1 // SPDX-License-Identifier: GPL-2.0-only << 2 /* 1 /* 3 * fs/dcache.c 2 * fs/dcache.c 4 * 3 * 5 * Complete reimplementation 4 * Complete reimplementation 6 * (C) 1997 Thomas Schoebel-Theuer, 5 * (C) 1997 Thomas Schoebel-Theuer, 7 * with heavy changes by Linus Torvalds 6 * with heavy changes by Linus Torvalds 8 */ 7 */ 9 8 10 /* 9 /* 11 * Notes on the allocation strategy: 10 * Notes on the allocation strategy: 12 * 11 * 13 * The dcache is a master of the icache - when 12 * The dcache is a master of the icache - whenever a dcache entry 14 * exists, the inode will always exist. "iput( 13 * exists, the inode will always exist. "iput()" is done either when 15 * the dcache entry is deleted or garbage coll 14 * the dcache entry is deleted or garbage collected. 16 */ 15 */ 17 16 18 #include <linux/ratelimit.h> 17 #include <linux/ratelimit.h> 19 #include <linux/string.h> 18 #include <linux/string.h> 20 #include <linux/mm.h> 19 #include <linux/mm.h> 21 #include <linux/fs.h> 20 #include <linux/fs.h> 22 #include <linux/fscrypt.h> << 23 #include <linux/fsnotify.h> 21 #include <linux/fsnotify.h> 24 #include <linux/slab.h> 22 #include <linux/slab.h> 25 #include <linux/init.h> 23 #include <linux/init.h> 26 #include <linux/hash.h> 24 #include <linux/hash.h> 27 #include <linux/cache.h> 25 #include <linux/cache.h> 28 #include <linux/export.h> 26 #include <linux/export.h> 29 #include <linux/security.h> 27 #include <linux/security.h> 30 #include <linux/seqlock.h> 28 #include <linux/seqlock.h> 31 #include <linux/memblock.h> 29 #include <linux/memblock.h> 32 #include <linux/bit_spinlock.h> 30 #include <linux/bit_spinlock.h> 33 #include <linux/rculist_bl.h> 31 #include <linux/rculist_bl.h> 34 #include <linux/list_lru.h> 32 #include <linux/list_lru.h> 35 #include "internal.h" 33 #include "internal.h" 36 #include "mount.h" 34 #include "mount.h" 37 35 38 #include <asm/runtime-const.h> << 39 << 40 /* 36 /* 41 * Usage: 37 * Usage: 42 * dcache->d_inode->i_lock protects: 38 * dcache->d_inode->i_lock protects: 43 * - i_dentry, d_u.d_alias, d_inode of alias 39 * - i_dentry, d_u.d_alias, d_inode of aliases 44 * dcache_hash_bucket lock protects: 40 * dcache_hash_bucket lock protects: 45 * - the dcache hash table 41 * - the dcache hash table 46 * s_roots bl list spinlock protects: 42 * s_roots bl list spinlock protects: 47 * - the s_roots list (see __d_drop) 43 * - the s_roots list (see __d_drop) 48 * dentry->d_sb->s_dentry_lru_lock protects: 44 * dentry->d_sb->s_dentry_lru_lock protects: 49 * - the dcache lru lists and counters 45 * - the dcache lru lists and counters 50 * d_lock protects: 46 * d_lock protects: 51 * - d_flags 47 * - d_flags 52 * - d_name 48 * - d_name 53 * - d_lru 49 * - d_lru 54 * - d_count 50 * - d_count 55 * - d_unhashed() 51 * - d_unhashed() 56 * - d_parent and d_chilren !! 52 * - d_parent and d_subdirs 57 * - childrens' d_sib and d_parent !! 53 * - childrens' d_child and d_parent 58 * - d_u.d_alias, d_inode 54 * - d_u.d_alias, d_inode 59 * 55 * 60 * Ordering: 56 * Ordering: 61 * dentry->d_inode->i_lock 57 * dentry->d_inode->i_lock 62 * dentry->d_lock 58 * dentry->d_lock 63 * dentry->d_sb->s_dentry_lru_lock 59 * dentry->d_sb->s_dentry_lru_lock 64 * dcache_hash_bucket lock 60 * dcache_hash_bucket lock 65 * s_roots lock 61 * s_roots lock 66 * 62 * 67 * If there is an ancestor relationship: 63 * If there is an ancestor relationship: 68 * dentry->d_parent->...->d_parent->d_lock 64 * dentry->d_parent->...->d_parent->d_lock 69 * ... 65 * ... 70 * dentry->d_parent->d_lock 66 * dentry->d_parent->d_lock 71 * dentry->d_lock 67 * dentry->d_lock 72 * 68 * 73 * If no ancestor relationship: 69 * If no ancestor relationship: 74 * arbitrary, since it's serialized on rename_ 70 * arbitrary, since it's serialized on rename_lock 75 */ 71 */ 76 int sysctl_vfs_cache_pressure __read_mostly = 72 int sysctl_vfs_cache_pressure __read_mostly = 100; 77 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure); 73 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure); 78 74 79 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rena 75 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock); 80 76 81 EXPORT_SYMBOL(rename_lock); 77 EXPORT_SYMBOL(rename_lock); 82 78 83 static struct kmem_cache *dentry_cache __ro_af !! 79 static struct kmem_cache *dentry_cache __read_mostly; 84 80 85 const struct qstr empty_name = QSTR_INIT("", 0 81 const struct qstr empty_name = QSTR_INIT("", 0); 86 EXPORT_SYMBOL(empty_name); 82 EXPORT_SYMBOL(empty_name); 87 const struct qstr slash_name = QSTR_INIT("/", 83 const struct qstr slash_name = QSTR_INIT("/", 1); 88 EXPORT_SYMBOL(slash_name); 84 EXPORT_SYMBOL(slash_name); 89 const struct qstr dotdot_name = QSTR_INIT(".." << 90 EXPORT_SYMBOL(dotdot_name); << 91 85 92 /* 86 /* 93 * This is the single most critical data struc 87 * This is the single most critical data structure when it comes 94 * to the dcache: the hashtable for lookups. S 88 * to the dcache: the hashtable for lookups. Somebody should try 95 * to make this good - I've just made it work. 89 * to make this good - I've just made it work. 96 * 90 * 97 * This hash-function tries to avoid losing to 91 * This hash-function tries to avoid losing too many bits of hash 98 * information, yet avoid using a prime hash-s 92 * information, yet avoid using a prime hash-size or similar. 99 * << 100 * Marking the variables "used" ensures that t << 101 * optimize them away completely on architectu << 102 * constant infrastructure, this allows debugg << 103 * values. But updating these values has no ef << 104 */ 93 */ 105 94 106 static unsigned int d_hash_shift __ro_after_in !! 95 static unsigned int d_hash_shift __read_mostly; 107 96 108 static struct hlist_bl_head *dentry_hashtable !! 97 static struct hlist_bl_head *dentry_hashtable __read_mostly; 109 98 110 static inline struct hlist_bl_head *d_hash(uns !! 99 static inline struct hlist_bl_head *d_hash(unsigned int hash) 111 { 100 { 112 return runtime_const_ptr(dentry_hashta !! 101 return dentry_hashtable + (hash >> d_hash_shift); 113 runtime_const_shift_right_32(h << 114 } 102 } 115 103 116 #define IN_LOOKUP_SHIFT 10 104 #define IN_LOOKUP_SHIFT 10 117 static struct hlist_bl_head in_lookup_hashtabl 105 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT]; 118 106 119 static inline struct hlist_bl_head *in_lookup_ 107 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent, 120 unsign 108 unsigned int hash) 121 { 109 { 122 hash += (unsigned long) parent / L1_CA 110 hash += (unsigned long) parent / L1_CACHE_BYTES; 123 return in_lookup_hashtable + hash_32(h 111 return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT); 124 } 112 } 125 113 126 struct dentry_stat_t { !! 114 127 long nr_dentry; !! 115 /* Statistics gathering. */ 128 long nr_unused; !! 116 struct dentry_stat_t dentry_stat = { 129 long age_limit; /* age in seco !! 117 .age_limit = 45, 130 long want_pages; /* pages reque << 131 long nr_negative; /* # of unused << 132 long dummy; /* Reserved fo << 133 }; 118 }; 134 119 135 static DEFINE_PER_CPU(long, nr_dentry); 120 static DEFINE_PER_CPU(long, nr_dentry); 136 static DEFINE_PER_CPU(long, nr_dentry_unused); 121 static DEFINE_PER_CPU(long, nr_dentry_unused); 137 static DEFINE_PER_CPU(long, nr_dentry_negative << 138 122 139 #if defined(CONFIG_SYSCTL) && defined(CONFIG_P 123 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS) 140 /* Statistics gathering. */ << 141 static struct dentry_stat_t dentry_stat = { << 142 .age_limit = 45, << 143 }; << 144 124 145 /* 125 /* 146 * Here we resort to our own counters instead 126 * Here we resort to our own counters instead of using generic per-cpu counters 147 * for consistency with what the vfs inode cod 127 * for consistency with what the vfs inode code does. We are expected to harvest 148 * better code and performance by having our o 128 * better code and performance by having our own specialized counters. 149 * 129 * 150 * Please note that the loop is done over all 130 * Please note that the loop is done over all possible CPUs, not over all online 151 * CPUs. The reason for this is that we don't 131 * CPUs. The reason for this is that we don't want to play games with CPUs going 152 * on and off. If one of them goes off, we wil 132 * on and off. If one of them goes off, we will just keep their counters. 153 * 133 * 154 * glommer: See cffbc8a for details, and if yo 134 * glommer: See cffbc8a for details, and if you ever intend to change this, 155 * please update all vfs counters to match. 135 * please update all vfs counters to match. 156 */ 136 */ 157 static long get_nr_dentry(void) 137 static long get_nr_dentry(void) 158 { 138 { 159 int i; 139 int i; 160 long sum = 0; 140 long sum = 0; 161 for_each_possible_cpu(i) 141 for_each_possible_cpu(i) 162 sum += per_cpu(nr_dentry, i); 142 sum += per_cpu(nr_dentry, i); 163 return sum < 0 ? 0 : sum; 143 return sum < 0 ? 0 : sum; 164 } 144 } 165 145 166 static long get_nr_dentry_unused(void) 146 static long get_nr_dentry_unused(void) 167 { 147 { 168 int i; 148 int i; 169 long sum = 0; 149 long sum = 0; 170 for_each_possible_cpu(i) 150 for_each_possible_cpu(i) 171 sum += per_cpu(nr_dentry_unuse 151 sum += per_cpu(nr_dentry_unused, i); 172 return sum < 0 ? 0 : sum; 152 return sum < 0 ? 0 : sum; 173 } 153 } 174 154 175 static long get_nr_dentry_negative(void) !! 155 int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer, 176 { !! 156 size_t *lenp, loff_t *ppos) 177 int i; << 178 long sum = 0; << 179 << 180 for_each_possible_cpu(i) << 181 sum += per_cpu(nr_dentry_negat << 182 return sum < 0 ? 0 : sum; << 183 } << 184 << 185 static int proc_nr_dentry(const struct ctl_tab << 186 size_t *lenp, loff_t << 187 { 157 { 188 dentry_stat.nr_dentry = get_nr_dentry( 158 dentry_stat.nr_dentry = get_nr_dentry(); 189 dentry_stat.nr_unused = get_nr_dentry_ 159 dentry_stat.nr_unused = get_nr_dentry_unused(); 190 dentry_stat.nr_negative = get_nr_dentr << 191 return proc_doulongvec_minmax(table, w 160 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 192 } 161 } 193 << 194 static struct ctl_table fs_dcache_sysctls[] = << 195 { << 196 .procname = "dentry-stat << 197 .data = &dentry_stat << 198 .maxlen = 6*sizeof(lon << 199 .mode = 0444, << 200 .proc_handler = proc_nr_dent << 201 }, << 202 }; << 203 << 204 static int __init init_fs_dcache_sysctls(void) << 205 { << 206 register_sysctl_init("fs", fs_dcache_s << 207 return 0; << 208 } << 209 fs_initcall(init_fs_dcache_sysctls); << 210 #endif 162 #endif 211 163 212 /* 164 /* 213 * Compare 2 name strings, return 0 if they ma 165 * Compare 2 name strings, return 0 if they match, otherwise non-zero. 214 * The strings are both count bytes long, and 166 * The strings are both count bytes long, and count is non-zero. 215 */ 167 */ 216 #ifdef CONFIG_DCACHE_WORD_ACCESS 168 #ifdef CONFIG_DCACHE_WORD_ACCESS 217 169 218 #include <asm/word-at-a-time.h> 170 #include <asm/word-at-a-time.h> 219 /* 171 /* 220 * NOTE! 'cs' and 'scount' come from a dentry, 172 * NOTE! 'cs' and 'scount' come from a dentry, so it has a 221 * aligned allocation for this particular comp 173 * aligned allocation for this particular component. We don't 222 * strictly need the load_unaligned_zeropad() 174 * strictly need the load_unaligned_zeropad() safety, but it 223 * doesn't hurt either. 175 * doesn't hurt either. 224 * 176 * 225 * In contrast, 'ct' and 'tcount' can be from 177 * In contrast, 'ct' and 'tcount' can be from a pathname, and do 226 * need the careful unaligned handling. 178 * need the careful unaligned handling. 227 */ 179 */ 228 static inline int dentry_string_cmp(const unsi 180 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount) 229 { 181 { 230 unsigned long a,b,mask; 182 unsigned long a,b,mask; 231 183 232 for (;;) { 184 for (;;) { 233 a = read_word_at_a_time(cs); 185 a = read_word_at_a_time(cs); 234 b = load_unaligned_zeropad(ct) 186 b = load_unaligned_zeropad(ct); 235 if (tcount < sizeof(unsigned l 187 if (tcount < sizeof(unsigned long)) 236 break; 188 break; 237 if (unlikely(a != b)) 189 if (unlikely(a != b)) 238 return 1; 190 return 1; 239 cs += sizeof(unsigned long); 191 cs += sizeof(unsigned long); 240 ct += sizeof(unsigned long); 192 ct += sizeof(unsigned long); 241 tcount -= sizeof(unsigned long 193 tcount -= sizeof(unsigned long); 242 if (!tcount) 194 if (!tcount) 243 return 0; 195 return 0; 244 } 196 } 245 mask = bytemask_from_count(tcount); 197 mask = bytemask_from_count(tcount); 246 return unlikely(!!((a ^ b) & mask)); 198 return unlikely(!!((a ^ b) & mask)); 247 } 199 } 248 200 249 #else 201 #else 250 202 251 static inline int dentry_string_cmp(const unsi 203 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount) 252 { 204 { 253 do { 205 do { 254 if (*cs != *ct) 206 if (*cs != *ct) 255 return 1; 207 return 1; 256 cs++; 208 cs++; 257 ct++; 209 ct++; 258 tcount--; 210 tcount--; 259 } while (tcount); 211 } while (tcount); 260 return 0; 212 return 0; 261 } 213 } 262 214 263 #endif 215 #endif 264 216 265 static inline int dentry_cmp(const struct dent 217 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount) 266 { 218 { 267 /* 219 /* 268 * Be careful about RCU walk racing wi 220 * Be careful about RCU walk racing with rename: 269 * use 'READ_ONCE' to fetch the name p 221 * use 'READ_ONCE' to fetch the name pointer. 270 * 222 * 271 * NOTE! Even if a rename will mean th 223 * NOTE! Even if a rename will mean that the length 272 * was not loaded atomically, we don't 224 * was not loaded atomically, we don't care. The 273 * RCU walk will check the sequence co 225 * RCU walk will check the sequence count eventually, 274 * and catch it. And we won't overrun 226 * and catch it. And we won't overrun the buffer, 275 * because we're reading the name poin 227 * because we're reading the name pointer atomically, 276 * and a dentry name is guaranteed to 228 * and a dentry name is guaranteed to be properly 277 * terminated with a NUL byte. 229 * terminated with a NUL byte. 278 * 230 * 279 * End result: even if 'len' is wrong, 231 * End result: even if 'len' is wrong, we'll exit 280 * early because the data cannot match 232 * early because the data cannot match (there can 281 * be no NUL in the ct/tcount data) 233 * be no NUL in the ct/tcount data) 282 */ 234 */ 283 const unsigned char *cs = READ_ONCE(de 235 const unsigned char *cs = READ_ONCE(dentry->d_name.name); 284 236 285 return dentry_string_cmp(cs, ct, tcoun 237 return dentry_string_cmp(cs, ct, tcount); 286 } 238 } 287 239 288 struct external_name { 240 struct external_name { 289 union { 241 union { 290 atomic_t count; 242 atomic_t count; 291 struct rcu_head head; 243 struct rcu_head head; 292 } u; 244 } u; 293 unsigned char name[]; 245 unsigned char name[]; 294 }; 246 }; 295 247 296 static inline struct external_name *external_n 248 static inline struct external_name *external_name(struct dentry *dentry) 297 { 249 { 298 return container_of(dentry->d_name.nam 250 return container_of(dentry->d_name.name, struct external_name, name[0]); 299 } 251 } 300 252 301 static void __d_free(struct rcu_head *head) 253 static void __d_free(struct rcu_head *head) 302 { 254 { 303 struct dentry *dentry = container_of(h 255 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu); 304 256 305 kmem_cache_free(dentry_cache, dentry); 257 kmem_cache_free(dentry_cache, dentry); 306 } 258 } 307 259 308 static void __d_free_external(struct rcu_head 260 static void __d_free_external(struct rcu_head *head) 309 { 261 { 310 struct dentry *dentry = container_of(h 262 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu); 311 kfree(external_name(dentry)); 263 kfree(external_name(dentry)); 312 kmem_cache_free(dentry_cache, dentry); 264 kmem_cache_free(dentry_cache, dentry); 313 } 265 } 314 266 315 static inline int dname_external(const struct 267 static inline int dname_external(const struct dentry *dentry) 316 { 268 { 317 return dentry->d_name.name != dentry-> 269 return dentry->d_name.name != dentry->d_iname; 318 } 270 } 319 271 320 void take_dentry_name_snapshot(struct name_sna 272 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry) 321 { 273 { 322 spin_lock(&dentry->d_lock); 274 spin_lock(&dentry->d_lock); 323 name->name = dentry->d_name; << 324 if (unlikely(dname_external(dentry))) 275 if (unlikely(dname_external(dentry))) { 325 atomic_inc(&external_name(dent !! 276 struct external_name *p = external_name(dentry); >> 277 atomic_inc(&p->u.count); >> 278 spin_unlock(&dentry->d_lock); >> 279 name->name = p->name; 326 } else { 280 } else { 327 memcpy(name->inline_name, dent 281 memcpy(name->inline_name, dentry->d_iname, 328 dentry->d_name.len + 1) 282 dentry->d_name.len + 1); 329 name->name.name = name->inline !! 283 spin_unlock(&dentry->d_lock); >> 284 name->name = name->inline_name; 330 } 285 } 331 spin_unlock(&dentry->d_lock); << 332 } 286 } 333 EXPORT_SYMBOL(take_dentry_name_snapshot); 287 EXPORT_SYMBOL(take_dentry_name_snapshot); 334 288 335 void release_dentry_name_snapshot(struct name_ 289 void release_dentry_name_snapshot(struct name_snapshot *name) 336 { 290 { 337 if (unlikely(name->name.name != name-> !! 291 if (unlikely(name->name != name->inline_name)) { 338 struct external_name *p; 292 struct external_name *p; 339 p = container_of(name->name.na !! 293 p = container_of(name->name, struct external_name, name[0]); 340 if (unlikely(atomic_dec_and_te 294 if (unlikely(atomic_dec_and_test(&p->u.count))) 341 kfree_rcu(p, u.head); 295 kfree_rcu(p, u.head); 342 } 296 } 343 } 297 } 344 EXPORT_SYMBOL(release_dentry_name_snapshot); 298 EXPORT_SYMBOL(release_dentry_name_snapshot); 345 299 346 static inline void __d_set_inode_and_type(stru 300 static inline void __d_set_inode_and_type(struct dentry *dentry, 347 stru 301 struct inode *inode, 348 unsi 302 unsigned type_flags) 349 { 303 { 350 unsigned flags; 304 unsigned flags; 351 305 352 dentry->d_inode = inode; 306 dentry->d_inode = inode; 353 flags = READ_ONCE(dentry->d_flags); 307 flags = READ_ONCE(dentry->d_flags); 354 flags &= ~DCACHE_ENTRY_TYPE; !! 308 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU); 355 flags |= type_flags; 309 flags |= type_flags; 356 smp_store_release(&dentry->d_flags, fl !! 310 WRITE_ONCE(dentry->d_flags, flags); 357 } 311 } 358 312 359 static inline void __d_clear_type_and_inode(st 313 static inline void __d_clear_type_and_inode(struct dentry *dentry) 360 { 314 { 361 unsigned flags = READ_ONCE(dentry->d_f 315 unsigned flags = READ_ONCE(dentry->d_flags); 362 316 363 flags &= ~DCACHE_ENTRY_TYPE; !! 317 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU); 364 WRITE_ONCE(dentry->d_flags, flags); 318 WRITE_ONCE(dentry->d_flags, flags); 365 dentry->d_inode = NULL; 319 dentry->d_inode = NULL; 366 /* << 367 * The negative counter only tracks de << 368 * d_lru is on another list. << 369 */ << 370 if ((flags & (DCACHE_LRU_LIST|DCACHE_S << 371 this_cpu_inc(nr_dentry_negativ << 372 } 320 } 373 321 374 static void dentry_free(struct dentry *dentry) 322 static void dentry_free(struct dentry *dentry) 375 { 323 { 376 WARN_ON(!hlist_unhashed(&dentry->d_u.d 324 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias)); 377 if (unlikely(dname_external(dentry))) 325 if (unlikely(dname_external(dentry))) { 378 struct external_name *p = exte 326 struct external_name *p = external_name(dentry); 379 if (likely(atomic_dec_and_test 327 if (likely(atomic_dec_and_test(&p->u.count))) { 380 call_rcu(&dentry->d_u. 328 call_rcu(&dentry->d_u.d_rcu, __d_free_external); 381 return; 329 return; 382 } 330 } 383 } 331 } 384 /* if dentry was never visible to RCU, 332 /* if dentry was never visible to RCU, immediate free is OK */ 385 if (dentry->d_flags & DCACHE_NORCU) !! 333 if (!(dentry->d_flags & DCACHE_RCUACCESS)) 386 __d_free(&dentry->d_u.d_rcu); 334 __d_free(&dentry->d_u.d_rcu); 387 else 335 else 388 call_rcu(&dentry->d_u.d_rcu, _ 336 call_rcu(&dentry->d_u.d_rcu, __d_free); 389 } 337 } 390 338 391 /* 339 /* 392 * Release the dentry's inode, using the files 340 * Release the dentry's inode, using the filesystem 393 * d_iput() operation if defined. 341 * d_iput() operation if defined. 394 */ 342 */ 395 static void dentry_unlink_inode(struct dentry 343 static void dentry_unlink_inode(struct dentry * dentry) 396 __releases(dentry->d_lock) 344 __releases(dentry->d_lock) 397 __releases(dentry->d_inode->i_lock) 345 __releases(dentry->d_inode->i_lock) 398 { 346 { 399 struct inode *inode = dentry->d_inode; 347 struct inode *inode = dentry->d_inode; 400 348 401 raw_write_seqcount_begin(&dentry->d_se 349 raw_write_seqcount_begin(&dentry->d_seq); 402 __d_clear_type_and_inode(dentry); 350 __d_clear_type_and_inode(dentry); 403 hlist_del_init(&dentry->d_u.d_alias); 351 hlist_del_init(&dentry->d_u.d_alias); 404 raw_write_seqcount_end(&dentry->d_seq) 352 raw_write_seqcount_end(&dentry->d_seq); 405 spin_unlock(&dentry->d_lock); 353 spin_unlock(&dentry->d_lock); 406 spin_unlock(&inode->i_lock); 354 spin_unlock(&inode->i_lock); 407 if (!inode->i_nlink) 355 if (!inode->i_nlink) 408 fsnotify_inoderemove(inode); 356 fsnotify_inoderemove(inode); 409 if (dentry->d_op && dentry->d_op->d_ip 357 if (dentry->d_op && dentry->d_op->d_iput) 410 dentry->d_op->d_iput(dentry, i 358 dentry->d_op->d_iput(dentry, inode); 411 else 359 else 412 iput(inode); 360 iput(inode); 413 } 361 } 414 362 415 /* 363 /* 416 * The DCACHE_LRU_LIST bit is set whenever the 364 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry 417 * is in use - which includes both the "real" 365 * is in use - which includes both the "real" per-superblock 418 * LRU list _and_ the DCACHE_SHRINK_LIST use. 366 * LRU list _and_ the DCACHE_SHRINK_LIST use. 419 * 367 * 420 * The DCACHE_SHRINK_LIST bit is set whenever 368 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is 421 * on the shrink list (ie not on the superbloc 369 * on the shrink list (ie not on the superblock LRU list). 422 * 370 * 423 * The per-cpu "nr_dentry_unused" counters are 371 * The per-cpu "nr_dentry_unused" counters are updated with 424 * the DCACHE_LRU_LIST bit. 372 * the DCACHE_LRU_LIST bit. 425 * 373 * 426 * The per-cpu "nr_dentry_negative" counters a << 427 * when deleted from or added to the per-super << 428 * from/to the shrink list. That is to avoid a << 429 * pair when moving from LRU to shrink list in << 430 * << 431 * These helper functions make sure we always 374 * These helper functions make sure we always follow the 432 * rules. d_lock must be held by the caller. 