1 // SPDX-License-Identifier: GPL-2.0-only << 2 /* 1 /* 3 * fs/dcache.c 2 * fs/dcache.c 4 * 3 * 5 * Complete reimplementation 4 * Complete reimplementation 6 * (C) 1997 Thomas Schoebel-Theuer, 5 * (C) 1997 Thomas Schoebel-Theuer, 7 * with heavy changes by Linus Torvalds 6 * with heavy changes by Linus Torvalds 8 */ 7 */ 9 8 10 /* 9 /* 11 * Notes on the allocation strategy: 10 * Notes on the allocation strategy: 12 * 11 * 13 * The dcache is a master of the icache - when 12 * The dcache is a master of the icache - whenever a dcache entry 14 * exists, the inode will always exist. "iput( 13 * exists, the inode will always exist. "iput()" is done either when 15 * the dcache entry is deleted or garbage coll 14 * the dcache entry is deleted or garbage collected. 16 */ 15 */ 17 16 18 #include <linux/ratelimit.h> !! 17 #include <linux/syscalls.h> 19 #include <linux/string.h> 18 #include <linux/string.h> 20 #include <linux/mm.h> 19 #include <linux/mm.h> 21 #include <linux/fs.h> 20 #include <linux/fs.h> 22 #include <linux/fscrypt.h> << 23 #include <linux/fsnotify.h> 21 #include <linux/fsnotify.h> 24 #include <linux/slab.h> 22 #include <linux/slab.h> 25 #include <linux/init.h> 23 #include <linux/init.h> 26 #include <linux/hash.h> 24 #include <linux/hash.h> 27 #include <linux/cache.h> 25 #include <linux/cache.h> 28 #include <linux/export.h> 26 #include <linux/export.h> >> 27 #include <linux/mount.h> >> 28 #include <linux/file.h> >> 29 #include <linux/uaccess.h> 29 #include <linux/security.h> 30 #include <linux/security.h> 30 #include <linux/seqlock.h> 31 #include <linux/seqlock.h> 31 #include <linux/memblock.h> !! 32 #include <linux/swap.h> >> 33 #include <linux/bootmem.h> >> 34 #include <linux/fs_struct.h> >> 35 #include <linux/hardirq.h> 32 #include <linux/bit_spinlock.h> 36 #include <linux/bit_spinlock.h> 33 #include <linux/rculist_bl.h> 37 #include <linux/rculist_bl.h> >> 38 #include <linux/prefetch.h> >> 39 #include <linux/ratelimit.h> 34 #include <linux/list_lru.h> 40 #include <linux/list_lru.h> >> 41 #include <linux/kasan.h> >> 42 35 #include "internal.h" 43 #include "internal.h" 36 #include "mount.h" 44 #include "mount.h" 37 45 38 #include <asm/runtime-const.h> << 39 << 40 /* 46 /* 41 * Usage: 47 * Usage: 42 * dcache->d_inode->i_lock protects: 48 * dcache->d_inode->i_lock protects: 43 * - i_dentry, d_u.d_alias, d_inode of alias 49 * - i_dentry, d_u.d_alias, d_inode of aliases 44 * dcache_hash_bucket lock protects: 50 * dcache_hash_bucket lock protects: 45 * - the dcache hash table 51 * - the dcache hash table 46 * s_roots bl list spinlock protects: !! 52 * s_anon bl list spinlock protects: 47 * - the s_roots list (see __d_drop) !! 53 * - the s_anon list (see __d_drop) 48 * dentry->d_sb->s_dentry_lru_lock protects: 54 * dentry->d_sb->s_dentry_lru_lock protects: 49 * - the dcache lru lists and counters 55 * - the dcache lru lists and counters 50 * d_lock protects: 56 * d_lock protects: 51 * - d_flags 57 * - d_flags 52 * - d_name 58 * - d_name 53 * - d_lru 59 * - d_lru 54 * - d_count 60 * - d_count 55 * - d_unhashed() 61 * - d_unhashed() 56 * - d_parent and d_chilren !! 62 * - d_parent and d_subdirs 57 * - childrens' d_sib and d_parent !! 63 * - childrens' d_child and d_parent 58 * - d_u.d_alias, d_inode 64 * - d_u.d_alias, d_inode 59 * 65 * 60 * Ordering: 66 * Ordering: 61 * dentry->d_inode->i_lock 67 * dentry->d_inode->i_lock 62 * dentry->d_lock 68 * dentry->d_lock 63 * dentry->d_sb->s_dentry_lru_lock 69 * dentry->d_sb->s_dentry_lru_lock 64 * dcache_hash_bucket lock 70 * dcache_hash_bucket lock 65 * s_roots lock !! 71 * s_anon lock 66 * 72 * 67 * If there is an ancestor relationship: 73 * If there is an ancestor relationship: 68 * dentry->d_parent->...->d_parent->d_lock 74 * dentry->d_parent->...->d_parent->d_lock 69 * ... 75 * ... 70 * dentry->d_parent->d_lock 76 * dentry->d_parent->d_lock 71 * dentry->d_lock 77 * dentry->d_lock 72 * 78 * 73 * If no ancestor relationship: 79 * If no ancestor relationship: 74 * arbitrary, since it's serialized on rename_ !! 80 * if (dentry1 < dentry2) >> 81 * dentry1->d_lock >> 82 * dentry2->d_lock 75 */ 83 */ 76 int sysctl_vfs_cache_pressure __read_mostly = 84 int sysctl_vfs_cache_pressure __read_mostly = 100; 77 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure); 85 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure); 78 86 79 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rena 87 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock); 80 88 81 EXPORT_SYMBOL(rename_lock); 89 EXPORT_SYMBOL(rename_lock); 82 90 83 static struct kmem_cache *dentry_cache __ro_af !! 91 static struct kmem_cache *dentry_cache __read_mostly; 84 92 85 const struct qstr empty_name = QSTR_INIT("", 0 93 const struct qstr empty_name = QSTR_INIT("", 0); 86 EXPORT_SYMBOL(empty_name); 94 EXPORT_SYMBOL(empty_name); 87 const struct qstr slash_name = QSTR_INIT("/", 95 const struct qstr slash_name = QSTR_INIT("/", 1); 88 EXPORT_SYMBOL(slash_name); 96 EXPORT_SYMBOL(slash_name); 89 const struct qstr dotdot_name = QSTR_INIT(".." << 90 EXPORT_SYMBOL(dotdot_name); << 91 97 92 /* 98 /* 93 * This is the single most critical data struc 99 * This is the single most critical data structure when it comes 94 * to the dcache: the hashtable for lookups. S 100 * to the dcache: the hashtable for lookups. Somebody should try 95 * to make this good - I've just made it work. 101 * to make this good - I've just made it work. 96 * 102 * 97 * This hash-function tries to avoid losing to 103 * This hash-function tries to avoid losing too many bits of hash 98 * information, yet avoid using a prime hash-s 104 * information, yet avoid using a prime hash-size or similar. 99 * << 100 * Marking the variables "used" ensures that t << 101 * optimize them away completely on architectu << 102 * constant infrastructure, this allows debugg << 103 * values. But updating these values has no ef << 104 */ 105 */ 105 106 106 static unsigned int d_hash_shift __ro_after_in !! 107 static unsigned int d_hash_mask __read_mostly; >> 108 static unsigned int d_hash_shift __read_mostly; 107 109 108 static struct hlist_bl_head *dentry_hashtable !! 110 static struct hlist_bl_head *dentry_hashtable __read_mostly; 109 111 110 static inline struct hlist_bl_head *d_hash(uns !! 112 static inline struct hlist_bl_head *d_hash(unsigned int hash) 111 { 113 { 112 return runtime_const_ptr(dentry_hashta !! 114 return dentry_hashtable + (hash >> (32 - d_hash_shift)); 113 runtime_const_shift_right_32(h << 114 } 115 } 115 116 116 #define IN_LOOKUP_SHIFT 10 117 #define IN_LOOKUP_SHIFT 10 117 static struct hlist_bl_head in_lookup_hashtabl 118 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT]; 118 119 119 static inline struct hlist_bl_head *in_lookup_ 120 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent, 120 unsign 121 unsigned int hash) 121 { 122 { 122 hash += (unsigned long) parent / L1_CA 123 hash += (unsigned long) parent / L1_CACHE_BYTES; 123 return in_lookup_hashtable + hash_32(h 124 return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT); 124 } 125 } 125 126 126 struct dentry_stat_t { !! 127 127 long nr_dentry; !! 128 /* Statistics gathering. */ 128 long nr_unused; !! 129 struct dentry_stat_t dentry_stat = { 129 long age_limit; /* age in seco !! 130 .age_limit = 45, 130 long want_pages; /* pages reque << 131 long nr_negative; /* # of unused << 132 long dummy; /* Reserved fo << 133 }; 131 }; 134 132 135 static DEFINE_PER_CPU(long, nr_dentry); 133 static DEFINE_PER_CPU(long, nr_dentry); 136 static DEFINE_PER_CPU(long, nr_dentry_unused); 134 static DEFINE_PER_CPU(long, nr_dentry_unused); 137 static DEFINE_PER_CPU(long, nr_dentry_negative << 138 135 139 #if defined(CONFIG_SYSCTL) && defined(CONFIG_P 136 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS) 140 /* Statistics gathering. */ << 141 static struct dentry_stat_t dentry_stat = { << 142 .age_limit = 45, << 143 }; << 144 137 145 /* 138 /* 146 * Here we resort to our own counters instead 139 * Here we resort to our own counters instead of using generic per-cpu counters 147 * for consistency with what the vfs inode cod 140 * for consistency with what the vfs inode code does. We are expected to harvest 148 * better code and performance by having our o 141 * better code and performance by having our own specialized counters. 149 * 142 * 150 * Please note that the loop is done over all 143 * Please note that the loop is done over all possible CPUs, not over all online 151 * CPUs. The reason for this is that we don't 144 * CPUs. The reason for this is that we don't want to play games with CPUs going 152 * on and off. If one of them goes off, we wil 145 * on and off. If one of them goes off, we will just keep their counters. 153 * 146 * 154 * glommer: See cffbc8a for details, and if yo 147 * glommer: See cffbc8a for details, and if you ever intend to change this, 155 * please update all vfs counters to match. 148 * please update all vfs counters to match. 156 */ 149 */ 157 static long get_nr_dentry(void) 150 static long get_nr_dentry(void) 158 { 151 { 159 int i; 152 int i; 160 long sum = 0; 153 long sum = 0; 161 for_each_possible_cpu(i) 154 for_each_possible_cpu(i) 162 sum += per_cpu(nr_dentry, i); 155 sum += per_cpu(nr_dentry, i); 163 return sum < 0 ? 0 : sum; 156 return sum < 0 ? 0 : sum; 164 } 157 } 165 158 166 static long get_nr_dentry_unused(void) 159 static long get_nr_dentry_unused(void) 167 { 160 { 168 int i; 161 int i; 169 long sum = 0; 162 long sum = 0; 170 for_each_possible_cpu(i) 163 for_each_possible_cpu(i) 171 sum += per_cpu(nr_dentry_unuse 164 sum += per_cpu(nr_dentry_unused, i); 172 return sum < 0 ? 0 : sum; 165 return sum < 0 ? 0 : sum; 173 } 166 } 174 167 175 static long get_nr_dentry_negative(void) !! 168 int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer, 176 { !! 169 size_t *lenp, loff_t *ppos) 177 int i; << 178 long sum = 0; << 179 << 180 for_each_possible_cpu(i) << 181 sum += per_cpu(nr_dentry_negat << 182 return sum < 0 ? 0 : sum; << 183 } << 184 << 185 static int proc_nr_dentry(const struct ctl_tab << 186 size_t *lenp, loff_t << 187 { 170 { 188 dentry_stat.nr_dentry = get_nr_dentry( 171 dentry_stat.nr_dentry = get_nr_dentry(); 189 dentry_stat.nr_unused = get_nr_dentry_ 172 dentry_stat.nr_unused = get_nr_dentry_unused(); 190 dentry_stat.nr_negative = get_nr_dentr << 191 return proc_doulongvec_minmax(table, w 173 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 192 } 174 } 193 << 194 static struct ctl_table fs_dcache_sysctls[] = << 195 { << 196 .procname = "dentry-stat << 197 .data = &dentry_stat << 198 .maxlen = 6*sizeof(lon << 199 .mode = 0444, << 200 .proc_handler = proc_nr_dent << 201 }, << 202 }; << 203 << 204 static int __init init_fs_dcache_sysctls(void) << 205 { << 206 register_sysctl_init("fs", fs_dcache_s << 207 return 0; << 208 } << 209 fs_initcall(init_fs_dcache_sysctls); << 210 #endif 175 #endif 211 176 212 /* 177 /* 213 * Compare 2 name strings, return 0 if they ma 178 * Compare 2 name strings, return 0 if they match, otherwise non-zero. 214 * The strings are both count bytes long, and 179 * The strings are both count bytes long, and count is non-zero. 215 */ 180 */ 216 #ifdef CONFIG_DCACHE_WORD_ACCESS 181 #ifdef CONFIG_DCACHE_WORD_ACCESS 217 182 218 #include <asm/word-at-a-time.h> 183 #include <asm/word-at-a-time.h> 219 /* 184 /* 220 * NOTE! 'cs' and 'scount' come from a dentry, 185 * NOTE! 'cs' and 'scount' come from a dentry, so it has a 221 * aligned allocation for this particular comp 186 * aligned allocation for this particular component. We don't 222 * strictly need the load_unaligned_zeropad() 187 * strictly need the load_unaligned_zeropad() safety, but it 223 * doesn't hurt either. 188 * doesn't hurt either. 224 * 189 * 225 * In contrast, 'ct' and 'tcount' can be from 190 * In contrast, 'ct' and 'tcount' can be from a pathname, and do 226 * need the careful unaligned handling. 191 * need the careful unaligned handling. 227 */ 192 */ 228 static inline int dentry_string_cmp(const unsi 193 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount) 229 { 194 { 230 unsigned long a,b,mask; 195 unsigned long a,b,mask; 231 196 232 for (;;) { 197 for (;;) { 233 a = read_word_at_a_time(cs); !! 198 a = *(unsigned long *)cs; 234 b = load_unaligned_zeropad(ct) 199 b = load_unaligned_zeropad(ct); 235 if (tcount < sizeof(unsigned l 200 if (tcount < sizeof(unsigned long)) 236 break; 201 break; 237 if (unlikely(a != b)) 202 if (unlikely(a != b)) 238 return 1; 203 return 1; 239 cs += sizeof(unsigned long); 204 cs += sizeof(unsigned long); 240 ct += sizeof(unsigned long); 205 ct += sizeof(unsigned long); 241 tcount -= sizeof(unsigned long 206 tcount -= sizeof(unsigned long); 242 if (!tcount) 207 if (!tcount) 243 return 0; 208 return 0; 244 } 209 } 245 mask = bytemask_from_count(tcount); 210 mask = bytemask_from_count(tcount); 246 return unlikely(!!((a ^ b) & mask)); 211 return unlikely(!!((a ^ b) & mask)); 247 } 212 } 248 213 249 #else 214 #else 250 215 251 static inline int dentry_string_cmp(const unsi 216 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount) 252 { 217 { 253 do { 218 do { 254 if (*cs != *ct) 219 if (*cs != *ct) 255 return 1; 220 return 1; 256 cs++; 221 cs++; 257 ct++; 222 ct++; 258 tcount--; 223 tcount--; 259 } while (tcount); 224 } while (tcount); 260 return 0; 225 return 0; 261 } 226 } 262 227 263 #endif 228 #endif 264 229 265 static inline int dentry_cmp(const struct dent 230 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount) 266 { 231 { 267 /* 232 /* 268 * Be careful about RCU walk racing wi 233 * Be careful about RCU walk racing with rename: 269 * use 'READ_ONCE' to fetch the name p 234 * use 'READ_ONCE' to fetch the name pointer. 270 * 235 * 271 * NOTE! Even if a rename will mean th 236 * NOTE! Even if a rename will mean that the length 272 * was not loaded atomically, we don't 237 * was not loaded atomically, we don't care. The 273 * RCU walk will check the sequence co 238 * RCU walk will check the sequence count eventually, 274 * and catch it. And we won't overrun 239 * and catch it. And we won't overrun the buffer, 275 * because we're reading the name poin 240 * because we're reading the name pointer atomically, 276 * and a dentry name is guaranteed to 241 * and a dentry name is guaranteed to be properly 277 * terminated with a NUL byte. 242 * terminated with a NUL byte. 278 * 243 * 279 * End result: even if 'len' is wrong, 244 * End result: even if 'len' is wrong, we'll exit 280 * early because the data cannot match 245 * early because the data cannot match (there can 281 * be no NUL in the ct/tcount data) 246 * be no NUL in the ct/tcount data) 282 */ 247 */ 283 const unsigned char *cs = READ_ONCE(de 248 const unsigned char *cs = READ_ONCE(dentry->d_name.name); 284 249 285 return dentry_string_cmp(cs, ct, tcoun 250 return dentry_string_cmp(cs, ct, tcount); 286 } 251 } 287 252 288 struct external_name { 253 struct external_name { 289 union { 254 union { 290 atomic_t count; 255 atomic_t count; 291 struct rcu_head head; 256 struct rcu_head head; 292 } u; 257 } u; 293 unsigned char name[]; 258 unsigned char name[]; 294 }; 259 }; 295 260 296 static inline struct external_name *external_n 261 static inline struct external_name *external_name(struct dentry *dentry) 297 { 262 { 298 return container_of(dentry->d_name.nam 263 return container_of(dentry->d_name.name, struct external_name, name[0]); 299 } 264 } 300 265 301 static void __d_free(struct rcu_head *head) 266 static void __d_free(struct rcu_head *head) 302 { 267 { 303 struct dentry *dentry = container_of(h 268 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu); 304 269 305 kmem_cache_free(dentry_cache, dentry); 270 kmem_cache_free(dentry_cache, dentry); 306 } 271 } 307 272 308 static void __d_free_external(struct rcu_head 273 static void __d_free_external(struct rcu_head *head) 309 { 274 { 310 struct dentry *dentry = container_of(h 275 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu); 311 kfree(external_name(dentry)); 276 kfree(external_name(dentry)); 312 kmem_cache_free(dentry_cache, dentry); !! 277 kmem_cache_free(dentry_cache, dentry); 313 } 278 } 314 279 315 static inline int dname_external(const struct 280 static inline int dname_external(const struct dentry *dentry) 316 { 281 { 317 return dentry->d_name.name != dentry-> 282 return dentry->d_name.name != dentry->d_iname; 318 } 283 } 319 284 320 void take_dentry_name_snapshot(struct name_sna 285 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry) 321 { 286 { 322 spin_lock(&dentry->d_lock); 287 spin_lock(&dentry->d_lock); 323 name->name = dentry->d_name; << 324 if (unlikely(dname_external(dentry))) 288 if (unlikely(dname_external(dentry))) { 325 atomic_inc(&external_name(dent !! 289 struct external_name *p = external_name(dentry); >> 290 atomic_inc(&p->u.count); >> 291 spin_unlock(&dentry->d_lock); >> 292 name->name = p->name; 326 } else { 293 } else { 327 memcpy(name->inline_name, dent !! 294 memcpy(name->inline_name, dentry->d_iname, DNAME_INLINE_LEN); 328 dentry->d_name.len + 1) !! 295 spin_unlock(&dentry->d_lock); 329 name->name.name = name->inline !! 296 name->name = name->inline_name; 330 } 297 } 331 spin_unlock(&dentry->d_lock); << 332 } 298 } 333 EXPORT_SYMBOL(take_dentry_name_snapshot); 299 EXPORT_SYMBOL(take_dentry_name_snapshot); 334 300 335 void release_dentry_name_snapshot(struct name_ 301 void release_dentry_name_snapshot(struct name_snapshot *name) 336 { 302 { 337 if (unlikely(name->name.name != name-> !! 303 if (unlikely(name->name != name->inline_name)) { 338 struct external_name *p; 304 struct external_name *p; 339 p = container_of(name->name.na !! 305 p = container_of(name->name, struct external_name, name[0]); 340 if (unlikely(atomic_dec_and_te 306 if (unlikely(atomic_dec_and_test(&p->u.count))) 341 kfree_rcu(p, u.head); 307 kfree_rcu(p, u.head); 342 } 308 } 343 } 309 } 344 EXPORT_SYMBOL(release_dentry_name_snapshot); 310 EXPORT_SYMBOL(release_dentry_name_snapshot); 345 311 346 static inline void __d_set_inode_and_type(stru 312 static inline void __d_set_inode_and_type(struct dentry *dentry, 347 stru 313 struct inode *inode, 348 unsi 314 unsigned type_flags) 349 { 315 { 350 unsigned flags; 316 unsigned flags; 351 317 352 dentry->d_inode = inode; 318 dentry->d_inode = inode; 353 flags = READ_ONCE(dentry->d_flags); 319 flags = READ_ONCE(dentry->d_flags); 354 flags &= ~DCACHE_ENTRY_TYPE; !! 320 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU); 355 flags |= type_flags; 321 flags |= type_flags; 356 smp_store_release(&dentry->d_flags, fl !! 322 WRITE_ONCE(dentry->d_flags, flags); 357 } 323 } 358 324 359 static inline void __d_clear_type_and_inode(st 325 static inline void __d_clear_type_and_inode(struct dentry *dentry) 360 { 326 { 361 unsigned flags = READ_ONCE(dentry->d_f 327 unsigned flags = READ_ONCE(dentry->d_flags); 362 328 363 flags &= ~DCACHE_ENTRY_TYPE; !! 329 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU); 364 WRITE_ONCE(dentry->d_flags, flags); 330 WRITE_ONCE(dentry->d_flags, flags); 365 dentry->d_inode = NULL; 331 dentry->d_inode = NULL; 366 /* << 367 * The negative counter only tracks de << 368 * d_lru is on another list. << 369 */ << 370 if ((flags & (DCACHE_LRU_LIST|DCACHE_S << 371 this_cpu_inc(nr_dentry_negativ << 372 } 332 } 373 333 374 static void dentry_free(struct dentry *dentry) 334 static void dentry_free(struct dentry *dentry) 375 { 335 { 376 WARN_ON(!hlist_unhashed(&dentry->d_u.d 336 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias)); 377 if (unlikely(dname_external(dentry))) 337 if (unlikely(dname_external(dentry))) { 378 struct external_name *p = exte 338 struct external_name *p = external_name(dentry); 379 if (likely(atomic_dec_and_test 339 if (likely(atomic_dec_and_test(&p->u.count))) { 380 call_rcu(&dentry->d_u. 340 call_rcu(&dentry->d_u.d_rcu, __d_free_external); 381 return; 341 return; 382 } 342 } 383 } 343 } 384 /* if dentry was never visible to RCU, 344 /* if dentry was never visible to RCU, immediate free is OK */ 385 if (dentry->d_flags & DCACHE_NORCU) !! 345 if (!(dentry->d_flags & DCACHE_RCUACCESS)) 386 __d_free(&dentry->d_u.d_rcu); 346 __d_free(&dentry->d_u.d_rcu); 387 else 347 else 388 call_rcu(&dentry->d_u.d_rcu, _ 348 call_rcu(&dentry->d_u.d_rcu, __d_free); 389 } 349 } 390 350 391 /* 351 /* 392 * Release the dentry's inode, using the files 352 * Release the dentry's inode, using the filesystem 393 * d_iput() operation if defined. 353 * d_iput() operation if defined. 394 */ 354 */ 395 static void dentry_unlink_inode(struct dentry 355 static void dentry_unlink_inode(struct dentry * dentry) 396 __releases(dentry->d_lock) 356 __releases(dentry->d_lock) 397 __releases(dentry->d_inode->i_lock) 357 __releases(dentry->d_inode->i_lock) 398 { 358 { 399 struct inode *inode = dentry->d_inode; 359 struct inode *inode = dentry->d_inode; >> 360 bool hashed = !d_unhashed(dentry); 400 361 401 raw_write_seqcount_begin(&dentry->d_se !! 362 if (hashed) >> 363 raw_write_seqcount_begin(&dentry->d_seq); 402 __d_clear_type_and_inode(dentry); 364 __d_clear_type_and_inode(dentry); 403 hlist_del_init(&dentry->d_u.d_alias); 365 hlist_del_init(&dentry->d_u.d_alias); 404 raw_write_seqcount_end(&dentry->d_seq) !! 366 if (hashed) >> 367 raw_write_seqcount_end(&dentry->d_seq); 405 spin_unlock(&dentry->d_lock); 368 spin_unlock(&dentry->d_lock); 406 spin_unlock(&inode->i_lock); 369 spin_unlock(&inode->i_lock); 407 if (!inode->i_nlink) 370 if (!inode->i_nlink) 408 fsnotify_inoderemove(inode); 371 fsnotify_inoderemove(inode); 409 if (dentry->d_op && dentry->d_op->d_ip 372 if (dentry->d_op && dentry->d_op->d_iput) 410 dentry->d_op->d_iput(dentry, i 373 dentry->d_op->d_iput(dentry, inode); 411 else 374 else 412 iput(inode); 375 iput(inode); 413 } 376 } 414 377 415 /* 378 /* 416 * The DCACHE_LRU_LIST bit is set whenever the 379 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry 417 * is in use - which includes both the "real" 380 * is in use - which includes both the "real" per-superblock 418 * LRU list _and_ the DCACHE_SHRINK_LIST use. 381 * LRU list _and_ the DCACHE_SHRINK_LIST use. 419 * 382 * 420 * The DCACHE_SHRINK_LIST bit is set whenever 383 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is 421 * on the shrink list (ie not on the superbloc 384 * on the shrink list (ie not on the superblock LRU list). 422 * 385 * 423 * The per-cpu "nr_dentry_unused" counters are 386 * The per-cpu "nr_dentry_unused" counters are updated with 424 * the DCACHE_LRU_LIST bit. 387 * the DCACHE_LRU_LIST bit. 425 * 388 * 426 * The per-cpu "nr_dentry_negative" counters a << 427 * when deleted from or added to the per-super << 428 * from/to the shrink list. That is to avoid a << 429 * pair when moving from LRU to shrink list in << 430 * << 431 * These helper functions make sure we always 389 * These helper functions make sure we always follow the 432 * rules. d_lock must be held by the caller. 390 * rules. d_lock must be held by the caller. 433 */ 391 */ 434 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(( 392 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x)) 435 static void d_lru_add(struct dentry *dentry) 393 static void d_lru_add(struct dentry *dentry) 436 { 394 { 437 D_FLAG_VERIFY(dentry, 0); 395 D_FLAG_VERIFY(dentry, 0); 438 dentry->d_flags |= DCACHE_LRU_LIST; 396 dentry->d_flags |= DCACHE_LRU_LIST; 439 this_cpu_inc(nr_dentry_unused); 397 this_cpu_inc(nr_dentry_unused); 440 if (d_is_negative(dentry)) !! 398 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru)); 441 this_cpu_inc(nr_dentry_negativ << 442 WARN_ON_ONCE(!list_lru_add_obj( << 443 &dentry->d_sb->s_dentr << 444 } 399 } 445 400 446 static void d_lru_del(struct dentry *dentry) 401 static void d_lru_del(struct dentry *dentry) 447 { 402 { 448 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST) 403 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 449 dentry->d_flags &= ~DCACHE_LRU_LIST; 404 dentry->d_flags &= ~DCACHE_LRU_LIST; 450 this_cpu_dec(nr_dentry_unused); 405 this_cpu_dec(nr_dentry_unused); 451 if (d_is_negative(dentry)) !! 