1 // SPDX-License-Identifier: GPL-2.0-only << 2 /* 1 /* 3 * fs/direct-io.c 2 * fs/direct-io.c 4 * 3 * 5 * Copyright (C) 2002, Linus Torvalds. 4 * Copyright (C) 2002, Linus Torvalds. 6 * 5 * 7 * O_DIRECT 6 * O_DIRECT 8 * 7 * 9 * 04Jul2002 Andrew Morton 8 * 04Jul2002 Andrew Morton 10 * Initial version 9 * Initial version 11 * 11Sep2002 janetinc@us.ibm.com 10 * 11Sep2002 janetinc@us.ibm.com 12 * added readv/writev support. 11 * added readv/writev support. 13 * 29Oct2002 Andrew Morton 12 * 29Oct2002 Andrew Morton 14 * rewrote bio_add_page() support 13 * rewrote bio_add_page() support. 15 * 30Oct2002 pbadari@us.ibm.com 14 * 30Oct2002 pbadari@us.ibm.com 16 * added support for non-aligned 15 * added support for non-aligned IO. 17 * 06Nov2002 pbadari@us.ibm.com 16 * 06Nov2002 pbadari@us.ibm.com 18 * added asynchronous IO support. 17 * added asynchronous IO support. 19 * 21Jul2003 nathans@sgi.com 18 * 21Jul2003 nathans@sgi.com 20 * added IO completion notifier. 19 * added IO completion notifier. 21 */ 20 */ 22 21 23 #include <linux/kernel.h> 22 #include <linux/kernel.h> 24 #include <linux/module.h> 23 #include <linux/module.h> 25 #include <linux/types.h> 24 #include <linux/types.h> 26 #include <linux/fs.h> 25 #include <linux/fs.h> 27 #include <linux/mm.h> 26 #include <linux/mm.h> 28 #include <linux/slab.h> 27 #include <linux/slab.h> 29 #include <linux/highmem.h> 28 #include <linux/highmem.h> 30 #include <linux/pagemap.h> 29 #include <linux/pagemap.h> 31 #include <linux/task_io_accounting_ops.h> 30 #include <linux/task_io_accounting_ops.h> 32 #include <linux/bio.h> 31 #include <linux/bio.h> 33 #include <linux/wait.h> 32 #include <linux/wait.h> 34 #include <linux/err.h> 33 #include <linux/err.h> 35 #include <linux/blkdev.h> 34 #include <linux/blkdev.h> 36 #include <linux/buffer_head.h> 35 #include <linux/buffer_head.h> 37 #include <linux/rwsem.h> 36 #include <linux/rwsem.h> 38 #include <linux/uio.h> 37 #include <linux/uio.h> 39 #include <linux/atomic.h> 38 #include <linux/atomic.h> 40 !! 39 #include <linux/prefetch.h> 41 #include "internal.h" << 42 40 43 /* 41 /* 44 * How many user pages to map in one call to i !! 42 * How many user pages to map in one call to get_user_pages(). This determines 45 * determines the size of a structure in the s !! 43 * the size of a structure in the slab cache 46 */ 44 */ 47 #define DIO_PAGES 64 45 #define DIO_PAGES 64 48 46 49 /* 47 /* 50 * Flags for dio_complete() << 51 */ << 52 #define DIO_COMPLETE_ASYNC 0x01 << 53 #define DIO_COMPLETE_INVALIDATE 0x02 << 54 << 55 /* << 56 * This code generally works in units of "dio_ 48 * This code generally works in units of "dio_blocks". A dio_block is 57 * somewhere between the hard sector size and 49 * somewhere between the hard sector size and the filesystem block size. it 58 * is determined on a per-invocation basis. 50 * is determined on a per-invocation basis. When talking to the filesystem 59 * we need to convert dio_blocks to fs_blocks 51 * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity 60 * down by dio->blkfactor. Similarly, fs-bloc 52 * down by dio->blkfactor. Similarly, fs-blocksize quantities are converted 61 * to bio_block quantities by shifting left by 53 * to bio_block quantities by shifting left by blkfactor. 62 * 54 * 63 * If blkfactor is zero then the user's reques 55 * If blkfactor is zero then the user's request was aligned to the filesystem's 64 * blocksize. 56 * blocksize. 65 */ 57 */ 66 58 67 /* dio_state only used in the submission path 59 /* dio_state only used in the submission path */ 68 60 69 struct dio_submit { 61 struct dio_submit { 70 struct bio *bio; /* bio 62 struct bio *bio; /* bio under assembly */ 71 unsigned blkbits; /* doe 63 unsigned blkbits; /* doesn't change */ 72 unsigned blkfactor; /* Whe 64 unsigned blkfactor; /* When we're using an alignment which 73 is 65 is finer than the filesystem's soft 74 blo 66 blocksize, this specifies how much 75 fin 67 finer. blkfactor=2 means 1/4-block 76 ali 68 alignment. Does not change */ 77 unsigned start_zero_done; /* fla 69 unsigned start_zero_done; /* flag: sub-blocksize zeroing has 78 bee 70 been performed at the start of a 79 wri 71 write */ 80 int pages_in_io; /* app 72 int pages_in_io; /* approximate total IO pages */ 81 sector_t block_in_file; /* Cur 73 sector_t block_in_file; /* Current offset into the underlying 82 fil 74 file in dio_block units. */ 83 unsigned blocks_available; /* At 75 unsigned blocks_available; /* At block_in_file. changes */ 84 int reap_counter; /* rat 76 int reap_counter; /* rate limit reaping */ 85 sector_t final_block_in_request;/* doe 77 sector_t final_block_in_request;/* doesn't change */ 86 int boundary; /* pre 78 int boundary; /* prev block is at a boundary */ 87 get_block_t *get_block; /* blo 79 get_block_t *get_block; /* block mapping function */ >> 80 dio_submit_t *submit_io; /* IO submition function */ 88 81 89 loff_t logical_offset_in_bio; /* cur 82 loff_t logical_offset_in_bio; /* current first logical block in bio */ 90 sector_t final_block_in_bio; /* cur 83 sector_t final_block_in_bio; /* current final block in bio + 1 */ 91 sector_t next_block_for_io; /* nex 84 sector_t next_block_for_io; /* next block to be put under IO, 92 in 85 in dio_blocks units */ 93 86 94 /* 87 /* 95 * Deferred addition of a page to the 88 * Deferred addition of a page to the dio. These variables are 96 * private to dio_send_cur_page(), sub 89 * private to dio_send_cur_page(), submit_page_section() and 97 * dio_bio_add_page(). 90 * dio_bio_add_page(). 98 */ 91 */ 99 struct page *cur_page; /* The 92 struct page *cur_page; /* The page */ 100 unsigned cur_page_offset; /* Off 93 unsigned cur_page_offset; /* Offset into it, in bytes */ 101 unsigned cur_page_len; /* Nr 94 unsigned cur_page_len; /* Nr of bytes at cur_page_offset */ 102 sector_t cur_page_block; /* Whe 95 sector_t cur_page_block; /* Where it starts */ 103 loff_t cur_page_fs_offset; /* Off 96 loff_t cur_page_fs_offset; /* Offset in file */ 104 97 105 struct iov_iter *iter; 98 struct iov_iter *iter; 106 /* 99 /* 107 * Page queue. These variables belong 100 * Page queue. These variables belong to dio_refill_pages() and 108 * dio_get_page(). 101 * dio_get_page(). 109 */ 102 */ 110 unsigned head; /* nex 103 unsigned head; /* next page to process */ 111 unsigned tail; /* las 104 unsigned tail; /* last valid page + 1 */ 112 size_t from, to; 105 size_t from, to; 113 }; 106 }; 114 107 115 /* dio_state communicated between submission p 108 /* dio_state communicated between submission path and end_io */ 116 struct dio { 109 struct dio { 117 int flags; /* doe 110 int flags; /* doesn't change */ 118 blk_opf_t opf; /* req !! 111 int op; 119 struct gendisk *bio_disk; !! 112 int op_flags; >> 113 blk_qc_t bio_cookie; >> 114 struct block_device *bio_bdev; 120 struct inode *inode; 115 struct inode *inode; 121 loff_t i_size; /* i_s 116 loff_t i_size; /* i_size when submitted */ 122 dio_iodone_t *end_io; /* IO 117 dio_iodone_t *end_io; /* IO completion function */ 123 bool is_pinned; /* T i << 124 118 125 void *private; /* cop 119 void *private; /* copy from map_bh.b_private */ 126 120 127 /* BIO completion state */ 121 /* BIO completion state */ 128 spinlock_t bio_lock; /* pro 122 spinlock_t bio_lock; /* protects BIO fields below */ 129 int page_errors; /* err !! 123 int page_errors; /* errno from get_user_pages() */ 130 int is_async; /* is 124 int is_async; /* is IO async ? */ 131 bool defer_completion; /* def 125 bool defer_completion; /* defer AIO completion to workqueue? */ 132 bool should_dirty; /* if 126 bool should_dirty; /* if pages should be dirtied */ 133 int io_error; /* IO 127 int io_error; /* IO error in completion path */ 134 unsigned long refcount; /* dir 128 unsigned long refcount; /* direct_io_worker() and bios */ 135 struct bio *bio_list; /* sin 129 struct bio *bio_list; /* singly linked via bi_private */ 136 struct task_struct *waiter; /* wai 130 struct task_struct *waiter; /* waiting task (NULL if none) */ 137 131 138 /* AIO related stuff */ 132 /* AIO related stuff */ 139 struct kiocb *iocb; /* kio 133 struct kiocb *iocb; /* kiocb */ 140 ssize_t result; /* IO 134 ssize_t result; /* IO result */ 141 135 142 /* 136 /* 143 * pages[] (and any fields placed afte 137 * pages[] (and any fields placed after it) are not zeroed out at 144 * allocation time. Don't add new fie 138 * allocation time. Don't add new fields after pages[] unless you 145 * wish that they not be zeroed. 139 * wish that they not be zeroed. 146 */ 140 */ 147 union { 141 union { 148 struct page *pages[DIO_PAGES]; 142 struct page *pages[DIO_PAGES]; /* page buffer */ 149 struct work_struct complete_wo 143 struct work_struct complete_work;/* deferred AIO completion */ 150 }; 144 }; 151 } ____cacheline_aligned_in_smp; 145 } ____cacheline_aligned_in_smp; 152 146 153 static struct kmem_cache *dio_cache __ro_after !! 147 static struct kmem_cache *dio_cache __read_mostly; 154 148 155 /* 149 /* 156 * How many pages are in the queue? 150 * How many pages are in the queue? 