1 // SPDX-License-Identifier: GPL-2.0-only 1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 2 /* 3 * fs/dcache.c 3 * fs/dcache.c 4 * 4 * 5 * Complete reimplementation 5 * Complete reimplementation 6 * (C) 1997 Thomas Schoebel-Theuer, 6 * (C) 1997 Thomas Schoebel-Theuer, 7 * with heavy changes by Linus Torvalds 7 * with heavy changes by Linus Torvalds 8 */ 8 */ 9 9 10 /* 10 /* 11 * Notes on the allocation strategy: 11 * Notes on the allocation strategy: 12 * 12 * 13 * The dcache is a master of the icache - when 13 * The dcache is a master of the icache - whenever a dcache entry 14 * exists, the inode will always exist. "iput( 14 * exists, the inode will always exist. "iput()" is done either when 15 * the dcache entry is deleted or garbage coll 15 * the dcache entry is deleted or garbage collected. 16 */ 16 */ 17 17 18 #include <linux/ratelimit.h> 18 #include <linux/ratelimit.h> 19 #include <linux/string.h> 19 #include <linux/string.h> 20 #include <linux/mm.h> 20 #include <linux/mm.h> 21 #include <linux/fs.h> 21 #include <linux/fs.h> 22 #include <linux/fscrypt.h> 22 #include <linux/fscrypt.h> 23 #include <linux/fsnotify.h> 23 #include <linux/fsnotify.h> 24 #include <linux/slab.h> 24 #include <linux/slab.h> 25 #include <linux/init.h> 25 #include <linux/init.h> 26 #include <linux/hash.h> 26 #include <linux/hash.h> 27 #include <linux/cache.h> 27 #include <linux/cache.h> 28 #include <linux/export.h> 28 #include <linux/export.h> 29 #include <linux/security.h> 29 #include <linux/security.h> 30 #include <linux/seqlock.h> 30 #include <linux/seqlock.h> 31 #include <linux/memblock.h> 31 #include <linux/memblock.h> 32 #include <linux/bit_spinlock.h> 32 #include <linux/bit_spinlock.h> 33 #include <linux/rculist_bl.h> 33 #include <linux/rculist_bl.h> 34 #include <linux/list_lru.h> 34 #include <linux/list_lru.h> 35 #include "internal.h" 35 #include "internal.h" 36 #include "mount.h" 36 #include "mount.h" 37 37 38 #include <asm/runtime-const.h> << 39 << 40 /* 38 /* 41 * Usage: 39 * Usage: 42 * dcache->d_inode->i_lock protects: 40 * dcache->d_inode->i_lock protects: 43 * - i_dentry, d_u.d_alias, d_inode of alias 41 * - i_dentry, d_u.d_alias, d_inode of aliases 44 * dcache_hash_bucket lock protects: 42 * dcache_hash_bucket lock protects: 45 * - the dcache hash table 43 * - the dcache hash table 46 * s_roots bl list spinlock protects: 44 * s_roots bl list spinlock protects: 47 * - the s_roots list (see __d_drop) 45 * - the s_roots list (see __d_drop) 48 * dentry->d_sb->s_dentry_lru_lock protects: 46 * dentry->d_sb->s_dentry_lru_lock protects: 49 * - the dcache lru lists and counters 47 * - the dcache lru lists and counters 50 * d_lock protects: 48 * d_lock protects: 51 * - d_flags 49 * - d_flags 52 * - d_name 50 * - d_name 53 * - d_lru 51 * - d_lru 54 * - d_count 52 * - d_count 55 * - d_unhashed() 53 * - d_unhashed() 56 * - d_parent and d_chilren !! 54 * - d_parent and d_subdirs 57 * - childrens' d_sib and d_parent !! 55 * - childrens' d_child and d_parent 58 * - d_u.d_alias, d_inode 56 * - d_u.d_alias, d_inode 59 * 57 * 60 * Ordering: 58 * Ordering: 61 * dentry->d_inode->i_lock 59 * dentry->d_inode->i_lock 62 * dentry->d_lock 60 * dentry->d_lock 63 * dentry->d_sb->s_dentry_lru_lock 61 * dentry->d_sb->s_dentry_lru_lock 64 * dcache_hash_bucket lock 62 * dcache_hash_bucket lock 65 * s_roots lock 63 * s_roots lock 66 * 64 * 67 * If there is an ancestor relationship: 65 * If there is an ancestor relationship: 68 * dentry->d_parent->...->d_parent->d_lock 66 * dentry->d_parent->...->d_parent->d_lock 69 * ... 67 * ... 70 * dentry->d_parent->d_lock 68 * dentry->d_parent->d_lock 71 * dentry->d_lock 69 * dentry->d_lock 72 * 70 * 73 * If no ancestor relationship: 71 * If no ancestor relationship: 74 * arbitrary, since it's serialized on rename_ 72 * arbitrary, since it's serialized on rename_lock 75 */ 73 */ 76 int sysctl_vfs_cache_pressure __read_mostly = 74 int sysctl_vfs_cache_pressure __read_mostly = 100; 77 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure); 75 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure); 78 76 79 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rena 77 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock); 80 78 81 EXPORT_SYMBOL(rename_lock); 79 EXPORT_SYMBOL(rename_lock); 82 80 83 static struct kmem_cache *dentry_cache __ro_af !! 81 static struct kmem_cache *dentry_cache __read_mostly; 84 82 85 const struct qstr empty_name = QSTR_INIT("", 0 83 const struct qstr empty_name = QSTR_INIT("", 0); 86 EXPORT_SYMBOL(empty_name); 84 EXPORT_SYMBOL(empty_name); 87 const struct qstr slash_name = QSTR_INIT("/", 85 const struct qstr slash_name = QSTR_INIT("/", 1); 88 EXPORT_SYMBOL(slash_name); 86 EXPORT_SYMBOL(slash_name); 89 const struct qstr dotdot_name = QSTR_INIT(".." 87 const struct qstr dotdot_name = QSTR_INIT("..", 2); 90 EXPORT_SYMBOL(dotdot_name); 88 EXPORT_SYMBOL(dotdot_name); 91 89 92 /* 90 /* 93 * This is the single most critical data struc 91 * This is the single most critical data structure when it comes 94 * to the dcache: the hashtable for lookups. S 92 * to the dcache: the hashtable for lookups. Somebody should try 95 * to make this good - I've just made it work. 93 * to make this good - I've just made it work. 96 * 94 * 97 * This hash-function tries to avoid losing to 95 * This hash-function tries to avoid losing too many bits of hash 98 * information, yet avoid using a prime hash-s 96 * information, yet avoid using a prime hash-size or similar. 99 * << 100 * Marking the variables "used" ensures that t << 101 * optimize them away completely on architectu << 102 * constant infrastructure, this allows debugg << 103 * values. But updating these values has no ef << 104 */ 97 */ 105 98 106 static unsigned int d_hash_shift __ro_after_in !! 99 static unsigned int d_hash_shift __read_mostly; 107 100 108 static struct hlist_bl_head *dentry_hashtable !! 101 static struct hlist_bl_head *dentry_hashtable __read_mostly; 109 102 110 static inline struct hlist_bl_head *d_hash(uns !! 103 static inline struct hlist_bl_head *d_hash(unsigned int hash) 111 { 104 { 112 return runtime_const_ptr(dentry_hashta !! 105 return dentry_hashtable + (hash >> d_hash_shift); 113 runtime_const_shift_right_32(h << 114 } 106 } 115 107 116 #define IN_LOOKUP_SHIFT 10 108 #define IN_LOOKUP_SHIFT 10 117 static struct hlist_bl_head in_lookup_hashtabl 109 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT]; 118 110 119 static inline struct hlist_bl_head *in_lookup_ 111 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent, 120 unsign 112 unsigned int hash) 121 { 113 { 122 hash += (unsigned long) parent / L1_CA 114 hash += (unsigned long) parent / L1_CACHE_BYTES; 123 return in_lookup_hashtable + hash_32(h 115 return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT); 124 } 116 } 125 117 126 struct dentry_stat_t { 118 struct dentry_stat_t { 127 long nr_dentry; 119 long nr_dentry; 128 long nr_unused; 120 long nr_unused; 129 long age_limit; /* age in seco 121 long age_limit; /* age in seconds */ 130 long want_pages; /* pages reque 122 long want_pages; /* pages requested by system */ 131 long nr_negative; /* # of unused 123 long nr_negative; /* # of unused negative dentries */ 132 long dummy; /* Reserved fo 124 long dummy; /* Reserved for future use */ 133 }; 125 }; 134 126 135 static DEFINE_PER_CPU(long, nr_dentry); 127 static DEFINE_PER_CPU(long, nr_dentry); 136 static DEFINE_PER_CPU(long, nr_dentry_unused); 128 static DEFINE_PER_CPU(long, nr_dentry_unused); 137 static DEFINE_PER_CPU(long, nr_dentry_negative 129 static DEFINE_PER_CPU(long, nr_dentry_negative); 138 130 139 #if defined(CONFIG_SYSCTL) && defined(CONFIG_P 131 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS) 140 /* Statistics gathering. */ 132 /* Statistics gathering. */ 141 static struct dentry_stat_t dentry_stat = { 133 static struct dentry_stat_t dentry_stat = { 142 .age_limit = 45, 134 .age_limit = 45, 143 }; 135 }; 144 136 145 /* 137 /* 146 * Here we resort to our own counters instead 138 * Here we resort to our own counters instead of using generic per-cpu counters 147 * for consistency with what the vfs inode cod 139 * for consistency with what the vfs inode code does. We are expected to harvest 148 * better code and performance by having our o 140 * better code and performance by having our own specialized counters. 149 * 141 * 150 * Please note that the loop is done over all 142 * Please note that the loop is done over all possible CPUs, not over all online 151 * CPUs. The reason for this is that we don't 143 * CPUs. The reason for this is that we don't want to play games with CPUs going 152 * on and off. If one of them goes off, we wil 144 * on and off. If one of them goes off, we will just keep their counters. 153 * 145 * 154 * glommer: See cffbc8a for details, and if yo 146 * glommer: See cffbc8a for details, and if you ever intend to change this, 155 * please update all vfs counters to match. 147 * please update all vfs counters to match. 156 */ 148 */ 157 static long get_nr_dentry(void) 149 static long get_nr_dentry(void) 158 { 150 { 159 int i; 151 int i; 160 long sum = 0; 152 long sum = 0; 161 for_each_possible_cpu(i) 153 for_each_possible_cpu(i) 162 sum += per_cpu(nr_dentry, i); 154 sum += per_cpu(nr_dentry, i); 163 return sum < 0 ? 0 : sum; 155 return sum < 0 ? 0 : sum; 164 } 156 } 165 157 166 static long get_nr_dentry_unused(void) 158 static long get_nr_dentry_unused(void) 167 { 159 { 168 int i; 160 int i; 169 long sum = 0; 161 long sum = 0; 170 for_each_possible_cpu(i) 162 for_each_possible_cpu(i) 171 sum += per_cpu(nr_dentry_unuse 163 sum += per_cpu(nr_dentry_unused, i); 172 return sum < 0 ? 0 : sum; 164 return sum < 0 ? 0 : sum; 173 } 165 } 174 166 175 static long get_nr_dentry_negative(void) 167 static long get_nr_dentry_negative(void) 176 { 168 { 177 int i; 169 int i; 178 long sum = 0; 170 long sum = 0; 179 171 180 for_each_possible_cpu(i) 172 for_each_possible_cpu(i) 181 sum += per_cpu(nr_dentry_negat 173 sum += per_cpu(nr_dentry_negative, i); 182 return sum < 0 ? 0 : sum; 174 return sum < 0 ? 0 : sum; 183 } 175 } 184 176 185 static int proc_nr_dentry(const struct ctl_tab !! 177 static int proc_nr_dentry(struct ctl_table *table, int write, void *buffer, 186 size_t *lenp, loff_t 178 size_t *lenp, loff_t *ppos) 187 { 179 { 188 dentry_stat.nr_dentry = get_nr_dentry( 180 dentry_stat.nr_dentry = get_nr_dentry(); 189 dentry_stat.nr_unused = get_nr_dentry_ 181 dentry_stat.nr_unused = get_nr_dentry_unused(); 190 dentry_stat.nr_negative = get_nr_dentr 182 dentry_stat.nr_negative = get_nr_dentry_negative(); 191 return proc_doulongvec_minmax(table, w 183 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 192 } 184 } 193 185 194 static struct ctl_table fs_dcache_sysctls[] = 186 static struct ctl_table fs_dcache_sysctls[] = { 195 { 187 { 196 .procname = "dentry-stat 188 .procname = "dentry-state", 197 .data = &dentry_stat 189 .data = &dentry_stat, 198 .maxlen = 6*sizeof(lon 190 .maxlen = 6*sizeof(long), 199 .mode = 0444, 191 .mode = 0444, 200 .proc_handler = proc_nr_dent 192 .proc_handler = proc_nr_dentry, 201 }, 193 }, >> 194 { } 202 }; 195 }; 203 196 204 static int __init init_fs_dcache_sysctls(void) 197 static int __init init_fs_dcache_sysctls(void) 205 { 198 { 206 register_sysctl_init("fs", fs_dcache_s 199 register_sysctl_init("fs", fs_dcache_sysctls); 207 return 0; 200 return 0; 208 } 201 } 209 fs_initcall(init_fs_dcache_sysctls); 202 fs_initcall(init_fs_dcache_sysctls); 210 #endif 203 #endif 211 204 212 /* 205 /* 213 * Compare 2 name strings, return 0 if they ma 206 * Compare 2 name strings, return 0 if they match, otherwise non-zero. 214 * The strings are both count bytes long, and 207 * The strings are both count bytes long, and count is non-zero. 215 */ 208 */ 216 #ifdef CONFIG_DCACHE_WORD_ACCESS 209 #ifdef CONFIG_DCACHE_WORD_ACCESS 217 210 218 #include <asm/word-at-a-time.h> 211 #include <asm/word-at-a-time.h> 219 /* 212 /* 220 * NOTE! 'cs' and 'scount' come from a dentry, 213 * NOTE! 'cs' and 'scount' come from a dentry, so it has a 221 * aligned allocation for this particular comp 214 * aligned allocation for this particular component. We don't 222 * strictly need the load_unaligned_zeropad() 215 * strictly need the load_unaligned_zeropad() safety, but it 223 * doesn't hurt either. 216 * doesn't hurt either. 224 * 217 * 225 * In contrast, 'ct' and 'tcount' can be from 218 * In contrast, 'ct' and 'tcount' can be from a pathname, and do 226 * need the careful unaligned handling. 219 * need the careful unaligned handling. 227 */ 220 */ 228 static inline int dentry_string_cmp(const unsi 221 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount) 229 { 222 { 230 unsigned long a,b,mask; 223 unsigned long a,b,mask; 231 224 232 for (;;) { 225 for (;;) { 233 a = read_word_at_a_time(cs); 226 a = read_word_at_a_time(cs); 234 b = load_unaligned_zeropad(ct) 227 b = load_unaligned_zeropad(ct); 235 if (tcount < sizeof(unsigned l 228 if (tcount < sizeof(unsigned long)) 236 break; 229 break; 237 if (unlikely(a != b)) 230 if (unlikely(a != b)) 238 return 1; 231 return 1; 239 cs += sizeof(unsigned long); 232 cs += sizeof(unsigned long); 240 ct += sizeof(unsigned long); 233 ct += sizeof(unsigned long); 241 tcount -= sizeof(unsigned long 234 tcount -= sizeof(unsigned long); 242 if (!tcount) 235 if (!tcount) 243 return 0; 236 return 0; 244 } 237 } 245 mask = bytemask_from_count(tcount); 238 mask = bytemask_from_count(tcount); 246 return unlikely(!!((a ^ b) & mask)); 239 return unlikely(!!((a ^ b) & mask)); 247 } 240 } 248 241 249 #else 242 #else 250 243 251 static inline int dentry_string_cmp(const unsi 244 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount) 252 { 245 { 253 do { 246 do { 254 if (*cs != *ct) 247 if (*cs != *ct) 255 return 1; 248 return 1; 256 cs++; 249 cs++; 257 ct++; 250 ct++; 258 tcount--; 251 tcount--; 259 } while (tcount); 252 } while (tcount); 260 return 0; 253 return 0; 261 } 254 } 262 255 263 #endif 256 #endif 264 257 265 static inline int dentry_cmp(const struct dent 258 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount) 266 { 259 { 267 /* 260 /* 268 * Be careful about RCU walk racing wi 261 * Be careful about RCU walk racing with rename: 269 * use 'READ_ONCE' to fetch the name p 262 * use 'READ_ONCE' to fetch the name pointer. 270 * 263 * 271 * NOTE! Even if a rename will mean th 264 * NOTE! Even if a rename will mean that the length 272 * was not loaded atomically, we don't 265 * was not loaded atomically, we don't care. The 273 * RCU walk will check the sequence co 266 * RCU walk will check the sequence count eventually, 274 * and catch it. And we won't overrun 267 * and catch it. And we won't overrun the buffer, 275 * because we're reading the name poin 268 * because we're reading the name pointer atomically, 276 * and a dentry name is guaranteed to 269 * and a dentry name is guaranteed to be properly 277 * terminated with a NUL byte. 270 * terminated with a NUL byte. 278 * 271 * 279 * End result: even if 'len' is wrong, 272 * End result: even if 'len' is wrong, we'll exit 280 * early because the data cannot match 273 * early because the data cannot match (there can 281 * be no NUL in the ct/tcount data) 274 * be no NUL in the ct/tcount data) 282 */ 275 */ 283 const unsigned char *cs = READ_ONCE(de 276 const unsigned char *cs = READ_ONCE(dentry->d_name.name); 284 277 285 return dentry_string_cmp(cs, ct, tcoun 278 return dentry_string_cmp(cs, ct, tcount); 286 } 279 } 287 280 288 struct external_name { 281 struct external_name { 289 union { 282 union { 290 atomic_t count; 283 atomic_t count; 291 struct rcu_head head; 284 struct rcu_head head; 292 } u; 285 } u; 293 unsigned char name[]; 286 unsigned char name[]; 294 }; 287 }; 295 288 296 static inline struct external_name *external_n 289 static inline struct external_name *external_name(struct dentry *dentry) 297 { 290 { 298 return container_of(dentry->d_name.nam 291 return container_of(dentry->d_name.name, struct external_name, name[0]); 299 } 292 } 300 293 301 static void __d_free(struct rcu_head *head) 294 static void __d_free(struct rcu_head *head) 302 { 295 { 303 struct dentry *dentry = container_of(h 296 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu); 304 297 305 kmem_cache_free(dentry_cache, dentry); 298 kmem_cache_free(dentry_cache, dentry); 306 } 299 } 307 300 308 static void __d_free_external(struct rcu_head 301 static void __d_free_external(struct rcu_head *head) 309 { 302 { 310 struct dentry *dentry = container_of(h 303 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu); 311 kfree(external_name(dentry)); 304 kfree(external_name(dentry)); 312 kmem_cache_free(dentry_cache, dentry); 305 kmem_cache_free(dentry_cache, dentry); 313 } 306 } 314 307 315 static inline int dname_external(const struct 308 static inline int dname_external(const struct dentry *dentry) 316 { 309 { 317 return dentry->d_name.name != dentry-> 310 return dentry->d_name.name != dentry->d_iname; 318 } 311 } 319 312 320 void take_dentry_name_snapshot(struct name_sna 313 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry) 321 { 314 { 322 spin_lock(&dentry->d_lock); 315 spin_lock(&dentry->d_lock); 323 name->name = dentry->d_name; 316 name->name = dentry->d_name; 324 if (unlikely(dname_external(dentry))) 317 if (unlikely(dname_external(dentry))) { 325 atomic_inc(&external_name(dent 318 atomic_inc(&external_name(dentry)->u.count); 326 } else { 319 } else { 327 memcpy(name->inline_name, dent 320 memcpy(name->inline_name, dentry->d_iname, 328 dentry->d_name.len + 1) 321 dentry->d_name.len + 1); 329 name->name.name = name->inline 322 name->name.name = name->inline_name; 330 } 323 } 331 spin_unlock(&dentry->d_lock); 324 spin_unlock(&dentry->d_lock); 332 } 325 } 333 EXPORT_SYMBOL(take_dentry_name_snapshot); 326 EXPORT_SYMBOL(take_dentry_name_snapshot); 334 327 335 void release_dentry_name_snapshot(struct name_ 328 void release_dentry_name_snapshot(struct name_snapshot *name) 336 { 329 { 337 if (unlikely(name->name.name != name-> 330 if (unlikely(name->name.name != name->inline_name)) { 338 struct external_name *p; 331 struct external_name *p; 339 p = container_of(name->name.na 332 p = container_of(name->name.name, struct external_name, name[0]); 340 if (unlikely(atomic_dec_and_te 333 if (unlikely(atomic_dec_and_test(&p->u.count))) 341 kfree_rcu(p, u.head); 334 kfree_rcu(p, u.head); 342 } 335 } 343 } 336 } 344 EXPORT_SYMBOL(release_dentry_name_snapshot); 337 EXPORT_SYMBOL(release_dentry_name_snapshot); 345 338 346 static inline void __d_set_inode_and_type(stru 339 static inline void __d_set_inode_and_type(struct dentry *dentry, 347 stru 340 struct inode *inode, 348 unsi 341 unsigned type_flags) 349 { 342 { 350 unsigned flags; 343 unsigned flags; 351 344 352 dentry->d_inode = inode; 345 dentry->d_inode = inode; 353 flags = READ_ONCE(dentry->d_flags); 346 flags = READ_ONCE(dentry->d_flags); 354 flags &= ~DCACHE_ENTRY_TYPE; !! 347 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU); 355 flags |= type_flags; 348 flags |= type_flags; 356 smp_store_release(&dentry->d_flags, fl 349 smp_store_release(&dentry->d_flags, flags); 357 } 350 } 358 351 359 static inline void __d_clear_type_and_inode(st 352 static inline void __d_clear_type_and_inode(struct dentry *dentry) 360 { 353 { 361 unsigned flags = READ_ONCE(dentry->d_f 354 unsigned flags = READ_ONCE(dentry->d_flags); 362 355 363 flags &= ~DCACHE_ENTRY_TYPE; !! 356 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU); 364 WRITE_ONCE(dentry->d_flags, flags); 357 WRITE_ONCE(dentry->d_flags, flags); 365 dentry->d_inode = NULL; 358 dentry->d_inode = NULL; 366 /* 359 /* 367 * The negative counter only tracks de 360 * The negative counter only tracks dentries on the LRU. Don't inc if 368 * d_lru is on another list. 361 * d_lru is on another list. 369 */ 362 */ 370 if ((flags & (DCACHE_LRU_LIST|DCACHE_S 363 if ((flags & (DCACHE_LRU_LIST|DCACHE_SHRINK_LIST)) == DCACHE_LRU_LIST) 371 this_cpu_inc(nr_dentry_negativ 364 this_cpu_inc(nr_dentry_negative); 372 } 365 } 373 366 374 static void dentry_free(struct dentry *dentry) 367 static void dentry_free(struct dentry *dentry) 375 { 368 { 376 WARN_ON(!hlist_unhashed(&dentry->d_u.d 369 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias)); 377 if (unlikely(dname_external(dentry))) 370 if (unlikely(dname_external(dentry))) { 378 struct external_name *p = exte 371 struct external_name *p = external_name(dentry); 379 if (likely(atomic_dec_and_test 372 if (likely(atomic_dec_and_test(&p->u.count))) { 380 call_rcu(&dentry->d_u. 373 call_rcu(&dentry->d_u.d_rcu, __d_free_external); 381 return; 374 return; 382 } 375 } 383 } 376 } 384 /* if dentry was never visible to RCU, 377 /* if dentry was never visible to RCU, immediate free is OK */ 385 if (dentry->d_flags & DCACHE_NORCU) 378 if (dentry->d_flags & DCACHE_NORCU) 386 __d_free(&dentry->d_u.d_rcu); 379 __d_free(&dentry->d_u.d_rcu); 387 else 380 else 388 call_rcu(&dentry->d_u.d_rcu, _ 381 call_rcu(&dentry->d_u.d_rcu, __d_free); 389 } 382 } 390 383 391 /* 384 /* 392 * Release the dentry's inode, using the files 385 * Release the dentry's inode, using the filesystem 393 * d_iput() operation if defined. 386 * d_iput() operation if defined. 394 */ 387 */ 395 static void dentry_unlink_inode(struct dentry 388 static void dentry_unlink_inode(struct dentry * dentry) 396 __releases(dentry->d_lock) 389 __releases(dentry->d_lock) 397 __releases(dentry->d_inode->i_lock) 390 __releases(dentry->d_inode->i_lock) 398 { 391 { 399 struct inode *inode = dentry->d_inode; 392 struct inode *inode = dentry->d_inode; 400 393 401 raw_write_seqcount_begin(&dentry->d_se 394 raw_write_seqcount_begin(&dentry->d_seq); 402 __d_clear_type_and_inode(dentry); 395 __d_clear_type_and_inode(dentry); 403 hlist_del_init(&dentry->d_u.d_alias); 396 hlist_del_init(&dentry->d_u.d_alias); 404 raw_write_seqcount_end(&dentry->d_seq) 397 raw_write_seqcount_end(&dentry->d_seq); 405 spin_unlock(&dentry->d_lock); 398 spin_unlock(&dentry->d_lock); 406 spin_unlock(&inode->i_lock); 399 spin_unlock(&inode->i_lock); 407 if (!inode->i_nlink) 400 if (!inode->i_nlink) 408 fsnotify_inoderemove(inode); 401 fsnotify_inoderemove(inode); 409 if (dentry->d_op && dentry->d_op->d_ip 402 if (dentry->d_op && dentry->d_op->d_iput) 410 dentry->d_op->d_iput(dentry, i 403 dentry->d_op->d_iput(dentry, inode); 411 else 404 else 412 iput(inode); 405 iput(inode); 413 } 406 } 414 407 415 /* 408 /* 416 * The DCACHE_LRU_LIST bit is set whenever the 409 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry 417 * is in use - which includes both the "real" 410 * is in use - which includes both the "real" per-superblock 418 * LRU list _and_ the DCACHE_SHRINK_LIST use. 411 * LRU list _and_ the DCACHE_SHRINK_LIST use. 419 * 412 * 420 * The DCACHE_SHRINK_LIST bit is set whenever 413 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is 421 * on the shrink list (ie not on the superbloc 414 * on the shrink list (ie not on the superblock LRU list). 