375 * rules. d_lock must be held by the caller. 433 */ 376 */ 434 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(( 377 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x)) 435 static void d_lru_add(struct dentry *dentry) 378 static void d_lru_add(struct dentry *dentry) 436 { 379 { 437 D_FLAG_VERIFY(dentry, 0); 380 D_FLAG_VERIFY(dentry, 0); 438 dentry->d_flags |= DCACHE_LRU_LIST; 381 dentry->d_flags |= DCACHE_LRU_LIST; 439 this_cpu_inc(nr_dentry_unused); 382 this_cpu_inc(nr_dentry_unused); 440 if (d_is_negative(dentry)) !! 383 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru)); 441 this_cpu_inc(nr_dentry_negativ << 442 WARN_ON_ONCE(!list_lru_add_obj( << 443 &dentry->d_sb->s_dentr << 444 } 384 } 445 385 446 static void d_lru_del(struct dentry *dentry) 386 static void d_lru_del(struct dentry *dentry) 447 { 387 { 448 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST) 388 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 449 dentry->d_flags &= ~DCACHE_LRU_LIST; 389 dentry->d_flags &= ~DCACHE_LRU_LIST; 450 this_cpu_dec(nr_dentry_unused); 390 this_cpu_dec(nr_dentry_unused); 451 if (d_is_negative(dentry)) !! 391 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru)); 452 this_cpu_dec(nr_dentry_negativ << 453 WARN_ON_ONCE(!list_lru_del_obj( << 454 &dentry->d_sb->s_dentr << 455 } 392 } 456 393 457 static void d_shrink_del(struct dentry *dentry 394 static void d_shrink_del(struct dentry *dentry) 458 { 395 { 459 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LI 396 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST); 460 list_del_init(&dentry->d_lru); 397 list_del_init(&dentry->d_lru); 461 dentry->d_flags &= ~(DCACHE_SHRINK_LIS 398 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST); 462 this_cpu_dec(nr_dentry_unused); 399 this_cpu_dec(nr_dentry_unused); 463 } 400 } 464 401 465 static void d_shrink_add(struct dentry *dentry 402 static void d_shrink_add(struct dentry *dentry, struct list_head *list) 466 { 403 { 467 D_FLAG_VERIFY(dentry, 0); 404 D_FLAG_VERIFY(dentry, 0); 468 list_add(&dentry->d_lru, list); 405 list_add(&dentry->d_lru, list); 469 dentry->d_flags |= DCACHE_SHRINK_LIST 406 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST; 470 this_cpu_inc(nr_dentry_unused); 407 this_cpu_inc(nr_dentry_unused); 471 } 408 } 472 409 473 /* 410 /* 474 * These can only be called under the global L 411 * These can only be called under the global LRU lock, ie during the 475 * callback for freeing the LRU list. "isolate 412 * callback for freeing the LRU list. "isolate" removes it from the 476 * LRU lists entirely, while shrink_move moves 413 * LRU lists entirely, while shrink_move moves it to the indicated 477 * private list. 414 * private list. 478 */ 415 */ 479 static void d_lru_isolate(struct list_lru_one 416 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry) 480 { 417 { 481 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST) 418 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 482 dentry->d_flags &= ~DCACHE_LRU_LIST; 419 dentry->d_flags &= ~DCACHE_LRU_LIST; 483 this_cpu_dec(nr_dentry_unused); 420 this_cpu_dec(nr_dentry_unused); 484 if (d_is_negative(dentry)) << 485 this_cpu_dec(nr_dentry_negativ << 486 list_lru_isolate(lru, &dentry->d_lru); 421 list_lru_isolate(lru, &dentry->d_lru); 487 } 422 } 488 423 489 static void d_lru_shrink_move(struct list_lru_ 424 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry, 490 struct list_head 425 struct list_head *list) 491 { 426 { 492 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST) 427 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 493 dentry->d_flags |= DCACHE_SHRINK_LIST; 428 dentry->d_flags |= DCACHE_SHRINK_LIST; 494 if (d_is_negative(dentry)) << 495 this_cpu_dec(nr_dentry_negativ << 496 list_lru_isolate_move(lru, &dentry->d_ 429 list_lru_isolate_move(lru, &dentry->d_lru, list); 497 } 430 } 498 431 >> 432 /** >> 433 * d_drop - drop a dentry >> 434 * @dentry: dentry to drop >> 435 * >> 436 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't >> 437 * be found through a VFS lookup any more. Note that this is different from >> 438 * deleting the dentry - d_delete will try to mark the dentry negative if >> 439 * possible, giving a successful _negative_ lookup, while d_drop will >> 440 * just make the cache lookup fail. >> 441 * >> 442 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some >> 443 * reason (NFS timeouts or autofs deletes). >> 444 * >> 445 * __d_drop requires dentry->d_lock >> 446 * ___d_drop doesn't mark dentry as "unhashed" >> 447 * (dentry->d_hash.pprev will be LIST_POISON2, not NULL). >> 448 */ 499 static void ___d_drop(struct dentry *dentry) 449 static void ___d_drop(struct dentry *dentry) 500 { 450 { 501 struct hlist_bl_head *b; 451 struct hlist_bl_head *b; 502 /* 452 /* 503 * Hashed dentries are normally on the 453 * Hashed dentries are normally on the dentry hashtable, 504 * with the exception of those newly a 454 * with the exception of those newly allocated by 505 * d_obtain_root, which are always IS_ 455 * d_obtain_root, which are always IS_ROOT: 506 */ 456 */ 507 if (unlikely(IS_ROOT(dentry))) 457 if (unlikely(IS_ROOT(dentry))) 508 b = &dentry->d_sb->s_roots; 458 b = &dentry->d_sb->s_roots; 509 else 459 else 510 b = d_hash(dentry->d_name.hash 460 b = d_hash(dentry->d_name.hash); 511 461 512 hlist_bl_lock(b); 462 hlist_bl_lock(b); 513 __hlist_bl_del(&dentry->d_hash); 463 __hlist_bl_del(&dentry->d_hash); 514 hlist_bl_unlock(b); 464 hlist_bl_unlock(b); 515 } 465 } 516 466 517 void __d_drop(struct dentry *dentry) 467 void __d_drop(struct dentry *dentry) 518 { 468 { 519 if (!d_unhashed(dentry)) { 469 if (!d_unhashed(dentry)) { 520 ___d_drop(dentry); 470 ___d_drop(dentry); 521 dentry->d_hash.pprev = NULL; 471 dentry->d_hash.pprev = NULL; 522 write_seqcount_invalidate(&den 472 write_seqcount_invalidate(&dentry->d_seq); 523 } 473 } 524 } 474 } 525 EXPORT_SYMBOL(__d_drop); 475 EXPORT_SYMBOL(__d_drop); 526 476 527 /** << 528 * d_drop - drop a dentry << 529 * @dentry: dentry to drop << 530 * << 531 * d_drop() unhashes the entry from the parent << 532 * be found through a VFS lookup any more. Not << 533 * deleting the dentry - d_delete will try to << 534 * possible, giving a successful _negative_ lo << 535 * just make the cache lookup fail. << 536 * << 537 * d_drop() is used mainly for stuff that want << 538 * reason (NFS timeouts or autofs deletes). << 539 * << 540 * __d_drop requires dentry->d_lock << 541 * << 542 * ___d_drop doesn't mark dentry as "unhashed" << 543 * (dentry->d_hash.pprev will be LIST_POISON2, << 544 */ << 545 void d_drop(struct dentry *dentry) 477 void d_drop(struct dentry *dentry) 546 { 478 { 547 spin_lock(&dentry->d_lock); 479 spin_lock(&dentry->d_lock); 548 __d_drop(dentry); 480 __d_drop(dentry); 549 spin_unlock(&dentry->d_lock); 481 spin_unlock(&dentry->d_lock); 550 } 482 } 551 EXPORT_SYMBOL(d_drop); 483 EXPORT_SYMBOL(d_drop); 552 484 553 static inline void dentry_unlist(struct dentry !! 485 static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent) 554 { 486 { 555 struct dentry *next; 487 struct dentry *next; 556 /* 488 /* 557 * Inform d_walk() and shrink_dentry_l 489 * Inform d_walk() and shrink_dentry_list() that we are no longer 558 * attached to the dentry tree 490 * attached to the dentry tree 559 */ 491 */ 560 dentry->d_flags |= DCACHE_DENTRY_KILLE 492 dentry->d_flags |= DCACHE_DENTRY_KILLED; 561 if (unlikely(hlist_unhashed(&dentry->d !! 493 if (unlikely(list_empty(&dentry->d_child))) 562 return; 494 return; 563 __hlist_del(&dentry->d_sib); !! 495 __list_del_entry(&dentry->d_child); 564 /* 496 /* 565 * Cursors can move around the list of 497 * Cursors can move around the list of children. While we'd been 566 * a normal list member, it didn't mat !! 498 * a normal list member, it didn't matter - ->d_child.next would've 567 * been updated. However, from now on 499 * been updated. However, from now on it won't be and for the 568 * things like d_walk() it might end u 500 * things like d_walk() it might end up with a nasty surprise. 569 * Normally d_walk() doesn't care abou 501 * Normally d_walk() doesn't care about cursors moving around - 570 * ->d_lock on parent prevents that an 502 * ->d_lock on parent prevents that and since a cursor has no children 571 * of its own, we get through it witho 503 * of its own, we get through it without ever unlocking the parent. 572 * There is one exception, though - if 504 * There is one exception, though - if we ascend from a child that 573 * gets killed as soon as we unlock it 505 * gets killed as soon as we unlock it, the next sibling is found 574 * using the value left in its ->d_sib !! 506 * using the value left in its ->d_child.next. And if _that_ 575 * pointed to a cursor, and cursor got 507 * pointed to a cursor, and cursor got moved (e.g. by lseek()) 576 * before d_walk() regains parent->d_l 508 * before d_walk() regains parent->d_lock, we'll end up skipping 577 * everything the cursor had been move 509 * everything the cursor had been moved past. 578 * 510 * 579 * Solution: make sure that the pointe !! 511 * Solution: make sure that the pointer left behind in ->d_child.next 580 * points to something that won't be m 512 * points to something that won't be moving around. I.e. skip the 581 * cursors. 513 * cursors. 582 */ 514 */ 583 while (dentry->d_sib.next) { !! 515 while (dentry->d_child.next != &parent->d_subdirs) { 584 next = hlist_entry(dentry->d_s !! 516 next = list_entry(dentry->d_child.next, struct dentry, d_child); 585 if (likely(!(next->d_flags & D 517 if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR))) 586 break; 518 break; 587 dentry->d_sib.next = next->d_s !! 519 dentry->d_child.next = next->d_child.next; 588 } 520 } 589 } 521 } 590 522 591 static struct dentry *__dentry_kill(struct den !! 523 static void __dentry_kill(struct dentry *dentry) 592 { 524 { 593 struct dentry *parent = NULL; 525 struct dentry *parent = NULL; 594 bool can_free = true; 526 bool can_free = true; >> 527 if (!IS_ROOT(dentry)) >> 528 parent = dentry->d_parent; 595 529 596 /* 530 /* 597 * The dentry is now unrecoverably dea 531 * The dentry is now unrecoverably dead to the world. 598 */ 532 */ 599 lockref_mark_dead(&dentry->d_lockref); 533 lockref_mark_dead(&dentry->d_lockref); 600 534 601 /* 535 /* 602 * inform the fs via d_prune that this 536 * inform the fs via d_prune that this dentry is about to be 603 * unhashed and destroyed. 537 * unhashed and destroyed. 604 */ 538 */ 605 if (dentry->d_flags & DCACHE_OP_PRUNE) 539 if (dentry->d_flags & DCACHE_OP_PRUNE) 606 dentry->d_op->d_prune(dentry); 540 dentry->d_op->d_prune(dentry); 607 541 608 if (dentry->d_flags & DCACHE_LRU_LIST) 542 if (dentry->d_flags & DCACHE_LRU_LIST) { 609 if (!(dentry->d_flags & DCACHE 543 if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) 610 d_lru_del(dentry); 544 d_lru_del(dentry); 611 } 545 } 612 /* if it was on the hash then remove i 546 /* if it was on the hash then remove it */ 613 __d_drop(dentry); 547 __d_drop(dentry); >> 548 dentry_unlist(dentry, parent); >> 549 if (parent) >> 550 spin_unlock(&parent->d_lock); 614 if (dentry->d_inode) 551 if (dentry->d_inode) 615 dentry_unlink_inode(dentry); 552 dentry_unlink_inode(dentry); 616 else 553 else 617 spin_unlock(&dentry->d_lock); 554 spin_unlock(&dentry->d_lock); 618 this_cpu_dec(nr_dentry); 555 this_cpu_dec(nr_dentry); 619 if (dentry->d_op && dentry->d_op->d_re 556 if (dentry->d_op && dentry->d_op->d_release) 620 dentry->d_op->d_release(dentry 557 dentry->d_op->d_release(dentry); 621 558 622 cond_resched(); !! 559 spin_lock(&dentry->d_lock); 623 /* now that it's negative, ->d_parent !! 560 if (dentry->d_flags & DCACHE_SHRINK_LIST) { 624 if (!IS_ROOT(dentry)) { !! 561 dentry->d_flags |= DCACHE_MAY_FREE; 625 parent = dentry->d_parent; << 626 spin_lock(&parent->d_lock); << 627 } << 628 spin_lock_nested(&dentry->d_lock, DENT << 629 dentry_unlist(dentry); << 630 if (dentry->d_flags & DCACHE_SHRINK_LI << 631 can_free = false; 562 can_free = false; >> 563 } 632 spin_unlock(&dentry->d_lock); 564 spin_unlock(&dentry->d_lock); 633 if (likely(can_free)) 565 if (likely(can_free)) 634 dentry_free(dentry); 566 dentry_free(dentry); 635 if (parent && --parent->d_lockref.coun !! 567 cond_resched(); >> 568 } >> 569 >> 570 static struct dentry *__lock_parent(struct dentry *dentry) >> 571 { >> 572 struct dentry *parent; >> 573 rcu_read_lock(); >> 574 spin_unlock(&dentry->d_lock); >> 575 again: >> 576 parent = READ_ONCE(dentry->d_parent); >> 577 spin_lock(&parent->d_lock); >> 578 /* >> 579 * We can't blindly lock dentry until we are sure >> 580 * that we won't violate the locking order. >> 581 * Any changes of dentry->d_parent must have >> 582 * been done with parent->d_lock held, so >> 583 * spin_lock() above is enough of a barrier >> 584 * for checking if it's still our child. >> 585 */ >> 586 if (unlikely(parent != dentry->d_parent)) { 636 spin_unlock(&parent->d_lock); 587 spin_unlock(&parent->d_lock); 637 return NULL; !! 588 goto again; 638 } 589 } >> 590 rcu_read_unlock(); >> 591 if (parent != dentry) >> 592 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); >> 593 else >> 594 parent = NULL; 639 return parent; 595 return parent; 640 } 596 } 641 597 642 /* !! 598 static inline struct dentry *lock_parent(struct dentry *dentry) 643 * Lock a dentry for feeding it to __dentry_ki << 644 * Called under rcu_read_lock() and dentry->d_ << 645 * guarantees that nothing we access will be f << 646 * Note that dentry is *not* protected from co << 647 * d_delete(), etc. << 648 * << 649 * Return false if dentry is busy. Otherwise, << 650 * that dentry's inode locked. << 651 */ << 652 << 653 static bool lock_for_kill(struct dentry *dentr << 654 { 599 { 655 struct inode *inode = dentry->d_inode; !! 600 struct dentry *parent = dentry->d_parent; 656 !! 601 if (IS_ROOT(dentry)) 657 if (unlikely(dentry->d_lockref.count)) !! 602 return NULL; 658 return false; !! 603 if (likely(spin_trylock(&parent->d_lock))) 659 !! 604 return parent; 660 if (!inode || likely(spin_trylock(&ino !! 605 return __lock_parent(dentry); 661 return true; << 662 << 663 do { << 664 spin_unlock(&dentry->d_lock); << 665 spin_lock(&inode->i_lock); << 666 spin_lock(&dentry->d_lock); << 667 if (likely(inode == dentry->d_ << 668 break; << 669 spin_unlock(&inode->i_lock); << 670 inode = dentry->d_inode; << 671 } while (inode); << 672 if (likely(!dentry->d_lockref.count)) << 673 return true; << 674 if (inode) << 675 spin_unlock(&inode->i_lock); << 676 return false; << 677 } 606 } 678 607 679 /* !! 608 static inline bool retain_dentry(struct dentry *dentry) 680 * Decide if dentry is worth retaining. Usual << 681 * locked; if not locked, we are more limited << 682 * without a lock. False in this case means " << 683 * << 684 * In case we aren't locked, these predicates << 685 * sufficient that at some point after we drop << 686 * hashed and the flags had the proper value. << 687 * re-gotten a reference to the dentry and cha << 688 * we can leave the dentry around with a zero << 689 */ << 690 static inline bool retain_dentry(struct dentry << 691 { 609 { 692 unsigned int d_flags; !! 610 WARN_ON(d_in_lookup(dentry)); 693 << 694 smp_rmb(); << 695 d_flags = READ_ONCE(dentry->d_flags); << 696 611 697 // Unreachable? Nobody would be able t !! 612 /* Unreachable? Get rid of it */ 698 if (unlikely(d_unhashed(dentry))) 613 if (unlikely(d_unhashed(dentry))) 699 return false; 614 return false; 700 615 701 // Same if it's disconnected !! 616 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED)) 702 if (unlikely(d_flags & DCACHE_DISCONNE << 703 return false; 617 return false; 704 618 705 // ->d_delete() might tell us not to b !! 619 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) { 706 // ->d_lock; can't decide without it !! 620 if (dentry->d_op->d_delete(dentry)) 707 if (unlikely(d_flags & DCACHE_OP_DELET << 708 if (!locked || dentry->d_op->d << 709 return false; 621 return false; 710 } 622 } 711 !! 623 /* retain; LRU fodder */ 712 // Explicitly told not to bother !! 624 dentry->d_lockref.count--; 713 if (unlikely(d_flags & DCACHE_DONTCACH !! 625 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST))) 714 return false; << 715 << 716 // At this point it looks like we ough << 717 // need to do something - put it on LR << 718 // and mark it referenced if it was on << 719 // Unfortunately, both actions require << 720 // case we'd have to punt rather than << 721 if (unlikely(!(d_flags & DCACHE_LRU_LI << 722 if (!locked) << 723 return false; << 724 d_lru_add(dentry); 626 d_lru_add(dentry); 725 } else if (unlikely(!(d_flags & DCACHE !! 627 else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED))) 726 if (!locked) << 727 return false; << 728 dentry->d_flags |= DCACHE_REFE 628 dentry->d_flags |= DCACHE_REFERENCED; 729 } << 730 return true; 629 return true; 731 } 630 } 732 631 733 void d_mark_dontcache(struct inode *inode) !! 632 /* >> 633 * Finish off a dentry we've decided to kill. >> 634 * dentry->d_lock must be held, returns with it unlocked. >> 635 * Returns dentry requiring refcount drop, or NULL if we're done. >> 636 */ >> 637 static struct dentry *dentry_kill(struct dentry *dentry) >> 638 __releases(dentry->d_lock) 734 { 639 { 735 struct dentry *de; !! 640 struct inode *inode = dentry->d_inode; >> 641 struct dentry *parent = NULL; 736 642 >> 643 if (inode && unlikely(!spin_trylock(&inode->i_lock))) >> 644 goto slow_positive; >> 645 >> 646 if (!IS_ROOT(dentry)) { >> 647 parent = dentry->d_parent; >> 648 if (unlikely(!spin_trylock(&parent->d_lock))) { >> 649 parent = __lock_parent(dentry); >> 650 if (likely(inode || !dentry->d_inode)) >> 651 goto got_locks; >> 652 /* negative that became positive */ >> 653 if (parent) >> 654 spin_unlock(&parent->d_lock); >> 655 inode = dentry->d_inode; >> 656 goto slow_positive; >> 657 } >> 658 } >> 659 __dentry_kill(dentry); >> 660 return parent; >> 661 >> 662 slow_positive: >> 663 spin_unlock(&dentry->d_lock); 737 spin_lock(&inode->i_lock); 664 spin_lock(&inode->i_lock); 738 hlist_for_each_entry(de, &inode->i_den !! 665 spin_lock(&dentry->d_lock); 739 spin_lock(&de->d_lock); !! 666 parent = lock_parent(dentry); 740 de->d_flags |= DCACHE_DONTCACH !! 667 got_locks: 741 spin_unlock(&de->d_lock); !! 668 if (unlikely(dentry->d_lockref.count != 1)) { >> 669 dentry->d_lockref.count--; >> 670 } else if (likely(!retain_dentry(dentry))) { >> 671 __dentry_kill(dentry); >> 672 return parent; 742 } 673 } 743 inode->i_state |= I_DONTCACHE; !! 674 /* we are keeping it, after all */ 744 spin_unlock(&inode->i_lock); !! 675 if (inode) >> 676 spin_unlock(&inode->i_lock); >> 677 if (parent) >> 678 spin_unlock(&parent->d_lock); >> 679 spin_unlock(&dentry->d_lock); >> 680 return NULL; 745 } 681 } 746 EXPORT_SYMBOL(d_mark_dontcache); << 747 682 748 /* 683 /* 749 * Try to do a lockless dput(), and return whe 684 * Try to do a lockless dput(), and return whether that was successful. 750 * 685 * 751 * If unsuccessful, we return false, having al 686 * If unsuccessful, we return false, having already taken the dentry lock. 752 * In that case refcount is guaranteed to be z << 753 * decided that it's not worth keeping around. << 754 * 687 * 755 * The caller needs to hold the RCU read lock, 688 * The caller needs to hold the RCU read lock, so that the dentry is 756 * guaranteed to stay around even if the refco 689 * guaranteed to stay around even if the refcount goes down to zero! 757 */ 690 */ 758 static inline bool fast_dput(struct dentry *de 691 static inline bool fast_dput(struct dentry *dentry) 759 { 692 { 760 int ret; 693 int ret; >> 694 unsigned int d_flags; >> 695 >> 696 /* >> 697 * If we have a d_op->d_delete() operation, we sould not >> 698 * let the dentry count go to zero, so use "put_or_lock". >> 699 */ >> 700 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) >> 701 return lockref_put_or_lock(&dentry->d_lockref); 761 702 762 /* 703 /* 763 * try to decrement the lockref optimi !! 704 * .. otherwise, we can try to just decrement the >> 705 * lockref optimistically. 764 */ 706 */ 765 ret = lockref_put_return(&dentry->d_lo 707 ret = lockref_put_return(&dentry->d_lockref); 766 708 767 /* 709 /* 768 * If the lockref_put_return() failed 710 * If the lockref_put_return() failed due to the lock being held 769 * by somebody else, the fast path has 711 * by somebody else, the fast path has failed. We will need to 770 * get the lock, and then check the co 712 * get the lock, and then check the count again. 771 */ 713 */ 772 if (unlikely(ret < 0)) { 714 if (unlikely(ret < 0)) { 773 spin_lock(&dentry->d_lock); 715 spin_lock(&dentry->d_lock); 774 if (WARN_ON_ONCE(dentry->d_loc !! 716 if (dentry->d_lockref.count > 1) { >> 717 dentry->d_lockref.count--; 775 spin_unlock(&dentry->d 718 spin_unlock(&dentry->d_lock); 776 return true; 719 return true; 777 } 720 } 778 dentry->d_lockref.count--; !! 721 return false; 779 goto locked; << 780 } 722 } 781 723 782 /* 724 /* 783 * If we weren't the last ref, we're d 725 * If we weren't the last ref, we're done. 784 */ 726 */ 785 if (ret) 727 if (ret) 786 return true; 728 return true; 787 729 788 /* 730 /* 789 * Can we decide that decrement of ref !! 731 * Careful, careful. The reference count went down 790 * taking the lock? There's a very co !! 732 * to zero, but we don't hold the dentry lock, so 791 * dentry looks like it ought to be re !! 733 * somebody else could get it again, and do another 792 * to do. !! 734 * dput(), and we need to not race with that. >> 735 * >> 736 * However, there is a very special and common case >> 737 * where we don't care, because there is nothing to >> 738 * do: the dentry is still hashed, it does not have >> 739 * a 'delete' op, and it's referenced and already on >> 740 * the LRU list. >> 741 * >> 742 * NOTE! Since we aren't locked, these values are >> 743 * not "stable". However, it is sufficient that at >> 744 * some point after we dropped the reference the >> 745 * dentry was hashed and the flags had the proper >> 746 * value. Other dentry users may have re-gotten >> 747 * a reference to the dentry and change that, but >> 748 * our work is done - we can leave the dentry >> 749 * around with a zero refcount. 