157 */ 151 */ 158 static inline unsigned dio_pages_present(struc 152 static inline unsigned dio_pages_present(struct dio_submit *sdio) 159 { 153 { 160 return sdio->tail - sdio->head; 154 return sdio->tail - sdio->head; 161 } 155 } 162 156 163 /* 157 /* 164 * Go grab and pin some userspace pages. Typ 158 * Go grab and pin some userspace pages. Typically we'll get 64 at a time. 165 */ 159 */ 166 static inline int dio_refill_pages(struct dio 160 static inline int dio_refill_pages(struct dio *dio, struct dio_submit *sdio) 167 { 161 { 168 struct page **pages = dio->pages; << 169 const enum req_op dio_op = dio->opf & << 170 ssize_t ret; 162 ssize_t ret; 171 163 172 ret = iov_iter_extract_pages(sdio->ite !! 164 ret = iov_iter_get_pages(sdio->iter, dio->pages, LONG_MAX, DIO_PAGES, 173 DIO_PAGES !! 165 &sdio->from); 174 166 175 if (ret < 0 && sdio->blocks_available !! 167 if (ret < 0 && sdio->blocks_available && (dio->op == REQ_OP_WRITE)) { >> 168 struct page *page = ZERO_PAGE(0); 176 /* 169 /* 177 * A memory fault, but the fil 170 * A memory fault, but the filesystem has some outstanding 178 * mapped blocks. We need to 171 * mapped blocks. We need to use those blocks up to avoid 179 * leaking stale data in the f 172 * leaking stale data in the file. 180 */ 173 */ 181 if (dio->page_errors == 0) 174 if (dio->page_errors == 0) 182 dio->page_errors = ret 175 dio->page_errors = ret; 183 dio->pages[0] = ZERO_PAGE(0); !! 176 get_page(page); >> 177 dio->pages[0] = page; 184 sdio->head = 0; 178 sdio->head = 0; 185 sdio->tail = 1; 179 sdio->tail = 1; 186 sdio->from = 0; 180 sdio->from = 0; 187 sdio->to = PAGE_SIZE; 181 sdio->to = PAGE_SIZE; 188 return 0; 182 return 0; 189 } 183 } 190 184 191 if (ret >= 0) { 185 if (ret >= 0) { >> 186 iov_iter_advance(sdio->iter, ret); 192 ret += sdio->from; 187 ret += sdio->from; 193 sdio->head = 0; 188 sdio->head = 0; 194 sdio->tail = (ret + PAGE_SIZE 189 sdio->tail = (ret + PAGE_SIZE - 1) / PAGE_SIZE; 195 sdio->to = ((ret - 1) & (PAGE_ 190 sdio->to = ((ret - 1) & (PAGE_SIZE - 1)) + 1; 196 return 0; 191 return 0; 197 } 192 } 198 return ret; 193 return ret; 199 } 194 } 200 195 201 /* 196 /* 202 * Get another userspace page. Returns an ERR 197 * Get another userspace page. Returns an ERR_PTR on error. Pages are 203 * buffered inside the dio so that we can call !! 198 * buffered inside the dio so that we can call get_user_pages() against a 204 * against a decent number of pages, less freq !! 199 * decent number of pages, less frequently. To provide nicer use of the 205 * the L1 cache. !! 200 * L1 cache. 206 */ 201 */ 207 static inline struct page *dio_get_page(struct 202 static inline struct page *dio_get_page(struct dio *dio, 208 struct 203 struct dio_submit *sdio) 209 { 204 { 210 if (dio_pages_present(sdio) == 0) { 205 if (dio_pages_present(sdio) == 0) { 211 int ret; 206 int ret; 212 207 213 ret = dio_refill_pages(dio, sd 208 ret = dio_refill_pages(dio, sdio); 214 if (ret) 209 if (ret) 215 return ERR_PTR(ret); 210 return ERR_PTR(ret); 216 BUG_ON(dio_pages_present(sdio) 211 BUG_ON(dio_pages_present(sdio) == 0); 217 } 212 } 218 return dio->pages[sdio->head]; 213 return dio->pages[sdio->head]; 219 } 214 } 220 215 221 static void dio_pin_page(struct dio *dio, stru !! 216 /** 222 { << 223 if (dio->is_pinned) << 224 folio_add_pin(page_folio(page) << 225 } << 226 << 227 static void dio_unpin_page(struct dio *dio, st << 228 { << 229 if (dio->is_pinned) << 230 unpin_user_page(page); << 231 } << 232 << 233 /* << 234 * dio_complete() - called when all DIO BIO I/ 217 * dio_complete() - called when all DIO BIO I/O has been completed >> 218 * @offset: the byte offset in the file of the completed operation 235 * 219 * 236 * This drops i_dio_count, lets interested par 220 * This drops i_dio_count, lets interested parties know that a DIO operation 237 * has completed, and calculates the resulting 221 * has completed, and calculates the resulting return code for the operation. 238 * 222 * 239 * It lets the filesystem know if it registere 223 * It lets the filesystem know if it registered an interest earlier via 240 * get_block. Pass the private field of the m 224 * get_block. Pass the private field of the map buffer_head so that 241 * filesystems can use it to hold additional s 225 * filesystems can use it to hold additional state between get_block calls and 242 * dio_complete. 226 * dio_complete. 243 */ 227 */ 244 static ssize_t dio_complete(struct dio *dio, s !! 228 static ssize_t dio_complete(struct dio *dio, ssize_t ret, bool is_async) 245 { 229 { 246 const enum req_op dio_op = dio->opf & << 247 loff_t offset = dio->iocb->ki_pos; 230 loff_t offset = dio->iocb->ki_pos; 248 ssize_t transferred = 0; 231 ssize_t transferred = 0; 249 int err; << 250 232 251 /* 233 /* 252 * AIO submission can race with bio co 234 * AIO submission can race with bio completion to get here while 253 * expecting to have the last io compl 235 * expecting to have the last io completed by bio completion. 254 * In that case -EIOCBQUEUED is in fac 236 * In that case -EIOCBQUEUED is in fact not an error we want 255 * to preserve through this call. 237 * to preserve through this call. 256 */ 238 */ 257 if (ret == -EIOCBQUEUED) 239 if (ret == -EIOCBQUEUED) 258 ret = 0; 240 ret = 0; 259 241 260 if (dio->result) { 242 if (dio->result) { 261 transferred = dio->result; 243 transferred = dio->result; 262 244 263 /* Check for short read case * 245 /* Check for short read case */ 264 if (dio_op == REQ_OP_READ && !! 246 if ((dio->op == REQ_OP_READ) && 265 ((offset + transferred) > 247 ((offset + transferred) > dio->i_size)) 266 transferred = dio->i_s 248 transferred = dio->i_size - offset; 267 /* ignore EFAULT if some IO ha 249 /* ignore EFAULT if some IO has been done */ 268 if (unlikely(ret == -EFAULT) & 250 if (unlikely(ret == -EFAULT) && transferred) 269 ret = 0; 251 ret = 0; 270 } 252 } 271 253 272 if (ret == 0) 254 if (ret == 0) 273 ret = dio->page_errors; 255 ret = dio->page_errors; 274 if (ret == 0) 256 if (ret == 0) 275 ret = dio->io_error; 257 ret = dio->io_error; 276 if (ret == 0) 258 if (ret == 0) 277 ret = transferred; 259 ret = transferred; 278 260 279 if (dio->end_io) { 261 if (dio->end_io) { >> 262 int err; >> 263 280 // XXX: ki_pos?? 264 // XXX: ki_pos?? 281 err = dio->end_io(dio->iocb, o 265 err = dio->end_io(dio->iocb, offset, ret, dio->private); 282 if (err) 266 if (err) 283 ret = err; 267 ret = err; 284 } 268 } 285 269 286 /* !! 270 if (!(dio->flags & DIO_SKIP_DIO_COUNT)) 287 * Try again to invalidate clean pages !! 271 inode_dio_end(dio->inode); 288 * non-direct readahead, or faulted in << 289 * of the write was an mmap'ed region << 290 * one is a pretty crazy thing to do, << 291 * this invalidation fails, tough, the << 292 * << 293 * And this page cache invalidation ha << 294 * some filesystems convert unwritten << 295 * end_io() when necessary, otherwise << 296 * zeros from unwritten extents. << 297 */ << 298 if (flags & DIO_COMPLETE_INVALIDATE && << 299 ret > 0 && dio_op == REQ_OP_WRITE) << 300 kiocb_invalidate_post_direct_w << 301 << 302 inode_dio_end(dio->inode); << 303 272 304 if (flags & DIO_COMPLETE_ASYNC) { !! 273 if (is_async) { 305 /* 274 /* 306 * generic_write_sync expects 275 * generic_write_sync expects ki_pos to have been updated 307 * already, but the submission 276 * already, but the submission path only does this for 308 * synchronous I/O. 277 * synchronous I/O. 309 */ 278 */ 310 dio->iocb->ki_pos += transferr 279 dio->iocb->ki_pos += transferred; 311 280 312 if (ret > 0 && dio_op == REQ_O !! 281 if (dio->op == REQ_OP_WRITE) 313 ret = generic_write_sy !! 282 ret = generic_write_sync(dio->iocb, transferred); 314 dio->iocb->ki_complete(dio->io !! 283 dio->iocb->ki_complete(dio->iocb, ret, 0); 315 } 284 } 316 285 317 kmem_cache_free(dio_cache, dio); 286 kmem_cache_free(dio_cache, dio); 318 return ret; 287 return ret; 319 } 288 } 320 289 321 static void dio_aio_complete_work(struct work_ 290 static void dio_aio_complete_work(struct work_struct *work) 322 { 291 { 323 struct dio *dio = container_of(work, s 292 struct dio *dio = container_of(work, struct dio, complete_work); 324 293 325 dio_complete(dio, 0, DIO_COMPLETE_ASYN !! 294 dio_complete(dio, 0, true); 326 } 295 } 327 296 328 static blk_status_t dio_bio_complete(struct di !! 297 static int dio_bio_complete(struct dio *dio, struct bio *bio); 329 298 330 /* 299 /* 331 * Asynchronous IO callback. 300 * Asynchronous IO callback. 332 */ 301 */ 333 static void dio_bio_end_aio(struct bio *bio) 302 static void dio_bio_end_aio(struct bio *bio) 334 { 303 { 335 struct dio *dio = bio->bi_private; 304 struct dio *dio = bio->bi_private; 336 const enum req_op dio_op = dio->opf & << 337 unsigned long remaining; 305 unsigned long remaining; 338 unsigned long flags; 306 unsigned long flags; 339 bool defer_completion = false; << 340 307 341 /* cleanup the bio */ 308 /* cleanup the bio */ 342 dio_bio_complete(dio, bio); 309 dio_bio_complete(dio, bio); 343 310 344 spin_lock_irqsave(&dio->bio_lock, flag 311 spin_lock_irqsave(&dio->bio_lock, flags); 345 remaining = --dio->refcount; 312 remaining = --dio->refcount; 346 if (remaining == 1 && dio->waiter) 313 if (remaining == 1 && dio->waiter) 347 wake_up_process(dio->waiter); 314 wake_up_process(dio->waiter); 348 spin_unlock_irqrestore(&dio->bio_lock, 315 spin_unlock_irqrestore(&dio->bio_lock, flags); 349 316 350 if (remaining == 0) { 317 if (remaining == 0) { 351 /* !! 