406 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru)); 452 this_cpu_dec(nr_dentry_negativ << 453 WARN_ON_ONCE(!list_lru_del_obj( << 454 &dentry->d_sb->s_dentr << 455 } 407 } 456 408 457 static void d_shrink_del(struct dentry *dentry 409 static void d_shrink_del(struct dentry *dentry) 458 { 410 { 459 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LI 411 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST); 460 list_del_init(&dentry->d_lru); 412 list_del_init(&dentry->d_lru); 461 dentry->d_flags &= ~(DCACHE_SHRINK_LIS 413 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST); 462 this_cpu_dec(nr_dentry_unused); 414 this_cpu_dec(nr_dentry_unused); 463 } 415 } 464 416 465 static void d_shrink_add(struct dentry *dentry 417 static void d_shrink_add(struct dentry *dentry, struct list_head *list) 466 { 418 { 467 D_FLAG_VERIFY(dentry, 0); 419 D_FLAG_VERIFY(dentry, 0); 468 list_add(&dentry->d_lru, list); 420 list_add(&dentry->d_lru, list); 469 dentry->d_flags |= DCACHE_SHRINK_LIST 421 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST; 470 this_cpu_inc(nr_dentry_unused); 422 this_cpu_inc(nr_dentry_unused); 471 } 423 } 472 424 473 /* 425 /* 474 * These can only be called under the global L 426 * These can only be called under the global LRU lock, ie during the 475 * callback for freeing the LRU list. "isolate 427 * callback for freeing the LRU list. "isolate" removes it from the 476 * LRU lists entirely, while shrink_move moves 428 * LRU lists entirely, while shrink_move moves it to the indicated 477 * private list. 429 * private list. 478 */ 430 */ 479 static void d_lru_isolate(struct list_lru_one 431 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry) 480 { 432 { 481 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST) 433 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 482 dentry->d_flags &= ~DCACHE_LRU_LIST; 434 dentry->d_flags &= ~DCACHE_LRU_LIST; 483 this_cpu_dec(nr_dentry_unused); 435 this_cpu_dec(nr_dentry_unused); 484 if (d_is_negative(dentry)) << 485 this_cpu_dec(nr_dentry_negativ << 486 list_lru_isolate(lru, &dentry->d_lru); 436 list_lru_isolate(lru, &dentry->d_lru); 487 } 437 } 488 438 489 static void d_lru_shrink_move(struct list_lru_ 439 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry, 490 struct list_head 440 struct list_head *list) 491 { 441 { 492 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST) 442 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 493 dentry->d_flags |= DCACHE_SHRINK_LIST; 443 dentry->d_flags |= DCACHE_SHRINK_LIST; 494 if (d_is_negative(dentry)) << 495 this_cpu_dec(nr_dentry_negativ << 496 list_lru_isolate_move(lru, &dentry->d_ 444 list_lru_isolate_move(lru, &dentry->d_lru, list); 497 } 445 } 498 446 499 static void ___d_drop(struct dentry *dentry) !! 447 /* 500 { !! 448 * dentry_lru_(add|del)_list) must be called with d_lock held. 501 struct hlist_bl_head *b; !! 449 */ 502 /* !! 450 static void dentry_lru_add(struct dentry *dentry) 503 * Hashed dentries are normally on the << 504 * with the exception of those newly a << 505 * d_obtain_root, which are always IS_ << 506 */ << 507 if (unlikely(IS_ROOT(dentry))) << 508 b = &dentry->d_sb->s_roots; << 509 else << 510 b = d_hash(dentry->d_name.hash << 511 << 512 hlist_bl_lock(b); << 513 __hlist_bl_del(&dentry->d_hash); << 514 hlist_bl_unlock(b); << 515 } << 516 << 517 void __d_drop(struct dentry *dentry) << 518 { 451 { 519 if (!d_unhashed(dentry)) { !! 452 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST))) 520 ___d_drop(dentry); !! 453 d_lru_add(dentry); 521 dentry->d_hash.pprev = NULL; !! 454 else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED))) 522 write_seqcount_invalidate(&den !! 455 dentry->d_flags |= DCACHE_REFERENCED; 523 } << 524 } 456 } 525 EXPORT_SYMBOL(__d_drop); << 526 457 527 /** 458 /** 528 * d_drop - drop a dentry 459 * d_drop - drop a dentry 529 * @dentry: dentry to drop 460 * @dentry: dentry to drop 530 * 461 * 531 * d_drop() unhashes the entry from the parent 462 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't 532 * be found through a VFS lookup any more. Not 463 * be found through a VFS lookup any more. Note that this is different from 533 * deleting the dentry - d_delete will try to 464 * deleting the dentry - d_delete will try to mark the dentry negative if 534 * possible, giving a successful _negative_ lo 465 * possible, giving a successful _negative_ lookup, while d_drop will 535 * just make the cache lookup fail. 466 * just make the cache lookup fail. 536 * 467 * 537 * d_drop() is used mainly for stuff that want 468 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some 538 * reason (NFS timeouts or autofs deletes). 469 * reason (NFS timeouts or autofs deletes). 539 * 470 * 540 * __d_drop requires dentry->d_lock 471 * __d_drop requires dentry->d_lock 541 * << 542 * ___d_drop doesn't mark dentry as "unhashed" 472 * ___d_drop doesn't mark dentry as "unhashed" 543 * (dentry->d_hash.pprev will be LIST_POISON2, !! 473 * (dentry->d_hash.pprev will be LIST_POISON2, not NULL). 544 */ 474 */ >> 475 static void ___d_drop(struct dentry *dentry) >> 476 { >> 477 if (!d_unhashed(dentry)) { >> 478 struct hlist_bl_head *b; >> 479 /* >> 480 * Hashed dentries are normally on the dentry hashtable, >> 481 * with the exception of those newly allocated by >> 482 * d_obtain_alias, which are always IS_ROOT: >> 483 */ >> 484 if (unlikely(IS_ROOT(dentry))) >> 485 b = &dentry->d_sb->s_anon; >> 486 else >> 487 b = d_hash(dentry->d_name.hash); >> 488 >> 489 hlist_bl_lock(b); >> 490 __hlist_bl_del(&dentry->d_hash); >> 491 hlist_bl_unlock(b); >> 492 /* After this call, in-progress rcu-walk path lookup will fail. */ >> 493 write_seqcount_invalidate(&dentry->d_seq); >> 494 } >> 495 } >> 496 >> 497 void __d_drop(struct dentry *dentry) >> 498 { >> 499 ___d_drop(dentry); >> 500 dentry->d_hash.pprev = NULL; >> 501 } >> 502 EXPORT_SYMBOL(__d_drop); >> 503 545 void d_drop(struct dentry *dentry) 504 void d_drop(struct dentry *dentry) 546 { 505 { 547 spin_lock(&dentry->d_lock); 506 spin_lock(&dentry->d_lock); 548 __d_drop(dentry); 507 __d_drop(dentry); 549 spin_unlock(&dentry->d_lock); 508 spin_unlock(&dentry->d_lock); 550 } 509 } 551 EXPORT_SYMBOL(d_drop); 510 EXPORT_SYMBOL(d_drop); 552 511 553 static inline void dentry_unlist(struct dentry !! 512 static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent) 554 { 513 { 555 struct dentry *next; 514 struct dentry *next; 556 /* 515 /* 557 * Inform d_walk() and shrink_dentry_l 516 * Inform d_walk() and shrink_dentry_list() that we are no longer 558 * attached to the dentry tree 517 * attached to the dentry tree 559 */ 518 */ 560 dentry->d_flags |= DCACHE_DENTRY_KILLE 519 dentry->d_flags |= DCACHE_DENTRY_KILLED; 561 if (unlikely(hlist_unhashed(&dentry->d !! 520 if (unlikely(list_empty(&dentry->d_child))) 562 return; 521 return; 563 __hlist_del(&dentry->d_sib); !! 522 __list_del_entry(&dentry->d_child); 564 /* 523 /* 565 * Cursors can move around the list of 524 * Cursors can move around the list of children. While we'd been 566 * a normal list member, it didn't mat !! 525 * a normal list member, it didn't matter - ->d_child.next would've 567 * been updated. However, from now on 526 * been updated. However, from now on it won't be and for the 568 * things like d_walk() it might end u 527 * things like d_walk() it might end up with a nasty surprise. 569 * Normally d_walk() doesn't care abou 528 * Normally d_walk() doesn't care about cursors moving around - 570 * ->d_lock on parent prevents that an 529 * ->d_lock on parent prevents that and since a cursor has no children 571 * of its own, we get through it witho 530 * of its own, we get through it without ever unlocking the parent. 572 * There is one exception, though - if 531 * There is one exception, though - if we ascend from a child that 573 * gets killed as soon as we unlock it 532 * gets killed as soon as we unlock it, the next sibling is found 574 * using the value left in its ->d_sib !! 533 * using the value left in its ->d_child.next. And if _that_ 575 * pointed to a cursor, and cursor got 534 * pointed to a cursor, and cursor got moved (e.g. by lseek()) 576 * before d_walk() regains parent->d_l 535 * before d_walk() regains parent->d_lock, we'll end up skipping 577 * everything the cursor had been move 536 * everything the cursor had been moved past. 578 * 537 * 579 * Solution: make sure that the pointe !! 538 * Solution: make sure that the pointer left behind in ->d_child.next 580 * points to something that won't be m 539 * points to something that won't be moving around. I.e. skip the 581 * cursors. 540 * cursors. 582 */ 541 */ 583 while (dentry->d_sib.next) { !! 542 while (dentry->d_child.next != &parent->d_subdirs) { 584 next = hlist_entry(dentry->d_s !! 543 next = list_entry(dentry->d_child.next, struct dentry, d_child); 585 if (likely(!(next->d_flags & D 544 if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR))) 586 break; 545 break; 587 dentry->d_sib.next = next->d_s !! 546 dentry->d_child.next = next->d_child.next; 588 } 547 } 589 } 548 } 590 549 591 static struct dentry *__dentry_kill(struct den !! 550 static void __dentry_kill(struct dentry *dentry) 592 { 551 { 593 struct dentry *parent = NULL; 552 struct dentry *parent = NULL; 594 bool can_free = true; 553 bool can_free = true; >> 554 if (!IS_ROOT(dentry)) >> 555 parent = dentry->d_parent; 595 556 596 /* 557 /* 597 * The dentry is now unrecoverably dea 558 * The dentry is now unrecoverably dead to the world. 598 */ 559 */ 599 lockref_mark_dead(&dentry->d_lockref); 560 lockref_mark_dead(&dentry->d_lockref); 600 561 601 /* 562 /* 602 * inform the fs via d_prune that this 563 * inform the fs via d_prune that this dentry is about to be 603 * unhashed and destroyed. 564 * unhashed and destroyed. 604 */ 565 */ 605 if (dentry->d_flags & DCACHE_OP_PRUNE) 566 if (dentry->d_flags & DCACHE_OP_PRUNE) 606 dentry->d_op->d_prune(dentry); 567 dentry->d_op->d_prune(dentry); 607 568 608 if (dentry->d_flags & DCACHE_LRU_LIST) 569 if (dentry->d_flags & DCACHE_LRU_LIST) { 609 if (!(dentry->d_flags & DCACHE 570 if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) 610 d_lru_del(dentry); 571 d_lru_del(dentry); 611 } 572 } 612 /* if it was on the hash then remove i 573 /* if it was on the hash then remove it */ 613 __d_drop(dentry); 574 __d_drop(dentry); >> 575 dentry_unlist(dentry, parent); >> 576 if (parent) >> 577 spin_unlock(&parent->d_lock); 614 if (dentry->d_inode) 578 if (dentry->d_inode) 615 dentry_unlink_inode(dentry); 579 dentry_unlink_inode(dentry); 616 else 580 else 617 spin_unlock(&dentry->d_lock); 581 spin_unlock(&dentry->d_lock); 618 this_cpu_dec(nr_dentry); 582 this_cpu_dec(nr_dentry); 619 if (dentry->d_op && dentry->d_op->d_re 583 if (dentry->d_op && dentry->d_op->d_release) 620 dentry->d_op->d_release(dentry 584 dentry->d_op->d_release(dentry); 621 585 622 cond_resched(); !! 586 spin_lock(&dentry->d_lock); 623 /* now that it's negative, ->d_parent !! 587 if (dentry->d_flags & DCACHE_SHRINK_LIST) { 624 if (!IS_ROOT(dentry)) { !! 588 dentry->d_flags |= DCACHE_MAY_FREE; 625 parent = dentry->d_parent; << 626 spin_lock(&parent->d_lock); << 627 } << 628 spin_lock_nested(&dentry->d_lock, DENT << 629 dentry_unlist(dentry); << 630 if (dentry->d_flags & DCACHE_SHRINK_LI << 631 can_free = false; 589 can_free = false; >> 590 } 632 spin_unlock(&dentry->d_lock); 591 spin_unlock(&dentry->d_lock); 633 if (likely(can_free)) 592 if (likely(can_free)) 634 dentry_free(dentry); 593 dentry_free(dentry); 635 if (parent && --parent->d_lockref.coun << 636 spin_unlock(&parent->d_lock); << 637 return NULL; << 638 } << 639 return parent; << 640 } 594 } 641 595 642 /* 596 /* 643 * Lock a dentry for feeding it to __dentry_ki !! 597 * Finish off a dentry we've decided to kill. 644 * Called under rcu_read_lock() and dentry->d_ !! 598 * dentry->d_lock must be held, returns with it unlocked. 645 * guarantees that nothing we access will be f !! 599 * If ref is non-zero, then decrement the refcount too. 646 * Note that dentry is *not* protected from co !! 600 * Returns dentry requiring refcount drop, or NULL if we're done. 647 * d_delete(), etc. << 648 * << 649 * Return false if dentry is busy. Otherwise, << 650 * that dentry's inode locked. << 651 */ 601 */ 652 !! 602 static struct dentry *dentry_kill(struct dentry *dentry) 653 static bool lock_for_kill(struct dentry *dentr !! 603 __releases(dentry->d_lock) 654 { 604 { 655 struct inode *inode = dentry->d_inode; 605 struct inode *inode = dentry->d_inode; >> 606 struct dentry *parent = NULL; 656 607 657 if (unlikely(dentry->d_lockref.count)) !! 608 if (inode && unlikely(!spin_trylock(&inode->i_lock))) 658 return false; !! 609 goto failed; 659 << 660 if (!inode || likely(spin_trylock(&ino << 661 return true; << 662 << 663 do { << 664 spin_unlock(&dentry->d_lock); << 665 spin_lock(&inode->i_lock); << 666 spin_lock(&dentry->d_lock); << 667 if (likely(inode == dentry->d_ << 668 break; << 669 spin_unlock(&inode->i_lock); << 670 inode = dentry->d_inode; << 671 } while (inode); << 672 if (likely(!dentry->d_lockref.count)) << 673 return true; << 674 if (inode) << 675 spin_unlock(&inode->i_lock); << 676 return false; << 677 } << 678 << 679 /* << 680 * Decide if dentry is worth retaining. Usual << 681 * locked; if not locked, we are more limited << 682 * without a lock. False in this case means " << 683 * << 684 * In case we aren't locked, these predicates << 685 * sufficient that at some point after we drop << 686 * hashed and the flags had the proper value. << 687 * re-gotten a reference to the dentry and cha << 688 * we can leave the dentry around with a zero << 689 */ << 690 static inline bool retain_dentry(struct dentry << 691 { << 692 unsigned int d_flags; << 693 << 694 smp_rmb(); << 695 d_flags = READ_ONCE(dentry->d_flags); << 696 << 697 // Unreachable? Nobody would be able t << 698 if (unlikely(d_unhashed(dentry))) << 699 return false; << 700 610 701 // Same if it's disconnected !! 611 if (!IS_ROOT(dentry)) { 702 if (unlikely(d_flags & DCACHE_DISCONNE !! 612 parent = dentry->d_parent; 703 return false; !! 613 if (unlikely(!spin_trylock(&parent->d_lock))) { 704 !! 614 if (inode) 705 // ->d_delete() might tell us not to b !! 615 spin_unlock(&inode->i_lock); 706 // ->d_lock; can't decide without it !! 616 goto failed; 707 if (unlikely(d_flags & DCACHE_OP_DELET !! 617 } 708 if (!locked || dentry->d_op->d << 709 return false; << 710 } 618 } 711 619 712 // Explicitly told not to bother !! 620 __dentry_kill(dentry); 713 if (unlikely(d_flags & DCACHE_DONTCACH !! 621 return parent; 714 return false; !! 622 715 !! 623 failed: 716 // At this point it looks like we ough !! 624 spin_unlock(&dentry->d_lock); 717 // need to do something - put it on LR !! 625 return dentry; /* try again with same dentry */ 718 // and mark it referenced if it was on << 719 // Unfortunately, both actions require << 720 // case we'd have to punt rather than << 721 if (unlikely(!(d_flags & DCACHE_LRU_LI << 722 if (!locked) << 723 return false; << 724 d_lru_add(dentry); << 725 } else if (unlikely(!(d_flags & DCACHE << 726 if (!locked) << 727 return false; << 728 dentry->d_flags |= DCACHE_REFE << 729 } << 730 return true; << 731 } 626 } 732 627 733 void d_mark_dontcache(struct inode *inode) !! 628 static inline struct dentry *lock_parent(struct dentry *dentry) 734 { 629 { 735 struct dentry *de; !! 630 struct dentry *parent = dentry->d_parent; 736 !! 631 if (IS_ROOT(dentry)) 737 spin_lock(&inode->i_lock); !! 632 return NULL; 738 hlist_for_each_entry(de, &inode->i_den !! 633 if (unlikely(dentry->d_lockref.count < 0)) 739 spin_lock(&de->d_lock); !! 634 return NULL; 740 de->d_flags |= DCACHE_DONTCACH !! 635 if (likely(spin_trylock(&parent->d_lock))) 741 spin_unlock(&de->d_lock); !! 636 return parent; >> 637 rcu_read_lock(); >> 638 spin_unlock(&dentry->d_lock); >> 639 again: >> 640 parent = READ_ONCE(dentry->d_parent); >> 641 spin_lock(&parent->d_lock); >> 642 /* >> 643 * We can't blindly lock dentry until we are sure >> 644 * that we won't violate the locking order. >> 645 * Any changes of dentry->d_parent must have >> 646 * been done with parent->d_lock held, so >> 647 * spin_lock() above is enough of a barrier >> 648 * for checking if it's still our child. >> 649 */ >> 650 if (unlikely(parent != dentry->d_parent)) { >> 651 spin_unlock(&parent->d_lock); >> 652 goto again; 742 } 653 } 743 inode->i_state |= I_DONTCACHE; !! 654 if (parent != dentry) { 744 spin_unlock(&inode->i_lock); !! 655 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); >> 656 if (unlikely(dentry->d_lockref.count < 0)) { >> 657 spin_unlock(&parent->d_lock); >> 658 parent = NULL; >> 659 } >> 660 } else { >> 661 parent = NULL; >> 662 } >> 663 rcu_read_unlock(); >> 664 return parent; 745 } 665 } 746 EXPORT_SYMBOL(d_mark_dontcache); << 747 666 748 /* 667 /* 749 * Try to do a lockless dput(), and return whe 668 * Try to do a lockless dput(), and return whether that was successful. 750 * 669 * 751 * If unsuccessful, we return false, having al 670 * If unsuccessful, we return false, having already taken the dentry lock. 752 * In that case refcount is guaranteed to be z << 753 * decided that it's not worth keeping around. << 754 * 671 * 755 * The caller needs to hold the RCU read lock, 672 * The caller needs to hold the RCU read lock, so that the dentry is 756 * guaranteed to stay around even if the refco 673 * guaranteed to stay around even if the refcount goes down to zero! 757 */ 674 */ 758 static inline bool fast_dput(struct dentry *de 675 static inline bool fast_dput(struct dentry *dentry) 759 { 676 { 760 int ret; 677 int ret; >> 678 unsigned int d_flags; >> 679 >> 680 /* >> 681 * If we have a d_op->d_delete() operation, we sould not >> 682 * let the dentry count go to zero, so use "put_or_lock". >> 683 */ >> 684 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) >> 685 return lockref_put_or_lock(&dentry->d_lockref); 761 686 762 /* 687 /* 763 * try to decrement the lockref optimi !! 688 * .. otherwise, we can try to just decrement the >> 689 * lockref optimistically. 764 */ 690 */ 765 ret = lockref_put_return(&dentry->d_lo 691 ret = lockref_put_return(&dentry->d_lockref); 766 692 767 /* 693 /* 768 * If the lockref_put_return() failed 694 * If the lockref_put_return() failed due to the lock being held 769 * by somebody else, the fast path has 695 * by somebody else, the fast path has failed. We will need to 770 * get the lock, and then check the co 696 * get the lock, and then check the count again. 771 */ 697 */ 772 if (unlikely(ret < 0)) { 698 if (unlikely(ret < 0)) { 773 spin_lock(&dentry->d_lock); 699 spin_lock(&dentry->d_lock); 774 if (WARN_ON_ONCE(dentry->d_loc !! 700 if (dentry->d_lockref.count > 1) { >> 701 dentry->d_lockref.count--; 775 spin_unlock(&dentry->d 702 spin_unlock(&dentry->d_lock); 776 return true; !! 703 return 1; 777 } 704 } 778 dentry->d_lockref.count--; !! 705 return 0; 779 goto locked; << 780 } 706 } 781 707 782 /* 708 /* 783 * If we weren't the last ref, we're d 709 * If we weren't the last ref, we're done. 784 */ 710 */ 785 if (ret) 711 if (ret) 786 return true; !! 712 return 1; 787 713 788 /* 714 /* 789 * Can we decide that decrement of ref !! 715 * Careful, careful. The reference count went down 790 * taking the lock? There's a very co !! 716 * to zero, but we don't hold the dentry lock, so 791 * dentry looks like it ought to be re !! 717 * somebody else could get it again, and do another 792 * to do. !! 718 * dput(), and we need to not race with that. >> 719 * >> 720 * However, there is a very special and common case >> 721 * where we don't care, because there is nothing to >> 722 * do: the dentry is still hashed, it does not have >> 723 * a 'delete' op, and it's referenced and already on >> 724 * the LRU list. >> 725 * >> 726 * NOTE! Since we aren't locked, these values are >> 727 * not "stable". However, it is sufficient that at >> 728 * some point after we dropped the reference the >> 729 * dentry was hashed and the flags had the proper >> 730 * value. Other dentry users may have re-gotten >> 731 * a reference to the dentry and change that, but >> 732 * our work is done - we can leave the dentry >> 733 * around with a zero refcount. 793 */ 734 */ 794 if (retain_dentry(dentry, false)) !! 735 smp_rmb(); 795 return true; !! 736 d_flags = READ_ONCE(dentry->d_flags); >> 737 d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED; >> 738 >> 739 /* Nothing to do? Dropping the reference was all we needed? */ >> 740 if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry)) >> 741 return 1; 796 742 797 /* 743 /* 798 * Either not worth retaining or we ca !! 744 * Not the fast normal case? Get the lock. We've already decremented 799 * Get the lock, then. We've already !! 745 * the refcount, but we'll need to re-check the situation after 800 * but we'll need to re-check the situ !! 746 * getting the lock. 801 */ 747 */ 802 spin_lock(&dentry->d_lock); 748 spin_lock(&dentry->d_lock); 803 749 804 /* 750 /* 805 * Did somebody else grab a reference 751 * Did somebody else grab a reference to it in the meantime, and 806 * we're no longer the last user after 752 * we're no longer the last user after all? Alternatively, somebody 807 * else could have killed it and marke 753 * else could have killed it and marked it dead. Either way, we 808 * don't need to do anything else. 754 * don't need to do anything else. 809 */ 755 */ 810 locked: !! 756 if (dentry->d_lockref.count) { 811 if (dentry->d_lockref.count || retain_ << 812 spin_unlock(&dentry->d_lock); 757 spin_unlock(&dentry->d_lock); 813 return true; !! 758 return 1; 814 } 759 } 815 return false; !! 760 >> 761 /* >> 762 * Re-get the reference we optimistically dropped. We hold the >> 763 * lock, and we just tested that it was zero, so we can just >> 764 * set it to 1. >> 765 */ >> 766 dentry->d_lockref.count = 1; >> 767 return 0; 816 } 768 } 817 769 818 770 819 /* 771 /* 820 * This is dput 772 * This is dput 821 * 773 * 822 * This is complicated by the fact that we do 774 * This is complicated by the fact that we do not want to put 823 * dentries that are no longer on any hash cha 775 * dentries that are no longer on any hash chain on the unused 824 * list: we'd much rather just get rid of them 776 * list: we'd much rather just get rid of them immediately. 825 * 777 * 826 * However, that implies that we have to trave 778 * However, that implies that we have to traverse the dentry 827 * tree upwards to the parents which might _al 779 * tree upwards to the parents which might _also_ now be 828 * scheduled for deletion (it may have been on 780 * scheduled for deletion (it may have been only waiting for 829 * its last child to go away). 781 * its last child to go away). 830 * 782 * 831 * This tail recursion is done by hand as we d 783 * This tail recursion is done by hand as we don't want to depend 832 * on the compiler to always get this right (g 784 * on the compiler to always get this right (gcc generally doesn't). 833 * Real recursion would eat up our stack space 785 * Real recursion would eat up our stack space. 834 */ 786 */ 835 787 836 /* 788 /* 837 * dput - release a dentry 789 * dput - release a dentry 838 * @dentry: dentry to release 790 * @dentry: dentry to release 839 * 791 * 840 * Release a dentry. This will drop the usage 792 * Release a dentry. This will drop the usage count and if appropriate 841 * call the dentry unlink method as well as re 793 * call the dentry unlink method as well as removing it from the queues and 842 * releasing its resources. If the parent dent 794 * releasing its resources. If the parent dentries were scheduled for release 843 * they too may now get deleted. 795 * they too may now get deleted. 844 */ 796 */ 845 void dput(struct dentry *dentry) 797 void dput(struct dentry *dentry) 846 { 798 { 847 if (!dentry) !! 799 if (unlikely(!dentry)) 848 return; 800 return; >> 801 >> 802 repeat: 849 might_sleep(); 803 might_sleep(); >> 804 850 rcu_read_lock(); 805 rcu_read_lock(); 851 if (likely(fast_dput(dentry))) { 806 if (likely(fast_dput(dentry))) { 852 rcu_read_unlock(); 807 rcu_read_unlock(); 853 return; 808 return; 854 } 809 } 855 while (lock_for_kill(dentry)) { !! 810 856 rcu_read_unlock(); !! 811 /* Slow case: now with the dentry lock held */ 857 dentry = __dentry_kill(dentry) << 858 if (!dentry) << 859 return; << 860 if (retain_dentry(dentry, true << 861 spin_unlock(&dentry->d << 862 return; << 863 } << 864 rcu_read_lock(); << 865 } << 866 rcu_read_unlock(); 812 rcu_read_unlock(); >> 813 >> 814 WARN_ON(d_in_lookup(dentry)); >> 815 >> 816 /* Unreachable? Get rid of it */ >> 817 if (unlikely(d_unhashed(dentry))) >> 818 goto kill_it; >> 819 >> 820 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED)) >> 821 goto kill_it; >> 822 >> 823 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) { >> 824 if (dentry->d_op->d_delete(dentry)) >> 825 goto kill_it; >> 826 } >> 827 >> 828 dentry_lru_add(dentry); >> 829 >> 830 dentry->d_lockref.count--; 867 spin_unlock(&dentry->d_lock); 831 spin_unlock(&dentry->d_lock); >> 832 return; >> 833 >> 834 kill_it: >> 835 dentry = dentry_kill(dentry); >> 836 if (dentry) { >> 837 cond_resched(); >> 838 goto repeat; >> 839 } 868 } 840 } 869 EXPORT_SYMBOL(dput); 841 EXPORT_SYMBOL(dput); 870 842 871 static void to_shrink_list(struct dentry *dent !! 