422 * 415 * 423 * The per-cpu "nr_dentry_unused" counters are 416 * The per-cpu "nr_dentry_unused" counters are updated with 424 * the DCACHE_LRU_LIST bit. 417 * the DCACHE_LRU_LIST bit. 425 * 418 * 426 * The per-cpu "nr_dentry_negative" counters a 419 * The per-cpu "nr_dentry_negative" counters are only updated 427 * when deleted from or added to the per-super 420 * when deleted from or added to the per-superblock LRU list, not 428 * from/to the shrink list. That is to avoid a 421 * from/to the shrink list. That is to avoid an unneeded dec/inc 429 * pair when moving from LRU to shrink list in 422 * pair when moving from LRU to shrink list in select_collect(). 430 * 423 * 431 * These helper functions make sure we always 424 * These helper functions make sure we always follow the 432 * rules. d_lock must be held by the caller. 425 * rules. d_lock must be held by the caller. 433 */ 426 */ 434 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(( 427 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x)) 435 static void d_lru_add(struct dentry *dentry) 428 static void d_lru_add(struct dentry *dentry) 436 { 429 { 437 D_FLAG_VERIFY(dentry, 0); 430 D_FLAG_VERIFY(dentry, 0); 438 dentry->d_flags |= DCACHE_LRU_LIST; 431 dentry->d_flags |= DCACHE_LRU_LIST; 439 this_cpu_inc(nr_dentry_unused); 432 this_cpu_inc(nr_dentry_unused); 440 if (d_is_negative(dentry)) 433 if (d_is_negative(dentry)) 441 this_cpu_inc(nr_dentry_negativ 434 this_cpu_inc(nr_dentry_negative); 442 WARN_ON_ONCE(!list_lru_add_obj( !! 435 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru)); 443 &dentry->d_sb->s_dentr << 444 } 436 } 445 437 446 static void d_lru_del(struct dentry *dentry) 438 static void d_lru_del(struct dentry *dentry) 447 { 439 { 448 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST) 440 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 449 dentry->d_flags &= ~DCACHE_LRU_LIST; 441 dentry->d_flags &= ~DCACHE_LRU_LIST; 450 this_cpu_dec(nr_dentry_unused); 442 this_cpu_dec(nr_dentry_unused); 451 if (d_is_negative(dentry)) 443 if (d_is_negative(dentry)) 452 this_cpu_dec(nr_dentry_negativ 444 this_cpu_dec(nr_dentry_negative); 453 WARN_ON_ONCE(!list_lru_del_obj( !! 445 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru)); 454 &dentry->d_sb->s_dentr << 455 } 446 } 456 447 457 static void d_shrink_del(struct dentry *dentry 448 static void d_shrink_del(struct dentry *dentry) 458 { 449 { 459 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LI 450 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST); 460 list_del_init(&dentry->d_lru); 451 list_del_init(&dentry->d_lru); 461 dentry->d_flags &= ~(DCACHE_SHRINK_LIS 452 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST); 462 this_cpu_dec(nr_dentry_unused); 453 this_cpu_dec(nr_dentry_unused); 463 } 454 } 464 455 465 static void d_shrink_add(struct dentry *dentry 456 static void d_shrink_add(struct dentry *dentry, struct list_head *list) 466 { 457 { 467 D_FLAG_VERIFY(dentry, 0); 458 D_FLAG_VERIFY(dentry, 0); 468 list_add(&dentry->d_lru, list); 459 list_add(&dentry->d_lru, list); 469 dentry->d_flags |= DCACHE_SHRINK_LIST 460 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST; 470 this_cpu_inc(nr_dentry_unused); 461 this_cpu_inc(nr_dentry_unused); 471 } 462 } 472 463 473 /* 464 /* 474 * These can only be called under the global L 465 * These can only be called under the global LRU lock, ie during the 475 * callback for freeing the LRU list. "isolate 466 * callback for freeing the LRU list. "isolate" removes it from the 476 * LRU lists entirely, while shrink_move moves 467 * LRU lists entirely, while shrink_move moves it to the indicated 477 * private list. 468 * private list. 478 */ 469 */ 479 static void d_lru_isolate(struct list_lru_one 470 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry) 480 { 471 { 481 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST) 472 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 482 dentry->d_flags &= ~DCACHE_LRU_LIST; 473 dentry->d_flags &= ~DCACHE_LRU_LIST; 483 this_cpu_dec(nr_dentry_unused); 474 this_cpu_dec(nr_dentry_unused); 484 if (d_is_negative(dentry)) 475 if (d_is_negative(dentry)) 485 this_cpu_dec(nr_dentry_negativ 476 this_cpu_dec(nr_dentry_negative); 486 list_lru_isolate(lru, &dentry->d_lru); 477 list_lru_isolate(lru, &dentry->d_lru); 487 } 478 } 488 479 489 static void d_lru_shrink_move(struct list_lru_ 480 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry, 490 struct list_head 481 struct list_head *list) 491 { 482 { 492 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST) 483 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 493 dentry->d_flags |= DCACHE_SHRINK_LIST; 484 dentry->d_flags |= DCACHE_SHRINK_LIST; 494 if (d_is_negative(dentry)) 485 if (d_is_negative(dentry)) 495 this_cpu_dec(nr_dentry_negativ 486 this_cpu_dec(nr_dentry_negative); 496 list_lru_isolate_move(lru, &dentry->d_ 487 list_lru_isolate_move(lru, &dentry->d_lru, list); 497 } 488 } 498 489 499 static void ___d_drop(struct dentry *dentry) 490 static void ___d_drop(struct dentry *dentry) 500 { 491 { 501 struct hlist_bl_head *b; 492 struct hlist_bl_head *b; 502 /* 493 /* 503 * Hashed dentries are normally on the 494 * Hashed dentries are normally on the dentry hashtable, 504 * with the exception of those newly a 495 * with the exception of those newly allocated by 505 * d_obtain_root, which are always IS_ 496 * d_obtain_root, which are always IS_ROOT: 506 */ 497 */ 507 if (unlikely(IS_ROOT(dentry))) 498 if (unlikely(IS_ROOT(dentry))) 508 b = &dentry->d_sb->s_roots; 499 b = &dentry->d_sb->s_roots; 509 else 500 else 510 b = d_hash(dentry->d_name.hash 501 b = d_hash(dentry->d_name.hash); 511 502 512 hlist_bl_lock(b); 503 hlist_bl_lock(b); 513 __hlist_bl_del(&dentry->d_hash); 504 __hlist_bl_del(&dentry->d_hash); 514 hlist_bl_unlock(b); 505 hlist_bl_unlock(b); 515 } 506 } 516 507 517 void __d_drop(struct dentry *dentry) 508 void __d_drop(struct dentry *dentry) 518 { 509 { 519 if (!d_unhashed(dentry)) { 510 if (!d_unhashed(dentry)) { 520 ___d_drop(dentry); 511 ___d_drop(dentry); 521 dentry->d_hash.pprev = NULL; 512 dentry->d_hash.pprev = NULL; 522 write_seqcount_invalidate(&den 513 write_seqcount_invalidate(&dentry->d_seq); 523 } 514 } 524 } 515 } 525 EXPORT_SYMBOL(__d_drop); 516 EXPORT_SYMBOL(__d_drop); 526 517 527 /** 518 /** 528 * d_drop - drop a dentry 519 * d_drop - drop a dentry 529 * @dentry: dentry to drop 520 * @dentry: dentry to drop 530 * 521 * 531 * d_drop() unhashes the entry from the parent 522 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't 532 * be found through a VFS lookup any more. Not 523 * be found through a VFS lookup any more. Note that this is different from 533 * deleting the dentry - d_delete will try to 524 * deleting the dentry - d_delete will try to mark the dentry negative if 534 * possible, giving a successful _negative_ lo 525 * possible, giving a successful _negative_ lookup, while d_drop will 535 * just make the cache lookup fail. 526 * just make the cache lookup fail. 536 * 527 * 537 * d_drop() is used mainly for stuff that want 528 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some 538 * reason (NFS timeouts or autofs deletes). 529 * reason (NFS timeouts or autofs deletes). 539 * 530 * 540 * __d_drop requires dentry->d_lock 531 * __d_drop requires dentry->d_lock 541 * 532 * 542 * ___d_drop doesn't mark dentry as "unhashed" 533 * ___d_drop doesn't mark dentry as "unhashed" 543 * (dentry->d_hash.pprev will be LIST_POISON2, 534 * (dentry->d_hash.pprev will be LIST_POISON2, not NULL). 544 */ 535 */ 545 void d_drop(struct dentry *dentry) 536 void d_drop(struct dentry *dentry) 546 { 537 { 547 spin_lock(&dentry->d_lock); 538 spin_lock(&dentry->d_lock); 548 __d_drop(dentry); 539 __d_drop(dentry); 549 spin_unlock(&dentry->d_lock); 540 spin_unlock(&dentry->d_lock); 550 } 541 } 551 EXPORT_SYMBOL(d_drop); 542 EXPORT_SYMBOL(d_drop); 552 543 553 static inline void dentry_unlist(struct dentry !! 544 static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent) 554 { 545 { 555 struct dentry *next; 546 struct dentry *next; 556 /* 547 /* 557 * Inform d_walk() and shrink_dentry_l 548 * Inform d_walk() and shrink_dentry_list() that we are no longer 558 * attached to the dentry tree 549 * attached to the dentry tree 559 */ 550 */ 560 dentry->d_flags |= DCACHE_DENTRY_KILLE 551 dentry->d_flags |= DCACHE_DENTRY_KILLED; 561 if (unlikely(hlist_unhashed(&dentry->d !! 552 if (unlikely(list_empty(&dentry->d_child))) 562 return; 553 return; 563 __hlist_del(&dentry->d_sib); !! 554 __list_del_entry(&dentry->d_child); 564 /* 555 /* 565 * Cursors can move around the list of 556 * Cursors can move around the list of children. While we'd been 566 * a normal list member, it didn't mat !! 557 * a normal list member, it didn't matter - ->d_child.next would've 567 * been updated. However, from now on 558 * been updated. However, from now on it won't be and for the 568 * things like d_walk() it might end u 559 * things like d_walk() it might end up with a nasty surprise. 569 * Normally d_walk() doesn't care abou 560 * Normally d_walk() doesn't care about cursors moving around - 570 * ->d_lock on parent prevents that an 561 * ->d_lock on parent prevents that and since a cursor has no children 571 * of its own, we get through it witho 562 * of its own, we get through it without ever unlocking the parent. 572 * There is one exception, though - if 563 * There is one exception, though - if we ascend from a child that 573 * gets killed as soon as we unlock it 564 * gets killed as soon as we unlock it, the next sibling is found 574 * using the value left in its ->d_sib !! 565 * using the value left in its ->d_child.next. And if _that_ 575 * pointed to a cursor, and cursor got 566 * pointed to a cursor, and cursor got moved (e.g. by lseek()) 576 * before d_walk() regains parent->d_l 567 * before d_walk() regains parent->d_lock, we'll end up skipping 577 * everything the cursor had been move 568 * everything the cursor had been moved past. 578 * 569 * 579 * Solution: make sure that the pointe !! 570 * Solution: make sure that the pointer left behind in ->d_child.next 580 * points to something that won't be m 571 * points to something that won't be moving around. I.e. skip the 581 * cursors. 572 * cursors. 582 */ 573 */ 583 while (dentry->d_sib.next) { !! 574 while (dentry->d_child.next != &parent->d_subdirs) { 584 next = hlist_entry(dentry->d_s !! 575 next = list_entry(dentry->d_child.next, struct dentry, d_child); 585 if (likely(!(next->d_flags & D 576 if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR))) 586 break; 577 break; 587 dentry->d_sib.next = next->d_s !! 578 dentry->d_child.next = next->d_child.next; 588 } 579 } 589 } 580 } 590 581 591 static struct dentry *__dentry_kill(struct den !! 582 static void __dentry_kill(struct dentry *dentry) 592 { 583 { 593 struct dentry *parent = NULL; 584 struct dentry *parent = NULL; 594 bool can_free = true; 585 bool can_free = true; >> 586 if (!IS_ROOT(dentry)) >> 587 parent = dentry->d_parent; 595 588 596 /* 589 /* 597 * The dentry is now unrecoverably dea 590 * The dentry is now unrecoverably dead to the world. 598 */ 591 */ 599 lockref_mark_dead(&dentry->d_lockref); 592 lockref_mark_dead(&dentry->d_lockref); 600 593 601 /* 594 /* 602 * inform the fs via d_prune that this 595 * inform the fs via d_prune that this dentry is about to be 603 * unhashed and destroyed. 596 * unhashed and destroyed. 604 */ 597 */ 605 if (dentry->d_flags & DCACHE_OP_PRUNE) 598 if (dentry->d_flags & DCACHE_OP_PRUNE) 606 dentry->d_op->d_prune(dentry); 599 dentry->d_op->d_prune(dentry); 607 600 608 if (dentry->d_flags & DCACHE_LRU_LIST) 601 if (dentry->d_flags & DCACHE_LRU_LIST) { 609 if (!(dentry->d_flags & DCACHE 602 if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) 610 d_lru_del(dentry); 603 d_lru_del(dentry); 611 } 604 } 612 /* if it was on the hash then remove i 605 /* if it was on the hash then remove it */ 613 __d_drop(dentry); 606 __d_drop(dentry); >> 607 dentry_unlist(dentry, parent); >> 608 if (parent) >> 609 spin_unlock(&parent->d_lock); 614 if (dentry->d_inode) 610 if (dentry->d_inode) 615 dentry_unlink_inode(dentry); 611 dentry_unlink_inode(dentry); 616 else 612 else 617 spin_unlock(&dentry->d_lock); 613 spin_unlock(&dentry->d_lock); 618 this_cpu_dec(nr_dentry); 614 this_cpu_dec(nr_dentry); 619 if (dentry->d_op && dentry->d_op->d_re 615 if (dentry->d_op && dentry->d_op->d_release) 620 dentry->d_op->d_release(dentry 616 dentry->d_op->d_release(dentry); 621 617 622 cond_resched(); !! 618 spin_lock(&dentry->d_lock); 623 /* now that it's negative, ->d_parent !! 619 if (dentry->d_flags & DCACHE_SHRINK_LIST) { 624 if (!IS_ROOT(dentry)) { !! 620 dentry->d_flags |= DCACHE_MAY_FREE; 625 parent = dentry->d_parent; << 626 spin_lock(&parent->d_lock); << 627 } << 628 spin_lock_nested(&dentry->d_lock, DENT << 629 dentry_unlist(dentry); << 630 if (dentry->d_flags & DCACHE_SHRINK_LI << 631 can_free = false; 621 can_free = false; >> 622 } 632 spin_unlock(&dentry->d_lock); 623 spin_unlock(&dentry->d_lock); 633 if (likely(can_free)) 624 if (likely(can_free)) 634 dentry_free(dentry); 625 dentry_free(dentry); 635 if (parent && --parent->d_lockref.coun !! 626 cond_resched(); >> 627 } >> 628 >> 629 static struct dentry *__lock_parent(struct dentry *dentry) >> 630 { >> 631 struct dentry *parent; >> 632 rcu_read_lock(); >> 633 spin_unlock(&dentry->d_lock); >> 634 again: >> 635 parent = READ_ONCE(dentry->d_parent); >> 636 spin_lock(&parent->d_lock); >> 637 /* >> 638 * We can't blindly lock dentry until we are sure >> 639 * that we won't violate the locking order. >> 640 * Any changes of dentry->d_parent must have >> 641 * been done with parent->d_lock held, so >> 642 * spin_lock() above is enough of a barrier >> 643 * for checking if it's still our child. >> 644 */ >> 645 if (unlikely(parent != dentry->d_parent)) { 636 spin_unlock(&parent->d_lock); 646 spin_unlock(&parent->d_lock); 637 return NULL; !! 647 goto again; 638 } 648 } >> 649 rcu_read_unlock(); >> 650 if (parent != dentry) >> 651 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); >> 652 else >> 653 parent = NULL; 639 return parent; 654 return parent; 640 } 655 } 641 656 642 /* !! 657 static inline struct dentry *lock_parent(struct dentry *dentry) 643 * Lock a dentry for feeding it to __dentry_ki << 644 * Called under rcu_read_lock() and dentry->d_ << 645 * guarantees that nothing we access will be f << 646 * Note that dentry is *not* protected from co << 647 * d_delete(), etc. << 648 * << 649 * Return false if dentry is busy. Otherwise, << 650 * that dentry's inode locked. << 651 */ << 652 << 653 static bool lock_for_kill(struct dentry *dentr << 654 { 658 { 655 struct inode *inode = dentry->d_inode; !! 659 struct dentry *parent = dentry->d_parent; 656 !! 660 if (IS_ROOT(dentry)) 657 if (unlikely(dentry->d_lockref.count)) !! 661 return NULL; 658 return false; !! 662 if (likely(spin_trylock(&parent->d_lock))) 659 !! 663 return parent; 660 if (!inode || likely(spin_trylock(&ino !! 664 return __lock_parent(dentry); 661 return true; << 662 << 663 do { << 664 spin_unlock(&dentry->d_lock); << 665 spin_lock(&inode->i_lock); << 666 spin_lock(&dentry->d_lock); << 667 if (likely(inode == dentry->d_ << 668 break; << 669 spin_unlock(&inode->i_lock); << 670 inode = dentry->d_inode; << 671 } while (inode); << 672 if (likely(!dentry->d_lockref.count)) << 673 return true; << 674 if (inode) << 675 spin_unlock(&inode->i_lock); << 676 return false; << 677 } 665 } 678 666 679 /* !! 667 static inline bool retain_dentry(struct dentry *dentry) 680 * Decide if dentry is worth retaining. Usual << 681 * locked; if not locked, we are more limited << 682 * without a lock. False in this case means " << 683 * << 684 * In case we aren't locked, these predicates << 685 * sufficient that at some point after we drop << 686 * hashed and the flags had the proper value. << 687 * re-gotten a reference to the dentry and cha << 688 * we can leave the dentry around with a zero << 689 */ << 690 static inline bool retain_dentry(struct dentry << 691 { 668 { 692 unsigned int d_flags; !! 669 WARN_ON(d_in_lookup(dentry)); 693 << 694 smp_rmb(); << 695 d_flags = READ_ONCE(dentry->d_flags); << 696 670 697 // Unreachable? Nobody would be able t !! 671 /* Unreachable? Get rid of it */ 698 if (unlikely(d_unhashed(dentry))) 672 if (unlikely(d_unhashed(dentry))) 699 return false; 673 return false; 700 674 701 // Same if it's disconnected !! 675 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED)) 702 if (unlikely(d_flags & DCACHE_DISCONNE << 703 return false; 676 return false; 704 677 705 // ->d_delete() might tell us not to b !! 678 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) { 706 // ->d_lock; can't decide without it !! 679 if (dentry->d_op->d_delete(dentry)) 707 if (unlikely(d_flags & DCACHE_OP_DELET << 708 if (!locked || dentry->d_op->d << 709 return false; 680 return false; 710 } 681 } 711 682 712 // Explicitly told not to bother !! 683 if (unlikely(dentry->d_flags & DCACHE_DONTCACHE)) 713 if (unlikely(d_flags & DCACHE_DONTCACH << 714 return false; 684 return false; 715 685 716 // At this point it looks like we ough !! 686 /* retain; LRU fodder */ 717 // need to do something - put it on LR !! 687 dentry->d_lockref.count--; 718 // and mark it referenced if it was on !! 688 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST))) 719 // Unfortunately, both actions require << 720 // case we'd have to punt rather than << 721 if (unlikely(!(d_flags & DCACHE_LRU_LI << 722 if (!locked) << 723 return false; << 724 d_lru_add(dentry); 689 d_lru_add(dentry); 725 } else if (unlikely(!(d_flags & DCACHE !! 690 else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED))) 726 if (!locked) << 727 return false; << 728 dentry->d_flags |= DCACHE_REFE 691 dentry->d_flags |= DCACHE_REFERENCED; 729 } << 730 return true; 692 return true; 731 } 693 } 732 694 733 void d_mark_dontcache(struct inode *inode) 695 void d_mark_dontcache(struct inode *inode) 734 { 696 { 735 struct dentry *de; 697 struct dentry *de; 736 698 737 spin_lock(&inode->i_lock); 699 spin_lock(&inode->i_lock); 738 hlist_for_each_entry(de, &inode->i_den 700 hlist_for_each_entry(de, &inode->i_dentry, d_u.d_alias) { 739 spin_lock(&de->d_lock); 701 spin_lock(&de->d_lock); 740 de->d_flags |= DCACHE_DONTCACH 702 de->d_flags |= DCACHE_DONTCACHE; 741 spin_unlock(&de->d_lock); 703 spin_unlock(&de->d_lock); 742 } 704 } 743 inode->i_state |= I_DONTCACHE; 705 inode->i_state |= I_DONTCACHE; 744 spin_unlock(&inode->i_lock); 706 spin_unlock(&inode->i_lock); 745 } 707 } 746 EXPORT_SYMBOL(d_mark_dontcache); 708 EXPORT_SYMBOL(d_mark_dontcache); 747 709 748 /* 710 /* >> 711 * Finish off a dentry we've decided to kill. >> 712 * dentry->d_lock must be held, returns with it unlocked. >> 713 * Returns dentry requiring refcount drop, or NULL if we're done. >> 714 */ >> 715 static struct dentry *dentry_kill(struct dentry *dentry) >> 716 __releases(dentry->d_lock) >> 717 { >> 718 struct inode *inode = dentry->d_inode; >> 719 struct dentry *parent = NULL; >> 720 >> 721 if (inode && unlikely(!spin_trylock(&inode->i_lock))) >> 722 goto slow_positive; >> 723 >> 724 if (!IS_ROOT(dentry)) { >> 725 parent = dentry->d_parent; >> 726 if (unlikely(!spin_trylock(&parent->d_lock))) { >> 727 parent = __lock_parent(dentry); >> 728 if (likely(inode || !dentry->d_inode)) >> 729 goto got_locks; >> 730 /* negative that became positive */ >> 731 if (parent) >> 732 spin_unlock(&parent->d_lock); >> 733 inode = dentry->d_inode; >> 734 goto slow_positive; >> 735 } >> 736 } >> 737 __dentry_kill(dentry); >> 738 return parent; >> 739 >> 740 slow_positive: >> 741 spin_unlock(&dentry->d_lock); >> 742 spin_lock(&inode->i_lock); >> 743 spin_lock(&dentry->d_lock); >> 744 parent = lock_parent(dentry); >> 745 got_locks: >> 746 if (unlikely(dentry->d_lockref.count != 1)) { >> 747 dentry->d_lockref.count--; >> 748 } else if (likely(!retain_dentry(dentry))) { >> 749 __dentry_kill(dentry); >> 750 return parent; >> 751 } >> 752 /* we are keeping it, after all */ >> 753 if (inode) >> 754 spin_unlock(&inode->i_lock); >> 755 if (parent) >> 756 spin_unlock(&parent->d_lock); >> 757 spin_unlock(&dentry->d_lock); >> 758 return NULL; >> 759 } >> 760 >> 761 /* 749 * Try to do a lockless dput(), and return whe 762 * Try to do a lockless dput(), and return whether that was successful. 750 * 763 * 751 * If unsuccessful, we return false, having al 764 * If unsuccessful, we return false, having already taken the dentry lock. 752 * In that case refcount is guaranteed to be z << 753 * decided that it's not worth keeping around. << 754 * 765 * 755 * The caller needs to hold the RCU read lock, 766 * The caller needs to hold the RCU read lock, so that the dentry is 756 * guaranteed to stay around even if the refco 767 * guaranteed to stay around even if the refcount goes down to zero! 757 */ 768 */ 758 static inline bool fast_dput(struct dentry *de 769 static inline bool fast_dput(struct dentry *dentry) 759 { 770 { 760 int ret; 771 int ret; >> 772 unsigned int d_flags; >> 773 >> 774 /* >> 775 * If we have a d_op->d_delete() operation, we sould not >> 776 * let the dentry count go to zero, so use "put_or_lock". >> 777 */ >> 778 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) >> 779 return lockref_put_or_lock(&dentry->d_lockref); 761 780 762 /* 781 /* 763 * try to decrement the lockref optimi !! 782 * .. otherwise, we can try to just decrement the >> 783 * lockref optimistically. 764 */ 784 */ 765 ret = lockref_put_return(&dentry->d_lo 785 ret = lockref_put_return(&dentry->d_lockref); 766 786 767 /* 787 /* 768 * If the lockref_put_return() failed 788 * If the lockref_put_return() failed due to the lock being held 769 * by somebody else, the fast path has 789 * by somebody else, the fast path has failed. We will need to 770 * get the lock, and then check the co 790 * get the lock, and then check the count again. 771 */ 791 */ 772 if (unlikely(ret < 0)) { 792 if (unlikely(ret < 0)) { 773 spin_lock(&dentry->d_lock); 793 spin_lock(&dentry->d_lock); 774 if (WARN_ON_ONCE(dentry->d_loc 794 if (WARN_ON_ONCE(dentry->d_lockref.count <= 0)) { 775 spin_unlock(&dentry->d 795 spin_unlock(&dentry->d_lock); 776 return true; 796 return true; 777 } 797 } 778 dentry->d_lockref.count--; 798 dentry->d_lockref.count--; 779 goto locked; 799 goto locked; 780 } 800 } 781 801 782 /* 802 /* 783 * If we weren't the last ref, we're d 803 * If we weren't the last ref, we're done. 784 */ 804 */ 785 if (ret) 805 if (ret) 786 return true; 806 return true; 787 807 788 /* 808 /* 789 * Can we decide that decrement of ref !! 809 * Careful, careful. The reference count went down 790 * taking the lock? There's a very co !! 810 * to zero, but we don't hold the dentry lock, so 791 * dentry looks like it ought to be re !! 811 * somebody else could get it again, and do another 792 * to do. !! 