318 if (dio->result && dio->defer_completion) { 352 * Defer completion when defer << 353 * when the inode has pages ma << 354 * We need to invalidate those << 355 * chance they contain stale d << 356 * went in between AIO submiss << 357 * same region. << 358 */ << 359 if (dio->result) << 360 defer_completion = dio << 361 (di << 362 di << 363 if (defer_completion) { << 364 INIT_WORK(&dio->comple 319 INIT_WORK(&dio->complete_work, dio_aio_complete_work); 365 queue_work(dio->inode- 320 queue_work(dio->inode->i_sb->s_dio_done_wq, 366 &dio->compl 321 &dio->complete_work); 367 } else { 322 } else { 368 dio_complete(dio, 0, D !! 323 dio_complete(dio, 0, true); 369 } 324 } 370 } 325 } 371 } 326 } 372 327 373 /* 328 /* 374 * The BIO completion handler simply queues th 329 * The BIO completion handler simply queues the BIO up for the process-context 375 * handler. 330 * handler. 376 * 331 * 377 * During I/O bi_private points at the dio. A 332 * During I/O bi_private points at the dio. After I/O, bi_private is used to 378 * implement a singly-linked list of completed 333 * implement a singly-linked list of completed BIOs, at dio->bio_list. 379 */ 334 */ 380 static void dio_bio_end_io(struct bio *bio) 335 static void dio_bio_end_io(struct bio *bio) 381 { 336 { 382 struct dio *dio = bio->bi_private; 337 struct dio *dio = bio->bi_private; 383 unsigned long flags; 338 unsigned long flags; 384 339 385 spin_lock_irqsave(&dio->bio_lock, flag 340 spin_lock_irqsave(&dio->bio_lock, flags); 386 bio->bi_private = dio->bio_list; 341 bio->bi_private = dio->bio_list; 387 dio->bio_list = bio; 342 dio->bio_list = bio; 388 if (--dio->refcount == 1 && dio->waite 343 if (--dio->refcount == 1 && dio->waiter) 389 wake_up_process(dio->waiter); 344 wake_up_process(dio->waiter); 390 spin_unlock_irqrestore(&dio->bio_lock, 345 spin_unlock_irqrestore(&dio->bio_lock, flags); 391 } 346 } 392 347 >> 348 /** >> 349 * dio_end_io - handle the end io action for the given bio >> 350 * @bio: The direct io bio thats being completed >> 351 * @error: Error if there was one >> 352 * >> 353 * This is meant to be called by any filesystem that uses their own dio_submit_t >> 354 * so that the DIO specific endio actions are dealt with after the filesystem >> 355 * has done it's completion work. >> 356 */ >> 357 void dio_end_io(struct bio *bio, int error) >> 358 { >> 359 struct dio *dio = bio->bi_private; >> 360 >> 361 if (dio->is_async) >> 362 dio_bio_end_aio(bio); >> 363 else >> 364 dio_bio_end_io(bio); >> 365 } >> 366 EXPORT_SYMBOL_GPL(dio_end_io); >> 367 393 static inline void 368 static inline void 394 dio_bio_alloc(struct dio *dio, struct dio_subm 369 dio_bio_alloc(struct dio *dio, struct dio_submit *sdio, 395 struct block_device *bdev, 370 struct block_device *bdev, 396 sector_t first_sector, int nr_ve 371 sector_t first_sector, int nr_vecs) 397 { 372 { 398 struct bio *bio; 373 struct bio *bio; 399 374 400 /* 375 /* 401 * bio_alloc() is guaranteed to return !! 376 * bio_alloc() is guaranteed to return a bio when called with 402 * we request a valid number of vector !! 377 * __GFP_RECLAIM and we request a valid number of vectors. 403 */ 378 */ 404 bio = bio_alloc(bdev, nr_vecs, dio->op !! 379 bio = bio_alloc(GFP_KERNEL, nr_vecs); >> 380 >> 381 bio->bi_bdev = bdev; 405 bio->bi_iter.bi_sector = first_sector; 382 bio->bi_iter.bi_sector = first_sector; >> 383 bio_set_op_attrs(bio, dio->op, dio->op_flags); 406 if (dio->is_async) 384 if (dio->is_async) 407 bio->bi_end_io = dio_bio_end_a 385 bio->bi_end_io = dio_bio_end_aio; 408 else 386 else 409 bio->bi_end_io = dio_bio_end_i 387 bio->bi_end_io = dio_bio_end_io; 410 if (dio->is_pinned) << 411 bio_set_flag(bio, BIO_PAGE_PIN << 412 bio->bi_write_hint = file_inode(dio->i << 413 388 414 sdio->bio = bio; 389 sdio->bio = bio; 415 sdio->logical_offset_in_bio = sdio->cu 390 sdio->logical_offset_in_bio = sdio->cur_page_fs_offset; 416 } 391 } 417 392 418 /* 393 /* 419 * In the AIO read case we speculatively dirty 394 * In the AIO read case we speculatively dirty the pages before starting IO. 420 * During IO completion, any of these pages wh 395 * During IO completion, any of these pages which happen to have been written 421 * back will be redirtied by bio_check_pages_d 396 * back will be redirtied by bio_check_pages_dirty(). 422 * 397 * 423 * bios hold a dio reference between submit_bi 398 * bios hold a dio reference between submit_bio and ->end_io. 424 */ 399 */ 425 static inline void dio_bio_submit(struct dio * 400 static inline void dio_bio_submit(struct dio *dio, struct dio_submit *sdio) 426 { 401 { 427 const enum req_op dio_op = dio->opf & << 428 struct bio *bio = sdio->bio; 402 struct bio *bio = sdio->bio; 429 unsigned long flags; 403 unsigned long flags; 430 404 431 bio->bi_private = dio; 405 bio->bi_private = dio; 432 406 433 spin_lock_irqsave(&dio->bio_lock, flag 407 spin_lock_irqsave(&dio->bio_lock, flags); 434 dio->refcount++; 408 dio->refcount++; 435 spin_unlock_irqrestore(&dio->bio_lock, 409 spin_unlock_irqrestore(&dio->bio_lock, flags); 436 410 437 if (dio->is_async && dio_op == REQ_OP_ !! 411 if (dio->is_async && dio->op == REQ_OP_READ && dio->should_dirty) 438 bio_set_pages_dirty(bio); 412 bio_set_pages_dirty(bio); 439 413 440 dio->bio_disk = bio->bi_bdev->bd_disk; !! 414 dio->bio_bdev = bio->bi_bdev; 441 415 442 submit_bio(bio); !! 416 if (sdio->submit_io) { >> 417 sdio->submit_io(bio, dio->inode, sdio->logical_offset_in_bio); >> 418 dio->bio_cookie = BLK_QC_T_NONE; >> 419 } else >> 420 dio->bio_cookie = submit_bio(bio); 443 421 444 sdio->bio = NULL; 422 sdio->bio = NULL; 445 sdio->boundary = 0; 423 sdio->boundary = 0; 446 sdio->logical_offset_in_bio = 0; 424 sdio->logical_offset_in_bio = 0; 447 } 425 } 448 426 449 /* 427 /* 450 * Release any resources in case of a failure 428 * Release any resources in case of a failure 451 */ 429 */ 452 static inline void dio_cleanup(struct dio *dio 430 static inline void dio_cleanup(struct dio *dio, struct dio_submit *sdio) 453 { 431 { 454 if (dio->is_pinned) !! 432 while (sdio->head < sdio->tail) 455 unpin_user_pages(dio->pages + !! 433 put_page(dio->pages[sdio->head++]); 456 sdio->tail - << 457 sdio->head = sdio->tail; << 458 } 434 } 459 435 460 /* 436 /* 461 * Wait for the next BIO to complete. Remove 437 * Wait for the next BIO to complete. Remove it and return it. NULL is 462 * returned once all BIOs have been completed. 438 * returned once all BIOs have been completed. This must only be called once 463 * all bios have been issued so that dio->refc 439 * all bios have been issued so that dio->refcount can only decrease. This 464 * requires that the caller hold a reference o !! 440 * requires that that the caller hold a reference on the dio. 465 */ 441 */ 466 static struct bio *dio_await_one(struct dio *d 442 static struct bio *dio_await_one(struct dio *dio) 467 { 443 { 468 unsigned long flags; 444 unsigned long flags; 469 struct bio *bio = NULL; 445 struct bio *bio = NULL; 470 446 471 spin_lock_irqsave(&dio->bio_lock, flag 447 spin_lock_irqsave(&dio->bio_lock, flags); 472 448 473 /* 449 /* 474 * Wait as long as the list is empty a 450 * Wait as long as the list is empty and there are bios in flight. bio 475 * completion drops the count, maybe a 451 * completion drops the count, maybe adds to the list, and wakes while 476 * holding the bio_lock so we don't ne 452 * holding the bio_lock so we don't need set_current_state()'s barrier 477 * and can call it after testing our c 453 * and can call it after testing our condition. 478 */ 454 */ 479 while (dio->refcount > 1 && dio->bio_l 455 while (dio->refcount > 1 && dio->bio_list == NULL) { 480 __set_current_state(TASK_UNINT 456 __set_current_state(TASK_UNINTERRUPTIBLE); 481 dio->waiter = current; 457 dio->waiter = current; 482 spin_unlock_irqrestore(&dio->b 458 spin_unlock_irqrestore(&dio->bio_lock, flags); 483 blk_io_schedule(); !! 459 if (!(dio->iocb->ki_flags & IOCB_HIPRI) || >> 460 !blk_mq_poll(bdev_get_queue(dio->bio_bdev), dio->bio_cookie)) >> 461 io_schedule(); 484 /* wake up sets us TASK_RUNNIN 462 /* wake up sets us TASK_RUNNING */ 485 spin_lock_irqsave(&dio->bio_lo 463 spin_lock_irqsave(&dio->bio_lock, flags); 486 dio->waiter = NULL; 464 dio->waiter = NULL; 487 } 465 } 488 if (dio->bio_list) { 466 if (dio->bio_list) { 489 bio = dio->bio_list; 467 bio = dio->bio_list; 490 dio->bio_list = bio->bi_privat 468 dio->bio_list = bio->bi_private; 491 } 469 } 492 spin_unlock_irqrestore(&dio->bio_lock, 470 spin_unlock_irqrestore(&dio->bio_lock, flags); 493 return bio; 471 return bio; 494 } 472 } 495 473 496 /* 474 /* 497 * Process one completed BIO. No locks are he 475 * Process one completed BIO. No locks are held. 498 */ 476 */ 499 static blk_status_t dio_bio_complete(struct di !! 477 static int dio_bio_complete(struct dio *dio, struct bio *bio) 500 { 478 { 501 blk_status_t err = bio->bi_status; !! 479 struct bio_vec *bvec; 502 const enum req_op dio_op = dio->opf & !! 480 unsigned i; 503 bool should_dirty = dio_op == REQ_OP_R !! 481 int err; 504 482 505 if (err) { !! 483 if (bio->bi_error) 506 if (err == BLK_STS_AGAIN && (b !! 484 dio->io_error = -EIO; 507 dio->io_error = -EAGAI << 508 else << 509 dio->io_error = -EIO; << 510 } << 511 485 512 if (dio->is_async && should_dirty) { !! 486 if (dio->is_async && dio->op == REQ_OP_READ && dio->should_dirty) { >> 487 err = bio->bi_error; 513 bio_check_pages_dirty(bio); 488 bio_check_pages_dirty(bio); /* transfers ownership */ 514 } else { 489 } else { 515 bio_release_pages(bio, should_ !! 