793 */ 750 */ 794 if (retain_dentry(dentry, false)) !! 751 smp_rmb(); >> 752 d_flags = READ_ONCE(dentry->d_flags); >> 753 d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED; >> 754 >> 755 /* Nothing to do? Dropping the reference was all we needed? */ >> 756 if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry)) 795 return true; 757 return true; 796 758 797 /* 759 /* 798 * Either not worth retaining or we ca !! 760 * Not the fast normal case? Get the lock. We've already decremented 799 * Get the lock, then. We've already !! 761 * the refcount, but we'll need to re-check the situation after 800 * but we'll need to re-check the situ !! 762 * getting the lock. 801 */ 763 */ 802 spin_lock(&dentry->d_lock); 764 spin_lock(&dentry->d_lock); 803 765 804 /* 766 /* 805 * Did somebody else grab a reference 767 * Did somebody else grab a reference to it in the meantime, and 806 * we're no longer the last user after 768 * we're no longer the last user after all? Alternatively, somebody 807 * else could have killed it and marke 769 * else could have killed it and marked it dead. Either way, we 808 * don't need to do anything else. 770 * don't need to do anything else. 809 */ 771 */ 810 locked: !! 772 if (dentry->d_lockref.count) { 811 if (dentry->d_lockref.count || retain_ << 812 spin_unlock(&dentry->d_lock); 773 spin_unlock(&dentry->d_lock); 813 return true; 774 return true; 814 } 775 } >> 776 >> 777 /* >> 778 * Re-get the reference we optimistically dropped. We hold the >> 779 * lock, and we just tested that it was zero, so we can just >> 780 * set it to 1. >> 781 */ >> 782 dentry->d_lockref.count = 1; 815 return false; 783 return false; 816 } 784 } 817 785 818 786 819 /* 787 /* 820 * This is dput 788 * This is dput 821 * 789 * 822 * This is complicated by the fact that we do 790 * This is complicated by the fact that we do not want to put 823 * dentries that are no longer on any hash cha 791 * dentries that are no longer on any hash chain on the unused 824 * list: we'd much rather just get rid of them 792 * list: we'd much rather just get rid of them immediately. 825 * 793 * 826 * However, that implies that we have to trave 794 * However, that implies that we have to traverse the dentry 827 * tree upwards to the parents which might _al 795 * tree upwards to the parents which might _also_ now be 828 * scheduled for deletion (it may have been on 796 * scheduled for deletion (it may have been only waiting for 829 * its last child to go away). 797 * its last child to go away). 830 * 798 * 831 * This tail recursion is done by hand as we d 799 * This tail recursion is done by hand as we don't want to depend 832 * on the compiler to always get this right (g 800 * on the compiler to always get this right (gcc generally doesn't). 833 * Real recursion would eat up our stack space 801 * Real recursion would eat up our stack space. 834 */ 802 */ 835 803 836 /* 804 /* 837 * dput - release a dentry 805 * dput - release a dentry 838 * @dentry: dentry to release 806 * @dentry: dentry to release 839 * 807 * 840 * Release a dentry. This will drop the usage 808 * Release a dentry. This will drop the usage count and if appropriate 841 * call the dentry unlink method as well as re 809 * call the dentry unlink method as well as removing it from the queues and 842 * releasing its resources. If the parent dent 810 * releasing its resources. If the parent dentries were scheduled for release 843 * they too may now get deleted. 811 * they too may now get deleted. 844 */ 812 */ 845 void dput(struct dentry *dentry) 813 void dput(struct dentry *dentry) 846 { 814 { 847 if (!dentry) !! 815 while (dentry) { 848 return; !! 816 might_sleep(); 849 might_sleep(); !! 817 850 rcu_read_lock(); !! 818 rcu_read_lock(); 851 if (likely(fast_dput(dentry))) { !! 819 if (likely(fast_dput(dentry))) { 852 rcu_read_unlock(); !! 820 rcu_read_unlock(); 853 return; << 854 } << 855 while (lock_for_kill(dentry)) { << 856 rcu_read_unlock(); << 857 dentry = __dentry_kill(dentry) << 858 if (!dentry) << 859 return; 821 return; 860 if (retain_dentry(dentry, true !! 822 } >> 823 >> 824 /* Slow case: now with the dentry lock held */ >> 825 rcu_read_unlock(); >> 826 >> 827 if (likely(retain_dentry(dentry))) { 861 spin_unlock(&dentry->d 828 spin_unlock(&dentry->d_lock); 862 return; 829 return; 863 } 830 } 864 rcu_read_lock(); !! 831 >> 832 dentry = dentry_kill(dentry); 865 } 833 } 866 rcu_read_unlock(); << 867 spin_unlock(&dentry->d_lock); << 868 } 834 } 869 EXPORT_SYMBOL(dput); 835 EXPORT_SYMBOL(dput); 870 836 871 static void to_shrink_list(struct dentry *dent !! 837 872 __must_hold(&dentry->d_lock) !! 838 /* This must be called with d_lock held */ >> 839 static inline void __dget_dlock(struct dentry *dentry) 873 { 840 { 874 if (!(dentry->d_flags & DCACHE_SHRINK_ !! 841 dentry->d_lockref.count++; 875 if (dentry->d_flags & DCACHE_L << 876 d_lru_del(dentry); << 877 d_shrink_add(dentry, list); << 878 } << 879 } 842 } 880 843 881 void dput_to_list(struct dentry *dentry, struc !! 844 static inline void __dget(struct dentry *dentry) 882 { 845 { 883 rcu_read_lock(); !! 846 lockref_get(&dentry->d_lockref); 884 if (likely(fast_dput(dentry))) { << 885 rcu_read_unlock(); << 886 return; << 887 } << 888 rcu_read_unlock(); << 889 to_shrink_list(dentry, list); << 890 spin_unlock(&dentry->d_lock); << 891 } 847 } 892 848 893 struct dentry *dget_parent(struct dentry *dent 849 struct dentry *dget_parent(struct dentry *dentry) 894 { 850 { 895 int gotref; 851 int gotref; 896 struct dentry *ret; 852 struct dentry *ret; 897 unsigned seq; << 898 853 899 /* 854 /* 900 * Do optimistic parent lookup without 855 * Do optimistic parent lookup without any 901 * locking. 856 * locking. 902 */ 857 */ 903 rcu_read_lock(); 858 rcu_read_lock(); 904 seq = raw_seqcount_begin(&dentry->d_se << 905 ret = READ_ONCE(dentry->d_parent); 859 ret = READ_ONCE(dentry->d_parent); 906 gotref = lockref_get_not_zero(&ret->d_ 860 gotref = lockref_get_not_zero(&ret->d_lockref); 907 rcu_read_unlock(); 861 rcu_read_unlock(); 908 if (likely(gotref)) { 862 if (likely(gotref)) { 909 if (!read_seqcount_retry(&dent !! 863 if (likely(ret == READ_ONCE(dentry->d_parent))) 910 return ret; 864 return ret; 911 dput(ret); 865 dput(ret); 912 } 866 } 913 867 914 repeat: 868 repeat: 915 /* 869 /* 916 * Don't need rcu_dereference because 870 * Don't need rcu_dereference because we re-check it was correct under 917 * the lock. 871 * the lock. 918 */ 872 */ 919 rcu_read_lock(); 873 rcu_read_lock(); 920 ret = dentry->d_parent; 874 ret = dentry->d_parent; 921 spin_lock(&ret->d_lock); 875 spin_lock(&ret->d_lock); 922 if (unlikely(ret != dentry->d_parent)) 876 if (unlikely(ret != dentry->d_parent)) { 923 spin_unlock(&ret->d_lock); 877 spin_unlock(&ret->d_lock); 924 rcu_read_unlock(); 878 rcu_read_unlock(); 925 goto repeat; 879 goto repeat; 926 } 880 } 927 rcu_read_unlock(); 881 rcu_read_unlock(); 928 BUG_ON(!ret->d_lockref.count); 882 BUG_ON(!ret->d_lockref.count); 929 ret->d_lockref.count++; 883 ret->d_lockref.count++; 930 spin_unlock(&ret->d_lock); 884 spin_unlock(&ret->d_lock); 931 return ret; 885 return ret; 932 } 886 } 933 EXPORT_SYMBOL(dget_parent); 887 EXPORT_SYMBOL(dget_parent); 934 888 935 static struct dentry * __d_find_any_alias(stru 889 static struct dentry * __d_find_any_alias(struct inode *inode) 936 { 890 { 937 struct dentry *alias; 891 struct dentry *alias; 938 892 939 if (hlist_empty(&inode->i_dentry)) 893 if (hlist_empty(&inode->i_dentry)) 940 return NULL; 894 return NULL; 941 alias = hlist_entry(inode->i_dentry.fi 895 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias); 942 lockref_get(&alias->d_lockref); !! 896 __dget(alias); 943 return alias; 897 return alias; 944 } 898 } 945 899 946 /** 900 /** 947 * d_find_any_alias - find any alias for a giv 901 * d_find_any_alias - find any alias for a given inode 948 * @inode: inode to find an alias for 902 * @inode: inode to find an alias for 949 * 903 * 950 * If any aliases exist for the given inode, t 904 * If any aliases exist for the given inode, take and return a 951 * reference for one of them. If no aliases e 905 * reference for one of them. If no aliases exist, return %NULL. 952 */ 906 */ 953 struct dentry *d_find_any_alias(struct inode * 907 struct dentry *d_find_any_alias(struct inode *inode) 954 { 908 { 955 struct dentry *de; 909 struct dentry *de; 956 910 957 spin_lock(&inode->i_lock); 911 spin_lock(&inode->i_lock); 958 de = __d_find_any_alias(inode); 912 de = __d_find_any_alias(inode); 959 spin_unlock(&inode->i_lock); 913 spin_unlock(&inode->i_lock); 960 return de; 914 return de; 961 } 915 } 962 EXPORT_SYMBOL(d_find_any_alias); 916 EXPORT_SYMBOL(d_find_any_alias); 963 917 >> 918 /** >> 919 * d_find_alias - grab a hashed alias of inode >> 920 * @inode: inode in question >> 921 * >> 922 * If inode has a hashed alias, or is a directory and has any alias, >> 923 * acquire the reference to alias and return it. Otherwise return NULL. >> 924 * Notice that if inode is a directory there can be only one alias and >> 925 * it can be unhashed only if it has no children, or if it is the root >> 926 * of a filesystem, or if the directory was renamed and d_revalidate >> 927 * was the first vfs operation to notice. >> 928 * >> 929 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer >> 930 * any other hashed alias over that one. >> 931 */ 964 static struct dentry *__d_find_alias(struct in 932 static struct dentry *__d_find_alias(struct inode *inode) 965 { 933 { 966 struct dentry *alias; 934 struct dentry *alias; 967 935 968 if (S_ISDIR(inode->i_mode)) 936 if (S_ISDIR(inode->i_mode)) 969 return __d_find_any_alias(inod 937 return __d_find_any_alias(inode); 970 938 971 hlist_for_each_entry(alias, &inode->i_ 939 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { 972 spin_lock(&alias->d_lock); 940 spin_lock(&alias->d_lock); 973 if (!d_unhashed(alias)) { 941 if (!d_unhashed(alias)) { 974 dget_dlock(alias); !! 942 __dget_dlock(alias); 975 spin_unlock(&alias->d_ 943 spin_unlock(&alias->d_lock); 976 return alias; 944 return alias; 977 } 945 } 978 spin_unlock(&alias->d_lock); 946 spin_unlock(&alias->d_lock); 979 } 947 } 980 return NULL; 948 return NULL; 981 } 949 } 982 950 983 /** << 984 * d_find_alias - grab a hashed alias of inode << 985 * @inode: inode in question << 986 * << 987 * If inode has a hashed alias, or is a direct << 988 * acquire the reference to alias and return i << 989 * Notice that if inode is a directory there c << 990 * it can be unhashed only if it has no childr << 991 * of a filesystem, or if the directory was re << 992 * was the first vfs operation to notice. << 993 * << 994 * If the inode has an IS_ROOT, DCACHE_DISCONN << 995 * any other hashed alias over that one. << 996 */ << 997 struct dentry *d_find_alias(struct inode *inod 951 struct dentry *d_find_alias(struct inode *inode) 998 { 952 { 999 struct dentry *de = NULL; 953 struct dentry *de = NULL; 1000 954 1001 if (!hlist_empty(&inode->i_dentry)) { 955 if (!hlist_empty(&inode->i_dentry)) { 1002 spin_lock(&inode->i_lock); 956 spin_lock(&inode->i_lock); 1003 de = __d_find_alias(inode); 957 de = __d_find_alias(inode); 1004 spin_unlock(&inode->i_lock); 958 spin_unlock(&inode->i_lock); 1005 } 959 } 1006 return de; 960 return de; 1007 } 961 } 1008 EXPORT_SYMBOL(d_find_alias); 962 EXPORT_SYMBOL(d_find_alias); 1009 963 1010 /* 964 /* 1011 * Caller MUST be holding rcu_read_lock() an << 1012 * that inode won't get freed until rcu_read << 1013 */ << 1014 struct dentry *d_find_alias_rcu(struct inode << 1015 { << 1016 struct hlist_head *l = &inode->i_dent << 1017 struct dentry *de = NULL; << 1018 << 1019 spin_lock(&inode->i_lock); << 1020 // ->i_dentry and ->i_rcu are colocat << 1021 // used without having I_FREEING set, << 1022 if (likely(!(inode->i_state & I_FREEI << 1023 if (S_ISDIR(inode->i_mode)) { << 1024 de = hlist_entry(l->f << 1025 } else { << 1026 hlist_for_each_entry( << 1027 if (!d_unhash << 1028 break << 1029 } << 1030 } << 1031 spin_unlock(&inode->i_lock); << 1032 return de; << 1033 } << 1034 << 1035 /* << 1036 * Try to kill dentries associated with 965 * Try to kill dentries associated with this inode. 1037 * WARNING: you must own a reference to inode 966 * WARNING: you must own a reference to inode. 1038 */ 967 */ 1039 void d_prune_aliases(struct inode *inode) 968 void d_prune_aliases(struct inode *inode) 1040 { 969 { 1041 LIST_HEAD(dispose); << 1042 struct dentry *dentry; 970 struct dentry *dentry; 1043 !! 971 restart: 1044 spin_lock(&inode->i_lock); 972 spin_lock(&inode->i_lock); 1045 hlist_for_each_entry(dentry, &inode-> 973 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) { 1046 spin_lock(&dentry->d_lock); 974 spin_lock(&dentry->d_lock); 1047 if (!dentry->d_lockref.count) !! 975 if (!dentry->d_lockref.count) { 1048 to_shrink_list(dentry !! 976 struct dentry *parent = lock_parent(dentry); >> 977 if (likely(!dentry->d_lockref.count)) { >> 978 __dentry_kill(dentry); >> 979 dput(parent); >> 980 goto restart; >> 981 } >> 982 if (parent) >> 983 spin_unlock(&parent->d_lock); >> 984 } 1049 spin_unlock(&dentry->d_lock); 985 spin_unlock(&dentry->d_lock); 1050 } 986 } 1051 spin_unlock(&inode->i_lock); 987 spin_unlock(&inode->i_lock); 1052 shrink_dentry_list(&dispose); << 1053 } 988 } 1054 EXPORT_SYMBOL(d_prune_aliases); 989 EXPORT_SYMBOL(d_prune_aliases); 1055 990 1056 static inline void shrink_kill(struct dentry !! 991 /* >> 992 * Lock a dentry from shrink list. >> 993 * Called under rcu_read_lock() and dentry->d_lock; the former >> 994 * guarantees that nothing we access will be freed under us. >> 995 * Note that dentry is *not* protected from concurrent dentry_kill(), >> 996 * d_delete(), etc. >> 997 * >> 998 * Return false if dentry has been disrupted or grabbed, leaving >> 999 * the caller to kick it off-list. Otherwise, return true and have >> 1000 * that dentry's inode and parent both locked. >> 1001 */ >> 1002 static bool shrink_lock_dentry(struct dentry *dentry) 1057 { 1003 { 1058 do { !! 1004 struct inode *inode; 1059 rcu_read_unlock(); !! 1005 struct dentry *parent; 1060 victim = __dentry_kill(victim !! 1006 1061 rcu_read_lock(); !! 1007 if (dentry->d_lockref.count) 1062 } while (victim && lock_for_kill(vict !! 1008 return false; 1063 rcu_read_unlock(); !! 1009 1064 if (victim) !! 1010 inode = dentry->d_inode; 1065 spin_unlock(&victim->d_lock); !! 1011 if (inode && unlikely(!spin_trylock(&inode->i_lock))) { >> 1012 spin_unlock(&dentry->d_lock); >> 1013 spin_lock(&inode->i_lock); >> 1014 spin_lock(&dentry->d_lock); >> 1015 if (unlikely(dentry->d_lockref.count)) >> 1016 goto out; >> 1017 /* changed inode means that somebody had grabbed it */ >> 1018 if (unlikely(inode != dentry->d_inode)) >> 1019 goto out; >> 1020 } >> 1021 >> 1022 parent = dentry->d_parent; >> 1023 if (IS_ROOT(dentry) || likely(spin_trylock(&parent->d_lock))) >> 1024 return true; >> 1025 >> 1026 spin_unlock(&dentry->d_lock); >> 1027 spin_lock(&parent->d_lock); >> 1028 if (unlikely(parent != dentry->d_parent)) { >> 1029 spin_unlock(&parent->d_lock); >> 1030 spin_lock(&dentry->d_lock); >> 1031 goto out; >> 1032 } >> 1033 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); >> 1034 if (likely(!dentry->d_lockref.count)) >> 1035 return true; >> 1036 spin_unlock(&parent->d_lock); >> 1037 out: >> 1038 if (inode) >> 1039 spin_unlock(&inode->i_lock); >> 1040 return false; 1066 } 1041 } 1067 1042 1068 void shrink_dentry_list(struct list_head *lis !! 1043 static void shrink_dentry_list(struct list_head *list) 1069 { 1044 { 1070 while (!list_empty(list)) { 1045 while (!list_empty(list)) { 1071 struct dentry *dentry; !! 1046 struct dentry *dentry, *parent; 1072 1047 1073 dentry = list_entry(list->pre 1048 dentry = list_entry(list->prev, struct dentry, d_lru); 1074 spin_lock(&dentry->d_lock); 1049 spin_lock(&dentry->d_lock); 1075 rcu_read_lock(); 1050 rcu_read_lock(); 1076 if (!lock_for_kill(dentry)) { !! 1051 if (!shrink_lock_dentry(dentry)) { 1077 bool can_free; !! 1052 bool can_free = false; 1078 rcu_read_unlock(); 1053 rcu_read_unlock(); 1079 d_shrink_del(dentry); 1054 d_shrink_del(dentry); 1080 can_free = dentry->d_ !! 1055 if (dentry->d_lockref.count < 0) >> 1056 can_free = dentry->d_flags & DCACHE_MAY_FREE; 1081 spin_unlock(&dentry-> 1057 spin_unlock(&dentry->d_lock); 1082 if (can_free) 1058 if (can_free) 1083 dentry_free(d 1059 dentry_free(dentry); 1084 continue; 1060 continue; 1085 } 1061 } >> 1062 rcu_read_unlock(); 1086 d_shrink_del(dentry); 1063 d_shrink_del(dentry); 1087 shrink_kill(dentry); !! 1064 parent = dentry->d_parent; >> 1065 __dentry_kill(dentry); >> 1066 if (parent == dentry) >> 1067 continue; >> 1068 /* >> 1069 * We need to prune ancestors too. This is necessary to prevent >> 1070 * quadratic behavior of shrink_dcache_parent(), but is also >> 1071 * expected to be beneficial in reducing dentry cache >> 1072 * fragmentation. >> 1073 */ >> 1074 dentry = parent; >> 1075 while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) >> 1076 dentry = dentry_kill(dentry); 1088 } 1077 } 1089 } 1078 } 1090 1079 1091 static enum lru_status dentry_lru_isolate(str 1080 static enum lru_status dentry_lru_isolate(struct list_head *item, 1092 struct list_lru_one *lru, spi 1081 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) 1093 { 1082 { 1094 struct list_head *freeable = arg; 1083 struct list_head *freeable = arg; 1095 struct dentry *dentry = container_o 1084 struct dentry *dentry = container_of(item, struct dentry, d_lru); 1096 1085 1097 1086 1098 /* 1087 /* 1099 * we are inverting the lru lock/dent 1088 * we are inverting the lru lock/dentry->d_lock here, 1100 * so use a trylock. If we fail to ge 1089 * so use a trylock. If we fail to get the lock, just skip 1101 * it 1090 * it 1102 */ 1091 */ 1103 if (!spin_trylock(&dentry->d_lock)) 1092 if (!spin_trylock(&dentry->d_lock)) 1104 return LRU_SKIP; 1093 return LRU_SKIP; 1105 1094 1106 /* 1095 /* 1107 * Referenced dentries are still in u 1096 * Referenced dentries are still in use. If they have active 1108 * counts, just remove them from the 1097 * counts, just remove them from the LRU. Otherwise give them 1109 * another pass through the LRU. 1098 * another pass through the LRU. 1110 */ 1099 */ 1111 if (dentry->d_lockref.count) { 1100 if (dentry->d_lockref.count) { 1112 d_lru_isolate(lru, dentry); 1101 d_lru_isolate(lru, dentry); 1113 spin_unlock(&dentry->d_lock); 1102 spin_unlock(&dentry->d_lock); 1114 return LRU_REMOVED; 1103 return LRU_REMOVED; 1115 } 1104 } 1116 1105 1117 if (dentry->d_flags & DCACHE_REFERENC 1106 if (dentry->d_flags & DCACHE_REFERENCED) { 1118 dentry->d_flags &= ~DCACHE_RE 1107 dentry->d_flags &= ~DCACHE_REFERENCED; 1119 spin_unlock(&dentry->d_lock); 1108 spin_unlock(&dentry->d_lock); 1120 1109 1121 /* 1110 /* 1122 * The list move itself will 1111 * The list move itself will be made by the common LRU code. At 1123 * this point, we've dropped 1112 * this point, we've dropped the dentry->d_lock but keep the 1124 * lru lock. This is safe to 1113 * lru lock. This is safe to do, since every list movement is 1125 * protected by the lru lock 1114 * protected by the lru lock even if both locks are held. 1126 * 1115 * 1127 * This is guaranteed by the 1116 * This is guaranteed by the fact that all LRU management 1128 * functions are intermediate 1117 * functions are intermediated by the LRU API calls like 1129 * list_lru_add_obj and list_ !! 1118 * list_lru_add and list_lru_del. List movement in this file 1130 * only ever occur through th 1119 * only ever occur through this functions or through callbacks 1131 * like this one, that are ca 1120 * like this one, that are called from the LRU API. 1132 * 1121 * 1133 * The only exceptions to thi 1122 * The only exceptions to this are functions like 1134 * shrink_dentry_list, and co 1123 * shrink_dentry_list, and code that first checks for the 1135 * DCACHE_SHRINK_LIST flag. 1124 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be 1136 * operating only with stack 1125 * operating only with stack provided lists after they are 1137 * properly isolated from the 1126 * properly isolated from the main list. It is thus, always a 1138 * local access. 1127 * local access. 1139 */ 1128 */ 1140 return LRU_ROTATE; 1129 return LRU_ROTATE; 1141 } 1130 } 1142 1131 1143 d_lru_shrink_move(lru, dentry, freeab 1132 d_lru_shrink_move(lru, dentry, freeable); 1144 spin_unlock(&dentry->d_lock); 1133 spin_unlock(&dentry->d_lock); 1145 1134 1146 return LRU_REMOVED; 1135 return LRU_REMOVED; 1147 } 1136 } 1148 1137 1149 /** 1138 /** 1150 * prune_dcache_sb - shrink the dcache 1139 * prune_dcache_sb - shrink the dcache 1151 * @sb: superblock 1140 * @sb: superblock 1152 * @sc: shrink control, passed to list_lru_sh 1141 * @sc: shrink control, passed to list_lru_shrink_walk() 1153 * 1142 * 1154 * Attempt to shrink the superblock dcache LR 1143 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This 1155 * is done when we need more memory and calle 1144 * is done when we need more memory and called from the superblock shrinker 1156 * function. 1145 * function. 