsigned seq; << 3124 ino_t ret; << 3125 << 3126 scoped_guard(rcu) { << 3127 seq = raw_seqcount_begin(&den << 3128 parent = READ_ONCE(dentry->d_ << 3129 iparent = d_inode_rcu(parent) << 3130 if (likely(iparent)) { << 3131 ret = iparent->i_ino; << 3132 if (!read_seqcount_re << 3133 return ret; << 3134 } << 3135 } << 3136 << 3137 spin_lock(&dentry->d_lock); << 3138 ret = dentry->d_parent->d_inode->i_in << 3139 spin_unlock(&dentry->d_lock); << 3140 return ret; << 3141 } << 3142 EXPORT_SYMBOL(d_parent_ino); << 3143 << 3144 static __initdata unsigned long dhash_entries 3132 static __initdata unsigned long dhash_entries; 3145 static int __init set_dhash_entries(char *str 3133 static int __init set_dhash_entries(char *str) 3146 { 3134 { 3147 if (!str) 3135 if (!str) 3148 return 0; 3136 return 0; 3149 dhash_entries = simple_strtoul(str, & 3137 dhash_entries = simple_strtoul(str, &str, 0); 3150 return 1; 3138 return 1; 3151 } 3139 } 3152 __setup("dhash_entries=", set_dhash_entries); 3140 __setup("dhash_entries=", set_dhash_entries); 3153 3141 3154 static void __init dcache_init_early(void) 3142 static void __init dcache_init_early(void) 3155 { 3143 { 3156 /* If hashes are distributed across N 3144 /* If hashes are distributed across NUMA nodes, defer 3157 * hash allocation until vmalloc spac 3145 * hash allocation until vmalloc space is available. 3158 */ 3146 */ 3159 if (hashdist) 3147 if (hashdist) 3160 return; 3148 return; 3161 3149 3162 dentry_hashtable = 3150 dentry_hashtable = 3163 alloc_large_system_hash("Dent 3151 alloc_large_system_hash("Dentry cache", 3164 sizeo 3152 sizeof(struct hlist_bl_head), 3165 dhash 3153 dhash_entries, 3166 13, 3154 13, 3167 HASH_ 3155 HASH_EARLY | HASH_ZERO, 3168 &d_ha 3156 &d_hash_shift, 3169 NULL, 3157 NULL, 3170 0, 3158 0, 3171 0); 3159 0); 3172 d_hash_shift = 32 - d_hash_shift; 3160 d_hash_shift = 32 - d_hash_shift; 3173 << 3174 runtime_const_init(shift, d_hash_shif << 3175 runtime_const_init(ptr, dentry_hashta << 3176 } 3161 } 3177 3162 3178 static void __init dcache_init(void) 3163 static void __init dcache_init(void) 3179 { 3164 { 3180 /* 3165 /* 3181 * A constructor could be added for s 3166 * A constructor could be added for stable state like the lists, 3182 * but it is probably not worth it be 3167 * but it is probably not worth it because of the cache nature 3183 * of the dcache. 3168 * of the dcache. 3184 */ 3169 */ 3185 dentry_cache = KMEM_CACHE_USERCOPY(de 3170 dentry_cache = KMEM_CACHE_USERCOPY(dentry, 3186 SLAB_RECLAIM_ACCOUNT|SLAB_PAN !! 3171 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT, 3187 d_iname); 3172 d_iname); 3188 3173 3189 /* Hash may have been set up in dcach 3174 /* Hash may have been set up in dcache_init_early */ 3190 if (!hashdist) 3175 if (!hashdist) 3191 return; 3176 return; 3192 3177 3193 dentry_hashtable = 3178 dentry_hashtable = 3194 alloc_large_system_hash("Dent 3179 alloc_large_system_hash("Dentry cache", 3195 sizeo 3180 sizeof(struct hlist_bl_head), 3196 dhash 3181 dhash_entries, 3197 13, 3182 13, 3198 HASH_ 3183 HASH_ZERO, 3199 &d_ha 3184 &d_hash_shift, 3200 NULL, 3185 NULL, 3201 0, 3186 0, 3202 0); 3187 0); 3203 d_hash_shift = 32 - d_hash_shift; 3188 d_hash_shift = 32 - d_hash_shift; 3204 << 3205 runtime_const_init(shift, d_hash_shif << 3206 runtime_const_init(ptr, dentry_hashta << 3207 } 3189 } 3208 3190 3209 /* SLAB cache for __getname() consumers */ 3191 /* SLAB cache for __getname() consumers */ 3210 struct kmem_cache *names_cachep __ro_after_in !! 3192 struct kmem_cache *names_cachep __read_mostly; 3211 EXPORT_SYMBOL(names_cachep); 3193 EXPORT_SYMBOL(names_cachep); 3212 3194 3213 void __init vfs_caches_init_early(void) 3195 void __init vfs_caches_init_early(void) 3214 { 3196 { 3215 int i; 3197 int i; 3216 3198 3217 for (i = 0; i < ARRAY_SIZE(in_lookup_ 3199 for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++) 3218 INIT_HLIST_BL_HEAD(&in_lookup 3200 INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]); 3219 3201 3220 dcache_init_early(); 3202 dcache_init_early(); 3221 inode_init_early(); 3203 inode_init_early(); 3222 } 3204 } 3223 3205 3224 void __init vfs_caches_init(void) 3206 void __init vfs_caches_init(void) 3225 { 3207 { 3226 names_cachep = kmem_cache_create_user 3208 names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0, 3227 SLAB_HWCACHE_ALIGN|SL 3209 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL); 3228 3210 3229 dcache_init(); 3211 dcache_init(); 3230 inode_init(); 3212 inode_init(); 3231 files_init(); 3213 files_init(); 3232 files_maxfiles_init(); 3214 files_maxfiles_init(); 3233 mnt_init(); 3215 mnt_init(); 3234 bdev_cache_init(); 3216 bdev_cache_init(); 3235 chrdev_init(); 3217 chrdev_init(); 3236 } 3218 } 3237 3219
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.