843 872 __must_hold(&dentry->d_lock) !! 844 /* This must be called with d_lock held */ >> 845 static inline void __dget_dlock(struct dentry *dentry) 873 { 846 { 874 if (!(dentry->d_flags & DCACHE_SHRINK_ !! 847 dentry->d_lockref.count++; 875 if (dentry->d_flags & DCACHE_L << 876 d_lru_del(dentry); << 877 d_shrink_add(dentry, list); << 878 } << 879 } 848 } 880 849 881 void dput_to_list(struct dentry *dentry, struc !! 850 static inline void __dget(struct dentry *dentry) 882 { 851 { 883 rcu_read_lock(); !! 852 lockref_get(&dentry->d_lockref); 884 if (likely(fast_dput(dentry))) { << 885 rcu_read_unlock(); << 886 return; << 887 } << 888 rcu_read_unlock(); << 889 to_shrink_list(dentry, list); << 890 spin_unlock(&dentry->d_lock); << 891 } 853 } 892 854 893 struct dentry *dget_parent(struct dentry *dent 855 struct dentry *dget_parent(struct dentry *dentry) 894 { 856 { 895 int gotref; 857 int gotref; 896 struct dentry *ret; 858 struct dentry *ret; 897 unsigned seq; << 898 859 899 /* 860 /* 900 * Do optimistic parent lookup without 861 * Do optimistic parent lookup without any 901 * locking. 862 * locking. 902 */ 863 */ 903 rcu_read_lock(); 864 rcu_read_lock(); 904 seq = raw_seqcount_begin(&dentry->d_se << 905 ret = READ_ONCE(dentry->d_parent); 865 ret = READ_ONCE(dentry->d_parent); 906 gotref = lockref_get_not_zero(&ret->d_ 866 gotref = lockref_get_not_zero(&ret->d_lockref); 907 rcu_read_unlock(); 867 rcu_read_unlock(); 908 if (likely(gotref)) { 868 if (likely(gotref)) { 909 if (!read_seqcount_retry(&dent !! 869 if (likely(ret == READ_ONCE(dentry->d_parent))) 910 return ret; 870 return ret; 911 dput(ret); 871 dput(ret); 912 } 872 } 913 873 914 repeat: 874 repeat: 915 /* 875 /* 916 * Don't need rcu_dereference because 876 * Don't need rcu_dereference because we re-check it was correct under 917 * the lock. 877 * the lock. 918 */ 878 */ 919 rcu_read_lock(); 879 rcu_read_lock(); 920 ret = dentry->d_parent; 880 ret = dentry->d_parent; 921 spin_lock(&ret->d_lock); 881 spin_lock(&ret->d_lock); 922 if (unlikely(ret != dentry->d_parent)) 882 if (unlikely(ret != dentry->d_parent)) { 923 spin_unlock(&ret->d_lock); 883 spin_unlock(&ret->d_lock); 924 rcu_read_unlock(); 884 rcu_read_unlock(); 925 goto repeat; 885 goto repeat; 926 } 886 } 927 rcu_read_unlock(); 887 rcu_read_unlock(); 928 BUG_ON(!ret->d_lockref.count); 888 BUG_ON(!ret->d_lockref.count); 929 ret->d_lockref.count++; 889 ret->d_lockref.count++; 930 spin_unlock(&ret->d_lock); 890 spin_unlock(&ret->d_lock); 931 return ret; 891 return ret; 932 } 892 } 933 EXPORT_SYMBOL(dget_parent); 893 EXPORT_SYMBOL(dget_parent); 934 894 935 static struct dentry * __d_find_any_alias(stru << 936 { << 937 struct dentry *alias; << 938 << 939 if (hlist_empty(&inode->i_dentry)) << 940 return NULL; << 941 alias = hlist_entry(inode->i_dentry.fi << 942 lockref_get(&alias->d_lockref); << 943 return alias; << 944 } << 945 << 946 /** 895 /** 947 * d_find_any_alias - find any alias for a giv !! 896 * d_find_alias - grab a hashed alias of inode 948 * @inode: inode to find an alias for !! 897 * @inode: inode in question 949 * 898 * 950 * If any aliases exist for the given inode, t !! 899 * If inode has a hashed alias, or is a directory and has any alias, 951 * reference for one of them. If no aliases e !! 900 * acquire the reference to alias and return it. Otherwise return NULL. >> 901 * Notice that if inode is a directory there can be only one alias and >> 902 * it can be unhashed only if it has no children, or if it is the root >> 903 * of a filesystem, or if the directory was renamed and d_revalidate >> 904 * was the first vfs operation to notice. >> 905 * >> 906 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer >> 907 * any other hashed alias over that one. 952 */ 908 */ 953 struct dentry *d_find_any_alias(struct inode * << 954 { << 955 struct dentry *de; << 956 << 957 spin_lock(&inode->i_lock); << 958 de = __d_find_any_alias(inode); << 959 spin_unlock(&inode->i_lock); << 960 return de; << 961 } << 962 EXPORT_SYMBOL(d_find_any_alias); << 963 << 964 static struct dentry *__d_find_alias(struct in 909 static struct dentry *__d_find_alias(struct inode *inode) 965 { 910 { 966 struct dentry *alias; !! 911 struct dentry *alias, *discon_alias; 967 << 968 if (S_ISDIR(inode->i_mode)) << 969 return __d_find_any_alias(inod << 970 912 >> 913 again: >> 914 discon_alias = NULL; 971 hlist_for_each_entry(alias, &inode->i_ 915 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { 972 spin_lock(&alias->d_lock); 916 spin_lock(&alias->d_lock); 973 if (!d_unhashed(alias)) { !! 917 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) { 974 dget_dlock(alias); !! 918 if (IS_ROOT(alias) && >> 919 (alias->d_flags & DCACHE_DISCONNECTED)) { >> 920 discon_alias = alias; >> 921 } else { >> 922 __dget_dlock(alias); >> 923 spin_unlock(&alias->d_lock); >> 924 return alias; >> 925 } >> 926 } >> 927 spin_unlock(&alias->d_lock); >> 928 } >> 929 if (discon_alias) { >> 930 alias = discon_alias; >> 931 spin_lock(&alias->d_lock); >> 932 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) { >> 933 __dget_dlock(alias); 975 spin_unlock(&alias->d_ 934 spin_unlock(&alias->d_lock); 976 return alias; 935 return alias; 977 } 936 } 978 spin_unlock(&alias->d_lock); 937 spin_unlock(&alias->d_lock); >> 938 goto again; 979 } 939 } 980 return NULL; 940 return NULL; 981 } 941 } 982 942 983 /** << 984 * d_find_alias - grab a hashed alias of inode << 985 * @inode: inode in question << 986 * << 987 * If inode has a hashed alias, or is a direct << 988 * acquire the reference to alias and return i << 989 * Notice that if inode is a directory there c << 990 * it can be unhashed only if it has no childr << 991 * of a filesystem, or if the directory was re << 992 * was the first vfs operation to notice. << 993 * << 994 * If the inode has an IS_ROOT, DCACHE_DISCONN << 995 * any other hashed alias over that one. << 996 */ << 997 struct dentry *d_find_alias(struct inode *inod 943 struct dentry *d_find_alias(struct inode *inode) 998 { 944 { 999 struct dentry *de = NULL; 945 struct dentry *de = NULL; 1000 946 1001 if (!hlist_empty(&inode->i_dentry)) { 947 if (!hlist_empty(&inode->i_dentry)) { 1002 spin_lock(&inode->i_lock); 948 spin_lock(&inode->i_lock); 1003 de = __d_find_alias(inode); 949 de = __d_find_alias(inode); 1004 spin_unlock(&inode->i_lock); 950 spin_unlock(&inode->i_lock); 1005 } 951 } 1006 return de; 952 return de; 1007 } 953 } 1008 EXPORT_SYMBOL(d_find_alias); 954 EXPORT_SYMBOL(d_find_alias); 1009 955 1010 /* 956 /* 1011 * Caller MUST be holding rcu_read_lock() an << 1012 * that inode won't get freed until rcu_read << 1013 */ << 1014 struct dentry *d_find_alias_rcu(struct inode << 1015 { << 1016 struct hlist_head *l = &inode->i_dent << 1017 struct dentry *de = NULL; << 1018 << 1019 spin_lock(&inode->i_lock); << 1020 // ->i_dentry and ->i_rcu are colocat << 1021 // used without having I_FREEING set, << 1022 if (likely(!(inode->i_state & I_FREEI << 1023 if (S_ISDIR(inode->i_mode)) { << 1024 de = hlist_entry(l->f << 1025 } else { << 1026 hlist_for_each_entry( << 1027 if (!d_unhash << 1028 break << 1029 } << 1030 } << 1031 spin_unlock(&inode->i_lock); << 1032 return de; << 1033 } << 1034 << 1035 /* << 1036 * Try to kill dentries associated with 957 * Try to kill dentries associated with this inode. 1037 * WARNING: you must own a reference to inode 958 * WARNING: you must own a reference to inode. 1038 */ 959 */ 1039 void d_prune_aliases(struct inode *inode) 960 void d_prune_aliases(struct inode *inode) 1040 { 961 { 1041 LIST_HEAD(dispose); << 1042 struct dentry *dentry; 962 struct dentry *dentry; 1043 !! 963 restart: 1044 spin_lock(&inode->i_lock); 964 spin_lock(&inode->i_lock); 1045 hlist_for_each_entry(dentry, &inode-> 965 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) { 1046 spin_lock(&dentry->d_lock); 966 spin_lock(&dentry->d_lock); 1047 if (!dentry->d_lockref.count) !! 967 if (!dentry->d_lockref.count) { 1048 to_shrink_list(dentry !! 968 struct dentry *parent = lock_parent(dentry); >> 969 if (likely(!dentry->d_lockref.count)) { >> 970 __dentry_kill(dentry); >> 971 dput(parent); >> 972 goto restart; >> 973 } >> 974 if (parent) >> 975 spin_unlock(&parent->d_lock); >> 976 } 1049 spin_unlock(&dentry->d_lock); 977 spin_unlock(&dentry->d_lock); 1050 } 978 } 1051 spin_unlock(&inode->i_lock); 979 spin_unlock(&inode->i_lock); 1052 shrink_dentry_list(&dispose); << 1053 } 980 } 1054 EXPORT_SYMBOL(d_prune_aliases); 981 EXPORT_SYMBOL(d_prune_aliases); 1055 982 1056 static inline void shrink_kill(struct dentry !! 983 static void shrink_dentry_list(struct list_head *list) 1057 { 984 { 1058 do { !! 985 struct dentry *dentry, *parent; 1059 rcu_read_unlock(); << 1060 victim = __dentry_kill(victim << 1061 rcu_read_lock(); << 1062 } while (victim && lock_for_kill(vict << 1063 rcu_read_unlock(); << 1064 if (victim) << 1065 spin_unlock(&victim->d_lock); << 1066 } << 1067 986 1068 void shrink_dentry_list(struct list_head *lis << 1069 { << 1070 while (!list_empty(list)) { 987 while (!list_empty(list)) { 1071 struct dentry *dentry; !! 988 struct inode *inode; 1072 << 1073 dentry = list_entry(list->pre 989 dentry = list_entry(list->prev, struct dentry, d_lru); 1074 spin_lock(&dentry->d_lock); 990 spin_lock(&dentry->d_lock); 1075 rcu_read_lock(); !! 991 parent = lock_parent(dentry); 1076 if (!lock_for_kill(dentry)) { !! 992 1077 bool can_free; !! 993 /* 1078 rcu_read_unlock(); !! 994 * The dispose list is isolated and dentries are not accounted 1079 d_shrink_del(dentry); !! 995 * to the LRU here, so we can simply remove it from the list 1080 can_free = dentry->d_ !! 996 * here regardless of whether it is referenced or not. >> 997 */ >> 998 d_shrink_del(dentry); >> 999 >> 1000 /* >> 1001 * We found an inuse dentry which was not removed from >> 1002 * the LRU because of laziness during lookup. Do not free it. >> 1003 */ >> 1004 if (dentry->d_lockref.count > 0) { 1081 spin_unlock(&dentry-> 1005 spin_unlock(&dentry->d_lock); >> 1006 if (parent) >> 1007 spin_unlock(&parent->d_lock); >> 1008 continue; >> 1009 } >> 1010 >> 1011 >> 1012 if (unlikely(dentry->d_flags & DCACHE_DENTRY_KILLED)) { >> 1013 bool can_free = dentry->d_flags & DCACHE_MAY_FREE; >> 1014 spin_unlock(&dentry->d_lock); >> 1015 if (parent) >> 1016 spin_unlock(&parent->d_lock); 1082 if (can_free) 1017 if (can_free) 1083 dentry_free(d 1018 dentry_free(dentry); 1084 continue; 1019 continue; 1085 } 1020 } 1086 d_shrink_del(dentry); !! 1021 1087 shrink_kill(dentry); !! 1022 inode = dentry->d_inode; >> 1023 if (inode && unlikely(!spin_trylock(&inode->i_lock))) { >> 1024 d_shrink_add(dentry, list); >> 1025 spin_unlock(&dentry->d_lock); >> 1026 if (parent) >> 1027 spin_unlock(&parent->d_lock); >> 1028 continue; >> 1029 } >> 1030 >> 1031 __dentry_kill(dentry); >> 1032 >> 1033 /* >> 1034 * We need to prune ancestors too. This is necessary to prevent >> 1035 * quadratic behavior of shrink_dcache_parent(), but is also >> 1036 * expected to be beneficial in reducing dentry cache >> 1037 * fragmentation. >> 1038 */ >> 1039 dentry = parent; >> 1040 while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) { >> 1041 parent = lock_parent(dentry); >> 1042 if (dentry->d_lockref.count != 1) { >> 1043 dentry->d_lockref.count--; >> 1044 spin_unlock(&dentry->d_lock); >> 1045 if (parent) >> 1046 spin_unlock(&parent->d_lock); >> 1047 break; >> 1048 } >> 1049 inode = dentry->d_inode; /* can't be NULL */ >> 1050 if (unlikely(!spin_trylock(&inode->i_lock))) { >> 1051 spin_unlock(&dentry->d_lock); >> 1052 if (parent) >> 1053 spin_unlock(&parent->d_lock); >> 1054 cpu_relax(); >> 1055 continue; >> 1056 } >> 1057 __dentry_kill(dentry); >> 1058 dentry = parent; >> 1059 } 1088 } 1060 } 1089 } 1061 } 1090 1062 1091 static enum lru_status dentry_lru_isolate(str 1063 static enum lru_status dentry_lru_isolate(struct list_head *item, 1092 struct list_lru_one *lru, spi 1064 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) 1093 { 1065 { 1094 struct list_head *freeable = arg; 1066 struct list_head *freeable = arg; 1095 struct dentry *dentry = container_o 1067 struct dentry *dentry = container_of(item, struct dentry, d_lru); 1096 1068 1097 1069 1098 /* 1070 /* 1099 * we are inverting the lru lock/dent 1071 * we are inverting the lru lock/dentry->d_lock here, 1100 * so use a trylock. If we fail to ge 1072 * so use a trylock. If we fail to get the lock, just skip 1101 * it 1073 * it 1102 */ 1074 */ 1103 if (!spin_trylock(&dentry->d_lock)) 1075 if (!spin_trylock(&dentry->d_lock)) 1104 return LRU_SKIP; 1076 return LRU_SKIP; 1105 1077 1106 /* 1078 /* 1107 * Referenced dentries are still in u 1079 * Referenced dentries are still in use. If they have active 1108 * counts, just remove them from the 1080 * counts, just remove them from the LRU. Otherwise give them 1109 * another pass through the LRU. 1081 * another pass through the LRU. 1110 */ 1082 */ 1111 if (dentry->d_lockref.count) { 1083 if (dentry->d_lockref.count) { 1112 d_lru_isolate(lru, dentry); 1084 d_lru_isolate(lru, dentry); 1113 spin_unlock(&dentry->d_lock); 1085 spin_unlock(&dentry->d_lock); 1114 return LRU_REMOVED; 1086 return LRU_REMOVED; 1115 } 1087 } 1116 1088 1117 if (dentry->d_flags & DCACHE_REFERENC 1089 if (dentry->d_flags & DCACHE_REFERENCED) { 1118 dentry->d_flags &= ~DCACHE_RE 1090 dentry->d_flags &= ~DCACHE_REFERENCED; 1119 spin_unlock(&dentry->d_lock); 1091 spin_unlock(&dentry->d_lock); 1120 1092 1121 /* 1093 /* 1122 * The list move itself will 1094 * The list move itself will be made by the common LRU code. At 1123 * this point, we've dropped 1095 * this point, we've dropped the dentry->d_lock but keep the 1124 * lru lock. This is safe to 1096 * lru lock. This is safe to do, since every list movement is 1125 * protected by the lru lock 1097 * protected by the lru lock even if both locks are held. 1126 * 1098 * 1127 * This is guaranteed by the 1099 * This is guaranteed by the fact that all LRU management 1128 * functions are intermediate 1100 * functions are intermediated by the LRU API calls like 1129 * list_lru_add_obj and list_ !! 1101 * list_lru_add and list_lru_del. List movement in this file 1130 * only ever occur through th 1102 * only ever occur through this functions or through callbacks 1131 * like this one, that are ca 1103 * like this one, that are called from the LRU API. 1132 * 1104 * 1133 * The only exceptions to thi 1105 * The only exceptions to this are functions like 1134 * shrink_dentry_list, and co 1106 * shrink_dentry_list, and code that first checks for the 1135 * DCACHE_SHRINK_LIST flag. 1107 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be 1136 * operating only with stack 1108 * operating only with stack provided lists after they are 1137 * properly isolated from the 1109 * properly isolated from the main list. It is thus, always a 1138 * local access. 1110 * local access. 1139 */ 1111 */ 1140 return LRU_ROTATE; 1112 return LRU_ROTATE; 1141 } 1113 } 1142 1114 1143 d_lru_shrink_move(lru, dentry, freeab 1115 d_lru_shrink_move(lru, dentry, freeable); 1144 spin_unlock(&dentry->d_lock); 1116 spin_unlock(&dentry->d_lock); 1145 1117 1146 return LRU_REMOVED; 1118 return LRU_REMOVED; 1147 } 1119 } 1148 1120 1149 /** 1121 /** 1150 * prune_dcache_sb - shrink the dcache 1122 * prune_dcache_sb - shrink the dcache 1151 * @sb: superblock 1123 * @sb: superblock 1152 * @sc: shrink control, passed to list_lru_sh 1124 * @sc: shrink control, passed to list_lru_shrink_walk() 1153 * 1125 * 1154 * Attempt to shrink the superblock dcache LR 1126 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This 1155 * is done when we need more memory and calle 1127 * is done when we need more memory and called from the superblock shrinker 1156 * function. 1128 * function. 1157 * 1129 * 1158 * This function may fail to free any resourc 1130 * This function may fail to free any resources if all the dentries are in 1159 * use. 1131 * use. 1160 */ 1132 */ 1161 long prune_dcache_sb(struct super_block *sb, 1133 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc) 1162 { 1134 { 1163 LIST_HEAD(dispose); 1135 LIST_HEAD(dispose); 1164 long freed; 1136 long freed; 1165 1137 1166 freed = list_lru_shrink_walk(&sb->s_d 1138 freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc, 1167 dentry_l 1139 dentry_lru_isolate, &dispose); 1168 shrink_dentry_list(&dispose); 1140 shrink_dentry_list(&dispose); 1169 return freed; 1141 return freed; 1170 } 1142 } 1171 1143 1172 static enum lru_status dentry_lru_isolate_shr 1144 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item, 1173 struct list_lru_one *lru, spi 1145 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) 1174 { 1146 { 1175 struct list_head *freeable = arg; 1147 struct list_head *freeable = arg; 1176 struct dentry *dentry = container_o 1148 struct dentry *dentry = container_of(item, struct dentry, d_lru); 1177 1149 1178 /* 1150 /* 1179 * we are inverting the lru lock/dent 1151 * we are inverting the lru lock/dentry->d_lock here, 1180 * so use a trylock. If we fail to ge 1152 * so use a trylock. If we fail to get the lock, just skip 1181 * it 1153 * it 1182 */ 1154 */ 1183 if (!spin_trylock(&dentry->d_lock)) 1155 if (!spin_trylock(&dentry->d_lock)) 1184 return LRU_SKIP; 1156 return LRU_SKIP; 1185 1157 1186 d_lru_shrink_move(lru, dentry, freeab 1158 d_lru_shrink_move(lru, dentry, freeable); 1187 spin_unlock(&dentry->d_lock); 1159 spin_unlock(&dentry->d_lock); 1188 1160 1189 return LRU_REMOVED; 1161 return LRU_REMOVED; 1190 } 1162 } 1191 1163 1192 1164 1193 /** 1165 /** 1194 * shrink_dcache_sb - shrink dcache for a sup 1166 * shrink_dcache_sb - shrink dcache for a superblock 1195 * @sb: superblock 1167 * @sb: superblock 1196 * 1168 * 1197 * Shrink the dcache for the specified super 1169 * Shrink the dcache for the specified super block. This is used to free 1198 * the dcache before unmounting a file system 1170 * the dcache before unmounting a file system. 1199 */ 1171 */ 1200 void shrink_dcache_sb(struct super_block *sb) 1172 void shrink_dcache_sb(struct super_block *sb) 1201 { 1173 { >> 1174 long freed; >> 1175 1202 do { 1176 do { 1203 LIST_HEAD(dispose); 1177 LIST_HEAD(dispose); 1204 1178 1205 list_lru_walk(&sb->s_dentry_l !! 1179 freed = list_lru_walk(&sb->s_dentry_lru, 1206 dentry_lru_isolate_sh 1180 dentry_lru_isolate_shrink, &dispose, 1024); >> 1181 >> 1182 this_cpu_sub(nr_dentry_unused, freed); 1207 shrink_dentry_list(&dispose); 1183 shrink_dentry_list(&dispose); >> 1184 cond_resched(); 1208 } while (list_lru_count(&sb->s_dentry 1185 } while (list_lru_count(&sb->s_dentry_lru) > 0); 1209 } 1186 } 1210 EXPORT_SYMBOL(shrink_dcache_sb); 1187 EXPORT_SYMBOL(shrink_dcache_sb); 1211 1188 1212 /** 1189 /** 1213 * enum d_walk_ret - action to talke during t 1190 * enum d_walk_ret - action to talke during tree walk 1214 * @D_WALK_CONTINUE: contrinue walk 1191 * @D_WALK_CONTINUE: contrinue walk 1215 * @D_WALK_QUIT: quit walk 1192 * @D_WALK_QUIT: quit walk 1216 * @D_WALK_NORETRY: quit when retry is ne 1193 * @D_WALK_NORETRY: quit when retry is needed 1217 * @D_WALK_SKIP: skip this dentry and 1194 * @D_WALK_SKIP: skip this dentry and its children 1218 */ 1195 */ 1219 enum d_walk_ret { 1196 enum d_walk_ret { 1220 D_WALK_CONTINUE, 1197 D_WALK_CONTINUE, 1221 D_WALK_QUIT, 1198 D_WALK_QUIT, 1222 D_WALK_NORETRY, 1199 D_WALK_NORETRY, 1223 D_WALK_SKIP, 1200 D_WALK_SKIP, 1224 }; 1201 }; 1225 1202 1226 /** 1203 /** 1227 * d_walk - walk the dentry tree 1204 * d_walk - walk the dentry tree 1228 * @parent: start of walk 1205 * @parent: start of walk 1229 * @data: data passed to @enter() and @ 1206 * @data: data passed to @enter() and @finish() 1230 * @enter: callback when first entering 1207 * @enter: callback when first entering the dentry >> 1208 * @finish: callback when successfully finished the walk 1231 * 1209 * 1232 * The @enter() callbacks are called with d_l !! 1210 * The @enter() and @finish() callbacks are called with d_lock held. 1233 */ 1211 */ 1234 static void d_walk(struct dentry *parent, voi 1212 static void d_walk(struct dentry *parent, void *data, 1235 enum d_walk_ret (*enter)(v !! 1213 enum d_walk_ret (*enter)(void *, struct dentry *), >> 1214 void (*finish)(void *)) 1236 { 1215 { 1237 struct dentry *this_parent, *dentry; !! 1216 struct dentry *this_parent; >> 1217 struct list_head *next; 1238 unsigned seq = 0; 1218 unsigned seq = 0; 1239 enum d_walk_ret ret; 1219 enum d_walk_ret ret; 1240 bool retry = true; 1220 bool retry = true; 1241 1221 1242 again: 1222 again: 1243 read_seqbegin_or_lock(&rename_lock, & 1223 read_seqbegin_or_lock(&rename_lock, &seq); 1244 this_parent = parent; 1224 this_parent = parent; 1245 spin_lock(&this_parent->d_lock); 1225 spin_lock(&this_parent->d_lock); 1246 1226 1247 ret = enter(data, this_parent); 1227 ret = enter(data, this_parent); 1248 switch (ret) { 1228 switch (ret) { 1249 case D_WALK_CONTINUE: 1229 case D_WALK_CONTINUE: 1250 break; 1230 break; 1251 case D_WALK_QUIT: 1231 case D_WALK_QUIT: 1252 case D_WALK_SKIP: 1232 case D_WALK_SKIP: 1253 goto out_unlock; 1233 goto out_unlock; 1254 case D_WALK_NORETRY: 1234 case D_WALK_NORETRY: 1255 retry = false; 1235 retry = false; 1256 break; 1236 break; 1257 } 1237 } 1258 repeat: 1238 repeat: 1259 dentry = d_first_child(this_parent); !! 1239 next = this_parent->d_subdirs.next; 1260 resume: 1240 resume: 1261 hlist_for_each_entry_from(dentry, d_s !! 1241 while (next != &this_parent->d_subdirs) { >> 1242 struct list_head *tmp = next; >> 1243 struct dentry *dentry = list_entry(tmp, struct dentry, d_child); >> 1244 next = tmp->next; >> 1245 1262 if (unlikely(dentry->d_flags 1246 if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR)) 1263 continue; 1247 continue; 1264 1248 1265 spin_lock_nested(&dentry->d_l 1249 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 1266 1250 1267 ret = enter(data, dentry); 1251 ret = enter(data, dentry); 1268 switch (ret) { 1252 switch (ret) { 1269 case D_WALK_CONTINUE: 1253 case D_WALK_CONTINUE: 1270 break; 1254 break; 1271 case D_WALK_QUIT: 1255 case D_WALK_QUIT: 1272 spin_unlock(&dentry-> 1256 spin_unlock(&dentry->d_lock); 1273 goto out_unlock; 1257 goto out_unlock; 1274 case D_WALK_NORETRY: 1258 case D_WALK_NORETRY: 1275 retry = false; 1259 retry = false; 1276 break; 1260 break; 1277 case D_WALK_SKIP: 1261 case D_WALK_SKIP: 1278 spin_unlock(&dentry-> 1262 spin_unlock(&dentry->d_lock); 1279 continue; 1263 continue; 1280 } 1264 } 1281 1265 1282 if (!hlist_empty(&dentry->d_c !! 1266 if (!list_empty(&dentry->d_subdirs)) { 1283 spin_unlock(&this_par 1267 spin_unlock(&this_parent->d_lock); 1284 spin_release(&dentry- !! 1268 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_); 1285 this_parent = dentry; 1269 this_parent = dentry; 1286 spin_acquire(&this_pa 1270 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_); 1287 goto repeat; 1271 goto repeat; 1288 } 1272 } 1289 spin_unlock(&dentry->d_lock); 1273 spin_unlock(&dentry->d_lock); 1290 } 1274 } 1291 /* 1275 /* 1292 * All done at this level ... ascend 1276 * All done at this level ... ascend and resume the search. 1293 */ 1277 */ 1294 rcu_read_lock(); 1278 rcu_read_lock(); 1295 ascend: 1279 ascend: 1296 if (this_parent != parent) { 1280 if (this_parent != parent) { 1297 dentry = this_parent; !! 1281 struct dentry *child = this_parent; 1298 this_parent = dentry->d_paren !! 1282 this_parent = child->d_parent; 1299 1283 1300 spin_unlock(&dentry->d_lock); !! 1284 spin_unlock(&child->d_lock); 1301 spin_lock(&this_parent->d_loc 1285 spin_lock(&this_parent->d_lock); 1302 1286 1303 /* might go back up the wrong 1287 /* might go back up the wrong parent if we have had a rename. */ 1304 if (need_seqretry(&rename_loc 1288 if (need_seqretry(&rename_lock, seq)) 1305 goto rename_retry; 1289 goto rename_retry; 1306 /* go into the first sibling 1290 /* go into the first sibling still alive */ 1307 hlist_for_each_entry_continue !! 1291 do { 1308 if (likely(!(dentry-> !! 1292 next = child->d_child.next; 1309 rcu_read_unlo !! 1293 if (next == &this_parent->d_subdirs) 1310 goto resume; !! 