1157 * 1146 * 1158 * This function may fail to free any resourc 1147 * This function may fail to free any resources if all the dentries are in 1159 * use. 1148 * use. 1160 */ 1149 */ 1161 long prune_dcache_sb(struct super_block *sb, 1150 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc) 1162 { 1151 { 1163 LIST_HEAD(dispose); 1152 LIST_HEAD(dispose); 1164 long freed; 1153 long freed; 1165 1154 1166 freed = list_lru_shrink_walk(&sb->s_d 1155 freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc, 1167 dentry_l 1156 dentry_lru_isolate, &dispose); 1168 shrink_dentry_list(&dispose); 1157 shrink_dentry_list(&dispose); 1169 return freed; 1158 return freed; 1170 } 1159 } 1171 1160 1172 static enum lru_status dentry_lru_isolate_shr 1161 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item, 1173 struct list_lru_one *lru, spi 1162 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) 1174 { 1163 { 1175 struct list_head *freeable = arg; 1164 struct list_head *freeable = arg; 1176 struct dentry *dentry = container_o 1165 struct dentry *dentry = container_of(item, struct dentry, d_lru); 1177 1166 1178 /* 1167 /* 1179 * we are inverting the lru lock/dent 1168 * we are inverting the lru lock/dentry->d_lock here, 1180 * so use a trylock. If we fail to ge 1169 * so use a trylock. If we fail to get the lock, just skip 1181 * it 1170 * it 1182 */ 1171 */ 1183 if (!spin_trylock(&dentry->d_lock)) 1172 if (!spin_trylock(&dentry->d_lock)) 1184 return LRU_SKIP; 1173 return LRU_SKIP; 1185 1174 1186 d_lru_shrink_move(lru, dentry, freeab 1175 d_lru_shrink_move(lru, dentry, freeable); 1187 spin_unlock(&dentry->d_lock); 1176 spin_unlock(&dentry->d_lock); 1188 1177 1189 return LRU_REMOVED; 1178 return LRU_REMOVED; 1190 } 1179 } 1191 1180 1192 1181 1193 /** 1182 /** 1194 * shrink_dcache_sb - shrink dcache for a sup 1183 * shrink_dcache_sb - shrink dcache for a superblock 1195 * @sb: superblock 1184 * @sb: superblock 1196 * 1185 * 1197 * Shrink the dcache for the specified super 1186 * Shrink the dcache for the specified super block. This is used to free 1198 * the dcache before unmounting a file system 1187 * the dcache before unmounting a file system. 1199 */ 1188 */ 1200 void shrink_dcache_sb(struct super_block *sb) 1189 void shrink_dcache_sb(struct super_block *sb) 1201 { 1190 { 1202 do { 1191 do { 1203 LIST_HEAD(dispose); 1192 LIST_HEAD(dispose); 1204 1193 1205 list_lru_walk(&sb->s_dentry_l 1194 list_lru_walk(&sb->s_dentry_lru, 1206 dentry_lru_isolate_sh 1195 dentry_lru_isolate_shrink, &dispose, 1024); 1207 shrink_dentry_list(&dispose); 1196 shrink_dentry_list(&dispose); 1208 } while (list_lru_count(&sb->s_dentry 1197 } while (list_lru_count(&sb->s_dentry_lru) > 0); 1209 } 1198 } 1210 EXPORT_SYMBOL(shrink_dcache_sb); 1199 EXPORT_SYMBOL(shrink_dcache_sb); 1211 1200 1212 /** 1201 /** 1213 * enum d_walk_ret - action to talke during t 1202 * enum d_walk_ret - action to talke during tree walk 1214 * @D_WALK_CONTINUE: contrinue walk 1203 * @D_WALK_CONTINUE: contrinue walk 1215 * @D_WALK_QUIT: quit walk 1204 * @D_WALK_QUIT: quit walk 1216 * @D_WALK_NORETRY: quit when retry is ne 1205 * @D_WALK_NORETRY: quit when retry is needed 1217 * @D_WALK_SKIP: skip this dentry and 1206 * @D_WALK_SKIP: skip this dentry and its children 1218 */ 1207 */ 1219 enum d_walk_ret { 1208 enum d_walk_ret { 1220 D_WALK_CONTINUE, 1209 D_WALK_CONTINUE, 1221 D_WALK_QUIT, 1210 D_WALK_QUIT, 1222 D_WALK_NORETRY, 1211 D_WALK_NORETRY, 1223 D_WALK_SKIP, 1212 D_WALK_SKIP, 1224 }; 1213 }; 1225 1214 1226 /** 1215 /** 1227 * d_walk - walk the dentry tree 1216 * d_walk - walk the dentry tree 1228 * @parent: start of walk 1217 * @parent: start of walk 1229 * @data: data passed to @enter() and @ 1218 * @data: data passed to @enter() and @finish() 1230 * @enter: callback when first entering 1219 * @enter: callback when first entering the dentry 1231 * 1220 * 1232 * The @enter() callbacks are called with d_l 1221 * The @enter() callbacks are called with d_lock held. 1233 */ 1222 */ 1234 static void d_walk(struct dentry *parent, voi 1223 static void d_walk(struct dentry *parent, void *data, 1235 enum d_walk_ret (*enter)(v 1224 enum d_walk_ret (*enter)(void *, struct dentry *)) 1236 { 1225 { 1237 struct dentry *this_parent, *dentry; !! 1226 struct dentry *this_parent; >> 1227 struct list_head *next; 1238 unsigned seq = 0; 1228 unsigned seq = 0; 1239 enum d_walk_ret ret; 1229 enum d_walk_ret ret; 1240 bool retry = true; 1230 bool retry = true; 1241 1231 1242 again: 1232 again: 1243 read_seqbegin_or_lock(&rename_lock, & 1233 read_seqbegin_or_lock(&rename_lock, &seq); 1244 this_parent = parent; 1234 this_parent = parent; 1245 spin_lock(&this_parent->d_lock); 1235 spin_lock(&this_parent->d_lock); 1246 1236 1247 ret = enter(data, this_parent); 1237 ret = enter(data, this_parent); 1248 switch (ret) { 1238 switch (ret) { 1249 case D_WALK_CONTINUE: 1239 case D_WALK_CONTINUE: 1250 break; 1240 break; 1251 case D_WALK_QUIT: 1241 case D_WALK_QUIT: 1252 case D_WALK_SKIP: 1242 case D_WALK_SKIP: 1253 goto out_unlock; 1243 goto out_unlock; 1254 case D_WALK_NORETRY: 1244 case D_WALK_NORETRY: 1255 retry = false; 1245 retry = false; 1256 break; 1246 break; 1257 } 1247 } 1258 repeat: 1248 repeat: 1259 dentry = d_first_child(this_parent); !! 1249 next = this_parent->d_subdirs.next; 1260 resume: 1250 resume: 1261 hlist_for_each_entry_from(dentry, d_s !! 1251 while (next != &this_parent->d_subdirs) { >> 1252 struct list_head *tmp = next; >> 1253 struct dentry *dentry = list_entry(tmp, struct dentry, d_child); >> 1254 next = tmp->next; >> 1255 1262 if (unlikely(dentry->d_flags 1256 if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR)) 1263 continue; 1257 continue; 1264 1258 1265 spin_lock_nested(&dentry->d_l 1259 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 1266 1260 1267 ret = enter(data, dentry); 1261 ret = enter(data, dentry); 1268 switch (ret) { 1262 switch (ret) { 1269 case D_WALK_CONTINUE: 1263 case D_WALK_CONTINUE: 1270 break; 1264 break; 1271 case D_WALK_QUIT: 1265 case D_WALK_QUIT: 1272 spin_unlock(&dentry-> 1266 spin_unlock(&dentry->d_lock); 1273 goto out_unlock; 1267 goto out_unlock; 1274 case D_WALK_NORETRY: 1268 case D_WALK_NORETRY: 1275 retry = false; 1269 retry = false; 1276 break; 1270 break; 1277 case D_WALK_SKIP: 1271 case D_WALK_SKIP: 1278 spin_unlock(&dentry-> 1272 spin_unlock(&dentry->d_lock); 1279 continue; 1273 continue; 1280 } 1274 } 1281 1275 1282 if (!hlist_empty(&dentry->d_c !! 1276 if (!list_empty(&dentry->d_subdirs)) { 1283 spin_unlock(&this_par 1277 spin_unlock(&this_parent->d_lock); 1284 spin_release(&dentry- !! 1278 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_); 1285 this_parent = dentry; 1279 this_parent = dentry; 1286 spin_acquire(&this_pa 1280 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_); 1287 goto repeat; 1281 goto repeat; 1288 } 1282 } 1289 spin_unlock(&dentry->d_lock); 1283 spin_unlock(&dentry->d_lock); 1290 } 1284 } 1291 /* 1285 /* 1292 * All done at this level ... ascend 1286 * All done at this level ... ascend and resume the search. 1293 */ 1287 */ 1294 rcu_read_lock(); 1288 rcu_read_lock(); 1295 ascend: 1289 ascend: 1296 if (this_parent != parent) { 1290 if (this_parent != parent) { 1297 dentry = this_parent; !! 1291 struct dentry *child = this_parent; 1298 this_parent = dentry->d_paren !! 1292 this_parent = child->d_parent; 1299 1293 1300 spin_unlock(&dentry->d_lock); !! 1294 spin_unlock(&child->d_lock); 1301 spin_lock(&this_parent->d_loc 1295 spin_lock(&this_parent->d_lock); 1302 1296 1303 /* might go back up the wrong 1297 /* might go back up the wrong parent if we have had a rename. */ 1304 if (need_seqretry(&rename_loc 1298 if (need_seqretry(&rename_lock, seq)) 1305 goto rename_retry; 1299 goto rename_retry; 1306 /* go into the first sibling 1300 /* go into the first sibling still alive */ 1307 hlist_for_each_entry_continue !! 1301 do { 1308 if (likely(!(dentry-> !! 1302 next = child->d_child.next; 1309 rcu_read_unlo !! 1303 if (next == &this_parent->d_subdirs) 1310 goto resume; !! 1304 goto ascend; 1311 } !! 1305 child = list_entry(next, struct dentry, d_child); 1312 } !! 1306 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED)); 1313 goto ascend; !! 1307 rcu_read_unlock(); >> 1308 goto resume; 1314 } 1309 } 1315 if (need_seqretry(&rename_lock, seq)) 1310 if (need_seqretry(&rename_lock, seq)) 1316 goto rename_retry; 1311 goto rename_retry; 1317 rcu_read_unlock(); 1312 rcu_read_unlock(); 1318 1313 1319 out_unlock: 1314 out_unlock: 1320 spin_unlock(&this_parent->d_lock); 1315 spin_unlock(&this_parent->d_lock); 1321 done_seqretry(&rename_lock, seq); 1316 done_seqretry(&rename_lock, seq); 1322 return; 1317 return; 1323 1318 1324 rename_retry: 1319 rename_retry: 1325 spin_unlock(&this_parent->d_lock); 1320 spin_unlock(&this_parent->d_lock); 1326 rcu_read_unlock(); 1321 rcu_read_unlock(); 1327 BUG_ON(seq & 1); 1322 BUG_ON(seq & 1); 1328 if (!retry) 1323 if (!retry) 1329 return; 1324 return; 1330 seq = 1; 1325 seq = 1; 1331 goto again; 1326 goto again; 1332 } 1327 } 1333 1328 1334 struct check_mount { 1329 struct check_mount { 1335 struct vfsmount *mnt; 1330 struct vfsmount *mnt; 1336 unsigned int mounted; 1331 unsigned int mounted; 1337 }; 1332 }; 1338 1333 1339 static enum d_walk_ret path_check_mount(void 1334 static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry) 1340 { 1335 { 1341 struct check_mount *info = data; 1336 struct check_mount *info = data; 1342 struct path path = { .mnt = info->mnt 1337 struct path path = { .mnt = info->mnt, .dentry = dentry }; 1343 1338 1344 if (likely(!d_mountpoint(dentry))) 1339 if (likely(!d_mountpoint(dentry))) 1345 return D_WALK_CONTINUE; 1340 return D_WALK_CONTINUE; 1346 if (__path_is_mountpoint(&path)) { 1341 if (__path_is_mountpoint(&path)) { 1347 info->mounted = 1; 1342 info->mounted = 1; 1348 return D_WALK_QUIT; 1343 return D_WALK_QUIT; 1349 } 1344 } 1350 return D_WALK_CONTINUE; 1345 return D_WALK_CONTINUE; 1351 } 1346 } 1352 1347 1353 /** 1348 /** 1354 * path_has_submounts - check for mounts over 1349 * path_has_submounts - check for mounts over a dentry in the 1355 * current namespace. 1350 * current namespace. 1356 * @parent: path to check. 1351 * @parent: path to check. 1357 * 1352 * 1358 * Return true if the parent or its subdirect 1353 * Return true if the parent or its subdirectories contain 1359 * a mount point in the current namespace. 1354 * a mount point in the current namespace. 1360 */ 1355 */ 1361 int path_has_submounts(const struct path *par 1356 int path_has_submounts(const struct path *parent) 1362 { 1357 { 1363 struct check_mount data = { .mnt = pa 1358 struct check_mount data = { .mnt = parent->mnt, .mounted = 0 }; 1364 1359 1365 read_seqlock_excl(&mount_lock); 1360 read_seqlock_excl(&mount_lock); 1366 d_walk(parent->dentry, &data, path_ch 1361 d_walk(parent->dentry, &data, path_check_mount); 1367 read_sequnlock_excl(&mount_lock); 1362 read_sequnlock_excl(&mount_lock); 1368 1363 1369 return data.mounted; 1364 return data.mounted; 1370 } 1365 } 1371 EXPORT_SYMBOL(path_has_submounts); 1366 EXPORT_SYMBOL(path_has_submounts); 1372 1367 1373 /* 1368 /* 1374 * Called by mount code to set a mountpoint a 1369 * Called by mount code to set a mountpoint and check if the mountpoint is 1375 * reachable (e.g. NFS can unhash a directory 1370 * reachable (e.g. NFS can unhash a directory dentry and then the complete 1376 * subtree can become unreachable). 1371 * subtree can become unreachable). 1377 * 1372 * 1378 * Only one of d_invalidate() and d_set_mount 1373 * Only one of d_invalidate() and d_set_mounted() must succeed. For 1379 * this reason take rename_lock and d_lock on 1374 * this reason take rename_lock and d_lock on dentry and ancestors. 1380 */ 1375 */ 1381 int d_set_mounted(struct dentry *dentry) 1376 int d_set_mounted(struct dentry *dentry) 1382 { 1377 { 1383 struct dentry *p; 1378 struct dentry *p; 1384 int ret = -ENOENT; 1379 int ret = -ENOENT; 1385 write_seqlock(&rename_lock); 1380 write_seqlock(&rename_lock); 1386 for (p = dentry->d_parent; !IS_ROOT(p 1381 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) { 1387 /* Need exclusion wrt. d_inva 1382 /* Need exclusion wrt. d_invalidate() */ 1388 spin_lock(&p->d_lock); 1383 spin_lock(&p->d_lock); 1389 if (unlikely(d_unhashed(p))) 1384 if (unlikely(d_unhashed(p))) { 1390 spin_unlock(&p->d_loc 1385 spin_unlock(&p->d_lock); 1391 goto out; 1386 goto out; 1392 } 1387 } 1393 spin_unlock(&p->d_lock); 1388 spin_unlock(&p->d_lock); 1394 } 1389 } 1395 spin_lock(&dentry->d_lock); 1390 spin_lock(&dentry->d_lock); 1396 if (!d_unlinked(dentry)) { 1391 if (!d_unlinked(dentry)) { 1397 ret = -EBUSY; 1392 ret = -EBUSY; 1398 if (!d_mountpoint(dentry)) { 1393 if (!d_mountpoint(dentry)) { 1399 dentry->d_flags |= DC 1394 dentry->d_flags |= DCACHE_MOUNTED; 1400 ret = 0; 1395 ret = 0; 1401 } 1396 } 1402 } 1397 } 1403 spin_unlock(&dentry->d_lock); 1398 spin_unlock(&dentry->d_lock); 1404 out: 1399 out: 1405 write_sequnlock(&rename_lock); 1400 write_sequnlock(&rename_lock); 1406 return ret; 1401 return ret; 1407 } 1402 } 1408 1403 1409 /* 1404 /* 1410 * Search the dentry child list of the specif 1405 * Search the dentry child list of the specified parent, 1411 * and move any unused dentries to the end of 1406 * and move any unused dentries to the end of the unused 1412 * list for prune_dcache(). We descend to the 1407 * list for prune_dcache(). We descend to the next level 1413 * whenever the d_children list is non-empty !! 1408 * whenever the d_subdirs list is non-empty and continue 1414 * searching. 1409 * searching. 1415 * 1410 * 1416 * It returns zero iff there are no unused ch 1411 * It returns zero iff there are no unused children, 1417 * otherwise it returns the number of childr 1412 * otherwise it returns the number of children moved to 1418 * the end of the unused list. This may not b 1413 * the end of the unused list. This may not be the total 1419 * number of unused children, because select_ 1414 * number of unused children, because select_parent can 1420 * drop the lock and return early due to late 1415 * drop the lock and return early due to latency 1421 * constraints. 1416 * constraints. 1422 */ 1417 */ 1423 1418 1424 struct select_data { 1419 struct select_data { 1425 struct dentry *start; 1420 struct dentry *start; 1426 union { << 1427 long found; << 1428 struct dentry *victim; << 1429 }; << 1430 struct list_head dispose; 1421 struct list_head dispose; >> 1422 int found; 1431 }; 1423 }; 1432 1424 1433 static enum d_walk_ret select_collect(void *_ 1425 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry) 1434 { 1426 { 1435 struct select_data *data = _data; 1427 struct select_data *data = _data; 1436 enum d_walk_ret ret = D_WALK_CONTINUE 1428 enum d_walk_ret ret = D_WALK_CONTINUE; 1437 1429 1438 if (data->start == dentry) 1430 if (data->start == dentry) 1439 goto out; 1431 goto out; 1440 1432 1441 if (dentry->d_flags & DCACHE_SHRINK_L 1433 if (dentry->d_flags & DCACHE_SHRINK_LIST) { 1442 data->found++; 1434 data->found++; 1443 } else if (!dentry->d_lockref.count) !! 1435 } else { 1444 to_shrink_list(dentry, &data- !! 1436 if (dentry->d_flags & DCACHE_LRU_LIST) 1445 data->found++; !! 1437 d_lru_del(dentry); 1446 } else if (dentry->d_lockref.count < !! 1438 if (!dentry->d_lockref.count) { 1447 data->found++; !! 1439 d_shrink_add(dentry, &data->dispose); 1448 } !! 1440 data->found++; 1449 /* << 1450 * We can return to the caller if we << 1451 * ensures forward progress). We'll b << 1452 * the rest. << 1453 */ << 1454 if (!list_empty(&data->dispose)) << 1455 ret = need_resched() ? D_WALK << 1456 out: << 1457 return ret; << 1458 } << 1459 << 1460 static enum d_walk_ret select_collect2(void * << 1461 { << 1462 struct select_data *data = _data; << 1463 enum d_walk_ret ret = D_WALK_CONTINUE << 1464 << 1465 if (data->start == dentry) << 1466 goto out; << 1467 << 1468 if (!dentry->d_lockref.count) { << 1469 if (dentry->d_flags & DCACHE_ << 1470 rcu_read_lock(); << 1471 data->victim = dentry << 1472 return D_WALK_QUIT; << 1473 } 1441 } 1474 to_shrink_list(dentry, &data- << 1475 } 1442 } 1476 /* 1443 /* 1477 * We can return to the caller if we 1444 * We can return to the caller if we have found some (this 1478 * ensures forward progress). We'll b 1445 * ensures forward progress). We'll be coming back to find 1479 * the rest. 1446 * the rest. 1480 */ 1447 */ 1481 if (!list_empty(&data->dispose)) 1448 if (!list_empty(&data->dispose)) 1482 ret = need_resched() ? D_WALK 1449 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY; 1483 out: 1450 out: 1484 return ret; 1451 return ret; 1485 } 1452 } 1486 1453 1487 /** 1454 /** 1488 * shrink_dcache_parent - prune dcache 1455 * shrink_dcache_parent - prune dcache 1489 * @parent: parent of entries to prune 1456 * @parent: parent of entries to prune 1490 * 1457 * 1491 * Prune the dcache to remove unused children 1458 * Prune the dcache to remove unused children of the parent dentry. 1492 */ 1459 */ 1493 void shrink_dcache_parent(struct dentry *pare 1460 void shrink_dcache_parent(struct dentry *parent) 1494 { 1461 { 1495 for (;;) { 1462 for (;;) { 1496 struct select_data data = {.s !! 1463 struct select_data data; 1497 1464 1498 INIT_LIST_HEAD(&data.dispose) 1465 INIT_LIST_HEAD(&data.dispose); >> 1466 data.start = parent; >> 1467 data.found = 0; >> 1468 1499 d_walk(parent, &data, select_ 1469 d_walk(parent, &data, select_collect); 1500 1470 1501 if (!list_empty(&data.dispose 1471 if (!list_empty(&data.dispose)) { 1502 shrink_dentry_list(&d 1472 shrink_dentry_list(&data.dispose); 1503 continue; 1473 continue; 1504 } 1474 } 1505 1475 1506 cond_resched(); 1476 cond_resched(); 1507 if (!data.found) 1477 if (!data.found) 1508 break; 1478 break; 1509 data.victim = NULL; << 1510 d_walk(parent, &data, select_ << 1511 if (data.victim) { << 1512 spin_lock(&data.victi << 1513 if (!lock_for_kill(da << 1514 spin_unlock(& << 1515 rcu_read_unlo << 1516 } else { << 1517 shrink_kill(d << 1518 } << 1519 } << 1520 if (!list_empty(&data.dispose << 1521 shrink_dentry_list(&d << 1522 } 1479 } 1523 } 1480 } 1524 EXPORT_SYMBOL(shrink_dcache_parent); 1481 EXPORT_SYMBOL(shrink_dcache_parent); 1525 1482 1526 static enum d_walk_ret umount_check(void *_da 1483 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry) 1527 { 1484 { 1528 /* it has busy descendents; complain 1485 /* it has busy descendents; complain about those instead */ 1529 if (!hlist_empty(&dentry->d_children) !! 1486 if (!list_empty(&dentry->d_subdirs)) 1530 return D_WALK_CONTINUE; 1487 return D_WALK_CONTINUE; 1531 1488 1532 /* root with refcount 1 is fine */ 1489 /* root with refcount 1 is fine */ 1533 if (dentry == _data && dentry->d_lock 1490 if (dentry == _data && dentry->d_lockref.count == 1) 1534 return D_WALK_CONTINUE; 1491 return D_WALK_CONTINUE; 1535 1492 1536 WARN(1, "BUG: Dentry %p{i=%lx,n=%pd} !! 1493 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} " 1537 " still in use (%d) [ 1494 " still in use (%d) [unmount of %s %s]\n", 1538 dentry, 1495 dentry, 1539 dentry->d_inode ? 1496 dentry->d_inode ? 1540 dentry->d_inode->i_ino 1497 dentry->d_inode->i_ino : 0UL, 1541 dentry, 1498 dentry, 1542 dentry->d_lockref.coun 1499 dentry->d_lockref.count, 1543 dentry->d_sb->s_type-> 1500 dentry->d_sb->s_type->name, 1544 dentry->d_sb->s_id); 1501 dentry->d_sb->s_id); >> 1502 WARN_ON(1); 1545 return D_WALK_CONTINUE; 1503 return D_WALK_CONTINUE; 1546 } 1504 } 1547 1505 1548 static void do_one_tree(struct dentry *dentry 1506 static void do_one_tree(struct dentry *dentry) 1549 { 1507 { 1550 shrink_dcache_parent(dentry); 1508 shrink_dcache_parent(dentry); 1551 d_walk(dentry, dentry, umount_check); 1509 d_walk(dentry, dentry, umount_check); 1552 d_drop(dentry); 1510 d_drop(dentry); 1553 dput(dentry); 1511 dput(dentry); 1554 } 1512 } 1555 1513 1556 /* 1514 /* 1557 * destroy the dentries attached to a superbl 1515 * destroy the dentries attached to a superblock on unmounting 1558 */ 1516 */ 1559 void shrink_dcache_for_umount(struct super_bl 1517 void shrink_dcache_for_umount(struct super_block *sb) 1560 { 1518 { 1561 struct dentry *dentry; 1519 struct dentry *dentry; 1562 1520 1563 rwsem_assert_held_write(&sb->s_umount !! 1521 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked"); 1564 1522 1565 dentry = sb->s_root; 1523 dentry = sb->s_root; 1566 sb->s_root = NULL; 1524 sb->s_root = NULL; 1567 do_one_tree(dentry); 1525 do_one_tree(dentry); 1568 1526 1569 while (!hlist_bl_empty(&sb->s_roots)) 1527 while (!hlist_bl_empty(&sb->s_roots)) { 1570 dentry = dget(hlist_bl_entry( 1528 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash)); 1571 do_one_tree(dentry); 1529 do_one_tree(dentry); 1572 } 1530 } 1573 } 1531 } 1574 1532 1575 static enum d_walk_ret find_submount(void *_d 1533 static enum d_walk_ret find_submount(void *_data, struct dentry *dentry) 1576 { 1534 { 1577 struct dentry **victim = _data; 1535 struct dentry **victim = _data; 1578 if (d_mountpoint(dentry)) { 1536 if (d_mountpoint(dentry)) { 1579 *victim = dget_dlock(dentry); !! 1537 __dget_dlock(dentry); >> 1538 *victim = dentry; 1580 return D_WALK_QUIT; 1539 return D_WALK_QUIT; 1581 } 1540 } 1582 return D_WALK_CONTINUE; 1541 return D_WALK_CONTINUE; 1583 } 1542 } 1584 1543 1585 /** 1544 /** 1586 * d_invalidate - detach submounts, prune dca 1545 * d_invalidate - detach submounts, prune dcache, and drop 1587 * @dentry: dentry to invalidate (aka detach, 1546 * @dentry: dentry to invalidate (aka detach, prune and drop) 1588 */ 1547 */ 1589 void d_invalidate(struct dentry *dentry) 1548 void d_invalidate(struct dentry *dentry) 1590 { 1549 { 1591 bool had_submounts = false; 1550 bool had_submounts = false; 1592 spin_lock(&dentry->d_lock); 1551 spin_lock(&dentry->d_lock); 1593 if (d_unhashed(dentry)) { 1552 if (d_unhashed(dentry)) { 1594 spin_unlock(&dentry->d_lock); 1553 spin_unlock(&dentry->d_lock); 1595 return; 1554 return; 1596 } 1555 } 1597 __d_drop(dentry); 1556 __d_drop(dentry); 1598 spin_unlock(&dentry->d_lock); 1557 spin_unlock(&dentry->d_lock); 1599 1558 1600 /* Negative dentries can be dropped w 1559 /* Negative dentries can be dropped without further checks */ 1601 if (!dentry->d_inode) 1560 if (!dentry->d_inode) 1602 return; 1561 return; 1603 1562 1604 shrink_dcache_parent(dentry); 1563 shrink_dcache_parent(dentry); 1605 for (;;) { 1564 for (;;) { 1606 struct dentry *victim = NULL; 1565 struct dentry *victim = NULL; 1607 d_walk(dentry, &victim, find_ 1566 d_walk(dentry, &victim, find_submount); 1608 if (!victim) { 1567 if (!victim) { 1609 if (had_submounts) 1568 if (had_submounts) 1610 shrink_dcache 1569 shrink_dcache_parent(dentry); 1611 return; 1570 return; 1612 } 1571 } 1613 had_submounts = true; 1572 had_submounts = true; 1614 detach_mounts(victim); 1573 detach_mounts(victim); 1615 dput(victim); 1574 dput(victim); 1616 } 1575 } 1617 } 1576 } 1618 EXPORT_SYMBOL(d_invalidate); 1577 EXPORT_SYMBOL(d_invalidate); 1619 1578 1620 /** 1579 /** 1621 * __d_alloc - allocate a dcache ent 1580 * __d_alloc - allocate a dcache entry 1622 * @sb: filesystem it will belong to 1581 * @sb: filesystem it will belong to 1623 * @name: qstr of the name 1582 * @name: qstr of the name 1624 * 1583 * 1625 * Allocates a dentry. It returns %NULL if th 1584 * Allocates a dentry. It returns %NULL if there is insufficient memory 1626 * available. On a success the dentry is retu 1585 * available. On a success the dentry is returned. The name passed in is 1627 * copied and the copy passed in may be reuse 1586 * copied and the copy passed in may be reused after this call. 1628 */ 1587 */ 1629 1588 1630 static struct dentry *__d_alloc(struct super_ !! 