490 bio_for_each_segment_all(bvec, bio, i) { >> 491 struct page *page = bvec->bv_page; >> 492 >> 493 if (dio->op == REQ_OP_READ && !PageCompound(page) && >> 494 dio->should_dirty) >> 495 set_page_dirty_lock(page); >> 496 put_page(page); >> 497 } >> 498 err = bio->bi_error; 516 bio_put(bio); 499 bio_put(bio); 517 } 500 } 518 return err; 501 return err; 519 } 502 } 520 503 521 /* 504 /* 522 * Wait on and process all in-flight BIOs. Th 505 * Wait on and process all in-flight BIOs. This must only be called once 523 * all bios have been issued so that the refco 506 * all bios have been issued so that the refcount can only decrease. 524 * This just waits for all bios to make it thr 507 * This just waits for all bios to make it through dio_bio_complete. IO 525 * errors are propagated through dio->io_error 508 * errors are propagated through dio->io_error and should be propagated via 526 * dio_complete(). 509 * dio_complete(). 527 */ 510 */ 528 static void dio_await_completion(struct dio *d 511 static void dio_await_completion(struct dio *dio) 529 { 512 { 530 struct bio *bio; 513 struct bio *bio; 531 do { 514 do { 532 bio = dio_await_one(dio); 515 bio = dio_await_one(dio); 533 if (bio) 516 if (bio) 534 dio_bio_complete(dio, 517 dio_bio_complete(dio, bio); 535 } while (bio); 518 } while (bio); 536 } 519 } 537 520 538 /* 521 /* 539 * A really large O_DIRECT read or write can g 522 * A really large O_DIRECT read or write can generate a lot of BIOs. So 540 * to keep the memory consumption sane we peri 523 * to keep the memory consumption sane we periodically reap any completed BIOs 541 * during the BIO generation phase. 524 * during the BIO generation phase. 542 * 525 * 543 * This also helps to limit the peak amount of 526 * This also helps to limit the peak amount of pinned userspace memory. 544 */ 527 */ 545 static inline int dio_bio_reap(struct dio *dio 528 static inline int dio_bio_reap(struct dio *dio, struct dio_submit *sdio) 546 { 529 { 547 int ret = 0; 530 int ret = 0; 548 531 549 if (sdio->reap_counter++ >= 64) { 532 if (sdio->reap_counter++ >= 64) { 550 while (dio->bio_list) { 533 while (dio->bio_list) { 551 unsigned long flags; 534 unsigned long flags; 552 struct bio *bio; 535 struct bio *bio; 553 int ret2; 536 int ret2; 554 537 555 spin_lock_irqsave(&dio 538 spin_lock_irqsave(&dio->bio_lock, flags); 556 bio = dio->bio_list; 539 bio = dio->bio_list; 557 dio->bio_list = bio->b 540 dio->bio_list = bio->bi_private; 558 spin_unlock_irqrestore 541 spin_unlock_irqrestore(&dio->bio_lock, flags); 559 ret2 = blk_status_to_e !! 542 ret2 = dio_bio_complete(dio, bio); 560 if (ret == 0) 543 if (ret == 0) 561 ret = ret2; 544 ret = ret2; 562 } 545 } 563 sdio->reap_counter = 0; 546 sdio->reap_counter = 0; 564 } 547 } 565 return ret; 548 return ret; 566 } 549 } 567 550 >> 551 /* >> 552 * Create workqueue for deferred direct IO completions. We allocate the >> 553 * workqueue when it's first needed. This avoids creating workqueue for >> 554 * filesystems that don't need it and also allows us to create the workqueue >> 555 * late enough so the we can include s_id in the name of the workqueue. >> 556 */ >> 557 int sb_init_dio_done_wq(struct super_block *sb) >> 558 { >> 559 struct workqueue_struct *old; >> 560 struct workqueue_struct *wq = alloc_workqueue("dio/%s", >> 561 WQ_MEM_RECLAIM, 0, >> 562 sb->s_id); >> 563 if (!wq) >> 564 return -ENOMEM; >> 565 /* >> 566 * This has to be atomic as more DIOs can race to create the workqueue >> 567 */ >> 568 old = cmpxchg(&sb->s_dio_done_wq, NULL, wq); >> 569 /* Someone created workqueue before us? Free ours... */ >> 570 if (old) >> 571 destroy_workqueue(wq); >> 572 return 0; >> 573 } >> 574 568 static int dio_set_defer_completion(struct dio 575 static int dio_set_defer_completion(struct dio *dio) 569 { 576 { 570 struct super_block *sb = dio->inode->i 577 struct super_block *sb = dio->inode->i_sb; 571 578 572 if (dio->defer_completion) 579 if (dio->defer_completion) 573 return 0; 580 return 0; 574 dio->defer_completion = true; 581 dio->defer_completion = true; 575 if (!sb->s_dio_done_wq) 582 if (!sb->s_dio_done_wq) 576 return sb_init_dio_done_wq(sb) 583 return sb_init_dio_done_wq(sb); 577 return 0; 584 return 0; 578 } 585 } 579 586 580 /* 587 /* 581 * Call into the fs to map some more disk bloc 588 * Call into the fs to map some more disk blocks. We record the current number 582 * of available blocks at sdio->blocks_availab 589 * of available blocks at sdio->blocks_available. These are in units of the 583 * fs blocksize, i_blocksize(inode). !! 590 * fs blocksize, (1 << inode->i_blkbits). 584 * 591 * 585 * The fs is allowed to map lots of blocks at 592 * The fs is allowed to map lots of blocks at once. If it wants to do that, 586 * it uses the passed inode-relative block num 593 * it uses the passed inode-relative block number as the file offset, as usual. 587 * 594 * 588 * get_block() is passed the number of i_blkbi 595 * get_block() is passed the number of i_blkbits-sized blocks which direct_io 589 * has remaining to do. The fs should not map 596 * has remaining to do. The fs should not map more than this number of blocks. 590 * 597 * 591 * If the fs has mapped a lot of blocks, it sh 598 * If the fs has mapped a lot of blocks, it should populate bh->b_size to 592 * indicate how much contiguous disk space has 599 * indicate how much contiguous disk space has been made available at 593 * bh->b_blocknr. 600 * bh->b_blocknr. 594 * 601 * 595 * If *any* of the mapped blocks are new, then 602 * If *any* of the mapped blocks are new, then the fs must set buffer_new(). 596 * This isn't very efficient... 603 * This isn't very efficient... 597 * 604 * 598 * In the case of filesystem holes: the fs may 605 * In the case of filesystem holes: the fs may return an arbitrarily-large 599 * hole by returning an appropriate value in b 606 * hole by returning an appropriate value in b_size and by clearing 600 * buffer_mapped(). However the direct-io cod 607 * buffer_mapped(). However the direct-io code will only process holes one 601 * block at a time - it will repeatedly call g 608 * block at a time - it will repeatedly call get_block() as it walks the hole. 602 */ 609 */ 603 static int get_more_blocks(struct dio *dio, st 610 static int get_more_blocks(struct dio *dio, struct dio_submit *sdio, 604 struct buffer_head 611 struct buffer_head *map_bh) 605 { 612 { 606 const enum req_op dio_op = dio->opf & << 607 int ret; 613 int ret; 608 sector_t fs_startblk; /* Into file, 614 sector_t fs_startblk; /* Into file, in filesystem-sized blocks */ 609 sector_t fs_endblk; /* Into file, 615 sector_t fs_endblk; /* Into file, in filesystem-sized blocks */ 610 unsigned long fs_count; /* Number of f 616 unsigned long fs_count; /* Number of filesystem-sized blocks */ 611 int create; 617 int create; 612 unsigned int i_blkbits = sdio->blkbits 618 unsigned int i_blkbits = sdio->blkbits + sdio->blkfactor; 613 loff_t i_size; << 614 619 615 /* 620 /* 616 * If there was a memory error and we' 621 * If there was a memory error and we've overwritten all the 617 * mapped blocks then we can now retur 622 * mapped blocks then we can now return that memory error 618 */ 623 */ 619 ret = dio->page_errors; 624 ret = dio->page_errors; 620 if (ret == 0) { 625 if (ret == 0) { 621 BUG_ON(sdio->block_in_file >= 626 BUG_ON(sdio->block_in_file >= sdio->final_block_in_request); 622 fs_startblk = sdio->block_in_f 627 fs_startblk = sdio->block_in_file >> sdio->blkfactor; 623 fs_endblk = (sdio->final_block 628 fs_endblk = (sdio->final_block_in_request - 1) >> 624 sdio-> 629 sdio->blkfactor; 625 fs_count = fs_endblk - fs_star 630 fs_count = fs_endblk - fs_startblk + 1; 626 631 627 map_bh->b_state = 0; 632 map_bh->b_state = 0; 628 map_bh->b_size = fs_count << i 633 map_bh->b_size = fs_count << i_blkbits; 629 634 630 /* 635 /* 631 * For writes that could fill 636 * For writes that could fill holes inside i_size on a 632 * DIO_SKIP_HOLES filesystem w 637 * DIO_SKIP_HOLES filesystem we forbid block creations: only 633 * overwrites are permitted. W 638 * overwrites are permitted. We will return early to the caller 634 * once we see an unmapped buf 639 * once we see an unmapped buffer head returned, and the caller 635 * will fall back to buffered 640 * will fall back to buffered I/O. 636 * 641 * 637 * Otherwise the decision is l 642 * Otherwise the decision is left to the get_blocks method, 638 * which may decide to handle 643 * which may decide to handle it or also return an unmapped 639 * buffer head. 644 * buffer head. 640 */ 645 */ 641 create = dio_op == REQ_OP_WRIT !! 646 create = dio->op == REQ_OP_WRITE; 642 if (dio->flags & DIO_SKIP_HOLE 647 if (dio->flags & DIO_SKIP_HOLES) { 643 i_size = i_size_read(d !! 648 if (fs_startblk <= ((i_size_read(dio->inode) - 1) >> 644 if (i_size && fs_start !! 649 i_blkbits)) 645 create = 0; 650 create = 0; 646 } 651 } 647 652 648 ret = (*sdio->get_block)(dio-> 653 ret = (*sdio->get_block)(dio->inode, fs_startblk, 649 654 map_bh, create); 650 655 651 /* Store for completion */ 656 /* Store for completion */ 652 dio->private = map_bh->b_priva 657 dio->private = map_bh->b_private; 653 658 654 if (ret == 0 && buffer_defer_c 659 if (ret == 0 && buffer_defer_completion(map_bh)) 655 ret = dio_set_defer_co 660 ret = dio_set_defer_completion(dio); 656 } 661 } 657 return ret; 662 return ret; 658 } 663 } 659 664 660 /* 665 /* 661 * There is no bio. Make one now. 666 * There is no bio. Make one now. 662 */ 667 */ 663 static inline int dio_new_bio(struct dio *dio, 668 static inline int dio_new_bio(struct dio *dio, struct dio_submit *sdio, 664 sector_t start_sector, struct 669 sector_t start_sector, struct buffer_head *map_bh) 665 { 670 { 666 sector_t sector; 671 sector_t sector; 667 int ret, nr_pages; 672 int ret, nr_pages; 668 673 669 ret = dio_bio_reap(dio, sdio); 674 ret = dio_bio_reap(dio, sdio); 670 if (ret) 675 if (ret) 671 goto out; 676 goto out; 672 sector = start_sector << (sdio->blkbit 677 sector = start_sector << (sdio->blkbits - 9); 673 nr_pages = bio_max_segs(sdio->pages_in !! 