1294 goto ascend; 1311 } !! 1295 child = list_entry(next, struct dentry, d_child); 1312 } !! 1296 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED)); 1313 goto ascend; !! 1297 rcu_read_unlock(); >> 1298 goto resume; 1314 } 1299 } 1315 if (need_seqretry(&rename_lock, seq)) 1300 if (need_seqretry(&rename_lock, seq)) 1316 goto rename_retry; 1301 goto rename_retry; 1317 rcu_read_unlock(); 1302 rcu_read_unlock(); >> 1303 if (finish) >> 1304 finish(data); 1318 1305 1319 out_unlock: 1306 out_unlock: 1320 spin_unlock(&this_parent->d_lock); 1307 spin_unlock(&this_parent->d_lock); 1321 done_seqretry(&rename_lock, seq); 1308 done_seqretry(&rename_lock, seq); 1322 return; 1309 return; 1323 1310 1324 rename_retry: 1311 rename_retry: 1325 spin_unlock(&this_parent->d_lock); 1312 spin_unlock(&this_parent->d_lock); 1326 rcu_read_unlock(); 1313 rcu_read_unlock(); 1327 BUG_ON(seq & 1); 1314 BUG_ON(seq & 1); 1328 if (!retry) 1315 if (!retry) 1329 return; 1316 return; 1330 seq = 1; 1317 seq = 1; 1331 goto again; 1318 goto again; 1332 } 1319 } 1333 1320 1334 struct check_mount { 1321 struct check_mount { 1335 struct vfsmount *mnt; 1322 struct vfsmount *mnt; 1336 unsigned int mounted; 1323 unsigned int mounted; 1337 }; 1324 }; 1338 1325 1339 static enum d_walk_ret path_check_mount(void 1326 static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry) 1340 { 1327 { 1341 struct check_mount *info = data; 1328 struct check_mount *info = data; 1342 struct path path = { .mnt = info->mnt 1329 struct path path = { .mnt = info->mnt, .dentry = dentry }; 1343 1330 1344 if (likely(!d_mountpoint(dentry))) 1331 if (likely(!d_mountpoint(dentry))) 1345 return D_WALK_CONTINUE; 1332 return D_WALK_CONTINUE; 1346 if (__path_is_mountpoint(&path)) { 1333 if (__path_is_mountpoint(&path)) { 1347 info->mounted = 1; 1334 info->mounted = 1; 1348 return D_WALK_QUIT; 1335 return D_WALK_QUIT; 1349 } 1336 } 1350 return D_WALK_CONTINUE; 1337 return D_WALK_CONTINUE; 1351 } 1338 } 1352 1339 1353 /** 1340 /** 1354 * path_has_submounts - check for mounts over 1341 * path_has_submounts - check for mounts over a dentry in the 1355 * current namespace. 1342 * current namespace. 1356 * @parent: path to check. 1343 * @parent: path to check. 1357 * 1344 * 1358 * Return true if the parent or its subdirect 1345 * Return true if the parent or its subdirectories contain 1359 * a mount point in the current namespace. 1346 * a mount point in the current namespace. 1360 */ 1347 */ 1361 int path_has_submounts(const struct path *par 1348 int path_has_submounts(const struct path *parent) 1362 { 1349 { 1363 struct check_mount data = { .mnt = pa 1350 struct check_mount data = { .mnt = parent->mnt, .mounted = 0 }; 1364 1351 1365 read_seqlock_excl(&mount_lock); 1352 read_seqlock_excl(&mount_lock); 1366 d_walk(parent->dentry, &data, path_ch !! 1353 d_walk(parent->dentry, &data, path_check_mount, NULL); 1367 read_sequnlock_excl(&mount_lock); 1354 read_sequnlock_excl(&mount_lock); 1368 1355 1369 return data.mounted; 1356 return data.mounted; 1370 } 1357 } 1371 EXPORT_SYMBOL(path_has_submounts); 1358 EXPORT_SYMBOL(path_has_submounts); 1372 1359 1373 /* 1360 /* 1374 * Called by mount code to set a mountpoint a 1361 * Called by mount code to set a mountpoint and check if the mountpoint is 1375 * reachable (e.g. NFS can unhash a directory 1362 * reachable (e.g. NFS can unhash a directory dentry and then the complete 1376 * subtree can become unreachable). 1363 * subtree can become unreachable). 1377 * 1364 * 1378 * Only one of d_invalidate() and d_set_mount 1365 * Only one of d_invalidate() and d_set_mounted() must succeed. For 1379 * this reason take rename_lock and d_lock on 1366 * this reason take rename_lock and d_lock on dentry and ancestors. 1380 */ 1367 */ 1381 int d_set_mounted(struct dentry *dentry) 1368 int d_set_mounted(struct dentry *dentry) 1382 { 1369 { 1383 struct dentry *p; 1370 struct dentry *p; 1384 int ret = -ENOENT; 1371 int ret = -ENOENT; 1385 write_seqlock(&rename_lock); 1372 write_seqlock(&rename_lock); 1386 for (p = dentry->d_parent; !IS_ROOT(p 1373 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) { 1387 /* Need exclusion wrt. d_inva 1374 /* Need exclusion wrt. d_invalidate() */ 1388 spin_lock(&p->d_lock); 1375 spin_lock(&p->d_lock); 1389 if (unlikely(d_unhashed(p))) 1376 if (unlikely(d_unhashed(p))) { 1390 spin_unlock(&p->d_loc 1377 spin_unlock(&p->d_lock); 1391 goto out; 1378 goto out; 1392 } 1379 } 1393 spin_unlock(&p->d_lock); 1380 spin_unlock(&p->d_lock); 1394 } 1381 } 1395 spin_lock(&dentry->d_lock); 1382 spin_lock(&dentry->d_lock); 1396 if (!d_unlinked(dentry)) { 1383 if (!d_unlinked(dentry)) { 1397 ret = -EBUSY; 1384 ret = -EBUSY; 1398 if (!d_mountpoint(dentry)) { 1385 if (!d_mountpoint(dentry)) { 1399 dentry->d_flags |= DC 1386 dentry->d_flags |= DCACHE_MOUNTED; 1400 ret = 0; 1387 ret = 0; 1401 } 1388 } 1402 } 1389 } 1403 spin_unlock(&dentry->d_lock); 1390 spin_unlock(&dentry->d_lock); 1404 out: 1391 out: 1405 write_sequnlock(&rename_lock); 1392 write_sequnlock(&rename_lock); 1406 return ret; 1393 return ret; 1407 } 1394 } 1408 1395 1409 /* 1396 /* 1410 * Search the dentry child list of the specif 1397 * Search the dentry child list of the specified parent, 1411 * and move any unused dentries to the end of 1398 * and move any unused dentries to the end of the unused 1412 * list for prune_dcache(). We descend to the 1399 * list for prune_dcache(). We descend to the next level 1413 * whenever the d_children list is non-empty !! 1400 * whenever the d_subdirs list is non-empty and continue 1414 * searching. 1401 * searching. 1415 * 1402 * 1416 * It returns zero iff there are no unused ch 1403 * It returns zero iff there are no unused children, 1417 * otherwise it returns the number of childr 1404 * otherwise it returns the number of children moved to 1418 * the end of the unused list. This may not b 1405 * the end of the unused list. This may not be the total 1419 * number of unused children, because select_ 1406 * number of unused children, because select_parent can 1420 * drop the lock and return early due to late 1407 * drop the lock and return early due to latency 1421 * constraints. 1408 * constraints. 1422 */ 1409 */ 1423 1410 1424 struct select_data { 1411 struct select_data { 1425 struct dentry *start; 1412 struct dentry *start; 1426 union { << 1427 long found; << 1428 struct dentry *victim; << 1429 }; << 1430 struct list_head dispose; 1413 struct list_head dispose; >> 1414 int found; 1431 }; 1415 }; 1432 1416 1433 static enum d_walk_ret select_collect(void *_ 1417 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry) 1434 { 1418 { 1435 struct select_data *data = _data; 1419 struct select_data *data = _data; 1436 enum d_walk_ret ret = D_WALK_CONTINUE 1420 enum d_walk_ret ret = D_WALK_CONTINUE; 1437 1421 1438 if (data->start == dentry) 1422 if (data->start == dentry) 1439 goto out; 1423 goto out; 1440 1424 1441 if (dentry->d_flags & DCACHE_SHRINK_L 1425 if (dentry->d_flags & DCACHE_SHRINK_LIST) { 1442 data->found++; 1426 data->found++; 1443 } else if (!dentry->d_lockref.count) !! 1427 } else { 1444 to_shrink_list(dentry, &data- !! 1428 if (dentry->d_flags & DCACHE_LRU_LIST) 1445 data->found++; !! 1429 d_lru_del(dentry); 1446 } else if (dentry->d_lockref.count < !! 1430 if (!dentry->d_lockref.count) { 1447 data->found++; !! 1431 d_shrink_add(dentry, &data->dispose); 1448 } !! 1432 data->found++; 1449 /* << 1450 * We can return to the caller if we << 1451 * ensures forward progress). We'll b << 1452 * the rest. << 1453 */ << 1454 if (!list_empty(&data->dispose)) << 1455 ret = need_resched() ? D_WALK << 1456 out: << 1457 return ret; << 1458 } << 1459 << 1460 static enum d_walk_ret select_collect2(void * << 1461 { << 1462 struct select_data *data = _data; << 1463 enum d_walk_ret ret = D_WALK_CONTINUE << 1464 << 1465 if (data->start == dentry) << 1466 goto out; << 1467 << 1468 if (!dentry->d_lockref.count) { << 1469 if (dentry->d_flags & DCACHE_ << 1470 rcu_read_lock(); << 1471 data->victim = dentry << 1472 return D_WALK_QUIT; << 1473 } 1433 } 1474 to_shrink_list(dentry, &data- << 1475 } 1434 } 1476 /* 1435 /* 1477 * We can return to the caller if we 1436 * We can return to the caller if we have found some (this 1478 * ensures forward progress). We'll b 1437 * ensures forward progress). We'll be coming back to find 1479 * the rest. 1438 * the rest. 1480 */ 1439 */ 1481 if (!list_empty(&data->dispose)) 1440 if (!list_empty(&data->dispose)) 1482 ret = need_resched() ? D_WALK 1441 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY; 1483 out: 1442 out: 1484 return ret; 1443 return ret; 1485 } 1444 } 1486 1445 1487 /** 1446 /** 1488 * shrink_dcache_parent - prune dcache 1447 * shrink_dcache_parent - prune dcache 1489 * @parent: parent of entries to prune 1448 * @parent: parent of entries to prune 1490 * 1449 * 1491 * Prune the dcache to remove unused children 1450 * Prune the dcache to remove unused children of the parent dentry. 1492 */ 1451 */ 1493 void shrink_dcache_parent(struct dentry *pare 1452 void shrink_dcache_parent(struct dentry *parent) 1494 { 1453 { 1495 for (;;) { 1454 for (;;) { 1496 struct select_data data = {.s !! 1455 struct select_data data; 1497 1456 1498 INIT_LIST_HEAD(&data.dispose) 1457 INIT_LIST_HEAD(&data.dispose); 1499 d_walk(parent, &data, select_ !! 1458 data.start = parent; 1500 !! 1459 data.found = 0; 1501 if (!list_empty(&data.dispose << 1502 shrink_dentry_list(&d << 1503 continue; << 1504 } << 1505 1460 1506 cond_resched(); !! 1461 d_walk(parent, &data, select_collect, NULL); 1507 if (!data.found) 1462 if (!data.found) 1508 break; 1463 break; 1509 data.victim = NULL; !! 1464 1510 d_walk(parent, &data, select_ !! 1465 shrink_dentry_list(&data.dispose); 1511 if (data.victim) { !! 1466 cond_resched(); 1512 spin_lock(&data.victi << 1513 if (!lock_for_kill(da << 1514 spin_unlock(& << 1515 rcu_read_unlo << 1516 } else { << 1517 shrink_kill(d << 1518 } << 1519 } << 1520 if (!list_empty(&data.dispose << 1521 shrink_dentry_list(&d << 1522 } 1467 } 1523 } 1468 } 1524 EXPORT_SYMBOL(shrink_dcache_parent); 1469 EXPORT_SYMBOL(shrink_dcache_parent); 1525 1470 1526 static enum d_walk_ret umount_check(void *_da 1471 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry) 1527 { 1472 { 1528 /* it has busy descendents; complain 1473 /* it has busy descendents; complain about those instead */ 1529 if (!hlist_empty(&dentry->d_children) !! 1474 if (!list_empty(&dentry->d_subdirs)) 1530 return D_WALK_CONTINUE; 1475 return D_WALK_CONTINUE; 1531 1476 1532 /* root with refcount 1 is fine */ 1477 /* root with refcount 1 is fine */ 1533 if (dentry == _data && dentry->d_lock 1478 if (dentry == _data && dentry->d_lockref.count == 1) 1534 return D_WALK_CONTINUE; 1479 return D_WALK_CONTINUE; 1535 1480 1536 WARN(1, "BUG: Dentry %p{i=%lx,n=%pd} !! 1481 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} " 1537 " still in use (%d) [ 1482 " still in use (%d) [unmount of %s %s]\n", 1538 dentry, 1483 dentry, 1539 dentry->d_inode ? 1484 dentry->d_inode ? 1540 dentry->d_inode->i_ino 1485 dentry->d_inode->i_ino : 0UL, 1541 dentry, 1486 dentry, 1542 dentry->d_lockref.coun 1487 dentry->d_lockref.count, 1543 dentry->d_sb->s_type-> 1488 dentry->d_sb->s_type->name, 1544 dentry->d_sb->s_id); 1489 dentry->d_sb->s_id); >> 1490 WARN_ON(1); 1545 return D_WALK_CONTINUE; 1491 return D_WALK_CONTINUE; 1546 } 1492 } 1547 1493 1548 static void do_one_tree(struct dentry *dentry 1494 static void do_one_tree(struct dentry *dentry) 1549 { 1495 { 1550 shrink_dcache_parent(dentry); 1496 shrink_dcache_parent(dentry); 1551 d_walk(dentry, dentry, umount_check); !! 1497 d_walk(dentry, dentry, umount_check, NULL); 1552 d_drop(dentry); 1498 d_drop(dentry); 1553 dput(dentry); 1499 dput(dentry); 1554 } 1500 } 1555 1501 1556 /* 1502 /* 1557 * destroy the dentries attached to a superbl 1503 * destroy the dentries attached to a superblock on unmounting 1558 */ 1504 */ 1559 void shrink_dcache_for_umount(struct super_bl 1505 void shrink_dcache_for_umount(struct super_block *sb) 1560 { 1506 { 1561 struct dentry *dentry; 1507 struct dentry *dentry; 1562 1508 1563 rwsem_assert_held_write(&sb->s_umount !! 1509 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked"); 1564 1510 1565 dentry = sb->s_root; 1511 dentry = sb->s_root; 1566 sb->s_root = NULL; 1512 sb->s_root = NULL; 1567 do_one_tree(dentry); 1513 do_one_tree(dentry); 1568 1514 1569 while (!hlist_bl_empty(&sb->s_roots)) !! 1515 while (!hlist_bl_empty(&sb->s_anon)) { 1570 dentry = dget(hlist_bl_entry( !! 1516 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash)); 1571 do_one_tree(dentry); 1517 do_one_tree(dentry); 1572 } 1518 } 1573 } 1519 } 1574 1520 1575 static enum d_walk_ret find_submount(void *_d !! 1521 struct detach_data { >> 1522 struct select_data select; >> 1523 struct dentry *mountpoint; >> 1524 }; >> 1525 static enum d_walk_ret detach_and_collect(void *_data, struct dentry *dentry) 1576 { 1526 { 1577 struct dentry **victim = _data; !! 1527 struct detach_data *data = _data; >> 1528 1578 if (d_mountpoint(dentry)) { 1529 if (d_mountpoint(dentry)) { 1579 *victim = dget_dlock(dentry); !! 1530 __dget_dlock(dentry); >> 1531 data->mountpoint = dentry; 1580 return D_WALK_QUIT; 1532 return D_WALK_QUIT; 1581 } 1533 } 1582 return D_WALK_CONTINUE; !! 1534 >> 1535 return select_collect(&data->select, dentry); >> 1536 } >> 1537 >> 1538 static void check_and_drop(void *_data) >> 1539 { >> 1540 struct detach_data *data = _data; >> 1541 >> 1542 if (!data->mountpoint && list_empty(&data->select.dispose)) >> 1543 __d_drop(data->select.start); 1583 } 1544 } 1584 1545 1585 /** 1546 /** 1586 * d_invalidate - detach submounts, prune dca 1547 * d_invalidate - detach submounts, prune dcache, and drop 1587 * @dentry: dentry to invalidate (aka detach, 1548 * @dentry: dentry to invalidate (aka detach, prune and drop) >> 1549 * >> 1550 * no dcache lock. >> 1551 * >> 1552 * The final d_drop is done as an atomic operation relative to >> 1553 * rename_lock ensuring there are no races with d_set_mounted. This >> 1554 * ensures there are no unhashed dentries on the path to a mountpoint. 1588 */ 1555 */ 1589 void d_invalidate(struct dentry *dentry) 1556 void d_invalidate(struct dentry *dentry) 1590 { 1557 { 1591 bool had_submounts = false; !! 1558 /* >> 1559 * If it's already been dropped, return OK. >> 1560 */ 1592 spin_lock(&dentry->d_lock); 1561 spin_lock(&dentry->d_lock); 1593 if (d_unhashed(dentry)) { 1562 if (d_unhashed(dentry)) { 1594 spin_unlock(&dentry->d_lock); 1563 spin_unlock(&dentry->d_lock); 1595 return; 1564 return; 1596 } 1565 } 1597 __d_drop(dentry); << 1598 spin_unlock(&dentry->d_lock); 1566 spin_unlock(&dentry->d_lock); 1599 1567 1600 /* Negative dentries can be dropped w 1568 /* Negative dentries can be dropped without further checks */ 1601 if (!dentry->d_inode) !! 1569 if (!dentry->d_inode) { >> 1570 d_drop(dentry); 1602 return; 1571 return; >> 1572 } 1603 1573 1604 shrink_dcache_parent(dentry); << 1605 for (;;) { 1574 for (;;) { 1606 struct dentry *victim = NULL; !! 1575 struct detach_data data; 1607 d_walk(dentry, &victim, find_ !! 1576 1608 if (!victim) { !! 1577 data.mountpoint = NULL; 1609 if (had_submounts) !! 1578 INIT_LIST_HEAD(&data.select.dispose); 1610 shrink_dcache !! 1579 data.select.start = dentry; >> 1580 data.select.found = 0; >> 1581 >> 1582 d_walk(dentry, &data, detach_and_collect, check_and_drop); >> 1583 >> 1584 if (!list_empty(&data.select.dispose)) >> 1585 shrink_dentry_list(&data.select.dispose); >> 1586 else if (!data.mountpoint) 1611 return; 1587 return; >> 1588 >> 1589 if (data.mountpoint) { >> 1590 detach_mounts(data.mountpoint); >> 1591 dput(data.mountpoint); 1612 } 1592 } 1613 had_submounts = true; !! 1593 cond_resched(); 1614 detach_mounts(victim); << 1615 dput(victim); << 1616 } 1594 } 1617 } 1595 } 1618 EXPORT_SYMBOL(d_invalidate); 1596 EXPORT_SYMBOL(d_invalidate); 1619 1597 1620 /** 1598 /** 1621 * __d_alloc - allocate a dcache ent 1599 * __d_alloc - allocate a dcache entry 1622 * @sb: filesystem it will belong to 1600 * @sb: filesystem it will belong to 1623 * @name: qstr of the name 1601 * @name: qstr of the name 1624 * 1602 * 1625 * Allocates a dentry. It returns %NULL if th 1603 * Allocates a dentry. It returns %NULL if there is insufficient memory 1626 * available. On a success the dentry is retu 1604 * available. On a success the dentry is returned. The name passed in is 1627 * copied and the copy passed in may be reuse 1605 * copied and the copy passed in may be reused after this call. 1628 */ 1606 */ 1629 1607 1630 static struct dentry *__d_alloc(struct super_ !! 1608 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name) 1631 { 1609 { 1632 struct dentry *dentry; 1610 struct dentry *dentry; 1633 char *dname; 1611 char *dname; 1634 int err; 1612 int err; 1635 1613 1636 dentry = kmem_cache_alloc_lru(dentry_ !! 1614 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL); 1637 GFP_KER << 1638 if (!dentry) 1615 if (!dentry) 1639 return NULL; 1616 return NULL; 1640 1617 1641 /* 1618 /* 1642 * We guarantee that the inline name 1619 * We guarantee that the inline name is always NUL-terminated. 1643 * This way the memcpy() done by the 1620 * This way the memcpy() done by the name switching in rename 1644 * will still always have a NUL at th 1621 * will still always have a NUL at the end, even if we might 1645 * be overwriting an internal NUL cha 1622 * be overwriting an internal NUL character 1646 */ 1623 */ 1647 dentry->d_iname[DNAME_INLINE_LEN-1] = 1624 dentry->d_iname[DNAME_INLINE_LEN-1] = 0; 1648 if (unlikely(!name)) { 1625 if (unlikely(!name)) { 1649 name = &slash_name; 1626 name = &slash_name; 1650 dname = dentry->d_iname; 1627 dname = dentry->d_iname; 1651 } else if (name->len > DNAME_INLINE_L 1628 } else if (name->len > DNAME_INLINE_LEN-1) { 1652 size_t size = offsetof(struct 1629 size_t size = offsetof(struct external_name, name[1]); 1653 struct external_name *p = kma 1630 struct external_name *p = kmalloc(size + name->len, 1654 !! 1631 GFP_KERNEL_ACCOUNT); 1655 << 1656 if (!p) { 1632 if (!p) { 1657 kmem_cache_free(dentr 1633 kmem_cache_free(dentry_cache, dentry); 1658 return NULL; 1634 return NULL; 1659 } 1635 } 1660 atomic_set(&p->u.count, 1); 1636 atomic_set(&p->u.count, 1); 1661 dname = p->name; 1637 dname = p->name; >> 1638 if (IS_ENABLED(CONFIG_DCACHE_WORD_ACCESS)) >> 1639 kasan_unpoison_shadow(dname, >> 1640 round_up(name->len + 1, sizeof(unsigned long))); 1662 } else { 1641 } else { 1663 dname = dentry->d_iname; 1642 dname = dentry->d_iname; 1664 } 1643 } 1665 1644 1666 dentry->d_name.len = name->len; 1645 dentry->d_name.len = name->len; 1667 dentry->d_name.hash = name->hash; 1646 dentry->d_name.hash = name->hash; 1668 memcpy(dname, name->name, name->len); 1647 memcpy(dname, name->name, name->len); 1669 dname[name->len] = 0; 1648 dname[name->len] = 0; 1670 1649 1671 /* Make sure we always see the termin 1650 /* Make sure we always see the terminating NUL character */ 1672 smp_store_release(&dentry->d_name.nam !! 1651 smp_wmb(); >> 1652 dentry->d_name.name = dname; 1673 1653 1674 dentry->d_lockref.count = 1; 1654 dentry->d_lockref.count = 1; 1675 dentry->d_flags = 0; 1655 dentry->d_flags = 0; 1676 spin_lock_init(&dentry->d_lock); 1656 spin_lock_init(&dentry->d_lock); 1677 seqcount_spinlock_init(&dentry->d_seq !! 1657 seqcount_init(&dentry->d_seq); 1678 dentry->d_inode = NULL; 1658 dentry->d_inode = NULL; 1679 dentry->d_parent = dentry; 1659 dentry->d_parent = dentry; 1680 dentry->d_sb = sb; 1660 dentry->d_sb = sb; 1681 dentry->d_op = NULL; 1661 dentry->d_op = NULL; 1682 dentry->d_fsdata = NULL; 1662 dentry->d_fsdata = NULL; 1683 INIT_HLIST_BL_NODE(&dentry->d_hash); 1663 INIT_HLIST_BL_NODE(&dentry->d_hash); 1684 INIT_LIST_HEAD(&dentry->d_lru); 1664 INIT_LIST_HEAD(&dentry->d_lru); 1685 INIT_HLIST_HEAD(&dentry->d_children); !! 1665 INIT_LIST_HEAD(&dentry->d_subdirs); 1686 INIT_HLIST_NODE(&dentry->d_u.d_alias) 1666 INIT_HLIST_NODE(&dentry->d_u.d_alias); 1687 INIT_HLIST_NODE(&dentry->d_sib); !! 1667 INIT_LIST_HEAD(&dentry->d_child); 1688 d_set_d_op(dentry, dentry->d_sb->s_d_ 1668 d_set_d_op(dentry, dentry->d_sb->s_d_op); 1689 1669 1690 if (dentry->d_op && dentry->d_op->d_i 1670 if (dentry->d_op && dentry->d_op->d_init) { 1691 err = dentry->d_op->d_init(de 1671 err = dentry->d_op->d_init(dentry); 1692 if (err) { 1672 if (err) { 1693 if (dname_external(de 1673 if (dname_external(dentry)) 1694 kfree(externa 1674 kfree(external_name(dentry)); 1695 kmem_cache_free(dentr 1675 kmem_cache_free(dentry_cache, dentry); 1696 return NULL; 1676 return NULL; 1697 } 1677 } 1698 } 1678 } 1699 1679 1700 this_cpu_inc(nr_dentry); 1680 this_cpu_inc(nr_dentry); 1701 1681 1702 return dentry; 1682 return dentry; 1703 } 1683 } 1704 1684 1705 /** 1685 /** 1706 * d_alloc - allocate a dcache ent 1686 * d_alloc - allocate a dcache entry 1707 * @parent: parent of entry to allocate 1687 * @parent: parent of entry to allocate 1708 * @name: qstr of the name 1688 * @name: qstr of the name 1709 * 1689 * 1710 * Allocates a dentry. It returns %NULL if th 1690 * Allocates a dentry. It returns %NULL if there is insufficient memory 1711 * available. On a success the dentry is retu 1691 * available. On a success the dentry is returned. The name passed in is 1712 * copied and the copy passed in may be reuse 1692 * copied and the copy passed in may be reused after this call. 1713 */ 1693 */ 1714 struct dentry *d_alloc(struct dentry * parent 1694 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name) 1715 { 1695 { 1716 struct dentry *dentry = __d_alloc(par 1696 struct dentry *dentry = __d_alloc(parent->d_sb, name); 1717 if (!dentry) 1697 if (!dentry) 1718 return NULL; 1698 return NULL; >> 1699 dentry->d_flags |= DCACHE_RCUACCESS; 1719 spin_lock(&parent->d_lock); 1700 spin_lock(&parent->d_lock); 1720 /* 1701 /* 1721 * don't need child lock because it i 1702 * don't need child lock because it is not subject 1722 * to concurrency here 1703 * to concurrency here 1723 */ 1704 */ 1724 dentry->d_parent = dget_dlock(parent) !! 1705 __dget_dlock(parent); 1725 hlist_add_head(&dentry->d_sib, &paren !! 1706 dentry->d_parent = parent; >> 1707 list_add(&dentry->d_child, &parent->d_subdirs); 1726 spin_unlock(&parent->d_lock); 1708 spin_unlock(&parent->d_lock); 1727 1709 1728 return dentry; 1710 return dentry; 1729 } 1711 } 1730 EXPORT_SYMBOL(d_alloc); 1712 EXPORT_SYMBOL(d_alloc); 1731 1713 1732 struct dentry *d_alloc_anon(struct super_bloc << 1733 { << 1734 return __d_alloc(sb, NULL); << 1735 } << 1736 EXPORT_SYMBOL(d_alloc_anon); << 1737 << 1738 struct dentry *d_alloc_cursor(struct dentry * 1714 struct dentry *d_alloc_cursor(struct dentry * parent) 1739 { 1715 { 1740 struct dentry *dentry = d_alloc_anon( !! 1716 struct dentry *dentry = __d_alloc(parent->d_sb, NULL); 1741 if (dentry) { 1717 if (dentry) { 1742 dentry->d_flags |= DCACHE_DEN !! 1718 dentry->d_flags |= DCACHE_RCUACCESS | DCACHE_DENTRY_CURSOR; 1743 dentry->d_parent = dget(paren 1719 dentry->d_parent = dget(parent); 1744 } 1720 } 1745 return dentry; 1721 return dentry; 1746 } 1722 } 1747 1723 1748 /** 1724 /** 1749 * d_alloc_pseudo - allocate a dentry (for lo 1725 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems) 1750 * @sb: the superblock 1726 * @sb: the superblock 1751 * @name: qstr of the name 1727 * @name: qstr of the name 1752 * 1728 * 1753 * For a filesystem that just pins its dentri 1729 * For a filesystem that just pins its dentries in memory and never 1754 * performs lookups at all, return an unhashe 1730 * performs lookups at all, return an unhashed IS_ROOT dentry. 1755 * This is used for pipes, sockets et.al. - t << 1756 * never be anyone's children or parents. Un << 1757 * dentries, these will not have RCU delay be << 1758 * last reference and freeing them. << 1759 * << 1760 * The only user is alloc_file_pseudo() and t << 1761 * be considered a public interface. Don't u << 1762 */ 1731 */ 1763 struct dentry *d_alloc_pseudo(struct super_bl 1732 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name) 1764 { 1733 { 1765 static const struct dentry_operations !! 