1589 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name) 1631 { 1590 { 1632 struct dentry *dentry; 1591 struct dentry *dentry; 1633 char *dname; 1592 char *dname; 1634 int err; 1593 int err; 1635 1594 1636 dentry = kmem_cache_alloc_lru(dentry_ !! 1595 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL); 1637 GFP_KER << 1638 if (!dentry) 1596 if (!dentry) 1639 return NULL; 1597 return NULL; 1640 1598 1641 /* 1599 /* 1642 * We guarantee that the inline name 1600 * We guarantee that the inline name is always NUL-terminated. 1643 * This way the memcpy() done by the 1601 * This way the memcpy() done by the name switching in rename 1644 * will still always have a NUL at th 1602 * will still always have a NUL at the end, even if we might 1645 * be overwriting an internal NUL cha 1603 * be overwriting an internal NUL character 1646 */ 1604 */ 1647 dentry->d_iname[DNAME_INLINE_LEN-1] = 1605 dentry->d_iname[DNAME_INLINE_LEN-1] = 0; 1648 if (unlikely(!name)) { 1606 if (unlikely(!name)) { 1649 name = &slash_name; 1607 name = &slash_name; 1650 dname = dentry->d_iname; 1608 dname = dentry->d_iname; 1651 } else if (name->len > DNAME_INLINE_L 1609 } else if (name->len > DNAME_INLINE_LEN-1) { 1652 size_t size = offsetof(struct 1610 size_t size = offsetof(struct external_name, name[1]); 1653 struct external_name *p = kma 1611 struct external_name *p = kmalloc(size + name->len, 1654 1612 GFP_KERNEL_ACCOUNT | 1655 1613 __GFP_RECLAIMABLE); 1656 if (!p) { 1614 if (!p) { 1657 kmem_cache_free(dentr 1615 kmem_cache_free(dentry_cache, dentry); 1658 return NULL; 1616 return NULL; 1659 } 1617 } 1660 atomic_set(&p->u.count, 1); 1618 atomic_set(&p->u.count, 1); 1661 dname = p->name; 1619 dname = p->name; 1662 } else { 1620 } else { 1663 dname = dentry->d_iname; 1621 dname = dentry->d_iname; 1664 } 1622 } 1665 1623 1666 dentry->d_name.len = name->len; 1624 dentry->d_name.len = name->len; 1667 dentry->d_name.hash = name->hash; 1625 dentry->d_name.hash = name->hash; 1668 memcpy(dname, name->name, name->len); 1626 memcpy(dname, name->name, name->len); 1669 dname[name->len] = 0; 1627 dname[name->len] = 0; 1670 1628 1671 /* Make sure we always see the termin 1629 /* Make sure we always see the terminating NUL character */ 1672 smp_store_release(&dentry->d_name.nam 1630 smp_store_release(&dentry->d_name.name, dname); /* ^^^ */ 1673 1631 1674 dentry->d_lockref.count = 1; 1632 dentry->d_lockref.count = 1; 1675 dentry->d_flags = 0; 1633 dentry->d_flags = 0; 1676 spin_lock_init(&dentry->d_lock); 1634 spin_lock_init(&dentry->d_lock); 1677 seqcount_spinlock_init(&dentry->d_seq !! 1635 seqcount_init(&dentry->d_seq); 1678 dentry->d_inode = NULL; 1636 dentry->d_inode = NULL; 1679 dentry->d_parent = dentry; 1637 dentry->d_parent = dentry; 1680 dentry->d_sb = sb; 1638 dentry->d_sb = sb; 1681 dentry->d_op = NULL; 1639 dentry->d_op = NULL; 1682 dentry->d_fsdata = NULL; 1640 dentry->d_fsdata = NULL; 1683 INIT_HLIST_BL_NODE(&dentry->d_hash); 1641 INIT_HLIST_BL_NODE(&dentry->d_hash); 1684 INIT_LIST_HEAD(&dentry->d_lru); 1642 INIT_LIST_HEAD(&dentry->d_lru); 1685 INIT_HLIST_HEAD(&dentry->d_children); !! 1643 INIT_LIST_HEAD(&dentry->d_subdirs); 1686 INIT_HLIST_NODE(&dentry->d_u.d_alias) 1644 INIT_HLIST_NODE(&dentry->d_u.d_alias); 1687 INIT_HLIST_NODE(&dentry->d_sib); !! 1645 INIT_LIST_HEAD(&dentry->d_child); 1688 d_set_d_op(dentry, dentry->d_sb->s_d_ 1646 d_set_d_op(dentry, dentry->d_sb->s_d_op); 1689 1647 1690 if (dentry->d_op && dentry->d_op->d_i 1648 if (dentry->d_op && dentry->d_op->d_init) { 1691 err = dentry->d_op->d_init(de 1649 err = dentry->d_op->d_init(dentry); 1692 if (err) { 1650 if (err) { 1693 if (dname_external(de 1651 if (dname_external(dentry)) 1694 kfree(externa 1652 kfree(external_name(dentry)); 1695 kmem_cache_free(dentr 1653 kmem_cache_free(dentry_cache, dentry); 1696 return NULL; 1654 return NULL; 1697 } 1655 } 1698 } 1656 } 1699 1657 1700 this_cpu_inc(nr_dentry); 1658 this_cpu_inc(nr_dentry); 1701 1659 1702 return dentry; 1660 return dentry; 1703 } 1661 } 1704 1662 1705 /** 1663 /** 1706 * d_alloc - allocate a dcache ent 1664 * d_alloc - allocate a dcache entry 1707 * @parent: parent of entry to allocate 1665 * @parent: parent of entry to allocate 1708 * @name: qstr of the name 1666 * @name: qstr of the name 1709 * 1667 * 1710 * Allocates a dentry. It returns %NULL if th 1668 * Allocates a dentry. It returns %NULL if there is insufficient memory 1711 * available. On a success the dentry is retu 1669 * available. On a success the dentry is returned. The name passed in is 1712 * copied and the copy passed in may be reuse 1670 * copied and the copy passed in may be reused after this call. 1713 */ 1671 */ 1714 struct dentry *d_alloc(struct dentry * parent 1672 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name) 1715 { 1673 { 1716 struct dentry *dentry = __d_alloc(par 1674 struct dentry *dentry = __d_alloc(parent->d_sb, name); 1717 if (!dentry) 1675 if (!dentry) 1718 return NULL; 1676 return NULL; >> 1677 dentry->d_flags |= DCACHE_RCUACCESS; 1719 spin_lock(&parent->d_lock); 1678 spin_lock(&parent->d_lock); 1720 /* 1679 /* 1721 * don't need child lock because it i 1680 * don't need child lock because it is not subject 1722 * to concurrency here 1681 * to concurrency here 1723 */ 1682 */ 1724 dentry->d_parent = dget_dlock(parent) !! 1683 __dget_dlock(parent); 1725 hlist_add_head(&dentry->d_sib, &paren !! 1684 dentry->d_parent = parent; >> 1685 list_add(&dentry->d_child, &parent->d_subdirs); 1726 spin_unlock(&parent->d_lock); 1686 spin_unlock(&parent->d_lock); 1727 1687 1728 return dentry; 1688 return dentry; 1729 } 1689 } 1730 EXPORT_SYMBOL(d_alloc); 1690 EXPORT_SYMBOL(d_alloc); 1731 1691 1732 struct dentry *d_alloc_anon(struct super_bloc 1692 struct dentry *d_alloc_anon(struct super_block *sb) 1733 { 1693 { 1734 return __d_alloc(sb, NULL); 1694 return __d_alloc(sb, NULL); 1735 } 1695 } 1736 EXPORT_SYMBOL(d_alloc_anon); 1696 EXPORT_SYMBOL(d_alloc_anon); 1737 1697 1738 struct dentry *d_alloc_cursor(struct dentry * 1698 struct dentry *d_alloc_cursor(struct dentry * parent) 1739 { 1699 { 1740 struct dentry *dentry = d_alloc_anon( 1700 struct dentry *dentry = d_alloc_anon(parent->d_sb); 1741 if (dentry) { 1701 if (dentry) { 1742 dentry->d_flags |= DCACHE_DEN !! 1702 dentry->d_flags |= DCACHE_RCUACCESS | DCACHE_DENTRY_CURSOR; 1743 dentry->d_parent = dget(paren 1703 dentry->d_parent = dget(parent); 1744 } 1704 } 1745 return dentry; 1705 return dentry; 1746 } 1706 } 1747 1707 1748 /** 1708 /** 1749 * d_alloc_pseudo - allocate a dentry (for lo 1709 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems) 1750 * @sb: the superblock 1710 * @sb: the superblock 1751 * @name: qstr of the name 1711 * @name: qstr of the name 1752 * 1712 * 1753 * For a filesystem that just pins its dentri 1713 * For a filesystem that just pins its dentries in memory and never 1754 * performs lookups at all, return an unhashe 1714 * performs lookups at all, return an unhashed IS_ROOT dentry. 1755 * This is used for pipes, sockets et.al. - t << 1756 * never be anyone's children or parents. Un << 1757 * dentries, these will not have RCU delay be << 1758 * last reference and freeing them. << 1759 * << 1760 * The only user is alloc_file_pseudo() and t << 1761 * be considered a public interface. Don't u << 1762 */ 1715 */ 1763 struct dentry *d_alloc_pseudo(struct super_bl 1716 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name) 1764 { 1717 { 1765 static const struct dentry_operations !! 1718 return __d_alloc(sb, name); 1766 .d_dname = simple_dname << 1767 }; << 1768 struct dentry *dentry = __d_alloc(sb, << 1769 if (likely(dentry)) { << 1770 dentry->d_flags |= DCACHE_NOR << 1771 if (!sb->s_d_op) << 1772 d_set_d_op(dentry, &a << 1773 } << 1774 return dentry; << 1775 } 1719 } >> 1720 EXPORT_SYMBOL(d_alloc_pseudo); 1776 1721 1777 struct dentry *d_alloc_name(struct dentry *pa 1722 struct dentry *d_alloc_name(struct dentry *parent, const char *name) 1778 { 1723 { 1779 struct qstr q; 1724 struct qstr q; 1780 1725 1781 q.name = name; 1726 q.name = name; 1782 q.hash_len = hashlen_string(parent, n 1727 q.hash_len = hashlen_string(parent, name); 1783 return d_alloc(parent, &q); 1728 return d_alloc(parent, &q); 1784 } 1729 } 1785 EXPORT_SYMBOL(d_alloc_name); 1730 EXPORT_SYMBOL(d_alloc_name); 1786 1731 1787 void d_set_d_op(struct dentry *dentry, const 1732 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op) 1788 { 1733 { 1789 WARN_ON_ONCE(dentry->d_op); 1734 WARN_ON_ONCE(dentry->d_op); 1790 WARN_ON_ONCE(dentry->d_flags & (DCACH 1735 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH | 1791 DCACHE_OP_COM 1736 DCACHE_OP_COMPARE | 1792 DCACHE_OP_REV 1737 DCACHE_OP_REVALIDATE | 1793 DCACHE_OP_WEA 1738 DCACHE_OP_WEAK_REVALIDATE | 1794 DCACHE_OP_DEL 1739 DCACHE_OP_DELETE | 1795 DCACHE_OP_REA 1740 DCACHE_OP_REAL)); 1796 dentry->d_op = op; 1741 dentry->d_op = op; 1797 if (!op) 1742 if (!op) 1798 return; 1743 return; 1799 if (op->d_hash) 1744 if (op->d_hash) 1800 dentry->d_flags |= DCACHE_OP_ 1745 dentry->d_flags |= DCACHE_OP_HASH; 1801 if (op->d_compare) 1746 if (op->d_compare) 1802 dentry->d_flags |= DCACHE_OP_ 1747 dentry->d_flags |= DCACHE_OP_COMPARE; 1803 if (op->d_revalidate) 1748 if (op->d_revalidate) 1804 dentry->d_flags |= DCACHE_OP_ 1749 dentry->d_flags |= DCACHE_OP_REVALIDATE; 1805 if (op->d_weak_revalidate) 1750 if (op->d_weak_revalidate) 1806 dentry->d_flags |= DCACHE_OP_ 1751 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE; 1807 if (op->d_delete) 1752 if (op->d_delete) 1808 dentry->d_flags |= DCACHE_OP_ 1753 dentry->d_flags |= DCACHE_OP_DELETE; 1809 if (op->d_prune) 1754 if (op->d_prune) 1810 dentry->d_flags |= DCACHE_OP_ 1755 dentry->d_flags |= DCACHE_OP_PRUNE; 1811 if (op->d_real) 1756 if (op->d_real) 1812 dentry->d_flags |= DCACHE_OP_ 1757 dentry->d_flags |= DCACHE_OP_REAL; 1813 1758 1814 } 1759 } 1815 EXPORT_SYMBOL(d_set_d_op); 1760 EXPORT_SYMBOL(d_set_d_op); 1816 1761 >> 1762 >> 1763 /* >> 1764 * d_set_fallthru - Mark a dentry as falling through to a lower layer >> 1765 * @dentry - The dentry to mark >> 1766 * >> 1767 * Mark a dentry as falling through to the lower layer (as set with >> 1768 * d_pin_lower()). This flag may be recorded on the medium. >> 1769 */ >> 1770 void d_set_fallthru(struct dentry *dentry) >> 1771 { >> 1772 spin_lock(&dentry->d_lock); >> 1773 dentry->d_flags |= DCACHE_FALLTHRU; >> 1774 spin_unlock(&dentry->d_lock); >> 1775 } >> 1776 EXPORT_SYMBOL(d_set_fallthru); >> 1777 1817 static unsigned d_flags_for_inode(struct inod 1778 static unsigned d_flags_for_inode(struct inode *inode) 1818 { 1779 { 1819 unsigned add_flags = DCACHE_REGULAR_T 1780 unsigned add_flags = DCACHE_REGULAR_TYPE; 1820 1781 1821 if (!inode) 1782 if (!inode) 1822 return DCACHE_MISS_TYPE; 1783 return DCACHE_MISS_TYPE; 1823 1784 1824 if (S_ISDIR(inode->i_mode)) { 1785 if (S_ISDIR(inode->i_mode)) { 1825 add_flags = DCACHE_DIRECTORY_ 1786 add_flags = DCACHE_DIRECTORY_TYPE; 1826 if (unlikely(!(inode->i_opfla 1787 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) { 1827 if (unlikely(!inode-> 1788 if (unlikely(!inode->i_op->lookup)) 1828 add_flags = D 1789 add_flags = DCACHE_AUTODIR_TYPE; 1829 else 1790 else 1830 inode->i_opfl 1791 inode->i_opflags |= IOP_LOOKUP; 1831 } 1792 } 1832 goto type_determined; 1793 goto type_determined; 1833 } 1794 } 1834 1795 1835 if (unlikely(!(inode->i_opflags & IOP 1796 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) { 1836 if (unlikely(inode->i_op->get 1797 if (unlikely(inode->i_op->get_link)) { 1837 add_flags = DCACHE_SY 1798 add_flags = DCACHE_SYMLINK_TYPE; 1838 goto type_determined; 1799 goto type_determined; 1839 } 1800 } 1840 inode->i_opflags |= IOP_NOFOL 1801 inode->i_opflags |= IOP_NOFOLLOW; 1841 } 1802 } 1842 1803 1843 if (unlikely(!S_ISREG(inode->i_mode)) 1804 if (unlikely(!S_ISREG(inode->i_mode))) 1844 add_flags = DCACHE_SPECIAL_TY 1805 add_flags = DCACHE_SPECIAL_TYPE; 1845 1806 1846 type_determined: 1807 type_determined: 1847 if (unlikely(IS_AUTOMOUNT(inode))) 1808 if (unlikely(IS_AUTOMOUNT(inode))) 1848 add_flags |= DCACHE_NEED_AUTO 1809 add_flags |= DCACHE_NEED_AUTOMOUNT; 1849 return add_flags; 1810 return add_flags; 1850 } 1811 } 1851 1812 1852 static void __d_instantiate(struct dentry *de 1813 static void __d_instantiate(struct dentry *dentry, struct inode *inode) 1853 { 1814 { 1854 unsigned add_flags = d_flags_for_inod 1815 unsigned add_flags = d_flags_for_inode(inode); 1855 WARN_ON(d_in_lookup(dentry)); 1816 WARN_ON(d_in_lookup(dentry)); 1856 1817 1857 spin_lock(&dentry->d_lock); 1818 spin_lock(&dentry->d_lock); 1858 /* << 1859 * The negative counter only tracks d << 1860 * d_lru is on another list. << 1861 */ << 1862 if ((dentry->d_flags & << 1863 (DCACHE_LRU_LIST|DCACHE_SHRINK_L << 1864 this_cpu_dec(nr_dentry_negati << 1865 hlist_add_head(&dentry->d_u.d_alias, 1819 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry); 1866 raw_write_seqcount_begin(&dentry->d_s 1820 raw_write_seqcount_begin(&dentry->d_seq); 1867 __d_set_inode_and_type(dentry, inode, 1821 __d_set_inode_and_type(dentry, inode, add_flags); 1868 raw_write_seqcount_end(&dentry->d_seq 1822 raw_write_seqcount_end(&dentry->d_seq); 1869 fsnotify_update_flags(dentry); 1823 fsnotify_update_flags(dentry); 1870 spin_unlock(&dentry->d_lock); 1824 spin_unlock(&dentry->d_lock); 1871 } 1825 } 1872 1826 1873 /** 1827 /** 1874 * d_instantiate - fill in inode information 1828 * d_instantiate - fill in inode information for a dentry 1875 * @entry: dentry to complete 1829 * @entry: dentry to complete 1876 * @inode: inode to attach to this dentry 1830 * @inode: inode to attach to this dentry 1877 * 1831 * 1878 * Fill in inode information in the entry. 1832 * Fill in inode information in the entry. 1879 * 1833 * 1880 * This turns negative dentries into producti 1834 * This turns negative dentries into productive full members 1881 * of society. 1835 * of society. 1882 * 1836 * 1883 * NOTE! This assumes that the inode count ha 1837 * NOTE! This assumes that the inode count has been incremented 1884 * (or otherwise set) by the caller to indica 1838 * (or otherwise set) by the caller to indicate that it is now 1885 * in use by the dcache. 1839 * in use by the dcache. 1886 */ 1840 */ 1887 1841 1888 void d_instantiate(struct dentry *entry, stru 1842 void d_instantiate(struct dentry *entry, struct inode * inode) 1889 { 1843 { 1890 BUG_ON(!hlist_unhashed(&entry->d_u.d_ 1844 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias)); 1891 if (inode) { 1845 if (inode) { 1892 security_d_instantiate(entry, 1846 security_d_instantiate(entry, inode); 1893 spin_lock(&inode->i_lock); 1847 spin_lock(&inode->i_lock); 1894 __d_instantiate(entry, inode) 1848 __d_instantiate(entry, inode); 1895 spin_unlock(&inode->i_lock); 1849 spin_unlock(&inode->i_lock); 1896 } 1850 } 1897 } 1851 } 1898 EXPORT_SYMBOL(d_instantiate); 1852 EXPORT_SYMBOL(d_instantiate); 1899 1853 1900 /* 1854 /* 1901 * This should be equivalent to d_instantiate 1855 * This should be equivalent to d_instantiate() + unlock_new_inode(), 1902 * with lockdep-related part of unlock_new_in 1856 * with lockdep-related part of unlock_new_inode() done before 1903 * anything else. Use that instead of open-c 1857 * anything else. Use that instead of open-coding d_instantiate()/ 1904 * unlock_new_inode() combinations. 1858 * unlock_new_inode() combinations. 1905 */ 1859 */ 1906 void d_instantiate_new(struct dentry *entry, 1860 void d_instantiate_new(struct dentry *entry, struct inode *inode) 1907 { 1861 { 1908 BUG_ON(!hlist_unhashed(&entry->d_u.d_ 1862 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias)); 1909 BUG_ON(!inode); 1863 BUG_ON(!inode); 1910 lockdep_annotate_inode_mutex_key(inod 1864 lockdep_annotate_inode_mutex_key(inode); 1911 security_d_instantiate(entry, inode); 1865 security_d_instantiate(entry, inode); 1912 spin_lock(&inode->i_lock); 1866 spin_lock(&inode->i_lock); 1913 __d_instantiate(entry, inode); 1867 __d_instantiate(entry, inode); 1914 WARN_ON(!(inode->i_state & I_NEW)); 1868 WARN_ON(!(inode->i_state & I_NEW)); 1915 inode->i_state &= ~I_NEW & ~I_CREATIN 1869 inode->i_state &= ~I_NEW & ~I_CREATING; 1916 /* << 1917 * Pairs with the barrier in prepare_ << 1918 * ___wait_var_event() either sees th << 1919 * waitqueue_active() check in wake_u << 1920 */ << 1921 smp_mb(); 1870 smp_mb(); 1922 inode_wake_up_bit(inode, __I_NEW); !! 1871 wake_up_bit(&inode->i_state, __I_NEW); 1923 spin_unlock(&inode->i_lock); 1872 spin_unlock(&inode->i_lock); 1924 } 1873 } 1925 EXPORT_SYMBOL(d_instantiate_new); 1874 EXPORT_SYMBOL(d_instantiate_new); 1926 1875 1927 struct dentry *d_make_root(struct inode *root 1876 struct dentry *d_make_root(struct inode *root_inode) 1928 { 1877 { 1929 struct dentry *res = NULL; 1878 struct dentry *res = NULL; 1930 1879 1931 if (root_inode) { 1880 if (root_inode) { 1932 res = d_alloc_anon(root_inode 1881 res = d_alloc_anon(root_inode->i_sb); 1933 if (res) !! 1882 if (res) { >> 1883 res->d_flags |= DCACHE_RCUACCESS; 1934 d_instantiate(res, ro 1884 d_instantiate(res, root_inode); 1935 else !! 1885 } else { 1936 iput(root_inode); 1886 iput(root_inode); >> 1887 } 1937 } 1888 } 1938 return res; 1889 return res; 1939 } 1890 } 1940 EXPORT_SYMBOL(d_make_root); 1891 EXPORT_SYMBOL(d_make_root); 1941 1892 >> 1893 static struct dentry *__d_instantiate_anon(struct dentry *dentry, >> 1894 struct inode *inode, >> 1895 bool disconnected) >> 1896 { >> 1897 struct dentry *res; >> 1898 unsigned add_flags; >> 1899 >> 1900 security_d_instantiate(dentry, inode); >> 1901 spin_lock(&inode->i_lock); >> 1902 res = __d_find_any_alias(inode); >> 1903 if (res) { >> 1904 spin_unlock(&inode->i_lock); >> 1905 dput(dentry); >> 1906 goto out_iput; >> 1907 } >> 1908 >> 1909 /* attach a disconnected dentry */ >> 1910 add_flags = d_flags_for_inode(inode); >> 1911 >> 1912 if (disconnected) >> 1913 add_flags |= DCACHE_DISCONNECTED; >> 1914 >> 1915 spin_lock(&dentry->d_lock); >> 1916 __d_set_inode_and_type(dentry, inode, add_flags); >> 1917 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry); >> 1918 if (!disconnected) { >> 1919 hlist_bl_lock(&dentry->d_sb->s_roots); >> 1920 hlist_bl_add_head(&dentry->d_hash, &dentry->d_sb->s_roots); >> 1921 hlist_bl_unlock(&dentry->d_sb->s_roots); >> 1922 } >> 1923 spin_unlock(&dentry->d_lock); >> 1924 spin_unlock(&inode->i_lock); >> 1925 >> 1926 return dentry; >> 1927 >> 1928 out_iput: >> 1929 iput(inode); >> 1930 return res; >> 1931 } >> 1932 >> 1933 struct dentry *d_instantiate_anon(struct dentry *dentry, struct inode *inode) >> 1934 { >> 1935 return __d_instantiate_anon(dentry, inode, true); >> 1936 } >> 1937 EXPORT_SYMBOL(d_instantiate_anon); >> 1938 1942 static struct dentry *__d_obtain_alias(struct 1939 static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected) 1943 { 1940 { 1944 struct super_block *sb; !! 1941 struct dentry *tmp; 1945 struct dentry *new, *res; !! 1942 struct dentry *res; 1946 1943 1947 if (!inode) 1944 if (!inode) 1948 return ERR_PTR(-ESTALE); 1945 return ERR_PTR(-ESTALE); 1949 if (IS_ERR(inode)) 1946 if (IS_ERR(inode)) 1950 return ERR_CAST(inode); 1947 return ERR_CAST(inode); 1951 1948 1952 sb = inode->i_sb; !! 1949 res = d_find_any_alias(inode); 1953 << 1954 res = d_find_any_alias(inode); /* exi << 1955 if (res) 1950 if (res) 1956 goto out; !! 1951 goto out_iput; 1957 1952 1958 new = d_alloc_anon(sb); !! 1953 tmp = d_alloc_anon(inode->i_sb); 1959 if (!new) { !! 1954 if (!tmp) { 1960 res = ERR_PTR(-ENOMEM); 1955 res = ERR_PTR(-ENOMEM); 1961 goto out; !! 1956 goto out_iput; 1962 } 1957 } 1963 1958 1964 security_d_instantiate(new, inode); !! 1959 return __d_instantiate_anon(tmp, inode, disconnected); 1965 spin_lock(&inode->i_lock); << 1966 res = __d_find_any_alias(inode); /* r << 1967 if (likely(!res)) { /* still no alias << 1968 unsigned add_flags = d_flags_ << 1969 << 1970 if (disconnected) << 1971 add_flags |= DCACHE_D << 1972 1960 1973 spin_lock(&new->d_lock); !! 1961 out_iput: 1974 __d_set_inode_and_type(new, i << 1975 hlist_add_head(&new->d_u.d_al << 1976 if (!disconnected) { << 1977 hlist_bl_lock(&sb->s_ << 1978 hlist_bl_add_head(&ne << 1979 hlist_bl_unlock(&sb-> << 1980 } << 1981 spin_unlock(&new->d_lock); << 1982 spin_unlock(&inode->i_lock); << 1983 inode = NULL; /* consumed by << 1984 res = new; << 1985 } else { << 1986 spin_unlock(&inode->i_lock); << 1987 dput(new); << 1988 } << 1989 << 1990 out: << 1991 iput(inode); 1962 iput(inode); 1992 return res; 1963 return res; 1993 } 1964 } 1994 1965 1995 /** 1966 /** 1996 * d_obtain_alias - find or allocate a DISCON 1967 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode 1997 * @inode: inode to allocate the dentry for 1968 * @inode: inode to allocate the dentry for 1998 * 1969 * 1999 * Obtain a dentry for an inode resulting fro 1970 * Obtain a dentry for an inode resulting from NFS filehandle conversion or 2000 * similar open by handle operations. The re 1971 * similar open by handle operations. The returned dentry may be anonymous, 2001 * or may have a full name (if the inode was 1972 * or may have a full name (if the inode was already in the cache). 2002 * 1973 * 2003 * When called on a directory inode, we must 1974 * When called on a directory inode, we must ensure that the inode only ever 2004 * has one dentry. If a dentry is found, tha 1975 * has one dentry. If a dentry is found, that is returned instead of 2005 * allocating a new one. 1976 * allocating a new one. 2006 * 1977 * 2007 * On successful return, the reference to the 1978 * On successful return, the reference to the inode has been transferred 2008 * to the dentry. In case of an error the re 1979 * to the dentry. In case of an error the reference on the inode is released. 