812 * dput(), and we need to not race with that. >> 813 * >> 814 * However, there is a very special and common case >> 815 * where we don't care, because there is nothing to >> 816 * do: the dentry is still hashed, it does not have >> 817 * a 'delete' op, and it's referenced and already on >> 818 * the LRU list. >> 819 * >> 820 * NOTE! Since we aren't locked, these values are >> 821 * not "stable". However, it is sufficient that at >> 822 * some point after we dropped the reference the >> 823 * dentry was hashed and the flags had the proper >> 824 * value. Other dentry users may have re-gotten >> 825 * a reference to the dentry and change that, but >> 826 * our work is done - we can leave the dentry >> 827 * around with a zero refcount. >> 828 * >> 829 * Nevertheless, there are two cases that we should kill >> 830 * the dentry anyway. >> 831 * 1. free disconnected dentries as soon as their refcount >> 832 * reached zero. >> 833 * 2. free dentries if they should not be cached. 793 */ 834 */ 794 if (retain_dentry(dentry, false)) !! 835 smp_rmb(); >> 836 d_flags = READ_ONCE(dentry->d_flags); >> 837 d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | >> 838 DCACHE_DISCONNECTED | DCACHE_DONTCACHE; >> 839 >> 840 /* Nothing to do? Dropping the reference was all we needed? */ >> 841 if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry)) 795 return true; 842 return true; 796 843 797 /* 844 /* 798 * Either not worth retaining or we ca !! 845 * Not the fast normal case? Get the lock. We've already decremented 799 * Get the lock, then. We've already !! 846 * the refcount, but we'll need to re-check the situation after 800 * but we'll need to re-check the situ !! 847 * getting the lock. 801 */ 848 */ 802 spin_lock(&dentry->d_lock); 849 spin_lock(&dentry->d_lock); 803 850 804 /* 851 /* 805 * Did somebody else grab a reference 852 * Did somebody else grab a reference to it in the meantime, and 806 * we're no longer the last user after 853 * we're no longer the last user after all? Alternatively, somebody 807 * else could have killed it and marke 854 * else could have killed it and marked it dead. Either way, we 808 * don't need to do anything else. 855 * don't need to do anything else. 809 */ 856 */ 810 locked: 857 locked: 811 if (dentry->d_lockref.count || retain_ !! 858 if (dentry->d_lockref.count) { 812 spin_unlock(&dentry->d_lock); 859 spin_unlock(&dentry->d_lock); 813 return true; 860 return true; 814 } 861 } >> 862 >> 863 /* >> 864 * Re-get the reference we optimistically dropped. We hold the >> 865 * lock, and we just tested that it was zero, so we can just >> 866 * set it to 1. >> 867 */ >> 868 dentry->d_lockref.count = 1; 815 return false; 869 return false; 816 } 870 } 817 871 818 872 819 /* 873 /* 820 * This is dput 874 * This is dput 821 * 875 * 822 * This is complicated by the fact that we do 876 * This is complicated by the fact that we do not want to put 823 * dentries that are no longer on any hash cha 877 * dentries that are no longer on any hash chain on the unused 824 * list: we'd much rather just get rid of them 878 * list: we'd much rather just get rid of them immediately. 825 * 879 * 826 * However, that implies that we have to trave 880 * However, that implies that we have to traverse the dentry 827 * tree upwards to the parents which might _al 881 * tree upwards to the parents which might _also_ now be 828 * scheduled for deletion (it may have been on 882 * scheduled for deletion (it may have been only waiting for 829 * its last child to go away). 883 * its last child to go away). 830 * 884 * 831 * This tail recursion is done by hand as we d 885 * This tail recursion is done by hand as we don't want to depend 832 * on the compiler to always get this right (g 886 * on the compiler to always get this right (gcc generally doesn't). 833 * Real recursion would eat up our stack space 887 * Real recursion would eat up our stack space. 834 */ 888 */ 835 889 836 /* 890 /* 837 * dput - release a dentry 891 * dput - release a dentry 838 * @dentry: dentry to release 892 * @dentry: dentry to release 839 * 893 * 840 * Release a dentry. This will drop the usage 894 * Release a dentry. This will drop the usage count and if appropriate 841 * call the dentry unlink method as well as re 895 * call the dentry unlink method as well as removing it from the queues and 842 * releasing its resources. If the parent dent 896 * releasing its resources. If the parent dentries were scheduled for release 843 * they too may now get deleted. 897 * they too may now get deleted. 844 */ 898 */ 845 void dput(struct dentry *dentry) 899 void dput(struct dentry *dentry) 846 { 900 { 847 if (!dentry) !! 901 while (dentry) { 848 return; !! 902 might_sleep(); 849 might_sleep(); !! 903 850 rcu_read_lock(); !! 904 rcu_read_lock(); 851 if (likely(fast_dput(dentry))) { !! 905 if (likely(fast_dput(dentry))) { 852 rcu_read_unlock(); !! 906 rcu_read_unlock(); 853 return; << 854 } << 855 while (lock_for_kill(dentry)) { << 856 rcu_read_unlock(); << 857 dentry = __dentry_kill(dentry) << 858 if (!dentry) << 859 return; 907 return; 860 if (retain_dentry(dentry, true !! 908 } >> 909 >> 910 /* Slow case: now with the dentry lock held */ >> 911 rcu_read_unlock(); >> 912 >> 913 if (likely(retain_dentry(dentry))) { 861 spin_unlock(&dentry->d 914 spin_unlock(&dentry->d_lock); 862 return; 915 return; 863 } 916 } 864 rcu_read_lock(); !! 917 >> 918 dentry = dentry_kill(dentry); 865 } 919 } 866 rcu_read_unlock(); << 867 spin_unlock(&dentry->d_lock); << 868 } 920 } 869 EXPORT_SYMBOL(dput); 921 EXPORT_SYMBOL(dput); 870 922 871 static void to_shrink_list(struct dentry *dent !! 923 static void __dput_to_list(struct dentry *dentry, struct list_head *list) 872 __must_hold(&dentry->d_lock) 924 __must_hold(&dentry->d_lock) 873 { 925 { 874 if (!(dentry->d_flags & DCACHE_SHRINK_ !! 926 if (dentry->d_flags & DCACHE_SHRINK_LIST) { >> 927 /* let the owner of the list it's on deal with it */ >> 928 --dentry->d_lockref.count; >> 929 } else { 875 if (dentry->d_flags & DCACHE_L 930 if (dentry->d_flags & DCACHE_LRU_LIST) 876 d_lru_del(dentry); 931 d_lru_del(dentry); 877 d_shrink_add(dentry, list); !! 932 if (!--dentry->d_lockref.count) >> 933 d_shrink_add(dentry, list); 878 } 934 } 879 } 935 } 880 936 881 void dput_to_list(struct dentry *dentry, struc 937 void dput_to_list(struct dentry *dentry, struct list_head *list) 882 { 938 { 883 rcu_read_lock(); 939 rcu_read_lock(); 884 if (likely(fast_dput(dentry))) { 940 if (likely(fast_dput(dentry))) { 885 rcu_read_unlock(); 941 rcu_read_unlock(); 886 return; 942 return; 887 } 943 } 888 rcu_read_unlock(); 944 rcu_read_unlock(); 889 to_shrink_list(dentry, list); !! 945 if (!retain_dentry(dentry)) >> 946 __dput_to_list(dentry, list); 890 spin_unlock(&dentry->d_lock); 947 spin_unlock(&dentry->d_lock); 891 } 948 } 892 949 >> 950 /* This must be called with d_lock held */ >> 951 static inline void __dget_dlock(struct dentry *dentry) >> 952 { >> 953 dentry->d_lockref.count++; >> 954 } >> 955 >> 956 static inline void __dget(struct dentry *dentry) >> 957 { >> 958 lockref_get(&dentry->d_lockref); >> 959 } >> 960 893 struct dentry *dget_parent(struct dentry *dent 961 struct dentry *dget_parent(struct dentry *dentry) 894 { 962 { 895 int gotref; 963 int gotref; 896 struct dentry *ret; 964 struct dentry *ret; 897 unsigned seq; 965 unsigned seq; 898 966 899 /* 967 /* 900 * Do optimistic parent lookup without 968 * Do optimistic parent lookup without any 901 * locking. 969 * locking. 902 */ 970 */ 903 rcu_read_lock(); 971 rcu_read_lock(); 904 seq = raw_seqcount_begin(&dentry->d_se 972 seq = raw_seqcount_begin(&dentry->d_seq); 905 ret = READ_ONCE(dentry->d_parent); 973 ret = READ_ONCE(dentry->d_parent); 906 gotref = lockref_get_not_zero(&ret->d_ 974 gotref = lockref_get_not_zero(&ret->d_lockref); 907 rcu_read_unlock(); 975 rcu_read_unlock(); 908 if (likely(gotref)) { 976 if (likely(gotref)) { 909 if (!read_seqcount_retry(&dent 977 if (!read_seqcount_retry(&dentry->d_seq, seq)) 910 return ret; 978 return ret; 911 dput(ret); 979 dput(ret); 912 } 980 } 913 981 914 repeat: 982 repeat: 915 /* 983 /* 916 * Don't need rcu_dereference because 984 * Don't need rcu_dereference because we re-check it was correct under 917 * the lock. 985 * the lock. 918 */ 986 */ 919 rcu_read_lock(); 987 rcu_read_lock(); 920 ret = dentry->d_parent; 988 ret = dentry->d_parent; 921 spin_lock(&ret->d_lock); 989 spin_lock(&ret->d_lock); 922 if (unlikely(ret != dentry->d_parent)) 990 if (unlikely(ret != dentry->d_parent)) { 923 spin_unlock(&ret->d_lock); 991 spin_unlock(&ret->d_lock); 924 rcu_read_unlock(); 992 rcu_read_unlock(); 925 goto repeat; 993 goto repeat; 926 } 994 } 927 rcu_read_unlock(); 995 rcu_read_unlock(); 928 BUG_ON(!ret->d_lockref.count); 996 BUG_ON(!ret->d_lockref.count); 929 ret->d_lockref.count++; 997 ret->d_lockref.count++; 930 spin_unlock(&ret->d_lock); 998 spin_unlock(&ret->d_lock); 931 return ret; 999 return ret; 932 } 1000 } 933 EXPORT_SYMBOL(dget_parent); 1001 EXPORT_SYMBOL(dget_parent); 934 1002 935 static struct dentry * __d_find_any_alias(stru 1003 static struct dentry * __d_find_any_alias(struct inode *inode) 936 { 1004 { 937 struct dentry *alias; 1005 struct dentry *alias; 938 1006 939 if (hlist_empty(&inode->i_dentry)) 1007 if (hlist_empty(&inode->i_dentry)) 940 return NULL; 1008 return NULL; 941 alias = hlist_entry(inode->i_dentry.fi 1009 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias); 942 lockref_get(&alias->d_lockref); !! 1010 __dget(alias); 943 return alias; 1011 return alias; 944 } 1012 } 945 1013 946 /** 1014 /** 947 * d_find_any_alias - find any alias for a giv 1015 * d_find_any_alias - find any alias for a given inode 948 * @inode: inode to find an alias for 1016 * @inode: inode to find an alias for 949 * 1017 * 950 * If any aliases exist for the given inode, t 1018 * If any aliases exist for the given inode, take and return a 951 * reference for one of them. If no aliases e 1019 * reference for one of them. If no aliases exist, return %NULL. 952 */ 1020 */ 953 struct dentry *d_find_any_alias(struct inode * 1021 struct dentry *d_find_any_alias(struct inode *inode) 954 { 1022 { 955 struct dentry *de; 1023 struct dentry *de; 956 1024 957 spin_lock(&inode->i_lock); 1025 spin_lock(&inode->i_lock); 958 de = __d_find_any_alias(inode); 1026 de = __d_find_any_alias(inode); 959 spin_unlock(&inode->i_lock); 1027 spin_unlock(&inode->i_lock); 960 return de; 1028 return de; 961 } 1029 } 962 EXPORT_SYMBOL(d_find_any_alias); 1030 EXPORT_SYMBOL(d_find_any_alias); 963 1031 964 static struct dentry *__d_find_alias(struct in 1032 static struct dentry *__d_find_alias(struct inode *inode) 965 { 1033 { 966 struct dentry *alias; 1034 struct dentry *alias; 967 1035 968 if (S_ISDIR(inode->i_mode)) 1036 if (S_ISDIR(inode->i_mode)) 969 return __d_find_any_alias(inod 1037 return __d_find_any_alias(inode); 970 1038 971 hlist_for_each_entry(alias, &inode->i_ 1039 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { 972 spin_lock(&alias->d_lock); 1040 spin_lock(&alias->d_lock); 973 if (!d_unhashed(alias)) { 1041 if (!d_unhashed(alias)) { 974 dget_dlock(alias); !! 1042 __dget_dlock(alias); 975 spin_unlock(&alias->d_ 1043 spin_unlock(&alias->d_lock); 976 return alias; 1044 return alias; 977 } 1045 } 978 spin_unlock(&alias->d_lock); 1046 spin_unlock(&alias->d_lock); 979 } 1047 } 980 return NULL; 1048 return NULL; 981 } 1049 } 982 1050 983 /** 1051 /** 984 * d_find_alias - grab a hashed alias of inode 1052 * d_find_alias - grab a hashed alias of inode 985 * @inode: inode in question 1053 * @inode: inode in question 986 * 1054 * 987 * If inode has a hashed alias, or is a direct 1055 * If inode has a hashed alias, or is a directory and has any alias, 988 * acquire the reference to alias and return i 1056 * acquire the reference to alias and return it. Otherwise return NULL. 989 * Notice that if inode is a directory there c 1057 * Notice that if inode is a directory there can be only one alias and 990 * it can be unhashed only if it has no childr 1058 * it can be unhashed only if it has no children, or if it is the root 991 * of a filesystem, or if the directory was re 1059 * of a filesystem, or if the directory was renamed and d_revalidate 992 * was the first vfs operation to notice. 1060 * was the first vfs operation to notice. 993 * 1061 * 994 * If the inode has an IS_ROOT, DCACHE_DISCONN 1062 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer 995 * any other hashed alias over that one. 1063 * any other hashed alias over that one. 996 */ 1064 */ 997 struct dentry *d_find_alias(struct inode *inod 1065 struct dentry *d_find_alias(struct inode *inode) 998 { 1066 { 999 struct dentry *de = NULL; 1067 struct dentry *de = NULL; 1000 1068 1001 if (!hlist_empty(&inode->i_dentry)) { 1069 if (!hlist_empty(&inode->i_dentry)) { 1002 spin_lock(&inode->i_lock); 1070 spin_lock(&inode->i_lock); 1003 de = __d_find_alias(inode); 1071 de = __d_find_alias(inode); 1004 spin_unlock(&inode->i_lock); 1072 spin_unlock(&inode->i_lock); 1005 } 1073 } 1006 return de; 1074 return de; 1007 } 1075 } 1008 EXPORT_SYMBOL(d_find_alias); 1076 EXPORT_SYMBOL(d_find_alias); 1009 1077 1010 /* 1078 /* 1011 * Caller MUST be holding rcu_read_lock() an 1079 * Caller MUST be holding rcu_read_lock() and be guaranteed 1012 * that inode won't get freed until rcu_read 1080 * that inode won't get freed until rcu_read_unlock(). 1013 */ 1081 */ 1014 struct dentry *d_find_alias_rcu(struct inode 1082 struct dentry *d_find_alias_rcu(struct inode *inode) 1015 { 1083 { 1016 struct hlist_head *l = &inode->i_dent 1084 struct hlist_head *l = &inode->i_dentry; 1017 struct dentry *de = NULL; 1085 struct dentry *de = NULL; 1018 1086 1019 spin_lock(&inode->i_lock); 1087 spin_lock(&inode->i_lock); 1020 // ->i_dentry and ->i_rcu are colocat 1088 // ->i_dentry and ->i_rcu are colocated, but the latter won't be 1021 // used without having I_FREEING set, 1089 // used without having I_FREEING set, which means no aliases left 1022 if (likely(!(inode->i_state & I_FREEI 1090 if (likely(!(inode->i_state & I_FREEING) && !hlist_empty(l))) { 1023 if (S_ISDIR(inode->i_mode)) { 1091 if (S_ISDIR(inode->i_mode)) { 1024 de = hlist_entry(l->f 1092 de = hlist_entry(l->first, struct dentry, d_u.d_alias); 1025 } else { 1093 } else { 1026 hlist_for_each_entry( 1094 hlist_for_each_entry(de, l, d_u.d_alias) 1027 if (!d_unhash 1095 if (!d_unhashed(de)) 1028 break 1096 break; 1029 } 1097 } 1030 } 1098 } 1031 spin_unlock(&inode->i_lock); 1099 spin_unlock(&inode->i_lock); 1032 return de; 1100 return de; 1033 } 1101 } 1034 1102 1035 /* 1103 /* 1036 * Try to kill dentries associated with 1104 * Try to kill dentries associated with this inode. 1037 * WARNING: you must own a reference to inode 1105 * WARNING: you must own a reference to inode. 1038 */ 1106 */ 1039 void d_prune_aliases(struct inode *inode) 1107 void d_prune_aliases(struct inode *inode) 1040 { 1108 { 1041 LIST_HEAD(dispose); << 1042 struct dentry *dentry; 1109 struct dentry *dentry; 1043 !! 1110 restart: 1044 spin_lock(&inode->i_lock); 1111 spin_lock(&inode->i_lock); 1045 hlist_for_each_entry(dentry, &inode-> 1112 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) { 1046 spin_lock(&dentry->d_lock); 1113 spin_lock(&dentry->d_lock); 1047 if (!dentry->d_lockref.count) !! 1114 if (!dentry->d_lockref.count) { 1048 to_shrink_list(dentry !! 1115 struct dentry *parent = lock_parent(dentry); >> 1116 if (likely(!dentry->d_lockref.count)) { >> 1117 __dentry_kill(dentry); >> 1118 dput(parent); >> 1119 goto restart; >> 1120 } >> 1121 if (parent) >> 1122 spin_unlock(&parent->d_lock); >> 1123 } 1049 spin_unlock(&dentry->d_lock); 1124 spin_unlock(&dentry->d_lock); 1050 } 1125 } 1051 spin_unlock(&inode->i_lock); 1126 spin_unlock(&inode->i_lock); 1052 shrink_dentry_list(&dispose); << 1053 } 1127 } 1054 EXPORT_SYMBOL(d_prune_aliases); 1128 EXPORT_SYMBOL(d_prune_aliases); 1055 1129 1056 static inline void shrink_kill(struct dentry !! 1130 /* >> 1131 * Lock a dentry from shrink list. >> 1132 * Called under rcu_read_lock() and dentry->d_lock; the former >> 1133 * guarantees that nothing we access will be freed under us. >> 1134 * Note that dentry is *not* protected from concurrent dentry_kill(), >> 1135 * d_delete(), etc. >> 1136 * >> 1137 * Return false if dentry has been disrupted or grabbed, leaving >> 1138 * the caller to kick it off-list. Otherwise, return true and have >> 1139 * that dentry's inode and parent both locked. >> 1140 */ >> 1141 static bool shrink_lock_dentry(struct dentry *dentry) 1057 { 1142 { 1058 do { !! 1143 struct inode *inode; 1059 rcu_read_unlock(); !! 1144 struct dentry *parent; 1060 victim = __dentry_kill(victim !! 1145 1061 rcu_read_lock(); !! 1146 if (dentry->d_lockref.count) 1062 } while (victim && lock_for_kill(vict !! 1147 return false; 1063 rcu_read_unlock(); !! 1148 1064 if (victim) !! 1149 inode = dentry->d_inode; 1065 spin_unlock(&victim->d_lock); !! 1150 if (inode && unlikely(!spin_trylock(&inode->i_lock))) { >> 1151 spin_unlock(&dentry->d_lock); >> 1152 spin_lock(&inode->i_lock); >> 1153 spin_lock(&dentry->d_lock); >> 1154 if (unlikely(dentry->d_lockref.count)) >> 1155 goto out; >> 1156 /* changed inode means that somebody had grabbed it */ >> 1157 if (unlikely(inode != dentry->d_inode)) >> 1158 goto out; >> 1159 } >> 1160 >> 1161 parent = dentry->d_parent; >> 1162 if (IS_ROOT(dentry) || likely(spin_trylock(&parent->d_lock))) >> 1163 return true; >> 1164 >> 1165 spin_unlock(&dentry->d_lock); >> 1166 spin_lock(&parent->d_lock); >> 1167 if (unlikely(parent != dentry->d_parent)) { >> 1168 spin_unlock(&parent->d_lock); >> 1169 spin_lock(&dentry->d_lock); >> 1170 goto out; >> 1171 } >> 1172 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); >> 1173 if (likely(!dentry->d_lockref.count)) >> 1174 return true; >> 1175 spin_unlock(&parent->d_lock); >> 1176 out: >> 1177 if (inode) >> 1178 spin_unlock(&inode->i_lock); >> 1179 return false; 1066 } 1180 } 1067 1181 1068 void shrink_dentry_list(struct list_head *lis 1182 void shrink_dentry_list(struct list_head *list) 1069 { 1183 { 1070 while (!list_empty(list)) { 1184 while (!list_empty(list)) { 1071 struct dentry *dentry; !! 1185 struct dentry *dentry, *parent; 1072 1186 1073 dentry = list_entry(list->pre 1187 dentry = list_entry(list->prev, struct dentry, d_lru); 1074 spin_lock(&dentry->d_lock); 1188 spin_lock(&dentry->d_lock); 1075 rcu_read_lock(); 1189 rcu_read_lock(); 1076 if (!lock_for_kill(dentry)) { !! 1190 if (!shrink_lock_dentry(dentry)) { 1077 bool can_free; !! 1191 bool can_free = false; 1078 rcu_read_unlock(); 1192 rcu_read_unlock(); 1079 d_shrink_del(dentry); 1193 d_shrink_del(dentry); 1080 can_free = dentry->d_ !! 1194 if (dentry->d_lockref.count < 0) >> 1195 can_free = dentry->d_flags & DCACHE_MAY_FREE; 1081 spin_unlock(&dentry-> 1196 spin_unlock(&dentry->d_lock); 1082 if (can_free) 1197 if (can_free) 1083 dentry_free(d 1198 dentry_free(dentry); 1084 continue; 1199 continue; 1085 } 1200 } >> 1201 rcu_read_unlock(); 1086 d_shrink_del(dentry); 1202 d_shrink_del(dentry); 1087 shrink_kill(dentry); !! 1203 parent = dentry->d_parent; >> 1204 if (parent != dentry) >> 1205 __dput_to_list(parent, list); >> 1206 __dentry_kill(dentry); 1088 } 1207 } 1089 } 1208 } 1090 1209 1091 static enum lru_status dentry_lru_isolate(str 1210 static enum lru_status dentry_lru_isolate(struct list_head *item, 1092 struct list_lru_one *lru, spi 1211 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) 1093 { 1212 { 1094 struct list_head *freeable = arg; 1213 struct list_head *freeable = arg; 1095 struct dentry *dentry = container_o 1214 struct dentry *dentry = container_of(item, struct dentry, d_lru); 1096 1215 1097 1216 1098 /* 1217 /* 1099 * we are inverting the lru lock/dent 1218 * we are inverting the lru lock/dentry->d_lock here, 1100 * so use a trylock. If we fail to ge 1219 * so use a trylock. If we fail to get the lock, just skip 1101 * it 1220 * it 1102 */ 1221 */ 1103 if (!spin_trylock(&dentry->d_lock)) 1222 if (!spin_trylock(&dentry->d_lock)) 1104 return LRU_SKIP; 1223 return LRU_SKIP; 1105 1224 1106 /* 1225 /* 1107 * Referenced dentries are still in u 1226 * Referenced dentries are still in use. If they have active 1108 * counts, just remove them from the 1227 * counts, just remove them from the LRU. Otherwise give them 1109 * another pass through the LRU. 1228 * another pass through the LRU. 1110 */ 1229 */ 1111 if (dentry->d_lockref.count) { 1230 if (dentry->d_lockref.count) { 1112 d_lru_isolate(lru, dentry); 1231 d_lru_isolate(lru, dentry); 1113 spin_unlock(&dentry->d_lock); 1232 spin_unlock(&dentry->d_lock); 1114 return LRU_REMOVED; 1233 return LRU_REMOVED; 1115 } 1234 } 1116 1235 1117 if (dentry->d_flags & DCACHE_REFERENC 1236 if (dentry->d_flags & DCACHE_REFERENCED) { 1118 dentry->d_flags &= ~DCACHE_RE 1237 dentry->d_flags &= ~DCACHE_REFERENCED; 1119 spin_unlock(&dentry->d_lock); 1238 spin_unlock(&dentry->d_lock); 1120 1239 1121 /* 1240 /* 1122 * The list move itself will 1241 * The list move itself will be made by the common LRU code. At 1123 * this point, we've dropped 1242 * this point, we've dropped the dentry->d_lock but keep the 1124 * lru lock. This is safe to 1243 * lru lock. This is safe to do, since every list movement is 1125 * protected by the lru lock 1244 * protected by the lru lock even if both locks are held. 1126 * 1245 * 1127 * This is guaranteed by the 1246 * This is guaranteed by the fact that all LRU management 1128 * functions are intermediate 1247 * functions are intermediated by the LRU API calls like 1129 * list_lru_add_obj and list_ !! 1248 * list_lru_add and list_lru_del. List movement in this file 1130 * only ever occur through th 1249 * only ever occur through this functions or through callbacks 1131 * like this one, that are ca 1250 * like this one, that are called from the LRU API. 1132 * 1251 * 1133 * The only exceptions to thi 1252 * The only exceptions to this are functions like 1134 * shrink_dentry_list, and co 1253 * shrink_dentry_list, and code that first checks for the 1135 * DCACHE_SHRINK_LIST flag. 1254 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be 1136 * operating only with stack 1255 * operating only with stack provided lists after they are 1137 * properly isolated from the 1256 * properly isolated from the main list. It is thus, always a 1138 * local access. 1257 * local access. 1139 */ 1258 */ 1140 return LRU_ROTATE; 1259 return LRU_ROTATE; 1141 } 1260 } 1142 1261 1143 d_lru_shrink_move(lru, dentry, freeab 1262 d_lru_shrink_move(lru, dentry, freeable); 1144 spin_unlock(&dentry->d_lock); 1263 spin_unlock(&dentry->d_lock); 1145 1264 1146 return LRU_REMOVED; 1265 return LRU_REMOVED; 1147 } 1266 } 1148 1267 1149 /** 1268 /** 1150 * prune_dcache_sb - shrink the dcache 1269 * prune_dcache_sb - shrink the dcache 1151 * @sb: superblock 1270 * @sb: superblock 1152 * @sc: shrink control, passed to list_lru_sh 1271 * @sc: shrink control, passed to list_lru_shrink_walk() 1153 * 1272 * 1154 * Attempt to shrink the superblock dcache LR 1273 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This 1155 * is done when we need more memory and calle 1274 * is done when we need more memory and called from the superblock shrinker 1156 * function. 