1734 return __d_alloc(sb, name); 1766 .d_dname = simple_dname << 1767 }; << 1768 struct dentry *dentry = __d_alloc(sb, << 1769 if (likely(dentry)) { << 1770 dentry->d_flags |= DCACHE_NOR << 1771 if (!sb->s_d_op) << 1772 d_set_d_op(dentry, &a << 1773 } << 1774 return dentry; << 1775 } 1735 } >> 1736 EXPORT_SYMBOL(d_alloc_pseudo); 1776 1737 1777 struct dentry *d_alloc_name(struct dentry *pa 1738 struct dentry *d_alloc_name(struct dentry *parent, const char *name) 1778 { 1739 { 1779 struct qstr q; 1740 struct qstr q; 1780 1741 1781 q.name = name; 1742 q.name = name; 1782 q.hash_len = hashlen_string(parent, n 1743 q.hash_len = hashlen_string(parent, name); 1783 return d_alloc(parent, &q); 1744 return d_alloc(parent, &q); 1784 } 1745 } 1785 EXPORT_SYMBOL(d_alloc_name); 1746 EXPORT_SYMBOL(d_alloc_name); 1786 1747 1787 void d_set_d_op(struct dentry *dentry, const 1748 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op) 1788 { 1749 { 1789 WARN_ON_ONCE(dentry->d_op); 1750 WARN_ON_ONCE(dentry->d_op); 1790 WARN_ON_ONCE(dentry->d_flags & (DCACH 1751 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH | 1791 DCACHE_OP_COM 1752 DCACHE_OP_COMPARE | 1792 DCACHE_OP_REV 1753 DCACHE_OP_REVALIDATE | 1793 DCACHE_OP_WEA 1754 DCACHE_OP_WEAK_REVALIDATE | 1794 DCACHE_OP_DEL 1755 DCACHE_OP_DELETE | 1795 DCACHE_OP_REA 1756 DCACHE_OP_REAL)); 1796 dentry->d_op = op; 1757 dentry->d_op = op; 1797 if (!op) 1758 if (!op) 1798 return; 1759 return; 1799 if (op->d_hash) 1760 if (op->d_hash) 1800 dentry->d_flags |= DCACHE_OP_ 1761 dentry->d_flags |= DCACHE_OP_HASH; 1801 if (op->d_compare) 1762 if (op->d_compare) 1802 dentry->d_flags |= DCACHE_OP_ 1763 dentry->d_flags |= DCACHE_OP_COMPARE; 1803 if (op->d_revalidate) 1764 if (op->d_revalidate) 1804 dentry->d_flags |= DCACHE_OP_ 1765 dentry->d_flags |= DCACHE_OP_REVALIDATE; 1805 if (op->d_weak_revalidate) 1766 if (op->d_weak_revalidate) 1806 dentry->d_flags |= DCACHE_OP_ 1767 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE; 1807 if (op->d_delete) 1768 if (op->d_delete) 1808 dentry->d_flags |= DCACHE_OP_ 1769 dentry->d_flags |= DCACHE_OP_DELETE; 1809 if (op->d_prune) 1770 if (op->d_prune) 1810 dentry->d_flags |= DCACHE_OP_ 1771 dentry->d_flags |= DCACHE_OP_PRUNE; 1811 if (op->d_real) 1772 if (op->d_real) 1812 dentry->d_flags |= DCACHE_OP_ 1773 dentry->d_flags |= DCACHE_OP_REAL; 1813 1774 1814 } 1775 } 1815 EXPORT_SYMBOL(d_set_d_op); 1776 EXPORT_SYMBOL(d_set_d_op); 1816 1777 >> 1778 >> 1779 /* >> 1780 * d_set_fallthru - Mark a dentry as falling through to a lower layer >> 1781 * @dentry - The dentry to mark >> 1782 * >> 1783 * Mark a dentry as falling through to the lower layer (as set with >> 1784 * d_pin_lower()). This flag may be recorded on the medium. >> 1785 */ >> 1786 void d_set_fallthru(struct dentry *dentry) >> 1787 { >> 1788 spin_lock(&dentry->d_lock); >> 1789 dentry->d_flags |= DCACHE_FALLTHRU; >> 1790 spin_unlock(&dentry->d_lock); >> 1791 } >> 1792 EXPORT_SYMBOL(d_set_fallthru); >> 1793 1817 static unsigned d_flags_for_inode(struct inod 1794 static unsigned d_flags_for_inode(struct inode *inode) 1818 { 1795 { 1819 unsigned add_flags = DCACHE_REGULAR_T 1796 unsigned add_flags = DCACHE_REGULAR_TYPE; 1820 1797 1821 if (!inode) 1798 if (!inode) 1822 return DCACHE_MISS_TYPE; 1799 return DCACHE_MISS_TYPE; 1823 1800 1824 if (S_ISDIR(inode->i_mode)) { 1801 if (S_ISDIR(inode->i_mode)) { 1825 add_flags = DCACHE_DIRECTORY_ 1802 add_flags = DCACHE_DIRECTORY_TYPE; 1826 if (unlikely(!(inode->i_opfla 1803 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) { 1827 if (unlikely(!inode-> 1804 if (unlikely(!inode->i_op->lookup)) 1828 add_flags = D 1805 add_flags = DCACHE_AUTODIR_TYPE; 1829 else 1806 else 1830 inode->i_opfl 1807 inode->i_opflags |= IOP_LOOKUP; 1831 } 1808 } 1832 goto type_determined; 1809 goto type_determined; 1833 } 1810 } 1834 1811 1835 if (unlikely(!(inode->i_opflags & IOP 1812 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) { 1836 if (unlikely(inode->i_op->get 1813 if (unlikely(inode->i_op->get_link)) { 1837 add_flags = DCACHE_SY 1814 add_flags = DCACHE_SYMLINK_TYPE; 1838 goto type_determined; 1815 goto type_determined; 1839 } 1816 } 1840 inode->i_opflags |= IOP_NOFOL 1817 inode->i_opflags |= IOP_NOFOLLOW; 1841 } 1818 } 1842 1819 1843 if (unlikely(!S_ISREG(inode->i_mode)) 1820 if (unlikely(!S_ISREG(inode->i_mode))) 1844 add_flags = DCACHE_SPECIAL_TY 1821 add_flags = DCACHE_SPECIAL_TYPE; 1845 1822 1846 type_determined: 1823 type_determined: 1847 if (unlikely(IS_AUTOMOUNT(inode))) 1824 if (unlikely(IS_AUTOMOUNT(inode))) 1848 add_flags |= DCACHE_NEED_AUTO 1825 add_flags |= DCACHE_NEED_AUTOMOUNT; 1849 return add_flags; 1826 return add_flags; 1850 } 1827 } 1851 1828 1852 static void __d_instantiate(struct dentry *de 1829 static void __d_instantiate(struct dentry *dentry, struct inode *inode) 1853 { 1830 { 1854 unsigned add_flags = d_flags_for_inod 1831 unsigned add_flags = d_flags_for_inode(inode); 1855 WARN_ON(d_in_lookup(dentry)); 1832 WARN_ON(d_in_lookup(dentry)); 1856 1833 1857 spin_lock(&dentry->d_lock); 1834 spin_lock(&dentry->d_lock); 1858 /* << 1859 * The negative counter only tracks d << 1860 * d_lru is on another list. << 1861 */ << 1862 if ((dentry->d_flags & << 1863 (DCACHE_LRU_LIST|DCACHE_SHRINK_L << 1864 this_cpu_dec(nr_dentry_negati << 1865 hlist_add_head(&dentry->d_u.d_alias, 1835 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry); 1866 raw_write_seqcount_begin(&dentry->d_s 1836 raw_write_seqcount_begin(&dentry->d_seq); 1867 __d_set_inode_and_type(dentry, inode, 1837 __d_set_inode_and_type(dentry, inode, add_flags); 1868 raw_write_seqcount_end(&dentry->d_seq 1838 raw_write_seqcount_end(&dentry->d_seq); 1869 fsnotify_update_flags(dentry); 1839 fsnotify_update_flags(dentry); 1870 spin_unlock(&dentry->d_lock); 1840 spin_unlock(&dentry->d_lock); 1871 } 1841 } 1872 1842 1873 /** 1843 /** 1874 * d_instantiate - fill in inode information 1844 * d_instantiate - fill in inode information for a dentry 1875 * @entry: dentry to complete 1845 * @entry: dentry to complete 1876 * @inode: inode to attach to this dentry 1846 * @inode: inode to attach to this dentry 1877 * 1847 * 1878 * Fill in inode information in the entry. 1848 * Fill in inode information in the entry. 1879 * 1849 * 1880 * This turns negative dentries into producti 1850 * This turns negative dentries into productive full members 1881 * of society. 1851 * of society. 1882 * 1852 * 1883 * NOTE! This assumes that the inode count ha 1853 * NOTE! This assumes that the inode count has been incremented 1884 * (or otherwise set) by the caller to indica 1854 * (or otherwise set) by the caller to indicate that it is now 1885 * in use by the dcache. 1855 * in use by the dcache. 1886 */ 1856 */ 1887 1857 1888 void d_instantiate(struct dentry *entry, stru 1858 void d_instantiate(struct dentry *entry, struct inode * inode) 1889 { 1859 { 1890 BUG_ON(!hlist_unhashed(&entry->d_u.d_ 1860 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias)); 1891 if (inode) { 1861 if (inode) { 1892 security_d_instantiate(entry, 1862 security_d_instantiate(entry, inode); 1893 spin_lock(&inode->i_lock); 1863 spin_lock(&inode->i_lock); 1894 __d_instantiate(entry, inode) 1864 __d_instantiate(entry, inode); 1895 spin_unlock(&inode->i_lock); 1865 spin_unlock(&inode->i_lock); 1896 } 1866 } 1897 } 1867 } 1898 EXPORT_SYMBOL(d_instantiate); 1868 EXPORT_SYMBOL(d_instantiate); 1899 1869 1900 /* !! 1870 /** 1901 * This should be equivalent to d_instantiate !! 1871 * d_instantiate_no_diralias - instantiate a non-aliased dentry 1902 * with lockdep-related part of unlock_new_in !! 1872 * @entry: dentry to complete 1903 * anything else. Use that instead of open-c !! 1873 * @inode: inode to attach to this dentry 1904 * unlock_new_inode() combinations. !! 1874 * >> 1875 * Fill in inode information in the entry. If a directory alias is found, then >> 1876 * return an error (and drop inode). Together with d_materialise_unique() this >> 1877 * guarantees that a directory inode may never have more than one alias. 1905 */ 1878 */ 1906 void d_instantiate_new(struct dentry *entry, !! 1879 int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode) 1907 { 1880 { 1908 BUG_ON(!hlist_unhashed(&entry->d_u.d_ 1881 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias)); 1909 BUG_ON(!inode); !! 1882 1910 lockdep_annotate_inode_mutex_key(inod << 1911 security_d_instantiate(entry, inode); 1883 security_d_instantiate(entry, inode); 1912 spin_lock(&inode->i_lock); 1884 spin_lock(&inode->i_lock); >> 1885 if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) { >> 1886 spin_unlock(&inode->i_lock); >> 1887 iput(inode); >> 1888 return -EBUSY; >> 1889 } 1913 __d_instantiate(entry, inode); 1890 __d_instantiate(entry, inode); 1914 WARN_ON(!(inode->i_state & I_NEW)); << 1915 inode->i_state &= ~I_NEW & ~I_CREATIN << 1916 /* << 1917 * Pairs with the barrier in prepare_ << 1918 * ___wait_var_event() either sees th << 1919 * waitqueue_active() check in wake_u << 1920 */ << 1921 smp_mb(); << 1922 inode_wake_up_bit(inode, __I_NEW); << 1923 spin_unlock(&inode->i_lock); 1891 spin_unlock(&inode->i_lock); >> 1892 >> 1893 return 0; 1924 } 1894 } 1925 EXPORT_SYMBOL(d_instantiate_new); !! 1895 EXPORT_SYMBOL(d_instantiate_no_diralias); 1926 1896 1927 struct dentry *d_make_root(struct inode *root 1897 struct dentry *d_make_root(struct inode *root_inode) 1928 { 1898 { 1929 struct dentry *res = NULL; 1899 struct dentry *res = NULL; 1930 1900 1931 if (root_inode) { 1901 if (root_inode) { 1932 res = d_alloc_anon(root_inode !! 1902 res = __d_alloc(root_inode->i_sb, NULL); 1933 if (res) 1903 if (res) 1934 d_instantiate(res, ro 1904 d_instantiate(res, root_inode); 1935 else 1905 else 1936 iput(root_inode); 1906 iput(root_inode); 1937 } 1907 } 1938 return res; 1908 return res; 1939 } 1909 } 1940 EXPORT_SYMBOL(d_make_root); 1910 EXPORT_SYMBOL(d_make_root); 1941 1911 1942 static struct dentry *__d_obtain_alias(struct !! 1912 static struct dentry * __d_find_any_alias(struct inode *inode) 1943 { 1913 { 1944 struct super_block *sb; !! 1914 struct dentry *alias; 1945 struct dentry *new, *res; !! 1915 >> 1916 if (hlist_empty(&inode->i_dentry)) >> 1917 return NULL; >> 1918 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias); >> 1919 __dget(alias); >> 1920 return alias; >> 1921 } >> 1922 >> 1923 /** >> 1924 * d_find_any_alias - find any alias for a given inode >> 1925 * @inode: inode to find an alias for >> 1926 * >> 1927 * If any aliases exist for the given inode, take and return a >> 1928 * reference for one of them. If no aliases exist, return %NULL. >> 1929 */ >> 1930 struct dentry *d_find_any_alias(struct inode *inode) >> 1931 { >> 1932 struct dentry *de; >> 1933 >> 1934 spin_lock(&inode->i_lock); >> 1935 de = __d_find_any_alias(inode); >> 1936 spin_unlock(&inode->i_lock); >> 1937 return de; >> 1938 } >> 1939 EXPORT_SYMBOL(d_find_any_alias); >> 1940 >> 1941 static struct dentry *__d_obtain_alias(struct inode *inode, int disconnected) >> 1942 { >> 1943 struct dentry *tmp; >> 1944 struct dentry *res; >> 1945 unsigned add_flags; 1946 1946 1947 if (!inode) 1947 if (!inode) 1948 return ERR_PTR(-ESTALE); 1948 return ERR_PTR(-ESTALE); 1949 if (IS_ERR(inode)) 1949 if (IS_ERR(inode)) 1950 return ERR_CAST(inode); 1950 return ERR_CAST(inode); 1951 1951 1952 sb = inode->i_sb; !! 1952 res = d_find_any_alias(inode); 1953 << 1954 res = d_find_any_alias(inode); /* exi << 1955 if (res) 1953 if (res) 1956 goto out; !! 1954 goto out_iput; 1957 1955 1958 new = d_alloc_anon(sb); !! 1956 tmp = __d_alloc(inode->i_sb, NULL); 1959 if (!new) { !! 1957 if (!tmp) { 1960 res = ERR_PTR(-ENOMEM); 1958 res = ERR_PTR(-ENOMEM); 1961 goto out; !! 1959 goto out_iput; 1962 } 1960 } 1963 1961 1964 security_d_instantiate(new, inode); !! 1962 security_d_instantiate(tmp, inode); 1965 spin_lock(&inode->i_lock); 1963 spin_lock(&inode->i_lock); 1966 res = __d_find_any_alias(inode); /* r !! 1964 res = __d_find_any_alias(inode); 1967 if (likely(!res)) { /* still no alias !! 1965 if (res) { 1968 unsigned add_flags = d_flags_ << 1969 << 1970 if (disconnected) << 1971 add_flags |= DCACHE_D << 1972 << 1973 spin_lock(&new->d_lock); << 1974 __d_set_inode_and_type(new, i << 1975 hlist_add_head(&new->d_u.d_al << 1976 if (!disconnected) { << 1977 hlist_bl_lock(&sb->s_ << 1978 hlist_bl_add_head(&ne << 1979 hlist_bl_unlock(&sb-> << 1980 } << 1981 spin_unlock(&new->d_lock); << 1982 spin_unlock(&inode->i_lock); << 1983 inode = NULL; /* consumed by << 1984 res = new; << 1985 } else { << 1986 spin_unlock(&inode->i_lock); 1966 spin_unlock(&inode->i_lock); 1987 dput(new); !! 1967 dput(tmp); >> 1968 goto out_iput; 1988 } 1969 } 1989 1970 1990 out: !! 1971 /* attach a disconnected dentry */ >> 1972 add_flags = d_flags_for_inode(inode); >> 1973 >> 1974 if (disconnected) >> 1975 add_flags |= DCACHE_DISCONNECTED; >> 1976 >> 1977 spin_lock(&tmp->d_lock); >> 1978 __d_set_inode_and_type(tmp, inode, add_flags); >> 1979 hlist_add_head(&tmp->d_u.d_alias, &inode->i_dentry); >> 1980 hlist_bl_lock(&tmp->d_sb->s_anon); >> 1981 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon); >> 1982 hlist_bl_unlock(&tmp->d_sb->s_anon); >> 1983 spin_unlock(&tmp->d_lock); >> 1984 spin_unlock(&inode->i_lock); >> 1985 >> 1986 return tmp; >> 1987 >> 1988 out_iput: 1991 iput(inode); 1989 iput(inode); 1992 return res; 1990 return res; 1993 } 1991 } 1994 1992 1995 /** 1993 /** 1996 * d_obtain_alias - find or allocate a DISCON 1994 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode 1997 * @inode: inode to allocate the dentry for 1995 * @inode: inode to allocate the dentry for 1998 * 1996 * 1999 * Obtain a dentry for an inode resulting fro 1997 * Obtain a dentry for an inode resulting from NFS filehandle conversion or 2000 * similar open by handle operations. The re 1998 * similar open by handle operations. The returned dentry may be anonymous, 2001 * or may have a full name (if the inode was 1999 * or may have a full name (if the inode was already in the cache). 2002 * 2000 * 2003 * When called on a directory inode, we must 2001 * When called on a directory inode, we must ensure that the inode only ever 2004 * has one dentry. If a dentry is found, tha 2002 * has one dentry. If a dentry is found, that is returned instead of 2005 * allocating a new one. 2003 * allocating a new one. 2006 * 2004 * 2007 * On successful return, the reference to the 2005 * On successful return, the reference to the inode has been transferred 2008 * to the dentry. In case of an error the re 2006 * to the dentry. In case of an error the reference on the inode is released. 2009 * To make it easier to use in export operati 2007 * To make it easier to use in export operations a %NULL or IS_ERR inode may 2010 * be passed in and the error will be propaga 2008 * be passed in and the error will be propagated to the return value, 2011 * with a %NULL @inode replaced by ERR_PTR(-E 2009 * with a %NULL @inode replaced by ERR_PTR(-ESTALE). 2012 */ 2010 */ 2013 struct dentry *d_obtain_alias(struct inode *i 2011 struct dentry *d_obtain_alias(struct inode *inode) 2014 { 2012 { 2015 return __d_obtain_alias(inode, true); !! 2013 return __d_obtain_alias(inode, 1); 2016 } 2014 } 2017 EXPORT_SYMBOL(d_obtain_alias); 2015 EXPORT_SYMBOL(d_obtain_alias); 2018 2016 2019 /** 2017 /** 2020 * d_obtain_root - find or allocate a dentry 2018 * d_obtain_root - find or allocate a dentry for a given inode 2021 * @inode: inode to allocate the dentry for 2019 * @inode: inode to allocate the dentry for 2022 * 2020 * 2023 * Obtain an IS_ROOT dentry for the root of a 2021 * Obtain an IS_ROOT dentry for the root of a filesystem. 2024 * 2022 * 2025 * We must ensure that directory inodes only 2023 * We must ensure that directory inodes only ever have one dentry. If a 2026 * dentry is found, that is returned instead 2024 * dentry is found, that is returned instead of allocating a new one. 2027 * 2025 * 2028 * On successful return, the reference to the 2026 * On successful return, the reference to the inode has been transferred 2029 * to the dentry. In case of an error the re 2027 * to the dentry. In case of an error the reference on the inode is 2030 * released. A %NULL or IS_ERR inode may be 2028 * released. A %NULL or IS_ERR inode may be passed in and will be the 2031 * error will be propagate to the return valu 2029 * error will be propagate to the return value, with a %NULL @inode 2032 * replaced by ERR_PTR(-ESTALE). 2030 * replaced by ERR_PTR(-ESTALE). 2033 */ 2031 */ 2034 struct dentry *d_obtain_root(struct inode *in 2032 struct dentry *d_obtain_root(struct inode *inode) 2035 { 2033 { 2036 return __d_obtain_alias(inode, false) !! 2034 return __d_obtain_alias(inode, 0); 2037 } 2035 } 2038 EXPORT_SYMBOL(d_obtain_root); 2036 EXPORT_SYMBOL(d_obtain_root); 2039 2037 2040 /** 2038 /** 2041 * d_add_ci - lookup or allocate new dentry w 2039 * d_add_ci - lookup or allocate new dentry with case-exact name 2042 * @inode: the inode case-insensitive lookup 2040 * @inode: the inode case-insensitive lookup has found 2043 * @dentry: the negative dentry that was pass 2041 * @dentry: the negative dentry that was passed to the parent's lookup func 2044 * @name: the case-exact name to be associa 2042 * @name: the case-exact name to be associated with the returned dentry 2045 * 2043 * 2046 * This is to avoid filling the dcache with c 2044 * This is to avoid filling the dcache with case-insensitive names to the 2047 * same inode, only the actual correct case i 2045 * same inode, only the actual correct case is stored in the dcache for 2048 * case-insensitive filesystems. 2046 * case-insensitive filesystems. 2049 * 2047 * 2050 * For a case-insensitive lookup match and if !! 2048 * For a case-insensitive lookup match and if the the case-exact dentry 2051 * already exists in the dcache, use it and r !! 2049 * already exists in in the dcache, use it and return it. 2052 * 2050 * 2053 * If no entry exists with the exact case nam 2051 * If no entry exists with the exact case name, allocate new dentry with 2054 * the exact case, and return the spliced ent 2052 * the exact case, and return the spliced entry. 2055 */ 2053 */ 2056 struct dentry *d_add_ci(struct dentry *dentry 2054 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode, 2057 struct qstr *name) 2055 struct qstr *name) 2058 { 2056 { 2059 struct dentry *found, *res; 2057 struct dentry *found, *res; 2060 2058 2061 /* 2059 /* 2062 * First check if a dentry matching t 2060 * First check if a dentry matching the name already exists, 2063 * if not go ahead and create it now. 2061 * if not go ahead and create it now. 2064 */ 2062 */ 2065 found = d_hash_and_lookup(dentry->d_p 2063 found = d_hash_and_lookup(dentry->d_parent, name); 2066 if (found) { 2064 if (found) { 2067 iput(inode); 2065 iput(inode); 2068 return found; 2066 return found; 2069 } 2067 } 2070 if (d_in_lookup(dentry)) { 2068 if (d_in_lookup(dentry)) { 2071 found = d_alloc_parallel(dent 2069 found = d_alloc_parallel(dentry->d_parent, name, 2072 dentr 2070 dentry->d_wait); 2073 if (IS_ERR(found) || !d_in_lo 2071 if (IS_ERR(found) || !d_in_lookup(found)) { 2074 iput(inode); 2072 iput(inode); 2075 return found; 2073 return found; 2076 } 2074 } 2077 } else { 2075 } else { 2078 found = d_alloc(dentry->d_par 2076 found = d_alloc(dentry->d_parent, name); 2079 if (!found) { 2077 if (!found) { 2080 iput(inode); 2078 iput(inode); 2081 return ERR_PTR(-ENOME 2079 return ERR_PTR(-ENOMEM); 2082 } 2080 } 2083 } 2081 } 2084 res = d_splice_alias(inode, found); 2082 res = d_splice_alias(inode, found); 2085 if (res) { 2083 if (res) { 2086 d_lookup_done(found); << 2087 dput(found); 2084 dput(found); 2088 return res; 2085 return res; 2089 } 2086 } 2090 return found; 2087 return found; 2091 } 2088 } 2092 EXPORT_SYMBOL(d_add_ci); 2089 EXPORT_SYMBOL(d_add_ci); 2093 2090 2094 /** !! 2091 2095 * d_same_name - compare dentry name with cas !! 2092 static inline bool d_same_name(const struct dentry *dentry, 2096 * @parent: parent dentry !! 2093 const struct dentry *parent, 2097 * @dentry: the negative dentry that was pass !! 2094 const struct qstr *name) 2098 * @name: the case-exact name to be associa << 2099 * << 2100 * Return: true if names are same, or false << 2101 */ << 2102 bool d_same_name(const struct dentry *dentry, << 2103 const struct qstr *name) << 2104 { 2095 { 2105 if (likely(!(parent->d_flags & DCACHE 2096 if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) { 2106 if (dentry->d_name.len != nam 2097 if (dentry->d_name.len != name->len) 2107 return false; 2098 return false; 2108 return dentry_cmp(dentry, nam 2099 return dentry_cmp(dentry, name->name, name->len) == 0; 2109 } 2100 } 2110 return parent->d_op->d_compare(dentry 2101 return parent->d_op->d_compare(dentry, 2111 dentry 2102 dentry->d_name.len, dentry->d_name.name, 2112 name) 2103 name) == 0; 2113 } 2104 } 2114 EXPORT_SYMBOL_GPL(d_same_name); << 2115 << 2116 /* << 2117 * This is __d_lookup_rcu() when the parent d << 2118 * DCACHE_OP_COMPARE, which makes things much << 2119 */ << 2120 static noinline struct dentry *__d_lookup_rcu << 2121 const struct dentry *parent, << 2122 const struct qstr *name, << 2123 unsigned *seqp) << 2124 { << 2125 u64 hashlen = name->hash_len; << 2126 struct hlist_bl_head *b = d_hash(hash << 2127 struct hlist_bl_node *node; << 2128 struct dentry *dentry; << 2129 << 2130 hlist_bl_for_each_entry_rcu(dentry, n << 2131 int tlen; << 2132 const char *tname; << 2133 unsigned seq; << 2134 << 2135 seqretry: << 2136 seq = raw_seqcount_begin(&den << 2137 if (dentry->d_parent != paren << 2138 continue; << 2139 if (d_unhashed(dentry)) << 2140 continue; << 2141 if (dentry->d_name.hash != ha << 2142 continue; << 2143 tlen = dentry->d_name.len; << 2144 tname = dentry->d_name.name; << 2145 /* we want a consistent (name << 2146 if (read_seqcount_retry(&dent << 2147 cpu_relax(); << 2148 goto seqretry; << 2149 } << 2150 if (parent->d_op->d_compare(d << 2151 continue; << 2152 *seqp = seq; << 2153 return dentry; << 2154 } << 2155 return NULL; << 2156 } << 2157 2105 2158 /** 2106 /** 2159 * __d_lookup_rcu - search for a dentry (racy 2107 * __d_lookup_rcu - search for a dentry (racy, store-free) 2160 * @parent: parent dentry 2108 * @parent: parent dentry 2161 * @name: qstr of name we wish to find 2109 * @name: qstr of name we wish to find 2162 * @seqp: returns d_seq value at the point wh 2110 * @seqp: returns d_seq value at the point where the dentry was found 2163 * Returns: dentry, or NULL 2111 * Returns: dentry, or NULL 2164 * 2112 * 2165 * __d_lookup_rcu is the dcache lookup functi 2113 * __d_lookup_rcu is the dcache lookup function for rcu-walk name 2166 * resolution (store-free path walking) desig 2114 * resolution (store-free path walking) design described in 2167 * Documentation/filesystems/path-lookup.txt. 2115 * Documentation/filesystems/path-lookup.txt. 2168 * 2116 * 2169 * This is not to be used outside core vfs. 2117 * This is not to be used outside core vfs. 2170 * 2118 * 2171 * __d_lookup_rcu must only be used in rcu-wa 2119 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock 2172 * held, and rcu_read_lock held. The returned 2120 * held, and rcu_read_lock held. The returned dentry must not be stored into 2173 * without taking d_lock and checking d_seq s 2121 * without taking d_lock and checking d_seq sequence count against @seq 2174 * returned here. 2122 * returned here. 2175 * 2123 * >> 2124 * A refcount may be taken on the found dentry with the d_rcu_to_refcount >> 2125 * function. >> 2126 * 2176 * Alternatively, __d_lookup_rcu may be calle 2127 * Alternatively, __d_lookup_rcu may be called again to look up the child of 2177 * the returned dentry, so long as its parent 2128 * the returned dentry, so long as its parent's seqlock is checked after the 2178 * child is looked up. Thus, an interlocking 2129 * child is looked up. Thus, an interlocking stepping of sequence lock checks 2179 * is formed, giving integrity down the path 2130 * is formed, giving integrity down the path walk. 2180 * 2131 * 2181 * NOTE! The caller *has* to check the result 2132 * NOTE! The caller *has* to check the resulting dentry against the sequence 2182 * number we've returned before using any of 2133 * number we've returned before using any of the resulting dentry state! 2183 */ 2134 */ 2184 struct dentry *__d_lookup_rcu(const struct de 2135 struct dentry *__d_lookup_rcu(const struct dentry *parent, 2185 const struct 2136 const struct qstr *name, 2186 unsigned *seq 2137 unsigned *seqp) 2187 { 2138 { 2188 u64 hashlen = name->hash_len; 2139 u64 hashlen = name->hash_len; 2189 const unsigned char *str = name->name 2140 const unsigned char *str = name->name; 2190 struct hlist_bl_head *b = d_hash(hash !! 