2009 * To make it easier to use in export operati 1980 * To make it easier to use in export operations a %NULL or IS_ERR inode may 2010 * be passed in and the error will be propaga 1981 * be passed in and the error will be propagated to the return value, 2011 * with a %NULL @inode replaced by ERR_PTR(-E 1982 * with a %NULL @inode replaced by ERR_PTR(-ESTALE). 2012 */ 1983 */ 2013 struct dentry *d_obtain_alias(struct inode *i 1984 struct dentry *d_obtain_alias(struct inode *inode) 2014 { 1985 { 2015 return __d_obtain_alias(inode, true); 1986 return __d_obtain_alias(inode, true); 2016 } 1987 } 2017 EXPORT_SYMBOL(d_obtain_alias); 1988 EXPORT_SYMBOL(d_obtain_alias); 2018 1989 2019 /** 1990 /** 2020 * d_obtain_root - find or allocate a dentry 1991 * d_obtain_root - find or allocate a dentry for a given inode 2021 * @inode: inode to allocate the dentry for 1992 * @inode: inode to allocate the dentry for 2022 * 1993 * 2023 * Obtain an IS_ROOT dentry for the root of a 1994 * Obtain an IS_ROOT dentry for the root of a filesystem. 2024 * 1995 * 2025 * We must ensure that directory inodes only 1996 * We must ensure that directory inodes only ever have one dentry. If a 2026 * dentry is found, that is returned instead 1997 * dentry is found, that is returned instead of allocating a new one. 2027 * 1998 * 2028 * On successful return, the reference to the 1999 * On successful return, the reference to the inode has been transferred 2029 * to the dentry. In case of an error the re 2000 * to the dentry. In case of an error the reference on the inode is 2030 * released. A %NULL or IS_ERR inode may be 2001 * released. A %NULL or IS_ERR inode may be passed in and will be the 2031 * error will be propagate to the return valu 2002 * error will be propagate to the return value, with a %NULL @inode 2032 * replaced by ERR_PTR(-ESTALE). 2003 * replaced by ERR_PTR(-ESTALE). 2033 */ 2004 */ 2034 struct dentry *d_obtain_root(struct inode *in 2005 struct dentry *d_obtain_root(struct inode *inode) 2035 { 2006 { 2036 return __d_obtain_alias(inode, false) 2007 return __d_obtain_alias(inode, false); 2037 } 2008 } 2038 EXPORT_SYMBOL(d_obtain_root); 2009 EXPORT_SYMBOL(d_obtain_root); 2039 2010 2040 /** 2011 /** 2041 * d_add_ci - lookup or allocate new dentry w 2012 * d_add_ci - lookup or allocate new dentry with case-exact name 2042 * @inode: the inode case-insensitive lookup 2013 * @inode: the inode case-insensitive lookup has found 2043 * @dentry: the negative dentry that was pass 2014 * @dentry: the negative dentry that was passed to the parent's lookup func 2044 * @name: the case-exact name to be associa 2015 * @name: the case-exact name to be associated with the returned dentry 2045 * 2016 * 2046 * This is to avoid filling the dcache with c 2017 * This is to avoid filling the dcache with case-insensitive names to the 2047 * same inode, only the actual correct case i 2018 * same inode, only the actual correct case is stored in the dcache for 2048 * case-insensitive filesystems. 2019 * case-insensitive filesystems. 2049 * 2020 * 2050 * For a case-insensitive lookup match and if !! 2021 * For a case-insensitive lookup match and if the the case-exact dentry 2051 * already exists in the dcache, use it and r !! 2022 * already exists in in the dcache, use it and return it. 2052 * 2023 * 2053 * If no entry exists with the exact case nam 2024 * If no entry exists with the exact case name, allocate new dentry with 2054 * the exact case, and return the spliced ent 2025 * the exact case, and return the spliced entry. 2055 */ 2026 */ 2056 struct dentry *d_add_ci(struct dentry *dentry 2027 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode, 2057 struct qstr *name) 2028 struct qstr *name) 2058 { 2029 { 2059 struct dentry *found, *res; 2030 struct dentry *found, *res; 2060 2031 2061 /* 2032 /* 2062 * First check if a dentry matching t 2033 * First check if a dentry matching the name already exists, 2063 * if not go ahead and create it now. 2034 * if not go ahead and create it now. 2064 */ 2035 */ 2065 found = d_hash_and_lookup(dentry->d_p 2036 found = d_hash_and_lookup(dentry->d_parent, name); 2066 if (found) { 2037 if (found) { 2067 iput(inode); 2038 iput(inode); 2068 return found; 2039 return found; 2069 } 2040 } 2070 if (d_in_lookup(dentry)) { 2041 if (d_in_lookup(dentry)) { 2071 found = d_alloc_parallel(dent 2042 found = d_alloc_parallel(dentry->d_parent, name, 2072 dentr 2043 dentry->d_wait); 2073 if (IS_ERR(found) || !d_in_lo 2044 if (IS_ERR(found) || !d_in_lookup(found)) { 2074 iput(inode); 2045 iput(inode); 2075 return found; 2046 return found; 2076 } 2047 } 2077 } else { 2048 } else { 2078 found = d_alloc(dentry->d_par 2049 found = d_alloc(dentry->d_parent, name); 2079 if (!found) { 2050 if (!found) { 2080 iput(inode); 2051 iput(inode); 2081 return ERR_PTR(-ENOME 2052 return ERR_PTR(-ENOMEM); 2082 } 2053 } 2083 } 2054 } 2084 res = d_splice_alias(inode, found); 2055 res = d_splice_alias(inode, found); 2085 if (res) { 2056 if (res) { 2086 d_lookup_done(found); << 2087 dput(found); 2057 dput(found); 2088 return res; 2058 return res; 2089 } 2059 } 2090 return found; 2060 return found; 2091 } 2061 } 2092 EXPORT_SYMBOL(d_add_ci); 2062 EXPORT_SYMBOL(d_add_ci); 2093 2063 2094 /** !! 2064 2095 * d_same_name - compare dentry name with cas !! 2065 static inline bool d_same_name(const struct dentry *dentry, 2096 * @parent: parent dentry !! 2066 const struct dentry *parent, 2097 * @dentry: the negative dentry that was pass !! 2067 const struct qstr *name) 2098 * @name: the case-exact name to be associa << 2099 * << 2100 * Return: true if names are same, or false << 2101 */ << 2102 bool d_same_name(const struct dentry *dentry, << 2103 const struct qstr *name) << 2104 { 2068 { 2105 if (likely(!(parent->d_flags & DCACHE 2069 if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) { 2106 if (dentry->d_name.len != nam 2070 if (dentry->d_name.len != name->len) 2107 return false; 2071 return false; 2108 return dentry_cmp(dentry, nam 2072 return dentry_cmp(dentry, name->name, name->len) == 0; 2109 } 2073 } 2110 return parent->d_op->d_compare(dentry 2074 return parent->d_op->d_compare(dentry, 2111 dentry 2075 dentry->d_name.len, dentry->d_name.name, 2112 name) 2076 name) == 0; 2113 } 2077 } 2114 EXPORT_SYMBOL_GPL(d_same_name); << 2115 << 2116 /* << 2117 * This is __d_lookup_rcu() when the parent d << 2118 * DCACHE_OP_COMPARE, which makes things much << 2119 */ << 2120 static noinline struct dentry *__d_lookup_rcu << 2121 const struct dentry *parent, << 2122 const struct qstr *name, << 2123 unsigned *seqp) << 2124 { << 2125 u64 hashlen = name->hash_len; << 2126 struct hlist_bl_head *b = d_hash(hash << 2127 struct hlist_bl_node *node; << 2128 struct dentry *dentry; << 2129 << 2130 hlist_bl_for_each_entry_rcu(dentry, n << 2131 int tlen; << 2132 const char *tname; << 2133 unsigned seq; << 2134 << 2135 seqretry: << 2136 seq = raw_seqcount_begin(&den << 2137 if (dentry->d_parent != paren << 2138 continue; << 2139 if (d_unhashed(dentry)) << 2140 continue; << 2141 if (dentry->d_name.hash != ha << 2142 continue; << 2143 tlen = dentry->d_name.len; << 2144 tname = dentry->d_name.name; << 2145 /* we want a consistent (name << 2146 if (read_seqcount_retry(&dent << 2147 cpu_relax(); << 2148 goto seqretry; << 2149 } << 2150 if (parent->d_op->d_compare(d << 2151 continue; << 2152 *seqp = seq; << 2153 return dentry; << 2154 } << 2155 return NULL; << 2156 } << 2157 2078 2158 /** 2079 /** 2159 * __d_lookup_rcu - search for a dentry (racy 2080 * __d_lookup_rcu - search for a dentry (racy, store-free) 2160 * @parent: parent dentry 2081 * @parent: parent dentry 2161 * @name: qstr of name we wish to find 2082 * @name: qstr of name we wish to find 2162 * @seqp: returns d_seq value at the point wh 2083 * @seqp: returns d_seq value at the point where the dentry was found 2163 * Returns: dentry, or NULL 2084 * Returns: dentry, or NULL 2164 * 2085 * 2165 * __d_lookup_rcu is the dcache lookup functi 2086 * __d_lookup_rcu is the dcache lookup function for rcu-walk name 2166 * resolution (store-free path walking) desig 2087 * resolution (store-free path walking) design described in 2167 * Documentation/filesystems/path-lookup.txt. 2088 * Documentation/filesystems/path-lookup.txt. 2168 * 2089 * 2169 * This is not to be used outside core vfs. 2090 * This is not to be used outside core vfs. 2170 * 2091 * 2171 * __d_lookup_rcu must only be used in rcu-wa 2092 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock 2172 * held, and rcu_read_lock held. The returned 2093 * held, and rcu_read_lock held. The returned dentry must not be stored into 2173 * without taking d_lock and checking d_seq s 2094 * without taking d_lock and checking d_seq sequence count against @seq 2174 * returned here. 2095 * returned here. 2175 * 2096 * >> 2097 * A refcount may be taken on the found dentry with the d_rcu_to_refcount >> 2098 * function. >> 2099 * 2176 * Alternatively, __d_lookup_rcu may be calle 2100 * Alternatively, __d_lookup_rcu may be called again to look up the child of 2177 * the returned dentry, so long as its parent 2101 * the returned dentry, so long as its parent's seqlock is checked after the 2178 * child is looked up. Thus, an interlocking 2102 * child is looked up. Thus, an interlocking stepping of sequence lock checks 2179 * is formed, giving integrity down the path 2103 * is formed, giving integrity down the path walk. 2180 * 2104 * 2181 * NOTE! The caller *has* to check the result 2105 * NOTE! The caller *has* to check the resulting dentry against the sequence 2182 * number we've returned before using any of 2106 * number we've returned before using any of the resulting dentry state! 2183 */ 2107 */ 2184 struct dentry *__d_lookup_rcu(const struct de 2108 struct dentry *__d_lookup_rcu(const struct dentry *parent, 2185 const struct 2109 const struct qstr *name, 2186 unsigned *seq 2110 unsigned *seqp) 2187 { 2111 { 2188 u64 hashlen = name->hash_len; 2112 u64 hashlen = name->hash_len; 2189 const unsigned char *str = name->name 2113 const unsigned char *str = name->name; 2190 struct hlist_bl_head *b = d_hash(hash !! 2114 struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen)); 2191 struct hlist_bl_node *node; 2115 struct hlist_bl_node *node; 2192 struct dentry *dentry; 2116 struct dentry *dentry; 2193 2117 2194 /* 2118 /* 2195 * Note: There is significant duplica 2119 * Note: There is significant duplication with __d_lookup_rcu which is 2196 * required to prevent single threade 2120 * required to prevent single threaded performance regressions 2197 * especially on architectures where 2121 * especially on architectures where smp_rmb (in seqcounts) are costly. 2198 * Keep the two functions in sync. 2122 * Keep the two functions in sync. 2199 */ 2123 */ 2200 2124 2201 if (unlikely(parent->d_flags & DCACHE << 2202 return __d_lookup_rcu_op_comp << 2203 << 2204 /* 2125 /* 2205 * The hash list is protected using R 2126 * The hash list is protected using RCU. 2206 * 2127 * 2207 * Carefully use d_seq when comparing 2128 * Carefully use d_seq when comparing a candidate dentry, to avoid 2208 * races with d_move(). 2129 * races with d_move(). 2209 * 2130 * 2210 * It is possible that concurrent ren 2131 * It is possible that concurrent renames can mess up our list 2211 * walk here and result in missing ou 2132 * walk here and result in missing our dentry, resulting in the 2212 * false-negative result. d_lookup() 2133 * false-negative result. d_lookup() protects against concurrent 2213 * renames using rename_lock seqlock. 2134 * renames using rename_lock seqlock. 2214 * 2135 * 2215 * See Documentation/filesystems/path 2136 * See Documentation/filesystems/path-lookup.txt for more details. 2216 */ 2137 */ 2217 hlist_bl_for_each_entry_rcu(dentry, n 2138 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { 2218 unsigned seq; 2139 unsigned seq; 2219 2140 >> 2141 seqretry: 2220 /* 2142 /* 2221 * The dentry sequence count 2143 * The dentry sequence count protects us from concurrent 2222 * renames, and thus protects 2144 * renames, and thus protects parent and name fields. 2223 * 2145 * 2224 * The caller must perform a 2146 * The caller must perform a seqcount check in order 2225 * to do anything useful with 2147 * to do anything useful with the returned dentry. 2226 * 2148 * 2227 * NOTE! We do a "raw" seqcou 2149 * NOTE! We do a "raw" seqcount_begin here. That means that 2228 * we don't wait for the sequ 2150 * we don't wait for the sequence count to stabilize if it 2229 * is in the middle of a sequ 2151 * is in the middle of a sequence change. If we do the slow 2230 * dentry compare, we will do 2152 * dentry compare, we will do seqretries until it is stable, 2231 * and if we end up with a su 2153 * and if we end up with a successful lookup, we actually 2232 * want to exit RCU lookup an 2154 * want to exit RCU lookup anyway. 2233 * 2155 * 2234 * Note that raw_seqcount_beg 2156 * Note that raw_seqcount_begin still *does* smp_rmb(), so 2235 * we are still guaranteed NU 2157 * we are still guaranteed NUL-termination of ->d_name.name. 2236 */ 2158 */ 2237 seq = raw_seqcount_begin(&den 2159 seq = raw_seqcount_begin(&dentry->d_seq); 2238 if (dentry->d_parent != paren 2160 if (dentry->d_parent != parent) 2239 continue; 2161 continue; 2240 if (d_unhashed(dentry)) 2162 if (d_unhashed(dentry)) 2241 continue; 2163 continue; 2242 if (dentry->d_name.hash_len ! !! 2164 2243 continue; !! 2165 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) { 2244 if (dentry_cmp(dentry, str, h !! 2166 int tlen; 2245 continue; !! 2167 const char *tname; >> 2168 if (dentry->d_name.hash != hashlen_hash(hashlen)) >> 2169 continue; >> 2170 tlen = dentry->d_name.len; >> 2171 tname = dentry->d_name.name; >> 2172 /* we want a consistent (name,len) pair */ >> 2173 if (read_seqcount_retry(&dentry->d_seq, seq)) { >> 2174 cpu_relax(); >> 2175 goto seqretry; >> 2176 } >> 2177 if (parent->d_op->d_compare(dentry, >> 2178 tlen, tname, name) != 0) >> 2179 continue; >> 2180 } else { >> 2181 if (dentry->d_name.hash_len != hashlen) >> 2182 continue; >> 2183 if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0) >> 2184 continue; >> 2185 } 2246 *seqp = seq; 2186 *seqp = seq; 2247 return dentry; 2187 return dentry; 2248 } 2188 } 2249 return NULL; 2189 return NULL; 2250 } 2190 } 2251 2191 2252 /** 2192 /** 2253 * d_lookup - search for a dentry 2193 * d_lookup - search for a dentry 2254 * @parent: parent dentry 2194 * @parent: parent dentry 2255 * @name: qstr of name we wish to find 2195 * @name: qstr of name we wish to find 2256 * Returns: dentry, or NULL 2196 * Returns: dentry, or NULL 2257 * 2197 * 2258 * d_lookup searches the children of the pare 2198 * d_lookup searches the children of the parent dentry for the name in 2259 * question. If the dentry is found its refer 2199 * question. If the dentry is found its reference count is incremented and the 2260 * dentry is returned. The caller must use dp 2200 * dentry is returned. The caller must use dput to free the entry when it has 2261 * finished using it. %NULL is returned if th 2201 * finished using it. %NULL is returned if the dentry does not exist. 2262 */ 2202 */ 2263 struct dentry *d_lookup(const struct dentry * 2203 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name) 2264 { 2204 { 2265 struct dentry *dentry; 2205 struct dentry *dentry; 2266 unsigned seq; 2206 unsigned seq; 2267 2207 2268 do { 2208 do { 2269 seq = read_seqbegin(&rename_l 2209 seq = read_seqbegin(&rename_lock); 2270 dentry = __d_lookup(parent, n 2210 dentry = __d_lookup(parent, name); 2271 if (dentry) 2211 if (dentry) 2272 break; 2212 break; 2273 } while (read_seqretry(&rename_lock, 2213 } while (read_seqretry(&rename_lock, seq)); 2274 return dentry; 2214 return dentry; 2275 } 2215 } 2276 EXPORT_SYMBOL(d_lookup); 2216 EXPORT_SYMBOL(d_lookup); 2277 2217 2278 /** 2218 /** 2279 * __d_lookup - search for a dentry (racy) 2219 * __d_lookup - search for a dentry (racy) 2280 * @parent: parent dentry 2220 * @parent: parent dentry 2281 * @name: qstr of name we wish to find 2221 * @name: qstr of name we wish to find 2282 * Returns: dentry, or NULL 2222 * Returns: dentry, or NULL 2283 * 2223 * 2284 * __d_lookup is like d_lookup, however it ma 2224 * __d_lookup is like d_lookup, however it may (rarely) return a 2285 * false-negative result due to unrelated ren 2225 * false-negative result due to unrelated rename activity. 2286 * 2226 * 2287 * __d_lookup is slightly faster by avoiding 2227 * __d_lookup is slightly faster by avoiding rename_lock read seqlock, 2288 * however it must be used carefully, eg. wit 2228 * however it must be used carefully, eg. with a following d_lookup in 2289 * the case of failure. 2229 * the case of failure. 2290 * 2230 * 2291 * __d_lookup callers must be commented. 2231 * __d_lookup callers must be commented. 2292 */ 2232 */ 2293 struct dentry *__d_lookup(const struct dentry 2233 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name) 2294 { 2234 { 2295 unsigned int hash = name->hash; 2235 unsigned int hash = name->hash; 2296 struct hlist_bl_head *b = d_hash(hash 2236 struct hlist_bl_head *b = d_hash(hash); 2297 struct hlist_bl_node *node; 2237 struct hlist_bl_node *node; 2298 struct dentry *found = NULL; 2238 struct dentry *found = NULL; 2299 struct dentry *dentry; 2239 struct dentry *dentry; 2300 2240 2301 /* 2241 /* 2302 * Note: There is significant duplica 2242 * Note: There is significant duplication with __d_lookup_rcu which is 2303 * required to prevent single threade 2243 * required to prevent single threaded performance regressions 2304 * especially on architectures where 2244 * especially on architectures where smp_rmb (in seqcounts) are costly. 2305 * Keep the two functions in sync. 2245 * Keep the two functions in sync. 2306 */ 2246 */ 2307 2247 2308 /* 2248 /* 2309 * The hash list is protected using R 2249 * The hash list is protected using RCU. 2310 * 2250 * 2311 * Take d_lock when comparing a candi 2251 * Take d_lock when comparing a candidate dentry, to avoid races 2312 * with d_move(). 2252 * with d_move(). 2313 * 2253 * 2314 * It is possible that concurrent ren 2254 * It is possible that concurrent renames can mess up our list 2315 * walk here and result in missing ou 2255 * walk here and result in missing our dentry, resulting in the 2316 * false-negative result. d_lookup() 2256 * false-negative result. d_lookup() protects against concurrent 2317 * renames using rename_lock seqlock. 2257 * renames using rename_lock seqlock. 2318 * 2258 * 2319 * See Documentation/filesystems/path 2259 * See Documentation/filesystems/path-lookup.txt for more details. 2320 */ 2260 */ 2321 rcu_read_lock(); 2261 rcu_read_lock(); 2322 2262 2323 hlist_bl_for_each_entry_rcu(dentry, n 2263 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { 2324 2264 2325 if (dentry->d_name.hash != ha 2265 if (dentry->d_name.hash != hash) 2326 continue; 2266 continue; 2327 2267 2328 spin_lock(&dentry->d_lock); 2268 spin_lock(&dentry->d_lock); 2329 if (dentry->d_parent != paren 2269 if (dentry->d_parent != parent) 2330 goto next; 2270 goto next; 2331 if (d_unhashed(dentry)) 2271 if (d_unhashed(dentry)) 2332 goto next; 2272 goto next; 2333 2273 2334 if (!d_same_name(dentry, pare 2274 if (!d_same_name(dentry, parent, name)) 2335 goto next; 2275 goto next; 2336 2276 2337 dentry->d_lockref.count++; 2277 dentry->d_lockref.count++; 2338 found = dentry; 2278 found = dentry; 2339 spin_unlock(&dentry->d_lock); 2279 spin_unlock(&dentry->d_lock); 2340 break; 2280 break; 2341 next: 2281 next: 2342 spin_unlock(&dentry->d_lock); 2282 spin_unlock(&dentry->d_lock); 2343 } 2283 } 2344 rcu_read_unlock(); 2284 rcu_read_unlock(); 2345 2285 2346 return found; 2286 return found; 2347 } 2287 } 2348 2288 2349 /** 2289 /** 2350 * d_hash_and_lookup - hash the qstr then sea 2290 * d_hash_and_lookup - hash the qstr then search for a dentry 2351 * @dir: Directory to search in 2291 * @dir: Directory to search in 2352 * @name: qstr of name we wish to find 2292 * @name: qstr of name we wish to find 2353 * 2293 * 2354 * On lookup failure NULL is returned; on bad 2294 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error) 2355 */ 2295 */ 2356 struct dentry *d_hash_and_lookup(struct dentr 2296 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name) 2357 { 2297 { 2358 /* 2298 /* 2359 * Check for a fs-specific hash funct 2299 * Check for a fs-specific hash function. Note that we must 2360 * calculate the standard hash first, 2300 * calculate the standard hash first, as the d_op->d_hash() 2361 * routine may choose to leave the ha 2301 * routine may choose to leave the hash value unchanged. 