1275 * function. 1157 * 1276 * 1158 * This function may fail to free any resourc 1277 * This function may fail to free any resources if all the dentries are in 1159 * use. 1278 * use. 1160 */ 1279 */ 1161 long prune_dcache_sb(struct super_block *sb, 1280 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc) 1162 { 1281 { 1163 LIST_HEAD(dispose); 1282 LIST_HEAD(dispose); 1164 long freed; 1283 long freed; 1165 1284 1166 freed = list_lru_shrink_walk(&sb->s_d 1285 freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc, 1167 dentry_l 1286 dentry_lru_isolate, &dispose); 1168 shrink_dentry_list(&dispose); 1287 shrink_dentry_list(&dispose); 1169 return freed; 1288 return freed; 1170 } 1289 } 1171 1290 1172 static enum lru_status dentry_lru_isolate_shr 1291 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item, 1173 struct list_lru_one *lru, spi 1292 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) 1174 { 1293 { 1175 struct list_head *freeable = arg; 1294 struct list_head *freeable = arg; 1176 struct dentry *dentry = container_o 1295 struct dentry *dentry = container_of(item, struct dentry, d_lru); 1177 1296 1178 /* 1297 /* 1179 * we are inverting the lru lock/dent 1298 * we are inverting the lru lock/dentry->d_lock here, 1180 * so use a trylock. If we fail to ge 1299 * so use a trylock. If we fail to get the lock, just skip 1181 * it 1300 * it 1182 */ 1301 */ 1183 if (!spin_trylock(&dentry->d_lock)) 1302 if (!spin_trylock(&dentry->d_lock)) 1184 return LRU_SKIP; 1303 return LRU_SKIP; 1185 1304 1186 d_lru_shrink_move(lru, dentry, freeab 1305 d_lru_shrink_move(lru, dentry, freeable); 1187 spin_unlock(&dentry->d_lock); 1306 spin_unlock(&dentry->d_lock); 1188 1307 1189 return LRU_REMOVED; 1308 return LRU_REMOVED; 1190 } 1309 } 1191 1310 1192 1311 1193 /** 1312 /** 1194 * shrink_dcache_sb - shrink dcache for a sup 1313 * shrink_dcache_sb - shrink dcache for a superblock 1195 * @sb: superblock 1314 * @sb: superblock 1196 * 1315 * 1197 * Shrink the dcache for the specified super 1316 * Shrink the dcache for the specified super block. This is used to free 1198 * the dcache before unmounting a file system 1317 * the dcache before unmounting a file system. 1199 */ 1318 */ 1200 void shrink_dcache_sb(struct super_block *sb) 1319 void shrink_dcache_sb(struct super_block *sb) 1201 { 1320 { 1202 do { 1321 do { 1203 LIST_HEAD(dispose); 1322 LIST_HEAD(dispose); 1204 1323 1205 list_lru_walk(&sb->s_dentry_l 1324 list_lru_walk(&sb->s_dentry_lru, 1206 dentry_lru_isolate_sh 1325 dentry_lru_isolate_shrink, &dispose, 1024); 1207 shrink_dentry_list(&dispose); 1326 shrink_dentry_list(&dispose); 1208 } while (list_lru_count(&sb->s_dentry 1327 } while (list_lru_count(&sb->s_dentry_lru) > 0); 1209 } 1328 } 1210 EXPORT_SYMBOL(shrink_dcache_sb); 1329 EXPORT_SYMBOL(shrink_dcache_sb); 1211 1330 1212 /** 1331 /** 1213 * enum d_walk_ret - action to talke during t 1332 * enum d_walk_ret - action to talke during tree walk 1214 * @D_WALK_CONTINUE: contrinue walk 1333 * @D_WALK_CONTINUE: contrinue walk 1215 * @D_WALK_QUIT: quit walk 1334 * @D_WALK_QUIT: quit walk 1216 * @D_WALK_NORETRY: quit when retry is ne 1335 * @D_WALK_NORETRY: quit when retry is needed 1217 * @D_WALK_SKIP: skip this dentry and 1336 * @D_WALK_SKIP: skip this dentry and its children 1218 */ 1337 */ 1219 enum d_walk_ret { 1338 enum d_walk_ret { 1220 D_WALK_CONTINUE, 1339 D_WALK_CONTINUE, 1221 D_WALK_QUIT, 1340 D_WALK_QUIT, 1222 D_WALK_NORETRY, 1341 D_WALK_NORETRY, 1223 D_WALK_SKIP, 1342 D_WALK_SKIP, 1224 }; 1343 }; 1225 1344 1226 /** 1345 /** 1227 * d_walk - walk the dentry tree 1346 * d_walk - walk the dentry tree 1228 * @parent: start of walk 1347 * @parent: start of walk 1229 * @data: data passed to @enter() and @ 1348 * @data: data passed to @enter() and @finish() 1230 * @enter: callback when first entering 1349 * @enter: callback when first entering the dentry 1231 * 1350 * 1232 * The @enter() callbacks are called with d_l 1351 * The @enter() callbacks are called with d_lock held. 1233 */ 1352 */ 1234 static void d_walk(struct dentry *parent, voi 1353 static void d_walk(struct dentry *parent, void *data, 1235 enum d_walk_ret (*enter)(v 1354 enum d_walk_ret (*enter)(void *, struct dentry *)) 1236 { 1355 { 1237 struct dentry *this_parent, *dentry; !! 1356 struct dentry *this_parent; >> 1357 struct list_head *next; 1238 unsigned seq = 0; 1358 unsigned seq = 0; 1239 enum d_walk_ret ret; 1359 enum d_walk_ret ret; 1240 bool retry = true; 1360 bool retry = true; 1241 1361 1242 again: 1362 again: 1243 read_seqbegin_or_lock(&rename_lock, & 1363 read_seqbegin_or_lock(&rename_lock, &seq); 1244 this_parent = parent; 1364 this_parent = parent; 1245 spin_lock(&this_parent->d_lock); 1365 spin_lock(&this_parent->d_lock); 1246 1366 1247 ret = enter(data, this_parent); 1367 ret = enter(data, this_parent); 1248 switch (ret) { 1368 switch (ret) { 1249 case D_WALK_CONTINUE: 1369 case D_WALK_CONTINUE: 1250 break; 1370 break; 1251 case D_WALK_QUIT: 1371 case D_WALK_QUIT: 1252 case D_WALK_SKIP: 1372 case D_WALK_SKIP: 1253 goto out_unlock; 1373 goto out_unlock; 1254 case D_WALK_NORETRY: 1374 case D_WALK_NORETRY: 1255 retry = false; 1375 retry = false; 1256 break; 1376 break; 1257 } 1377 } 1258 repeat: 1378 repeat: 1259 dentry = d_first_child(this_parent); !! 1379 next = this_parent->d_subdirs.next; 1260 resume: 1380 resume: 1261 hlist_for_each_entry_from(dentry, d_s !! 1381 while (next != &this_parent->d_subdirs) { >> 1382 struct list_head *tmp = next; >> 1383 struct dentry *dentry = list_entry(tmp, struct dentry, d_child); >> 1384 next = tmp->next; >> 1385 1262 if (unlikely(dentry->d_flags 1386 if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR)) 1263 continue; 1387 continue; 1264 1388 1265 spin_lock_nested(&dentry->d_l 1389 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 1266 1390 1267 ret = enter(data, dentry); 1391 ret = enter(data, dentry); 1268 switch (ret) { 1392 switch (ret) { 1269 case D_WALK_CONTINUE: 1393 case D_WALK_CONTINUE: 1270 break; 1394 break; 1271 case D_WALK_QUIT: 1395 case D_WALK_QUIT: 1272 spin_unlock(&dentry-> 1396 spin_unlock(&dentry->d_lock); 1273 goto out_unlock; 1397 goto out_unlock; 1274 case D_WALK_NORETRY: 1398 case D_WALK_NORETRY: 1275 retry = false; 1399 retry = false; 1276 break; 1400 break; 1277 case D_WALK_SKIP: 1401 case D_WALK_SKIP: 1278 spin_unlock(&dentry-> 1402 spin_unlock(&dentry->d_lock); 1279 continue; 1403 continue; 1280 } 1404 } 1281 1405 1282 if (!hlist_empty(&dentry->d_c !! 1406 if (!list_empty(&dentry->d_subdirs)) { 1283 spin_unlock(&this_par 1407 spin_unlock(&this_parent->d_lock); 1284 spin_release(&dentry- 1408 spin_release(&dentry->d_lock.dep_map, _RET_IP_); 1285 this_parent = dentry; 1409 this_parent = dentry; 1286 spin_acquire(&this_pa 1410 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_); 1287 goto repeat; 1411 goto repeat; 1288 } 1412 } 1289 spin_unlock(&dentry->d_lock); 1413 spin_unlock(&dentry->d_lock); 1290 } 1414 } 1291 /* 1415 /* 1292 * All done at this level ... ascend 1416 * All done at this level ... ascend and resume the search. 1293 */ 1417 */ 1294 rcu_read_lock(); 1418 rcu_read_lock(); 1295 ascend: 1419 ascend: 1296 if (this_parent != parent) { 1420 if (this_parent != parent) { 1297 dentry = this_parent; !! 1421 struct dentry *child = this_parent; 1298 this_parent = dentry->d_paren !! 1422 this_parent = child->d_parent; 1299 1423 1300 spin_unlock(&dentry->d_lock); !! 1424 spin_unlock(&child->d_lock); 1301 spin_lock(&this_parent->d_loc 1425 spin_lock(&this_parent->d_lock); 1302 1426 1303 /* might go back up the wrong 1427 /* might go back up the wrong parent if we have had a rename. */ 1304 if (need_seqretry(&rename_loc 1428 if (need_seqretry(&rename_lock, seq)) 1305 goto rename_retry; 1429 goto rename_retry; 1306 /* go into the first sibling 1430 /* go into the first sibling still alive */ 1307 hlist_for_each_entry_continue !! 1431 do { 1308 if (likely(!(dentry-> !! 1432 next = child->d_child.next; 1309 rcu_read_unlo !! 1433 if (next == &this_parent->d_subdirs) 1310 goto resume; !! 1434 goto ascend; 1311 } !! 1435 child = list_entry(next, struct dentry, d_child); 1312 } !! 1436 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED)); 1313 goto ascend; !! 1437 rcu_read_unlock(); >> 1438 goto resume; 1314 } 1439 } 1315 if (need_seqretry(&rename_lock, seq)) 1440 if (need_seqretry(&rename_lock, seq)) 1316 goto rename_retry; 1441 goto rename_retry; 1317 rcu_read_unlock(); 1442 rcu_read_unlock(); 1318 1443 1319 out_unlock: 1444 out_unlock: 1320 spin_unlock(&this_parent->d_lock); 1445 spin_unlock(&this_parent->d_lock); 1321 done_seqretry(&rename_lock, seq); 1446 done_seqretry(&rename_lock, seq); 1322 return; 1447 return; 1323 1448 1324 rename_retry: 1449 rename_retry: 1325 spin_unlock(&this_parent->d_lock); 1450 spin_unlock(&this_parent->d_lock); 1326 rcu_read_unlock(); 1451 rcu_read_unlock(); 1327 BUG_ON(seq & 1); 1452 BUG_ON(seq & 1); 1328 if (!retry) 1453 if (!retry) 1329 return; 1454 return; 1330 seq = 1; 1455 seq = 1; 1331 goto again; 1456 goto again; 1332 } 1457 } 1333 1458 1334 struct check_mount { 1459 struct check_mount { 1335 struct vfsmount *mnt; 1460 struct vfsmount *mnt; 1336 unsigned int mounted; 1461 unsigned int mounted; 1337 }; 1462 }; 1338 1463 1339 static enum d_walk_ret path_check_mount(void 1464 static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry) 1340 { 1465 { 1341 struct check_mount *info = data; 1466 struct check_mount *info = data; 1342 struct path path = { .mnt = info->mnt 1467 struct path path = { .mnt = info->mnt, .dentry = dentry }; 1343 1468 1344 if (likely(!d_mountpoint(dentry))) 1469 if (likely(!d_mountpoint(dentry))) 1345 return D_WALK_CONTINUE; 1470 return D_WALK_CONTINUE; 1346 if (__path_is_mountpoint(&path)) { 1471 if (__path_is_mountpoint(&path)) { 1347 info->mounted = 1; 1472 info->mounted = 1; 1348 return D_WALK_QUIT; 1473 return D_WALK_QUIT; 1349 } 1474 } 1350 return D_WALK_CONTINUE; 1475 return D_WALK_CONTINUE; 1351 } 1476 } 1352 1477 1353 /** 1478 /** 1354 * path_has_submounts - check for mounts over 1479 * path_has_submounts - check for mounts over a dentry in the 1355 * current namespace. 1480 * current namespace. 1356 * @parent: path to check. 1481 * @parent: path to check. 1357 * 1482 * 1358 * Return true if the parent or its subdirect 1483 * Return true if the parent or its subdirectories contain 1359 * a mount point in the current namespace. 1484 * a mount point in the current namespace. 1360 */ 1485 */ 1361 int path_has_submounts(const struct path *par 1486 int path_has_submounts(const struct path *parent) 1362 { 1487 { 1363 struct check_mount data = { .mnt = pa 1488 struct check_mount data = { .mnt = parent->mnt, .mounted = 0 }; 1364 1489 1365 read_seqlock_excl(&mount_lock); 1490 read_seqlock_excl(&mount_lock); 1366 d_walk(parent->dentry, &data, path_ch 1491 d_walk(parent->dentry, &data, path_check_mount); 1367 read_sequnlock_excl(&mount_lock); 1492 read_sequnlock_excl(&mount_lock); 1368 1493 1369 return data.mounted; 1494 return data.mounted; 1370 } 1495 } 1371 EXPORT_SYMBOL(path_has_submounts); 1496 EXPORT_SYMBOL(path_has_submounts); 1372 1497 1373 /* 1498 /* 1374 * Called by mount code to set a mountpoint a 1499 * Called by mount code to set a mountpoint and check if the mountpoint is 1375 * reachable (e.g. NFS can unhash a directory 1500 * reachable (e.g. NFS can unhash a directory dentry and then the complete 1376 * subtree can become unreachable). 1501 * subtree can become unreachable). 1377 * 1502 * 1378 * Only one of d_invalidate() and d_set_mount 1503 * Only one of d_invalidate() and d_set_mounted() must succeed. For 1379 * this reason take rename_lock and d_lock on 1504 * this reason take rename_lock and d_lock on dentry and ancestors. 1380 */ 1505 */ 1381 int d_set_mounted(struct dentry *dentry) 1506 int d_set_mounted(struct dentry *dentry) 1382 { 1507 { 1383 struct dentry *p; 1508 struct dentry *p; 1384 int ret = -ENOENT; 1509 int ret = -ENOENT; 1385 write_seqlock(&rename_lock); 1510 write_seqlock(&rename_lock); 1386 for (p = dentry->d_parent; !IS_ROOT(p 1511 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) { 1387 /* Need exclusion wrt. d_inva 1512 /* Need exclusion wrt. d_invalidate() */ 1388 spin_lock(&p->d_lock); 1513 spin_lock(&p->d_lock); 1389 if (unlikely(d_unhashed(p))) 1514 if (unlikely(d_unhashed(p))) { 1390 spin_unlock(&p->d_loc 1515 spin_unlock(&p->d_lock); 1391 goto out; 1516 goto out; 1392 } 1517 } 1393 spin_unlock(&p->d_lock); 1518 spin_unlock(&p->d_lock); 1394 } 1519 } 1395 spin_lock(&dentry->d_lock); 1520 spin_lock(&dentry->d_lock); 1396 if (!d_unlinked(dentry)) { 1521 if (!d_unlinked(dentry)) { 1397 ret = -EBUSY; 1522 ret = -EBUSY; 1398 if (!d_mountpoint(dentry)) { 1523 if (!d_mountpoint(dentry)) { 1399 dentry->d_flags |= DC 1524 dentry->d_flags |= DCACHE_MOUNTED; 1400 ret = 0; 1525 ret = 0; 1401 } 1526 } 1402 } 1527 } 1403 spin_unlock(&dentry->d_lock); 1528 spin_unlock(&dentry->d_lock); 1404 out: 1529 out: 1405 write_sequnlock(&rename_lock); 1530 write_sequnlock(&rename_lock); 1406 return ret; 1531 return ret; 1407 } 1532 } 1408 1533 1409 /* 1534 /* 1410 * Search the dentry child list of the specif 1535 * Search the dentry child list of the specified parent, 1411 * and move any unused dentries to the end of 1536 * and move any unused dentries to the end of the unused 1412 * list for prune_dcache(). We descend to the 1537 * list for prune_dcache(). We descend to the next level 1413 * whenever the d_children list is non-empty !! 1538 * whenever the d_subdirs list is non-empty and continue 1414 * searching. 1539 * searching. 1415 * 1540 * 1416 * It returns zero iff there are no unused ch 1541 * It returns zero iff there are no unused children, 1417 * otherwise it returns the number of childr 1542 * otherwise it returns the number of children moved to 1418 * the end of the unused list. This may not b 1543 * the end of the unused list. This may not be the total 1419 * number of unused children, because select_ 1544 * number of unused children, because select_parent can 1420 * drop the lock and return early due to late 1545 * drop the lock and return early due to latency 1421 * constraints. 1546 * constraints. 1422 */ 1547 */ 1423 1548 1424 struct select_data { 1549 struct select_data { 1425 struct dentry *start; 1550 struct dentry *start; 1426 union { 1551 union { 1427 long found; 1552 long found; 1428 struct dentry *victim; 1553 struct dentry *victim; 1429 }; 1554 }; 1430 struct list_head dispose; 1555 struct list_head dispose; 1431 }; 1556 }; 1432 1557 1433 static enum d_walk_ret select_collect(void *_ 1558 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry) 1434 { 1559 { 1435 struct select_data *data = _data; 1560 struct select_data *data = _data; 1436 enum d_walk_ret ret = D_WALK_CONTINUE 1561 enum d_walk_ret ret = D_WALK_CONTINUE; 1437 1562 1438 if (data->start == dentry) 1563 if (data->start == dentry) 1439 goto out; 1564 goto out; 1440 1565 1441 if (dentry->d_flags & DCACHE_SHRINK_L 1566 if (dentry->d_flags & DCACHE_SHRINK_LIST) { 1442 data->found++; 1567 data->found++; 1443 } else if (!dentry->d_lockref.count) !! 1568 } else { 1444 to_shrink_list(dentry, &data- !! 1569 if (dentry->d_flags & DCACHE_LRU_LIST) 1445 data->found++; !! 1570 d_lru_del(dentry); 1446 } else if (dentry->d_lockref.count < !! 1571 if (!dentry->d_lockref.count) { 1447 data->found++; !! 1572 d_shrink_add(dentry, &data->dispose); >> 1573 data->found++; >> 1574 } 1448 } 1575 } 1449 /* 1576 /* 1450 * We can return to the caller if we 1577 * We can return to the caller if we have found some (this 1451 * ensures forward progress). We'll b 1578 * ensures forward progress). We'll be coming back to find 1452 * the rest. 1579 * the rest. 1453 */ 1580 */ 1454 if (!list_empty(&data->dispose)) 1581 if (!list_empty(&data->dispose)) 1455 ret = need_resched() ? D_WALK 1582 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY; 1456 out: 1583 out: 1457 return ret; 1584 return ret; 1458 } 1585 } 1459 1586 1460 static enum d_walk_ret select_collect2(void * 1587 static enum d_walk_ret select_collect2(void *_data, struct dentry *dentry) 1461 { 1588 { 1462 struct select_data *data = _data; 1589 struct select_data *data = _data; 1463 enum d_walk_ret ret = D_WALK_CONTINUE 1590 enum d_walk_ret ret = D_WALK_CONTINUE; 1464 1591 1465 if (data->start == dentry) 1592 if (data->start == dentry) 1466 goto out; 1593 goto out; 1467 1594 1468 if (!dentry->d_lockref.count) { !! 1595 if (dentry->d_flags & DCACHE_SHRINK_LIST) { 1469 if (dentry->d_flags & DCACHE_ !! 1596 if (!dentry->d_lockref.count) { 1470 rcu_read_lock(); 1597 rcu_read_lock(); 1471 data->victim = dentry 1598 data->victim = dentry; 1472 return D_WALK_QUIT; 1599 return D_WALK_QUIT; 1473 } 1600 } 1474 to_shrink_list(dentry, &data- !! 1601 } else { >> 1602 if (dentry->d_flags & DCACHE_LRU_LIST) >> 1603 d_lru_del(dentry); >> 1604 if (!dentry->d_lockref.count) >> 1605 d_shrink_add(dentry, &data->dispose); 1475 } 1606 } 1476 /* 1607 /* 1477 * We can return to the caller if we 1608 * We can return to the caller if we have found some (this 1478 * ensures forward progress). We'll b 1609 * ensures forward progress). We'll be coming back to find 1479 * the rest. 1610 * the rest. 1480 */ 1611 */ 1481 if (!list_empty(&data->dispose)) 1612 if (!list_empty(&data->dispose)) 1482 ret = need_resched() ? D_WALK 1613 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY; 1483 out: 1614 out: 1484 return ret; 1615 return ret; 1485 } 1616 } 1486 1617 1487 /** 1618 /** 1488 * shrink_dcache_parent - prune dcache 1619 * shrink_dcache_parent - prune dcache 1489 * @parent: parent of entries to prune 1620 * @parent: parent of entries to prune 1490 * 1621 * 1491 * Prune the dcache to remove unused children 1622 * Prune the dcache to remove unused children of the parent dentry. 1492 */ 1623 */ 1493 void shrink_dcache_parent(struct dentry *pare 1624 void shrink_dcache_parent(struct dentry *parent) 1494 { 1625 { 1495 for (;;) { 1626 for (;;) { 1496 struct select_data data = {.s 1627 struct select_data data = {.start = parent}; 1497 1628 1498 INIT_LIST_HEAD(&data.dispose) 1629 INIT_LIST_HEAD(&data.dispose); 1499 d_walk(parent, &data, select_ 1630 d_walk(parent, &data, select_collect); 1500 1631 1501 if (!list_empty(&data.dispose 1632 if (!list_empty(&data.dispose)) { 1502 shrink_dentry_list(&d 1633 shrink_dentry_list(&data.dispose); 1503 continue; 1634 continue; 1504 } 1635 } 1505 1636 1506 cond_resched(); 1637 cond_resched(); 1507 if (!data.found) 1638 if (!data.found) 1508 break; 1639 break; 1509 data.victim = NULL; 1640 data.victim = NULL; 1510 d_walk(parent, &data, select_ 1641 d_walk(parent, &data, select_collect2); 1511 if (data.victim) { 1642 if (data.victim) { >> 1643 struct dentry *parent; 1512 spin_lock(&data.victi 1644 spin_lock(&data.victim->d_lock); 1513 if (!lock_for_kill(da !! 1645 if (!shrink_lock_dentry(data.victim)) { 1514 spin_unlock(& 1646 spin_unlock(&data.victim->d_lock); 1515 rcu_read_unlo 1647 rcu_read_unlock(); 1516 } else { 1648 } else { 1517 shrink_kill(d !! 1649 rcu_read_unlock(); >> 1650 parent = data.victim->d_parent; >> 1651 if (parent != data.victim) >> 1652 __dput_to_list(parent, &data.dispose); >> 1653 __dentry_kill(data.victim); 1518 } 1654 } 1519 } 1655 } 1520 if (!list_empty(&data.dispose 1656 if (!list_empty(&data.dispose)) 1521 shrink_dentry_list(&d 1657 shrink_dentry_list(&data.dispose); 1522 } 1658 } 1523 } 1659 } 1524 EXPORT_SYMBOL(shrink_dcache_parent); 1660 EXPORT_SYMBOL(shrink_dcache_parent); 1525 1661 1526 static enum d_walk_ret umount_check(void *_da 1662 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry) 1527 { 1663 { 1528 /* it has busy descendents; complain 1664 /* it has busy descendents; complain about those instead */ 1529 if (!hlist_empty(&dentry->d_children) !! 1665 if (!list_empty(&dentry->d_subdirs)) 1530 return D_WALK_CONTINUE; 1666 return D_WALK_CONTINUE; 1531 1667 1532 /* root with refcount 1 is fine */ 1668 /* root with refcount 1 is fine */ 1533 if (dentry == _data && dentry->d_lock 1669 if (dentry == _data && dentry->d_lockref.count == 1) 1534 return D_WALK_CONTINUE; 1670 return D_WALK_CONTINUE; 1535 1671 1536 WARN(1, "BUG: Dentry %p{i=%lx,n=%pd} !! 1672 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} " 1537 " still in use (%d) [ 1673 " still in use (%d) [unmount of %s %s]\n", 1538 dentry, 1674 dentry, 1539 dentry->d_inode ? 1675 dentry->d_inode ? 1540 dentry->d_inode->i_ino 1676 dentry->d_inode->i_ino : 0UL, 1541 dentry, 1677 dentry, 1542 dentry->d_lockref.coun 1678 dentry->d_lockref.count, 1543 dentry->d_sb->s_type-> 1679 dentry->d_sb->s_type->name, 1544 dentry->d_sb->s_id); 1680 dentry->d_sb->s_id); >> 1681 WARN_ON(1); 1545 return D_WALK_CONTINUE; 1682 return D_WALK_CONTINUE; 1546 } 1683 } 1547 1684 1548 static void do_one_tree(struct dentry *dentry 1685 static void do_one_tree(struct dentry *dentry) 1549 { 1686 { 1550 shrink_dcache_parent(dentry); 1687 shrink_dcache_parent(dentry); 1551 d_walk(dentry, dentry, umount_check); 1688 d_walk(dentry, dentry, umount_check); 1552 d_drop(dentry); 1689 d_drop(dentry); 1553 dput(dentry); 1690 dput(dentry); 1554 } 1691 } 1555 1692 1556 /* 1693 /* 1557 * destroy the dentries attached to a superbl 1694 * destroy the dentries attached to a superblock on unmounting 1558 */ 1695 */ 1559 void shrink_dcache_for_umount(struct super_bl 1696 void shrink_dcache_for_umount(struct super_block *sb) 1560 { 1697 { 1561 struct dentry *dentry; 1698 struct dentry *dentry; 1562 1699 1563 rwsem_assert_held_write(&sb->s_umount !! 1700 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked"); 1564 1701 1565 dentry = sb->s_root; 1702 dentry = sb->s_root; 1566 sb->s_root = NULL; 1703 sb->s_root = NULL; 1567 do_one_tree(dentry); 1704 do_one_tree(dentry); 1568 1705 1569 while (!hlist_bl_empty(&sb->s_roots)) 1706 while (!hlist_bl_empty(&sb->s_roots)) { 1570 dentry = dget(hlist_bl_entry( 1707 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash)); 1571 do_one_tree(dentry); 1708 do_one_tree(dentry); 1572 } 1709 } 1573 } 1710 } 1574 1711 1575 static enum d_walk_ret find_submount(void *_d 1712 static enum d_walk_ret find_submount(void *_data, struct dentry *dentry) 1576 { 1713 { 1577 struct dentry **victim = _data; 1714 struct dentry **victim = _data; 1578 if (d_mountpoint(dentry)) { 1715 if (d_mountpoint(dentry)) { 1579 *victim = dget_dlock(dentry); !! 