2141 struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen)); 2191 struct hlist_bl_node *node; 2142 struct hlist_bl_node *node; 2192 struct dentry *dentry; 2143 struct dentry *dentry; 2193 2144 2194 /* 2145 /* 2195 * Note: There is significant duplica 2146 * Note: There is significant duplication with __d_lookup_rcu which is 2196 * required to prevent single threade 2147 * required to prevent single threaded performance regressions 2197 * especially on architectures where 2148 * especially on architectures where smp_rmb (in seqcounts) are costly. 2198 * Keep the two functions in sync. 2149 * Keep the two functions in sync. 2199 */ 2150 */ 2200 2151 2201 if (unlikely(parent->d_flags & DCACHE << 2202 return __d_lookup_rcu_op_comp << 2203 << 2204 /* 2152 /* 2205 * The hash list is protected using R 2153 * The hash list is protected using RCU. 2206 * 2154 * 2207 * Carefully use d_seq when comparing 2155 * Carefully use d_seq when comparing a candidate dentry, to avoid 2208 * races with d_move(). 2156 * races with d_move(). 2209 * 2157 * 2210 * It is possible that concurrent ren 2158 * It is possible that concurrent renames can mess up our list 2211 * walk here and result in missing ou 2159 * walk here and result in missing our dentry, resulting in the 2212 * false-negative result. d_lookup() 2160 * false-negative result. d_lookup() protects against concurrent 2213 * renames using rename_lock seqlock. 2161 * renames using rename_lock seqlock. 2214 * 2162 * 2215 * See Documentation/filesystems/path 2163 * See Documentation/filesystems/path-lookup.txt for more details. 2216 */ 2164 */ 2217 hlist_bl_for_each_entry_rcu(dentry, n 2165 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { 2218 unsigned seq; 2166 unsigned seq; 2219 2167 >> 2168 seqretry: 2220 /* 2169 /* 2221 * The dentry sequence count 2170 * The dentry sequence count protects us from concurrent 2222 * renames, and thus protects 2171 * renames, and thus protects parent and name fields. 2223 * 2172 * 2224 * The caller must perform a 2173 * The caller must perform a seqcount check in order 2225 * to do anything useful with 2174 * to do anything useful with the returned dentry. 2226 * 2175 * 2227 * NOTE! We do a "raw" seqcou 2176 * NOTE! We do a "raw" seqcount_begin here. That means that 2228 * we don't wait for the sequ 2177 * we don't wait for the sequence count to stabilize if it 2229 * is in the middle of a sequ 2178 * is in the middle of a sequence change. If we do the slow 2230 * dentry compare, we will do 2179 * dentry compare, we will do seqretries until it is stable, 2231 * and if we end up with a su 2180 * and if we end up with a successful lookup, we actually 2232 * want to exit RCU lookup an 2181 * want to exit RCU lookup anyway. 2233 * 2182 * 2234 * Note that raw_seqcount_beg 2183 * Note that raw_seqcount_begin still *does* smp_rmb(), so 2235 * we are still guaranteed NU 2184 * we are still guaranteed NUL-termination of ->d_name.name. 2236 */ 2185 */ 2237 seq = raw_seqcount_begin(&den 2186 seq = raw_seqcount_begin(&dentry->d_seq); 2238 if (dentry->d_parent != paren 2187 if (dentry->d_parent != parent) 2239 continue; 2188 continue; 2240 if (d_unhashed(dentry)) 2189 if (d_unhashed(dentry)) 2241 continue; 2190 continue; 2242 if (dentry->d_name.hash_len ! !! 2191 2243 continue; !! 2192 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) { 2244 if (dentry_cmp(dentry, str, h !! 2193 int tlen; 2245 continue; !! 2194 const char *tname; >> 2195 if (dentry->d_name.hash != hashlen_hash(hashlen)) >> 2196 continue; >> 2197 tlen = dentry->d_name.len; >> 2198 tname = dentry->d_name.name; >> 2199 /* we want a consistent (name,len) pair */ >> 2200 if (read_seqcount_retry(&dentry->d_seq, seq)) { >> 2201 cpu_relax(); >> 2202 goto seqretry; >> 2203 } >> 2204 if (parent->d_op->d_compare(dentry, >> 2205 tlen, tname, name) != 0) >> 2206 continue; >> 2207 } else { >> 2208 if (dentry->d_name.hash_len != hashlen) >> 2209 continue; >> 2210 if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0) >> 2211 continue; >> 2212 } 2246 *seqp = seq; 2213 *seqp = seq; 2247 return dentry; 2214 return dentry; 2248 } 2215 } 2249 return NULL; 2216 return NULL; 2250 } 2217 } 2251 2218 2252 /** 2219 /** 2253 * d_lookup - search for a dentry 2220 * d_lookup - search for a dentry 2254 * @parent: parent dentry 2221 * @parent: parent dentry 2255 * @name: qstr of name we wish to find 2222 * @name: qstr of name we wish to find 2256 * Returns: dentry, or NULL 2223 * Returns: dentry, or NULL 2257 * 2224 * 2258 * d_lookup searches the children of the pare 2225 * d_lookup searches the children of the parent dentry for the name in 2259 * question. If the dentry is found its refer 2226 * question. If the dentry is found its reference count is incremented and the 2260 * dentry is returned. The caller must use dp 2227 * dentry is returned. The caller must use dput to free the entry when it has 2261 * finished using it. %NULL is returned if th 2228 * finished using it. %NULL is returned if the dentry does not exist. 2262 */ 2229 */ 2263 struct dentry *d_lookup(const struct dentry * 2230 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name) 2264 { 2231 { 2265 struct dentry *dentry; 2232 struct dentry *dentry; 2266 unsigned seq; 2233 unsigned seq; 2267 2234 2268 do { 2235 do { 2269 seq = read_seqbegin(&rename_l 2236 seq = read_seqbegin(&rename_lock); 2270 dentry = __d_lookup(parent, n 2237 dentry = __d_lookup(parent, name); 2271 if (dentry) 2238 if (dentry) 2272 break; 2239 break; 2273 } while (read_seqretry(&rename_lock, 2240 } while (read_seqretry(&rename_lock, seq)); 2274 return dentry; 2241 return dentry; 2275 } 2242 } 2276 EXPORT_SYMBOL(d_lookup); 2243 EXPORT_SYMBOL(d_lookup); 2277 2244 2278 /** 2245 /** 2279 * __d_lookup - search for a dentry (racy) 2246 * __d_lookup - search for a dentry (racy) 2280 * @parent: parent dentry 2247 * @parent: parent dentry 2281 * @name: qstr of name we wish to find 2248 * @name: qstr of name we wish to find 2282 * Returns: dentry, or NULL 2249 * Returns: dentry, or NULL 2283 * 2250 * 2284 * __d_lookup is like d_lookup, however it ma 2251 * __d_lookup is like d_lookup, however it may (rarely) return a 2285 * false-negative result due to unrelated ren 2252 * false-negative result due to unrelated rename activity. 2286 * 2253 * 2287 * __d_lookup is slightly faster by avoiding 2254 * __d_lookup is slightly faster by avoiding rename_lock read seqlock, 2288 * however it must be used carefully, eg. wit 2255 * however it must be used carefully, eg. with a following d_lookup in 2289 * the case of failure. 2256 * the case of failure. 2290 * 2257 * 2291 * __d_lookup callers must be commented. 2258 * __d_lookup callers must be commented. 2292 */ 2259 */ 2293 struct dentry *__d_lookup(const struct dentry 2260 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name) 2294 { 2261 { 2295 unsigned int hash = name->hash; 2262 unsigned int hash = name->hash; 2296 struct hlist_bl_head *b = d_hash(hash 2263 struct hlist_bl_head *b = d_hash(hash); 2297 struct hlist_bl_node *node; 2264 struct hlist_bl_node *node; 2298 struct dentry *found = NULL; 2265 struct dentry *found = NULL; 2299 struct dentry *dentry; 2266 struct dentry *dentry; 2300 2267 2301 /* 2268 /* 2302 * Note: There is significant duplica 2269 * Note: There is significant duplication with __d_lookup_rcu which is 2303 * required to prevent single threade 2270 * required to prevent single threaded performance regressions 2304 * especially on architectures where 2271 * especially on architectures where smp_rmb (in seqcounts) are costly. 2305 * Keep the two functions in sync. 2272 * Keep the two functions in sync. 2306 */ 2273 */ 2307 2274 2308 /* 2275 /* 2309 * The hash list is protected using R 2276 * The hash list is protected using RCU. 2310 * 2277 * 2311 * Take d_lock when comparing a candi 2278 * Take d_lock when comparing a candidate dentry, to avoid races 2312 * with d_move(). 2279 * with d_move(). 2313 * 2280 * 2314 * It is possible that concurrent ren 2281 * It is possible that concurrent renames can mess up our list 2315 * walk here and result in missing ou 2282 * walk here and result in missing our dentry, resulting in the 2316 * false-negative result. d_lookup() 2283 * false-negative result. d_lookup() protects against concurrent 2317 * renames using rename_lock seqlock. 2284 * renames using rename_lock seqlock. 2318 * 2285 * 2319 * See Documentation/filesystems/path 2286 * See Documentation/filesystems/path-lookup.txt for more details. 2320 */ 2287 */ 2321 rcu_read_lock(); 2288 rcu_read_lock(); 2322 2289 2323 hlist_bl_for_each_entry_rcu(dentry, n 2290 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { 2324 2291 2325 if (dentry->d_name.hash != ha 2292 if (dentry->d_name.hash != hash) 2326 continue; 2293 continue; 2327 2294 2328 spin_lock(&dentry->d_lock); 2295 spin_lock(&dentry->d_lock); 2329 if (dentry->d_parent != paren 2296 if (dentry->d_parent != parent) 2330 goto next; 2297 goto next; 2331 if (d_unhashed(dentry)) 2298 if (d_unhashed(dentry)) 2332 goto next; 2299 goto next; 2333 2300 2334 if (!d_same_name(dentry, pare 2301 if (!d_same_name(dentry, parent, name)) 2335 goto next; 2302 goto next; 2336 2303 2337 dentry->d_lockref.count++; 2304 dentry->d_lockref.count++; 2338 found = dentry; 2305 found = dentry; 2339 spin_unlock(&dentry->d_lock); 2306 spin_unlock(&dentry->d_lock); 2340 break; 2307 break; 2341 next: 2308 next: 2342 spin_unlock(&dentry->d_lock); 2309 spin_unlock(&dentry->d_lock); 2343 } 2310 } 2344 rcu_read_unlock(); 2311 rcu_read_unlock(); 2345 2312 2346 return found; 2313 return found; 2347 } 2314 } 2348 2315 2349 /** 2316 /** 2350 * d_hash_and_lookup - hash the qstr then sea 2317 * d_hash_and_lookup - hash the qstr then search for a dentry 2351 * @dir: Directory to search in 2318 * @dir: Directory to search in 2352 * @name: qstr of name we wish to find 2319 * @name: qstr of name we wish to find 2353 * 2320 * 2354 * On lookup failure NULL is returned; on bad 2321 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error) 2355 */ 2322 */ 2356 struct dentry *d_hash_and_lookup(struct dentr 2323 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name) 2357 { 2324 { 2358 /* 2325 /* 2359 * Check for a fs-specific hash funct 2326 * Check for a fs-specific hash function. Note that we must 2360 * calculate the standard hash first, 2327 * calculate the standard hash first, as the d_op->d_hash() 2361 * routine may choose to leave the ha 2328 * routine may choose to leave the hash value unchanged. 2362 */ 2329 */ 2363 name->hash = full_name_hash(dir, name 2330 name->hash = full_name_hash(dir, name->name, name->len); 2364 if (dir->d_flags & DCACHE_OP_HASH) { 2331 if (dir->d_flags & DCACHE_OP_HASH) { 2365 int err = dir->d_op->d_hash(d 2332 int err = dir->d_op->d_hash(dir, name); 2366 if (unlikely(err < 0)) 2333 if (unlikely(err < 0)) 2367 return ERR_PTR(err); 2334 return ERR_PTR(err); 2368 } 2335 } 2369 return d_lookup(dir, name); 2336 return d_lookup(dir, name); 2370 } 2337 } 2371 EXPORT_SYMBOL(d_hash_and_lookup); 2338 EXPORT_SYMBOL(d_hash_and_lookup); 2372 2339 2373 /* 2340 /* 2374 * When a file is deleted, we have two option 2341 * When a file is deleted, we have two options: 2375 * - turn this dentry into a negative dentry 2342 * - turn this dentry into a negative dentry 2376 * - unhash this dentry and free it. 2343 * - unhash this dentry and free it. 2377 * 2344 * 2378 * Usually, we want to just turn this into 2345 * Usually, we want to just turn this into 2379 * a negative dentry, but if anybody else is 2346 * a negative dentry, but if anybody else is 2380 * currently using the dentry or the inode 2347 * currently using the dentry or the inode 2381 * we can't do that and we fall back on remov 2348 * we can't do that and we fall back on removing 2382 * it from the hash queues and waiting for 2349 * it from the hash queues and waiting for 2383 * it to be deleted later when it has no user 2350 * it to be deleted later when it has no users 2384 */ 2351 */ 2385 2352 2386 /** 2353 /** 2387 * d_delete - delete a dentry 2354 * d_delete - delete a dentry 2388 * @dentry: The dentry to delete 2355 * @dentry: The dentry to delete 2389 * 2356 * 2390 * Turn the dentry into a negative dentry if 2357 * Turn the dentry into a negative dentry if possible, otherwise 2391 * remove it from the hash queues so it can b 2358 * remove it from the hash queues so it can be deleted later 2392 */ 2359 */ 2393 2360 2394 void d_delete(struct dentry * dentry) 2361 void d_delete(struct dentry * dentry) 2395 { 2362 { 2396 struct inode *inode = dentry->d_inode !! 2363 struct inode *inode; 2397 !! 2364 int isdir = 0; 2398 spin_lock(&inode->i_lock); << 2399 spin_lock(&dentry->d_lock); << 2400 /* 2365 /* 2401 * Are we the only user? 2366 * Are we the only user? 2402 */ 2367 */ >> 2368 again: >> 2369 spin_lock(&dentry->d_lock); >> 2370 inode = dentry->d_inode; >> 2371 isdir = S_ISDIR(inode->i_mode); 2403 if (dentry->d_lockref.count == 1) { 2372 if (dentry->d_lockref.count == 1) { >> 2373 if (!spin_trylock(&inode->i_lock)) { >> 2374 spin_unlock(&dentry->d_lock); >> 2375 cpu_relax(); >> 2376 goto again; >> 2377 } 2404 dentry->d_flags &= ~DCACHE_CA 2378 dentry->d_flags &= ~DCACHE_CANT_MOUNT; 2405 dentry_unlink_inode(dentry); 2379 dentry_unlink_inode(dentry); 2406 } else { !! 2380 fsnotify_nameremove(dentry, isdir); 2407 __d_drop(dentry); !! 2381 return; 2408 spin_unlock(&dentry->d_lock); << 2409 spin_unlock(&inode->i_lock); << 2410 } 2382 } >> 2383 >> 2384 if (!d_unhashed(dentry)) >> 2385 __d_drop(dentry); >> 2386 >> 2387 spin_unlock(&dentry->d_lock); >> 2388 >> 2389 fsnotify_nameremove(dentry, isdir); 2411 } 2390 } 2412 EXPORT_SYMBOL(d_delete); 2391 EXPORT_SYMBOL(d_delete); 2413 2392 2414 static void __d_rehash(struct dentry *entry) 2393 static void __d_rehash(struct dentry *entry) 2415 { 2394 { 2416 struct hlist_bl_head *b = d_hash(entr 2395 struct hlist_bl_head *b = d_hash(entry->d_name.hash); 2417 2396 2418 hlist_bl_lock(b); 2397 hlist_bl_lock(b); 2419 hlist_bl_add_head_rcu(&entry->d_hash, 2398 hlist_bl_add_head_rcu(&entry->d_hash, b); 2420 hlist_bl_unlock(b); 2399 hlist_bl_unlock(b); 2421 } 2400 } 2422 2401 2423 /** 2402 /** 2424 * d_rehash - add an entry back to the ha 2403 * d_rehash - add an entry back to the hash 2425 * @entry: dentry to add to the hash 2404 * @entry: dentry to add to the hash 2426 * 2405 * 2427 * Adds a dentry to the hash according to its 2406 * Adds a dentry to the hash according to its name. 2428 */ 2407 */ 2429 2408 2430 void d_rehash(struct dentry * entry) 2409 void d_rehash(struct dentry * entry) 2431 { 2410 { 2432 spin_lock(&entry->d_lock); 2411 spin_lock(&entry->d_lock); 2433 __d_rehash(entry); 2412 __d_rehash(entry); 2434 spin_unlock(&entry->d_lock); 2413 spin_unlock(&entry->d_lock); 2435 } 2414 } 2436 EXPORT_SYMBOL(d_rehash); 2415 EXPORT_SYMBOL(d_rehash); 2437 2416 2438 static inline unsigned start_dir_add(struct i 2417 static inline unsigned start_dir_add(struct inode *dir) 2439 { 2418 { 2440 preempt_disable_nested(); !! 2419 2441 for (;;) { 2420 for (;;) { 2442 unsigned n = dir->i_dir_seq; 2421 unsigned n = dir->i_dir_seq; 2443 if (!(n & 1) && cmpxchg(&dir- 2422 if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n) 2444 return n; 2423 return n; 2445 cpu_relax(); 2424 cpu_relax(); 2446 } 2425 } 2447 } 2426 } 2448 2427 2449 static inline void end_dir_add(struct inode * !! 2428 static inline void end_dir_add(struct inode *dir, unsigned n) 2450 wait_queue_hea << 2451 { 2429 { 2452 smp_store_release(&dir->i_dir_seq, n 2430 smp_store_release(&dir->i_dir_seq, n + 2); 2453 preempt_enable_nested(); << 2454 wake_up_all(d_wait); << 2455 } 2431 } 2456 2432 2457 static void d_wait_lookup(struct dentry *dent 2433 static void d_wait_lookup(struct dentry *dentry) 2458 { 2434 { 2459 if (d_in_lookup(dentry)) { 2435 if (d_in_lookup(dentry)) { 2460 DECLARE_WAITQUEUE(wait, curre 2436 DECLARE_WAITQUEUE(wait, current); 2461 add_wait_queue(dentry->d_wait 2437 add_wait_queue(dentry->d_wait, &wait); 2462 do { 2438 do { 2463 set_current_state(TAS 2439 set_current_state(TASK_UNINTERRUPTIBLE); 2464 spin_unlock(&dentry-> 2440 spin_unlock(&dentry->d_lock); 2465 schedule(); 2441 schedule(); 2466 spin_lock(&dentry->d_ 2442 spin_lock(&dentry->d_lock); 2467 } while (d_in_lookup(dentry)) 2443 } while (d_in_lookup(dentry)); 2468 } 2444 } 2469 } 2445 } 2470 2446 2471 struct dentry *d_alloc_parallel(struct dentry 2447 struct dentry *d_alloc_parallel(struct dentry *parent, 2472 const struct 2448 const struct qstr *name, 2473 wait_queue_he 2449 wait_queue_head_t *wq) 2474 { 2450 { 2475 unsigned int hash = name->hash; 2451 unsigned int hash = name->hash; 2476 struct hlist_bl_head *b = in_lookup_h 2452 struct hlist_bl_head *b = in_lookup_hash(parent, hash); 2477 struct hlist_bl_node *node; 2453 struct hlist_bl_node *node; 2478 struct dentry *new = d_alloc(parent, 2454 struct dentry *new = d_alloc(parent, name); 2479 struct dentry *dentry; 2455 struct dentry *dentry; 2480 unsigned seq, r_seq, d_seq; 2456 unsigned seq, r_seq, d_seq; 2481 2457 2482 if (unlikely(!new)) 2458 if (unlikely(!new)) 2483 return ERR_PTR(-ENOMEM); 2459 return ERR_PTR(-ENOMEM); 2484 2460 2485 retry: 2461 retry: 2486 rcu_read_lock(); 2462 rcu_read_lock(); 2487 seq = smp_load_acquire(&parent->d_ino !! 2463 seq = smp_load_acquire(&parent->d_inode->i_dir_seq) & ~1; 2488 r_seq = read_seqbegin(&rename_lock); 2464 r_seq = read_seqbegin(&rename_lock); 2489 dentry = __d_lookup_rcu(parent, name, 2465 dentry = __d_lookup_rcu(parent, name, &d_seq); 2490 if (unlikely(dentry)) { 2466 if (unlikely(dentry)) { 2491 if (!lockref_get_not_dead(&de 2467 if (!lockref_get_not_dead(&dentry->d_lockref)) { 2492 rcu_read_unlock(); 2468 rcu_read_unlock(); 2493 goto retry; 2469 goto retry; 2494 } 2470 } 2495 if (read_seqcount_retry(&dent 2471 if (read_seqcount_retry(&dentry->d_seq, d_seq)) { 2496 rcu_read_unlock(); 2472 rcu_read_unlock(); 2497 dput(dentry); 2473 dput(dentry); 2498 goto retry; 2474 goto retry; 2499 } 2475 } 2500 rcu_read_unlock(); 2476 rcu_read_unlock(); 2501 dput(new); 2477 dput(new); 2502 return dentry; 2478 return dentry; 2503 } 2479 } 2504 if (unlikely(read_seqretry(&rename_lo 2480 if (unlikely(read_seqretry(&rename_lock, r_seq))) { 2505 rcu_read_unlock(); 2481 rcu_read_unlock(); 2506 goto retry; 2482 goto retry; 2507 } 2483 } 2508 << 2509 if (unlikely(seq & 1)) { << 2510 rcu_read_unlock(); << 2511 goto retry; << 2512 } << 2513 << 2514 hlist_bl_lock(b); 2484 hlist_bl_lock(b); 2515 if (unlikely(READ_ONCE(parent->d_inod !! 2485 if (unlikely(parent->d_inode->i_dir_seq != seq)) { 2516 hlist_bl_unlock(b); 2486 hlist_bl_unlock(b); 2517 rcu_read_unlock(); 2487 rcu_read_unlock(); 2518 goto retry; 2488 goto retry; 2519 } 2489 } 2520 /* 2490 /* 2521 * No changes for the parent since th 2491 * No changes for the parent since the beginning of d_lookup(). 2522 * Since all removals from the chain 2492 * Since all removals from the chain happen with hlist_bl_lock(), 2523 * any potential in-lookup matches ar 2493 * any potential in-lookup matches are going to stay here until 2524 * we unlock the chain. All fields a 2494 * we unlock the chain. All fields are stable in everything 2525 * we encounter. 2495 * we encounter. 2526 */ 2496 */ 2527 hlist_bl_for_each_entry(dentry, node, 2497 hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) { 2528 if (dentry->d_name.hash != ha 2498 if (dentry->d_name.hash != hash) 2529 continue; 2499 continue; 2530 if (dentry->d_parent != paren 2500 if (dentry->d_parent != parent) 2531 continue; 2501 continue; 2532 if (!d_same_name(dentry, pare 2502 if (!d_same_name(dentry, parent, name)) 2533 continue; 2503 continue; 2534 hlist_bl_unlock(b); 2504 hlist_bl_unlock(b); 2535 /* now we can try to grab a r 2505 /* now we can try to grab a reference */ 2536 if (!lockref_get_not_dead(&de 2506 if (!lockref_get_not_dead(&dentry->d_lockref)) { 2537 rcu_read_unlock(); 2507 rcu_read_unlock(); 2538 goto retry; 2508 goto retry; 2539 } 2509 } 2540 2510 2541 rcu_read_unlock(); 2511 rcu_read_unlock(); 2542 /* 2512 /* 2543 * somebody is likely to be s 2513 * somebody is likely to be still doing lookup for it; 2544 * wait for them to finish 2514 * wait for them to finish 2545 */ 2515 */ 2546 spin_lock(&dentry->d_lock); 2516 spin_lock(&dentry->d_lock); 2547 d_wait_lookup(dentry); 2517 d_wait_lookup(dentry); 2548 /* 2518 /* 2549 * it's not in-lookup anymore 2519 * it's not in-lookup anymore; in principle we should repeat 2550 * everything from dcache loo 2520 * everything from dcache lookup, but it's likely to be what 2551 * d_lookup() would've found 2521 * d_lookup() would've found anyway. If it is, just return it; 2552 * otherwise we really have t 2522 * otherwise we really have to repeat the whole thing. 2553 */ 2523 */ 2554 if (unlikely(dentry->d_name.h 2524 if (unlikely(dentry->d_name.hash != hash)) 2555 goto mismatch; 2525 goto mismatch; 2556 if (unlikely(dentry->d_parent 2526 if (unlikely(dentry->d_parent != parent)) 2557 goto mismatch; 2527 goto mismatch; 2558 if (unlikely(d_unhashed(dentr 2528 if (unlikely(d_unhashed(dentry))) 2559 goto mismatch; 2529 goto mismatch; 2560 if (unlikely(!d_same_name(den 2530 if (unlikely(!d_same_name(dentry, parent, name))) 2561 goto mismatch; 2531 goto mismatch; 2562 /* OK, it *is* a hashed match 2532 /* OK, it *is* a hashed match; return it */ 2563 spin_unlock(&dentry->d_lock); 2533 spin_unlock(&dentry->d_lock); 2564 dput(new); 2534 dput(new); 2565 return dentry; 2535 return dentry; 2566 } 2536 } 2567 rcu_read_unlock(); 2537 rcu_read_unlock(); 2568 /* we can't take ->d_lock here; it's 2538 /* we can't take ->d_lock here; it's OK, though. */ 2569 new->d_flags |= DCACHE_PAR_LOOKUP; 2539 new->d_flags |= DCACHE_PAR_LOOKUP; 2570 new->d_wait = wq; 2540 new->d_wait = wq; 2571 hlist_bl_add_head(&new->d_u.d_in_look !! 2541 hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b); 2572 hlist_bl_unlock(b); 2542 hlist_bl_unlock(b); 2573 return new; 2543 return new; 2574 mismatch: 2544 mismatch: 2575 spin_unlock(&dentry->d_lock); 2545 spin_unlock(&dentry->d_lock); 2576 dput(dentry); 2546 dput(dentry); 2577 goto retry; 2547 goto retry; 2578 } 2548 } 2579 EXPORT_SYMBOL(d_alloc_parallel); 2549 EXPORT_SYMBOL(d_alloc_parallel); 2580 2550 2581 /* !! 2551 void __d_lookup_done(struct dentry *dentry) 2582 * - Unhash the dentry << 2583 * - Retrieve and clear the waitqueue head in << 2584 * - Return the waitqueue head << 2585 */ << 2586 static wait_queue_head_t *__d_lookup_unhash(s << 2587 { 2552 { 2588 wait_queue_head_t *d_wait; !! 2553 struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent, 2589 struct hlist_bl_head *b; !! 2554 dentry->d_name.hash); 2590 << 2591 lockdep_assert_held(&dentry->d_lock); << 2592 << 2593 b = in_lookup_hash(dentry->d_parent, << 2594 hlist_bl_lock(b); 2555 hlist_bl_lock(b); 2595 dentry->d_flags &= ~DCACHE_PAR_LOOKUP 2556 dentry->d_flags &= ~DCACHE_PAR_LOOKUP; 2596 __hlist_bl_del(&dentry->d_u.d_in_look 2557 __hlist_bl_del(&dentry->d_u.d_in_lookup_hash); 2597 d_wait = dentry->d_wait; !! 2558 wake_up_all(dentry->d_wait); 2598 dentry->d_wait = NULL; 2559 dentry->d_wait = NULL; 2599 hlist_bl_unlock(b); 2560 hlist_bl_unlock(b); 2600 INIT_HLIST_NODE(&dentry->d_u.d_alias) 2561 INIT_HLIST_NODE(&dentry->d_u.d_alias); 2601 INIT_LIST_HEAD(&dentry->d_lru); 2562 INIT_LIST_HEAD(&dentry->d_lru); 2602 return d_wait; << 2603 } << 2604 << 2605 void __d_lookup_unhash_wake(struct dentry *de << 2606 { << 2607 spin_lock(&dentry->d_lock); << 2608 wake_up_all(__d_lookup_unhash(dentry) << 2609 spin_unlock(&dentry->d_lock); << 2610 } 2563 } 2611 EXPORT_SYMBOL(__d_lookup_unhash_wake); !! 2564 EXPORT_SYMBOL(__d_lookup_done); 2612 2565 2613 /* inode->i_lock held if inode is non-NULL */ 2566 /* inode->i_lock held if inode is non-NULL */ 2614 2567 2615 static inline void __d_add(struct dentry *den 2568 static inline void __d_add(struct dentry *dentry, struct inode *inode) 2616 { 2569 { 2617 wait_queue_head_t *d_wait; << 2618 struct inode *dir = NULL; 2570 struct inode *dir = NULL; 2619 unsigned n; 2571 unsigned n; 2620 spin_lock(&dentry->d_lock); 2572 spin_lock(&dentry->d_lock); 2621 if (unlikely(d_in_lookup(dentry))) { 2573 if (unlikely(d_in_lookup(dentry))) { 2622 dir = dentry->d_parent->d_ino 2574 dir = dentry->d_parent->d_inode; 2623 n = start_dir_add(dir); 2575 n = start_dir_add(dir); 2624 d_wait = __d_lookup_unhash(de !! 