2362 */ 2302 */ 2363 name->hash = full_name_hash(dir, name 2303 name->hash = full_name_hash(dir, name->name, name->len); 2364 if (dir->d_flags & DCACHE_OP_HASH) { 2304 if (dir->d_flags & DCACHE_OP_HASH) { 2365 int err = dir->d_op->d_hash(d 2305 int err = dir->d_op->d_hash(dir, name); 2366 if (unlikely(err < 0)) 2306 if (unlikely(err < 0)) 2367 return ERR_PTR(err); 2307 return ERR_PTR(err); 2368 } 2308 } 2369 return d_lookup(dir, name); 2309 return d_lookup(dir, name); 2370 } 2310 } 2371 EXPORT_SYMBOL(d_hash_and_lookup); 2311 EXPORT_SYMBOL(d_hash_and_lookup); 2372 2312 2373 /* 2313 /* 2374 * When a file is deleted, we have two option 2314 * When a file is deleted, we have two options: 2375 * - turn this dentry into a negative dentry 2315 * - turn this dentry into a negative dentry 2376 * - unhash this dentry and free it. 2316 * - unhash this dentry and free it. 2377 * 2317 * 2378 * Usually, we want to just turn this into 2318 * Usually, we want to just turn this into 2379 * a negative dentry, but if anybody else is 2319 * a negative dentry, but if anybody else is 2380 * currently using the dentry or the inode 2320 * currently using the dentry or the inode 2381 * we can't do that and we fall back on remov 2321 * we can't do that and we fall back on removing 2382 * it from the hash queues and waiting for 2322 * it from the hash queues and waiting for 2383 * it to be deleted later when it has no user 2323 * it to be deleted later when it has no users 2384 */ 2324 */ 2385 2325 2386 /** 2326 /** 2387 * d_delete - delete a dentry 2327 * d_delete - delete a dentry 2388 * @dentry: The dentry to delete 2328 * @dentry: The dentry to delete 2389 * 2329 * 2390 * Turn the dentry into a negative dentry if 2330 * Turn the dentry into a negative dentry if possible, otherwise 2391 * remove it from the hash queues so it can b 2331 * remove it from the hash queues so it can be deleted later 2392 */ 2332 */ 2393 2333 2394 void d_delete(struct dentry * dentry) 2334 void d_delete(struct dentry * dentry) 2395 { 2335 { 2396 struct inode *inode = dentry->d_inode 2336 struct inode *inode = dentry->d_inode; >> 2337 int isdir = d_is_dir(dentry); 2397 2338 2398 spin_lock(&inode->i_lock); 2339 spin_lock(&inode->i_lock); 2399 spin_lock(&dentry->d_lock); 2340 spin_lock(&dentry->d_lock); 2400 /* 2341 /* 2401 * Are we the only user? 2342 * Are we the only user? 2402 */ 2343 */ 2403 if (dentry->d_lockref.count == 1) { 2344 if (dentry->d_lockref.count == 1) { 2404 dentry->d_flags &= ~DCACHE_CA 2345 dentry->d_flags &= ~DCACHE_CANT_MOUNT; 2405 dentry_unlink_inode(dentry); 2346 dentry_unlink_inode(dentry); 2406 } else { 2347 } else { 2407 __d_drop(dentry); 2348 __d_drop(dentry); 2408 spin_unlock(&dentry->d_lock); 2349 spin_unlock(&dentry->d_lock); 2409 spin_unlock(&inode->i_lock); 2350 spin_unlock(&inode->i_lock); 2410 } 2351 } >> 2352 fsnotify_nameremove(dentry, isdir); 2411 } 2353 } 2412 EXPORT_SYMBOL(d_delete); 2354 EXPORT_SYMBOL(d_delete); 2413 2355 2414 static void __d_rehash(struct dentry *entry) 2356 static void __d_rehash(struct dentry *entry) 2415 { 2357 { 2416 struct hlist_bl_head *b = d_hash(entr 2358 struct hlist_bl_head *b = d_hash(entry->d_name.hash); 2417 2359 2418 hlist_bl_lock(b); 2360 hlist_bl_lock(b); 2419 hlist_bl_add_head_rcu(&entry->d_hash, 2361 hlist_bl_add_head_rcu(&entry->d_hash, b); 2420 hlist_bl_unlock(b); 2362 hlist_bl_unlock(b); 2421 } 2363 } 2422 2364 2423 /** 2365 /** 2424 * d_rehash - add an entry back to the ha 2366 * d_rehash - add an entry back to the hash 2425 * @entry: dentry to add to the hash 2367 * @entry: dentry to add to the hash 2426 * 2368 * 2427 * Adds a dentry to the hash according to its 2369 * Adds a dentry to the hash according to its name. 2428 */ 2370 */ 2429 2371 2430 void d_rehash(struct dentry * entry) 2372 void d_rehash(struct dentry * entry) 2431 { 2373 { 2432 spin_lock(&entry->d_lock); 2374 spin_lock(&entry->d_lock); 2433 __d_rehash(entry); 2375 __d_rehash(entry); 2434 spin_unlock(&entry->d_lock); 2376 spin_unlock(&entry->d_lock); 2435 } 2377 } 2436 EXPORT_SYMBOL(d_rehash); 2378 EXPORT_SYMBOL(d_rehash); 2437 2379 2438 static inline unsigned start_dir_add(struct i 2380 static inline unsigned start_dir_add(struct inode *dir) 2439 { 2381 { 2440 preempt_disable_nested(); !! 2382 2441 for (;;) { 2383 for (;;) { 2442 unsigned n = dir->i_dir_seq; 2384 unsigned n = dir->i_dir_seq; 2443 if (!(n & 1) && cmpxchg(&dir- 2385 if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n) 2444 return n; 2386 return n; 2445 cpu_relax(); 2387 cpu_relax(); 2446 } 2388 } 2447 } 2389 } 2448 2390 2449 static inline void end_dir_add(struct inode * !! 2391 static inline void end_dir_add(struct inode *dir, unsigned n) 2450 wait_queue_hea << 2451 { 2392 { 2452 smp_store_release(&dir->i_dir_seq, n 2393 smp_store_release(&dir->i_dir_seq, n + 2); 2453 preempt_enable_nested(); << 2454 wake_up_all(d_wait); << 2455 } 2394 } 2456 2395 2457 static void d_wait_lookup(struct dentry *dent 2396 static void d_wait_lookup(struct dentry *dentry) 2458 { 2397 { 2459 if (d_in_lookup(dentry)) { 2398 if (d_in_lookup(dentry)) { 2460 DECLARE_WAITQUEUE(wait, curre 2399 DECLARE_WAITQUEUE(wait, current); 2461 add_wait_queue(dentry->d_wait 2400 add_wait_queue(dentry->d_wait, &wait); 2462 do { 2401 do { 2463 set_current_state(TAS 2402 set_current_state(TASK_UNINTERRUPTIBLE); 2464 spin_unlock(&dentry-> 2403 spin_unlock(&dentry->d_lock); 2465 schedule(); 2404 schedule(); 2466 spin_lock(&dentry->d_ 2405 spin_lock(&dentry->d_lock); 2467 } while (d_in_lookup(dentry)) 2406 } while (d_in_lookup(dentry)); 2468 } 2407 } 2469 } 2408 } 2470 2409 2471 struct dentry *d_alloc_parallel(struct dentry 2410 struct dentry *d_alloc_parallel(struct dentry *parent, 2472 const struct 2411 const struct qstr *name, 2473 wait_queue_he 2412 wait_queue_head_t *wq) 2474 { 2413 { 2475 unsigned int hash = name->hash; 2414 unsigned int hash = name->hash; 2476 struct hlist_bl_head *b = in_lookup_h 2415 struct hlist_bl_head *b = in_lookup_hash(parent, hash); 2477 struct hlist_bl_node *node; 2416 struct hlist_bl_node *node; 2478 struct dentry *new = d_alloc(parent, 2417 struct dentry *new = d_alloc(parent, name); 2479 struct dentry *dentry; 2418 struct dentry *dentry; 2480 unsigned seq, r_seq, d_seq; 2419 unsigned seq, r_seq, d_seq; 2481 2420 2482 if (unlikely(!new)) 2421 if (unlikely(!new)) 2483 return ERR_PTR(-ENOMEM); 2422 return ERR_PTR(-ENOMEM); 2484 2423 2485 retry: 2424 retry: 2486 rcu_read_lock(); 2425 rcu_read_lock(); 2487 seq = smp_load_acquire(&parent->d_ino 2426 seq = smp_load_acquire(&parent->d_inode->i_dir_seq); 2488 r_seq = read_seqbegin(&rename_lock); 2427 r_seq = read_seqbegin(&rename_lock); 2489 dentry = __d_lookup_rcu(parent, name, 2428 dentry = __d_lookup_rcu(parent, name, &d_seq); 2490 if (unlikely(dentry)) { 2429 if (unlikely(dentry)) { 2491 if (!lockref_get_not_dead(&de 2430 if (!lockref_get_not_dead(&dentry->d_lockref)) { 2492 rcu_read_unlock(); 2431 rcu_read_unlock(); 2493 goto retry; 2432 goto retry; 2494 } 2433 } 2495 if (read_seqcount_retry(&dent 2434 if (read_seqcount_retry(&dentry->d_seq, d_seq)) { 2496 rcu_read_unlock(); 2435 rcu_read_unlock(); 2497 dput(dentry); 2436 dput(dentry); 2498 goto retry; 2437 goto retry; 2499 } 2438 } 2500 rcu_read_unlock(); 2439 rcu_read_unlock(); 2501 dput(new); 2440 dput(new); 2502 return dentry; 2441 return dentry; 2503 } 2442 } 2504 if (unlikely(read_seqretry(&rename_lo 2443 if (unlikely(read_seqretry(&rename_lock, r_seq))) { 2505 rcu_read_unlock(); 2444 rcu_read_unlock(); 2506 goto retry; 2445 goto retry; 2507 } 2446 } 2508 2447 2509 if (unlikely(seq & 1)) { 2448 if (unlikely(seq & 1)) { 2510 rcu_read_unlock(); 2449 rcu_read_unlock(); 2511 goto retry; 2450 goto retry; 2512 } 2451 } 2513 2452 2514 hlist_bl_lock(b); 2453 hlist_bl_lock(b); 2515 if (unlikely(READ_ONCE(parent->d_inod 2454 if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) { 2516 hlist_bl_unlock(b); 2455 hlist_bl_unlock(b); 2517 rcu_read_unlock(); 2456 rcu_read_unlock(); 2518 goto retry; 2457 goto retry; 2519 } 2458 } 2520 /* 2459 /* 2521 * No changes for the parent since th 2460 * No changes for the parent since the beginning of d_lookup(). 2522 * Since all removals from the chain 2461 * Since all removals from the chain happen with hlist_bl_lock(), 2523 * any potential in-lookup matches ar 2462 * any potential in-lookup matches are going to stay here until 2524 * we unlock the chain. All fields a 2463 * we unlock the chain. All fields are stable in everything 2525 * we encounter. 2464 * we encounter. 2526 */ 2465 */ 2527 hlist_bl_for_each_entry(dentry, node, 2466 hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) { 2528 if (dentry->d_name.hash != ha 2467 if (dentry->d_name.hash != hash) 2529 continue; 2468 continue; 2530 if (dentry->d_parent != paren 2469 if (dentry->d_parent != parent) 2531 continue; 2470 continue; 2532 if (!d_same_name(dentry, pare 2471 if (!d_same_name(dentry, parent, name)) 2533 continue; 2472 continue; 2534 hlist_bl_unlock(b); 2473 hlist_bl_unlock(b); 2535 /* now we can try to grab a r 2474 /* now we can try to grab a reference */ 2536 if (!lockref_get_not_dead(&de 2475 if (!lockref_get_not_dead(&dentry->d_lockref)) { 2537 rcu_read_unlock(); 2476 rcu_read_unlock(); 2538 goto retry; 2477 goto retry; 2539 } 2478 } 2540 2479 2541 rcu_read_unlock(); 2480 rcu_read_unlock(); 2542 /* 2481 /* 2543 * somebody is likely to be s 2482 * somebody is likely to be still doing lookup for it; 2544 * wait for them to finish 2483 * wait for them to finish 2545 */ 2484 */ 2546 spin_lock(&dentry->d_lock); 2485 spin_lock(&dentry->d_lock); 2547 d_wait_lookup(dentry); 2486 d_wait_lookup(dentry); 2548 /* 2487 /* 2549 * it's not in-lookup anymore 2488 * it's not in-lookup anymore; in principle we should repeat 2550 * everything from dcache loo 2489 * everything from dcache lookup, but it's likely to be what 2551 * d_lookup() would've found 2490 * d_lookup() would've found anyway. If it is, just return it; 2552 * otherwise we really have t 2491 * otherwise we really have to repeat the whole thing. 2553 */ 2492 */ 2554 if (unlikely(dentry->d_name.h 2493 if (unlikely(dentry->d_name.hash != hash)) 2555 goto mismatch; 2494 goto mismatch; 2556 if (unlikely(dentry->d_parent 2495 if (unlikely(dentry->d_parent != parent)) 2557 goto mismatch; 2496 goto mismatch; 2558 if (unlikely(d_unhashed(dentr 2497 if (unlikely(d_unhashed(dentry))) 2559 goto mismatch; 2498 goto mismatch; 2560 if (unlikely(!d_same_name(den 2499 if (unlikely(!d_same_name(dentry, parent, name))) 2561 goto mismatch; 2500 goto mismatch; 2562 /* OK, it *is* a hashed match 2501 /* OK, it *is* a hashed match; return it */ 2563 spin_unlock(&dentry->d_lock); 2502 spin_unlock(&dentry->d_lock); 2564 dput(new); 2503 dput(new); 2565 return dentry; 2504 return dentry; 2566 } 2505 } 2567 rcu_read_unlock(); 2506 rcu_read_unlock(); 2568 /* we can't take ->d_lock here; it's 2507 /* we can't take ->d_lock here; it's OK, though. */ 2569 new->d_flags |= DCACHE_PAR_LOOKUP; 2508 new->d_flags |= DCACHE_PAR_LOOKUP; 2570 new->d_wait = wq; 2509 new->d_wait = wq; 2571 hlist_bl_add_head(&new->d_u.d_in_look !! 2510 hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b); 2572 hlist_bl_unlock(b); 2511 hlist_bl_unlock(b); 2573 return new; 2512 return new; 2574 mismatch: 2513 mismatch: 2575 spin_unlock(&dentry->d_lock); 2514 spin_unlock(&dentry->d_lock); 2576 dput(dentry); 2515 dput(dentry); 2577 goto retry; 2516 goto retry; 2578 } 2517 } 2579 EXPORT_SYMBOL(d_alloc_parallel); 2518 EXPORT_SYMBOL(d_alloc_parallel); 2580 2519 2581 /* !! 2520 void __d_lookup_done(struct dentry *dentry) 2582 * - Unhash the dentry << 2583 * - Retrieve and clear the waitqueue head in << 2584 * - Return the waitqueue head << 2585 */ << 2586 static wait_queue_head_t *__d_lookup_unhash(s << 2587 { 2521 { 2588 wait_queue_head_t *d_wait; !! 2522 struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent, 2589 struct hlist_bl_head *b; !! 2523 dentry->d_name.hash); 2590 << 2591 lockdep_assert_held(&dentry->d_lock); << 2592 << 2593 b = in_lookup_hash(dentry->d_parent, << 2594 hlist_bl_lock(b); 2524 hlist_bl_lock(b); 2595 dentry->d_flags &= ~DCACHE_PAR_LOOKUP 2525 dentry->d_flags &= ~DCACHE_PAR_LOOKUP; 2596 __hlist_bl_del(&dentry->d_u.d_in_look 2526 __hlist_bl_del(&dentry->d_u.d_in_lookup_hash); 2597 d_wait = dentry->d_wait; !! 2527 wake_up_all(dentry->d_wait); 2598 dentry->d_wait = NULL; 2528 dentry->d_wait = NULL; 2599 hlist_bl_unlock(b); 2529 hlist_bl_unlock(b); 2600 INIT_HLIST_NODE(&dentry->d_u.d_alias) 2530 INIT_HLIST_NODE(&dentry->d_u.d_alias); 2601 INIT_LIST_HEAD(&dentry->d_lru); 2531 INIT_LIST_HEAD(&dentry->d_lru); 2602 return d_wait; << 2603 } 2532 } 2604 !! 2533 EXPORT_SYMBOL(__d_lookup_done); 2605 void __d_lookup_unhash_wake(struct dentry *de << 2606 { << 2607 spin_lock(&dentry->d_lock); << 2608 wake_up_all(__d_lookup_unhash(dentry) << 2609 spin_unlock(&dentry->d_lock); << 2610 } << 2611 EXPORT_SYMBOL(__d_lookup_unhash_wake); << 2612 2534 2613 /* inode->i_lock held if inode is non-NULL */ 2535 /* inode->i_lock held if inode is non-NULL */ 2614 2536 2615 static inline void __d_add(struct dentry *den 2537 static inline void __d_add(struct dentry *dentry, struct inode *inode) 2616 { 2538 { 2617 wait_queue_head_t *d_wait; << 2618 struct inode *dir = NULL; 2539 struct inode *dir = NULL; 2619 unsigned n; 2540 unsigned n; 2620 spin_lock(&dentry->d_lock); 2541 spin_lock(&dentry->d_lock); 2621 if (unlikely(d_in_lookup(dentry))) { 2542 if (unlikely(d_in_lookup(dentry))) { 2622 dir = dentry->d_parent->d_ino 2543 dir = dentry->d_parent->d_inode; 2623 n = start_dir_add(dir); 2544 n = start_dir_add(dir); 2624 d_wait = __d_lookup_unhash(de !! 2545 __d_lookup_done(dentry); 2625 } 2546 } 2626 if (inode) { 2547 if (inode) { 2627 unsigned add_flags = d_flags_ 2548 unsigned add_flags = d_flags_for_inode(inode); 2628 hlist_add_head(&dentry->d_u.d 2549 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry); 2629 raw_write_seqcount_begin(&den 2550 raw_write_seqcount_begin(&dentry->d_seq); 2630 __d_set_inode_and_type(dentry 2551 __d_set_inode_and_type(dentry, inode, add_flags); 2631 raw_write_seqcount_end(&dentr 2552 raw_write_seqcount_end(&dentry->d_seq); 2632 fsnotify_update_flags(dentry) 2553 fsnotify_update_flags(dentry); 2633 } 2554 } 2634 __d_rehash(dentry); 2555 __d_rehash(dentry); 2635 if (dir) 2556 if (dir) 2636 end_dir_add(dir, n, d_wait); !! 2557 end_dir_add(dir, n); 2637 spin_unlock(&dentry->d_lock); 2558 spin_unlock(&dentry->d_lock); 2638 if (inode) 2559 if (inode) 2639 spin_unlock(&inode->i_lock); 2560 spin_unlock(&inode->i_lock); 2640 } 2561 } 2641 2562 2642 /** 2563 /** 2643 * d_add - add dentry to hash queues 2564 * d_add - add dentry to hash queues 2644 * @entry: dentry to add 2565 * @entry: dentry to add 2645 * @inode: The inode to attach to this dentry 2566 * @inode: The inode to attach to this dentry 2646 * 2567 * 2647 * This adds the entry to the hash queues and 2568 * This adds the entry to the hash queues and initializes @inode. 2648 * The entry was actually filled in earlier d 2569 * The entry was actually filled in earlier during d_alloc(). 2649 */ 2570 */ 2650 2571 2651 void d_add(struct dentry *entry, struct inode 2572 void d_add(struct dentry *entry, struct inode *inode) 2652 { 2573 { 2653 if (inode) { 2574 if (inode) { 2654 security_d_instantiate(entry, 2575 security_d_instantiate(entry, inode); 2655 spin_lock(&inode->i_lock); 2576 spin_lock(&inode->i_lock); 2656 } 2577 } 2657 __d_add(entry, inode); 2578 __d_add(entry, inode); 2658 } 2579 } 2659 EXPORT_SYMBOL(d_add); 2580 EXPORT_SYMBOL(d_add); 2660 2581 2661 /** 2582 /** 2662 * d_exact_alias - find and hash an exact unh 2583 * d_exact_alias - find and hash an exact unhashed alias 2663 * @entry: dentry to add 2584 * @entry: dentry to add 2664 * @inode: The inode to go with this dentry 2585 * @inode: The inode to go with this dentry 2665 * 2586 * 2666 * If an unhashed dentry with the same name/p 2587 * If an unhashed dentry with the same name/parent and desired 2667 * inode already exists, hash and return it. 2588 * inode already exists, hash and return it. Otherwise, return 2668 * NULL. 2589 * NULL. 2669 * 2590 * 2670 * Parent directory should be locked. 2591 * Parent directory should be locked. 2671 */ 2592 */ 2672 struct dentry *d_exact_alias(struct dentry *e 2593 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode) 2673 { 2594 { 2674 struct dentry *alias; 2595 struct dentry *alias; 2675 unsigned int hash = entry->d_name.has 2596 unsigned int hash = entry->d_name.hash; 2676 2597 2677 spin_lock(&inode->i_lock); 2598 spin_lock(&inode->i_lock); 2678 hlist_for_each_entry(alias, &inode->i 2599 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { 2679 /* 2600 /* 2680 * Don't need alias->d_lock h 2601 * Don't need alias->d_lock here, because aliases with 2681 * d_parent == entry->d_paren 2602 * d_parent == entry->d_parent are not subject to name or 2682 * parent changes, because th 2603 * parent changes, because the parent inode i_mutex is held. 2683 */ 2604 */ 2684 if (alias->d_name.hash != has 2605 if (alias->d_name.hash != hash) 2685 continue; 2606 continue; 2686 if (alias->d_parent != entry- 2607 if (alias->d_parent != entry->d_parent) 2687 continue; 2608 continue; 2688 if (!d_same_name(alias, entry 2609 if (!d_same_name(alias, entry->d_parent, &entry->d_name)) 2689 continue; 2610 continue; 2690 spin_lock(&alias->d_lock); 2611 spin_lock(&alias->d_lock); 2691 if (!d_unhashed(alias)) { 2612 if (!d_unhashed(alias)) { 2692 spin_unlock(&alias->d 2613 spin_unlock(&alias->d_lock); 2693 alias = NULL; 2614 alias = NULL; 2694 } else { 2615 } else { 2695 dget_dlock(alias); !! 2616 __dget_dlock(alias); 2696 __d_rehash(alias); 2617 __d_rehash(alias); 2697 spin_unlock(&alias->d 2618 spin_unlock(&alias->d_lock); 2698 } 2619 } 2699 spin_unlock(&inode->i_lock); 2620 spin_unlock(&inode->i_lock); 2700 return alias; 2621 return alias; 2701 } 2622 } 2702 spin_unlock(&inode->i_lock); 2623 spin_unlock(&inode->i_lock); 2703 return NULL; 2624 return NULL; 2704 } 2625 } 2705 EXPORT_SYMBOL(d_exact_alias); 2626 EXPORT_SYMBOL(d_exact_alias); 2706 2627 2707 static void swap_names(struct dentry *dentry, 2628 static void swap_names(struct dentry *dentry, struct dentry *target) 2708 { 2629 { 2709 if (unlikely(dname_external(target))) 2630 if (unlikely(dname_external(target))) { 2710 if (unlikely(dname_external(d 2631 if (unlikely(dname_external(dentry))) { 2711 /* 2632 /* 2712 * Both external: swa 2633 * Both external: swap the pointers 2713 */ 2634 */ 2714 swap(target->d_name.n 2635 swap(target->d_name.name, dentry->d_name.name); 2715 } else { 2636 } else { 2716 /* 2637 /* 2717 * dentry:internal, t 2638 * dentry:internal, target:external. Steal target's 2718 * storage and make t 2639 * storage and make target internal. 2719 */ 2640 */ 2720 memcpy(target->d_inam 2641 memcpy(target->d_iname, dentry->d_name.name, 2721 dentr 2642 dentry->d_name.len + 1); 2722 dentry->d_name.name = 2643 dentry->d_name.name = target->d_name.name; 2723 target->d_name.name = 2644 target->d_name.name = target->d_iname; 2724 } 2645 } 2725 } else { 2646 } else { 2726 if (unlikely(dname_external(d 2647 if (unlikely(dname_external(dentry))) { 2727 /* 2648 /* 2728 * dentry:external, t 2649 * dentry:external, target:internal. Give dentry's 2729 * storage to target 2650 * storage to target and make dentry internal 2730 */ 2651 */ 2731 memcpy(dentry->d_inam 2652 memcpy(dentry->d_iname, target->d_name.name, 2732 targe 2653 target->d_name.len + 1); 2733 target->d_name.name = 2654 target->d_name.name = dentry->d_name.name; 2734 dentry->d_name.name = 2655 dentry->d_name.name = dentry->d_iname; 2735 } else { 2656 } else { 2736 /* 2657 /* 2737 * Both are internal. 2658 * Both are internal. 2738 */ 2659 */ 2739 unsigned int i; 2660 unsigned int i; 2740 BUILD_BUG_ON(!IS_ALIG 2661 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long))); 2741 for (i = 0; i < DNAME 2662 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) { 2742 swap(((long * 2663 swap(((long *) &dentry->d_iname)[i], 2743 ((long * 2664 ((long *) &target->d_iname)[i]); 2744 } 2665 } 2745 } 2666 } 2746 } 2667 } 2747 swap(dentry->d_name.hash_len, target- 2668 swap(dentry->d_name.hash_len, target->d_name.hash_len); 2748 } 2669 } 2749 2670 2750 static void copy_name(struct dentry *dentry, 2671 static void copy_name(struct dentry *dentry, struct dentry *target) 2751 { 2672 { 2752 struct external_name *old_name = NULL 2673 struct external_name *old_name = NULL; 2753 if (unlikely(dname_external(dentry))) 2674 if (unlikely(dname_external(dentry))) 2754 old_name = external_name(dent 2675 old_name = external_name(dentry); 2755 if (unlikely(dname_external(target))) 2676 if (unlikely(dname_external(target))) { 2756 atomic_inc(&external_name(tar 2677 atomic_inc(&external_name(target)->u.count); 2757 dentry->d_name = target->d_na 2678 dentry->d_name = target->d_name; 2758 } else { 2679 } else { 2759 memcpy(dentry->d_iname, targe 2680 memcpy(dentry->d_iname, target->d_name.name, 2760 target->d_nam 2681 target->d_name.len + 1); 2761 dentry->d_name.name = dentry- 2682 dentry->d_name.name = dentry->d_iname; 2762 dentry->d_name.hash_len = tar 2683 dentry->d_name.hash_len = target->d_name.hash_len; 2763 } 2684 } 2764 if (old_name && likely(atomic_dec_and 2685 if (old_name && likely(atomic_dec_and_test(&old_name->u.count))) 2765 kfree_rcu(old_name, u.head); 2686 kfree_rcu(old_name, u.head); 2766 } 2687 } 2767 2688 2768 /* 2689 /* 2769 * __d_move - move a dentry 2690 * __d_move - move a dentry 2770 * @dentry: entry to move 2691 * @dentry: entry to move 2771 * @target: new dentry 2692 * @target: new dentry 2772 * @exchange: exchange the two dentries 2693 * @exchange: exchange the two dentries 2773 * 2694 * 2774 * Update the dcache to reflect the move of a 2695 * Update the dcache to reflect the move of a file name. Negative 2775 * dcache entries should not be moved in this 2696 * dcache entries should not be moved in this way. Caller must hold 2776 * rename_lock, the i_mutex of the source and 2697 * rename_lock, the i_mutex of the source and target directories, 2777 * and the sb->s_vfs_rename_mutex if they dif 2698 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename(). 2778 */ 2699 */ 2779 static void __d_move(struct dentry *dentry, s 2700 static void __d_move(struct dentry *dentry, struct dentry *target, 2780 bool exchange) 2701 bool exchange) 2781 { 2702 { 2782 struct dentry *old_parent, *p; 2703 struct dentry *old_parent, *p; 2783 wait_queue_head_t *d_wait; << 2784 struct inode *dir = NULL; 2704 struct inode *dir = NULL; 2785 unsigned n; 2705 unsigned n; 2786 2706 2787 WARN_ON(!dentry->d_inode); 2707 WARN_ON(!dentry->d_inode); 2788 if (WARN_ON(dentry == target)) 2708 if (WARN_ON(dentry == target)) 2789 return; 2709 return; 2790 2710 2791 BUG_ON(d_ancestor(target, dentry)); 2711 BUG_ON(d_ancestor(target, dentry)); 2792 old_parent = dentry->d_parent; 2712 old_parent = dentry->d_parent; 2793 p = d_ancestor(old_parent, target); 2713 p = d_ancestor(old_parent, target); 2794 if (IS_ROOT(dentry)) { 2714 if (IS_ROOT(dentry)) { 2795 BUG_ON(p); 2715 BUG_ON(p); 2796 spin_lock(&target->d_parent-> 2716 spin_lock(&target->d_parent->d_lock); 2797 } else if (!p) { 2717 } else if (!p) { 2798 /* target is not a descendent 2718 /* target is not a descendent of dentry->d_parent */ 2799 spin_lock(&target->d_parent-> 2719 spin_lock(&target->d_parent->d_lock); 2800 spin_lock_nested(&old_parent- 2720 spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED); 2801 } else { 2721 } else { 2802 BUG_ON(p == dentry); 2722 BUG_ON(p == dentry); 2803 spin_lock(&old_parent->d_lock 2723 spin_lock(&old_parent->d_lock); 2804 if (p != target) 2724 if (p != target) 2805 spin_lock_nested(&tar 2725 spin_lock_nested(&target->d_parent->d_lock, 2806 DENTR 2726 DENTRY_D_LOCK_NESTED); 2807 } 2727 } 2808 spin_lock_nested(&dentry->d_lock, 2); 2728 spin_lock_nested(&dentry->d_lock, 2); 2809 spin_lock_nested(&target->d_lock, 3); 2729 spin_lock_nested(&target->d_lock, 3); 2810 2730 2811 if (unlikely(d_in_lookup(target))) { 2731 if (unlikely(d_in_lookup(target))) { 2812 dir = target->d_parent->d_ino 2732 dir = target->d_parent->d_inode; 2813 n = start_dir_add(dir); 2733 n = start_dir_add(dir); 2814 d_wait = __d_lookup_unhash(ta !! 