678 nr_pages = min(sdio->pages_in_io, BIO_MAX_PAGES); 674 BUG_ON(nr_pages <= 0); 679 BUG_ON(nr_pages <= 0); 675 dio_bio_alloc(dio, sdio, map_bh->b_bde 680 dio_bio_alloc(dio, sdio, map_bh->b_bdev, sector, nr_pages); 676 sdio->boundary = 0; 681 sdio->boundary = 0; 677 out: 682 out: 678 return ret; 683 return ret; 679 } 684 } 680 685 681 /* 686 /* 682 * Attempt to put the current chunk of 'cur_pa 687 * Attempt to put the current chunk of 'cur_page' into the current BIO. If 683 * that was successful then update final_block 688 * that was successful then update final_block_in_bio and take a ref against 684 * the just-added page. 689 * the just-added page. 685 * 690 * 686 * Return zero on success. Non-zero means the 691 * Return zero on success. Non-zero means the caller needs to start a new BIO. 687 */ 692 */ 688 static inline int dio_bio_add_page(struct dio !! 693 static inline int dio_bio_add_page(struct dio_submit *sdio) 689 { 694 { 690 int ret; 695 int ret; 691 696 692 ret = bio_add_page(sdio->bio, sdio->cu 697 ret = bio_add_page(sdio->bio, sdio->cur_page, 693 sdio->cur_page_len, sd 698 sdio->cur_page_len, sdio->cur_page_offset); 694 if (ret == sdio->cur_page_len) { 699 if (ret == sdio->cur_page_len) { 695 /* 700 /* 696 * Decrement count only, if we 701 * Decrement count only, if we are done with this page 697 */ 702 */ 698 if ((sdio->cur_page_len + sdio 703 if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE) 699 sdio->pages_in_io--; 704 sdio->pages_in_io--; 700 dio_pin_page(dio, sdio->cur_pa !! 705 get_page(sdio->cur_page); 701 sdio->final_block_in_bio = sdi 706 sdio->final_block_in_bio = sdio->cur_page_block + 702 (sdio->cur_page_len >> 707 (sdio->cur_page_len >> sdio->blkbits); 703 ret = 0; 708 ret = 0; 704 } else { 709 } else { 705 ret = 1; 710 ret = 1; 706 } 711 } 707 return ret; 712 return ret; 708 } 713 } 709 714 710 /* 715 /* 711 * Put cur_page under IO. The section of cur_ 716 * Put cur_page under IO. The section of cur_page which is described by 712 * cur_page_offset,cur_page_len is put into a 717 * cur_page_offset,cur_page_len is put into a BIO. The section of cur_page 713 * starts on-disk at cur_page_block. 718 * starts on-disk at cur_page_block. 714 * 719 * 715 * We take a ref against the page here (on beh 720 * We take a ref against the page here (on behalf of its presence in the bio). 716 * 721 * 717 * The caller of this function is responsible 722 * The caller of this function is responsible for removing cur_page from the 718 * dio, and for dropping the refcount which ca 723 * dio, and for dropping the refcount which came from that presence. 719 */ 724 */ 720 static inline int dio_send_cur_page(struct dio 725 static inline int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio, 721 struct buffer_head *map_bh) 726 struct buffer_head *map_bh) 722 { 727 { 723 int ret = 0; 728 int ret = 0; 724 729 725 if (sdio->bio) { 730 if (sdio->bio) { 726 loff_t cur_offset = sdio->cur_ 731 loff_t cur_offset = sdio->cur_page_fs_offset; 727 loff_t bio_next_offset = sdio- 732 loff_t bio_next_offset = sdio->logical_offset_in_bio + 728 sdio->bio->bi_iter.bi_ 733 sdio->bio->bi_iter.bi_size; 729 734 730 /* 735 /* 731 * See whether this new reques 736 * See whether this new request is contiguous with the old. 732 * 737 * 733 * Btrfs cannot handle having 738 * Btrfs cannot handle having logically non-contiguous requests 734 * submitted. For example if 739 * submitted. For example if you have 735 * 740 * 736 * Logical: [0-4095][HOLE][81 741 * Logical: [0-4095][HOLE][8192-12287] 737 * Physical: [0-4095] [40 742 * Physical: [0-4095] [4096-8191] 738 * 743 * 739 * We cannot submit those page 744 * We cannot submit those pages together as one BIO. So if our 740 * current logical offset in t 745 * current logical offset in the file does not equal what would 741 * be the next logical offset 746 * be the next logical offset in the bio, submit the bio we 742 * have. 747 * have. 743 */ 748 */ 744 if (sdio->final_block_in_bio ! 749 if (sdio->final_block_in_bio != sdio->cur_page_block || 745 cur_offset != bio_next_off 750 cur_offset != bio_next_offset) 746 dio_bio_submit(dio, sd 751 dio_bio_submit(dio, sdio); 747 } 752 } 748 753 749 if (sdio->bio == NULL) { 754 if (sdio->bio == NULL) { 750 ret = dio_new_bio(dio, sdio, s 755 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh); 751 if (ret) 756 if (ret) 752 goto out; 757 goto out; 753 } 758 } 754 759 755 if (dio_bio_add_page(dio, sdio) != 0) !! 760 if (dio_bio_add_page(sdio) != 0) { 756 dio_bio_submit(dio, sdio); 761 dio_bio_submit(dio, sdio); 757 ret = dio_new_bio(dio, sdio, s 762 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh); 758 if (ret == 0) { 763 if (ret == 0) { 759 ret = dio_bio_add_page !! 764 ret = dio_bio_add_page(sdio); 760 BUG_ON(ret != 0); 765 BUG_ON(ret != 0); 761 } 766 } 762 } 767 } 763 out: 768 out: 764 return ret; 769 return ret; 765 } 770 } 766 771 767 /* 772 /* 768 * An autonomous function to put a chunk of a 773 * An autonomous function to put a chunk of a page under deferred IO. 769 * 774 * 770 * The caller doesn't actually know (or care) 775 * The caller doesn't actually know (or care) whether this piece of page is in 771 * a BIO, or is under IO or whatever. We just 776 * a BIO, or is under IO or whatever. We just take care of all possible 772 * situations here. The separation between th 777 * situations here. The separation between the logic of do_direct_IO() and 773 * that of submit_page_section() is important 778 * that of submit_page_section() is important for clarity. Please don't break. 774 * 779 * 775 * The chunk of page starts on-disk at blocknr 780 * The chunk of page starts on-disk at blocknr. 776 * 781 * 777 * We perform deferred IO, by recording the la 782 * We perform deferred IO, by recording the last-submitted page inside our 778 * private part of the dio structure. If poss 783 * private part of the dio structure. If possible, we just expand the IO 779 * across that page here. 784 * across that page here. 780 * 785 * 781 * If that doesn't work out then we put the ol 786 * If that doesn't work out then we put the old page into the bio and add this 782 * page to the dio instead. 787 * page to the dio instead. 783 */ 788 */ 784 static inline int 789 static inline int 785 submit_page_section(struct dio *dio, struct di 790 submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page, 786 unsigned offset, unsigned 791 unsigned offset, unsigned len, sector_t blocknr, 787 struct buffer_head *map_bh 792 struct buffer_head *map_bh) 788 { 793 { 789 const enum req_op dio_op = dio->opf & << 790 int ret = 0; 794 int ret = 0; 791 int boundary = sdio->boundary; /* dio << 792 795 793 if (dio_op == REQ_OP_WRITE) { !! 796 if (dio->op == REQ_OP_WRITE) { 794 /* 797 /* 795 * Read accounting is performe 798 * Read accounting is performed in submit_bio() 796 */ 799 */ 797 task_io_account_write(len); 800 task_io_account_write(len); 798 } 801 } 799 802 800 /* 803 /* 801 * Can we just grow the current page's 804 * Can we just grow the current page's presence in the dio? 802 */ 805 */ 803 if (sdio->cur_page == page && 806 if (sdio->cur_page == page && 804 sdio->cur_page_offset + sdio->cur_ 807 sdio->cur_page_offset + sdio->cur_page_len == offset && 805 sdio->cur_page_block + 808 sdio->cur_page_block + 806 (sdio->cur_page_len >> sdio->blkbi 809 (sdio->cur_page_len >> sdio->blkbits) == blocknr) { 807 sdio->cur_page_len += len; 810 sdio->cur_page_len += len; 808 goto out; 811 goto out; 809 } 812 } 810 813 811 /* 814 /* 812 * If there's a deferred page already 815 * If there's a deferred page already there then send it. 813 */ 816 */ 814 if (sdio->cur_page) { 817 if (sdio->cur_page) { 815 ret = dio_send_cur_page(dio, s 818 ret = dio_send_cur_page(dio, sdio, map_bh); 816 dio_unpin_page(dio, sdio->cur_ !! 819 put_page(sdio->cur_page); 817 sdio->cur_page = NULL; 820 sdio->cur_page = NULL; 818 if (ret) 821 if (ret) 819 return ret; 822 return ret; 820 } 823 } 821 824 822 dio_pin_page(dio, page); !! 825 get_page(page); /* It is in dio */ 823 sdio->cur_page = page; 826 sdio->cur_page = page; 824 sdio->cur_page_offset = offset; 827 sdio->cur_page_offset = offset; 825 sdio->cur_page_len = len; 828 sdio->cur_page_len = len; 826 sdio->cur_page_block = blocknr; 829 sdio->cur_page_block = blocknr; 827 sdio->cur_page_fs_offset = sdio->block 830 sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits; 828 out: 831 out: 829 /* 832 /* 830 * If boundary then we want to schedul !! 833 * If sdio->boundary then we want to schedule the IO now to 831 * avoid metadata seeks. 834 * avoid metadata seeks. 832 */ 835 */ 833 if (boundary) { !! 836 if (sdio->boundary) { 834 ret = dio_send_cur_page(dio, s 837 ret = dio_send_cur_page(dio, sdio, map_bh); 835 if (sdio->bio) !! 