2576 __d_lookup_done(dentry); 2625 } 2577 } 2626 if (inode) { 2578 if (inode) { 2627 unsigned add_flags = d_flags_ 2579 unsigned add_flags = d_flags_for_inode(inode); 2628 hlist_add_head(&dentry->d_u.d 2580 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry); 2629 raw_write_seqcount_begin(&den 2581 raw_write_seqcount_begin(&dentry->d_seq); 2630 __d_set_inode_and_type(dentry 2582 __d_set_inode_and_type(dentry, inode, add_flags); 2631 raw_write_seqcount_end(&dentr 2583 raw_write_seqcount_end(&dentry->d_seq); 2632 fsnotify_update_flags(dentry) 2584 fsnotify_update_flags(dentry); 2633 } 2585 } 2634 __d_rehash(dentry); 2586 __d_rehash(dentry); 2635 if (dir) 2587 if (dir) 2636 end_dir_add(dir, n, d_wait); !! 2588 end_dir_add(dir, n); 2637 spin_unlock(&dentry->d_lock); 2589 spin_unlock(&dentry->d_lock); 2638 if (inode) 2590 if (inode) 2639 spin_unlock(&inode->i_lock); 2591 spin_unlock(&inode->i_lock); 2640 } 2592 } 2641 2593 2642 /** 2594 /** 2643 * d_add - add dentry to hash queues 2595 * d_add - add dentry to hash queues 2644 * @entry: dentry to add 2596 * @entry: dentry to add 2645 * @inode: The inode to attach to this dentry 2597 * @inode: The inode to attach to this dentry 2646 * 2598 * 2647 * This adds the entry to the hash queues and 2599 * This adds the entry to the hash queues and initializes @inode. 2648 * The entry was actually filled in earlier d 2600 * The entry was actually filled in earlier during d_alloc(). 2649 */ 2601 */ 2650 2602 2651 void d_add(struct dentry *entry, struct inode 2603 void d_add(struct dentry *entry, struct inode *inode) 2652 { 2604 { 2653 if (inode) { 2605 if (inode) { 2654 security_d_instantiate(entry, 2606 security_d_instantiate(entry, inode); 2655 spin_lock(&inode->i_lock); 2607 spin_lock(&inode->i_lock); 2656 } 2608 } 2657 __d_add(entry, inode); 2609 __d_add(entry, inode); 2658 } 2610 } 2659 EXPORT_SYMBOL(d_add); 2611 EXPORT_SYMBOL(d_add); 2660 2612 2661 /** 2613 /** 2662 * d_exact_alias - find and hash an exact unh 2614 * d_exact_alias - find and hash an exact unhashed alias 2663 * @entry: dentry to add 2615 * @entry: dentry to add 2664 * @inode: The inode to go with this dentry 2616 * @inode: The inode to go with this dentry 2665 * 2617 * 2666 * If an unhashed dentry with the same name/p 2618 * If an unhashed dentry with the same name/parent and desired 2667 * inode already exists, hash and return it. 2619 * inode already exists, hash and return it. Otherwise, return 2668 * NULL. 2620 * NULL. 2669 * 2621 * 2670 * Parent directory should be locked. 2622 * Parent directory should be locked. 2671 */ 2623 */ 2672 struct dentry *d_exact_alias(struct dentry *e 2624 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode) 2673 { 2625 { 2674 struct dentry *alias; 2626 struct dentry *alias; 2675 unsigned int hash = entry->d_name.has 2627 unsigned int hash = entry->d_name.hash; 2676 2628 2677 spin_lock(&inode->i_lock); 2629 spin_lock(&inode->i_lock); 2678 hlist_for_each_entry(alias, &inode->i 2630 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { 2679 /* 2631 /* 2680 * Don't need alias->d_lock h 2632 * Don't need alias->d_lock here, because aliases with 2681 * d_parent == entry->d_paren 2633 * d_parent == entry->d_parent are not subject to name or 2682 * parent changes, because th 2634 * parent changes, because the parent inode i_mutex is held. 2683 */ 2635 */ 2684 if (alias->d_name.hash != has 2636 if (alias->d_name.hash != hash) 2685 continue; 2637 continue; 2686 if (alias->d_parent != entry- 2638 if (alias->d_parent != entry->d_parent) 2687 continue; 2639 continue; 2688 if (!d_same_name(alias, entry 2640 if (!d_same_name(alias, entry->d_parent, &entry->d_name)) 2689 continue; 2641 continue; 2690 spin_lock(&alias->d_lock); 2642 spin_lock(&alias->d_lock); 2691 if (!d_unhashed(alias)) { 2643 if (!d_unhashed(alias)) { 2692 spin_unlock(&alias->d 2644 spin_unlock(&alias->d_lock); 2693 alias = NULL; 2645 alias = NULL; 2694 } else { 2646 } else { 2695 dget_dlock(alias); !! 2647 __dget_dlock(alias); 2696 __d_rehash(alias); 2648 __d_rehash(alias); 2697 spin_unlock(&alias->d 2649 spin_unlock(&alias->d_lock); 2698 } 2650 } 2699 spin_unlock(&inode->i_lock); 2651 spin_unlock(&inode->i_lock); 2700 return alias; 2652 return alias; 2701 } 2653 } 2702 spin_unlock(&inode->i_lock); 2654 spin_unlock(&inode->i_lock); 2703 return NULL; 2655 return NULL; 2704 } 2656 } 2705 EXPORT_SYMBOL(d_exact_alias); 2657 EXPORT_SYMBOL(d_exact_alias); 2706 2658 >> 2659 /** >> 2660 * dentry_update_name_case - update case insensitive dentry with a new name >> 2661 * @dentry: dentry to be updated >> 2662 * @name: new name >> 2663 * >> 2664 * Update a case insensitive dentry with new case of name. >> 2665 * >> 2666 * dentry must have been returned by d_lookup with name @name. Old and new >> 2667 * name lengths must match (ie. no d_compare which allows mismatched name >> 2668 * lengths). >> 2669 * >> 2670 * Parent inode i_mutex must be held over d_lookup and into this call (to >> 2671 * keep renames and concurrent inserts, and readdir(2) away). >> 2672 */ >> 2673 void dentry_update_name_case(struct dentry *dentry, const struct qstr *name) >> 2674 { >> 2675 BUG_ON(!inode_is_locked(dentry->d_parent->d_inode)); >> 2676 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */ >> 2677 >> 2678 spin_lock(&dentry->d_lock); >> 2679 write_seqcount_begin(&dentry->d_seq); >> 2680 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len); >> 2681 write_seqcount_end(&dentry->d_seq); >> 2682 spin_unlock(&dentry->d_lock); >> 2683 } >> 2684 EXPORT_SYMBOL(dentry_update_name_case); >> 2685 2707 static void swap_names(struct dentry *dentry, 2686 static void swap_names(struct dentry *dentry, struct dentry *target) 2708 { 2687 { 2709 if (unlikely(dname_external(target))) 2688 if (unlikely(dname_external(target))) { 2710 if (unlikely(dname_external(d 2689 if (unlikely(dname_external(dentry))) { 2711 /* 2690 /* 2712 * Both external: swa 2691 * Both external: swap the pointers 2713 */ 2692 */ 2714 swap(target->d_name.n 2693 swap(target->d_name.name, dentry->d_name.name); 2715 } else { 2694 } else { 2716 /* 2695 /* 2717 * dentry:internal, t 2696 * dentry:internal, target:external. Steal target's 2718 * storage and make t 2697 * storage and make target internal. 2719 */ 2698 */ 2720 memcpy(target->d_inam 2699 memcpy(target->d_iname, dentry->d_name.name, 2721 dentr 2700 dentry->d_name.len + 1); 2722 dentry->d_name.name = 2701 dentry->d_name.name = target->d_name.name; 2723 target->d_name.name = 2702 target->d_name.name = target->d_iname; 2724 } 2703 } 2725 } else { 2704 } else { 2726 if (unlikely(dname_external(d 2705 if (unlikely(dname_external(dentry))) { 2727 /* 2706 /* 2728 * dentry:external, t 2707 * dentry:external, target:internal. Give dentry's 2729 * storage to target 2708 * storage to target and make dentry internal 2730 */ 2709 */ 2731 memcpy(dentry->d_inam 2710 memcpy(dentry->d_iname, target->d_name.name, 2732 targe 2711 target->d_name.len + 1); 2733 target->d_name.name = 2712 target->d_name.name = dentry->d_name.name; 2734 dentry->d_name.name = 2713 dentry->d_name.name = dentry->d_iname; 2735 } else { 2714 } else { 2736 /* 2715 /* 2737 * Both are internal. 2716 * Both are internal. 2738 */ 2717 */ 2739 unsigned int i; 2718 unsigned int i; 2740 BUILD_BUG_ON(!IS_ALIG 2719 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long))); 2741 for (i = 0; i < DNAME 2720 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) { 2742 swap(((long * 2721 swap(((long *) &dentry->d_iname)[i], 2743 ((long * 2722 ((long *) &target->d_iname)[i]); 2744 } 2723 } 2745 } 2724 } 2746 } 2725 } 2747 swap(dentry->d_name.hash_len, target- 2726 swap(dentry->d_name.hash_len, target->d_name.hash_len); 2748 } 2727 } 2749 2728 2750 static void copy_name(struct dentry *dentry, 2729 static void copy_name(struct dentry *dentry, struct dentry *target) 2751 { 2730 { 2752 struct external_name *old_name = NULL 2731 struct external_name *old_name = NULL; 2753 if (unlikely(dname_external(dentry))) 2732 if (unlikely(dname_external(dentry))) 2754 old_name = external_name(dent 2733 old_name = external_name(dentry); 2755 if (unlikely(dname_external(target))) 2734 if (unlikely(dname_external(target))) { 2756 atomic_inc(&external_name(tar 2735 atomic_inc(&external_name(target)->u.count); 2757 dentry->d_name = target->d_na 2736 dentry->d_name = target->d_name; 2758 } else { 2737 } else { 2759 memcpy(dentry->d_iname, targe 2738 memcpy(dentry->d_iname, target->d_name.name, 2760 target->d_nam 2739 target->d_name.len + 1); 2761 dentry->d_name.name = dentry- 2740 dentry->d_name.name = dentry->d_iname; 2762 dentry->d_name.hash_len = tar 2741 dentry->d_name.hash_len = target->d_name.hash_len; 2763 } 2742 } 2764 if (old_name && likely(atomic_dec_and 2743 if (old_name && likely(atomic_dec_and_test(&old_name->u.count))) 2765 kfree_rcu(old_name, u.head); 2744 kfree_rcu(old_name, u.head); 2766 } 2745 } 2767 2746 >> 2747 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target) >> 2748 { >> 2749 /* >> 2750 * XXXX: do we really need to take target->d_lock? >> 2751 */ >> 2752 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent) >> 2753 spin_lock(&target->d_parent->d_lock); >> 2754 else { >> 2755 if (d_ancestor(dentry->d_parent, target->d_parent)) { >> 2756 spin_lock(&dentry->d_parent->d_lock); >> 2757 spin_lock_nested(&target->d_parent->d_lock, >> 2758 DENTRY_D_LOCK_NESTED); >> 2759 } else { >> 2760 spin_lock(&target->d_parent->d_lock); >> 2761 spin_lock_nested(&dentry->d_parent->d_lock, >> 2762 DENTRY_D_LOCK_NESTED); >> 2763 } >> 2764 } >> 2765 if (target < dentry) { >> 2766 spin_lock_nested(&target->d_lock, 2); >> 2767 spin_lock_nested(&dentry->d_lock, 3); >> 2768 } else { >> 2769 spin_lock_nested(&dentry->d_lock, 2); >> 2770 spin_lock_nested(&target->d_lock, 3); >> 2771 } >> 2772 } >> 2773 >> 2774 static void dentry_unlock_for_move(struct dentry *dentry, struct dentry *target) >> 2775 { >> 2776 if (target->d_parent != dentry->d_parent) >> 2777 spin_unlock(&dentry->d_parent->d_lock); >> 2778 if (target->d_parent != target) >> 2779 spin_unlock(&target->d_parent->d_lock); >> 2780 spin_unlock(&target->d_lock); >> 2781 spin_unlock(&dentry->d_lock); >> 2782 } >> 2783 >> 2784 /* >> 2785 * When switching names, the actual string doesn't strictly have to >> 2786 * be preserved in the target - because we're dropping the target >> 2787 * anyway. As such, we can just do a simple memcpy() to copy over >> 2788 * the new name before we switch, unless we are going to rehash >> 2789 * it. Note that if we *do* unhash the target, we are not allowed >> 2790 * to rehash it without giving it a new name/hash key - whether >> 2791 * we swap or overwrite the names here, resulting name won't match >> 2792 * the reality in filesystem; it's only there for d_path() purposes. >> 2793 * Note that all of this is happening under rename_lock, so the >> 2794 * any hash lookup seeing it in the middle of manipulations will >> 2795 * be discarded anyway. So we do not care what happens to the hash >> 2796 * key in that case. >> 2797 */ 2768 /* 2798 /* 2769 * __d_move - move a dentry 2799 * __d_move - move a dentry 2770 * @dentry: entry to move 2800 * @dentry: entry to move 2771 * @target: new dentry 2801 * @target: new dentry 2772 * @exchange: exchange the two dentries 2802 * @exchange: exchange the two dentries 2773 * 2803 * 2774 * Update the dcache to reflect the move of a 2804 * Update the dcache to reflect the move of a file name. Negative 2775 * dcache entries should not be moved in this 2805 * dcache entries should not be moved in this way. Caller must hold 2776 * rename_lock, the i_mutex of the source and 2806 * rename_lock, the i_mutex of the source and target directories, 2777 * and the sb->s_vfs_rename_mutex if they dif 2807 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename(). 2778 */ 2808 */ 2779 static void __d_move(struct dentry *dentry, s 2809 static void __d_move(struct dentry *dentry, struct dentry *target, 2780 bool exchange) 2810 bool exchange) 2781 { 2811 { 2782 struct dentry *old_parent, *p; << 2783 wait_queue_head_t *d_wait; << 2784 struct inode *dir = NULL; 2812 struct inode *dir = NULL; 2785 unsigned n; 2813 unsigned n; >> 2814 if (!dentry->d_inode) >> 2815 printk(KERN_WARNING "VFS: moving negative dcache entry\n"); 2786 2816 2787 WARN_ON(!dentry->d_inode); !! 2817 BUG_ON(d_ancestor(dentry, target)); 2788 if (WARN_ON(dentry == target)) << 2789 return; << 2790 << 2791 BUG_ON(d_ancestor(target, dentry)); 2818 BUG_ON(d_ancestor(target, dentry)); 2792 old_parent = dentry->d_parent; << 2793 p = d_ancestor(old_parent, target); << 2794 if (IS_ROOT(dentry)) { << 2795 BUG_ON(p); << 2796 spin_lock(&target->d_parent-> << 2797 } else if (!p) { << 2798 /* target is not a descendent << 2799 spin_lock(&target->d_parent-> << 2800 spin_lock_nested(&old_parent- << 2801 } else { << 2802 BUG_ON(p == dentry); << 2803 spin_lock(&old_parent->d_lock << 2804 if (p != target) << 2805 spin_lock_nested(&tar << 2806 DENTR << 2807 } << 2808 spin_lock_nested(&dentry->d_lock, 2); << 2809 spin_lock_nested(&target->d_lock, 3); << 2810 2819 >> 2820 dentry_lock_for_move(dentry, target); 2811 if (unlikely(d_in_lookup(target))) { 2821 if (unlikely(d_in_lookup(target))) { 2812 dir = target->d_parent->d_ino 2822 dir = target->d_parent->d_inode; 2813 n = start_dir_add(dir); 2823 n = start_dir_add(dir); 2814 d_wait = __d_lookup_unhash(ta !! 2824 __d_lookup_done(target); 2815 } 2825 } 2816 2826 2817 write_seqcount_begin(&dentry->d_seq); 2827 write_seqcount_begin(&dentry->d_seq); 2818 write_seqcount_begin_nested(&target-> 2828 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED); 2819 2829 2820 /* unhash both */ 2830 /* unhash both */ 2821 if (!d_unhashed(dentry)) !! 2831 /* ___d_drop does write_seqcount_barrier, but they're OK to nest. */ 2822 ___d_drop(dentry); !! 2832 ___d_drop(dentry); 2823 if (!d_unhashed(target)) !! 2833 ___d_drop(target); 2824 ___d_drop(target); << 2825 2834 2826 /* ... and switch them in the tree */ !! 2835 /* Switch the names.. */ 2827 dentry->d_parent = target->d_parent; !! 2836 if (exchange) 2828 if (!exchange) { !! 2837 swap_names(dentry, target); >> 2838 else 2829 copy_name(dentry, target); 2839 copy_name(dentry, target); >> 2840 >> 2841 /* rehash in new place(s) */ >> 2842 __d_rehash(dentry); >> 2843 if (exchange) >> 2844 __d_rehash(target); >> 2845 else 2830 target->d_hash.pprev = NULL; 2846 target->d_hash.pprev = NULL; 2831 dentry->d_parent->d_lockref.c !! 2847 2832 if (dentry != old_parent) /* !! 2848 /* ... and switch them in the tree */ 2833 WARN_ON(!--old_parent !! 2849 if (IS_ROOT(dentry)) { >> 2850 /* splicing a tree */ >> 2851 dentry->d_flags |= DCACHE_RCUACCESS; >> 2852 dentry->d_parent = target->d_parent; >> 2853 target->d_parent = target; >> 2854 list_del_init(&target->d_child); >> 2855 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs); 2834 } else { 2856 } else { 2835 target->d_parent = old_parent !! 2857 /* swapping two dentries */ 2836 swap_names(dentry, target); !! 2858 swap(dentry->d_parent, target->d_parent); 2837 if (!hlist_unhashed(&target-> !! 2859 list_move(&target->d_child, &target->d_parent->d_subdirs); 2838 __hlist_del(&target-> !! 2860 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs); 2839 hlist_add_head(&target->d_sib !! 2861 if (exchange) 2840 __d_rehash(target); !! 2862 fsnotify_update_flags(target); 2841 fsnotify_update_flags(target) !! 2863 fsnotify_update_flags(dentry); 2842 } 2864 } 2843 if (!hlist_unhashed(&dentry->d_sib)) << 2844 __hlist_del(&dentry->d_sib); << 2845 hlist_add_head(&dentry->d_sib, &dentr << 2846 __d_rehash(dentry); << 2847 fsnotify_update_flags(dentry); << 2848 fscrypt_handle_d_move(dentry); << 2849 2865 2850 write_seqcount_end(&target->d_seq); 2866 write_seqcount_end(&target->d_seq); 2851 write_seqcount_end(&dentry->d_seq); 2867 write_seqcount_end(&dentry->d_seq); 2852 2868 2853 if (dir) 2869 if (dir) 2854 end_dir_add(dir, n, d_wait); !! 2870 end_dir_add(dir, n); 2855 !! 2871 dentry_unlock_for_move(dentry, target); 2856 if (dentry->d_parent != old_parent) << 2857 spin_unlock(&dentry->d_parent << 2858 if (dentry != old_parent) << 2859 spin_unlock(&old_parent->d_lo << 2860 spin_unlock(&target->d_lock); << 2861 spin_unlock(&dentry->d_lock); << 2862 } 2872 } 2863 2873 2864 /* 2874 /* 2865 * d_move - move a dentry 2875 * d_move - move a dentry 2866 * @dentry: entry to move 2876 * @dentry: entry to move 2867 * @target: new dentry 2877 * @target: new dentry 2868 * 2878 * 2869 * Update the dcache to reflect the move of a 2879 * Update the dcache to reflect the move of a file name. Negative 2870 * dcache entries should not be moved in this 2880 * dcache entries should not be moved in this way. See the locking 2871 * requirements for __d_move. 2881 * requirements for __d_move. 2872 */ 2882 */ 2873 void d_move(struct dentry *dentry, struct den 2883 void d_move(struct dentry *dentry, struct dentry *target) 2874 { 2884 { 2875 write_seqlock(&rename_lock); 2885 write_seqlock(&rename_lock); 2876 __d_move(dentry, target, false); 2886 __d_move(dentry, target, false); 2877 write_sequnlock(&rename_lock); 2887 write_sequnlock(&rename_lock); 2878 } 2888 } 2879 EXPORT_SYMBOL(d_move); 2889 EXPORT_SYMBOL(d_move); 2880 2890 2881 /* 2891 /* 2882 * d_exchange - exchange two dentries 2892 * d_exchange - exchange two dentries 2883 * @dentry1: first dentry 2893 * @dentry1: first dentry 2884 * @dentry2: second dentry 2894 * @dentry2: second dentry 2885 */ 2895 */ 2886 void d_exchange(struct dentry *dentry1, struc 2896 void d_exchange(struct dentry *dentry1, struct dentry *dentry2) 2887 { 2897 { 2888 write_seqlock(&rename_lock); 2898 write_seqlock(&rename_lock); 2889 2899 2890 WARN_ON(!dentry1->d_inode); 2900 WARN_ON(!dentry1->d_inode); 2891 WARN_ON(!dentry2->d_inode); 2901 WARN_ON(!dentry2->d_inode); 2892 WARN_ON(IS_ROOT(dentry1)); 2902 WARN_ON(IS_ROOT(dentry1)); 2893 WARN_ON(IS_ROOT(dentry2)); 2903 WARN_ON(IS_ROOT(dentry2)); 2894 2904 2895 __d_move(dentry1, dentry2, true); 2905 __d_move(dentry1, dentry2, true); 2896 2906 2897 write_sequnlock(&rename_lock); 2907 write_sequnlock(&rename_lock); 2898 } 2908 } 2899 2909 2900 /** 2910 /** 2901 * d_ancestor - search for an ancestor 2911 * d_ancestor - search for an ancestor 2902 * @p1: ancestor dentry 2912 * @p1: ancestor dentry 2903 * @p2: child dentry 2913 * @p2: child dentry 2904 * 2914 * 2905 * Returns the ancestor dentry of p2 which is 2915 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is 2906 * an ancestor of p2, else NULL. 2916 * an ancestor of p2, else NULL. 2907 */ 2917 */ 2908 struct dentry *d_ancestor(struct dentry *p1, 2918 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2) 2909 { 2919 { 2910 struct dentry *p; 2920 struct dentry *p; 2911 2921 2912 for (p = p2; !IS_ROOT(p); p = p->d_pa 2922 for (p = p2; !IS_ROOT(p); p = p->d_parent) { 2913 if (p->d_parent == p1) 2923 if (p->d_parent == p1) 2914 return p; 2924 return p; 2915 } 2925 } 2916 return NULL; 2926 return NULL; 2917 } 2927 } 2918 2928 2919 /* 2929 /* 2920 * This helper attempts to cope with remotely 2930 * This helper attempts to cope with remotely renamed directories 2921 * 2931 * 2922 * It assumes that the caller is already hold 2932 * It assumes that the caller is already holding 2923 * dentry->d_parent->d_inode->i_mutex, and re 2933 * dentry->d_parent->d_inode->i_mutex, and rename_lock 2924 * 2934 * 2925 * Note: If ever the locking in lock_rename() 2935 * Note: If ever the locking in lock_rename() changes, then please 2926 * remember to update this too... 2936 * remember to update this too... 2927 */ 2937 */ 2928 static int __d_unalias(struct dentry *dentry, !! 2938 static int __d_unalias(struct inode *inode, >> 2939 struct dentry *dentry, struct dentry *alias) 2929 { 2940 { 2930 struct mutex *m1 = NULL; 2941 struct mutex *m1 = NULL; 2931 struct rw_semaphore *m2 = NULL; 2942 struct rw_semaphore *m2 = NULL; 2932 int ret = -ESTALE; 2943 int ret = -ESTALE; 2933 2944 2934 /* If alias and dentry share a parent 2945 /* If alias and dentry share a parent, then no extra locks required */ 2935 if (alias->d_parent == dentry->d_pare 2946 if (alias->d_parent == dentry->d_parent) 2936 goto out_unalias; 2947 goto out_unalias; 2937 2948 2938 /* See lock_rename() */ 2949 /* See lock_rename() */ 2939 if (!mutex_trylock(&dentry->d_sb->s_v 2950 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex)) 2940 goto out_err; 2951 goto out_err; 2941 m1 = &dentry->d_sb->s_vfs_rename_mute 2952 m1 = &dentry->d_sb->s_vfs_rename_mutex; 2942 if (!inode_trylock_shared(alias->d_pa 2953 if (!inode_trylock_shared(alias->d_parent->d_inode)) 2943 goto out_err; 2954 goto out_err; 2944 m2 = &alias->d_parent->d_inode->i_rws 2955 m2 = &alias->d_parent->d_inode->i_rwsem; 2945 out_unalias: 2956 out_unalias: 2946 __d_move(alias, dentry, false); 2957 __d_move(alias, dentry, false); 2947 ret = 0; 2958 ret = 0; 2948 out_err: 2959 out_err: 2949 if (m2) 2960 if (m2) 2950 up_read(m2); 2961 up_read(m2); 2951 if (m1) 2962 if (m1) 2952 mutex_unlock(m1); 2963 mutex_unlock(m1); 2953 return ret; 2964 return ret; 2954 } 2965 } 2955 2966 2956 /** 2967 /** 2957 * d_splice_alias - splice a disconnected den 2968 * d_splice_alias - splice a disconnected dentry into the tree if one exists 2958 * @inode: the inode which may have a discon 2969 * @inode: the inode which may have a disconnected dentry 2959 * @dentry: a negative dentry which we want t 2970 * @dentry: a negative dentry which we want to point to the inode. 2960 * 2971 * 2961 * If inode is a directory and has an IS_ROOT 2972 * If inode is a directory and has an IS_ROOT alias, then d_move that in 2962 * place of the given dentry and return it, e 2973 * place of the given dentry and return it, else simply d_add the inode 2963 * to the dentry and return NULL. 2974 * to the dentry and return NULL. 2964 * 2975 * 2965 * If a non-IS_ROOT directory is found, the f 2976 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and 2966 * we should error out: directories can't hav 2977 * we should error out: directories can't have multiple aliases. 2967 * 2978 * 2968 * This is needed in the lookup routine of an 2979 * This is needed in the lookup routine of any filesystem that is exportable 2969 * (via knfsd) so that we can build dcache pa 2980 * (via knfsd) so that we can build dcache paths to directories effectively. 2970 * 2981 * 2971 * If a dentry was found and moved, then it i 2982 * If a dentry was found and moved, then it is returned. Otherwise NULL 2972 * is returned. This matches the expected re 2983 * is returned. This matches the expected return value of ->lookup. 2973 * 2984 * 2974 * Cluster filesystems may call this function 2985 * Cluster filesystems may call this function with a negative, hashed dentry. 2975 * In that case, we know that the inode will 2986 * In that case, we know that the inode will be a regular file, and also this 2976 * will only occur during atomic_open. So we 2987 * will only occur during atomic_open. So we need to check for the dentry 2977 * being already hashed only in the final cas 2988 * being already hashed only in the final case. 2978 */ 2989 */ 2979 struct dentry *d_splice_alias(struct inode *i 2990 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry) 2980 { 2991 { 2981 if (IS_ERR(inode)) 2992 if (IS_ERR(inode)) 2982 return ERR_CAST(inode); 2993 return ERR_CAST(inode); 2983 2994 2984 BUG_ON(!d_unhashed(dentry)); 2995 BUG_ON(!d_unhashed(dentry)); 2985 2996 2986 if (!inode) 2997 if (!inode) 2987 goto out; 2998 goto out; 2988 2999 2989 security_d_instantiate(dentry, inode) 3000 security_d_instantiate(dentry, inode); 2990 spin_lock(&inode->i_lock); 3001 spin_lock(&inode->i_lock); 2991 if (S_ISDIR(inode->i_mode)) { 3002 if (S_ISDIR(inode->i_mode)) { 2992 struct dentry *new = __d_find 3003 struct dentry *new = __d_find_any_alias(inode); 2993 if (unlikely(new)) { 3004 if (unlikely(new)) { 2994 /* The reference to n 3005 /* The reference to new ensures it remains an alias */ 2995 spin_unlock(&inode->i 3006 spin_unlock(&inode->i_lock); 2996 write_seqlock(&rename 3007 write_seqlock(&rename_lock); 2997 if (unlikely(d_ancest 3008 if (unlikely(d_ancestor(new, dentry))) { 2998 write_sequnlo 3009 write_sequnlock(&rename_lock); 2999 dput(new); 3010 dput(new); 3000 new = ERR_PTR 3011 new = ERR_PTR(-ELOOP); 3001 pr_warn_ratel 3012 pr_warn_ratelimited( 3002 "VFS: 3013 "VFS: Lookup of '%s' in %s %s" 3003 " wou 3014 " would have caused loop\n", 3004 dentr 3015 dentry->d_name.name, 3005 inode 3016 inode->i_sb->s_type->name, 3006 inode 3017 inode->i_sb->s_id); 3007 } else if (!IS_ROOT(n 3018 } else if (!IS_ROOT(new)) { 3008 struct dentry !! 