1716 __dget_dlock(dentry); >> 1717 *victim = dentry; 1580 return D_WALK_QUIT; 1718 return D_WALK_QUIT; 1581 } 1719 } 1582 return D_WALK_CONTINUE; 1720 return D_WALK_CONTINUE; 1583 } 1721 } 1584 1722 1585 /** 1723 /** 1586 * d_invalidate - detach submounts, prune dca 1724 * d_invalidate - detach submounts, prune dcache, and drop 1587 * @dentry: dentry to invalidate (aka detach, 1725 * @dentry: dentry to invalidate (aka detach, prune and drop) 1588 */ 1726 */ 1589 void d_invalidate(struct dentry *dentry) 1727 void d_invalidate(struct dentry *dentry) 1590 { 1728 { 1591 bool had_submounts = false; 1729 bool had_submounts = false; 1592 spin_lock(&dentry->d_lock); 1730 spin_lock(&dentry->d_lock); 1593 if (d_unhashed(dentry)) { 1731 if (d_unhashed(dentry)) { 1594 spin_unlock(&dentry->d_lock); 1732 spin_unlock(&dentry->d_lock); 1595 return; 1733 return; 1596 } 1734 } 1597 __d_drop(dentry); 1735 __d_drop(dentry); 1598 spin_unlock(&dentry->d_lock); 1736 spin_unlock(&dentry->d_lock); 1599 1737 1600 /* Negative dentries can be dropped w 1738 /* Negative dentries can be dropped without further checks */ 1601 if (!dentry->d_inode) 1739 if (!dentry->d_inode) 1602 return; 1740 return; 1603 1741 1604 shrink_dcache_parent(dentry); 1742 shrink_dcache_parent(dentry); 1605 for (;;) { 1743 for (;;) { 1606 struct dentry *victim = NULL; 1744 struct dentry *victim = NULL; 1607 d_walk(dentry, &victim, find_ 1745 d_walk(dentry, &victim, find_submount); 1608 if (!victim) { 1746 if (!victim) { 1609 if (had_submounts) 1747 if (had_submounts) 1610 shrink_dcache 1748 shrink_dcache_parent(dentry); 1611 return; 1749 return; 1612 } 1750 } 1613 had_submounts = true; 1751 had_submounts = true; 1614 detach_mounts(victim); 1752 detach_mounts(victim); 1615 dput(victim); 1753 dput(victim); 1616 } 1754 } 1617 } 1755 } 1618 EXPORT_SYMBOL(d_invalidate); 1756 EXPORT_SYMBOL(d_invalidate); 1619 1757 1620 /** 1758 /** 1621 * __d_alloc - allocate a dcache ent 1759 * __d_alloc - allocate a dcache entry 1622 * @sb: filesystem it will belong to 1760 * @sb: filesystem it will belong to 1623 * @name: qstr of the name 1761 * @name: qstr of the name 1624 * 1762 * 1625 * Allocates a dentry. It returns %NULL if th 1763 * Allocates a dentry. It returns %NULL if there is insufficient memory 1626 * available. On a success the dentry is retu 1764 * available. On a success the dentry is returned. The name passed in is 1627 * copied and the copy passed in may be reuse 1765 * copied and the copy passed in may be reused after this call. 1628 */ 1766 */ 1629 1767 1630 static struct dentry *__d_alloc(struct super_ 1768 static struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name) 1631 { 1769 { 1632 struct dentry *dentry; 1770 struct dentry *dentry; 1633 char *dname; 1771 char *dname; 1634 int err; 1772 int err; 1635 1773 1636 dentry = kmem_cache_alloc_lru(dentry_ 1774 dentry = kmem_cache_alloc_lru(dentry_cache, &sb->s_dentry_lru, 1637 GFP_KER 1775 GFP_KERNEL); 1638 if (!dentry) 1776 if (!dentry) 1639 return NULL; 1777 return NULL; 1640 1778 1641 /* 1779 /* 1642 * We guarantee that the inline name 1780 * We guarantee that the inline name is always NUL-terminated. 1643 * This way the memcpy() done by the 1781 * This way the memcpy() done by the name switching in rename 1644 * will still always have a NUL at th 1782 * will still always have a NUL at the end, even if we might 1645 * be overwriting an internal NUL cha 1783 * be overwriting an internal NUL character 1646 */ 1784 */ 1647 dentry->d_iname[DNAME_INLINE_LEN-1] = 1785 dentry->d_iname[DNAME_INLINE_LEN-1] = 0; 1648 if (unlikely(!name)) { 1786 if (unlikely(!name)) { 1649 name = &slash_name; 1787 name = &slash_name; 1650 dname = dentry->d_iname; 1788 dname = dentry->d_iname; 1651 } else if (name->len > DNAME_INLINE_L 1789 } else if (name->len > DNAME_INLINE_LEN-1) { 1652 size_t size = offsetof(struct 1790 size_t size = offsetof(struct external_name, name[1]); 1653 struct external_name *p = kma 1791 struct external_name *p = kmalloc(size + name->len, 1654 1792 GFP_KERNEL_ACCOUNT | 1655 1793 __GFP_RECLAIMABLE); 1656 if (!p) { 1794 if (!p) { 1657 kmem_cache_free(dentr 1795 kmem_cache_free(dentry_cache, dentry); 1658 return NULL; 1796 return NULL; 1659 } 1797 } 1660 atomic_set(&p->u.count, 1); 1798 atomic_set(&p->u.count, 1); 1661 dname = p->name; 1799 dname = p->name; 1662 } else { 1800 } else { 1663 dname = dentry->d_iname; 1801 dname = dentry->d_iname; 1664 } 1802 } 1665 1803 1666 dentry->d_name.len = name->len; 1804 dentry->d_name.len = name->len; 1667 dentry->d_name.hash = name->hash; 1805 dentry->d_name.hash = name->hash; 1668 memcpy(dname, name->name, name->len); 1806 memcpy(dname, name->name, name->len); 1669 dname[name->len] = 0; 1807 dname[name->len] = 0; 1670 1808 1671 /* Make sure we always see the termin 1809 /* Make sure we always see the terminating NUL character */ 1672 smp_store_release(&dentry->d_name.nam 1810 smp_store_release(&dentry->d_name.name, dname); /* ^^^ */ 1673 1811 1674 dentry->d_lockref.count = 1; 1812 dentry->d_lockref.count = 1; 1675 dentry->d_flags = 0; 1813 dentry->d_flags = 0; 1676 spin_lock_init(&dentry->d_lock); 1814 spin_lock_init(&dentry->d_lock); 1677 seqcount_spinlock_init(&dentry->d_seq 1815 seqcount_spinlock_init(&dentry->d_seq, &dentry->d_lock); 1678 dentry->d_inode = NULL; 1816 dentry->d_inode = NULL; 1679 dentry->d_parent = dentry; 1817 dentry->d_parent = dentry; 1680 dentry->d_sb = sb; 1818 dentry->d_sb = sb; 1681 dentry->d_op = NULL; 1819 dentry->d_op = NULL; 1682 dentry->d_fsdata = NULL; 1820 dentry->d_fsdata = NULL; 1683 INIT_HLIST_BL_NODE(&dentry->d_hash); 1821 INIT_HLIST_BL_NODE(&dentry->d_hash); 1684 INIT_LIST_HEAD(&dentry->d_lru); 1822 INIT_LIST_HEAD(&dentry->d_lru); 1685 INIT_HLIST_HEAD(&dentry->d_children); !! 1823 INIT_LIST_HEAD(&dentry->d_subdirs); 1686 INIT_HLIST_NODE(&dentry->d_u.d_alias) 1824 INIT_HLIST_NODE(&dentry->d_u.d_alias); 1687 INIT_HLIST_NODE(&dentry->d_sib); !! 1825 INIT_LIST_HEAD(&dentry->d_child); 1688 d_set_d_op(dentry, dentry->d_sb->s_d_ 1826 d_set_d_op(dentry, dentry->d_sb->s_d_op); 1689 1827 1690 if (dentry->d_op && dentry->d_op->d_i 1828 if (dentry->d_op && dentry->d_op->d_init) { 1691 err = dentry->d_op->d_init(de 1829 err = dentry->d_op->d_init(dentry); 1692 if (err) { 1830 if (err) { 1693 if (dname_external(de 1831 if (dname_external(dentry)) 1694 kfree(externa 1832 kfree(external_name(dentry)); 1695 kmem_cache_free(dentr 1833 kmem_cache_free(dentry_cache, dentry); 1696 return NULL; 1834 return NULL; 1697 } 1835 } 1698 } 1836 } 1699 1837 1700 this_cpu_inc(nr_dentry); 1838 this_cpu_inc(nr_dentry); 1701 1839 1702 return dentry; 1840 return dentry; 1703 } 1841 } 1704 1842 1705 /** 1843 /** 1706 * d_alloc - allocate a dcache ent 1844 * d_alloc - allocate a dcache entry 1707 * @parent: parent of entry to allocate 1845 * @parent: parent of entry to allocate 1708 * @name: qstr of the name 1846 * @name: qstr of the name 1709 * 1847 * 1710 * Allocates a dentry. It returns %NULL if th 1848 * Allocates a dentry. It returns %NULL if there is insufficient memory 1711 * available. On a success the dentry is retu 1849 * available. On a success the dentry is returned. The name passed in is 1712 * copied and the copy passed in may be reuse 1850 * copied and the copy passed in may be reused after this call. 1713 */ 1851 */ 1714 struct dentry *d_alloc(struct dentry * parent 1852 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name) 1715 { 1853 { 1716 struct dentry *dentry = __d_alloc(par 1854 struct dentry *dentry = __d_alloc(parent->d_sb, name); 1717 if (!dentry) 1855 if (!dentry) 1718 return NULL; 1856 return NULL; 1719 spin_lock(&parent->d_lock); 1857 spin_lock(&parent->d_lock); 1720 /* 1858 /* 1721 * don't need child lock because it i 1859 * don't need child lock because it is not subject 1722 * to concurrency here 1860 * to concurrency here 1723 */ 1861 */ 1724 dentry->d_parent = dget_dlock(parent) !! 1862 __dget_dlock(parent); 1725 hlist_add_head(&dentry->d_sib, &paren !! 1863 dentry->d_parent = parent; >> 1864 list_add(&dentry->d_child, &parent->d_subdirs); 1726 spin_unlock(&parent->d_lock); 1865 spin_unlock(&parent->d_lock); 1727 1866 1728 return dentry; 1867 return dentry; 1729 } 1868 } 1730 EXPORT_SYMBOL(d_alloc); 1869 EXPORT_SYMBOL(d_alloc); 1731 1870 1732 struct dentry *d_alloc_anon(struct super_bloc 1871 struct dentry *d_alloc_anon(struct super_block *sb) 1733 { 1872 { 1734 return __d_alloc(sb, NULL); 1873 return __d_alloc(sb, NULL); 1735 } 1874 } 1736 EXPORT_SYMBOL(d_alloc_anon); 1875 EXPORT_SYMBOL(d_alloc_anon); 1737 1876 1738 struct dentry *d_alloc_cursor(struct dentry * 1877 struct dentry *d_alloc_cursor(struct dentry * parent) 1739 { 1878 { 1740 struct dentry *dentry = d_alloc_anon( 1879 struct dentry *dentry = d_alloc_anon(parent->d_sb); 1741 if (dentry) { 1880 if (dentry) { 1742 dentry->d_flags |= DCACHE_DEN 1881 dentry->d_flags |= DCACHE_DENTRY_CURSOR; 1743 dentry->d_parent = dget(paren 1882 dentry->d_parent = dget(parent); 1744 } 1883 } 1745 return dentry; 1884 return dentry; 1746 } 1885 } 1747 1886 1748 /** 1887 /** 1749 * d_alloc_pseudo - allocate a dentry (for lo 1888 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems) 1750 * @sb: the superblock 1889 * @sb: the superblock 1751 * @name: qstr of the name 1890 * @name: qstr of the name 1752 * 1891 * 1753 * For a filesystem that just pins its dentri 1892 * For a filesystem that just pins its dentries in memory and never 1754 * performs lookups at all, return an unhashe 1893 * performs lookups at all, return an unhashed IS_ROOT dentry. 1755 * This is used for pipes, sockets et.al. - t 1894 * This is used for pipes, sockets et.al. - the stuff that should 1756 * never be anyone's children or parents. Un 1895 * never be anyone's children or parents. Unlike all other 1757 * dentries, these will not have RCU delay be 1896 * dentries, these will not have RCU delay between dropping the 1758 * last reference and freeing them. 1897 * last reference and freeing them. 1759 * 1898 * 1760 * The only user is alloc_file_pseudo() and t 1899 * The only user is alloc_file_pseudo() and that's what should 1761 * be considered a public interface. Don't u 1900 * be considered a public interface. Don't use directly. 1762 */ 1901 */ 1763 struct dentry *d_alloc_pseudo(struct super_bl 1902 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name) 1764 { 1903 { 1765 static const struct dentry_operations << 1766 .d_dname = simple_dname << 1767 }; << 1768 struct dentry *dentry = __d_alloc(sb, 1904 struct dentry *dentry = __d_alloc(sb, name); 1769 if (likely(dentry)) { !! 1905 if (likely(dentry)) 1770 dentry->d_flags |= DCACHE_NOR 1906 dentry->d_flags |= DCACHE_NORCU; 1771 if (!sb->s_d_op) << 1772 d_set_d_op(dentry, &a << 1773 } << 1774 return dentry; 1907 return dentry; 1775 } 1908 } 1776 1909 1777 struct dentry *d_alloc_name(struct dentry *pa 1910 struct dentry *d_alloc_name(struct dentry *parent, const char *name) 1778 { 1911 { 1779 struct qstr q; 1912 struct qstr q; 1780 1913 1781 q.name = name; 1914 q.name = name; 1782 q.hash_len = hashlen_string(parent, n 1915 q.hash_len = hashlen_string(parent, name); 1783 return d_alloc(parent, &q); 1916 return d_alloc(parent, &q); 1784 } 1917 } 1785 EXPORT_SYMBOL(d_alloc_name); 1918 EXPORT_SYMBOL(d_alloc_name); 1786 1919 1787 void d_set_d_op(struct dentry *dentry, const 1920 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op) 1788 { 1921 { 1789 WARN_ON_ONCE(dentry->d_op); 1922 WARN_ON_ONCE(dentry->d_op); 1790 WARN_ON_ONCE(dentry->d_flags & (DCACH 1923 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH | 1791 DCACHE_OP_COM 1924 DCACHE_OP_COMPARE | 1792 DCACHE_OP_REV 1925 DCACHE_OP_REVALIDATE | 1793 DCACHE_OP_WEA 1926 DCACHE_OP_WEAK_REVALIDATE | 1794 DCACHE_OP_DEL 1927 DCACHE_OP_DELETE | 1795 DCACHE_OP_REA 1928 DCACHE_OP_REAL)); 1796 dentry->d_op = op; 1929 dentry->d_op = op; 1797 if (!op) 1930 if (!op) 1798 return; 1931 return; 1799 if (op->d_hash) 1932 if (op->d_hash) 1800 dentry->d_flags |= DCACHE_OP_ 1933 dentry->d_flags |= DCACHE_OP_HASH; 1801 if (op->d_compare) 1934 if (op->d_compare) 1802 dentry->d_flags |= DCACHE_OP_ 1935 dentry->d_flags |= DCACHE_OP_COMPARE; 1803 if (op->d_revalidate) 1936 if (op->d_revalidate) 1804 dentry->d_flags |= DCACHE_OP_ 1937 dentry->d_flags |= DCACHE_OP_REVALIDATE; 1805 if (op->d_weak_revalidate) 1938 if (op->d_weak_revalidate) 1806 dentry->d_flags |= DCACHE_OP_ 1939 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE; 1807 if (op->d_delete) 1940 if (op->d_delete) 1808 dentry->d_flags |= DCACHE_OP_ 1941 dentry->d_flags |= DCACHE_OP_DELETE; 1809 if (op->d_prune) 1942 if (op->d_prune) 1810 dentry->d_flags |= DCACHE_OP_ 1943 dentry->d_flags |= DCACHE_OP_PRUNE; 1811 if (op->d_real) 1944 if (op->d_real) 1812 dentry->d_flags |= DCACHE_OP_ 1945 dentry->d_flags |= DCACHE_OP_REAL; 1813 1946 1814 } 1947 } 1815 EXPORT_SYMBOL(d_set_d_op); 1948 EXPORT_SYMBOL(d_set_d_op); 1816 1949 >> 1950 >> 1951 /* >> 1952 * d_set_fallthru - Mark a dentry as falling through to a lower layer >> 1953 * @dentry - The dentry to mark >> 1954 * >> 1955 * Mark a dentry as falling through to the lower layer (as set with >> 1956 * d_pin_lower()). This flag may be recorded on the medium. >> 1957 */ >> 1958 void d_set_fallthru(struct dentry *dentry) >> 1959 { >> 1960 spin_lock(&dentry->d_lock); >> 1961 dentry->d_flags |= DCACHE_FALLTHRU; >> 1962 spin_unlock(&dentry->d_lock); >> 1963 } >> 1964 EXPORT_SYMBOL(d_set_fallthru); >> 1965 1817 static unsigned d_flags_for_inode(struct inod 1966 static unsigned d_flags_for_inode(struct inode *inode) 1818 { 1967 { 1819 unsigned add_flags = DCACHE_REGULAR_T 1968 unsigned add_flags = DCACHE_REGULAR_TYPE; 1820 1969 1821 if (!inode) 1970 if (!inode) 1822 return DCACHE_MISS_TYPE; 1971 return DCACHE_MISS_TYPE; 1823 1972 1824 if (S_ISDIR(inode->i_mode)) { 1973 if (S_ISDIR(inode->i_mode)) { 1825 add_flags = DCACHE_DIRECTORY_ 1974 add_flags = DCACHE_DIRECTORY_TYPE; 1826 if (unlikely(!(inode->i_opfla 1975 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) { 1827 if (unlikely(!inode-> 1976 if (unlikely(!inode->i_op->lookup)) 1828 add_flags = D 1977 add_flags = DCACHE_AUTODIR_TYPE; 1829 else 1978 else 1830 inode->i_opfl 1979 inode->i_opflags |= IOP_LOOKUP; 1831 } 1980 } 1832 goto type_determined; 1981 goto type_determined; 1833 } 1982 } 1834 1983 1835 if (unlikely(!(inode->i_opflags & IOP 1984 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) { 1836 if (unlikely(inode->i_op->get 1985 if (unlikely(inode->i_op->get_link)) { 1837 add_flags = DCACHE_SY 1986 add_flags = DCACHE_SYMLINK_TYPE; 1838 goto type_determined; 1987 goto type_determined; 1839 } 1988 } 1840 inode->i_opflags |= IOP_NOFOL 1989 inode->i_opflags |= IOP_NOFOLLOW; 1841 } 1990 } 1842 1991 1843 if (unlikely(!S_ISREG(inode->i_mode)) 1992 if (unlikely(!S_ISREG(inode->i_mode))) 1844 add_flags = DCACHE_SPECIAL_TY 1993 add_flags = DCACHE_SPECIAL_TYPE; 1845 1994 1846 type_determined: 1995 type_determined: 1847 if (unlikely(IS_AUTOMOUNT(inode))) 1996 if (unlikely(IS_AUTOMOUNT(inode))) 1848 add_flags |= DCACHE_NEED_AUTO 1997 add_flags |= DCACHE_NEED_AUTOMOUNT; 1849 return add_flags; 1998 return add_flags; 1850 } 1999 } 1851 2000 1852 static void __d_instantiate(struct dentry *de 2001 static void __d_instantiate(struct dentry *dentry, struct inode *inode) 1853 { 2002 { 1854 unsigned add_flags = d_flags_for_inod 2003 unsigned add_flags = d_flags_for_inode(inode); 1855 WARN_ON(d_in_lookup(dentry)); 2004 WARN_ON(d_in_lookup(dentry)); 1856 2005 1857 spin_lock(&dentry->d_lock); 2006 spin_lock(&dentry->d_lock); 1858 /* 2007 /* 1859 * The negative counter only tracks d 2008 * The negative counter only tracks dentries on the LRU. Don't dec if 1860 * d_lru is on another list. 2009 * d_lru is on another list. 1861 */ 2010 */ 1862 if ((dentry->d_flags & 2011 if ((dentry->d_flags & 1863 (DCACHE_LRU_LIST|DCACHE_SHRINK_L 2012 (DCACHE_LRU_LIST|DCACHE_SHRINK_LIST)) == DCACHE_LRU_LIST) 1864 this_cpu_dec(nr_dentry_negati 2013 this_cpu_dec(nr_dentry_negative); 1865 hlist_add_head(&dentry->d_u.d_alias, 2014 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry); 1866 raw_write_seqcount_begin(&dentry->d_s 2015 raw_write_seqcount_begin(&dentry->d_seq); 1867 __d_set_inode_and_type(dentry, inode, 2016 __d_set_inode_and_type(dentry, inode, add_flags); 1868 raw_write_seqcount_end(&dentry->d_seq 2017 raw_write_seqcount_end(&dentry->d_seq); 1869 fsnotify_update_flags(dentry); 2018 fsnotify_update_flags(dentry); 1870 spin_unlock(&dentry->d_lock); 2019 spin_unlock(&dentry->d_lock); 1871 } 2020 } 1872 2021 1873 /** 2022 /** 1874 * d_instantiate - fill in inode information 2023 * d_instantiate - fill in inode information for a dentry 1875 * @entry: dentry to complete 2024 * @entry: dentry to complete 1876 * @inode: inode to attach to this dentry 2025 * @inode: inode to attach to this dentry 1877 * 2026 * 1878 * Fill in inode information in the entry. 2027 * Fill in inode information in the entry. 1879 * 2028 * 1880 * This turns negative dentries into producti 2029 * This turns negative dentries into productive full members 1881 * of society. 2030 * of society. 1882 * 2031 * 1883 * NOTE! This assumes that the inode count ha 2032 * NOTE! This assumes that the inode count has been incremented 1884 * (or otherwise set) by the caller to indica 2033 * (or otherwise set) by the caller to indicate that it is now 1885 * in use by the dcache. 2034 * in use by the dcache. 1886 */ 2035 */ 1887 2036 1888 void d_instantiate(struct dentry *entry, stru 2037 void d_instantiate(struct dentry *entry, struct inode * inode) 1889 { 2038 { 1890 BUG_ON(!hlist_unhashed(&entry->d_u.d_ 2039 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias)); 1891 if (inode) { 2040 if (inode) { 1892 security_d_instantiate(entry, 2041 security_d_instantiate(entry, inode); 1893 spin_lock(&inode->i_lock); 2042 spin_lock(&inode->i_lock); 1894 __d_instantiate(entry, inode) 2043 __d_instantiate(entry, inode); 1895 spin_unlock(&inode->i_lock); 2044 spin_unlock(&inode->i_lock); 1896 } 2045 } 1897 } 2046 } 1898 EXPORT_SYMBOL(d_instantiate); 2047 EXPORT_SYMBOL(d_instantiate); 1899 2048 1900 /* 2049 /* 1901 * This should be equivalent to d_instantiate 2050 * This should be equivalent to d_instantiate() + unlock_new_inode(), 1902 * with lockdep-related part of unlock_new_in 2051 * with lockdep-related part of unlock_new_inode() done before 1903 * anything else. Use that instead of open-c 2052 * anything else. Use that instead of open-coding d_instantiate()/ 1904 * unlock_new_inode() combinations. 2053 * unlock_new_inode() combinations. 1905 */ 2054 */ 1906 void d_instantiate_new(struct dentry *entry, 2055 void d_instantiate_new(struct dentry *entry, struct inode *inode) 1907 { 2056 { 1908 BUG_ON(!hlist_unhashed(&entry->d_u.d_ 2057 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias)); 1909 BUG_ON(!inode); 2058 BUG_ON(!inode); 1910 lockdep_annotate_inode_mutex_key(inod 2059 lockdep_annotate_inode_mutex_key(inode); 1911 security_d_instantiate(entry, inode); 2060 security_d_instantiate(entry, inode); 1912 spin_lock(&inode->i_lock); 2061 spin_lock(&inode->i_lock); 1913 __d_instantiate(entry, inode); 2062 __d_instantiate(entry, inode); 1914 WARN_ON(!(inode->i_state & I_NEW)); 2063 WARN_ON(!(inode->i_state & I_NEW)); 1915 inode->i_state &= ~I_NEW & ~I_CREATIN 2064 inode->i_state &= ~I_NEW & ~I_CREATING; 1916 /* << 1917 * Pairs with the barrier in prepare_ << 1918 * ___wait_var_event() either sees th << 1919 * waitqueue_active() check in wake_u << 1920 */ << 1921 smp_mb(); 2065 smp_mb(); 1922 inode_wake_up_bit(inode, __I_NEW); !! 2066 wake_up_bit(&inode->i_state, __I_NEW); 1923 spin_unlock(&inode->i_lock); 2067 spin_unlock(&inode->i_lock); 1924 } 2068 } 1925 EXPORT_SYMBOL(d_instantiate_new); 2069 EXPORT_SYMBOL(d_instantiate_new); 1926 2070 1927 struct dentry *d_make_root(struct inode *root 2071 struct dentry *d_make_root(struct inode *root_inode) 1928 { 2072 { 1929 struct dentry *res = NULL; 2073 struct dentry *res = NULL; 1930 2074 1931 if (root_inode) { 2075 if (root_inode) { 1932 res = d_alloc_anon(root_inode 2076 res = d_alloc_anon(root_inode->i_sb); 1933 if (res) 2077 if (res) 1934 d_instantiate(res, ro 2078 d_instantiate(res, root_inode); 1935 else 2079 else 1936 iput(root_inode); 2080 iput(root_inode); 1937 } 2081 } 1938 return res; 2082 return res; 1939 } 2083 } 1940 EXPORT_SYMBOL(d_make_root); 2084 EXPORT_SYMBOL(d_make_root); 1941 2085 >> 2086 static struct dentry *__d_instantiate_anon(struct dentry *dentry, >> 2087 struct inode *inode, >> 2088 bool disconnected) >> 2089 { >> 2090 struct dentry *res; >> 2091 unsigned add_flags; >> 2092 >> 2093 security_d_instantiate(dentry, inode); >> 2094 spin_lock(&inode->i_lock); >> 2095 res = __d_find_any_alias(inode); >> 2096 if (res) { >> 2097 spin_unlock(&inode->i_lock); >> 2098 dput(dentry); >> 2099 goto out_iput; >> 2100 } >> 2101 >> 2102 /* attach a disconnected dentry */ >> 2103 add_flags = d_flags_for_inode(inode); >> 2104 >> 2105 if (disconnected) >> 2106 add_flags |= DCACHE_DISCONNECTED; >> 2107 >> 2108 spin_lock(&dentry->d_lock); >> 2109 __d_set_inode_and_type(dentry, inode, add_flags); >> 2110 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry); >> 2111 if (!disconnected) { >> 2112 hlist_bl_lock(&dentry->d_sb->s_roots); >> 2113 hlist_bl_add_head(&dentry->d_hash, &dentry->d_sb->s_roots); >> 2114 hlist_bl_unlock(&dentry->d_sb->s_roots); >> 2115 } >> 2116 spin_unlock(&dentry->d_lock); >> 2117 spin_unlock(&inode->i_lock); >> 2118 >> 2119 return dentry; >> 2120 >> 2121 out_iput: >> 2122 iput(inode); >> 2123 return res; >> 2124 } >> 2125 >> 2126 struct dentry *d_instantiate_anon(struct dentry *dentry, struct inode *inode) >> 2127 { >> 2128 return __d_instantiate_anon(dentry, inode, true); >> 2129 } >> 2130 EXPORT_SYMBOL(d_instantiate_anon); >> 2131 1942 static struct dentry *__d_obtain_alias(struct 2132 static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected) 1943 { 2133 { 1944 struct super_block *sb; !! 2134 struct dentry *tmp; 1945 struct dentry *new, *res; !! 2135 struct dentry *res; 1946 2136 1947 if (!inode) 2137 if (!inode) 1948 return ERR_PTR(-ESTALE); 2138 return ERR_PTR(-ESTALE); 1949 if (IS_ERR(inode)) 2139 if (IS_ERR(inode)) 1950 return ERR_CAST(inode); 2140 return ERR_CAST(inode); 1951 2141 1952 sb = inode->i_sb; !! 2142 res = d_find_any_alias(inode); 1953 << 1954 res = d_find_any_alias(inode); /* exi << 1955 if (res) 2143 if (res) 1956 goto out; !! 2144 goto out_iput; 1957 2145 1958 new = d_alloc_anon(sb); !! 2146 tmp = d_alloc_anon(inode->i_sb); 1959 if (!new) { !! 2147 if (!tmp) { 1960 res = ERR_PTR(-ENOMEM); 2148 res = ERR_PTR(-ENOMEM); 1961 goto out; !! 2149 goto out_iput; 1962 } 2150 } 1963 2151 1964 security_d_instantiate(new, inode); !! 2152 return __d_instantiate_anon(tmp, inode, disconnected); 1965 spin_lock(&inode->i_lock); << 1966 res = __d_find_any_alias(inode); /* r << 1967 if (likely(!res)) { /* still no alias << 1968 unsigned add_flags = d_flags_ << 1969 << 1970 if (disconnected) << 1971 add_flags |= DCACHE_D << 1972 2153 1973 spin_lock(&new->d_lock); !! 