838 dio_bio_submit(dio, sdio); 836 dio_bio_submit(dio, sd !! 839 put_page(sdio->cur_page); 837 dio_unpin_page(dio, sdio->cur_ << 838 sdio->cur_page = NULL; 840 sdio->cur_page = NULL; 839 } 841 } 840 return ret; 842 return ret; 841 } 843 } 842 844 843 /* 845 /* 844 * If we are not writing the entire block and 846 * If we are not writing the entire block and get_block() allocated 845 * the block for us, we need to fill-in the un 847 * the block for us, we need to fill-in the unused portion of the 846 * block with zeros. This happens only if user 848 * block with zeros. This happens only if user-buffer, fileoffset or 847 * io length is not filesystem block-size mult 849 * io length is not filesystem block-size multiple. 848 * 850 * 849 * `end' is zero if we're doing the start of t 851 * `end' is zero if we're doing the start of the IO, 1 at the end of the 850 * IO. 852 * IO. 851 */ 853 */ 852 static inline void dio_zero_block(struct dio * 854 static inline void dio_zero_block(struct dio *dio, struct dio_submit *sdio, 853 int end, struct buffer_head *m 855 int end, struct buffer_head *map_bh) 854 { 856 { 855 unsigned dio_blocks_per_fs_block; 857 unsigned dio_blocks_per_fs_block; 856 unsigned this_chunk_blocks; /* In 858 unsigned this_chunk_blocks; /* In dio_blocks */ 857 unsigned this_chunk_bytes; 859 unsigned this_chunk_bytes; 858 struct page *page; 860 struct page *page; 859 861 860 sdio->start_zero_done = 1; 862 sdio->start_zero_done = 1; 861 if (!sdio->blkfactor || !buffer_new(ma 863 if (!sdio->blkfactor || !buffer_new(map_bh)) 862 return; 864 return; 863 865 864 dio_blocks_per_fs_block = 1 << sdio->b 866 dio_blocks_per_fs_block = 1 << sdio->blkfactor; 865 this_chunk_blocks = sdio->block_in_fil 867 this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1); 866 868 867 if (!this_chunk_blocks) 869 if (!this_chunk_blocks) 868 return; 870 return; 869 871 870 /* 872 /* 871 * We need to zero out part of an fs b 873 * We need to zero out part of an fs block. It is either at the 872 * beginning or the end of the fs bloc 874 * beginning or the end of the fs block. 873 */ 875 */ 874 if (end) 876 if (end) 875 this_chunk_blocks = dio_blocks 877 this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks; 876 878 877 this_chunk_bytes = this_chunk_blocks < 879 this_chunk_bytes = this_chunk_blocks << sdio->blkbits; 878 880 879 page = ZERO_PAGE(0); 881 page = ZERO_PAGE(0); 880 if (submit_page_section(dio, sdio, pag 882 if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes, 881 sdio->next_blo 883 sdio->next_block_for_io, map_bh)) 882 return; 884 return; 883 885 884 sdio->next_block_for_io += this_chunk_ 886 sdio->next_block_for_io += this_chunk_blocks; 885 } 887 } 886 888 887 /* 889 /* 888 * Walk the user pages, and the file, mapping 890 * Walk the user pages, and the file, mapping blocks to disk and generating 889 * a sequence of (page,offset,len,block) mappi 891 * a sequence of (page,offset,len,block) mappings. These mappings are injected 890 * into submit_page_section(), which takes car 892 * into submit_page_section(), which takes care of the next stage of submission 891 * 893 * 892 * Direct IO against a blockdev is different f 894 * Direct IO against a blockdev is different from a file. Because we can 893 * happily perform page-sized but 512-byte ali 895 * happily perform page-sized but 512-byte aligned IOs. It is important that 894 * blockdev IO be able to have fine alignment 896 * blockdev IO be able to have fine alignment and large sizes. 895 * 897 * 896 * So what we do is to permit the ->get_block 898 * So what we do is to permit the ->get_block function to populate bh.b_size 897 * with the size of IO which is permitted at t 899 * with the size of IO which is permitted at this offset and this i_blkbits. 898 * 900 * 899 * For best results, the blockdev should be se 901 * For best results, the blockdev should be set up with 512-byte i_blkbits and 900 * it should set b_size to PAGE_SIZE or more i 902 * it should set b_size to PAGE_SIZE or more inside get_block(). This gives 901 * fine alignment but still allows this functi 903 * fine alignment but still allows this function to work in PAGE_SIZE units. 902 */ 904 */ 903 static int do_direct_IO(struct dio *dio, struc 905 static int do_direct_IO(struct dio *dio, struct dio_submit *sdio, 904 struct buffer_head *ma 906 struct buffer_head *map_bh) 905 { 907 { 906 const enum req_op dio_op = dio->opf & << 907 const unsigned blkbits = sdio->blkbits 908 const unsigned blkbits = sdio->blkbits; 908 const unsigned i_blkbits = blkbits + s 909 const unsigned i_blkbits = blkbits + sdio->blkfactor; 909 int ret = 0; 910 int ret = 0; 910 911 911 while (sdio->block_in_file < sdio->fin 912 while (sdio->block_in_file < sdio->final_block_in_request) { 912 struct page *page; 913 struct page *page; 913 size_t from, to; 914 size_t from, to; 914 915 915 page = dio_get_page(dio, sdio) 916 page = dio_get_page(dio, sdio); 916 if (IS_ERR(page)) { 917 if (IS_ERR(page)) { 917 ret = PTR_ERR(page); 918 ret = PTR_ERR(page); 918 goto out; 919 goto out; 919 } 920 } 920 from = sdio->head ? 0 : sdio-> 921 from = sdio->head ? 0 : sdio->from; 921 to = (sdio->head == sdio->tail 922 to = (sdio->head == sdio->tail - 1) ? sdio->to : PAGE_SIZE; 922 sdio->head++; 923 sdio->head++; 923 924 924 while (from < to) { 925 while (from < to) { 925 unsigned this_chunk_by 926 unsigned this_chunk_bytes; /* # of bytes mapped */ 926 unsigned this_chunk_bl 927 unsigned this_chunk_blocks; /* # of blocks */ 927 unsigned u; 928 unsigned u; 928 929 929 if (sdio->blocks_avail 930 if (sdio->blocks_available == 0) { 930 /* 931 /* 931 * Need to go 932 * Need to go and map some more disk 932 */ 933 */ 933 unsigned long 934 unsigned long blkmask; 934 unsigned long 935 unsigned long dio_remainder; 935 936 936 ret = get_more 937 ret = get_more_blocks(dio, sdio, map_bh); 937 if (ret) { 938 if (ret) { 938 dio_un !! 939 put_page(page); 939 goto o 940 goto out; 940 } 941 } 941 if (!buffer_ma 942 if (!buffer_mapped(map_bh)) 942 goto d 943 goto do_holes; 943 944 944 sdio->blocks_a 945 sdio->blocks_available = 945 946 map_bh->b_size >> blkbits; 946 sdio->next_blo 947 sdio->next_block_for_io = 947 map_bh 948 map_bh->b_blocknr << sdio->blkfactor; 948 if (buffer_new 949 if (buffer_new(map_bh)) { 949 clean_ 950 clean_bdev_aliases( 950 951 map_bh->b_bdev, 951 952 map_bh->b_blocknr, 952 953 map_bh->b_size >> i_blkbits); 953 } 954 } 954 955 955 if (!sdio->blk 956 if (!sdio->blkfactor) 956 goto d 957 goto do_holes; 957 958 958 blkmask = (1 < 959 blkmask = (1 << sdio->blkfactor) - 1; 959 dio_remainder 960 dio_remainder = (sdio->block_in_file & blkmask); 960 961 961 /* 962 /* 962 * If we are a 963 * If we are at the start of IO and that IO 963 * starts part 964 * starts partway into a fs-block, 964 * dio_remaind 965 * dio_remainder will be non-zero. If the IO 965 * is a read t 966 * is a read then we can simply advance the IO 966 * cursor to t 967 * cursor to the first block which is to be 967 * read. But 968 * read. But if the IO is a write and the 968 * block was n 969 * block was newly allocated we cannot do that; 969 * the start o 970 * the start of the fs block must be zeroed out 970 * on-disk 971 * on-disk 971 */ 972 */ 972 if (!buffer_ne 973 if (!buffer_new(map_bh)) 973 sdio-> 974 sdio->next_block_for_io += dio_remainder; 974 sdio->blocks_a 975 sdio->blocks_available -= dio_remainder; 975 } 976 } 976 do_holes: 977 do_holes: 977 /* Handle holes */ 978 /* Handle holes */ 978 if (!buffer_mapped(map 979 if (!buffer_mapped(map_bh)) { 979 loff_t i_size_ 980 loff_t i_size_aligned; 980 981 981 /* AKPM: eargh 982 /* AKPM: eargh, -ENOTBLK is a hack */ 982 if (dio_op == !! 983 if (dio->op == REQ_OP_WRITE) { 983 dio_un !! 984 put_page(page); 984 return 985 return -ENOTBLK; 985 } 986 } 986 987 987 /* 988 /* 988 * Be sure to 989 * Be sure to account for a partial block as the 989 * last block 990 * last block in the file 990 */ 991 */ 991 i_size_aligned 992 i_size_aligned = ALIGN(i_size_read(dio->inode), 992 993 1 << blkbits); 993 if (sdio->bloc 994 if (sdio->block_in_file >= 994 995 i_size_aligned >> blkbits) { 995 /* We 996 /* We hit eof */ 996 dio_un !! 997 put_page(page); 997 goto o 998 goto out; 998 } 999 } 999 zero_user(page 1000 zero_user(page, from, 1 << blkbits); 1000 sdio->block_i 1001 sdio->block_in_file++; 1001 from += 1 << 1002 from += 1 << blkbits; 1002 dio->result + 1003 dio->result += 1 << blkbits; 1003 goto next_blo 1004 goto next_block; 1004 } 1005 } 1005 1006 1006 /* 1007 /* 1007 * If we're performin 1008 * If we're performing IO which has an alignment which 1008 * is finer than the 1009 * is finer than the underlying fs, go check to see if 1009 * we must zero out t 1010 * we must zero out the start of this block. 