2734 __d_lookup_done(target); 2815 } 2735 } 2816 2736 2817 write_seqcount_begin(&dentry->d_seq); 2737 write_seqcount_begin(&dentry->d_seq); 2818 write_seqcount_begin_nested(&target-> 2738 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED); 2819 2739 2820 /* unhash both */ 2740 /* unhash both */ 2821 if (!d_unhashed(dentry)) 2741 if (!d_unhashed(dentry)) 2822 ___d_drop(dentry); 2742 ___d_drop(dentry); 2823 if (!d_unhashed(target)) 2743 if (!d_unhashed(target)) 2824 ___d_drop(target); 2744 ___d_drop(target); 2825 2745 2826 /* ... and switch them in the tree */ 2746 /* ... and switch them in the tree */ 2827 dentry->d_parent = target->d_parent; 2747 dentry->d_parent = target->d_parent; 2828 if (!exchange) { 2748 if (!exchange) { 2829 copy_name(dentry, target); 2749 copy_name(dentry, target); 2830 target->d_hash.pprev = NULL; 2750 target->d_hash.pprev = NULL; 2831 dentry->d_parent->d_lockref.c 2751 dentry->d_parent->d_lockref.count++; 2832 if (dentry != old_parent) /* !! 2752 if (dentry == old_parent) >> 2753 dentry->d_flags |= DCACHE_RCUACCESS; >> 2754 else 2833 WARN_ON(!--old_parent 2755 WARN_ON(!--old_parent->d_lockref.count); 2834 } else { 2756 } else { 2835 target->d_parent = old_parent 2757 target->d_parent = old_parent; 2836 swap_names(dentry, target); 2758 swap_names(dentry, target); 2837 if (!hlist_unhashed(&target-> !! 2759 list_move(&target->d_child, &target->d_parent->d_subdirs); 2838 __hlist_del(&target-> << 2839 hlist_add_head(&target->d_sib << 2840 __d_rehash(target); 2760 __d_rehash(target); 2841 fsnotify_update_flags(target) 2761 fsnotify_update_flags(target); 2842 } 2762 } 2843 if (!hlist_unhashed(&dentry->d_sib)) !! 2763 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs); 2844 __hlist_del(&dentry->d_sib); << 2845 hlist_add_head(&dentry->d_sib, &dentr << 2846 __d_rehash(dentry); 2764 __d_rehash(dentry); 2847 fsnotify_update_flags(dentry); 2765 fsnotify_update_flags(dentry); 2848 fscrypt_handle_d_move(dentry); << 2849 2766 2850 write_seqcount_end(&target->d_seq); 2767 write_seqcount_end(&target->d_seq); 2851 write_seqcount_end(&dentry->d_seq); 2768 write_seqcount_end(&dentry->d_seq); 2852 2769 2853 if (dir) 2770 if (dir) 2854 end_dir_add(dir, n, d_wait); !! 2771 end_dir_add(dir, n); 2855 2772 2856 if (dentry->d_parent != old_parent) 2773 if (dentry->d_parent != old_parent) 2857 spin_unlock(&dentry->d_parent 2774 spin_unlock(&dentry->d_parent->d_lock); 2858 if (dentry != old_parent) 2775 if (dentry != old_parent) 2859 spin_unlock(&old_parent->d_lo 2776 spin_unlock(&old_parent->d_lock); 2860 spin_unlock(&target->d_lock); 2777 spin_unlock(&target->d_lock); 2861 spin_unlock(&dentry->d_lock); 2778 spin_unlock(&dentry->d_lock); 2862 } 2779 } 2863 2780 2864 /* 2781 /* 2865 * d_move - move a dentry 2782 * d_move - move a dentry 2866 * @dentry: entry to move 2783 * @dentry: entry to move 2867 * @target: new dentry 2784 * @target: new dentry 2868 * 2785 * 2869 * Update the dcache to reflect the move of a 2786 * Update the dcache to reflect the move of a file name. Negative 2870 * dcache entries should not be moved in this 2787 * dcache entries should not be moved in this way. See the locking 2871 * requirements for __d_move. 2788 * requirements for __d_move. 2872 */ 2789 */ 2873 void d_move(struct dentry *dentry, struct den 2790 void d_move(struct dentry *dentry, struct dentry *target) 2874 { 2791 { 2875 write_seqlock(&rename_lock); 2792 write_seqlock(&rename_lock); 2876 __d_move(dentry, target, false); 2793 __d_move(dentry, target, false); 2877 write_sequnlock(&rename_lock); 2794 write_sequnlock(&rename_lock); 2878 } 2795 } 2879 EXPORT_SYMBOL(d_move); 2796 EXPORT_SYMBOL(d_move); 2880 2797 2881 /* 2798 /* 2882 * d_exchange - exchange two dentries 2799 * d_exchange - exchange two dentries 2883 * @dentry1: first dentry 2800 * @dentry1: first dentry 2884 * @dentry2: second dentry 2801 * @dentry2: second dentry 2885 */ 2802 */ 2886 void d_exchange(struct dentry *dentry1, struc 2803 void d_exchange(struct dentry *dentry1, struct dentry *dentry2) 2887 { 2804 { 2888 write_seqlock(&rename_lock); 2805 write_seqlock(&rename_lock); 2889 2806 2890 WARN_ON(!dentry1->d_inode); 2807 WARN_ON(!dentry1->d_inode); 2891 WARN_ON(!dentry2->d_inode); 2808 WARN_ON(!dentry2->d_inode); 2892 WARN_ON(IS_ROOT(dentry1)); 2809 WARN_ON(IS_ROOT(dentry1)); 2893 WARN_ON(IS_ROOT(dentry2)); 2810 WARN_ON(IS_ROOT(dentry2)); 2894 2811 2895 __d_move(dentry1, dentry2, true); 2812 __d_move(dentry1, dentry2, true); 2896 2813 2897 write_sequnlock(&rename_lock); 2814 write_sequnlock(&rename_lock); 2898 } 2815 } 2899 2816 2900 /** 2817 /** 2901 * d_ancestor - search for an ancestor 2818 * d_ancestor - search for an ancestor 2902 * @p1: ancestor dentry 2819 * @p1: ancestor dentry 2903 * @p2: child dentry 2820 * @p2: child dentry 2904 * 2821 * 2905 * Returns the ancestor dentry of p2 which is 2822 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is 2906 * an ancestor of p2, else NULL. 2823 * an ancestor of p2, else NULL. 2907 */ 2824 */ 2908 struct dentry *d_ancestor(struct dentry *p1, 2825 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2) 2909 { 2826 { 2910 struct dentry *p; 2827 struct dentry *p; 2911 2828 2912 for (p = p2; !IS_ROOT(p); p = p->d_pa 2829 for (p = p2; !IS_ROOT(p); p = p->d_parent) { 2913 if (p->d_parent == p1) 2830 if (p->d_parent == p1) 2914 return p; 2831 return p; 2915 } 2832 } 2916 return NULL; 2833 return NULL; 2917 } 2834 } 2918 2835 2919 /* 2836 /* 2920 * This helper attempts to cope with remotely 2837 * This helper attempts to cope with remotely renamed directories 2921 * 2838 * 2922 * It assumes that the caller is already hold 2839 * It assumes that the caller is already holding 2923 * dentry->d_parent->d_inode->i_mutex, and re 2840 * dentry->d_parent->d_inode->i_mutex, and rename_lock 2924 * 2841 * 2925 * Note: If ever the locking in lock_rename() 2842 * Note: If ever the locking in lock_rename() changes, then please 2926 * remember to update this too... 2843 * remember to update this too... 2927 */ 2844 */ 2928 static int __d_unalias(struct dentry *dentry, !! 2845 static int __d_unalias(struct inode *inode, >> 2846 struct dentry *dentry, struct dentry *alias) 2929 { 2847 { 2930 struct mutex *m1 = NULL; 2848 struct mutex *m1 = NULL; 2931 struct rw_semaphore *m2 = NULL; 2849 struct rw_semaphore *m2 = NULL; 2932 int ret = -ESTALE; 2850 int ret = -ESTALE; 2933 2851 2934 /* If alias and dentry share a parent 2852 /* If alias and dentry share a parent, then no extra locks required */ 2935 if (alias->d_parent == dentry->d_pare 2853 if (alias->d_parent == dentry->d_parent) 2936 goto out_unalias; 2854 goto out_unalias; 2937 2855 2938 /* See lock_rename() */ 2856 /* See lock_rename() */ 2939 if (!mutex_trylock(&dentry->d_sb->s_v 2857 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex)) 2940 goto out_err; 2858 goto out_err; 2941 m1 = &dentry->d_sb->s_vfs_rename_mute 2859 m1 = &dentry->d_sb->s_vfs_rename_mutex; 2942 if (!inode_trylock_shared(alias->d_pa 2860 if (!inode_trylock_shared(alias->d_parent->d_inode)) 2943 goto out_err; 2861 goto out_err; 2944 m2 = &alias->d_parent->d_inode->i_rws 2862 m2 = &alias->d_parent->d_inode->i_rwsem; 2945 out_unalias: 2863 out_unalias: 2946 __d_move(alias, dentry, false); 2864 __d_move(alias, dentry, false); 2947 ret = 0; 2865 ret = 0; 2948 out_err: 2866 out_err: 2949 if (m2) 2867 if (m2) 2950 up_read(m2); 2868 up_read(m2); 2951 if (m1) 2869 if (m1) 2952 mutex_unlock(m1); 2870 mutex_unlock(m1); 2953 return ret; 2871 return ret; 2954 } 2872 } 2955 2873 2956 /** 2874 /** 2957 * d_splice_alias - splice a disconnected den 2875 * d_splice_alias - splice a disconnected dentry into the tree if one exists 2958 * @inode: the inode which may have a discon 2876 * @inode: the inode which may have a disconnected dentry 2959 * @dentry: a negative dentry which we want t 2877 * @dentry: a negative dentry which we want to point to the inode. 2960 * 2878 * 2961 * If inode is a directory and has an IS_ROOT 2879 * If inode is a directory and has an IS_ROOT alias, then d_move that in 2962 * place of the given dentry and return it, e 2880 * place of the given dentry and return it, else simply d_add the inode 2963 * to the dentry and return NULL. 2881 * to the dentry and return NULL. 2964 * 2882 * 2965 * If a non-IS_ROOT directory is found, the f 2883 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and 2966 * we should error out: directories can't hav 2884 * we should error out: directories can't have multiple aliases. 2967 * 2885 * 2968 * This is needed in the lookup routine of an 2886 * This is needed in the lookup routine of any filesystem that is exportable 2969 * (via knfsd) so that we can build dcache pa 2887 * (via knfsd) so that we can build dcache paths to directories effectively. 2970 * 2888 * 2971 * If a dentry was found and moved, then it i 2889 * If a dentry was found and moved, then it is returned. Otherwise NULL 2972 * is returned. This matches the expected re 2890 * is returned. This matches the expected return value of ->lookup. 2973 * 2891 * 2974 * Cluster filesystems may call this function 2892 * Cluster filesystems may call this function with a negative, hashed dentry. 2975 * In that case, we know that the inode will 2893 * In that case, we know that the inode will be a regular file, and also this 2976 * will only occur during atomic_open. So we 2894 * will only occur during atomic_open. So we need to check for the dentry 2977 * being already hashed only in the final cas 2895 * being already hashed only in the final case. 2978 */ 2896 */ 2979 struct dentry *d_splice_alias(struct inode *i 2897 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry) 2980 { 2898 { 2981 if (IS_ERR(inode)) 2899 if (IS_ERR(inode)) 2982 return ERR_CAST(inode); 2900 return ERR_CAST(inode); 2983 2901 2984 BUG_ON(!d_unhashed(dentry)); 2902 BUG_ON(!d_unhashed(dentry)); 2985 2903 2986 if (!inode) 2904 if (!inode) 2987 goto out; 2905 goto out; 2988 2906 2989 security_d_instantiate(dentry, inode) 2907 security_d_instantiate(dentry, inode); 2990 spin_lock(&inode->i_lock); 2908 spin_lock(&inode->i_lock); 2991 if (S_ISDIR(inode->i_mode)) { 2909 if (S_ISDIR(inode->i_mode)) { 2992 struct dentry *new = __d_find 2910 struct dentry *new = __d_find_any_alias(inode); 2993 if (unlikely(new)) { 2911 if (unlikely(new)) { 2994 /* The reference to n 2912 /* The reference to new ensures it remains an alias */ 2995 spin_unlock(&inode->i 2913 spin_unlock(&inode->i_lock); 2996 write_seqlock(&rename 2914 write_seqlock(&rename_lock); 2997 if (unlikely(d_ancest 2915 if (unlikely(d_ancestor(new, dentry))) { 2998 write_sequnlo 2916 write_sequnlock(&rename_lock); 2999 dput(new); 2917 dput(new); 3000 new = ERR_PTR 2918 new = ERR_PTR(-ELOOP); 3001 pr_warn_ratel 2919 pr_warn_ratelimited( 3002 "VFS: 2920 "VFS: Lookup of '%s' in %s %s" 3003 " wou 2921 " would have caused loop\n", 3004 dentr 2922 dentry->d_name.name, 3005 inode 2923 inode->i_sb->s_type->name, 3006 inode 2924 inode->i_sb->s_id); 3007 } else if (!IS_ROOT(n 2925 } else if (!IS_ROOT(new)) { 3008 struct dentry 2926 struct dentry *old_parent = dget(new->d_parent); 3009 int err = __d !! 2927 int err = __d_unalias(inode, dentry, new); 3010 write_sequnlo 2928 write_sequnlock(&rename_lock); 3011 if (err) { 2929 if (err) { 3012 dput( 2930 dput(new); 3013 new = 2931 new = ERR_PTR(err); 3014 } 2932 } 3015 dput(old_pare 2933 dput(old_parent); 3016 } else { 2934 } else { 3017 __d_move(new, 2935 __d_move(new, dentry, false); 3018 write_sequnlo 2936 write_sequnlock(&rename_lock); 3019 } 2937 } 3020 iput(inode); 2938 iput(inode); 3021 return new; 2939 return new; 3022 } 2940 } 3023 } 2941 } 3024 out: 2942 out: 3025 __d_add(dentry, inode); 2943 __d_add(dentry, inode); 3026 return NULL; 2944 return NULL; 3027 } 2945 } 3028 EXPORT_SYMBOL(d_splice_alias); 2946 EXPORT_SYMBOL(d_splice_alias); 3029 2947 3030 /* 2948 /* 3031 * Test whether new_dentry is a subdirectory 2949 * Test whether new_dentry is a subdirectory of old_dentry. 3032 * 2950 * 3033 * Trivially implemented using the dcache str 2951 * Trivially implemented using the dcache structure 3034 */ 2952 */ 3035 2953 3036 /** 2954 /** 3037 * is_subdir - is new dentry a subdirectory o 2955 * is_subdir - is new dentry a subdirectory of old_dentry 3038 * @new_dentry: new dentry 2956 * @new_dentry: new dentry 3039 * @old_dentry: old dentry 2957 * @old_dentry: old dentry 3040 * 2958 * 3041 * Returns true if new_dentry is a subdirecto 2959 * Returns true if new_dentry is a subdirectory of the parent (at any depth). 3042 * Returns false otherwise. 2960 * Returns false otherwise. 3043 * Caller must ensure that "new_dentry" is pi 2961 * Caller must ensure that "new_dentry" is pinned before calling is_subdir() 3044 */ 2962 */ 3045 2963 3046 bool is_subdir(struct dentry *new_dentry, str 2964 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry) 3047 { 2965 { 3048 bool subdir; !! 2966 bool result; 3049 unsigned seq; 2967 unsigned seq; 3050 2968 3051 if (new_dentry == old_dentry) 2969 if (new_dentry == old_dentry) 3052 return true; 2970 return true; 3053 2971 3054 /* Access d_parent under rcu as d_mov !! 2972 do { 3055 rcu_read_lock(); !! 2973 /* for restarting inner loop in case of seq retry */ 3056 seq = read_seqbegin(&rename_lock); !! 2974 seq = read_seqbegin(&rename_lock); 3057 subdir = d_ancestor(old_dentry, new_d !! 2975 /* 3058 /* Try lockless once... */ !! 2976 * Need rcu_readlock to protect against the d_parent trashing 3059 if (read_seqretry(&rename_lock, seq)) !! 2977 * due to d_move 3060 /* ...else acquire lock for p !! 2978 */ 3061 read_seqlock_excl(&rename_loc !! 2979 rcu_read_lock(); 3062 subdir = d_ancestor(old_dentr !! 2980 if (d_ancestor(old_dentry, new_dentry)) 3063 read_sequnlock_excl(&rename_l !! 2981 result = true; 3064 } !! 2982 else 3065 rcu_read_unlock(); !! 2983 result = false; 3066 return subdir; !! 2984 rcu_read_unlock(); >> 2985 } while (read_seqretry(&rename_lock, seq)); >> 2986 >> 2987 return result; 3067 } 2988 } 3068 EXPORT_SYMBOL(is_subdir); 2989 EXPORT_SYMBOL(is_subdir); 3069 2990 3070 static enum d_walk_ret d_genocide_kill(void * 2991 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry) 3071 { 2992 { 3072 struct dentry *root = data; 2993 struct dentry *root = data; 3073 if (dentry != root) { 2994 if (dentry != root) { 3074 if (d_unhashed(dentry) || !de 2995 if (d_unhashed(dentry) || !dentry->d_inode) 3075 return D_WALK_SKIP; 2996 return D_WALK_SKIP; 3076 2997 3077 if (!(dentry->d_flags & DCACH 2998 if (!(dentry->d_flags & DCACHE_GENOCIDE)) { 3078 dentry->d_flags |= DC 2999 dentry->d_flags |= DCACHE_GENOCIDE; 3079 dentry->d_lockref.cou 3000 dentry->d_lockref.count--; 3080 } 3001 } 3081 } 3002 } 3082 return D_WALK_CONTINUE; 3003 return D_WALK_CONTINUE; 3083 } 3004 } 3084 3005 3085 void d_genocide(struct dentry *parent) 3006 void d_genocide(struct dentry *parent) 3086 { 3007 { 3087 d_walk(parent, parent, d_genocide_kil 3008 d_walk(parent, parent, d_genocide_kill); 3088 } 3009 } 3089 3010 3090 void d_mark_tmpfile(struct file *file, struct !! 3011 EXPORT_SYMBOL(d_genocide); 3091 { << 3092 struct dentry *dentry = file->f_path. << 3093 3012 >> 3013 void d_tmpfile(struct dentry *dentry, struct inode *inode) >> 3014 { >> 3015 inode_dec_link_count(inode); 3094 BUG_ON(dentry->d_name.name != dentry- 3016 BUG_ON(dentry->d_name.name != dentry->d_iname || 3095 !hlist_unhashed(&dentry->d_u. 3017 !hlist_unhashed(&dentry->d_u.d_alias) || 3096 !d_unlinked(dentry)); 3018 !d_unlinked(dentry)); 3097 spin_lock(&dentry->d_parent->d_lock); 3019 spin_lock(&dentry->d_parent->d_lock); 3098 spin_lock_nested(&dentry->d_lock, DEN 3020 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 3099 dentry->d_name.len = sprintf(dentry-> 3021 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu", 3100 (unsigned lon 3022 (unsigned long long)inode->i_ino); 3101 spin_unlock(&dentry->d_lock); 3023 spin_unlock(&dentry->d_lock); 3102 spin_unlock(&dentry->d_parent->d_lock 3024 spin_unlock(&dentry->d_parent->d_lock); 3103 } << 3104 EXPORT_SYMBOL(d_mark_tmpfile); << 3105 << 3106 void d_tmpfile(struct file *file, struct inod << 3107 { << 3108 struct dentry *dentry = file->f_path. << 3109 << 3110 inode_dec_link_count(inode); << 3111 d_mark_tmpfile(file, inode); << 3112 d_instantiate(dentry, inode); 3025 d_instantiate(dentry, inode); 3113 } 3026 } 3114 EXPORT_SYMBOL(d_tmpfile); 3027 EXPORT_SYMBOL(d_tmpfile); 3115 3028 3116 /* << 3117 * Obtain inode number of the parent dentry. << 3118 */ << 3119 ino_t d_parent_ino(struct dentry *dentry) << 3120 { << 3121 struct dentry *parent; << 3122 struct inode *iparent; << 3123 unsigned seq; << 3124 ino_t ret; << 3125 << 3126 scoped_guard(rcu) { << 3127 seq = raw_seqcount_begin(&den << 3128 parent = READ_ONCE(dentry->d_ << 3129 iparent = d_inode_rcu(parent) << 3130 if (likely(iparent)) { << 3131 ret = iparent->i_ino; << 3132 if (!read_seqcount_re << 3133 return ret; << 3134 } << 3135 } << 3136 << 3137 spin_lock(&dentry->d_lock); << 3138 ret = dentry->d_parent->d_inode->i_in << 3139 spin_unlock(&dentry->d_lock); << 3140 return ret; << 3141 } << 3142 EXPORT_SYMBOL(d_parent_ino); << 3143 << 3144 static __initdata unsigned long dhash_entries 3029 static __initdata unsigned long dhash_entries; 3145 static int __init set_dhash_entries(char *str 3030 static int __init set_dhash_entries(char *str) 3146 { 3031 { 3147 if (!str) 3032 if (!str) 3148 return 0; 3033 return 0; 3149 dhash_entries = simple_strtoul(str, & 3034 dhash_entries = simple_strtoul(str, &str, 0); 3150 return 1; 3035 return 1; 3151 } 3036 } 3152 __setup("dhash_entries=", set_dhash_entries); 3037 __setup("dhash_entries=", set_dhash_entries); 3153 3038 3154 static void __init dcache_init_early(void) 3039 static void __init dcache_init_early(void) 3155 { 3040 { 3156 /* If hashes are distributed across N 3041 /* If hashes are distributed across NUMA nodes, defer 3157 * hash allocation until vmalloc spac 3042 * hash allocation until vmalloc space is available. 3158 */ 3043 */ 3159 if (hashdist) 3044 if (hashdist) 3160 return; 3045 return; 3161 3046 3162 dentry_hashtable = 3047 dentry_hashtable = 3163 alloc_large_system_hash("Dent 3048 alloc_large_system_hash("Dentry cache", 3164 sizeo 3049 sizeof(struct hlist_bl_head), 3165 dhash 3050 dhash_entries, 3166 13, 3051 13, 3167 HASH_ 3052 HASH_EARLY | HASH_ZERO, 3168 &d_ha 3053 &d_hash_shift, 3169 NULL, 3054 NULL, 3170 0, 3055 0, 3171 0); 3056 0); 3172 d_hash_shift = 32 - d_hash_shift; 3057 d_hash_shift = 32 - d_hash_shift; 3173 << 3174 runtime_const_init(shift, d_hash_shif << 3175 runtime_const_init(ptr, dentry_hashta << 3176 } 3058 } 3177 3059 3178 static void __init dcache_init(void) 3060 static void __init dcache_init(void) 3179 { 3061 { 3180 /* 3062 /* 3181 * A constructor could be added for s 3063 * A constructor could be added for stable state like the lists, 3182 * but it is probably not worth it be 3064 * but it is probably not worth it because of the cache nature 3183 * of the dcache. 3065 * of the dcache. 3184 */ 3066 */ 3185 dentry_cache = KMEM_CACHE_USERCOPY(de 3067 dentry_cache = KMEM_CACHE_USERCOPY(dentry, 3186 SLAB_RECLAIM_ACCOUNT|SLAB_PAN !! 3068 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT, 3187 d_iname); 3069 d_iname); 3188 3070 3189 /* Hash may have been set up in dcach 3071 /* Hash may have been set up in dcache_init_early */ 3190 if (!hashdist) 3072 if (!hashdist) 3191 return; 3073 return; 3192 3074 3193 dentry_hashtable = 3075 dentry_hashtable = 3194 alloc_large_system_hash("Dent 3076 alloc_large_system_hash("Dentry cache", 3195 sizeo 3077 sizeof(struct hlist_bl_head), 3196 dhash 3078 dhash_entries, 3197 13, 3079 13, 3198 HASH_ 3080 HASH_ZERO, 3199 &d_ha 3081 &d_hash_shift, 3200 NULL, 3082 NULL, 3201 0, 3083 0, 3202 0); 3084 0); 3203 d_hash_shift = 32 - d_hash_shift; 3085 d_hash_shift = 32 - d_hash_shift; 3204 << 3205 runtime_const_init(shift, d_hash_shif << 3206 runtime_const_init(ptr, dentry_hashta << 3207 } 3086 } 3208 3087 3209 /* SLAB cache for __getname() consumers */ 3088 /* SLAB cache for __getname() consumers */ 3210 struct kmem_cache *names_cachep __ro_after_in !! 3089 struct kmem_cache *names_cachep __read_mostly; 3211 EXPORT_SYMBOL(names_cachep); 3090 EXPORT_SYMBOL(names_cachep); 3212 3091 3213 void __init vfs_caches_init_early(void) 3092 void __init vfs_caches_init_early(void) 3214 { 3093 { 3215 int i; 3094 int i; 3216 3095 3217 for (i = 0; i < ARRAY_SIZE(in_lookup_ 3096 for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++) 3218 INIT_HLIST_BL_HEAD(&in_lookup 3097 INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]); 3219 3098 3220 dcache_init_early(); 3099 dcache_init_early(); 3221 inode_init_early(); 3100 inode_init_early(); 3222 } 3101 } 3223 3102 3224 void __init vfs_caches_init(void) 3103 void __init vfs_caches_init(void) 3225 { 3104 { 3226 names_cachep = kmem_cache_create_user 3105 names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0, 3227 SLAB_HWCACHE_ALIGN|SL 3106 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL); 3228 3107 3229 dcache_init(); 3108 dcache_init(); 3230 inode_init(); 3109 inode_init(); 3231 files_init(); 3110 files_init(); 3232 files_maxfiles_init(); 3111 files_maxfiles_init(); 3233 mnt_init(); 3112 mnt_init(); 3234 bdev_cache_init(); 3113 bdev_cache_init(); 3235 chrdev_init(); 3114 chrdev_init(); 3236 } 3115 } 3237 3116
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.