2154 out_iput: 1974 __d_set_inode_and_type(new, i << 1975 hlist_add_head(&new->d_u.d_al << 1976 if (!disconnected) { << 1977 hlist_bl_lock(&sb->s_ << 1978 hlist_bl_add_head(&ne << 1979 hlist_bl_unlock(&sb-> << 1980 } << 1981 spin_unlock(&new->d_lock); << 1982 spin_unlock(&inode->i_lock); << 1983 inode = NULL; /* consumed by << 1984 res = new; << 1985 } else { << 1986 spin_unlock(&inode->i_lock); << 1987 dput(new); << 1988 } << 1989 << 1990 out: << 1991 iput(inode); 2155 iput(inode); 1992 return res; 2156 return res; 1993 } 2157 } 1994 2158 1995 /** 2159 /** 1996 * d_obtain_alias - find or allocate a DISCON 2160 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode 1997 * @inode: inode to allocate the dentry for 2161 * @inode: inode to allocate the dentry for 1998 * 2162 * 1999 * Obtain a dentry for an inode resulting fro 2163 * Obtain a dentry for an inode resulting from NFS filehandle conversion or 2000 * similar open by handle operations. The re 2164 * similar open by handle operations. The returned dentry may be anonymous, 2001 * or may have a full name (if the inode was 2165 * or may have a full name (if the inode was already in the cache). 2002 * 2166 * 2003 * When called on a directory inode, we must 2167 * When called on a directory inode, we must ensure that the inode only ever 2004 * has one dentry. If a dentry is found, tha 2168 * has one dentry. If a dentry is found, that is returned instead of 2005 * allocating a new one. 2169 * allocating a new one. 2006 * 2170 * 2007 * On successful return, the reference to the 2171 * On successful return, the reference to the inode has been transferred 2008 * to the dentry. In case of an error the re 2172 * to the dentry. In case of an error the reference on the inode is released. 2009 * To make it easier to use in export operati 2173 * To make it easier to use in export operations a %NULL or IS_ERR inode may 2010 * be passed in and the error will be propaga 2174 * be passed in and the error will be propagated to the return value, 2011 * with a %NULL @inode replaced by ERR_PTR(-E 2175 * with a %NULL @inode replaced by ERR_PTR(-ESTALE). 2012 */ 2176 */ 2013 struct dentry *d_obtain_alias(struct inode *i 2177 struct dentry *d_obtain_alias(struct inode *inode) 2014 { 2178 { 2015 return __d_obtain_alias(inode, true); 2179 return __d_obtain_alias(inode, true); 2016 } 2180 } 2017 EXPORT_SYMBOL(d_obtain_alias); 2181 EXPORT_SYMBOL(d_obtain_alias); 2018 2182 2019 /** 2183 /** 2020 * d_obtain_root - find or allocate a dentry 2184 * d_obtain_root - find or allocate a dentry for a given inode 2021 * @inode: inode to allocate the dentry for 2185 * @inode: inode to allocate the dentry for 2022 * 2186 * 2023 * Obtain an IS_ROOT dentry for the root of a 2187 * Obtain an IS_ROOT dentry for the root of a filesystem. 2024 * 2188 * 2025 * We must ensure that directory inodes only 2189 * We must ensure that directory inodes only ever have one dentry. If a 2026 * dentry is found, that is returned instead 2190 * dentry is found, that is returned instead of allocating a new one. 2027 * 2191 * 2028 * On successful return, the reference to the 2192 * On successful return, the reference to the inode has been transferred 2029 * to the dentry. In case of an error the re 2193 * to the dentry. In case of an error the reference on the inode is 2030 * released. A %NULL or IS_ERR inode may be 2194 * released. A %NULL or IS_ERR inode may be passed in and will be the 2031 * error will be propagate to the return valu 2195 * error will be propagate to the return value, with a %NULL @inode 2032 * replaced by ERR_PTR(-ESTALE). 2196 * replaced by ERR_PTR(-ESTALE). 2033 */ 2197 */ 2034 struct dentry *d_obtain_root(struct inode *in 2198 struct dentry *d_obtain_root(struct inode *inode) 2035 { 2199 { 2036 return __d_obtain_alias(inode, false) 2200 return __d_obtain_alias(inode, false); 2037 } 2201 } 2038 EXPORT_SYMBOL(d_obtain_root); 2202 EXPORT_SYMBOL(d_obtain_root); 2039 2203 2040 /** 2204 /** 2041 * d_add_ci - lookup or allocate new dentry w 2205 * d_add_ci - lookup or allocate new dentry with case-exact name 2042 * @inode: the inode case-insensitive lookup 2206 * @inode: the inode case-insensitive lookup has found 2043 * @dentry: the negative dentry that was pass 2207 * @dentry: the negative dentry that was passed to the parent's lookup func 2044 * @name: the case-exact name to be associa 2208 * @name: the case-exact name to be associated with the returned dentry 2045 * 2209 * 2046 * This is to avoid filling the dcache with c 2210 * This is to avoid filling the dcache with case-insensitive names to the 2047 * same inode, only the actual correct case i 2211 * same inode, only the actual correct case is stored in the dcache for 2048 * case-insensitive filesystems. 2212 * case-insensitive filesystems. 2049 * 2213 * 2050 * For a case-insensitive lookup match and if 2214 * For a case-insensitive lookup match and if the case-exact dentry 2051 * already exists in the dcache, use it and r 2215 * already exists in the dcache, use it and return it. 2052 * 2216 * 2053 * If no entry exists with the exact case nam 2217 * If no entry exists with the exact case name, allocate new dentry with 2054 * the exact case, and return the spliced ent 2218 * the exact case, and return the spliced entry. 2055 */ 2219 */ 2056 struct dentry *d_add_ci(struct dentry *dentry 2220 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode, 2057 struct qstr *name) 2221 struct qstr *name) 2058 { 2222 { 2059 struct dentry *found, *res; 2223 struct dentry *found, *res; 2060 2224 2061 /* 2225 /* 2062 * First check if a dentry matching t 2226 * First check if a dentry matching the name already exists, 2063 * if not go ahead and create it now. 2227 * if not go ahead and create it now. 2064 */ 2228 */ 2065 found = d_hash_and_lookup(dentry->d_p 2229 found = d_hash_and_lookup(dentry->d_parent, name); 2066 if (found) { 2230 if (found) { 2067 iput(inode); 2231 iput(inode); 2068 return found; 2232 return found; 2069 } 2233 } 2070 if (d_in_lookup(dentry)) { 2234 if (d_in_lookup(dentry)) { 2071 found = d_alloc_parallel(dent 2235 found = d_alloc_parallel(dentry->d_parent, name, 2072 dentr 2236 dentry->d_wait); 2073 if (IS_ERR(found) || !d_in_lo 2237 if (IS_ERR(found) || !d_in_lookup(found)) { 2074 iput(inode); 2238 iput(inode); 2075 return found; 2239 return found; 2076 } 2240 } 2077 } else { 2241 } else { 2078 found = d_alloc(dentry->d_par 2242 found = d_alloc(dentry->d_parent, name); 2079 if (!found) { 2243 if (!found) { 2080 iput(inode); 2244 iput(inode); 2081 return ERR_PTR(-ENOME 2245 return ERR_PTR(-ENOMEM); 2082 } 2246 } 2083 } 2247 } 2084 res = d_splice_alias(inode, found); 2248 res = d_splice_alias(inode, found); 2085 if (res) { 2249 if (res) { 2086 d_lookup_done(found); 2250 d_lookup_done(found); 2087 dput(found); 2251 dput(found); 2088 return res; 2252 return res; 2089 } 2253 } 2090 return found; 2254 return found; 2091 } 2255 } 2092 EXPORT_SYMBOL(d_add_ci); 2256 EXPORT_SYMBOL(d_add_ci); 2093 2257 2094 /** 2258 /** 2095 * d_same_name - compare dentry name with cas 2259 * d_same_name - compare dentry name with case-exact name 2096 * @parent: parent dentry 2260 * @parent: parent dentry 2097 * @dentry: the negative dentry that was pass 2261 * @dentry: the negative dentry that was passed to the parent's lookup func 2098 * @name: the case-exact name to be associa 2262 * @name: the case-exact name to be associated with the returned dentry 2099 * 2263 * 2100 * Return: true if names are same, or false 2264 * Return: true if names are same, or false 2101 */ 2265 */ 2102 bool d_same_name(const struct dentry *dentry, 2266 bool d_same_name(const struct dentry *dentry, const struct dentry *parent, 2103 const struct qstr *name) 2267 const struct qstr *name) 2104 { 2268 { 2105 if (likely(!(parent->d_flags & DCACHE 2269 if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) { 2106 if (dentry->d_name.len != nam 2270 if (dentry->d_name.len != name->len) 2107 return false; 2271 return false; 2108 return dentry_cmp(dentry, nam 2272 return dentry_cmp(dentry, name->name, name->len) == 0; 2109 } 2273 } 2110 return parent->d_op->d_compare(dentry 2274 return parent->d_op->d_compare(dentry, 2111 dentry 2275 dentry->d_name.len, dentry->d_name.name, 2112 name) 2276 name) == 0; 2113 } 2277 } 2114 EXPORT_SYMBOL_GPL(d_same_name); 2278 EXPORT_SYMBOL_GPL(d_same_name); 2115 2279 2116 /* 2280 /* 2117 * This is __d_lookup_rcu() when the parent d 2281 * This is __d_lookup_rcu() when the parent dentry has 2118 * DCACHE_OP_COMPARE, which makes things much 2282 * DCACHE_OP_COMPARE, which makes things much nastier. 2119 */ 2283 */ 2120 static noinline struct dentry *__d_lookup_rcu 2284 static noinline struct dentry *__d_lookup_rcu_op_compare( 2121 const struct dentry *parent, 2285 const struct dentry *parent, 2122 const struct qstr *name, 2286 const struct qstr *name, 2123 unsigned *seqp) 2287 unsigned *seqp) 2124 { 2288 { 2125 u64 hashlen = name->hash_len; 2289 u64 hashlen = name->hash_len; 2126 struct hlist_bl_head *b = d_hash(hash !! 2290 struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen)); 2127 struct hlist_bl_node *node; 2291 struct hlist_bl_node *node; 2128 struct dentry *dentry; 2292 struct dentry *dentry; 2129 2293 2130 hlist_bl_for_each_entry_rcu(dentry, n 2294 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { 2131 int tlen; 2295 int tlen; 2132 const char *tname; 2296 const char *tname; 2133 unsigned seq; 2297 unsigned seq; 2134 2298 2135 seqretry: 2299 seqretry: 2136 seq = raw_seqcount_begin(&den 2300 seq = raw_seqcount_begin(&dentry->d_seq); 2137 if (dentry->d_parent != paren 2301 if (dentry->d_parent != parent) 2138 continue; 2302 continue; 2139 if (d_unhashed(dentry)) 2303 if (d_unhashed(dentry)) 2140 continue; 2304 continue; 2141 if (dentry->d_name.hash != ha 2305 if (dentry->d_name.hash != hashlen_hash(hashlen)) 2142 continue; 2306 continue; 2143 tlen = dentry->d_name.len; 2307 tlen = dentry->d_name.len; 2144 tname = dentry->d_name.name; 2308 tname = dentry->d_name.name; 2145 /* we want a consistent (name 2309 /* we want a consistent (name,len) pair */ 2146 if (read_seqcount_retry(&dent 2310 if (read_seqcount_retry(&dentry->d_seq, seq)) { 2147 cpu_relax(); 2311 cpu_relax(); 2148 goto seqretry; 2312 goto seqretry; 2149 } 2313 } 2150 if (parent->d_op->d_compare(d 2314 if (parent->d_op->d_compare(dentry, tlen, tname, name) != 0) 2151 continue; 2315 continue; 2152 *seqp = seq; 2316 *seqp = seq; 2153 return dentry; 2317 return dentry; 2154 } 2318 } 2155 return NULL; 2319 return NULL; 2156 } 2320 } 2157 2321 2158 /** 2322 /** 2159 * __d_lookup_rcu - search for a dentry (racy 2323 * __d_lookup_rcu - search for a dentry (racy, store-free) 2160 * @parent: parent dentry 2324 * @parent: parent dentry 2161 * @name: qstr of name we wish to find 2325 * @name: qstr of name we wish to find 2162 * @seqp: returns d_seq value at the point wh 2326 * @seqp: returns d_seq value at the point where the dentry was found 2163 * Returns: dentry, or NULL 2327 * Returns: dentry, or NULL 2164 * 2328 * 2165 * __d_lookup_rcu is the dcache lookup functi 2329 * __d_lookup_rcu is the dcache lookup function for rcu-walk name 2166 * resolution (store-free path walking) desig 2330 * resolution (store-free path walking) design described in 2167 * Documentation/filesystems/path-lookup.txt. 2331 * Documentation/filesystems/path-lookup.txt. 2168 * 2332 * 2169 * This is not to be used outside core vfs. 2333 * This is not to be used outside core vfs. 2170 * 2334 * 2171 * __d_lookup_rcu must only be used in rcu-wa 2335 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock 2172 * held, and rcu_read_lock held. The returned 2336 * held, and rcu_read_lock held. The returned dentry must not be stored into 2173 * without taking d_lock and checking d_seq s 2337 * without taking d_lock and checking d_seq sequence count against @seq 2174 * returned here. 2338 * returned here. 2175 * 2339 * >> 2340 * A refcount may be taken on the found dentry with the d_rcu_to_refcount >> 2341 * function. >> 2342 * 2176 * Alternatively, __d_lookup_rcu may be calle 2343 * Alternatively, __d_lookup_rcu may be called again to look up the child of 2177 * the returned dentry, so long as its parent 2344 * the returned dentry, so long as its parent's seqlock is checked after the 2178 * child is looked up. Thus, an interlocking 2345 * child is looked up. Thus, an interlocking stepping of sequence lock checks 2179 * is formed, giving integrity down the path 2346 * is formed, giving integrity down the path walk. 2180 * 2347 * 2181 * NOTE! The caller *has* to check the result 2348 * NOTE! The caller *has* to check the resulting dentry against the sequence 2182 * number we've returned before using any of 2349 * number we've returned before using any of the resulting dentry state! 2183 */ 2350 */ 2184 struct dentry *__d_lookup_rcu(const struct de 2351 struct dentry *__d_lookup_rcu(const struct dentry *parent, 2185 const struct 2352 const struct qstr *name, 2186 unsigned *seq 2353 unsigned *seqp) 2187 { 2354 { 2188 u64 hashlen = name->hash_len; 2355 u64 hashlen = name->hash_len; 2189 const unsigned char *str = name->name 2356 const unsigned char *str = name->name; 2190 struct hlist_bl_head *b = d_hash(hash !! 2357 struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen)); 2191 struct hlist_bl_node *node; 2358 struct hlist_bl_node *node; 2192 struct dentry *dentry; 2359 struct dentry *dentry; 2193 2360 2194 /* 2361 /* 2195 * Note: There is significant duplica 2362 * Note: There is significant duplication with __d_lookup_rcu which is 2196 * required to prevent single threade 2363 * required to prevent single threaded performance regressions 2197 * especially on architectures where 2364 * especially on architectures where smp_rmb (in seqcounts) are costly. 2198 * Keep the two functions in sync. 2365 * Keep the two functions in sync. 2199 */ 2366 */ 2200 2367 2201 if (unlikely(parent->d_flags & DCACHE 2368 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) 2202 return __d_lookup_rcu_op_comp 2369 return __d_lookup_rcu_op_compare(parent, name, seqp); 2203 2370 2204 /* 2371 /* 2205 * The hash list is protected using R 2372 * The hash list is protected using RCU. 2206 * 2373 * 2207 * Carefully use d_seq when comparing 2374 * Carefully use d_seq when comparing a candidate dentry, to avoid 2208 * races with d_move(). 2375 * races with d_move(). 2209 * 2376 * 2210 * It is possible that concurrent ren 2377 * It is possible that concurrent renames can mess up our list 2211 * walk here and result in missing ou 2378 * walk here and result in missing our dentry, resulting in the 2212 * false-negative result. d_lookup() 2379 * false-negative result. d_lookup() protects against concurrent 2213 * renames using rename_lock seqlock. 2380 * renames using rename_lock seqlock. 2214 * 2381 * 2215 * See Documentation/filesystems/path 2382 * See Documentation/filesystems/path-lookup.txt for more details. 2216 */ 2383 */ 2217 hlist_bl_for_each_entry_rcu(dentry, n 2384 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { 2218 unsigned seq; 2385 unsigned seq; 2219 2386 2220 /* 2387 /* 2221 * The dentry sequence count 2388 * The dentry sequence count protects us from concurrent 2222 * renames, and thus protects 2389 * renames, and thus protects parent and name fields. 2223 * 2390 * 2224 * The caller must perform a 2391 * The caller must perform a seqcount check in order 2225 * to do anything useful with 2392 * to do anything useful with the returned dentry. 2226 * 2393 * 2227 * NOTE! We do a "raw" seqcou 2394 * NOTE! We do a "raw" seqcount_begin here. That means that 2228 * we don't wait for the sequ 2395 * we don't wait for the sequence count to stabilize if it 2229 * is in the middle of a sequ 2396 * is in the middle of a sequence change. If we do the slow 2230 * dentry compare, we will do 2397 * dentry compare, we will do seqretries until it is stable, 2231 * and if we end up with a su 2398 * and if we end up with a successful lookup, we actually 2232 * want to exit RCU lookup an 2399 * want to exit RCU lookup anyway. 2233 * 2400 * 2234 * Note that raw_seqcount_beg 2401 * Note that raw_seqcount_begin still *does* smp_rmb(), so 2235 * we are still guaranteed NU 2402 * we are still guaranteed NUL-termination of ->d_name.name. 2236 */ 2403 */ 2237 seq = raw_seqcount_begin(&den 2404 seq = raw_seqcount_begin(&dentry->d_seq); 2238 if (dentry->d_parent != paren 2405 if (dentry->d_parent != parent) 2239 continue; 2406 continue; 2240 if (d_unhashed(dentry)) 2407 if (d_unhashed(dentry)) 2241 continue; 2408 continue; 2242 if (dentry->d_name.hash_len ! 2409 if (dentry->d_name.hash_len != hashlen) 2243 continue; 2410 continue; 2244 if (dentry_cmp(dentry, str, h 2411 if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0) 2245 continue; 2412 continue; 2246 *seqp = seq; 2413 *seqp = seq; 2247 return dentry; 2414 return dentry; 2248 } 2415 } 2249 return NULL; 2416 return NULL; 2250 } 2417 } 2251 2418 2252 /** 2419 /** 2253 * d_lookup - search for a dentry 2420 * d_lookup - search for a dentry 2254 * @parent: parent dentry 2421 * @parent: parent dentry 2255 * @name: qstr of name we wish to find 2422 * @name: qstr of name we wish to find 2256 * Returns: dentry, or NULL 2423 * Returns: dentry, or NULL 2257 * 2424 * 2258 * d_lookup searches the children of the pare 2425 * d_lookup searches the children of the parent dentry for the name in 2259 * question. If the dentry is found its refer 2426 * question. If the dentry is found its reference count is incremented and the 2260 * dentry is returned. The caller must use dp 2427 * dentry is returned. The caller must use dput to free the entry when it has 2261 * finished using it. %NULL is returned if th 2428 * finished using it. %NULL is returned if the dentry does not exist. 2262 */ 2429 */ 2263 struct dentry *d_lookup(const struct dentry * 2430 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name) 2264 { 2431 { 2265 struct dentry *dentry; 2432 struct dentry *dentry; 2266 unsigned seq; 2433 unsigned seq; 2267 2434 2268 do { 2435 do { 2269 seq = read_seqbegin(&rename_l 2436 seq = read_seqbegin(&rename_lock); 2270 dentry = __d_lookup(parent, n 2437 dentry = __d_lookup(parent, name); 2271 if (dentry) 2438 if (dentry) 2272 break; 2439 break; 2273 } while (read_seqretry(&rename_lock, 2440 } while (read_seqretry(&rename_lock, seq)); 2274 return dentry; 2441 return dentry; 2275 } 2442 } 2276 EXPORT_SYMBOL(d_lookup); 2443 EXPORT_SYMBOL(d_lookup); 2277 2444 2278 /** 2445 /** 2279 * __d_lookup - search for a dentry (racy) 2446 * __d_lookup - search for a dentry (racy) 2280 * @parent: parent dentry 2447 * @parent: parent dentry 2281 * @name: qstr of name we wish to find 2448 * @name: qstr of name we wish to find 2282 * Returns: dentry, or NULL 2449 * Returns: dentry, or NULL 2283 * 2450 * 2284 * __d_lookup is like d_lookup, however it ma 2451 * __d_lookup is like d_lookup, however it may (rarely) return a 2285 * false-negative result due to unrelated ren 2452 * false-negative result due to unrelated rename activity. 2286 * 2453 * 2287 * __d_lookup is slightly faster by avoiding 2454 * __d_lookup is slightly faster by avoiding rename_lock read seqlock, 2288 * however it must be used carefully, eg. wit 2455 * however it must be used carefully, eg. with a following d_lookup in 2289 * the case of failure. 2456 * the case of failure. 2290 * 2457 * 2291 * __d_lookup callers must be commented. 2458 * __d_lookup callers must be commented. 2292 */ 2459 */ 2293 struct dentry *__d_lookup(const struct dentry 2460 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name) 2294 { 2461 { 2295 unsigned int hash = name->hash; 2462 unsigned int hash = name->hash; 2296 struct hlist_bl_head *b = d_hash(hash 2463 struct hlist_bl_head *b = d_hash(hash); 2297 struct hlist_bl_node *node; 2464 struct hlist_bl_node *node; 2298 struct dentry *found = NULL; 2465 struct dentry *found = NULL; 2299 struct dentry *dentry; 2466 struct dentry *dentry; 2300 2467 2301 /* 2468 /* 2302 * Note: There is significant duplica 2469 * Note: There is significant duplication with __d_lookup_rcu which is 2303 * required to prevent single threade 2470 * required to prevent single threaded performance regressions 2304 * especially on architectures where 2471 * especially on architectures where smp_rmb (in seqcounts) are costly. 2305 * Keep the two functions in sync. 2472 * Keep the two functions in sync. 2306 */ 2473 */ 2307 2474 2308 /* 2475 /* 2309 * The hash list is protected using R 2476 * The hash list is protected using RCU. 2310 * 2477 * 2311 * Take d_lock when comparing a candi 2478 * Take d_lock when comparing a candidate dentry, to avoid races 2312 * with d_move(). 2479 * with d_move(). 2313 * 2480 * 2314 * It is possible that concurrent ren 2481 * It is possible that concurrent renames can mess up our list 2315 * walk here and result in missing ou 2482 * walk here and result in missing our dentry, resulting in the 2316 * false-negative result. d_lookup() 2483 * false-negative result. d_lookup() protects against concurrent 2317 * renames using rename_lock seqlock. 2484 * renames using rename_lock seqlock. 2318 * 2485 * 2319 * See Documentation/filesystems/path 2486 * See Documentation/filesystems/path-lookup.txt for more details. 2320 */ 2487 */ 2321 rcu_read_lock(); 2488 rcu_read_lock(); 2322 2489 2323 hlist_bl_for_each_entry_rcu(dentry, n 2490 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { 2324 2491 2325 if (dentry->d_name.hash != ha 2492 if (dentry->d_name.hash != hash) 2326 continue; 2493 continue; 2327 2494 2328 spin_lock(&dentry->d_lock); 2495 spin_lock(&dentry->d_lock); 2329 if (dentry->d_parent != paren 2496 if (dentry->d_parent != parent) 2330 goto next; 2497 goto next; 2331 if (d_unhashed(dentry)) 2498 if (d_unhashed(dentry)) 2332 goto next; 2499 goto next; 2333 2500 2334 if (!d_same_name(dentry, pare 2501 if (!d_same_name(dentry, parent, name)) 2335 goto next; 2502 goto next; 2336 2503 2337 dentry->d_lockref.count++; 2504 dentry->d_lockref.count++; 2338 found = dentry; 2505 found = dentry; 2339 spin_unlock(&dentry->d_lock); 2506 spin_unlock(&dentry->d_lock); 2340 break; 2507 break; 2341 next: 2508 next: 2342 spin_unlock(&dentry->d_lock); 2509 spin_unlock(&dentry->d_lock); 2343 } 2510 } 2344 rcu_read_unlock(); 2511 rcu_read_unlock(); 2345 2512 2346 return found; 2513 return found; 2347 } 2514 } 2348 2515 2349 /** 2516 /** 2350 * d_hash_and_lookup - hash the qstr then sea 2517 * d_hash_and_lookup - hash the qstr then search for a dentry 2351 * @dir: Directory to search in 2518 * @dir: Directory to search in 2352 * @name: qstr of name we wish to find 2519 * @name: qstr of name we wish to find 2353 * 2520 * 2354 * On lookup failure NULL is returned; on bad 2521 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error) 2355 */ 2522 */ 2356 struct dentry *d_hash_and_lookup(struct dentr 2523 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name) 2357 { 2524 { 2358 /* 2525 /* 2359 * Check for a fs-specific hash funct 2526 * Check for a fs-specific hash function. Note that we must 2360 * calculate the standard hash first, 2527 * calculate the standard hash first, as the d_op->d_hash() 2361 * routine may choose to leave the ha 2528 * routine may choose to leave the hash value unchanged. 