1010 */ 1011 */ 1011 if (unlikely(sdio->bl 1012 if (unlikely(sdio->blkfactor && !sdio->start_zero_done)) 1012 dio_zero_bloc 1013 dio_zero_block(dio, sdio, 0, map_bh); 1013 1014 1014 /* 1015 /* 1015 * Work out, in this_ 1016 * Work out, in this_chunk_blocks, how much disk we 1016 * can add to this pa 1017 * can add to this page 1017 */ 1018 */ 1018 this_chunk_blocks = s 1019 this_chunk_blocks = sdio->blocks_available; 1019 u = (to - from) >> bl 1020 u = (to - from) >> blkbits; 1020 if (this_chunk_blocks 1021 if (this_chunk_blocks > u) 1021 this_chunk_bl 1022 this_chunk_blocks = u; 1022 u = sdio->final_block 1023 u = sdio->final_block_in_request - sdio->block_in_file; 1023 if (this_chunk_blocks 1024 if (this_chunk_blocks > u) 1024 this_chunk_bl 1025 this_chunk_blocks = u; 1025 this_chunk_bytes = th 1026 this_chunk_bytes = this_chunk_blocks << blkbits; 1026 BUG_ON(this_chunk_byt 1027 BUG_ON(this_chunk_bytes == 0); 1027 1028 1028 if (this_chunk_blocks 1029 if (this_chunk_blocks == sdio->blocks_available) 1029 sdio->boundar 1030 sdio->boundary = buffer_boundary(map_bh); 1030 ret = submit_page_sec 1031 ret = submit_page_section(dio, sdio, page, 1031 1032 from, 1032 1033 this_chunk_bytes, 1033 1034 sdio->next_block_for_io, 1034 1035 map_bh); 1035 if (ret) { 1036 if (ret) { 1036 dio_unpin_pag !! 1037 put_page(page); 1037 goto out; 1038 goto out; 1038 } 1039 } 1039 sdio->next_block_for_ 1040 sdio->next_block_for_io += this_chunk_blocks; 1040 1041 1041 sdio->block_in_file + 1042 sdio->block_in_file += this_chunk_blocks; 1042 from += this_chunk_by 1043 from += this_chunk_bytes; 1043 dio->result += this_c 1044 dio->result += this_chunk_bytes; 1044 sdio->blocks_availabl 1045 sdio->blocks_available -= this_chunk_blocks; 1045 next_block: 1046 next_block: 1046 BUG_ON(sdio->block_in 1047 BUG_ON(sdio->block_in_file > sdio->final_block_in_request); 1047 if (sdio->block_in_fi 1048 if (sdio->block_in_file == sdio->final_block_in_request) 1048 break; 1049 break; 1049 } 1050 } 1050 1051 1051 /* Drop the pin which was tak !! 1052 /* Drop the ref which was taken in get_user_pages() */ 1052 dio_unpin_page(dio, page); !! 1053 put_page(page); 1053 } 1054 } 1054 out: 1055 out: 1055 return ret; 1056 return ret; 1056 } 1057 } 1057 1058 1058 static inline int drop_refcount(struct dio *d 1059 static inline int drop_refcount(struct dio *dio) 1059 { 1060 { 1060 int ret2; 1061 int ret2; 1061 unsigned long flags; 1062 unsigned long flags; 1062 1063 1063 /* 1064 /* 1064 * Sync will always be dropping the f 1065 * Sync will always be dropping the final ref and completing the 1065 * operation. AIO can if it was a br 1066 * operation. AIO can if it was a broken operation described above or 1066 * in fact if all the bios race to co 1067 * in fact if all the bios race to complete before we get here. In 1067 * that case dio_complete() translate 1068 * that case dio_complete() translates the EIOCBQUEUED into the proper 1068 * return code that the caller will h 1069 * return code that the caller will hand to ->complete(). 1069 * 1070 * 1070 * This is managed by the bio_lock in 1071 * This is managed by the bio_lock instead of being an atomic_t so that 1071 * completion paths can drop their re 1072 * completion paths can drop their ref and use the remaining count to 1072 * decide to wake the submission path 1073 * decide to wake the submission path atomically. 1073 */ 1074 */ 1074 spin_lock_irqsave(&dio->bio_lock, fla 1075 spin_lock_irqsave(&dio->bio_lock, flags); 1075 ret2 = --dio->refcount; 1076 ret2 = --dio->refcount; 1076 spin_unlock_irqrestore(&dio->bio_lock 1077 spin_unlock_irqrestore(&dio->bio_lock, flags); 1077 return ret2; 1078 return ret2; 1078 } 1079 } 1079 1080 1080 /* 1081 /* 1081 * This is a library function for use by file 1082 * This is a library function for use by filesystem drivers. 1082 * 1083 * 1083 * The locking rules are governed by the flag 1084 * The locking rules are governed by the flags parameter: 1084 * - if the flags value contains DIO_LOCKING 1085 * - if the flags value contains DIO_LOCKING we use a fancy locking 1085 * scheme for dumb filesystems. 1086 * scheme for dumb filesystems. 1086 * For writes this function is called unde 1087 * For writes this function is called under i_mutex and returns with 1087 * i_mutex held, for reads, i_mutex is not 1088 * i_mutex held, for reads, i_mutex is not held on entry, but it is 1088 * taken and dropped again before returnin 1089 * taken and dropped again before returning. 1089 * - if the flags value does NOT contain DIO 1090 * - if the flags value does NOT contain DIO_LOCKING we don't use any 1090 * internal locking but rather rely on the 1091 * internal locking but rather rely on the filesystem to synchronize 1091 * direct I/O reads/writes versus each oth 1092 * direct I/O reads/writes versus each other and truncate. 1092 * 1093 * 1093 * To help with locking against truncate we i 1094 * To help with locking against truncate we incremented the i_dio_count 1094 * counter before starting direct I/O, and de 1095 * counter before starting direct I/O, and decrement it once we are done. 1095 * Truncate can wait for it to reach zero to 1096 * Truncate can wait for it to reach zero to provide exclusion. It is 1096 * expected that filesystem provide exclusion 1097 * expected that filesystem provide exclusion between new direct I/O 1097 * and truncates. For DIO_LOCKING filesystem 1098 * and truncates. For DIO_LOCKING filesystems this is done by i_mutex, 1098 * but other filesystems need to take care of 1099 * but other filesystems need to take care of this on their own. 1099 * 1100 * 1100 * NOTE: if you pass "sdio" to anything by po 1101 * NOTE: if you pass "sdio" to anything by pointer make sure that function 1101 * is always inlined. Otherwise gcc is unable 1102 * is always inlined. Otherwise gcc is unable to split the structure into 1102 * individual fields and will generate much w 1103 * individual fields and will generate much worse code. This is important 1103 * for the whole file. 1104 * for the whole file. 1104 */ 1105 */ 1105 ssize_t __blockdev_direct_IO(struct kiocb *io !! 1106 static inline ssize_t 1106 struct block_device *bdev, st !! 1107 do_blockdev_direct_IO(struct kiocb *iocb, struct inode *inode, 1107 get_block_t get_block, dio_io !! 1108 struct block_device *bdev, struct iov_iter *iter, 1108 int flags) !! 1109 get_block_t get_block, dio_iodone_t end_io, >> 1110 dio_submit_t submit_io, int flags) 1109 { 1111 { 1110 unsigned i_blkbits = READ_ONCE(inode- !! 1112 unsigned i_blkbits = ACCESS_ONCE(inode->i_blkbits); 1111 unsigned blkbits = i_blkbits; 1113 unsigned blkbits = i_blkbits; 1112 unsigned blocksize_mask = (1 << blkbi 1114 unsigned blocksize_mask = (1 << blkbits) - 1; 1113 ssize_t retval = -EINVAL; 1115 ssize_t retval = -EINVAL; 1114 const size_t count = iov_iter_count(i !! 1116 size_t count = iov_iter_count(iter); 1115 loff_t offset = iocb->ki_pos; 1117 loff_t offset = iocb->ki_pos; 1116 const loff_t end = offset + count; !! 1118 loff_t end = offset + count; 1117 struct dio *dio; 1119 struct dio *dio; 1118 struct dio_submit sdio = { NULL, }; !! 1120 struct dio_submit sdio = { 0, }; 1119 struct buffer_head map_bh = { 0, }; 1121 struct buffer_head map_bh = { 0, }; 1120 struct blk_plug plug; 1122 struct blk_plug plug; 1121 unsigned long align = offset | iov_it 1123 unsigned long align = offset | iov_iter_alignment(iter); 1122 1124 >> 1125 /* >> 1126 * Avoid references to bdev if not absolutely needed to give >> 1127 * the early prefetch in the caller enough time. >> 1128 */ >> 1129 >> 1130 if (align & blocksize_mask) { >> 1131 if (bdev) >> 1132 blkbits = blksize_bits(bdev_logical_block_size(bdev)); >> 1133 blocksize_mask = (1 << blkbits) - 1; >> 1134 if (align & blocksize_mask) >> 1135 goto out; >> 1136 } >> 1137 1123 /* watch out for a 0 len io from a tr 1138 /* watch out for a 0 len io from a tricksy fs */ 1124 if (iov_iter_rw(iter) == READ && !cou !! 1139 if (iov_iter_rw(iter) == READ && !iov_iter_count(iter)) 1125 return 0; 1140 return 0; 1126 1141 1127 dio = kmem_cache_alloc(dio_cache, GFP 1142 dio = kmem_cache_alloc(dio_cache, GFP_KERNEL); >> 1143 retval = -ENOMEM; 1128 if (!dio) 1144 if (!dio) 1129 return -ENOMEM; !! 1145 goto out; 1130 /* 1146 /* 1131 * Believe it or not, zeroing out the 1147 * Believe it or not, zeroing out the page array caused a .5% 1132 * performance regression in a databa 1148 * performance regression in a database benchmark. So, we take 1133 * care to only zero out what's neede 1149 * care to only zero out what's needed. 1134 */ 1150 */ 1135 memset(dio, 0, offsetof(struct dio, p 1151 memset(dio, 0, offsetof(struct dio, pages)); 1136 1152 1137 dio->flags = flags; 1153 dio->flags = flags; 1138 if (dio->flags & DIO_LOCKING && iov_i !! 1154 if (dio->flags & DIO_LOCKING) { 1139 /* will be released by direct !! 1155 if (iov_iter_rw(iter) == READ) { 1140 inode_lock(inode); !! 1156 struct address_space *mapping = >> 1157 iocb->ki_filp->f_mapping; >> 1158 >> 1159 /* will be released by direct_io_worker */ >> 1160 inode_lock(inode); >> 1161 >> 1162 retval = filemap_write_and_wait_range(mapping, offset, >> 1163 end - 1); >> 1164 if (retval) { >> 1165 inode_unlock(inode); >> 1166 kmem_cache_free(dio_cache, dio); >> 1167 goto out; >> 1168 } >> 1169 } 1141 } 1170 } 1142 dio->is_pinned = iov_iter_extract_wil << 1143 1171 1144 /* Once we sampled i_size check for r 1172 /* Once we sampled i_size check for reads beyond EOF */ 1145 dio->i_size = i_size_read(inode); 1173 dio->i_size = i_size_read(inode); 1146 if (iov_iter_rw(iter) == READ && offs 1174 if (iov_iter_rw(iter) == READ && offset >= dio->i_size) { >> 1175 if (dio->flags & DIO_LOCKING) >> 1176 inode_unlock(inode); >> 1177 kmem_cache_free(dio_cache, dio); 1147 retval = 0; 1178 retval = 0; 1148 goto fail_dio; !! 