3019 int err = __d_unalias(inode, dentry, new); 3009 int err = __d << 3010 write_sequnlo 3020 write_sequnlock(&rename_lock); 3011 if (err) { 3021 if (err) { 3012 dput( 3022 dput(new); 3013 new = 3023 new = ERR_PTR(err); 3014 } 3024 } 3015 dput(old_pare << 3016 } else { 3025 } else { 3017 __d_move(new, 3026 __d_move(new, dentry, false); 3018 write_sequnlo 3027 write_sequnlock(&rename_lock); 3019 } 3028 } 3020 iput(inode); 3029 iput(inode); 3021 return new; 3030 return new; 3022 } 3031 } 3023 } 3032 } 3024 out: 3033 out: 3025 __d_add(dentry, inode); 3034 __d_add(dentry, inode); 3026 return NULL; 3035 return NULL; 3027 } 3036 } 3028 EXPORT_SYMBOL(d_splice_alias); 3037 EXPORT_SYMBOL(d_splice_alias); 3029 3038 >> 3039 static int prepend(char **buffer, int *buflen, const char *str, int namelen) >> 3040 { >> 3041 *buflen -= namelen; >> 3042 if (*buflen < 0) >> 3043 return -ENAMETOOLONG; >> 3044 *buffer -= namelen; >> 3045 memcpy(*buffer, str, namelen); >> 3046 return 0; >> 3047 } >> 3048 >> 3049 /** >> 3050 * prepend_name - prepend a pathname in front of current buffer pointer >> 3051 * @buffer: buffer pointer >> 3052 * @buflen: allocated length of the buffer >> 3053 * @name: name string and length qstr structure >> 3054 * >> 3055 * With RCU path tracing, it may race with d_move(). Use READ_ONCE() to >> 3056 * make sure that either the old or the new name pointer and length are >> 3057 * fetched. However, there may be mismatch between length and pointer. >> 3058 * The length cannot be trusted, we need to copy it byte-by-byte until >> 3059 * the length is reached or a null byte is found. It also prepends "/" at >> 3060 * the beginning of the name. The sequence number check at the caller will >> 3061 * retry it again when a d_move() does happen. So any garbage in the buffer >> 3062 * due to mismatched pointer and length will be discarded. >> 3063 * >> 3064 * Data dependency barrier is needed to make sure that we see that terminating >> 3065 * NUL. Alpha strikes again, film at 11... >> 3066 */ >> 3067 static int prepend_name(char **buffer, int *buflen, const struct qstr *name) >> 3068 { >> 3069 const char *dname = READ_ONCE(name->name); >> 3070 u32 dlen = READ_ONCE(name->len); >> 3071 char *p; >> 3072 >> 3073 smp_read_barrier_depends(); >> 3074 >> 3075 *buflen -= dlen + 1; >> 3076 if (*buflen < 0) >> 3077 return -ENAMETOOLONG; >> 3078 p = *buffer -= dlen + 1; >> 3079 *p++ = '/'; >> 3080 while (dlen--) { >> 3081 char c = *dname++; >> 3082 if (!c) >> 3083 break; >> 3084 *p++ = c; >> 3085 } >> 3086 return 0; >> 3087 } >> 3088 >> 3089 /** >> 3090 * prepend_path - Prepend path string to a buffer >> 3091 * @path: the dentry/vfsmount to report >> 3092 * @root: root vfsmnt/dentry >> 3093 * @buffer: pointer to the end of the buffer >> 3094 * @buflen: pointer to buffer length >> 3095 * >> 3096 * The function will first try to write out the pathname without taking any >> 3097 * lock other than the RCU read lock to make sure that dentries won't go away. >> 3098 * It only checks the sequence number of the global rename_lock as any change >> 3099 * in the dentry's d_seq will be preceded by changes in the rename_lock >> 3100 * sequence number. If the sequence number had been changed, it will restart >> 3101 * the whole pathname back-tracing sequence again by taking the rename_lock. >> 3102 * In this case, there is no need to take the RCU read lock as the recursive >> 3103 * parent pointer references will keep the dentry chain alive as long as no >> 3104 * rename operation is performed. >> 3105 */ >> 3106 static int prepend_path(const struct path *path, >> 3107 const struct path *root, >> 3108 char **buffer, int *buflen) >> 3109 { >> 3110 struct dentry *dentry; >> 3111 struct vfsmount *vfsmnt; >> 3112 struct mount *mnt; >> 3113 int error = 0; >> 3114 unsigned seq, m_seq = 0; >> 3115 char *bptr; >> 3116 int blen; >> 3117 >> 3118 rcu_read_lock(); >> 3119 restart_mnt: >> 3120 read_seqbegin_or_lock(&mount_lock, &m_seq); >> 3121 seq = 0; >> 3122 rcu_read_lock(); >> 3123 restart: >> 3124 bptr = *buffer; >> 3125 blen = *buflen; >> 3126 error = 0; >> 3127 dentry = path->dentry; >> 3128 vfsmnt = path->mnt; >> 3129 mnt = real_mount(vfsmnt); >> 3130 read_seqbegin_or_lock(&rename_lock, &seq); >> 3131 while (dentry != root->dentry || vfsmnt != root->mnt) { >> 3132 struct dentry * parent; >> 3133 >> 3134 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) { >> 3135 struct mount *parent = READ_ONCE(mnt->mnt_parent); >> 3136 /* Escaped? */ >> 3137 if (dentry != vfsmnt->mnt_root) { >> 3138 bptr = *buffer; >> 3139 blen = *buflen; >> 3140 error = 3; >> 3141 break; >> 3142 } >> 3143 /* Global root? */ >> 3144 if (mnt != parent) { >> 3145 dentry = READ_ONCE(mnt->mnt_mountpoint); >> 3146 mnt = parent; >> 3147 vfsmnt = &mnt->mnt; >> 3148 continue; >> 3149 } >> 3150 if (!error) >> 3151 error = is_mounted(vfsmnt) ? 1 : 2; >> 3152 break; >> 3153 } >> 3154 parent = dentry->d_parent; >> 3155 prefetch(parent); >> 3156 error = prepend_name(&bptr, &blen, &dentry->d_name); >> 3157 if (error) >> 3158 break; >> 3159 >> 3160 dentry = parent; >> 3161 } >> 3162 if (!(seq & 1)) >> 3163 rcu_read_unlock(); >> 3164 if (need_seqretry(&rename_lock, seq)) { >> 3165 seq = 1; >> 3166 goto restart; >> 3167 } >> 3168 done_seqretry(&rename_lock, seq); >> 3169 >> 3170 if (!(m_seq & 1)) >> 3171 rcu_read_unlock(); >> 3172 if (need_seqretry(&mount_lock, m_seq)) { >> 3173 m_seq = 1; >> 3174 goto restart_mnt; >> 3175 } >> 3176 done_seqretry(&mount_lock, m_seq); >> 3177 >> 3178 if (error >= 0 && bptr == *buffer) { >> 3179 if (--blen < 0) >> 3180 error = -ENAMETOOLONG; >> 3181 else >> 3182 *--bptr = '/'; >> 3183 } >> 3184 *buffer = bptr; >> 3185 *buflen = blen; >> 3186 return error; >> 3187 } >> 3188 >> 3189 /** >> 3190 * __d_path - return the path of a dentry >> 3191 * @path: the dentry/vfsmount to report >> 3192 * @root: root vfsmnt/dentry >> 3193 * @buf: buffer to return value in >> 3194 * @buflen: buffer length >> 3195 * >> 3196 * Convert a dentry into an ASCII path name. >> 3197 * >> 3198 * Returns a pointer into the buffer or an error code if the >> 3199 * path was too long. >> 3200 * >> 3201 * "buflen" should be positive. >> 3202 * >> 3203 * If the path is not reachable from the supplied root, return %NULL. >> 3204 */ >> 3205 char *__d_path(const struct path *path, >> 3206 const struct path *root, >> 3207 char *buf, int buflen) >> 3208 { >> 3209 char *res = buf + buflen; >> 3210 int error; >> 3211 >> 3212 prepend(&res, &buflen, "\0", 1); >> 3213 error = prepend_path(path, root, &res, &buflen); >> 3214 >> 3215 if (error < 0) >> 3216 return ERR_PTR(error); >> 3217 if (error > 0) >> 3218 return NULL; >> 3219 return res; >> 3220 } >> 3221 >> 3222 char *d_absolute_path(const struct path *path, >> 3223 char *buf, int buflen) >> 3224 { >> 3225 struct path root = {}; >> 3226 char *res = buf + buflen; >> 3227 int error; >> 3228 >> 3229 prepend(&res, &buflen, "\0", 1); >> 3230 error = prepend_path(path, &root, &res, &buflen); >> 3231 >> 3232 if (error > 1) >> 3233 error = -EINVAL; >> 3234 if (error < 0) >> 3235 return ERR_PTR(error); >> 3236 return res; >> 3237 } >> 3238 >> 3239 /* >> 3240 * same as __d_path but appends "(deleted)" for unlinked files. >> 3241 */ >> 3242 static int path_with_deleted(const struct path *path, >> 3243 const struct path *root, >> 3244 char **buf, int *buflen) >> 3245 { >> 3246 prepend(buf, buflen, "\0", 1); >> 3247 if (d_unlinked(path->dentry)) { >> 3248 int error = prepend(buf, buflen, " (deleted)", 10); >> 3249 if (error) >> 3250 return error; >> 3251 } >> 3252 >> 3253 return prepend_path(path, root, buf, buflen); >> 3254 } >> 3255 >> 3256 static int prepend_unreachable(char **buffer, int *buflen) >> 3257 { >> 3258 return prepend(buffer, buflen, "(unreachable)", 13); >> 3259 } >> 3260 >> 3261 static void get_fs_root_rcu(struct fs_struct *fs, struct path *root) >> 3262 { >> 3263 unsigned seq; >> 3264 >> 3265 do { >> 3266 seq = read_seqcount_begin(&fs->seq); >> 3267 *root = fs->root; >> 3268 } while (read_seqcount_retry(&fs->seq, seq)); >> 3269 } >> 3270 >> 3271 /** >> 3272 * d_path - return the path of a dentry >> 3273 * @path: path to report >> 3274 * @buf: buffer to return value in >> 3275 * @buflen: buffer length >> 3276 * >> 3277 * Convert a dentry into an ASCII path name. If the entry has been deleted >> 3278 * the string " (deleted)" is appended. Note that this is ambiguous. >> 3279 * >> 3280 * Returns a pointer into the buffer or an error code if the path was >> 3281 * too long. Note: Callers should use the returned pointer, not the passed >> 3282 * in buffer, to use the name! The implementation often starts at an offset >> 3283 * into the buffer, and may leave 0 bytes at the start. >> 3284 * >> 3285 * "buflen" should be positive. >> 3286 */ >> 3287 char *d_path(const struct path *path, char *buf, int buflen) >> 3288 { >> 3289 char *res = buf + buflen; >> 3290 struct path root; >> 3291 int error; >> 3292 >> 3293 /* >> 3294 * We have various synthetic filesystems that never get mounted. On >> 3295 * these filesystems dentries are never used for lookup purposes, and >> 3296 * thus don't need to be hashed. They also don't need a name until a >> 3297 * user wants to identify the object in /proc/pid/fd/. The little hack >> 3298 * below allows us to generate a name for these objects on demand: >> 3299 * >> 3300 * Some pseudo inodes are mountable. When they are mounted >> 3301 * path->dentry == path->mnt->mnt_root. In that case don't call d_dname >> 3302 * and instead have d_path return the mounted path. >> 3303 */ >> 3304 if (path->dentry->d_op && path->dentry->d_op->d_dname && >> 3305 (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root)) >> 3306 return path->dentry->d_op->d_dname(path->dentry, buf, buflen); >> 3307 >> 3308 rcu_read_lock(); >> 3309 get_fs_root_rcu(current->fs, &root); >> 3310 error = path_with_deleted(path, &root, &res, &buflen); >> 3311 rcu_read_unlock(); >> 3312 >> 3313 if (error < 0) >> 3314 res = ERR_PTR(error); >> 3315 return res; >> 3316 } >> 3317 EXPORT_SYMBOL(d_path); >> 3318 >> 3319 /* >> 3320 * Helper function for dentry_operations.d_dname() members >> 3321 */ >> 3322 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen, >> 3323 const char *fmt, ...) >> 3324 { >> 3325 va_list args; >> 3326 char temp[64]; >> 3327 int sz; >> 3328 >> 3329 va_start(args, fmt); >> 3330 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1; >> 3331 va_end(args); >> 3332 >> 3333 if (sz > sizeof(temp) || sz > buflen) >> 3334 return ERR_PTR(-ENAMETOOLONG); >> 3335 >> 3336 buffer += buflen - sz; >> 3337 return memcpy(buffer, temp, sz); >> 3338 } >> 3339 >> 3340 char *simple_dname(struct dentry *dentry, char *buffer, int buflen) >> 3341 { >> 3342 char *end = buffer + buflen; >> 3343 /* these dentries are never renamed, so d_lock is not needed */ >> 3344 if (prepend(&end, &buflen, " (deleted)", 11) || >> 3345 prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) || >> 3346 prepend(&end, &buflen, "/", 1)) >> 3347 end = ERR_PTR(-ENAMETOOLONG); >> 3348 return end; >> 3349 } >> 3350 EXPORT_SYMBOL(simple_dname); >> 3351 >> 3352 /* >> 3353 * Write full pathname from the root of the filesystem into the buffer. >> 3354 */ >> 3355 static char *__dentry_path(struct dentry *d, char *buf, int buflen) >> 3356 { >> 3357 struct dentry *dentry; >> 3358 char *end, *retval; >> 3359 int len, seq = 0; >> 3360 int error = 0; >> 3361 >> 3362 if (buflen < 2) >> 3363 goto Elong; >> 3364 >> 3365 rcu_read_lock(); >> 3366 restart: >> 3367 dentry = d; >> 3368 end = buf + buflen; >> 3369 len = buflen; >> 3370 prepend(&end, &len, "\0", 1); >> 3371 /* Get '/' right */ >> 3372 retval = end-1; >> 3373 *retval = '/'; >> 3374 read_seqbegin_or_lock(&rename_lock, &seq); >> 3375 while (!IS_ROOT(dentry)) { >> 3376 struct dentry *parent = dentry->d_parent; >> 3377 >> 3378 prefetch(parent); >> 3379 error = prepend_name(&end, &len, &dentry->d_name); >> 3380 if (error) >> 3381 break; >> 3382 >> 3383 retval = end; >> 3384 dentry = parent; >> 3385 } >> 3386 if (!(seq & 1)) >> 3387 rcu_read_unlock(); >> 3388 if (need_seqretry(&rename_lock, seq)) { >> 3389 seq = 1; >> 3390 goto restart; >> 3391 } >> 3392 done_seqretry(&rename_lock, seq); >> 3393 if (error) >> 3394 goto Elong; >> 3395 return retval; >> 3396 Elong: >> 3397 return ERR_PTR(-ENAMETOOLONG); >> 3398 } >> 3399 >> 3400 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen) >> 3401 { >> 3402 return __dentry_path(dentry, buf, buflen); >> 3403 } >> 3404 EXPORT_SYMBOL(dentry_path_raw); >> 3405 >> 3406 char *dentry_path(struct dentry *dentry, char *buf, int buflen) >> 3407 { >> 3408 char *p = NULL; >> 3409 char *retval; >> 3410 >> 3411 if (d_unlinked(dentry)) { >> 3412 p = buf + buflen; >> 3413 if (prepend(&p, &buflen, "//deleted", 10) != 0) >> 3414 goto Elong; >> 3415 buflen++; >> 3416 } >> 3417 retval = __dentry_path(dentry, buf, buflen); >> 3418 if (!IS_ERR(retval) && p) >> 3419 *p = '/'; /* restore '/' overriden with '\0' */ >> 3420 return retval; >> 3421 Elong: >> 3422 return ERR_PTR(-ENAMETOOLONG); >> 3423 } >> 3424 >> 3425 static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root, >> 3426 struct path *pwd) >> 3427 { >> 3428 unsigned seq; >> 3429 >> 3430 do { >> 3431 seq = read_seqcount_begin(&fs->seq); >> 3432 *root = fs->root; >> 3433 *pwd = fs->pwd; >> 3434 } while (read_seqcount_retry(&fs->seq, seq)); >> 3435 } >> 3436 >> 3437 /* >> 3438 * NOTE! The user-level library version returns a >> 3439 * character pointer. The kernel system call just >> 3440 * returns the length of the buffer filled (which >> 3441 * includes the ending '\0' character), or a negative >> 3442 * error value. So libc would do something like >> 3443 * >> 3444 * char *getcwd(char * buf, size_t size) >> 3445 * { >> 3446 * int retval; >> 3447 * >> 3448 * retval = sys_getcwd(buf, size); >> 3449 * if (retval >= 0) >> 3450 * return buf; >> 3451 * errno = -retval; >> 3452 * return NULL; >> 3453 * } >> 3454 */ >> 3455 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size) >> 3456 { >> 3457 int error; >> 3458 struct path pwd, root; >> 3459 char *page = __getname(); >> 3460 >> 3461 if (!page) >> 3462 return -ENOMEM; >> 3463 >> 3464 rcu_read_lock(); >> 3465 get_fs_root_and_pwd_rcu(current->fs, &root, &pwd); >> 3466 >> 3467 error = -ENOENT; >> 3468 if (!d_unlinked(pwd.dentry)) { >> 3469 unsigned long len; >> 3470 char *cwd = page + PATH_MAX; >> 3471 int buflen = PATH_MAX; >> 3472 >> 3473 prepend(&cwd, &buflen, "\0", 1); >> 3474 error = prepend_path(&pwd, &root, &cwd, &buflen); >> 3475 rcu_read_unlock(); >> 3476 >> 3477 if (error < 0) >> 3478 goto out; >> 3479 >> 3480 /* Unreachable from current root */ >> 3481 if (error > 0) { >> 3482 error = prepend_unreachable(&cwd, &buflen); >> 3483 if (error) >> 3484 goto out; >> 3485 } >> 3486 >> 3487 error = -ERANGE; >> 3488 len = PATH_MAX + page - cwd; >> 3489 if (len <= size) { >> 3490 error = len; >> 3491 if (copy_to_user(buf, cwd, len)) >> 3492 error = -EFAULT; >> 3493 } >> 3494 } else { >> 3495 rcu_read_unlock(); >> 3496 } >> 3497 >> 3498 out: >> 3499 __putname(page); >> 3500 return error; >> 3501 } >> 3502 3030 /* 3503 /* 3031 * Test whether new_dentry is a subdirectory 3504 * Test whether new_dentry is a subdirectory of old_dentry. 3032 * 3505 * 3033 * Trivially implemented using the dcache str 3506 * Trivially implemented using the dcache structure 3034 */ 3507 */ 3035 3508 3036 /** 3509 /** 3037 * is_subdir - is new dentry a subdirectory o 3510 * is_subdir - is new dentry a subdirectory of old_dentry 3038 * @new_dentry: new dentry 3511 * @new_dentry: new dentry 3039 * @old_dentry: old dentry 3512 * @old_dentry: old dentry 3040 * 3513 * 3041 * Returns true if new_dentry is a subdirecto 3514 * Returns true if new_dentry is a subdirectory of the parent (at any depth). 3042 * Returns false otherwise. 3515 * Returns false otherwise. 3043 * Caller must ensure that "new_dentry" is pi 3516 * Caller must ensure that "new_dentry" is pinned before calling is_subdir() 3044 */ 3517 */ 3045 3518 3046 bool is_subdir(struct dentry *new_dentry, str 3519 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry) 3047 { 3520 { 3048 bool subdir; !! 3521 bool result; 3049 unsigned seq; 3522 unsigned seq; 3050 3523 3051 if (new_dentry == old_dentry) 3524 if (new_dentry == old_dentry) 3052 return true; 3525 return true; 3053 3526 3054 /* Access d_parent under rcu as d_mov !! 3527 do { 3055 rcu_read_lock(); !! 3528 /* for restarting inner loop in case of seq retry */ 3056 seq = read_seqbegin(&rename_lock); !! 3529 seq = read_seqbegin(&rename_lock); 3057 subdir = d_ancestor(old_dentry, new_d !! 3530 /* 3058 /* Try lockless once... */ !! 3531 * Need rcu_readlock to protect against the d_parent trashing 3059 if (read_seqretry(&rename_lock, seq)) !! 3532 * due to d_move 3060 /* ...else acquire lock for p !! 3533 */ 3061 read_seqlock_excl(&rename_loc !! 3534 rcu_read_lock(); 3062 subdir = d_ancestor(old_dentr !! 3535 if (d_ancestor(old_dentry, new_dentry)) 3063 read_sequnlock_excl(&rename_l !! 3536 result = true; 3064 } !! 3537 else 3065 rcu_read_unlock(); !! 3538 result = false; 3066 return subdir; !! 3539 rcu_read_unlock(); >> 3540 } while (read_seqretry(&rename_lock, seq)); >> 3541 >> 3542 return result; 3067 } 3543 } 3068 EXPORT_SYMBOL(is_subdir); << 3069 3544 3070 static enum d_walk_ret d_genocide_kill(void * 3545 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry) 3071 { 3546 { 3072 struct dentry *root = data; 3547 struct dentry *root = data; 3073 if (dentry != root) { 3548 if (dentry != root) { 3074 if (d_unhashed(dentry) || !de 3549 if (d_unhashed(dentry) || !dentry->d_inode) 3075 return D_WALK_SKIP; 3550 return D_WALK_SKIP; 3076 3551 3077 if (!(dentry->d_flags & DCACH 3552 if (!(dentry->d_flags & DCACHE_GENOCIDE)) { 3078 dentry->d_flags |= DC 3553 dentry->d_flags |= DCACHE_GENOCIDE; 3079 dentry->d_lockref.cou 3554 dentry->d_lockref.count--; 3080 } 3555 } 3081 } 3556 } 3082 return D_WALK_CONTINUE; 3557 return D_WALK_CONTINUE; 3083 } 3558 } 3084 3559 3085 void d_genocide(struct dentry *parent) 3560 void d_genocide(struct dentry *parent) 3086 { 3561 { 3087 d_walk(parent, parent, d_genocide_kil !! 3562 d_walk(parent, parent, d_genocide_kill, NULL); 3088 } 3563 } 3089 3564 3090 void d_mark_tmpfile(struct file *file, struct !! 3565 void d_tmpfile(struct dentry *dentry, struct inode *inode) 3091 { 3566 { 3092 struct dentry *dentry = file->f_path. !! 3567 inode_dec_link_count(inode); 3093 << 3094 BUG_ON(dentry->d_name.name != dentry- 3568 BUG_ON(dentry->d_name.name != dentry->d_iname || 3095 !hlist_unhashed(&dentry->d_u. 3569 !hlist_unhashed(&dentry->d_u.d_alias) || 3096 !d_unlinked(dentry)); 3570 !d_unlinked(dentry)); 3097 spin_lock(&dentry->d_parent->d_lock); 3571 spin_lock(&dentry->d_parent->d_lock); 3098 spin_lock_nested(&dentry->d_lock, DEN 3572 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 3099 dentry->d_name.len = sprintf(dentry-> 3573 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu", 3100 (unsigned lon 3574 (unsigned long long)inode->i_ino); 3101 spin_unlock(&dentry->d_lock); 3575 spin_unlock(&dentry->d_lock); 3102 spin_unlock(&dentry->d_parent->d_lock 3576 spin_unlock(&dentry->d_parent->d_lock); 3103 } << 3104 EXPORT_SYMBOL(d_mark_tmpfile); << 3105 << 3106 void d_tmpfile(struct file *file, struct inod << 3107 { << 3108 struct dentry *dentry = file->f_path. << 3109 << 3110 inode_dec_link_count(inode); << 3111 d_mark_tmpfile(file, inode); << 3112 d_instantiate(dentry, inode); 3577 d_instantiate(dentry, inode); 3113 } 3578 } 3114 EXPORT_SYMBOL(d_tmpfile); 3579 EXPORT_SYMBOL(d_tmpfile); 3115 3580 3116 /* << 3117 * Obtain inode number of the parent dentry. << 3118 */ << 3119 ino_t d_parent_ino(struct dentry *dentry) << 3120 { << 3121 struct dentry *parent; << 3122 struct inode *iparent; << 3123 unsigned seq; << 3124 ino_t ret; << 3125 << 3126 scoped_guard(rcu) { << 3127 seq = raw_seqcount_begin(&den << 3128 parent = READ_ONCE(dentry->d_ << 3129 iparent = d_inode_rcu(parent) << 3130 if (likely(iparent)) { << 3131 ret = iparent->i_ino; << 3132 if (!read_seqcount_re << 3133 return ret; << 3134 } << 3135 } << 3136 << 3137 spin_lock(&dentry->d_lock); << 3138 ret = dentry->d_parent->d_inode->i_in << 3139 spin_unlock(&dentry->d_lock); << 3140 return ret; << 3141 } << 3142 EXPORT_SYMBOL(d_parent_ino); << 3143 << 3144 static __initdata unsigned long dhash_entries 3581 static __initdata unsigned long dhash_entries; 3145 static int __init set_dhash_entries(char *str 3582 static int __init set_dhash_entries(char *str) 3146 { 3583 { 3147 if (!str) 3584 if (!str) 3148 return 0; 3585 return 0; 3149 dhash_entries = simple_strtoul(str, & 3586 dhash_entries = simple_strtoul(str, &str, 0); 3150 return 1; 3587 return 1; 3151 } 3588 } 3152 __setup("dhash_entries=", set_dhash_entries); 3589 __setup("dhash_entries=", set_dhash_entries); 3153 3590 3154 static void __init dcache_init_early(void) 3591 static void __init dcache_init_early(void) 3155 { 3592 { 3156 /* If hashes are distributed across N 3593 /* If hashes are distributed across NUMA nodes, defer 3157 * hash allocation until vmalloc spac 3594 * hash allocation until vmalloc space is available. 3158 */ 3595 */ 3159 if (hashdist) 3596 if (hashdist) 3160 return; 3597 return; 3161 3598 3162 dentry_hashtable = 3599 dentry_hashtable = 3163 alloc_large_system_hash("Dent 3600 alloc_large_system_hash("Dentry cache", 3164 sizeo 3601 sizeof(struct hlist_bl_head), 3165 dhash 3602 dhash_entries, 3166 13, 3603 13, 3167 HASH_ 3604 HASH_EARLY | HASH_ZERO, 3168 &d_ha 3605 &d_hash_shift, 3169 NULL, !! 3606 &d_hash_mask, 3170 0, 3607 0, 3171 0); 3608 0); 3172 d_hash_shift = 32 - d_hash_shift; << 3173 << 3174 runtime_const_init(shift, d_hash_shif << 3175 runtime_const_init(ptr, dentry_hashta << 3176 } 3609 } 3177 3610 3178 static void __init dcache_init(void) 3611 static void __init dcache_init(void) 3179 { 3612 { 3180 /* 3613 /* 3181 * A constructor could be added for s 3614 * A constructor could be added for stable state like the lists, 3182 * but it is probably not worth it be 3615 * but it is probably not worth it because of the cache nature 3183 * of the dcache. 3616 * of the dcache. 3184 */ 3617 */ 3185 dentry_cache = KMEM_CACHE_USERCOPY(de !! 3618 dentry_cache = KMEM_CACHE(dentry, 3186 SLAB_RECLAIM_ACCOUNT|SLAB_PAN !! 3619 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT); 3187 d_iname); << 3188 3620 3189 /* Hash may have been set up in dcach 3621 /* Hash may have been set up in dcache_init_early */ 3190 if (!hashdist) 3622 if (!hashdist) 3191 return; 3623 return; 3192 3624 3193 dentry_hashtable = 3625 dentry_hashtable = 3194 alloc_large_system_hash("Dent 3626 alloc_large_system_hash("Dentry cache", 3195 sizeo 3627 sizeof(struct hlist_bl_head), 3196 dhash 3628 dhash_entries, 3197 13, 3629 13, 3198 HASH_ 3630 HASH_ZERO, 3199 &d_ha 3631 &d_hash_shift, 3200 NULL, !! 3632 &d_hash_mask, 3201 0, 3633 0, 3202 0); 3634 0); 3203 d_hash_shift = 32 - d_hash_shift; << 3204 << 3205 runtime_const_init(shift, d_hash_shif << 3206 runtime_const_init(ptr, dentry_hashta << 3207 } 3635 } 3208 3636 3209 /* SLAB cache for __getname() consumers */ 3637 /* SLAB cache for __getname() consumers */ 3210 struct kmem_cache *names_cachep __ro_after_in !! 3638 struct kmem_cache *names_cachep __read_mostly; 3211 EXPORT_SYMBOL(names_cachep); 3639 EXPORT_SYMBOL(names_cachep); 3212 3640 >> 3641 EXPORT_SYMBOL(d_genocide); >> 3642 3213 void __init vfs_caches_init_early(void) 3643 void __init vfs_caches_init_early(void) 3214 { 3644 { 3215 int i; 3645 int i; 3216 3646 3217 for (i = 0; i < ARRAY_SIZE(in_lookup_ 3647 for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++) 3218 INIT_HLIST_BL_HEAD(&in_lookup 3648 INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]); 3219 3649 3220 dcache_init_early(); 3650 dcache_init_early(); 3221 inode_init_early(); 3651 inode_init_early(); 3222 } 3652 } 3223 3653 3224 void __init vfs_caches_init(void) 3654 void __init vfs_caches_init(void) 3225 { 3655 { 3226 names_cachep = kmem_cache_create_user !! 3656 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0, 3227 SLAB_HWCACHE_ALIGN|SL !! 3657 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 3228 3658 3229 dcache_init(); 3659 dcache_init(); 3230 inode_init(); 3660 inode_init(); 3231 files_init(); 3661 files_init(); 3232 files_maxfiles_init(); 3662 files_maxfiles_init(); 3233 mnt_init(); 3663 mnt_init(); 3234 bdev_cache_init(); 3664 bdev_cache_init(); 3235 chrdev_init(); 3665 chrdev_init(); 3236 } 3666 } 3237 3667
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.