2362 */ 2529 */ 2363 name->hash = full_name_hash(dir, name 2530 name->hash = full_name_hash(dir, name->name, name->len); 2364 if (dir->d_flags & DCACHE_OP_HASH) { 2531 if (dir->d_flags & DCACHE_OP_HASH) { 2365 int err = dir->d_op->d_hash(d 2532 int err = dir->d_op->d_hash(dir, name); 2366 if (unlikely(err < 0)) 2533 if (unlikely(err < 0)) 2367 return ERR_PTR(err); 2534 return ERR_PTR(err); 2368 } 2535 } 2369 return d_lookup(dir, name); 2536 return d_lookup(dir, name); 2370 } 2537 } 2371 EXPORT_SYMBOL(d_hash_and_lookup); 2538 EXPORT_SYMBOL(d_hash_and_lookup); 2372 2539 2373 /* 2540 /* 2374 * When a file is deleted, we have two option 2541 * When a file is deleted, we have two options: 2375 * - turn this dentry into a negative dentry 2542 * - turn this dentry into a negative dentry 2376 * - unhash this dentry and free it. 2543 * - unhash this dentry and free it. 2377 * 2544 * 2378 * Usually, we want to just turn this into 2545 * Usually, we want to just turn this into 2379 * a negative dentry, but if anybody else is 2546 * a negative dentry, but if anybody else is 2380 * currently using the dentry or the inode 2547 * currently using the dentry or the inode 2381 * we can't do that and we fall back on remov 2548 * we can't do that and we fall back on removing 2382 * it from the hash queues and waiting for 2549 * it from the hash queues and waiting for 2383 * it to be deleted later when it has no user 2550 * it to be deleted later when it has no users 2384 */ 2551 */ 2385 2552 2386 /** 2553 /** 2387 * d_delete - delete a dentry 2554 * d_delete - delete a dentry 2388 * @dentry: The dentry to delete 2555 * @dentry: The dentry to delete 2389 * 2556 * 2390 * Turn the dentry into a negative dentry if 2557 * Turn the dentry into a negative dentry if possible, otherwise 2391 * remove it from the hash queues so it can b 2558 * remove it from the hash queues so it can be deleted later 2392 */ 2559 */ 2393 2560 2394 void d_delete(struct dentry * dentry) 2561 void d_delete(struct dentry * dentry) 2395 { 2562 { 2396 struct inode *inode = dentry->d_inode 2563 struct inode *inode = dentry->d_inode; 2397 2564 2398 spin_lock(&inode->i_lock); 2565 spin_lock(&inode->i_lock); 2399 spin_lock(&dentry->d_lock); 2566 spin_lock(&dentry->d_lock); 2400 /* 2567 /* 2401 * Are we the only user? 2568 * Are we the only user? 2402 */ 2569 */ 2403 if (dentry->d_lockref.count == 1) { 2570 if (dentry->d_lockref.count == 1) { 2404 dentry->d_flags &= ~DCACHE_CA 2571 dentry->d_flags &= ~DCACHE_CANT_MOUNT; 2405 dentry_unlink_inode(dentry); 2572 dentry_unlink_inode(dentry); 2406 } else { 2573 } else { 2407 __d_drop(dentry); 2574 __d_drop(dentry); 2408 spin_unlock(&dentry->d_lock); 2575 spin_unlock(&dentry->d_lock); 2409 spin_unlock(&inode->i_lock); 2576 spin_unlock(&inode->i_lock); 2410 } 2577 } 2411 } 2578 } 2412 EXPORT_SYMBOL(d_delete); 2579 EXPORT_SYMBOL(d_delete); 2413 2580 2414 static void __d_rehash(struct dentry *entry) 2581 static void __d_rehash(struct dentry *entry) 2415 { 2582 { 2416 struct hlist_bl_head *b = d_hash(entr 2583 struct hlist_bl_head *b = d_hash(entry->d_name.hash); 2417 2584 2418 hlist_bl_lock(b); 2585 hlist_bl_lock(b); 2419 hlist_bl_add_head_rcu(&entry->d_hash, 2586 hlist_bl_add_head_rcu(&entry->d_hash, b); 2420 hlist_bl_unlock(b); 2587 hlist_bl_unlock(b); 2421 } 2588 } 2422 2589 2423 /** 2590 /** 2424 * d_rehash - add an entry back to the ha 2591 * d_rehash - add an entry back to the hash 2425 * @entry: dentry to add to the hash 2592 * @entry: dentry to add to the hash 2426 * 2593 * 2427 * Adds a dentry to the hash according to its 2594 * Adds a dentry to the hash according to its name. 2428 */ 2595 */ 2429 2596 2430 void d_rehash(struct dentry * entry) 2597 void d_rehash(struct dentry * entry) 2431 { 2598 { 2432 spin_lock(&entry->d_lock); 2599 spin_lock(&entry->d_lock); 2433 __d_rehash(entry); 2600 __d_rehash(entry); 2434 spin_unlock(&entry->d_lock); 2601 spin_unlock(&entry->d_lock); 2435 } 2602 } 2436 EXPORT_SYMBOL(d_rehash); 2603 EXPORT_SYMBOL(d_rehash); 2437 2604 2438 static inline unsigned start_dir_add(struct i 2605 static inline unsigned start_dir_add(struct inode *dir) 2439 { 2606 { 2440 preempt_disable_nested(); 2607 preempt_disable_nested(); 2441 for (;;) { 2608 for (;;) { 2442 unsigned n = dir->i_dir_seq; 2609 unsigned n = dir->i_dir_seq; 2443 if (!(n & 1) && cmpxchg(&dir- 2610 if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n) 2444 return n; 2611 return n; 2445 cpu_relax(); 2612 cpu_relax(); 2446 } 2613 } 2447 } 2614 } 2448 2615 2449 static inline void end_dir_add(struct inode * 2616 static inline void end_dir_add(struct inode *dir, unsigned int n, 2450 wait_queue_hea 2617 wait_queue_head_t *d_wait) 2451 { 2618 { 2452 smp_store_release(&dir->i_dir_seq, n 2619 smp_store_release(&dir->i_dir_seq, n + 2); 2453 preempt_enable_nested(); 2620 preempt_enable_nested(); 2454 wake_up_all(d_wait); 2621 wake_up_all(d_wait); 2455 } 2622 } 2456 2623 2457 static void d_wait_lookup(struct dentry *dent 2624 static void d_wait_lookup(struct dentry *dentry) 2458 { 2625 { 2459 if (d_in_lookup(dentry)) { 2626 if (d_in_lookup(dentry)) { 2460 DECLARE_WAITQUEUE(wait, curre 2627 DECLARE_WAITQUEUE(wait, current); 2461 add_wait_queue(dentry->d_wait 2628 add_wait_queue(dentry->d_wait, &wait); 2462 do { 2629 do { 2463 set_current_state(TAS 2630 set_current_state(TASK_UNINTERRUPTIBLE); 2464 spin_unlock(&dentry-> 2631 spin_unlock(&dentry->d_lock); 2465 schedule(); 2632 schedule(); 2466 spin_lock(&dentry->d_ 2633 spin_lock(&dentry->d_lock); 2467 } while (d_in_lookup(dentry)) 2634 } while (d_in_lookup(dentry)); 2468 } 2635 } 2469 } 2636 } 2470 2637 2471 struct dentry *d_alloc_parallel(struct dentry 2638 struct dentry *d_alloc_parallel(struct dentry *parent, 2472 const struct 2639 const struct qstr *name, 2473 wait_queue_he 2640 wait_queue_head_t *wq) 2474 { 2641 { 2475 unsigned int hash = name->hash; 2642 unsigned int hash = name->hash; 2476 struct hlist_bl_head *b = in_lookup_h 2643 struct hlist_bl_head *b = in_lookup_hash(parent, hash); 2477 struct hlist_bl_node *node; 2644 struct hlist_bl_node *node; 2478 struct dentry *new = d_alloc(parent, 2645 struct dentry *new = d_alloc(parent, name); 2479 struct dentry *dentry; 2646 struct dentry *dentry; 2480 unsigned seq, r_seq, d_seq; 2647 unsigned seq, r_seq, d_seq; 2481 2648 2482 if (unlikely(!new)) 2649 if (unlikely(!new)) 2483 return ERR_PTR(-ENOMEM); 2650 return ERR_PTR(-ENOMEM); 2484 2651 2485 retry: 2652 retry: 2486 rcu_read_lock(); 2653 rcu_read_lock(); 2487 seq = smp_load_acquire(&parent->d_ino 2654 seq = smp_load_acquire(&parent->d_inode->i_dir_seq); 2488 r_seq = read_seqbegin(&rename_lock); 2655 r_seq = read_seqbegin(&rename_lock); 2489 dentry = __d_lookup_rcu(parent, name, 2656 dentry = __d_lookup_rcu(parent, name, &d_seq); 2490 if (unlikely(dentry)) { 2657 if (unlikely(dentry)) { 2491 if (!lockref_get_not_dead(&de 2658 if (!lockref_get_not_dead(&dentry->d_lockref)) { 2492 rcu_read_unlock(); 2659 rcu_read_unlock(); 2493 goto retry; 2660 goto retry; 2494 } 2661 } 2495 if (read_seqcount_retry(&dent 2662 if (read_seqcount_retry(&dentry->d_seq, d_seq)) { 2496 rcu_read_unlock(); 2663 rcu_read_unlock(); 2497 dput(dentry); 2664 dput(dentry); 2498 goto retry; 2665 goto retry; 2499 } 2666 } 2500 rcu_read_unlock(); 2667 rcu_read_unlock(); 2501 dput(new); 2668 dput(new); 2502 return dentry; 2669 return dentry; 2503 } 2670 } 2504 if (unlikely(read_seqretry(&rename_lo 2671 if (unlikely(read_seqretry(&rename_lock, r_seq))) { 2505 rcu_read_unlock(); 2672 rcu_read_unlock(); 2506 goto retry; 2673 goto retry; 2507 } 2674 } 2508 2675 2509 if (unlikely(seq & 1)) { 2676 if (unlikely(seq & 1)) { 2510 rcu_read_unlock(); 2677 rcu_read_unlock(); 2511 goto retry; 2678 goto retry; 2512 } 2679 } 2513 2680 2514 hlist_bl_lock(b); 2681 hlist_bl_lock(b); 2515 if (unlikely(READ_ONCE(parent->d_inod 2682 if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) { 2516 hlist_bl_unlock(b); 2683 hlist_bl_unlock(b); 2517 rcu_read_unlock(); 2684 rcu_read_unlock(); 2518 goto retry; 2685 goto retry; 2519 } 2686 } 2520 /* 2687 /* 2521 * No changes for the parent since th 2688 * No changes for the parent since the beginning of d_lookup(). 2522 * Since all removals from the chain 2689 * Since all removals from the chain happen with hlist_bl_lock(), 2523 * any potential in-lookup matches ar 2690 * any potential in-lookup matches are going to stay here until 2524 * we unlock the chain. All fields a 2691 * we unlock the chain. All fields are stable in everything 2525 * we encounter. 2692 * we encounter. 2526 */ 2693 */ 2527 hlist_bl_for_each_entry(dentry, node, 2694 hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) { 2528 if (dentry->d_name.hash != ha 2695 if (dentry->d_name.hash != hash) 2529 continue; 2696 continue; 2530 if (dentry->d_parent != paren 2697 if (dentry->d_parent != parent) 2531 continue; 2698 continue; 2532 if (!d_same_name(dentry, pare 2699 if (!d_same_name(dentry, parent, name)) 2533 continue; 2700 continue; 2534 hlist_bl_unlock(b); 2701 hlist_bl_unlock(b); 2535 /* now we can try to grab a r 2702 /* now we can try to grab a reference */ 2536 if (!lockref_get_not_dead(&de 2703 if (!lockref_get_not_dead(&dentry->d_lockref)) { 2537 rcu_read_unlock(); 2704 rcu_read_unlock(); 2538 goto retry; 2705 goto retry; 2539 } 2706 } 2540 2707 2541 rcu_read_unlock(); 2708 rcu_read_unlock(); 2542 /* 2709 /* 2543 * somebody is likely to be s 2710 * somebody is likely to be still doing lookup for it; 2544 * wait for them to finish 2711 * wait for them to finish 2545 */ 2712 */ 2546 spin_lock(&dentry->d_lock); 2713 spin_lock(&dentry->d_lock); 2547 d_wait_lookup(dentry); 2714 d_wait_lookup(dentry); 2548 /* 2715 /* 2549 * it's not in-lookup anymore 2716 * it's not in-lookup anymore; in principle we should repeat 2550 * everything from dcache loo 2717 * everything from dcache lookup, but it's likely to be what 2551 * d_lookup() would've found 2718 * d_lookup() would've found anyway. If it is, just return it; 2552 * otherwise we really have t 2719 * otherwise we really have to repeat the whole thing. 2553 */ 2720 */ 2554 if (unlikely(dentry->d_name.h 2721 if (unlikely(dentry->d_name.hash != hash)) 2555 goto mismatch; 2722 goto mismatch; 2556 if (unlikely(dentry->d_parent 2723 if (unlikely(dentry->d_parent != parent)) 2557 goto mismatch; 2724 goto mismatch; 2558 if (unlikely(d_unhashed(dentr 2725 if (unlikely(d_unhashed(dentry))) 2559 goto mismatch; 2726 goto mismatch; 2560 if (unlikely(!d_same_name(den 2727 if (unlikely(!d_same_name(dentry, parent, name))) 2561 goto mismatch; 2728 goto mismatch; 2562 /* OK, it *is* a hashed match 2729 /* OK, it *is* a hashed match; return it */ 2563 spin_unlock(&dentry->d_lock); 2730 spin_unlock(&dentry->d_lock); 2564 dput(new); 2731 dput(new); 2565 return dentry; 2732 return dentry; 2566 } 2733 } 2567 rcu_read_unlock(); 2734 rcu_read_unlock(); 2568 /* we can't take ->d_lock here; it's 2735 /* we can't take ->d_lock here; it's OK, though. */ 2569 new->d_flags |= DCACHE_PAR_LOOKUP; 2736 new->d_flags |= DCACHE_PAR_LOOKUP; 2570 new->d_wait = wq; 2737 new->d_wait = wq; 2571 hlist_bl_add_head(&new->d_u.d_in_look !! 2738 hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b); 2572 hlist_bl_unlock(b); 2739 hlist_bl_unlock(b); 2573 return new; 2740 return new; 2574 mismatch: 2741 mismatch: 2575 spin_unlock(&dentry->d_lock); 2742 spin_unlock(&dentry->d_lock); 2576 dput(dentry); 2743 dput(dentry); 2577 goto retry; 2744 goto retry; 2578 } 2745 } 2579 EXPORT_SYMBOL(d_alloc_parallel); 2746 EXPORT_SYMBOL(d_alloc_parallel); 2580 2747 2581 /* 2748 /* 2582 * - Unhash the dentry 2749 * - Unhash the dentry 2583 * - Retrieve and clear the waitqueue head in 2750 * - Retrieve and clear the waitqueue head in dentry 2584 * - Return the waitqueue head 2751 * - Return the waitqueue head 2585 */ 2752 */ 2586 static wait_queue_head_t *__d_lookup_unhash(s 2753 static wait_queue_head_t *__d_lookup_unhash(struct dentry *dentry) 2587 { 2754 { 2588 wait_queue_head_t *d_wait; 2755 wait_queue_head_t *d_wait; 2589 struct hlist_bl_head *b; 2756 struct hlist_bl_head *b; 2590 2757 2591 lockdep_assert_held(&dentry->d_lock); 2758 lockdep_assert_held(&dentry->d_lock); 2592 2759 2593 b = in_lookup_hash(dentry->d_parent, 2760 b = in_lookup_hash(dentry->d_parent, dentry->d_name.hash); 2594 hlist_bl_lock(b); 2761 hlist_bl_lock(b); 2595 dentry->d_flags &= ~DCACHE_PAR_LOOKUP 2762 dentry->d_flags &= ~DCACHE_PAR_LOOKUP; 2596 __hlist_bl_del(&dentry->d_u.d_in_look 2763 __hlist_bl_del(&dentry->d_u.d_in_lookup_hash); 2597 d_wait = dentry->d_wait; 2764 d_wait = dentry->d_wait; 2598 dentry->d_wait = NULL; 2765 dentry->d_wait = NULL; 2599 hlist_bl_unlock(b); 2766 hlist_bl_unlock(b); 2600 INIT_HLIST_NODE(&dentry->d_u.d_alias) 2767 INIT_HLIST_NODE(&dentry->d_u.d_alias); 2601 INIT_LIST_HEAD(&dentry->d_lru); 2768 INIT_LIST_HEAD(&dentry->d_lru); 2602 return d_wait; 2769 return d_wait; 2603 } 2770 } 2604 2771 2605 void __d_lookup_unhash_wake(struct dentry *de 2772 void __d_lookup_unhash_wake(struct dentry *dentry) 2606 { 2773 { 2607 spin_lock(&dentry->d_lock); 2774 spin_lock(&dentry->d_lock); 2608 wake_up_all(__d_lookup_unhash(dentry) 2775 wake_up_all(__d_lookup_unhash(dentry)); 2609 spin_unlock(&dentry->d_lock); 2776 spin_unlock(&dentry->d_lock); 2610 } 2777 } 2611 EXPORT_SYMBOL(__d_lookup_unhash_wake); 2778 EXPORT_SYMBOL(__d_lookup_unhash_wake); 2612 2779 2613 /* inode->i_lock held if inode is non-NULL */ 2780 /* inode->i_lock held if inode is non-NULL */ 2614 2781 2615 static inline void __d_add(struct dentry *den 2782 static inline void __d_add(struct dentry *dentry, struct inode *inode) 2616 { 2783 { 2617 wait_queue_head_t *d_wait; 2784 wait_queue_head_t *d_wait; 2618 struct inode *dir = NULL; 2785 struct inode *dir = NULL; 2619 unsigned n; 2786 unsigned n; 2620 spin_lock(&dentry->d_lock); 2787 spin_lock(&dentry->d_lock); 2621 if (unlikely(d_in_lookup(dentry))) { 2788 if (unlikely(d_in_lookup(dentry))) { 2622 dir = dentry->d_parent->d_ino 2789 dir = dentry->d_parent->d_inode; 2623 n = start_dir_add(dir); 2790 n = start_dir_add(dir); 2624 d_wait = __d_lookup_unhash(de 2791 d_wait = __d_lookup_unhash(dentry); 2625 } 2792 } 2626 if (inode) { 2793 if (inode) { 2627 unsigned add_flags = d_flags_ 2794 unsigned add_flags = d_flags_for_inode(inode); 2628 hlist_add_head(&dentry->d_u.d 2795 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry); 2629 raw_write_seqcount_begin(&den 2796 raw_write_seqcount_begin(&dentry->d_seq); 2630 __d_set_inode_and_type(dentry 2797 __d_set_inode_and_type(dentry, inode, add_flags); 2631 raw_write_seqcount_end(&dentr 2798 raw_write_seqcount_end(&dentry->d_seq); 2632 fsnotify_update_flags(dentry) 2799 fsnotify_update_flags(dentry); 2633 } 2800 } 2634 __d_rehash(dentry); 2801 __d_rehash(dentry); 2635 if (dir) 2802 if (dir) 2636 end_dir_add(dir, n, d_wait); 2803 end_dir_add(dir, n, d_wait); 2637 spin_unlock(&dentry->d_lock); 2804 spin_unlock(&dentry->d_lock); 2638 if (inode) 2805 if (inode) 2639 spin_unlock(&inode->i_lock); 2806 spin_unlock(&inode->i_lock); 2640 } 2807 } 2641 2808 2642 /** 2809 /** 2643 * d_add - add dentry to hash queues 2810 * d_add - add dentry to hash queues 2644 * @entry: dentry to add 2811 * @entry: dentry to add 2645 * @inode: The inode to attach to this dentry 2812 * @inode: The inode to attach to this dentry 2646 * 2813 * 2647 * This adds the entry to the hash queues and 2814 * This adds the entry to the hash queues and initializes @inode. 2648 * The entry was actually filled in earlier d 2815 * The entry was actually filled in earlier during d_alloc(). 2649 */ 2816 */ 2650 2817 2651 void d_add(struct dentry *entry, struct inode 2818 void d_add(struct dentry *entry, struct inode *inode) 2652 { 2819 { 2653 if (inode) { 2820 if (inode) { 2654 security_d_instantiate(entry, 2821 security_d_instantiate(entry, inode); 2655 spin_lock(&inode->i_lock); 2822 spin_lock(&inode->i_lock); 2656 } 2823 } 2657 __d_add(entry, inode); 2824 __d_add(entry, inode); 2658 } 2825 } 2659 EXPORT_SYMBOL(d_add); 2826 EXPORT_SYMBOL(d_add); 2660 2827 2661 /** 2828 /** 2662 * d_exact_alias - find and hash an exact unh 2829 * d_exact_alias - find and hash an exact unhashed alias 2663 * @entry: dentry to add 2830 * @entry: dentry to add 2664 * @inode: The inode to go with this dentry 2831 * @inode: The inode to go with this dentry 2665 * 2832 * 2666 * If an unhashed dentry with the same name/p 2833 * If an unhashed dentry with the same name/parent and desired 2667 * inode already exists, hash and return it. 2834 * inode already exists, hash and return it. Otherwise, return 2668 * NULL. 2835 * NULL. 2669 * 2836 * 2670 * Parent directory should be locked. 2837 * Parent directory should be locked. 2671 */ 2838 */ 2672 struct dentry *d_exact_alias(struct dentry *e 2839 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode) 2673 { 2840 { 2674 struct dentry *alias; 2841 struct dentry *alias; 2675 unsigned int hash = entry->d_name.has 2842 unsigned int hash = entry->d_name.hash; 2676 2843 2677 spin_lock(&inode->i_lock); 2844 spin_lock(&inode->i_lock); 2678 hlist_for_each_entry(alias, &inode->i 2845 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { 2679 /* 2846 /* 2680 * Don't need alias->d_lock h 2847 * Don't need alias->d_lock here, because aliases with 2681 * d_parent == entry->d_paren 2848 * d_parent == entry->d_parent are not subject to name or 2682 * parent changes, because th 2849 * parent changes, because the parent inode i_mutex is held. 2683 */ 2850 */ 2684 if (alias->d_name.hash != has 2851 if (alias->d_name.hash != hash) 2685 continue; 2852 continue; 2686 if (alias->d_parent != entry- 2853 if (alias->d_parent != entry->d_parent) 2687 continue; 2854 continue; 2688 if (!d_same_name(alias, entry 2855 if (!d_same_name(alias, entry->d_parent, &entry->d_name)) 2689 continue; 2856 continue; 2690 spin_lock(&alias->d_lock); 2857 spin_lock(&alias->d_lock); 2691 if (!d_unhashed(alias)) { 2858 if (!d_unhashed(alias)) { 2692 spin_unlock(&alias->d 2859 spin_unlock(&alias->d_lock); 2693 alias = NULL; 2860 alias = NULL; 2694 } else { 2861 } else { 2695 dget_dlock(alias); !! 2862 __dget_dlock(alias); 2696 __d_rehash(alias); 2863 __d_rehash(alias); 2697 spin_unlock(&alias->d 2864 spin_unlock(&alias->d_lock); 2698 } 2865 } 2699 spin_unlock(&inode->i_lock); 2866 spin_unlock(&inode->i_lock); 2700 return alias; 2867 return alias; 2701 } 2868 } 2702 spin_unlock(&inode->i_lock); 2869 spin_unlock(&inode->i_lock); 2703 return NULL; 2870 return NULL; 2704 } 2871 } 2705 EXPORT_SYMBOL(d_exact_alias); 2872 EXPORT_SYMBOL(d_exact_alias); 2706 2873 2707 static void swap_names(struct dentry *dentry, 2874 static void swap_names(struct dentry *dentry, struct dentry *target) 2708 { 2875 { 2709 if (unlikely(dname_external(target))) 2876 if (unlikely(dname_external(target))) { 2710 if (unlikely(dname_external(d 2877 if (unlikely(dname_external(dentry))) { 2711 /* 2878 /* 2712 * Both external: swa 2879 * Both external: swap the pointers 2713 */ 2880 */ 2714 swap(target->d_name.n 2881 swap(target->d_name.name, dentry->d_name.name); 2715 } else { 2882 } else { 2716 /* 2883 /* 2717 * dentry:internal, t 2884 * dentry:internal, target:external. Steal target's 2718 * storage and make t 2885 * storage and make target internal. 2719 */ 2886 */ 2720 memcpy(target->d_inam 2887 memcpy(target->d_iname, dentry->d_name.name, 2721 dentr 2888 dentry->d_name.len + 1); 2722 dentry->d_name.name = 2889 dentry->d_name.name = target->d_name.name; 2723 target->d_name.name = 2890 target->d_name.name = target->d_iname; 2724 } 2891 } 2725 } else { 2892 } else { 2726 if (unlikely(dname_external(d 2893 if (unlikely(dname_external(dentry))) { 2727 /* 2894 /* 2728 * dentry:external, t 2895 * dentry:external, target:internal. Give dentry's 2729 * storage to target 2896 * storage to target and make dentry internal 2730 */ 2897 */ 2731 memcpy(dentry->d_inam 2898 memcpy(dentry->d_iname, target->d_name.name, 2732 targe 2899 target->d_name.len + 1); 2733 target->d_name.name = 2900 target->d_name.name = dentry->d_name.name; 2734 dentry->d_name.name = 2901 dentry->d_name.name = dentry->d_iname; 2735 } else { 2902 } else { 2736 /* 2903 /* 2737 * Both are internal. 2904 * Both are internal. 2738 */ 2905 */ 2739 unsigned int i; 2906 unsigned int i; 2740 BUILD_BUG_ON(!IS_ALIG 2907 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long))); 2741 for (i = 0; i < DNAME 2908 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) { 2742 swap(((long * 2909 swap(((long *) &dentry->d_iname)[i], 2743 ((long * 2910 ((long *) &target->d_iname)[i]); 2744 } 2911 } 2745 } 2912 } 2746 } 2913 } 2747 swap(dentry->d_name.hash_len, target- 2914 swap(dentry->d_name.hash_len, target->d_name.hash_len); 2748 } 2915 } 2749 2916 2750 static void copy_name(struct dentry *dentry, 2917 static void copy_name(struct dentry *dentry, struct dentry *target) 2751 { 2918 { 2752 struct external_name *old_name = NULL 2919 struct external_name *old_name = NULL; 2753 if (unlikely(dname_external(dentry))) 2920 if (unlikely(dname_external(dentry))) 2754 old_name = external_name(dent 2921 old_name = external_name(dentry); 2755 if (unlikely(dname_external(target))) 2922 if (unlikely(dname_external(target))) { 2756 atomic_inc(&external_name(tar 2923 atomic_inc(&external_name(target)->u.count); 2757 dentry->d_name = target->d_na 2924 dentry->d_name = target->d_name; 2758 } else { 2925 } else { 2759 memcpy(dentry->d_iname, targe 2926 memcpy(dentry->d_iname, target->d_name.name, 2760 target->d_nam 2927 target->d_name.len + 1); 2761 dentry->d_name.name = dentry- 2928 dentry->d_name.name = dentry->d_iname; 2762 dentry->d_name.hash_len = tar 2929 dentry->d_name.hash_len = target->d_name.hash_len; 2763 } 2930 } 2764 if (old_name && likely(atomic_dec_and 2931 if (old_name && likely(atomic_dec_and_test(&old_name->u.count))) 2765 kfree_rcu(old_name, u.head); 2932 kfree_rcu(old_name, u.head); 2766 } 2933 } 2767 2934 2768 /* 2935 /* 2769 * __d_move - move a dentry 2936 * __d_move - move a dentry 2770 * @dentry: entry to move 2937 * @dentry: entry to move 2771 * @target: new dentry 2938 * @target: new dentry 2772 * @exchange: exchange the two dentries 2939 * @exchange: exchange the two dentries 2773 * 2940 * 2774 * Update the dcache to reflect the move of a 2941 * Update the dcache to reflect the move of a file name. Negative 2775 * dcache entries should not be moved in this 2942 * dcache entries should not be moved in this way. Caller must hold 2776 * rename_lock, the i_mutex of the source and 2943 * rename_lock, the i_mutex of the source and target directories, 2777 * and the sb->s_vfs_rename_mutex if they dif 2944 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename(). 