1179 goto out; 1149 } << 1150 << 1151 if (align & blocksize_mask) { << 1152 if (bdev) << 1153 blkbits = blksize_bit << 1154 blocksize_mask = (1 << blkbit << 1155 if (align & blocksize_mask) << 1156 goto fail_dio; << 1157 } << 1158 << 1159 if (dio->flags & DIO_LOCKING && iov_i << 1160 struct address_space *mapping << 1161 << 1162 retval = filemap_write_and_wa << 1163 if (retval) << 1164 goto fail_dio; << 1165 } 1180 } 1166 1181 1167 /* 1182 /* 1168 * For file extending writes updating 1183 * For file extending writes updating i_size before data writeouts 1169 * complete can expose uninitialized 1184 * complete can expose uninitialized blocks in dumb filesystems. 1170 * In that case we need to wait for I 1185 * In that case we need to wait for I/O completion even if asked 1171 * for an asynchronous write. 1186 * for an asynchronous write. 1172 */ 1187 */ 1173 if (is_sync_kiocb(iocb)) 1188 if (is_sync_kiocb(iocb)) 1174 dio->is_async = false; 1189 dio->is_async = false; 1175 else if (iov_iter_rw(iter) == WRITE & !! 1190 else if (!(dio->flags & DIO_ASYNC_EXTEND) && >> 1191 iov_iter_rw(iter) == WRITE && end > i_size_read(inode)) 1176 dio->is_async = false; 1192 dio->is_async = false; 1177 else 1193 else 1178 dio->is_async = true; 1194 dio->is_async = true; 1179 1195 1180 dio->inode = inode; 1196 dio->inode = inode; 1181 if (iov_iter_rw(iter) == WRITE) { 1197 if (iov_iter_rw(iter) == WRITE) { 1182 dio->opf = REQ_OP_WRITE | REQ !! 1198 dio->op = REQ_OP_WRITE; 1183 if (iocb->ki_flags & IOCB_NOW !! 1199 dio->op_flags = REQ_SYNC | REQ_IDLE; 1184 dio->opf |= REQ_NOWAI << 1185 } else { 1200 } else { 1186 dio->opf = REQ_OP_READ; !! 1201 dio->op = REQ_OP_READ; 1187 } 1202 } 1188 1203 1189 /* 1204 /* 1190 * For AIO O_(D)SYNC writes we need t 1205 * For AIO O_(D)SYNC writes we need to defer completions to a workqueue 1191 * so that we can call ->fsync. 1206 * so that we can call ->fsync. 1192 */ 1207 */ 1193 if (dio->is_async && iov_iter_rw(iter !! 1208 if (dio->is_async && iov_iter_rw(iter) == WRITE && 1194 retval = 0; !! 1209 ((iocb->ki_filp->f_flags & O_DSYNC) || 1195 if (iocb_is_dsync(iocb)) !! 1210 IS_SYNC(iocb->ki_filp->f_mapping->host))) { 1196 retval = dio_set_defe !! 1211 retval = dio_set_defer_completion(dio); 1197 else if (!dio->inode->i_sb->s !! 1212 if (retval) { 1198 /* 1213 /* 1199 * In case of AIO wri !! 1214 * We grab i_mutex only for reads so we don't have 1200 * need to defer comp !! 1215 * to release it here 1201 * however the workqu << 1202 */ 1216 */ 1203 retval = sb_init_dio_ !! 1217 kmem_cache_free(dio_cache, dio); >> 1218 goto out; 1204 } 1219 } 1205 if (retval) << 1206 goto fail_dio; << 1207 } 1220 } 1208 1221 1209 /* 1222 /* 1210 * Will be decremented at I/O complet 1223 * Will be decremented at I/O completion time. 1211 */ 1224 */ 1212 inode_dio_begin(inode); !! 1225 if (!(dio->flags & DIO_SKIP_DIO_COUNT)) >> 1226 inode_dio_begin(inode); 1213 1227 >> 1228 retval = 0; 1214 sdio.blkbits = blkbits; 1229 sdio.blkbits = blkbits; 1215 sdio.blkfactor = i_blkbits - blkbits; 1230 sdio.blkfactor = i_blkbits - blkbits; 1216 sdio.block_in_file = offset >> blkbit 1231 sdio.block_in_file = offset >> blkbits; 1217 1232 1218 sdio.get_block = get_block; 1233 sdio.get_block = get_block; 1219 dio->end_io = end_io; 1234 dio->end_io = end_io; >> 1235 sdio.submit_io = submit_io; 1220 sdio.final_block_in_bio = -1; 1236 sdio.final_block_in_bio = -1; 1221 sdio.next_block_for_io = -1; 1237 sdio.next_block_for_io = -1; 1222 1238 1223 dio->iocb = iocb; 1239 dio->iocb = iocb; 1224 1240 1225 spin_lock_init(&dio->bio_lock); 1241 spin_lock_init(&dio->bio_lock); 1226 dio->refcount = 1; 1242 dio->refcount = 1; 1227 1243 1228 dio->should_dirty = user_backed_iter( !! 1244 dio->should_dirty = (iter->type == ITER_IOVEC); 1229 sdio.iter = iter; 1245 sdio.iter = iter; 1230 sdio.final_block_in_request = end >> !! 1246 sdio.final_block_in_request = >> 1247 (offset + iov_iter_count(iter)) >> blkbits; 1231 1248 1232 /* 1249 /* 1233 * In case of non-aligned buffers, we 1250 * In case of non-aligned buffers, we may need 2 more 1234 * pages since we need to zero out fi 1251 * pages since we need to zero out first and last block. 1235 */ 1252 */ 1236 if (unlikely(sdio.blkfactor)) 1253 if (unlikely(sdio.blkfactor)) 1237 sdio.pages_in_io = 2; 1254 sdio.pages_in_io = 2; 1238 1255 1239 sdio.pages_in_io += iov_iter_npages(i 1256 sdio.pages_in_io += iov_iter_npages(iter, INT_MAX); 1240 1257 1241 blk_start_plug(&plug); 1258 blk_start_plug(&plug); 1242 1259 1243 retval = do_direct_IO(dio, &sdio, &ma 1260 retval = do_direct_IO(dio, &sdio, &map_bh); 1244 if (retval) 1261 if (retval) 1245 dio_cleanup(dio, &sdio); 1262 dio_cleanup(dio, &sdio); 1246 1263 1247 if (retval == -ENOTBLK) { 1264 if (retval == -ENOTBLK) { 1248 /* 1265 /* 1249 * The remaining part of the 1266 * The remaining part of the request will be 1250 * handled by buffered I/O wh !! 1267 * be handled by buffered I/O when we return 1251 */ 1268 */ 1252 retval = 0; 1269 retval = 0; 1253 } 1270 } 1254 /* 1271 /* 1255 * There may be some unwritten disk a 1272 * There may be some unwritten disk at the end of a part-written 1256 * fs-block-sized block. Go zero tha 1273 * fs-block-sized block. Go zero that now. 1257 */ 1274 */ 1258 dio_zero_block(dio, &sdio, 1, &map_bh 1275 dio_zero_block(dio, &sdio, 1, &map_bh); 1259 1276 1260 if (sdio.cur_page) { 1277 if (sdio.cur_page) { 1261 ssize_t ret2; 1278 ssize_t ret2; 1262 1279 1263 ret2 = dio_send_cur_page(dio, 1280 ret2 = dio_send_cur_page(dio, &sdio, &map_bh); 1264 if (retval == 0) 1281 if (retval == 0) 1265 retval = ret2; 1282 retval = ret2; 1266 dio_unpin_page(dio, sdio.cur_ !! 1283 put_page(sdio.cur_page); 1267 sdio.cur_page = NULL; 1284 sdio.cur_page = NULL; 1268 } 1285 } 1269 if (sdio.bio) 1286 if (sdio.bio) 1270 dio_bio_submit(dio, &sdio); 1287 dio_bio_submit(dio, &sdio); 1271 1288 1272 blk_finish_plug(&plug); 1289 blk_finish_plug(&plug); 1273 1290 1274 /* 1291 /* 1275 * It is possible that, we return sho 1292 * It is possible that, we return short IO due to end of file. 1276 * In that case, we need to release a 1293 * In that case, we need to release all the pages we got hold on. 1277 */ 1294 */ 1278 dio_cleanup(dio, &sdio); 1295 dio_cleanup(dio, &sdio); 1279 1296 1280 /* 1297 /* 1281 * All block lookups have been perfor 1298 * All block lookups have been performed. For READ requests 1282 * we can let i_mutex go now that its 1299 * we can let i_mutex go now that its achieved its purpose 1283 * of protecting us from looking up u 1300 * of protecting us from looking up uninitialized blocks. 1284 */ 1301 */ 1285 if (iov_iter_rw(iter) == READ && (dio 1302 if (iov_iter_rw(iter) == READ && (dio->flags & DIO_LOCKING)) 1286 inode_unlock(dio->inode); 1303 inode_unlock(dio->inode); 1287 1304 1288 /* 1305 /* 1289 * The only time we want to leave bio 1306 * The only time we want to leave bios in flight is when a successful 1290 * partial aio read or full aio write 1307 * partial aio read or full aio write have been setup. In that case 1291 * bio completion will call aio_compl 1308 * bio completion will call aio_complete. The only time it's safe to 1292 * call aio_complete is when we retur 1309 * call aio_complete is when we return -EIOCBQUEUED, so we key on that. 1293 * This had *better* be the only plac 1310 * This had *better* be the only place that raises -EIOCBQUEUED. 1294 */ 1311 */ 1295 BUG_ON(retval == -EIOCBQUEUED); 1312 BUG_ON(retval == -EIOCBQUEUED); 1296 if (dio->is_async && retval == 0 && d 1313 if (dio->is_async && retval == 0 && dio->result && 1297 (iov_iter_rw(iter) == READ || dio 1314 (iov_iter_rw(iter) == READ || dio->result == count)) 1298 retval = -EIOCBQUEUED; 1315 retval = -EIOCBQUEUED; 1299 else 1316 else 1300 dio_await_completion(dio); 1317 dio_await_completion(dio); 1301 1318 1302 if (drop_refcount(dio) == 0) { 1319 if (drop_refcount(dio) == 0) { 1303 retval = dio_complete(dio, re !! 1320 retval = dio_complete(dio, retval, false); 1304 } else 1321 } else 1305 BUG_ON(retval != -EIOCBQUEUED 1322 BUG_ON(retval != -EIOCBQUEUED); 1306 1323 >> 1324 out: 1307 return retval; 1325 return retval; >> 1326 } 1308 1327 1309 fail_dio: !! 1328 ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode, 1310 if (dio->flags & DIO_LOCKING && iov_i !! 1329 struct block_device *bdev, struct iov_iter *iter, 1311 inode_unlock(inode); !! 1330 get_block_t get_block, >> 1331 dio_iodone_t end_io, dio_submit_t submit_io, >> 1332 int flags) >> 1333 { >> 1334 /* >> 1335 * The block device state is needed in the end to finally >> 1336 * submit everything. Since it's likely to be cache cold >> 1337 * prefetch it here as first thing to hide some of the >> 1338 * latency. >> 1339 * >> 1340 * Attempt to prefetch the pieces we likely need later. >> 1341 */ >> 1342 prefetch(&bdev->bd_disk->part_tbl); >> 1343 prefetch(bdev->bd_queue); >> 1344 prefetch((char *)bdev->bd_queue + SMP_CACHE_BYTES); 1312 1345 1313 kmem_cache_free(dio_cache, dio); !! 1346 return do_blockdev_direct_IO(iocb, inode, bdev, iter, get_block, 1314 return retval; !! 1347 end_io, submit_io, flags); 1315 } 1348 } >> 1349 1316 EXPORT_SYMBOL(__blockdev_direct_IO); 1350 EXPORT_SYMBOL(__blockdev_direct_IO); 1317 1351 1318 static __init int dio_init(void) 1352 static __init int dio_init(void) 1319 { 1353 { 1320 dio_cache = KMEM_CACHE(dio, SLAB_PANI 1354 dio_cache = KMEM_CACHE(dio, SLAB_PANIC); 1321 return 0; 1355 return 0; 1322 } 1356 } 1323 module_init(dio_init) 1357 module_init(dio_init) 1324 1358
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.