2778 */ 2945 */ 2779 static void __d_move(struct dentry *dentry, s 2946 static void __d_move(struct dentry *dentry, struct dentry *target, 2780 bool exchange) 2947 bool exchange) 2781 { 2948 { 2782 struct dentry *old_parent, *p; 2949 struct dentry *old_parent, *p; 2783 wait_queue_head_t *d_wait; 2950 wait_queue_head_t *d_wait; 2784 struct inode *dir = NULL; 2951 struct inode *dir = NULL; 2785 unsigned n; 2952 unsigned n; 2786 2953 2787 WARN_ON(!dentry->d_inode); 2954 WARN_ON(!dentry->d_inode); 2788 if (WARN_ON(dentry == target)) 2955 if (WARN_ON(dentry == target)) 2789 return; 2956 return; 2790 2957 2791 BUG_ON(d_ancestor(target, dentry)); 2958 BUG_ON(d_ancestor(target, dentry)); 2792 old_parent = dentry->d_parent; 2959 old_parent = dentry->d_parent; 2793 p = d_ancestor(old_parent, target); 2960 p = d_ancestor(old_parent, target); 2794 if (IS_ROOT(dentry)) { 2961 if (IS_ROOT(dentry)) { 2795 BUG_ON(p); 2962 BUG_ON(p); 2796 spin_lock(&target->d_parent-> 2963 spin_lock(&target->d_parent->d_lock); 2797 } else if (!p) { 2964 } else if (!p) { 2798 /* target is not a descendent 2965 /* target is not a descendent of dentry->d_parent */ 2799 spin_lock(&target->d_parent-> 2966 spin_lock(&target->d_parent->d_lock); 2800 spin_lock_nested(&old_parent- 2967 spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED); 2801 } else { 2968 } else { 2802 BUG_ON(p == dentry); 2969 BUG_ON(p == dentry); 2803 spin_lock(&old_parent->d_lock 2970 spin_lock(&old_parent->d_lock); 2804 if (p != target) 2971 if (p != target) 2805 spin_lock_nested(&tar 2972 spin_lock_nested(&target->d_parent->d_lock, 2806 DENTR 2973 DENTRY_D_LOCK_NESTED); 2807 } 2974 } 2808 spin_lock_nested(&dentry->d_lock, 2); 2975 spin_lock_nested(&dentry->d_lock, 2); 2809 spin_lock_nested(&target->d_lock, 3); 2976 spin_lock_nested(&target->d_lock, 3); 2810 2977 2811 if (unlikely(d_in_lookup(target))) { 2978 if (unlikely(d_in_lookup(target))) { 2812 dir = target->d_parent->d_ino 2979 dir = target->d_parent->d_inode; 2813 n = start_dir_add(dir); 2980 n = start_dir_add(dir); 2814 d_wait = __d_lookup_unhash(ta 2981 d_wait = __d_lookup_unhash(target); 2815 } 2982 } 2816 2983 2817 write_seqcount_begin(&dentry->d_seq); 2984 write_seqcount_begin(&dentry->d_seq); 2818 write_seqcount_begin_nested(&target-> 2985 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED); 2819 2986 2820 /* unhash both */ 2987 /* unhash both */ 2821 if (!d_unhashed(dentry)) 2988 if (!d_unhashed(dentry)) 2822 ___d_drop(dentry); 2989 ___d_drop(dentry); 2823 if (!d_unhashed(target)) 2990 if (!d_unhashed(target)) 2824 ___d_drop(target); 2991 ___d_drop(target); 2825 2992 2826 /* ... and switch them in the tree */ 2993 /* ... and switch them in the tree */ 2827 dentry->d_parent = target->d_parent; 2994 dentry->d_parent = target->d_parent; 2828 if (!exchange) { 2995 if (!exchange) { 2829 copy_name(dentry, target); 2996 copy_name(dentry, target); 2830 target->d_hash.pprev = NULL; 2997 target->d_hash.pprev = NULL; 2831 dentry->d_parent->d_lockref.c 2998 dentry->d_parent->d_lockref.count++; 2832 if (dentry != old_parent) /* 2999 if (dentry != old_parent) /* wasn't IS_ROOT */ 2833 WARN_ON(!--old_parent 3000 WARN_ON(!--old_parent->d_lockref.count); 2834 } else { 3001 } else { 2835 target->d_parent = old_parent 3002 target->d_parent = old_parent; 2836 swap_names(dentry, target); 3003 swap_names(dentry, target); 2837 if (!hlist_unhashed(&target-> !! 3004 list_move(&target->d_child, &target->d_parent->d_subdirs); 2838 __hlist_del(&target-> << 2839 hlist_add_head(&target->d_sib << 2840 __d_rehash(target); 3005 __d_rehash(target); 2841 fsnotify_update_flags(target) 3006 fsnotify_update_flags(target); 2842 } 3007 } 2843 if (!hlist_unhashed(&dentry->d_sib)) !! 3008 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs); 2844 __hlist_del(&dentry->d_sib); << 2845 hlist_add_head(&dentry->d_sib, &dentr << 2846 __d_rehash(dentry); 3009 __d_rehash(dentry); 2847 fsnotify_update_flags(dentry); 3010 fsnotify_update_flags(dentry); 2848 fscrypt_handle_d_move(dentry); 3011 fscrypt_handle_d_move(dentry); 2849 3012 2850 write_seqcount_end(&target->d_seq); 3013 write_seqcount_end(&target->d_seq); 2851 write_seqcount_end(&dentry->d_seq); 3014 write_seqcount_end(&dentry->d_seq); 2852 3015 2853 if (dir) 3016 if (dir) 2854 end_dir_add(dir, n, d_wait); 3017 end_dir_add(dir, n, d_wait); 2855 3018 2856 if (dentry->d_parent != old_parent) 3019 if (dentry->d_parent != old_parent) 2857 spin_unlock(&dentry->d_parent 3020 spin_unlock(&dentry->d_parent->d_lock); 2858 if (dentry != old_parent) 3021 if (dentry != old_parent) 2859 spin_unlock(&old_parent->d_lo 3022 spin_unlock(&old_parent->d_lock); 2860 spin_unlock(&target->d_lock); 3023 spin_unlock(&target->d_lock); 2861 spin_unlock(&dentry->d_lock); 3024 spin_unlock(&dentry->d_lock); 2862 } 3025 } 2863 3026 2864 /* 3027 /* 2865 * d_move - move a dentry 3028 * d_move - move a dentry 2866 * @dentry: entry to move 3029 * @dentry: entry to move 2867 * @target: new dentry 3030 * @target: new dentry 2868 * 3031 * 2869 * Update the dcache to reflect the move of a 3032 * Update the dcache to reflect the move of a file name. Negative 2870 * dcache entries should not be moved in this 3033 * dcache entries should not be moved in this way. See the locking 2871 * requirements for __d_move. 3034 * requirements for __d_move. 2872 */ 3035 */ 2873 void d_move(struct dentry *dentry, struct den 3036 void d_move(struct dentry *dentry, struct dentry *target) 2874 { 3037 { 2875 write_seqlock(&rename_lock); 3038 write_seqlock(&rename_lock); 2876 __d_move(dentry, target, false); 3039 __d_move(dentry, target, false); 2877 write_sequnlock(&rename_lock); 3040 write_sequnlock(&rename_lock); 2878 } 3041 } 2879 EXPORT_SYMBOL(d_move); 3042 EXPORT_SYMBOL(d_move); 2880 3043 2881 /* 3044 /* 2882 * d_exchange - exchange two dentries 3045 * d_exchange - exchange two dentries 2883 * @dentry1: first dentry 3046 * @dentry1: first dentry 2884 * @dentry2: second dentry 3047 * @dentry2: second dentry 2885 */ 3048 */ 2886 void d_exchange(struct dentry *dentry1, struc 3049 void d_exchange(struct dentry *dentry1, struct dentry *dentry2) 2887 { 3050 { 2888 write_seqlock(&rename_lock); 3051 write_seqlock(&rename_lock); 2889 3052 2890 WARN_ON(!dentry1->d_inode); 3053 WARN_ON(!dentry1->d_inode); 2891 WARN_ON(!dentry2->d_inode); 3054 WARN_ON(!dentry2->d_inode); 2892 WARN_ON(IS_ROOT(dentry1)); 3055 WARN_ON(IS_ROOT(dentry1)); 2893 WARN_ON(IS_ROOT(dentry2)); 3056 WARN_ON(IS_ROOT(dentry2)); 2894 3057 2895 __d_move(dentry1, dentry2, true); 3058 __d_move(dentry1, dentry2, true); 2896 3059 2897 write_sequnlock(&rename_lock); 3060 write_sequnlock(&rename_lock); 2898 } 3061 } 2899 3062 2900 /** 3063 /** 2901 * d_ancestor - search for an ancestor 3064 * d_ancestor - search for an ancestor 2902 * @p1: ancestor dentry 3065 * @p1: ancestor dentry 2903 * @p2: child dentry 3066 * @p2: child dentry 2904 * 3067 * 2905 * Returns the ancestor dentry of p2 which is 3068 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is 2906 * an ancestor of p2, else NULL. 3069 * an ancestor of p2, else NULL. 2907 */ 3070 */ 2908 struct dentry *d_ancestor(struct dentry *p1, 3071 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2) 2909 { 3072 { 2910 struct dentry *p; 3073 struct dentry *p; 2911 3074 2912 for (p = p2; !IS_ROOT(p); p = p->d_pa 3075 for (p = p2; !IS_ROOT(p); p = p->d_parent) { 2913 if (p->d_parent == p1) 3076 if (p->d_parent == p1) 2914 return p; 3077 return p; 2915 } 3078 } 2916 return NULL; 3079 return NULL; 2917 } 3080 } 2918 3081 2919 /* 3082 /* 2920 * This helper attempts to cope with remotely 3083 * This helper attempts to cope with remotely renamed directories 2921 * 3084 * 2922 * It assumes that the caller is already hold 3085 * It assumes that the caller is already holding 2923 * dentry->d_parent->d_inode->i_mutex, and re 3086 * dentry->d_parent->d_inode->i_mutex, and rename_lock 2924 * 3087 * 2925 * Note: If ever the locking in lock_rename() 3088 * Note: If ever the locking in lock_rename() changes, then please 2926 * remember to update this too... 3089 * remember to update this too... 2927 */ 3090 */ 2928 static int __d_unalias(struct dentry *dentry, !! 3091 static int __d_unalias(struct inode *inode, >> 3092 struct dentry *dentry, struct dentry *alias) 2929 { 3093 { 2930 struct mutex *m1 = NULL; 3094 struct mutex *m1 = NULL; 2931 struct rw_semaphore *m2 = NULL; 3095 struct rw_semaphore *m2 = NULL; 2932 int ret = -ESTALE; 3096 int ret = -ESTALE; 2933 3097 2934 /* If alias and dentry share a parent 3098 /* If alias and dentry share a parent, then no extra locks required */ 2935 if (alias->d_parent == dentry->d_pare 3099 if (alias->d_parent == dentry->d_parent) 2936 goto out_unalias; 3100 goto out_unalias; 2937 3101 2938 /* See lock_rename() */ 3102 /* See lock_rename() */ 2939 if (!mutex_trylock(&dentry->d_sb->s_v 3103 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex)) 2940 goto out_err; 3104 goto out_err; 2941 m1 = &dentry->d_sb->s_vfs_rename_mute 3105 m1 = &dentry->d_sb->s_vfs_rename_mutex; 2942 if (!inode_trylock_shared(alias->d_pa 3106 if (!inode_trylock_shared(alias->d_parent->d_inode)) 2943 goto out_err; 3107 goto out_err; 2944 m2 = &alias->d_parent->d_inode->i_rws 3108 m2 = &alias->d_parent->d_inode->i_rwsem; 2945 out_unalias: 3109 out_unalias: 2946 __d_move(alias, dentry, false); 3110 __d_move(alias, dentry, false); 2947 ret = 0; 3111 ret = 0; 2948 out_err: 3112 out_err: 2949 if (m2) 3113 if (m2) 2950 up_read(m2); 3114 up_read(m2); 2951 if (m1) 3115 if (m1) 2952 mutex_unlock(m1); 3116 mutex_unlock(m1); 2953 return ret; 3117 return ret; 2954 } 3118 } 2955 3119 2956 /** 3120 /** 2957 * d_splice_alias - splice a disconnected den 3121 * d_splice_alias - splice a disconnected dentry into the tree if one exists 2958 * @inode: the inode which may have a discon 3122 * @inode: the inode which may have a disconnected dentry 2959 * @dentry: a negative dentry which we want t 3123 * @dentry: a negative dentry which we want to point to the inode. 2960 * 3124 * 2961 * If inode is a directory and has an IS_ROOT 3125 * If inode is a directory and has an IS_ROOT alias, then d_move that in 2962 * place of the given dentry and return it, e 3126 * place of the given dentry and return it, else simply d_add the inode 2963 * to the dentry and return NULL. 3127 * to the dentry and return NULL. 2964 * 3128 * 2965 * If a non-IS_ROOT directory is found, the f 3129 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and 2966 * we should error out: directories can't hav 3130 * we should error out: directories can't have multiple aliases. 2967 * 3131 * 2968 * This is needed in the lookup routine of an 3132 * This is needed in the lookup routine of any filesystem that is exportable 2969 * (via knfsd) so that we can build dcache pa 3133 * (via knfsd) so that we can build dcache paths to directories effectively. 2970 * 3134 * 2971 * If a dentry was found and moved, then it i 3135 * If a dentry was found and moved, then it is returned. Otherwise NULL 2972 * is returned. This matches the expected re 3136 * is returned. This matches the expected return value of ->lookup. 2973 * 3137 * 2974 * Cluster filesystems may call this function 3138 * Cluster filesystems may call this function with a negative, hashed dentry. 2975 * In that case, we know that the inode will 3139 * In that case, we know that the inode will be a regular file, and also this 2976 * will only occur during atomic_open. So we 3140 * will only occur during atomic_open. So we need to check for the dentry 2977 * being already hashed only in the final cas 3141 * being already hashed only in the final case. 2978 */ 3142 */ 2979 struct dentry *d_splice_alias(struct inode *i 3143 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry) 2980 { 3144 { 2981 if (IS_ERR(inode)) 3145 if (IS_ERR(inode)) 2982 return ERR_CAST(inode); 3146 return ERR_CAST(inode); 2983 3147 2984 BUG_ON(!d_unhashed(dentry)); 3148 BUG_ON(!d_unhashed(dentry)); 2985 3149 2986 if (!inode) 3150 if (!inode) 2987 goto out; 3151 goto out; 2988 3152 2989 security_d_instantiate(dentry, inode) 3153 security_d_instantiate(dentry, inode); 2990 spin_lock(&inode->i_lock); 3154 spin_lock(&inode->i_lock); 2991 if (S_ISDIR(inode->i_mode)) { 3155 if (S_ISDIR(inode->i_mode)) { 2992 struct dentry *new = __d_find 3156 struct dentry *new = __d_find_any_alias(inode); 2993 if (unlikely(new)) { 3157 if (unlikely(new)) { 2994 /* The reference to n 3158 /* The reference to new ensures it remains an alias */ 2995 spin_unlock(&inode->i 3159 spin_unlock(&inode->i_lock); 2996 write_seqlock(&rename 3160 write_seqlock(&rename_lock); 2997 if (unlikely(d_ancest 3161 if (unlikely(d_ancestor(new, dentry))) { 2998 write_sequnlo 3162 write_sequnlock(&rename_lock); 2999 dput(new); 3163 dput(new); 3000 new = ERR_PTR 3164 new = ERR_PTR(-ELOOP); 3001 pr_warn_ratel 3165 pr_warn_ratelimited( 3002 "VFS: 3166 "VFS: Lookup of '%s' in %s %s" 3003 " wou 3167 " would have caused loop\n", 3004 dentr 3168 dentry->d_name.name, 3005 inode 3169 inode->i_sb->s_type->name, 3006 inode 3170 inode->i_sb->s_id); 3007 } else if (!IS_ROOT(n 3171 } else if (!IS_ROOT(new)) { 3008 struct dentry 3172 struct dentry *old_parent = dget(new->d_parent); 3009 int err = __d !! 3173 int err = __d_unalias(inode, dentry, new); 3010 write_sequnlo 3174 write_sequnlock(&rename_lock); 3011 if (err) { 3175 if (err) { 3012 dput( 3176 dput(new); 3013 new = 3177 new = ERR_PTR(err); 3014 } 3178 } 3015 dput(old_pare 3179 dput(old_parent); 3016 } else { 3180 } else { 3017 __d_move(new, 3181 __d_move(new, dentry, false); 3018 write_sequnlo 3182 write_sequnlock(&rename_lock); 3019 } 3183 } 3020 iput(inode); 3184 iput(inode); 3021 return new; 3185 return new; 3022 } 3186 } 3023 } 3187 } 3024 out: 3188 out: 3025 __d_add(dentry, inode); 3189 __d_add(dentry, inode); 3026 return NULL; 3190 return NULL; 3027 } 3191 } 3028 EXPORT_SYMBOL(d_splice_alias); 3192 EXPORT_SYMBOL(d_splice_alias); 3029 3193 3030 /* 3194 /* 3031 * Test whether new_dentry is a subdirectory 3195 * Test whether new_dentry is a subdirectory of old_dentry. 3032 * 3196 * 3033 * Trivially implemented using the dcache str 3197 * Trivially implemented using the dcache structure 3034 */ 3198 */ 3035 3199 3036 /** 3200 /** 3037 * is_subdir - is new dentry a subdirectory o 3201 * is_subdir - is new dentry a subdirectory of old_dentry 3038 * @new_dentry: new dentry 3202 * @new_dentry: new dentry 3039 * @old_dentry: old dentry 3203 * @old_dentry: old dentry 3040 * 3204 * 3041 * Returns true if new_dentry is a subdirecto 3205 * Returns true if new_dentry is a subdirectory of the parent (at any depth). 3042 * Returns false otherwise. 3206 * Returns false otherwise. 3043 * Caller must ensure that "new_dentry" is pi 3207 * Caller must ensure that "new_dentry" is pinned before calling is_subdir() 3044 */ 3208 */ 3045 3209 3046 bool is_subdir(struct dentry *new_dentry, str 3210 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry) 3047 { 3211 { 3048 bool subdir; 3212 bool subdir; 3049 unsigned seq; 3213 unsigned seq; 3050 3214 3051 if (new_dentry == old_dentry) 3215 if (new_dentry == old_dentry) 3052 return true; 3216 return true; 3053 3217 3054 /* Access d_parent under rcu as d_mov 3218 /* Access d_parent under rcu as d_move() may change it. */ 3055 rcu_read_lock(); 3219 rcu_read_lock(); 3056 seq = read_seqbegin(&rename_lock); 3220 seq = read_seqbegin(&rename_lock); 3057 subdir = d_ancestor(old_dentry, new_d 3221 subdir = d_ancestor(old_dentry, new_dentry); 3058 /* Try lockless once... */ 3222 /* Try lockless once... */ 3059 if (read_seqretry(&rename_lock, seq)) 3223 if (read_seqretry(&rename_lock, seq)) { 3060 /* ...else acquire lock for p 3224 /* ...else acquire lock for progress even on deep chains. */ 3061 read_seqlock_excl(&rename_loc 3225 read_seqlock_excl(&rename_lock); 3062 subdir = d_ancestor(old_dentr 3226 subdir = d_ancestor(old_dentry, new_dentry); 3063 read_sequnlock_excl(&rename_l 3227 read_sequnlock_excl(&rename_lock); 3064 } 3228 } 3065 rcu_read_unlock(); 3229 rcu_read_unlock(); 3066 return subdir; 3230 return subdir; 3067 } 3231 } 3068 EXPORT_SYMBOL(is_subdir); 3232 EXPORT_SYMBOL(is_subdir); 3069 3233 3070 static enum d_walk_ret d_genocide_kill(void * 3234 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry) 3071 { 3235 { 3072 struct dentry *root = data; 3236 struct dentry *root = data; 3073 if (dentry != root) { 3237 if (dentry != root) { 3074 if (d_unhashed(dentry) || !de 3238 if (d_unhashed(dentry) || !dentry->d_inode) 3075 return D_WALK_SKIP; 3239 return D_WALK_SKIP; 3076 3240 3077 if (!(dentry->d_flags & DCACH 3241 if (!(dentry->d_flags & DCACHE_GENOCIDE)) { 3078 dentry->d_flags |= DC 3242 dentry->d_flags |= DCACHE_GENOCIDE; 3079 dentry->d_lockref.cou 3243 dentry->d_lockref.count--; 3080 } 3244 } 3081 } 3245 } 3082 return D_WALK_CONTINUE; 3246 return D_WALK_CONTINUE; 3083 } 3247 } 3084 3248 3085 void d_genocide(struct dentry *parent) 3249 void d_genocide(struct dentry *parent) 3086 { 3250 { 3087 d_walk(parent, parent, d_genocide_kil 3251 d_walk(parent, parent, d_genocide_kill); 3088 } 3252 } 3089 3253 3090 void d_mark_tmpfile(struct file *file, struct !! 3254 EXPORT_SYMBOL(d_genocide); >> 3255 >> 3256 void d_tmpfile(struct file *file, struct inode *inode) 3091 { 3257 { 3092 struct dentry *dentry = file->f_path. 3258 struct dentry *dentry = file->f_path.dentry; 3093 3259 >> 3260 inode_dec_link_count(inode); 3094 BUG_ON(dentry->d_name.name != dentry- 3261 BUG_ON(dentry->d_name.name != dentry->d_iname || 3095 !hlist_unhashed(&dentry->d_u. 3262 !hlist_unhashed(&dentry->d_u.d_alias) || 3096 !d_unlinked(dentry)); 3263 !d_unlinked(dentry)); 3097 spin_lock(&dentry->d_parent->d_lock); 3264 spin_lock(&dentry->d_parent->d_lock); 3098 spin_lock_nested(&dentry->d_lock, DEN 3265 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 3099 dentry->d_name.len = sprintf(dentry-> 3266 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu", 3100 (unsigned lon 3267 (unsigned long long)inode->i_ino); 3101 spin_unlock(&dentry->d_lock); 3268 spin_unlock(&dentry->d_lock); 3102 spin_unlock(&dentry->d_parent->d_lock 3269 spin_unlock(&dentry->d_parent->d_lock); 3103 } << 3104 EXPORT_SYMBOL(d_mark_tmpfile); << 3105 << 3106 void d_tmpfile(struct file *file, struct inod << 3107 { << 3108 struct dentry *dentry = file->f_path. << 3109 << 3110 inode_dec_link_count(inode); << 3111 d_mark_tmpfile(file, inode); << 3112 d_instantiate(dentry, inode); 3270 d_instantiate(dentry, inode); 3113 } 3271 } 3114 EXPORT_SYMBOL(d_tmpfile); 3272 EXPORT_SYMBOL(d_tmpfile); 3115 3273 3116 /* << 3117 * Obtain inode number of the parent dentry. << 3118 */ << 3119 ino_t d_parent_ino(struct dentry *dentry) << 3120 { << 3121 struct dentry *parent; << 3122 struct inode *iparent; << 3123 unsigned seq; << 3124 ino_t ret; << 3125 << 3126 scoped_guard(rcu) { << 3127 seq = raw_seqcount_begin(&den << 3128 parent = READ_ONCE(dentry->d_ << 3129 iparent = d_inode_rcu(parent) << 3130 if (likely(iparent)) { << 3131 ret = iparent->i_ino; << 3132 if (!read_seqcount_re << 3133 return ret; << 3134 } << 3135 } << 3136 << 3137 spin_lock(&dentry->d_lock); << 3138 ret = dentry->d_parent->d_inode->i_in << 3139 spin_unlock(&dentry->d_lock); << 3140 return ret; << 3141 } << 3142 EXPORT_SYMBOL(d_parent_ino); << 3143 << 3144 static __initdata unsigned long dhash_entries 3274 static __initdata unsigned long dhash_entries; 3145 static int __init set_dhash_entries(char *str 3275 static int __init set_dhash_entries(char *str) 3146 { 3276 { 3147 if (!str) 3277 if (!str) 3148 return 0; 3278 return 0; 3149 dhash_entries = simple_strtoul(str, & 3279 dhash_entries = simple_strtoul(str, &str, 0); 3150 return 1; 3280 return 1; 3151 } 3281 } 3152 __setup("dhash_entries=", set_dhash_entries); 3282 __setup("dhash_entries=", set_dhash_entries); 3153 3283 3154 static void __init dcache_init_early(void) 3284 static void __init dcache_init_early(void) 3155 { 3285 { 3156 /* If hashes are distributed across N 3286 /* If hashes are distributed across NUMA nodes, defer 3157 * hash allocation until vmalloc spac 3287 * hash allocation until vmalloc space is available. 3158 */ 3288 */ 3159 if (hashdist) 3289 if (hashdist) 3160 return; 3290 return; 3161 3291 3162 dentry_hashtable = 3292 dentry_hashtable = 3163 alloc_large_system_hash("Dent 3293 alloc_large_system_hash("Dentry cache", 3164 sizeo 3294 sizeof(struct hlist_bl_head), 3165 dhash 3295 dhash_entries, 3166 13, 3296 13, 3167 HASH_ 3297 HASH_EARLY | HASH_ZERO, 3168 &d_ha 3298 &d_hash_shift, 3169 NULL, 3299 NULL, 3170 0, 3300 0, 3171 0); 3301 0); 3172 d_hash_shift = 32 - d_hash_shift; 3302 d_hash_shift = 32 - d_hash_shift; 3173 << 3174 runtime_const_init(shift, d_hash_shif << 3175 runtime_const_init(ptr, dentry_hashta << 3176 } 3303 } 3177 3304 3178 static void __init dcache_init(void) 3305 static void __init dcache_init(void) 3179 { 3306 { 3180 /* 3307 /* 3181 * A constructor could be added for s 3308 * A constructor could be added for stable state like the lists, 3182 * but it is probably not worth it be 3309 * but it is probably not worth it because of the cache nature 3183 * of the dcache. 3310 * of the dcache. 3184 */ 3311 */ 3185 dentry_cache = KMEM_CACHE_USERCOPY(de 3312 dentry_cache = KMEM_CACHE_USERCOPY(dentry, 3186 SLAB_RECLAIM_ACCOUNT|SLAB_PAN !! 3313 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT, 3187 d_iname); 3314 d_iname); 3188 3315 3189 /* Hash may have been set up in dcach 3316 /* Hash may have been set up in dcache_init_early */ 3190 if (!hashdist) 3317 if (!hashdist) 3191 return; 3318 return; 3192 3319 3193 dentry_hashtable = 3320 dentry_hashtable = 3194 alloc_large_system_hash("Dent 3321 alloc_large_system_hash("Dentry cache", 3195 sizeo 3322 sizeof(struct hlist_bl_head), 3196 dhash 3323 dhash_entries, 3197 13, 3324 13, 3198 HASH_ 3325 HASH_ZERO, 3199 &d_ha 3326 &d_hash_shift, 3200 NULL, 3327 NULL, 3201 0, 3328 0, 3202 0); 3329 0); 3203 d_hash_shift = 32 - d_hash_shift; 3330 d_hash_shift = 32 - d_hash_shift; 3204 << 3205 runtime_const_init(shift, d_hash_shif << 3206 runtime_const_init(ptr, dentry_hashta << 3207 } 3331 } 3208 3332 3209 /* SLAB cache for __getname() consumers */ 3333 /* SLAB cache for __getname() consumers */ 3210 struct kmem_cache *names_cachep __ro_after_in !! 3334 struct kmem_cache *names_cachep __read_mostly; 3211 EXPORT_SYMBOL(names_cachep); 3335 EXPORT_SYMBOL(names_cachep); 3212 3336 3213 void __init vfs_caches_init_early(void) 3337 void __init vfs_caches_init_early(void) 3214 { 3338 { 3215 int i; 3339 int i; 3216 3340 3217 for (i = 0; i < ARRAY_SIZE(in_lookup_ 3341 for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++) 3218 INIT_HLIST_BL_HEAD(&in_lookup 3342 INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]); 3219 3343 3220 dcache_init_early(); 3344 dcache_init_early(); 3221 inode_init_early(); 3345 inode_init_early(); 3222 } 3346 } 3223 3347 3224 void __init vfs_caches_init(void) 3348 void __init vfs_caches_init(void) 3225 { 3349 { 3226 names_cachep = kmem_cache_create_user 3350 names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0, 3227 SLAB_HWCACHE_ALIGN|SL 3351 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL); 3228 3352 3229 dcache_init(); 3353 dcache_init(); 3230 inode_init(); 3354 inode_init(); 3231 files_init(); 3355 files_init(); 3232 files_maxfiles_init(); 3356 files_maxfiles_init(); 3233 mnt_init(); 3357 mnt_init(); 3234 bdev_cache_init(); 3358 bdev_cache_init(); 3235 chrdev_init(); 3359 chrdev_init(); 3236 } 3360 } 3237 3361
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.